


# Chukchi Sea Planning Area

Oil and Gas Lease Sale 193 and Seismic Surveying Activities in the Chukchi Sea

Final Environmental Impact Statement

Volume III Tables, Figures, Maps, Appendices, and Bibliography



U.S. Department of the Interior Minerals Management Service Alaska OCS Region



Chukchi Sea Planning Area Oil and Gas Lease Sale 193 and Seismic Surveying Activities in the Chukchi Sea

Final Environmental Impact Statement

### Volume III

(Tables, Figures, Maps, Appendices, and Bibliography)

Author Minerals Management Service Alaska OCS Region

Cooperating Agency U.S. Department of Commerce, National Oceanographic and Atmospheric Administration, National marine Fisheries Service

# Tables, Figures, and Maps

#### Tables

| III.A-1            | Community Climate Data                                                                             |
|--------------------|----------------------------------------------------------------------------------------------------|
| III.A-2            | Temperature Departure for Barrow and Kotzebue                                                      |
| III.A-3            | Mean Occurrence Dates (1996-2004) for Landfast Ice Conditions                                      |
| III.A-4            | Mean and Maximum Polynya Widths                                                                    |
| III.A-5            | Ambient Air Quality Standards Relevant to the Chukchi Sea Planning Area                            |
| III.A-6            | Measured Air-Pollutant Concentrations at Prudhoe Bay, Alaska 1986-1995                             |
| III.A-0<br>III.A-7 | A Comparison of Most Common Sound Levels from Various Sources                                      |
| III.A-/            | A Comparison of Most Common Sound Levels from various Sources                                      |
| III.B-1            | Fish Resources of Arctic Alaska                                                                    |
| III.B-2            | Arctic Fish Occurrence in Coastal and Marine Waters of the Alaskan Chukchi and                     |
|                    | Beaufort Seas                                                                                      |
| III.C-1            | Estimated Number of Jobs by Sector, North Slope Borough Residents Only                             |
| III.C-2            | Employment of Residents by Sector, North Slope Communities, 2003                                   |
| III.C-3            | Employment Estimates (in thousands) (nonagriculture wage and salary employment)                    |
| III.C-4            | Annual Bowhead Whale Subsistence Harvest for Chukchi Sea Villages, 1982-2005                       |
|                    |                                                                                                    |
| III.C-5            | Annual Beluga Whale Harvest for Barrow, Wainwright, Point Lay, Point Hope, and Kivalina, 1980-2005 |
| III.C-6            | Annual Walrus Harvest for Barrow, Wainwright, Point Lay, Point Hope, and Kivalina,                 |
| III.C-0            | 1985-2005                                                                                          |
| III.C-7            | Annual Polar Bear Harvest for Barrow, Wainwright, Point Lay, Point Hope, and                       |
|                    | Kivalina, 1983-2005                                                                                |
| III.C-8            | Breakdown of Total Harvest by Subsistence-Harvest Category for Point Hope, Alaska,                 |
|                    | 1992                                                                                               |
| III.C-9            | Top Five Species Harvested at Point Hope, Alaska during Calendar Year 1992                         |
| III.C-10           | Participation in Subsistence-Harvest Activities, Point Hope, Alaska, 1992                          |
| III.C-11           | Point Hope, Amount of Food Consumed Harvested from Local Sources                                   |
| III.C-12           | Point Hope Money Spent on Subsistence Activities, 2003                                             |
| III.C-13a          | Kivalina Marine Mammal Subsistence Harvests                                                        |
| III.C-13b          | Kivalina Land Mammal Subsistence Harvests                                                          |
| III.C-13c          | Kivalina Fish Subsistence Harvests                                                                 |
| III.C-13d          | Kivalina Bird Subsistence Harvests                                                                 |
|                    |                                                                                                    |
| III.C-13e          | Kivalina Plant Subsistence Harvests                                                                |
| III.C-14           | Importance of Subsistence Foods to Households in NANA Region                                       |
| III.C-15           | Ethnic Composition of Barrow, Atqasuk, Wainwright, Point Lay, and Point Hope -                     |
|                    | Percent by Race                                                                                    |
| III.C-16.          | Population Counts for Native Subsistence-Based Communities in the Arctic Ecoregion;                |
|                    | Total American Indian and Alaskan Native by Percentages                                            |
| III.C-17.          | Median Household, Median Family, Per-Capita Incomes; Number of People in Poverty;                  |
|                    | Percent of the Total Borough or Native Subsistence-based Community Population.                     |
| III.C-18           | Shipwrecks in the Chukchi Sea Planning Area                                                        |
| IV.A-1             | Exploration and Development Scenario, Chukchi Sea OCS                                              |
| IV.A-2a            | Possible Timetable for Development                                                                 |
| IV.A-2b            | Possible Timetable for Production                                                                  |
| IV.A-3             | Commercial Development Potential for Sale 193 Alternatives                                         |
| IV.A-4             | Large and Small Spill Sizes, Source of Spill, Type of Oil, Number and Size of Spill and            |
| 1 V ./ <b>\-</b> + | Receiving Environment We Assume for Analysis in this EIS by Section                                |
| IV.A-5             | Small Crude Oil Spills: Assumed Spills over the Production Life of Chukchi Sea Sale                |
|                    | 193                                                                                                |
| IV.A-6             | Small Refined Oil Spills: Assumed Spills over the Production Life of Chukchi Sea Sale              |
|                    | 193                                                                                                |

| IV.C-1<br>IV.C-2                                                      | Sale 193 Employment and Personal Income Effects<br>Sociocultural Effects from Routine Activities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| V-1<br>V-2<br>V-3<br>V-4<br>V-5<br>V-6<br>V-7a<br>V-7b<br>V-7c<br>V-8 | Alaska North Slope Oil and Gas Discoveries as of March 2006<br>Past Development: 2005 Production and Reserve Date<br>Present Development: Estimated Reserve Data<br>Future Lease Sales<br>Detailed Reserve and Resource Estimates for the Cumulative Analysis<br>Trans-Alaska Pipeline System and Proposed Future Natural Gas Projects<br>Oil and Gas Production 1969 to December 2005 on the North Slope of Alaska<br>Summary of Reserve and Resource Estimates for the Cumulative Analysis<br>Detailed Reserve and Resource Estimates for the Cumulative Analysis<br>Detailed Reserve and Resource Estimates for the Cumulative Analysis<br>Cumulative Oil-Spill-Occurrence Estimates ≥500 Barrels or ≥1,000 Barrels Resulting<br>from Oil Development over the Assumed 15- to 20-Year Production Life of Sale 193 |
| Figures                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| II.B-1                                                                | Walrus Subsistence Areas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| II.B-2                                                                | 2002-2007 Chukchi Sea Program Area and the 2007-2012 5-Year Program<br>Boundaries                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| II.B-3                                                                | Secretaries Proposed Program Area 2007-2012 and the Current Sale 193 Alternative IV (Corridor II)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| III.A-1                                                               | Coastal Physiography                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| III.A-2                                                               | Last Interglacial Shoreline and Barrier Beaches along the Chukchi and Beaufort Sea<br>Coasts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| III.A-3                                                               | Generalized Distribution of Surficial Sediments and Bedforms within the Chukchi Sea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| III.A-4<br>III.A-5                                                    | Site Survey for the Popcorn Well Showing Three Successive Channel Events<br>Segment of USGS Uniboom Line 012, Showing a filled Paleochannel West of the<br>Barrow Sea Valley                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| III.A-6                                                               | Ice Gouge Density                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| III.A-7                                                               | Distribution of Near-Surface Acoustic Anomalies Possibly Related to Shallow Gas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| III.A-8                                                               | Barrow Mean Annual Temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| III.A-9                                                               | Barrow Total Annual Precipitation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| III.A-10<br>III.A-11                                                  | Kotzebue Mean Annual Temperature<br>Kotzebue Total Annual Precipitation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| III.A-11<br>III.A-12                                                  | Mean Annual Temperature Departure for Alaska (1949-2004)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| III.A-13                                                              | Generalized Maximum Retreat of Sea Ice 1996-2004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| III.A-14                                                              | Generalized Location of Chukchi Polynyas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| III.A-15                                                              | Maximum Polynya and Flaw Lead for 1995, 1997, 2003, and 2004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| III.A-16                                                              | Monthly Recurrence Probability of Leads Derived from All Images for the Time Period 1993-2004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| III.B-1                                                               | The Distribution of Average Summer Chlorophyll Concentrations, or the "Greenness" of the Surface Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| III.B-2                                                               | Abundance of Snails and Other Epifaunal Mollusks in the Northeastern Chukchi Sea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| III.B-3                                                               | Approximate Distribution of the Western Arctic Stock Bowhead Whales                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| III.B-4                                                               | Counts of Bowhead Whales in the Chukchi Sea taken by the MMS Bowhead Whale<br>Aerial Survey Project                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| III.B-5                                                               | Approximate Distribution of Fin Whales in the Eastern North Pacific                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| III.B-6                                                               | Approximate Distribution of Humpback Whales in the Western North Pacific                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| III.B-7                                                               | Approximate Areas used by Common and Thick-Billed Murres from the Cape Lisburne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

III.B-7Approximate Areas used by Common and Thick-Billed Murres from the Cape Lisburne<br/>and Cape Thompson Colonies when Foraging in Summer and by the Juvenile and<br/>Attendant Males during the Postnesting Period

| III.B-8  | Approximate Migration Distances from Shore for King Eiders, Common Eiders, and       |
|----------|--------------------------------------------------------------------------------------|
|          | Long-Tailed Ducks in Fall                                                            |
| III.B-9  | Vegetation and Wetlands within a 50-km Belt from the Chukchi Shoreline               |
| III.C-1  | Point Hope Historic Subsistence-Harvest Areas: All Resources/All Seasons             |
| III.C-2  | Point Hope Subsistence-Use Areas: Bowhead Whale                                      |
| III.C-3  | Point Hope Subsistence-Use Areas: Seals                                              |
| III.C-4  | Point Hope Subsistence-Use Areas: Walrus                                             |
| III.C-5  | Point Hope Subsistence-Use Areas: Beluga                                             |
| III.C-6  | Point Hope Annual Subsistence Cycle                                                  |
| III.C-7  | Point Hope: Changes in Subsistence Activity                                          |
| III.C-8  | The Past and Present Kivalina Hunting Areas for the Eastern Chukchi Sea (Summer)     |
|          | Stock of Beluga                                                                      |
| III.C-9  | Kivalina Hunting Area for Bowhead Whales                                             |
| III.C-10 | Kivalina Hunting Area for Pacific Walrus                                             |
| III.C-11 | Kivalina Hunting and Feeding Area of Bearded Seals                                   |
| IV.C-1   | Oil-Spill Impacts Model for Selected Fishes using Nearshore/Intertidal Substrates as |
|          | Spawning and/or Rearing Habitats                                                     |

#### Maps

| Map 1 | Program Area Chukchi Sea Sale 193                                              |
|-------|--------------------------------------------------------------------------------|
| Map 2 | Corridor I Deferral Chukchi Sea Sale 193                                       |
| Map 3 | Corridor II Deferral Chukchi Sea Sale 193                                      |
| Map 4 | Bathymetry Highs Contiguous to the Sale 193 Area                               |
| Map 5 | Generalized Circulation over Beaufort and Chukchi Seas                         |
| Map 6 | Subsistence-Harvest Areas in the Chukchi Sea Sale 193 Area                     |
| Map 7 | Archaeology Blocks and Location of Shipwrecks in the Chukchi Sea Sale 193 Area |
|       |                                                                                |

#### Table III.A-1 Community Climate Data

| Community  | Temperature Range | Average Precipitation | Normal Snow Cover |
|------------|-------------------|-----------------------|-------------------|
| Point Hope | -49 to 78 °F      | 10.0 inches           | 36 inches         |
| Point Lay  | -55 to 78 °F      | 6.9 inches            | 21 inches         |
| Wainwright | -56 to 80 °F      | 5.0 inches            | 12 inches         |
| Barrow     | -56 to 78 °F      | 5.0 inches            | 20 inches         |

#### Source:

Alaska Department of Commerce, Community Online Database

#### Table III.A-2

#### Temperature Trend for Barrow and Kotzebue (1949-2004)

| Station  | L      | Long-term mean, °F (1949 - 2004) |        |        |        |        | 14) Total change, °F (1949 - 2004) |        |        |        |
|----------|--------|----------------------------------|--------|--------|--------|--------|------------------------------------|--------|--------|--------|
| Location | Annual | Spring                           | Summer | Autumn | Winter | Annual | Spring                             | Summer | Autumn | Winter |
| Barrow   | 10.0   | 1.7                              | 37.4   | 15.2   | -14.2  | 3.4    | 4.3                                | 2.6    | 1.2    | 5.5    |
| Kotzebue | 21.8   | 15                               | 50.0   | 24.7   | - 2.5  | 3.3    | 2.4                                | 2.5    | 1.0    | 7.4    |

#### Source:

http://climate.gi.alaska.edu/ClimTrends/Change/4904Change.html.

**Notes** : Barrow is located at 71°17'N, 156°46' W at an elevation of 30.8 ft and Kotzebue is located at 66°53'N, 162°32' W at an elevation of 9.8 ft.

#### Table III.A-3

#### Mean Occurrence Dates (1996-2004) for Landfast Ice Conditions

|            | Eicken et al., 2006 |        | al., 2006 Barry et al., 1979 |                         |                                    |  |
|------------|---------------------|--------|------------------------------|-------------------------|------------------------------------|--|
|            |                     | Zone 1 | Central<br>Chukchi Sea       | Central<br>Beaufort Sea |                                    |  |
| First Ice* | Mean                | Dec 01 | Early                        | Mid-                    | First continuous fast ice          |  |
| FIISLICE   | σ'                  | 31.8   | November                     | October                 |                                    |  |
| Stable Ice | Mean                | Feb 23 | February                     | January                 | Stable ice inside of 15-m isobath  |  |
| Otable loo | σ'                  | 41.9   | rebluary                     | February                |                                    |  |
| Breakup    | Mean                | Jun 04 | June 10                      | June 30                 | First openings and movement        |  |
| ыеакир     | σ'                  | 13.9   | Julie IU                     |                         |                                    |  |
| Ice Free   | Mean                | Jun 18 | July 05                      | August 01               | Nearshore largely free of fast ice |  |
| ICE Free   | σ'                  | 12.7   |                              | , laguat 0 1            |                                    |  |

#### Source:

Eicken et al. (2006); Barry et al. (1979).

#### Table III.A-4

#### Mean and Maximum Polynya Widths

|              | Mean Poly  | /nya Width | Maximum Po | Maximum Polynya Width |  |  |
|--------------|------------|------------|------------|-----------------------|--|--|
| Year         | SSMI/I, km | W/C, km    | SSMI/I, km | W/C, km               |  |  |
| 1990         | 33         | 8          | 94         | 37                    |  |  |
| 1991         | 15         | 13         | 49         | 61                    |  |  |
| 1992         | 29         | 11         | 151        | 39                    |  |  |
| 1993         | 20         | 14         | 81         | 37                    |  |  |
| 1994         | 39         | 12         | 138        | 50                    |  |  |
| 1995         | 10         | 11         | 29         | 47                    |  |  |
| 1996         | 22         | 12         | 128        | 42                    |  |  |
| 1997         | 15         | 14         | 38         | 60                    |  |  |
| 1998         | 15         | 15         | 54         | 47                    |  |  |
| 1999         | 30         | _          | 114        | _                     |  |  |
| 2000         | 20         | —          | 72         | —                     |  |  |
| 2001         | 27         | —          | 75         | —                     |  |  |
| 9-year mean  | 21.9       | 12.2       | 84.6       | 46.7                  |  |  |
| 9-year σ     | ±9.8       | ±2.1       | ±45.8      | ±9.1                  |  |  |
| 12-year mean | 22.9       | _          | 85.2       | _                     |  |  |
| 12-year σ    | ±8.8       | _          | ±40.3      | —                     |  |  |

#### Source:

Martin et al., (2004).

 Table III.A-5

 Ambient Air Quality Standards Relevant to the Chukchi Sea Planning Area

| Ambient Air Quality Standard | ds                               |                         |                                    |                     |
|------------------------------|----------------------------------|-------------------------|------------------------------------|---------------------|
| Pollutant                    | Averaging<br>Period <sup>1</sup> | Alaska<br>Standa<br>rds | National<br>Standards <sup>2</sup> | Standard<br>Type    |
| Carbon Monoxide              | 8-hour                           | 10 mg/m <sup>3</sup>    | 9 ppm (10 mg/m <sup>3</sup> )      | Primary             |
|                              | 1-hour                           | 40 mg/m <sup>3</sup>    | 35 ppm(40 mg/m <sup>3</sup> )      | Primary             |
| Nitrogen Dioxide             | Annual                           | 100 µg/m <sup>3</sup>   | .053 ppm (100 μg/m <sup>3</sup> )  | Primary & Secondary |
| Ozone                        | 1-hour                           | 235 µg/m <sup>3</sup>   | _                                  | _                   |
|                              | 8-hour                           |                         | .08 ppm (157 µg/m <sup>3</sup> )   | Primary & Secondary |
| Lead                         | Quarterly                        | 1.5 µg/m <sup>3</sup>   | 1.5 µg/m <sup>3</sup>              | Primary & Secondary |
| Particulate Matter (PM10)    | Annual                           | 50 µg/m³                | 50 µg/m <sup>3</sup>               | Primary & Secondary |
|                              | 24-hour                          | 150 µg/m <sup>3</sup>   | 150 μg/m <sup>3</sup>              | Primary & Secondary |
| Particulate Matter (PM2.5)   | Annual                           |                         | 15 µg/m <sup>3</sup>               | Primary & Secondary |
|                              | 24-hour                          |                         | 65 µg/m <sup>3</sup>               | Primary & Secondary |
|                              | Annual                           | 80 µg/m <sup>3</sup>    | .03 ppm (80 µg/m <sup>3</sup> )    | Primary             |
| Sulfur Dioxide               | 24-hour                          | 365 µg/m <sup>3</sup>   | .014 ppm (365 µg/m <sup>3</sup> )  | Primary             |
|                              | 3-hour                           | 1300 µg/m <sup>3</sup>  | .5 ppm (1300 µg/m³)                | Secondary           |
| Reduced Sulfur<br>Compounds  | 30-minute                        | 50 µg/m <sup>3</sup>    | _                                  | _                   |
| Ammonia                      | 8-hour                           | 2.1 µg/m <sup>3</sup>   | _                                  | —                   |

#### Source:

State of Alaska, Dept. of Environmental Conservation (2005), 18 AAC 50.010; U.S. Environmental Protection Agency (40 CFR Part 50) **Notes:** 

(a dash [---] indicates that no standards have been established)

 $mg/m_{2}^{3}$  = milligrams per cubic meter

 $\mu g/m^3$  = micrograms per cubic meter

#### Footnotes:

<sup>1</sup>National standards (other than ozone, particulate matter, and those based on annual averages or annual arithmetic mean) are not to be exceeded more than once a year. The ozone standard is attained when the fourth high 8-hour concentration in a year, averaged over 3 years, is equal to or less than the standard. For  $PM_{10}$ , the 24-hour standard is attained when the expected number of days per calendar year with a 24-hour average concentration above 150 µg/m<sup>3</sup> is ≤1. For  $PM_{2.5}$ , the 24-hour standard is attained when 98% of the daily concentrations, averaged over 3 years, are equal to or less than the standard.

<sup>2</sup>Concentration expressed first in units in which it was promulgated. Equivalent units given in parentheses are based upon a reference temperature of 25 °C and a reference pressure of 760 torr. Most measurements of air quality are to be corrected to a reference temperature of 25 °C and a reference pressure of 760 torr; ppm in this table refers to ppm by volume, or micromoles of pollutant per mole of gas.

#### Table III.A-6 Measured Air-Pollutant Concentrations at Prudhoe Bay, Alaska 1986-1996

|                            |                        | Monitor Sites  |                    |       |                                    |                                     |
|----------------------------|------------------------|----------------|--------------------|-------|------------------------------------|-------------------------------------|
| Pollutant <sup>1</sup>     | A <sup>2</sup>         | B <sup>3</sup> | C⁴                 | D⁵    | National<br>Standards <sup>6</sup> | Class II<br>Increments <sup>7</sup> |
| Ozone                      |                        |                |                    |       |                                    |                                     |
| Annual Max. 1 hr           | 115.8                  | 180.3          | 115.6              | 100.0 | 235                                | _                                   |
| Nitrogen Dioxide           |                        |                |                    |       |                                    |                                     |
| Annual                     | 26.3                   | 11.9           | 16.0               | 4.9   | 100                                | 25                                  |
| Inhalable Particulate Matt | er (PM <sub>10</sub> ) |                |                    |       |                                    |                                     |
| Annual                     |                        | —              | 10.5               | _     | 50                                 | 17                                  |
| Annual Max. 24 hr          | 29.3                   | _              | 25.0 <sup>8</sup>  | _     | 150                                | 30                                  |
| Sulfur Dioxide             |                        |                |                    |       |                                    |                                     |
| Annual                     | 2.6                    | _              | 5.2                | 2.6   | 80                                 | 20                                  |
| Annual Max. 24 hr          | 10.5                   | —              | 26.2 <sup>8</sup>  | 13.1  | 365                                | 91                                  |
| Annual Max. 3 hr           | 13.1                   | —              | 44.5               | 55.0  | 1,300                              | 512                                 |
| Carbon Monoxide            | Carbon Monoxide        |                |                    |       |                                    |                                     |
| Annual Max. 8 hr           | _                      | _              | 1,400              | _     | 10,000                             | —                                   |
| Annual Max. 1 hr           | —                      | —              | 2,500 <sup>8</sup> |       | 40,000                             |                                     |

#### Sources:

ERT Company, Inc. (1987); Environmental Science and Engineering (1987); ENSR, (1996), as cited in U.S. Army Corps of Engineers (1999)

#### Note:

(measured in micrograms per cubic meter; absence of data is indicated by a dash [---])

Footnotes:

<sup>1</sup>Lead was not monitored.

<sup>2</sup>Site CCP (Central Compressor Plant), Prudhoe Bay monitoring program, selected for maximum pollutant concentrations. All data are for years 1992-1996.

<sup>3</sup>Site Pad A (Drill Pad A), Prudhoe Bay monitoring program, site of previous monitoring, selected to be more representative of the general area or neighborhood.

All data are for years 1992-1996. <sup>4</sup>Site CPF-1 (Central Processing Facility), Kuparuk monitoring program, selected for maximum pollutant concentrations. Ozone, nitrogen dioxide, and sulfur dioxide are for years 1990-1992; PM<sub>10</sub> and carbon monoxide data are for 1986-1987.

<sup>5</sup>Site DS-1F, Kuparuk monitoring program site selected to be representative of the general area or neighborhood. All data are for years 1990-1992. <sup>6</sup>Applicable National Ambient Air Quality Standards. Please refer to Table III.A-5 for more specific definitions of air quality

standards.

<sup>7</sup>Class II PSD Standard Increments.

<sup>8</sup>Second highest observed value (in accordance with approved procedures for determining ambient air quality).

| Source          | Activity                                 | dB at Source |
|-----------------|------------------------------------------|--------------|
| Vessel Activity |                                          |              |
|                 | Tug Pulling Barge                        | 171          |
|                 | Fishing Boats                            | 151-158      |
|                 | Zodiac (outboard)                        | 156          |
|                 | Supply Ship                              | 181          |
|                 | Tankers                                  | 169-180      |
|                 | Supertankers                             | 185-190      |
|                 | Freighter                                | 172          |
| Ice Breaking    |                                          |              |
|                 | Ice-Management                           | 171-191      |
|                 | Ice-Breaking <sup>2</sup>                | 193          |
| Dredging        |                                          |              |
|                 | Clamshell Dredge                         | 150-162      |
|                 | Aquarius (cutter suction dredge)         | 185          |
|                 | Beaver Mackenzie Dredge                  | 172          |
| Drilling        |                                          |              |
|                 | Kulluk (conical drill ship) – drilling   | 185          |
|                 | Explorer II (drill ship) - drilling      | 174          |
|                 | Artificial Island – drilling             | 125          |
|                 | Ice Island (in shallow water) – drilling | 86           |
| Seismic and Ac  | oustics                                  |              |
|                 | Airgun Arrays                            | 235-259      |
|                 | Single Airguns                           | 216-232      |
|                 | Vibroseis                                | 187-210      |
|                 | Water Guns                               | 217-245      |
|                 | Sparker                                  | 221          |
|                 | Boomer                                   | 212          |
|                 | Depth Sounder                            | 180          |
|                 | Sub-bottom Profiler                      | 200-230      |
|                 | Side-scan Sonar                          | 220-230      |
|                 | Military                                 | 200-230      |

65-133

| Table III.A-7                                                              |
|----------------------------------------------------------------------------|
| A Comparison of Most Common Sound Levels from Various Sources <sup>1</sup> |

**Ambient Noise** 

Sources: <sup>1</sup> Richardson et.al, (1995). <sup>2</sup> Robert Lemeur. <sup>3</sup> Burgess and Green, (1999).

Ambient Noise<sup>3</sup>

|               | A un kil |
|---------------|----------|
|               | - i      |
|               |          |
|               | <        |
|               |          |
|               | 4        |
|               |          |
|               |          |
|               |          |
|               |          |
| -             | 1        |
| Ъ.            |          |
| <b>∏-</b> 8-1 |          |
| Τ.            |          |
| =             |          |
| _             | 1        |
| Φ             |          |
| Table         | ц<br>Ц   |
| + 문           |          |
| <i>.</i> 0    |          |
| -             | L        |

| International production of the international productional production of the international productional productional productional produ | Fish Resources of Arctic Alaska | tic Alaska                                    |                          |                       |                          |                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------------------------|--------------------------|-----------------------|--------------------------|-------------------------|
| Fanity         Specie Name         Commo Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 | Ë                                             | sh Species               |                       | Distribu<br>Large Marine | ition by<br>e Ecosystem |
| Immediate (any possible in the intervence)         Immediate (any possible intervence)         Immediate (any possind)         Immediate (any possible intervence)                                                                                                                                                                                                                                                                                                                                             | Order                           |                                               |                          | Common Name           | Beaufort Sea             | Chukchi Sea             |
| Petromycontidae (lampreys)         Lampetra carritociatica         Pedrific lamprey         -         -           Actici lamprey         Lampetra carritociatica         Actici lamprey         -         -         -           Actici lamprey         Squalitae (eleeper strarks)         Somitosus pedificus         Somitosus pedificus         Somitosus pedificus         -         -         -         -           Actici lamprey         Squalitae (inclus)         Cutperidae (inclus)         Pacific herrings         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Petromyzontiformes              |                                               |                          |                       |                          |                         |
| Actol lampey         Actol lampey         W           Image: startisty         Sommosus pacificus         Facific steeper stratisty         W         M           Cuppediee (steeper stratisty)         Sommosus pacificus         Sommosus pacific                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 | Petromyzontidae (lamprevs)                    | Lampetra tridentata      | Pacific lamprey       | I                        | Я                       |
| Datatitide (steper sharks)         Somious pec/ficus         Somious pec/ficus </td <th></th> <td></td> <td>Lampetra camtschatica</td> <td>Arctic lamprey</td> <td>W</td> <td>W</td>                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |                                               | Lampetra camtschatica    | Arctic lamprey        | W                        | W                       |
| Datalitidae (sleeper sharks)         Somnissis peorficus         Pacific seeper sharks)         Somnissis peorficus         Pacific seeper sharks         Image: Squalidae (cogrish sharks)         Somnissis peorficus         Embed set to the sharks         Squalidae (cogrish sharks)         Squalidae (cogrish sharks)         Squalidae (cogrish sharks)         Squalidae (cogrish sharks)         Image: Squalidae (cogrish sharks)         Squalidae (code)         Squa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Squaliformes                    |                                               |                          |                       |                          |                         |
| Squalidae (dogfish sharks)         Squaluae (dogfish sharks)         Squaluae (anelis) $                                                                                          -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 | Dalatiidae (sleeper sharks)                   | Somniosus pacificus      | Pacific sleeper shark | I                        | W                       |
| Clupeidae (herrings)         Clupea palasi         Pacific herring         Number instruction           Aminto instruction         Osmeridae (smelts)         Maintous villosus         Maintous villosus         Caregionus         Variantous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 | Squalidae (dogfish sharks)                    | Squalus acanthias        | spiny dogfish         |                          | Я                       |
| Cupetidae (herrings)         Cupeae pafasii         Pacific herring         W           Ameridae (smetis)         Cupeae pafasii         Pacific herring         W         W           Ameridae (smetis)         Comports sericitritys         Eapelin         W         W           Ameridae (smetis)         Ameridae (smetis)         Innonu         W         W           Ameridae (cregoniae         Coregonia sericitritys         Innonu         W         W           Coregonia sericitrities         Arctic cisco         W         W         W           Salmonidae(Coregoninae         Coregonia sericitrities         Arctic cisco         W         W         W           Salmonidae(Salmoninae         Coregonia sericitrities         Dooly Varietie         W         W         W           Salmonidae(Salmoninae         Coregonia sericitrities of the construction         W         W         W         W           Salmonidae(Salmoninae         Coregonia sericitrities         Dooly Varietie         W         W         W         W           Salmonidae(Salmoninae         Coregonia sericitrities         Dooly Varietie         W         W         W         W           Salmonidae(Salmoninae         Coregonia sericitrities         Dooly Varietie         W <t< td=""><th>Clupeoiformes</th><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Clupeoiformes                   |                                               |                          |                       |                          |                         |
| Osmeridae (smelts)         Mailous vilosus<br>Osmerus mordax         capelin<br>rainbow smelt         W           Annouldae (smelts)         Osmerus mordax         capelin         W         W           Annouldae/Coregoniae         Coregonus elucionthys         Incomu         R         W           Salmonidae/Coregoniae         Coregonus elucionthys         Incomu         R         W           Coregoniae         Coregonia elucionte         Coregonia elucionte         Nordio cisco         W         W           Salmonidae/Coregoniae         Coregonia elucionte         Coregonia elucionte         Nordio cisco         W         W           Salmonidae/Coregoniae         Coregonia elucionte         Nordio cisco         W         W         W         W           Salmonidae/Salmoniae         Coregonia satur         Nordio cisco         W         W         W         W           Salmonidae/Salmoniae         Coregonia sature         Nordio cisco         W         W         W         W         M           Salmonidae/Coregoniae         Coregonia sature         Nordio cisco         W         W         W         W         W           Salmonidae/Coregoniae         Coregonia sature         Nordio cisco         W         W         W         W         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 | Clupeidae (herrings)                          | Clupea pallasii          | Pacific herring       | M                        | M                       |
| Generidae (smelts)         Heliotus vilicaus<br>Corrector mordax         Imponentation<br>corrector         Imponent                                                                                                                                                                                                                                                                                                          | Osmeriformes                    |                                               |                          |                       |                          |                         |
| ommode         Common memory         Common memory         Common memory         Components         M         M           Semond ac/Coregoniae         Semond sercifieds         Incomin         Incomin <t< td=""><th></th><td>Osmeridae (smelts)</td><td>Mallotus villosus</td><td>capelin</td><td>W</td><td>W</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 | Osmeridae (smelts)                            | Mallotus villosus        | capelin               | W                        | W                       |
| Image: series of the  |                                 |                                               | Osmerus mordax           | rainbow smelt         | W                        | W                       |
| International<br>Coregonus sardinalis         International<br>Levelorus sardinalis         Internationalis         Internationalis         Internationalis           And trainal salinoninae         Corresponus fistorus sardinalis         Diody varden         NW         NW         NW         NW         NW           And salinoninae         Concorrynchus fistorus sardina         Concorrynchus fistorus         Concorrynchus fistorus         Concorrynchus fistorus         NW         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Salmoniformes                   |                                               |                          |                       |                          |                         |
| Amonidae/Coregoniae         Coregonus sardinelia         Iest cisco         W           Coregonus autumnais         Arctic cisco         W         W           Coregonus autumnais         Coregonus autumnais         Arctic cisco         W         W           Coregonus discriment         Coregonus piscriment         Bering cisco         W         W         M           Coregonus piscriment         Coregonus piscriment         Disvellus         Arctic cisco         W         M         M           Salmoniae         Salwelinus apinus         Disvellus apinus         Arctic char         W         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M <t< td=""><th></th><td></td><td>Stenodus leucichthys</td><td>inconnu</td><td>Ъ</td><td>I</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 |                                               | Stenodus leucichthys     | inconnu               | Ъ                        | I                       |
| Salmonidae/Coregoninae         Coregonus autumnelis         Arctic cisco         W         W           Muthefishes)         Coregonus autumnelis         Bernig cisco         W         W           Arctic officitie         Bernig cisco         W         W         W           Coregonus autumnelis         Coregonus autumnelis         Bernig cisco         W         W           Coregonus masus         Donad whitefish         W         W         W         W           Coregonus masus         Salwonidae/Salmoniae         Coregonus masus         Donad whitefish         W         W         W           Salmonidae/Salmoniae         Coregonus masus         Donad whitefish         Donad whitefish         W         W         M           Salmonidae/Salmoniae         Coregonus masus         Donad whitefish         Donad whitefish         W         W         M           Salmonidae/Salmoniae         Coregonus masus         Donad whitefish         Donad whitefish         W         W         M           Salmonidae/Salmoniae         Coregonus masus         Donad whitefish         Donad whitefish         W         W         M           Salmonidae/Salmoniae         Coregonus masus         Donad whitefish         Donad whitefish         M         W <td< td=""><th></th><td></td><td>Coregonus sardinella</td><td>least cisco</td><td>M</td><td>M</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |                                               | Coregonus sardinella     | least cisco           | M                        | M                       |
| (whitefishes)         Coregous lauretae         Bering cisco         w         w           Coregous nasus         broad whitefish         woad whitefish         ww         w           Coregous nasus         Coregous nasus         broad whitefish         ww         w         w           Coregous nasus         Coregous nasus         broad whitefish         ww         w         w         w           Coregous nasus         Salvelinus         Arctic char         Nod whitefish         ww         w         w           Salvelinus         Discriptions         Discriptions         Discriptions         No         w         w         w         w           Salvelinus         Discriptions         Discriptions         Discriptions         Discriptions         w         w         w         w         w         w         w         w         w         w         w         w         w         w         w         w         w         w         w         w         w         w         w         w         w         w         w         w         w         w         w         w         w         w         w         w         w         w         w         w         w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 | Salmonidae/Coregoninae                        | Coregonus autumnalis     | Arctic cisco          | M                        | I                       |
| Antional international internationa |                                 | (whitefishes)                                 | Coregonus laurettae      | Bering cisco          | W                        | W                       |
| Image: constraint of the section of the sec |                                 |                                               | Coregonus nasus          | broad whitefish       | W                        | W                       |
| Adveloration         Salvelinus apinus         Actic char         W         W           Salvelinus malma         Doily Varten         W         W         W         W           Salvelinus malma         Distriction         Distriction         W         W         W         W           Constructuus gebuscha         Distriction         Distriction         Distriction         W         W         W         W           Constructuus disaturus)         Distriction         Salvelinus skitch         Schoosatinon         W         W         W         W         W         M           Oncortynchus keta         Chinook salmon         Chinook salmon         Chinook salmon         K         W         M         M           Oncortynchus keta         Chinook salmon         Chinook salmon         K         K         M         M           Oncortynchus keta         Chinook salmon         Chinook salmon         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |                                               | Coregonus pidschian      | humpback whitefish    | W                        | W                       |
| Family statution         Doly Variden         W         W           Salveinuae         Concritynchus gorbuscha         pink salmon         W         W           Chrochtynchus kisutch         Chinok salmon         W         W         W           Chrochtynchus kisutch         Chinok salmon         W         W         W           Chrochtynchus keta         Chinok salmon         K         K         K           Chrochtynchus keta         Chinos salmon         K         K         K           Myctoplate         Benthosea         Jenthosea         K         K         K           Myctoplate         Benthosea         Jenthosea         Jenthosea         K         K         K           Myctoplate         Benthosea         Jenthosea         Jenthosea         K<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 |                                               | Salvelinus alpinus       | Arctic char           | W                        | M                       |
| Saluonidae/Saluoniae         Oncorthynchus gorbuscha         pink salmon         W         M           Retain and salmons)         Oncorthynchus kisutch         coho salmon         R         R           Oncorthynchus kisutch         Chinook salmon         R         R         R           Oncorthynchus kisutch         Chinook salmon         R         R         R           Oncorthynchus keta         Chinook salmon         R         R         R           Oncorthynchus keta         chum salmon         R         R         R           Mytophae         Benthosemerka         chum salmon         R         R           Mytophae         Benthosemerka         Actocoles         R         R         R           Mytophae         Mytophae         Benthosemerka         Actocoles <td< td=""><th></th><td></td><td>Salvelinus malma</td><td>Dolly Varden</td><td>W</td><td>W</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |                                               | Salvelinus malma         | Dolly Varden          | W                        | W                       |
| Samonaevanonae         Oncothynchus kisutch         coho salmon         R         R           Incorring and salmosi         Oncothynchus tshawytscha         Chinok salmon         R         R           Oncorhynchus keta         Chinok salmon         R         R         R         R           Oncorhynchus keta         Chinok salmon         R         R         R         R           Oncorhynchus keta         Chinok salmon         Sockeye salmon         R         R         R           Mytophate         Benthosen erka         Sockeye salmon         R         R         R           Mytophate         Mytophate         Benthosen erka         Sockeye salmon         R         R           Mytophate         Benthosen erka         Ancoodie         Ancoodie         Ancoodie         R         R           Antobate         Benthosen erka         Ancoodie         Ancoodie         Ancoodie         R         R           Antobate         Benthosen erka         Ancoodie         Ancoodie         R         R         R           Antobate         Antobate         Antobate         Antobate         R         R         R           Antobate         Benthosen         Antobate         Antobate         R<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 |                                               | Oncorhynchus gorbuscha   | pink salmon           | M                        | M                       |
| Image: Contribution of the image of the image.         Image of the image.         Image of the image.         Image of the                             |                                 | Salmonidae/Salmoninae<br>(trouts and salmons) | Oncorhynchus kisutch     | coho salmon           | К                        | M                       |
| Image       Image <t< td=""><th></th><td></td><td>Oncorhynchus tshawytscha</td><td>Chinook salmon</td><td>Ъ</td><td>W</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 |                                               | Oncorhynchus tshawytscha | Chinook salmon        | Ъ                        | W                       |
| met     Oncorhynchus nerka     sockeye salmon     R       met     Antologi (anternfishe)     Benthosena glacial     Jacket (anternfishe)     R       Myctophidae (lanternfishe)     Benthosena glacial     Jacket (anternfishe)     R     R       Antologi (anternfishe)     Benthosena glacial     Antologadus saida     Antologadus glacialis     N     N       Antologi (anternfishe)     Antologadus glacialis     Antologadus glacialis     N     N     N       Antologadus borisovi     Intergrat chalcogramma     Antologadus borisovi     Interdecod     N     N       Antologadus borisovi     Intergrat chalcogramma     Mulleye pollock     N     N     N       Antologadus borisovi     Intergrat chalcogramma     Mulleye pollock     N     N     N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 |                                               | Oncorhynchus keta        | chum salmon           | M                        | W                       |
| Myctophidae (lanternfishes)     Benthosema glaciale     glacier lanternfish     R       Myctophidae (lanternfishes)     Benthosema glaciale     glacier lanternfish     R       Anctopadus saida     Arctic cod     W     N       Anctogadus saida     Arctic cod     W     N       Anctogadus saida     Intercod     N     N       Gadidae (cods)     Arctogadus borisovi     toothed cod     R     N       Theragra chalcogramma     valleye pollock     N     N     N       Gadus ogac     ogac     ogac     ogac     N     N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 |                                               | Oncorhynchus nerka       | sockeye salmon        | Я                        | W                       |
| Myctophidae (lanternfishe)Benthosema glacialeglacier lanternfishRArctopadus saidaArctic codWNBoreogadus saidaArctopadus saidaPolar codWNArctogadus glacialispolar codRNNBeginus gracilistoothed codNNNNTheragra chalcogrammavalleye pollockNNNNGadus ogacogacogacogacNNN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>Myctophiformes</b>           |                                               |                          |                       |                          |                         |
| Boreogadus saida     Arctic cod     W       Arctogadus glacialis     polar cod     R       Arctogadus borisovi     toothed cod     R       Eleginus gracilis     saffron cod     W       Theragra chalcogramma     walleye pollock     —       Gadus ogac     ogac     ogac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 | Myctophidae (lanternfishes)                   | Benthosema glaciale      | glacier lanternfish   | ъ                        | I                       |
| Boreogadus saidaArctic codWArctogadus glacialispolar codRArctogadus borisovitoothed codREleginus gracilissaffron codWTheragra chalcogrammawalleye pollockGadus ogacogacogacW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Gadiformes                      |                                               |                          |                       |                          |                         |
| Arctogadus glacialispolar codRArctogadus borisovitoothed codREleginus gracilissaffron codWTheragra chalcogrammawalleye pollockGadus ogacogacw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |                                               | Boreogadus saida         | Arctic cod            | W                        | W                       |
| Arctogadus borisovitoothed codREleginus gracilissaffron codWTheragra chalcogrammawalleye pollockGadus ogacogacogacW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |                                               | Arctogadus glacialis     | polar cod             | ٣                        | I                       |
| Eleginus gracilissaffron codWTheragra chalcogrammawalleye pollock—Gadus ogacogacw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 | Gadidae (cods)                                | Arctogadus borisovi      | toothed cod           | ٣                        | I                       |
| alcogramma walleye pollock — W W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 |                                               | Eleginus gracilis        | saffron cod           | M                        | M                       |
| ogac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 |                                               | Theragra chalcogramma    | walleye pollock       | 1                        | M                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 |                                               | Gadus ogac               | ogac                  | W                        | -                       |

|                   |                               |                            |                         | Dictvib      | ution by                                  |
|-------------------|-------------------------------|----------------------------|-------------------------|--------------|-------------------------------------------|
|                   |                               | Fish Species               |                         | Large Marin  | uistribution by<br>Large Marine Ecosystem |
| Order             | Family                        | Species Name               | Common Name             | Beaufort Sea | Chukchi Sea                               |
| Gasterosteiformes |                               |                            |                         |              |                                           |
|                   | Gastarostaidaa (stirklaharks) | Gasterosteus aculeatus     | threespine stickleback  | R            | R                                         |
|                   | Casterosterade (sticktebacks) | Pungitius pungitius        | ninespine stickleback   | M            | M                                         |
| Scorpaeniformes   |                               |                            |                         |              |                                           |
|                   | Hexagrammidae (greenlings)    | Hexagrammos stelleri       | whitespotted greenling  | U-R          | M                                         |
|                   |                               | Triglops pingelii          | ribbed sculpin          | M            | M                                         |
|                   |                               | Hemilepidotus papilio      | butterfly sculpin       |              | M                                         |
|                   |                               | Hemilepidotus jordani      | yellow Irish lord       |              | R                                         |
|                   |                               | Icelus spatula             | spatulate sculpin       | M            | M                                         |
|                   |                               | Icelus bicornis            | twohorn sculpin         | R            | Ι                                         |
|                   |                               | Gymnocanthus tricuspis     | Arctic staghorn sculpin | M            | M                                         |
|                   |                               | Cottus aleuticus           | coastrange sculpin      | l            | ΓD                                        |
|                   | Cottidae (sculpins)           | Enophrys diceraus          | antlered sculpin        |              | M                                         |
|                   |                               | Megalocottus platycephalus | belligerent sculpin     |              | M                                         |
|                   |                               | Myoxocephalus quadricornis | fourhorn sculpin        | Ν            | M                                         |
|                   |                               | Myoxocephalus scorpius     | shorthorn sculpin       | Ν            | N                                         |
|                   |                               | Myoxocephalus scorpioides  | Arctic sculpin          | Ν            | N                                         |
|                   |                               | Myoxocephalus jaok         | plain sculpin           |              | M                                         |
|                   |                               | Microcottus sellaris       | brightbelly sculpin     |              | R                                         |
|                   |                               | Artediellus gomojunovi     | spinyhook sculpin       | Я            | Я                                         |
|                   |                               | Artediellus scaber         | hamecon                 | Ν            | M                                         |
|                   |                               | Artediellus pacificus      | hookhorn sculpin        | I            | Я                                         |
|                   |                               | Artediellus ochotensis     | Okhotsk hookear sculpin | 1            | R                                         |
|                   | Hemitripteridae               | Blepsias bilobus           | crested sculpin         |              | M                                         |
|                   | (sailfin sculpins)            | Nautichthys pribilovius    | eyeshade sculpin        | I            | 8                                         |
|                   | Psychrolutidae                | Eurymen gyrinus            | smoothcheek sculpin     |              | Я                                         |
|                   | (fathead sculpins)            | Cottunculus sadko          | Sadko sculpin           | R            | Ι                                         |
|                   |                               | Hypsagonus quadricornis    | fourhorn poacher        |              | R                                         |
|                   |                               | Pallasina barbata          | tubenose poacher        |              | R                                         |
|                   | Agoinaae (poachers)           | Occella dodecaedron        | Bering poacher          | I            | Я                                         |
|                   |                               | Leptagonus decagonus       | Atlantic poacher        | Ж            | Я                                         |
|                   |                               | Podothecus veternus        | veteran poacher         | U-R          | R/P                                       |

| Oddary         Fand Species         Event Sector         Common Name         Event Sector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Fish Resources of Arctic Alaska (continued) | tic Alaska (continued)         |                               |                       |                            |                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--------------------------------|-------------------------------|-----------------------|----------------------------|---------------------|
| International standards         Family         Spacies Name         Contron Name         Contender         Contron Name         Contron Nam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                             | E                              | sh Species                    |                       | Distributi<br>Large Marine | ion by<br>Ecosystem |
| Image (continue)         Actric aligner/etin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Order                                       | Family                         | Species Name                  | Common Name           | Beaufort Sea               | Chukchi Sea         |
| Administ         Identication         Acritical aligneticity         Acritic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Scorpaeniformes (contin                     | ned)                           |                               |                       |                            |                     |
| (continued)         Asylicophonicides monogenergius<br>Entimations         alligation         alligation         a           Cycloprotidae (umpsuckers)         Entimations         Entinations         Entinations         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                             | Agonidae (poachers)            | Ulcina olrikii                | Arctic alligatorfish  | M                          | M                   |
| Cyclopter(dae (lumpsucker)         Eumicorrenus derignici<br>Eumicorrenus adrésrieri         Implier lumpsucker         Implier lumpsucker         Rep         Implier           Liperis functations         Liperis functations         emplier lumpsucker         implier lump                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                             | (continued)                    | Aspidophoroides monopterygius | alligatorfish         | I                          | ΓD                  |
| Optioneration (mathematication)         Emmicrotemus and relation         prompted timplet (maguidet relation)         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                             | Cucloutoridae (lumaeuchore)    | Eumicrotremus derjugini       | leatherfin lumpsucker | R/P                        | I                   |
| Lipentides (smallfishue)         Lipentide stantifishue)         Lipentide stantifishue) <thlipentide stantifishue)<="" th=""> <thlipentide stant<="" td=""><td></td><th>Aciopitei idae (idiiipsdoveis)</th><td>Eumicrotremus andriashevi</td><td>pimpled lumpsucker</td><td>I</td><td>R</td></thlipentide></thlipentide>                                                                                                                                                                                                                                                                                     |                                             | Aciopitei idae (idiiipsdoveis) | Eumicrotremus andriashevi     | pimpled lumpsucker    | I                          | R                   |
| Liperidae (snalifished)         Liperide functions         Liperide stratifish         www.media           Liperide (snalifished)         Liperide stratifish         media         www.media           Liperide stratifish         Bistiol snalifish         media         www.media           Comments windles references         Bistiol snalifish         media         www.media           Conscribes stratifish         Bistiol scienci         Bistion Scienci         Bistiol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                             |                                | Liparis gibbus                | variegated snailfish  | M                          | M                   |
| Lipendae (nutritisties)         Leprits instituents         Leprinstituents         Leprits instinst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                             |                                | Liparis tunicatus             | kelp snailfish        | M                          | M                   |
| Ipensidential         Ipensidential         RP         RP           Ipensidential         Ipensidential         Ipensidential         Ipensidential         Ipensidential           Ipensidential         Ipensidential         Ipensidential         Ipensidential         Ipensidential         Ipensidential         Ipensidential         Ipensidential         Ipensidential         Ipensidential         Ipensidential         Ipensidential         Ipensidential         Ippose         Ippos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                             | Liparidae (snailfishes)        | Liparis bristolensis          | Bristol snailfish     | I                          | Ъ                   |
| Image: Independent of the independ |                                             |                                | Liparis fabricii              | gelatinous seasnail   | R/P                        | I                   |
| Cymelus hemfasciatus         Inatherred pout         R/P           Comelus vindis         Inatherred pout         R/P           Comelus vindis         Inatherred pout         R/P           Comelus vindis         Inatherred pout         R/P           Lycodes mucosus         stadded elepout         R           Lycodes mucosus         stadded elepout         R           Lycodes mucosus         biolar elepout         R           Lycodes sagitterus         biolar elepout         R           Lycodes sagitterus         biolar elepout         R           Lycodes sagitterus         atcher elepout         R           Lycodes sagitterus         biolar elepout         R           Lycodes concol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                             |                                | Liparis callyodon             | spotted snailfish     | I                          | Ν                   |
| Gymnelus hemifasciatushaltbarred pout $R_{IP}$ $R_{IP}$ Gymnelus viridisfish doctorfish doctor $R_{IP}$ $R_{IP}$ Lycodes seminuduslongear eelpout $R_{IP}$ $R_{IP}$ $R_{IP}$ Lycodes mucosussaddled eelpout $R_{IP}$ $R_{IP}$ $R_{IP}$ Lycodes mucosussatuarine eelpout $R_{IP}$ $R_{IP}$ $R_{IP}$ Lycodes turneriestuarine eelpout $R_{IP}$ $R_{IP}$ $R_{IP}$ Lycodes raridensmarbled eelpout $R_{IP}$ $R_{IP}$ $R_{IP}$ Lycodes rasimarbled eelpout $R_{IP}$ $R_{IP}$ $R_{IP}$ Lycodes rasiarcher eelpout $R_{IP}$ $R_{IP}$ $R_{IP}$ Lycodes rasiarcher eelpout $R_{IP}$ $R_{IP}$ $R_{IP}$ Lycodes rasibale eelpout $R_{IP}$ $R_{IP}$ $R_{IP}$ Lycodes rasibale eelpout $R_{IP}$ $R_{IP}$ $R_{IP}$ Lycodes radienterbale eelpout $R_{IP}$ $R_{IP}$ $R_{IP}$ Lycodes ra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Perciformes                                 |                                |                               |                       |                            |                     |
| Gymnelus viridisfish doctor $\mathbb{R}/P$ $\mathbb{R}/P$ $\mathbb{R}/P$ Lycodes seminuduslongear eelpout $\mathbb{R}$ $\mathbb{R}$ $\mathbb{R}$ $\mathbb{R}$ Lycodes mucosussaddled eelpout $\mathbb{R}$ $\mathbb{R}$ $\mathbb{R}$ $\mathbb{R}$ Lycodes mucosussatuarine eelpout $\mathbb{R}$ $\mathbb{R}$ $\mathbb{R}$ $\mathbb{R}$ Lycodes raridensmarbled eelpout $\mathbb{R}$ $\mathbb{R}$ $\mathbb{R}$ $\mathbb{R}$ Lycodes raridensmarbled eelpout $\mathbb{R}$ $\mathbb{R}$ $\mathbb{R}$ $\mathbb{R}$ Lycodes raridensmarbled eelpout $\mathbb{R}$ $\mathbb{R}$ $\mathbb{R}$ $\mathbb{R}$ Lycodes raridensarcher eelpout $\mathbb{R}$ $\mathbb{R}$ $\mathbb{R}$ $\mathbb{R}$ Lycodes raridensarcher eelpout $\mathbb{R}$ $\mathbb{R}$ $\mathbb{R}$ $\mathbb{R}$ Lycodes raridensbale eelpout $\mathbb{R}$ $\mathbb{R}$ $\mathbb{R}$ $\mathbb{R}$ Lycodes raridensbardende eelpout $\mathbb{R}$ $\mathbb{R}$ $\mathbb{R}$ $\mathbb{R}$ $\mathbb{R}$ <td></td> <th></th> <td>Gymnelus hemifasciatus</td> <td>halfbarred pout</td> <td>R/P</td> <td>R/P</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                             |                                | Gymnelus hemifasciatus        | halfbarred pout       | R/P                        | R/P                 |
| Lycodes seminuduslongear eelpoutRRLycodes mucosussaddled eelpoutRRRLycodes mucosusestuarine eelpoutRNKLycodes turneriestuarine eelpoutRNKLycodes raridenspolar eelpoutRNKKLycodes raridensmathled eelpoutRNKKLycodes raridensarcher eelpoutRRKKLycodes raridensarcher eelpoutRRKKLycodes raridensarcher eelpoutRRKKLycodes raridensarcher eelpoutRRKKLycodes raridensarcher eelpoutRRKKLycodes raridensbale eelpoutRRKKKLycodes raridensbale eelpoutRRKKKLycodes raridensbale eelpoutRRKKKLycodes raridensbale eelpoutRRKKKLycodes raridensbale eelpoutRRKKKLycodes raridensbale eelpoutRRKKKKLycodes raridensbale eelpoutRRKKKKLycodes raridensbale eelpoutCRKKKKKLycodes raridensbale eelpoutCRKKKKKK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                             |                                | Gymnelus viridis              | fish doctor           | R/P                        | R/P                 |
| Lycodes mucosus     saddled eelpout     R       Lycodes narridens     estuarine eelpout     R       Lycodes raridens     polar eelpout     R       Lycodes raridens     marbled eelpout     R       Lycodes raridens     marbled eelpout     R       Lycodes sagittarius     archer eelpout     R       Lycodes sagittarius     archer eelpout     R       Lycodes sagittarius     archer eelpout     R       Lycodes sagittarius     bale eelpout     R       Lycodes sagittarius     bale eelpout     R       Lycodes suminenter     scalebely eelpout     R       Lycodes suminenter     bale eelpout     R       Lycodes suminenter     scalebely eelpout     R       Lycodes concolor     bale eelpout     R       Lycodes concolor     boubleline eelpout     R       Lycodes concolor     boublel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                             |                                | Lycodes seminudus             | longear eelpout       | R                          | Ι                   |
| Lycodes turmeriestuarine eelpoutRLycodes polarispolar eelpout $W$ $W$ Lycodes polarismarbled eelpout $W$ $W$ Lycodes rasismarbled eelpout $W$ $W$ Lycodes rasisthreespot eelpout $R$ $W$ Lycodes sagittariusarcher eelpout $R$ $R$ Lycodes sagittariuspale eelpout $R$ $R$ Lycodes sagittariusbale eelpout $R$ $R$ Lycodes sagittariussarcher eelpout $R$ $R$ Lycodes sudipleurostictusbale eelpout $R$ $R$ Lycodes sudipleurostictusdoubleline eelpout $R$ $R$ <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                             |                                | Lycodes mucosus               | saddled eelpout       | Ъ                          | Ж                   |
| Lycodes polarispolar eelpoutWWLycodes rassimarbled eelpoutLycodes rassithreespot eelpoutRR-Lycodes sagittariusarcher eelpoutRR-Lycodes sagittariusarcher eelpoutRR-Lycodes sagittariusbale eelpoutRLycodes sagittariusbale eelpoutRRLycodes sagittariusbanyfourline sakeblennyNN-Lycodes sagittariusbearded warbonnetLeptoclinus maculatusstout eelbennyNNN-Lumpenus fabricistout eelbennyNNLumpenus fabricibanded gunnetAnnodotes hexanterisbanded gunnetAnnodotes hexant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                             |                                | Lycodes turneri               | estuarine eelpout     | Я                          | M                   |
| Lycodes raridens     mathele depout     -       Lycodes rossi     threespot eelpout     R       Lycodes sagittarius     archer eelpout     R       Lycodes sagittarius     wattled eelpout     R       Lycodes sagittarius     bale eelpout     R       Lycodes saguamiventer     scalebelly eelpout     R       Lycodes sudmiventer     scalebelly eelpout     R       Lycodes sudmiventer     scalebelly eelpout     R       Lycodes concolor     doubleline eelpout     R       Lycodes concolor     beony eelpout     R       Lycodes concolor     ebony eelpout     R       Lycodes concolor     bearded warbonnet     -       Lycodes sudius     fourtiles stakeblenny     W       Stichaeus punctatus     daubed shanny     W       Anisarchus medius     stout eelbenny     W       Anisarchus medius     stout eelbenny     W       Polis fasciata     bearded warbonnet     -       Annotves hexateus     bearded shanny     W       Annotves hexateus     bearded shanny     W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                             |                                | Lycodes polaris               | polar eelpout         | Μ                          | W                   |
| Lycodes rossithreespot eelpoutRLycodes sagittariusarcher eelpoutRLycodes sagittariusarcher eelpoutRLycodes sagittariusbale eelpoutRLycodes saguamiventerscalebelly eelpoutRLycodes squamiventerscalebelly eelpoutRLycodes eudpleurostictusdoubleline eelpoutRLycodes eudpleurostictusdoubleline eelpoutRLycodes eudpleurostictusdoubleline eelpoutRLycodes eudpleurostictusdoubleline eelpoutRLycodes eudpleurostictusdoubleline eelpoutRLycodes eudpleurostictusdoubleline eelpoutRLycodes concolorbeony eelpoutRLycodes protectusbeony eelpoutR <td< td=""><td></td><th>Zoarcidae (eelpouts)</th><td>Lycodes raridens</td><td>marbled eelpout</td><td>I</td><td>W</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                             | Zoarcidae (eelpouts)           | Lycodes raridens              | marbled eelpout       | I                          | W                   |
| Lycodes sagitariusarcher eelpoutRLycodes paleariswatted eelpoutLycodes paleariswatted eelpoutLycodes paliduspale eelpoutRLycodes squamiventerscalebelly eelpoutRLycodes squamiventerscalebelly eelpoutRLycodes eucipleurostictusdoubleline eelpoutRLycodes concolorebony eelpoutRLycodes concolorebony eelpoutLycodes concolorebony eelpoutLycodes concolorbearded warbonnetStichaeus punctatushourline snakeblennyWStichaeus punctatushourline snakeblennyWChirolophis snyderibearded warbonnetLeptoclinus maculatusbearded warbonnetLumpenus fabriciistout eelbennyWPolis fasciatabanded shannyWAnnotves hexaterusBering wolffishAnnotves hexaterusBering wolffishWAnnotves hexaterusParitic sand lanceAnnotves hexaterus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                             |                                | Lycodes rossi                 | threespot eelpout     | Ж                          | Я                   |
| Lycodes paleariswatted eelpoutLycodes paliduspale eelpoutRLycodes squamiventerscalebelly eelpoutRLycodes squamiventerscalebelly eelpoutRLycodes squamiventerbeny eelpoutRLycodes concolorebony eelpoutRLycodes concolorebony eelpoutRLycodes concolorbeny eelpoutRLycodes concolorbeny eelpoutRLycodes concolorbeny eelpoutRLycodes concolorbearded warbonnetNStichaeus punctatusbearded warbonnetNChirolophis snyderidaubed shannyNAnisarchus mediusstout eelblennyNPholis fasciatbanded celblennyNAnnotves hexaterusBering wolffishNAnnotves hexaterusBering wolffishNAnnotves hexaterusBering wolffishNAnnotves hexaterusBering wolffishNAnnotves hexaterusBering wolffishNAnnotves hexaterusBering wolffishNAnnotves hexaterusBering wolffishN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                             |                                | Lycodes sagittarius           | archer eelpout        | R                          | Ι                   |
| Lycodes paliduspale eelpoutRLycodes squamiventerscalebelly eelpoutRLycodes squamiventerscalebelly eelpoutRLycodes eudipleurostictusdoubleline eelpoutRLycodes concolorebony eelpoutRLycodes concolorbony eelpoutRLycodes concolorbony eelpoutRLycodes concolorbony eelpoutRLycodes concolorbony eelpoutRLumesogrammus praecisusfourline snakeblennyWStichaeus punctatusbearded warbonnetLeptoclinus maculatusbearded warbonnetLeptoclinus maculatusdaubed shannyRAnisarchus mediusstout eelblennyWLumpenus fabriciibanded gunnelPholis fasciatabanded gunnelAnnotes hexaterusbering wolffishWAnnotes hexaterusbering wolffishMAnnotes hexaterusbering wolffishMAnnotes hexaterusbering wolffishMAnnotes hexaterusbering wolffishMAnnotes hexaterusbering wolffishMAnno                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                             |                                | Lycodes palearis              | wattled eelpout       | I                          | M                   |
| Lycodes squamiventer       scalebelly eelpout       R         Lycodes eudipleurostictus       doubleline eelpout       R         Lycodes eudipleurostictus       doubleline eelpout       R         Lycodes concolor       ebony eelpout       R         Eumesogrammus praecisus       fourtine snakeblenny       N         Ethoes punctatus       Arctic shanny       N         Stichaeus punctatus       Arctic shanny       N         Chirolophis snyderi       bearded warbonnet       N         Leptoclinus maculatus       bearded warbonnet       -         Anisarchus medius       stout eelblenny       N         Lumpenus fabricii       stout eelblenny       N         Pholis fasciata       banded gunel       -         Annodvtes hexoterus       Bering wolffish       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                             |                                | Lycodes pallidus              | pale eelpout          | R                          | Ι                   |
| Lycodes eudipleurostictus     doubleline eelpout     R       Lycodes concolor     ebony eelpout        Lycodes concolor     ebony eelpout        Eumesogrammus praecisus     fourline snakeblenny     N       Eumesogrammus praecisus     fourline snakeblenny     N       Stichaeus punctatus     Arctic shanny     N       Chirolophis snyderi     bearded warbonnet        Leptoclinus maculatus     daubed shanny     N       Leptoclinus maculatus     stout eelblenny     N       Lumpenus fabricii     stout eelblenny     N       Lumpenus fabricii     banded gunnel        Annodres hexaterus     Bering wolffish                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                             |                                | Lycodes squamiventer          | scalebelly eelpout    | Я                          | I                   |
| Lycodes concolor     ebony eelpout     -       Eumesogrammus praecisus     fourline snakeblenny     W       Eumesogrammus praecisus     fourline snakeblenny     W       Stichaeus punctatus     Arctic shanny     W       Chirolophis snyderi     bearded warbonnet     -       Leptoclinus maculatus     bearded warbonnet     -       Leptoclinus maculatus     daubed shanny     R       Anisarchus medius     stout eelblenny     N       Lumpenus fabricii     stender eelblenny     W       Pholis fasciata     banded gunnel     -       Annodvtes hexaterus     Pacific sand lance     W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                             |                                | Lycodes eudipleurostictus     | doubleline eelpout    | R                          | Ι                   |
| Eumesogrammus praecisusfourtine snakeblennyWStichaeus punctatusArctic shannyWChirolophis snyderibearded warbonnet-Leptoclinus maculatusdaubed shannyRAnisarchus mediusstout eelblennyWLumpenus fabriciistout eelblennyWPholis fasciatabanded gunnel-Annodres hexaterusBering wolffish-Annodres hexaterusPacific sand lanceW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                             |                                | Lycodes concolor              | ebony eelpout         | I                          | R                   |
| Stichaeus punctatusArctic shannyWChirolophis snyderibearded warbonnetWLeptocinus maculatusbearded warbonnetLeptocinus maculatusdaubed shannyRAnisarchus maculatusstout eelblennyWLumpenus fabriciistout eelblennyWPholis fasciatabanded gunelAnnodrtes hexaterusBering wolffishW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                             |                                | Eumesogrammus praecisus       | fourline snakeblenny  | M                          | M                   |
| Chirolophis snyderibearded warbonnetLeptoclinus maculatusdaubed shannyRLeptoclinus maculatusstout eelblennyRAnisarchus mediusstout eelblennyWLumpenus fabriciistender eelblennyWPholis fasciatabanded gunnelAmarhichas orientalisBering wolffishWAmodytes hexapterusPacific sand lanceW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                             |                                | Stichaeus punctatus           | Arctic shanny         | W                          | W                   |
| Leptoclinus maculatusdaubed shannyRAnisarchus maculatusstout eelblennyWAnisarchus mediusstout eelblennyWLumpenus fabriciislender eelblennyWPholis fasciatabanded gunnelAnarhichas orientalisBering wolffishWAnmodytes hexapterusPacific sand lanceW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                             | Stichaeidae (nricklehacks)     | Chirolophis snyderi           | bearded warbonnet     | I                          | R                   |
| Anisarchus medius     stout eelblenny     W       Lumpenus fabricii     slender eelblenny     W       Pholis fasciata     banded gunnel        Anarhichas orientalis     Bering wolffish     W       Armodytes hexapterus     Pacific sand lance     W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                             |                                | Leptoclinus maculatus         | daubed shanny         | Ж                          | Я                   |
| Lumperus fabricii     stender eelblenny     W       Pholis fasciata     banded gunnel        Anarhichas orientalis     Bering wolffish     W       Armodytes hexapterus     Pacific sand lance     W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                             |                                | Anisarchus medius             | stout eelblenny       | Ν                          | M                   |
| Pholis fasciata banded gunnel – –<br>Anarhichas orientalis Bering wolffish W<br>Ammodvtes hexapterus Pacific sand lance W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                             |                                | Lumpenus fabricii             | slender eelblenny     | W                          | W                   |
| Anarhichas orientalis Bering wolffish W<br>Ammodvtes hexapterus Pacific sand lance W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                             | Pholidae (gunnels)             | Pholis fasciata               | banded gunnel         | -                          | R                   |
| Ammodvtes hexapterus Pacific sand lance W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                             | Anarhichadidae (wolffishes)    | Anarhichas orientalis         | Bering wolffish       | M                          | W                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                             | Ammodvtidae (sand lances)      | Ammodvtes hexapterus          | Pacific sand lance    | Ν                          | Μ                   |

|               | 1 |
|---------------|---|
|               | 1 |
|               | ; |
|               |   |
| Table III.B-1 |   |

Fish Resources of Arctic Alaska (continued)

|                   | L                                     | Fish Snoriae                    |                   | Distribution by        | tion by     |
|-------------------|---------------------------------------|---------------------------------|-------------------|------------------------|-------------|
|                   | -                                     |                                 |                   | Large Marine Ecosystem | Ecosystem   |
| Order             | Family                                | Species Name                    | Common Name       | Beaufort Sea           | Chukchi Sea |
| Pleuronectiformes |                                       |                                 |                   |                        |             |
|                   |                                       | Hippoglossus stenolepis         | Pacific halibut   |                        | U-R         |
|                   |                                       | Hippoglossoides robustus        | Bering flounder   | I                      | W           |
|                   |                                       | Reinhardtius hippoglossoides    | Greenland halibut | R                      | U-P         |
|                   |                                       | Platichthys stellatus           | starry flounder   | M                      | W           |
|                   | rieuronecuaae<br>(righteye flounders) | Pleuronectes quadrituberculatus | Alaska plaice     |                        | W           |
|                   |                                       | Pleuronectes glacialis          | Arctic flounder   | M                      | W           |
|                   |                                       | Limanda proboscidea             | longhead dab      | I                      | W           |
|                   |                                       | Limanda aspera                  | yellowfin sole    | I                      | W           |
|                   |                                       | Limanda sakhalinensis           | Sakhalin sole     |                        | U-R         |
| Sources:          |                                       |                                 |                   |                        |             |

Mecklenburg, Mecklenburg, and Thorsteinson, (2002); Stevenson, et al., (2004).

# Notes:

# **Distribution Keys**

- Limited distribution relative to available biotope (e.g., continental slope) LD E R/P R/P
  - Rare (<5 records) and disjunct II
    - Rare and endemic species п
- Rare species known occurring only in one LME II
  - Rare and patchy II
- Unverified record-rare and disjunct П
- Unverified and patchy п Ч-Ч Ч-Л
  - Widespread п ≥
- Undocumented, no verified records II I

Table III.B-2 Arctic Fish Occurrence in Coastal and Marine Waters of the Alaskan Chukchi and Beaufort Seas

|          |            | cryopelagic                            | 1                   | I                       | I                     | I                 | I                 | I       | 1             | I                       | Ι                    | I                    | 1                   | 1               | 1                  | I                  | I                | 1                        |             | I                          | 1                 | I                  | I                   |                    |           | 1           |                   | 1                     | 1          | Ι                        | Ι                     | Ι                      | 1              |                   | 1                       | ,                 | ,               |
|----------|------------|----------------------------------------|---------------------|-------------------------|-----------------------|-------------------|-------------------|---------|---------------|-------------------------|----------------------|----------------------|---------------------|-----------------|--------------------|--------------------|------------------|--------------------------|-------------|----------------------------|-------------------|--------------------|---------------------|--------------------|-----------|-------------|-------------------|-----------------------|------------|--------------------------|-----------------------|------------------------|----------------|-------------------|-------------------------|-------------------|-----------------|
|          | _          | >1000m (bathypelagic)                  |                     |                         |                       |                   |                   |         |               | י<br>                   |                      | '<br>                | '<br>               | '<br>           | '<br>              | '<br>              | '<br>            | '<br>                    | '<br>       | '<br>                      | '<br>             | '                  | '<br>               | '<br>              | '<br>     | '<br>       | '<br>             | '<br>                 | '<br>      | '<br>                    |                       | '<br>                  | '<br>          |                   | '                       | 1                 | -<br>           |
|          | מווסו      | (mesopelagic)                          |                     | •                       | •                     | •                 | •                 | •       | •             |                         | ·<br>                |                      | ·<br>               | 1               | •                  |                    |                  | 1                        | ·<br>       |                            | ·<br>             |                    |                     | ·<br>1             | 1         | 1           | 1                 | •                     |            |                          | ·<br>                 |                        | ·<br>          |                   |                         |                   |                 |
|          |            |                                        |                     |                         |                       |                   |                   | •       |               |                         |                      |                      | •                   |                 |                    |                    |                  | •                        | •           |                            |                   |                    |                     |                    |           |             |                   |                       |            | -                        |                       | -                      |                | -                 |                         |                   |                 |
| Č        |            | (cigslagiqa) m002-1                    |                     |                         |                       | Ι                 | Ι                 | I       |               |                         | I                    |                      | I                   | I               | I                  | I                  | I                | Ι                        | I           |                            | I                 | I                  | I                   | Ι                  | Ι         | Ι           |                   | I                     |            | Ι                        | Ι                     | Ι                      |                |                   |                         | Ι                 | Ι               |
| -        |            | Bentho-Pelagic                         | Ι                   | I                       | I                     | I                 | I                 | I       | I             | I                       |                      | Ι                    | I                   | Ι               | Ι                  | Ι                  | Ι                | Ι                        | Ι           | Ι                          | T                 | Ι                  | Ι                   | Ι                  | Ι         | I           | Ι                 | I                     | Ι          | Ι                        | ×                     | Ι                      | Ι              | Ι                 | Ι                       | I                 | Ι               |
|          | ב          | Bathydemersal                          | Ι                   | Ι                       | ×                     | Х                 | Ι                 | Ι       | I             | I                       | Ι                    | Ι                    | Ι                   | I               | I                  | ×                  | ×                | ×                        | ×           | ×                          | ×                 | ×                  | I                   | ×                  | ×         | ×           | I                 | ×                     | ×          | Х                        | Ι                     | Ι                      | Ι              | I                 | Ι                       | I                 | I               |
|          |            | Demersal                               | ×                   | ×                       | I                     | Ι                 | Ι                 | Ι       | I             | ×                       | Ι                    | Ι                    |                     | ×               | ×                  | I                  | I                | Ι                        |             | I                          |                   | I                  | I                   | I                  | I         |             | ×                 | ×                     | ×          | Х                        | Х                     | Х                      | Х              | ×                 | Х                       | ×                 | ×               |
|          |            | ====================================== |                     | I                       | Х                     | Х                 | Ι                 | Ι       | I             | I                       | Ι                    | Ι                    | I                   | Ι               | Ι                  | I                  | I                | Ι                        |             | Ι                          | I                 | I                  | ×                   | I                  | Ι         | I           | Ι                 | ×                     | I          | Ι                        | Ι                     | Ι                      | Ι              | Ι                 | Ι                       | I                 | Ι               |
|          | Oceanic    | m000£-1001                             |                     | I                       | Х                     | Х                 | Ι                 | Ι       | I             | I                       | Ι                    | Ι                    | I                   | Ι               | Ι                  | I                  | I                | Ι                        |             | Ι                          | I                 | I                  | ×                   | ×                  | ×         | I           | Ι                 | ×                     | I          | Х                        | Ι                     | Ι                      | Ι              | Ι                 | Ι                       | I                 | Ι               |
|          | ö          | m0001-107                              | I                   | 1                       | ×                     | Х                 | Ι                 | I       | I             | Ι                       | Ι                    | I                    | I                   | I               | I                  | I                  | I                | I                        | I           | I                          | I                 | I                  | ×                   | ×                  | ×         | I           | I                 | ×                     | I          | X                        | Ι                     | Ι                      | I              | I                 | Ι                       | I                 | Ι               |
| e        |            | m007-10 <del>2</del>                   | 1                   | I                       | Х                     | Х                 | Ι                 | Ι       | I             | I                       | Ι                    |                      |                     | Ι               | Ι                  |                    |                  | Ι                        |             | I                          |                   |                    | ×                   | $\times$           | $\times$  | Ι           | Ι                 | ×                     | Ι          | Х                        | Ι                     | Ι                      | Ι              | Ι                 | Ι                       | I                 | Ι               |
| Marine   | -          | 301-500m                               | 1                   | I                       | Х                     | Х                 | Ι                 | Ι       | I             | I                       | Ι                    |                      |                     | Ι               | Ι                  |                    |                  | ×                        | ×           | ×                          |                   | ×                  | ×                   | $\times$           | $\times$  | Ι           | Ι                 | ×                     | Ι          | Х                        | Ι                     | Ι                      | ×              | ×                 | ×                       | ×                 | Ι               |
|          | -          | m005-102                               | ×                   | Ι                       | ×                     | Х                 | Х                 | ×       | ×             | I                       |                      | Ι                    | 1                   | Ι               | Ι                  | Ι                  | ×                | ×                        | ×           | ×                          | 1                 | ×                  | Ι                   | ×                  | $\times$  | ×           | Ι                 | ×                     | ×          | ×                        |                       | ×                      | ×              | ×                 | $\times$                | $\times$          | Ι               |
|          |            | m002-101                               | ×                   | I                       | ×                     | Х                 | Х                 | Х       | ×             | I                       |                      | I                    |                     | Ι               | Ι                  | I                  | ×                | ×                        | ×           | ×                          | ×                 | ×                  | Ι                   | ×                  | ×         | ×           | ×                 | ×                     | ×          | Х                        | Х                     | Х                      | ×              | $\times$          | $\times$                | ×                 | ×               |
|          | Neritic    | m001-12                                | ×                   | ×                       | Х                     | Х                 | Х                 | Х       | ×             | ×                       | Х                    | Х                    | ×                   | I               | Ι                  | ×                  | ×                | ×                        | ×           | ×                          | ×                 | ×                  | I                   | ×                  | ×         | ×           | ×                 | I                     | ×          | Х                        | Х                     | Х                      | ×              | ×                 | ×                       | ×                 | ×               |
|          | z          | ա02-ի                                  | ×                   | ×                       | Х                     | Х                 | Х                 | Х       | ×             | ×                       | Х                    | Х                    | ×                   | ×               | ×                  | ×                  | ×                | ×                        | ×           | ×                          | ×                 | ×                  | I                   | Ι                  | Ι         |             | ×                 | I                     | ×          | Х                        | Х                     | Х                      | ×              | ×                 | ×                       | ×                 | ×               |
| 4        | re         | 0-2m (Infralittoral<br>Fringe)         | ×                   | ×                       | ×                     | Х                 | Х                 | Х       | ×             | Х                       | Х                    | Х                    | ×                   | ×               | ×                  | ×                  | Х                | ×                        | ×           | ×                          | ×                 | X                  | I                   | I                  | Ι         | I           | ×                 | I                     | I          | Х                        | Х                     | Х                      | I              | ×                 | Ι                       | I                 | Ι               |
| Brackish | Nearshore  | Intertidal                             | ×                   | ×                       |                       |                   | ×                 | ×       | ×             | X                       | ×                    | ×                    | ×                   | ×               | ×                  | ×                  | ×                | ×                        | ×           | ×                          | ×                 | ×                  |                     | ×                  | I         | I           | ×                 |                       | I          | ×                        | ×                     | ×                      | I              | ×                 | Ι                       | I                 | I               |
|          | ~          | Estuarine                              | ×                   | $\times$                | Ι                     |                   |                   | I       | Ι             | ×                       | Х                    | Х                    | Ι                   | ×               | Ι                  | ×                  | ×                | Ι                        |             |                            | 1                 | ×                  | Ι                   | Ι                  | Ι         | I           | Ι                 | Ι                     |            | Х                        | Х                     | Ι                      | Ι              | Ι                 | Ι                       | I                 | Ι               |
|          | /ater      | Lacustrine                             | ×                   | ×                       | 1                     | Ι                 | Ι                 | I       | 1             | X                       | Х                    | Х                    | I                   | ×               | I                  | X                  | X                | I                        | I           | I                          | I                 | X                  | I                   | I                  | Ι         | Ι           | I                 | I                     | I          | Х                        | Х                     | Ι                      | I              | 1                 | I                       | I                 | I               |
|          | Freshwater |                                        | -                   |                         |                       |                   |                   |         |               |                         |                      |                      |                     | _               | _                  |                    |                  | _                        |             |                            |                   |                    |                     |                    |           | _           | _                 | _                     |            |                          |                       |                        |                |                   |                         |                   |                 |
|          | Ľ          | lsivul <del>1</del>                    | ×                   | ×                       | Ι                     | Ι                 | Ι                 | Ι       | ×             | ×                       | Х                    | ×                    | ×                   | ×               | ×                  | ×                  | ×                | ×                        | ×           | ×                          | ×                 | ×                  | Ι                   | Ι                  | Ι         | 1           | ×                 |                       |            | ×                        | Х                     |                        | Ι              | 1                 |                         | Ι                 | Ι               |
|          |            | Principle Environment                  | A                   | A                       | Μ                     | Μ                 | Μ                 | Σ       | A             | FW/A                    | A                    | A                    | A                   | FW/A            | A                  | A/FW               | A                | A                        | A           | A                          | A                 | A                  | Μ                   | Σ                  | Σ         | B/M         | Σ                 | Σ                     | Μ          | A/FW                     | A/FW                  | Μ                      | Μ              | Σ                 | Μ                       | Σ                 | Σ               |
|          |            | Common Name                            | Pacific lamprey     | Arctic lamprey          | Pacific sleeper shark | spiny dogfish     | Pacific herring   | capelin | rainbow smelt | inconnu                 | least cisco          | Arctic cisco         | Bering cisco        | broad whitefish | humpback whitefish | Arctic char        | Dolly Varden     | pink salmon              | coho salmon | Chinook salmon             | chum salmon       | sockeye salmon     | glacier lanternfish | Arctic cod         | polar cod | toothed cod | saffron cod       | walleye pollock       | ogac       | threespine stickleback   | ninespine stickleback | whitespotted greenling | ribbed sculpin | butterfly sculpin | yellow Irish lord       | spatulate sculpin | twohorn sculpin |
|          |            | Species                                | Lampetra tridentata | Lampetra camtschatica P | Somniosus pacificus   | Squalus acanthias | Clupea pallasii F | SI      |               | Stenodus leucichthys ii | Coregonus sardinella | Coregonus autumnalis | Coregonus laurettae |                 | ian                | Salvelinus alpinus | Salvelinus malma | Oncorhynchus gorbuscha p |             | Oncorhynchus tshawytscha C | Oncorhynchus keta | Oncorhynchus nerka | Benthosema glaciale | Boreogadus saida A |           | iovi        | Eleginus gracilis | Theragra chalcogramma | Gadus ogac | Gasterosteus aculeatus t | Pungitius pungitius   | Hexagrammos stelleri v |                |                   | Hemilepidotus jordani y |                   | Icelus bicornis |

Table III.B-2 Arctic Fish Occurrence in Coastal and Marine Waters of the Alaskan Chukchi and Beaufort Seas. (continued)

|          |            | cryopelagic                 | 1                       | Ι                  | Ι                 | Ι                          | I                          | I                      | Ι                         | Ι                  | I                    | Ι                      | Ι                  | Ι                     | Ι                       | Ι                | Ι                       | Ι                   | Ι                 | Ι                       | Ι                 | Ι                   | Ι                    | Ι                   | Ι                    | Ι                             | Ι                       | Ι                         | Ι                    | Ι                 | Ι                    | Ι                | Ι                 | Ι               | Ι                 | Ι               |
|----------|------------|-----------------------------|-------------------------|--------------------|-------------------|----------------------------|----------------------------|------------------------|---------------------------|--------------------|----------------------|------------------------|--------------------|-----------------------|-------------------------|------------------|-------------------------|---------------------|-------------------|-------------------------|-------------------|---------------------|----------------------|---------------------|----------------------|-------------------------------|-------------------------|---------------------------|----------------------|-------------------|----------------------|------------------|-------------------|-----------------|-------------------|-----------------|
|          |            | >1000 (bathypelagic)        | 1                       | 1                  | 1                 | I                          | I                          | I                      | Ι                         | Ι                  | I                    | Ι                      | Ι                  | I                     | I                       | Ι                |                         |                     |                   |                         |                   | 1                   | I                    | Ι                   | Ι                    | Ι                             | Ι                       | I                         | Ι                    | Ι                 |                      | Ι                | Ι                 | Ι               | Ι                 | I               |
|          | ILLICAL    | (cigslaqosam) m0001-102     | Ī                       | I                  | 1                 | I                          | I                          | I                      |                           |                    | I                    | I                      | I                  | I                     | I                       | Ι                |                         |                     |                   | Ι                       | Ι                 |                     |                      |                     |                      | Ι                             | I                       |                           | Ι                    | Ι                 |                      | Ι                | Ι                 | Ι               | Ι                 | Ι               |
| č        |            | (วigธləqiqə) m002-r         | I                       | I                  | 1                 | I                          | I                          | Ι                      | Ι                         | Ι                  | I                    | Ι                      | Ι                  | I                     | I                       | Ι                |                         |                     |                   |                         |                   |                     | Ι                    |                     | Ι                    | Ι                             | Ι                       |                           | Ι                    | Ι                 | Ι                    | Ι                | Ι                 | Ι               | Ι                 | Ι               |
| -        | Iavior     | Bentho-Pelagic              | Ī                       | I                  | Ι                 | I                          | I                          | I                      | I                         | I                  | I                    | I                      | I                  | I                     | I                       |                  |                         |                     |                   |                         |                   |                     | I                    |                     | I                    | Ι                             | Ι                       |                           | Ι                    |                   |                      | Ι                | Ι                 | Ι               | Ι                 | Ι               |
|          | De         | Bathydemersal               | I                       | I                  | Ι                 | I                          | I                          | I                      |                           |                    | I                    | Ι                      |                    | Ι                     | Ι                       | I                | Ι                       | Ι                   | Ι                 | Ι                       | Ι                 | Ι                   | I                    | I                   | Ι                    | Ι                             | Ι                       | Ι                         | I                    | Ι                 | Ι                    | Ι                | Ι                 | Ι               | I                 | Ι               |
|          | _          | Demersal                    | ×                       | ×                  | ×                 | $\times$                   | ×                          | Х                      | Х                         | Х                  | ×                    | ×                      | Х                  | $\times$              | ×                       | Х                | Х                       | Х                   | Х                 | Х                       | Ι                 | ×                   | ×                    | ×                   | ×                    | $\times$                      | ×                       | Х                         | Х                    | Х                 | ×                    | ×                | ×                 | ×               | ×                 | ×               |
|          | -          | >3000m                      |                         |                    |                   | I                          |                            |                        |                           |                    |                      | Ι                      |                    |                       |                         |                  |                         |                     |                   |                         |                   |                     |                      |                     |                      | Ι                             |                         |                           | Ι                    |                   |                      | Ι                | Ι                 | Ι               | Ι                 |                 |
|          | Oceanic    | m0005-1001                  | 1                       | Ι                  | Ι                 | Ι                          | Ι                          | Ι                      | Ι                         | Ι                  | Ι                    | Ι                      | Ι                  | Ι                     | Ι                       | Ι                | Ι                       | Ι                   | Ι                 | Ι                       | Ι                 | Ι                   | Ι                    | Ι                   | Ι                    | Ι                             | Ι                       | Ι                         | Ι                    | Ι                 | Ι                    | Ι                | Ι                 |                 | Ι                 | Ι               |
|          | ŏ          | m0001-107                   | I                       | I                  | I                 | I                          | I                          | I                      | I                         | I                  | I                    | I                      | I                  | I                     | I                       | Ι                | I                       | I                   | X                 | Ι                       | Ι                 | I                   | I                    | I                   | I                    | I                             | I                       | I                         | I                    | Ι                 | I                    | Ι                | I                 | I               | I                 | I               |
| e        |            | m007-10 <del>2</del>        | 1                       | Ι                  | Ι                 | I                          | I                          | -                      | Ι                         | Ι                  | Ι                    | Ι                      | Ι                  | I                     | Ι                       | Ι                | Ι                       | Ι                   | Х                 | Ι                       | Ι                 | Ι                   | Ι                    | Ι                   | Ι                    | Ι                             | Ι                       | Ι                         | -                    | Ι                 | Ι                    | Ι                | Х                 | Ι               | Ι                 | Ι               |
| Marine   |            | 301-500m                    | I                       | Ι                  | Ι                 | I                          | I                          | Ι                      | Ι                         | Ι                  | I                    | Х                      | Ι                  | I                     | I                       | Ι                | Х                       | Х                   | Х                 | Х                       | Ι                 | Ι                   | Ι                    | Ι                   | Ι                    | Ι                             | Ι                       | Ι                         | Ι                    | Ι                 | Ι                    | Ι                | Х                 | Ι               | Ι                 | Ι               |
|          |            | m00£-102                    | ×                       | I                  | I                 | I                          | I                          | I                      | I                         | I                  | I                    | ×                      | I                  | ×                     | I                       | Ι                | X                       | X                   | X                 | ×                       | Ι                 | I                   | I                    | ×                   | I                    | I                             | ×                       | I                         | ×                    | Ι                 | I                    | ×                | ×                 | T               | I                 | I               |
|          |            | m002-101                    | ×                       | I                  | I                 | I                          | I                          | Х                      | I                         | I                  | I                    | ×                      | I                  | ×                     | I                       | Х                | Х                       | Х                   | Ι                 | Х                       | Ι                 | I                   | ×                    | ×                   | Ι                    | ×                             | ×                       | Ι                         | Х                    | Х                 | Ι                    | ×                | ×                 | Ι               | ×                 | ×               |
|          | Neritic    | m001-12                     | ×                       | I                  | ×                 | I                          | I                          | Х                      |                           | Х                  | ×                    | Х                      | Х                  | Х                     | Х                       | Х                | Х                       | Х                   | Ι                 | Х                       |                   | Ι                   | ×                    | ×                   | ×                    | ×                             | ×                       | Х                         | Х                    | Х                 | Х                    | Х                | Ι                 | ×               | ×                 | ×               |
| -        | ~          | m02-1                       | ×                       | I                  | ×                 | ×                          | ×                          | ×                      | ×                         | ×                  | ×                    | ×                      | ×                  | ×                     | ×                       | Х                | Х                       | Х                   | Ι                 | Х                       | Х                 | ×                   | ×                    | ×                   | ×                    | ×                             | Ι                       | Х                         | ×                    | Х                 | ×                    | ×                | I                 | ×               | ×                 | ×               |
| h        | ore        | 0-2m (Infralittoral Fringe) | I                       | ×                  | Ι                 | ×                          | ×                          | Х                      | Х                         | Х                  | 1                    | I                      | I                  | I                     | I                       | Ι                | Ι                       | Ι                   | Ι                 | Ι                       | Х                 | Ι                   | I                    | I                   | Ι                    | Ι                             | I                       | Ι                         | Ι                    | Ι                 | Ι                    | ×                | I                 | I               | I                 | I               |
| Brackish | Nearshore  | Intertidal                  | 1                       | ×                  | Ι                 | ×                          | ×                          | Х                      | Х                         | Х                  | I                    | Ι                      |                    | Ι                     | Ι                       | I                | Ι                       | Ι                   | Ι                 | Ι                       | Х                 | Ι                   | I                    | I                   | Ι                    | Ι                             | Ι                       | Ι                         | I                    | Ι                 | Ι                    | ×                | Ι                 | Ι               | Ι                 | Ι               |
| Ē        | ž          | Estuarine                   | I                       | ×                  | I                 | ×                          | ×                          | ×                      | ×                         | Ι                  | I                    | I                      | Ι                  | I                     | I                       | I                | Ι                       | Ι                   | Ι                 | Ι                       | Ι                 | I                   | I                    | Ι                   | Ι                    | I                             | Ι                       | Ι                         | Ι                    | Ι                 | Ι                    | I                | I                 | I               | I                 | I               |
|          | /ater      | Lacustrine                  | I                       | ×                  | 1                 | 1                          | I                          | I                      | I                         | I                  | 1                    | 1                      | I                  | 1                     | 1                       | Ι                | Ι                       | Ι                   | Ι                 | Ι                       | Ι                 | I                   | I                    | I                   | I                    | I                             | I                       | I                         | Ι                    | Ι                 | I                    | Ι                | Ι                 | I               | I                 | I               |
|          | Freshwater | lsivul <del>1</del>         | I                       | ×                  | 1                 | ×                          | ×                          | Ι                      | Ι                         | Ι                  | 1                    | 1                      | Ι                  | 1                     | 1                       | Ι                | I                       | I                   | I                 | Ι                       | Ι                 |                     | I                    | I                   | I                    | I                             | I                       |                           | I                    | Ι                 | I                    | Ι                | Ι                 | I               | I                 | I               |
|          |            | Principle Environment       | Σ                       | B/FW               | Μ                 | ш                          | B/M/FW                     | B/M                    | B/M                       | Μ                  | B/M                  | Μ                      | B/M                | Σ                     | Δ                       | Μ                | Μ                       | Μ                   | Μ                 | Μ                       | Μ                 | Μ                   | Μ                    | Σ                   | B/M                  | Σ                             | Μ                       | Μ                         | Μ                    | Μ                 | Μ                    | Μ                | Μ                 | Σ               | Μ                 | Δ               |
|          |            | Common Name                 | Arctic staghorn sculpin | coastrange sculpin | antlered sculpin  | belligerent sculpin        | fourhorn sculpin           | shorthorn sculpin      | Arctic sculpin            | plain sculpin      | brightbelly sculpin  | spinyhook sculpin      | hamecon            | hookhorn sculpin      | Okhotsk hookear sculpin | crested sculpin  | eyeshade sculpin        | smoothcheek sculpin | Sadko sculpin     | fourhorn poacher        | tubenose poacher  | Bering poacher      | Atlantic poacher     | veteran poacher     | Arctic alligatorfish | alligatorfish                 | leatherfin lumpsucker   | pimpled lumpsucker        | variegated snailfish | kelp snailfish    | Bristol snailfish    | fish doctor      | longear eelpout   | saddled eelpout | estuarine eelpout | polar eelpout   |
|          |            | Species                     | Gymnocanthus tricuspis  | Cottus aleuticus   | Enophrys diceraus | Megalocottus platycephalus | Myoxocephalus quadricornis | Myoxocephalus scorpius | Myoxocephalus scorpioides | Myoxocephalus jaok | Microcottus sellaris | Artediellus gomojunovi | Artediellus scaber | Artediellus pacificus | Artediellus ochotensis  | Blepsias bilobus | Nautichthys pribilovius | Eurymen gyrinus     | Cottunculus sadko | Hypsagonus quadricornis | Pallasina barbata | Occella dodecaedron | Leptagonus decagonus | Podothecus veternus | Ulcina olrikii       | Aspidophoroides monopterygius | Eumicrotremus derjugini | Eumicrotremus andriashevi | Liparis gibbus       | Liparis tunicatus | Liparis bristolensis | Gymnelus viridis | Lycodes seminudus | Lycodes mucosus | Lycodes turneri   | Lycodes polaris |

Table III.B-2 Arctic Fish Occurrence in Coastal and Marine Waters of the Alaskan Chukchi and Beaufort Seas. (continued)

|                                 |                      |                        |            |            | å         | Brackish    |                               |                  |          |          | Marine   |                      |           |            |             |          |               |                |                           |                         |                       |             |
|---------------------------------|----------------------|------------------------|------------|------------|-----------|-------------|-------------------------------|------------------|----------|----------|----------|----------------------|-----------|------------|-------------|----------|---------------|----------------|---------------------------|-------------------------|-----------------------|-------------|
|                                 |                      |                        | Freshwater | water      | Ne        | Nearshore   |                               | Neritic          |          | -        |          |                      | ŏ         | Oceanic    |             |          | Beha          | aviora         | Behavioral Stratification | ificatio                | <b>_</b>              |             |
| Species                         | Common Name          | fnemnorivn∃ elqionirq. | IsivulA    | Lacustrine | Estuarine | Intertidal  | (90-2m (Infralittoral Fringe) | m02-t<br>m001-t2 | m002-101 | 201-300m | 301-500m | m007-r0 <del>2</del> | m0001-107 | m000£-1001 | =<br>>3000w | Demersal | Bathydemersal | Bentho-Pelagic | (ɔiɣsləqiqə) m002-r       | (cigslagosam) m0001-102 | >1000m (bathypelagic) | cryopelagic |
| Lycodes raridens                | marbled eelpout      | Þ                      | I          | 1          | I         | 1           | 1                             | ××               | ×        | 1        | 1        | 1                    | 1         | 1          | 1           | ×        | I             | 1              | 1                         | 1                       | I                     | 1           |
| Lycodes rossi                   | threespot eelpout    | Μ                      | I          | I          | I         | I           | 1                             | X<br>X           | ×        | ×        | ×        | Ι                    | Ι         | I          | I           | ×        | I             | I              | 1                         | I                       | I                     | I           |
| Lycodes sagittarius             | archer eelpout       | Μ                      | I          | I          | I         | Ι           | 1                             |                  | Ι        | Ι        | $\times$ | ×                    | Ι         | Ι          | Ι           | ×        | Ι             | Ι              | I                         | I                       | Ι                     | Ι           |
| Lycodes palearis                | wattled eelpout      | Μ                      | I          | I          | I         | I           | 1                             | ××               | ×        | I        | Ι        |                      | Ι         | Ι          | Ι           | ×        | I             | Ι              | Ι                         | I                       | Ι                     | Ι           |
| Lycodes pallidus                | pale eelpout         | Μ                      | I          | I          | I         | I           | 1                             | ××               | ×        | ×        | $\times$ | ×                    | ×         | $\times$   | Ι           | ×        | ×             | Ι              | I                         | I                       | Ι                     | Ι           |
| Lycodes squamiventer            | scalebelly eelpout   | Μ                      | I          | I          | I         | I           |                               |                  | Ι        | I        | Х        | Х                    | Х         | ×          | I           | Х        | Х             | I              | I                         | I                       | I                     | I           |
| Lycodes eudipleurostictus       | doubleline eelpout   | Σ                      | I          | I          | I         | I           | 1                             | ××               | ×        | ×        | Ι        | Ι                    | I         | Ι          | Ι           | ×        | I             | I              | I                         | I                       | I                     | Ι           |
| Lycodes concolor                | ebony eelpout        | Μ                      | I          | I          | I         | I           | 1                             | ХХ               | ×        | ×        | ×        | Х                    | Х         | ×          | I           | Х        | Х             | I              | I                         | I                       | Ι                     | I           |
| Eumesogrammus praecisus         | fourline snakeblenny | Μ                      | I          | I          | I         | I           | 1                             | ХХ               | ×        | ×        | Х        |                      | I         | I          | I           | Х        | I             | I              | I                         | I                       | Ι                     | Ι           |
| Stichaeus punctatus             | Arctic shanny        | Μ                      | I          | I          | Ι         | I           | 1                             | ХХ               | Ι        | I        | Ι        | -                    | I         | Ι          | Ι           | Х        | Ι             | I              | Ι                         | I                       | Ι                     | Ι           |
| Chirolophis snyderi             | bearded warbonnet    | M                      | I          | Ι          | I         | I           | I                             | ХХ               | Ι        | I        | Ι        | Ι                    | Ι         | Ι          | Ι           | Х        | I             | Ι              | I                         | I                       | Ι                     | I           |
| Leptoclinus maculatus           | daubed shanny        | Μ                      | I          | I          | I         | I           |                               | ХХ               | ×        | ×        | Х        | Ι                    | Ι         | Ι          | Ι           | Х        | Ι             | Ι              | Ι                         | I                       | Ι                     | Ι           |
| Anisarchus medius               | stout eelblenny      | Μ                      | I          | I          | I         | I           | I                             | ХХ               | ×        | I        | Ι        | Ι                    | I         | I          | Ι           | Х        | I             | I              | I                         | I                       | Ι                     | I           |
| Lumpenus fabricii               | slender eelblenny    | Μ                      | Ι          | Ι          | Ι         | Х           | Х                             | ХХ               | Ι        | I        | Ι        |                      | Ι         | Ι          | Ι           | Ι        | Ι             | ×              | Ι                         | I                       | Ι                     | Ι           |
| Pholis fasciata                 | banded gunnel        | Μ                      | I          | I          | Ι         | I           | 1                             | – X              | Ι        | Ι        | Ι        | Ι                    | Ι         |            | Ι           | Х        | Ι             | Ι              | Ι                         | I                       | Ι                     | Ι           |
| Anarhichas orientalis           | Bering wolffish      | Μ                      | Ι          | I          | Ι         | Ι           | -                             | Х –              | Ι        | Ι        | Ι        | Ι                    | Ι         | Ι          | Ι           | Х        | Ι             | Ι              | Ι                         | I                       | Ι                     | Ι           |
| Ammodytes hexapterus            | Pacific sand lance   | Μ                      | Ι          | Ι          | I         | Х           | Х                             | ХХ               | Ι        | Ι        | Ι        | Ι                    | Ι         | I          | Ι           | Ι        | I             | Ι              | Ι                         | I                       | Ι                     | I           |
| Hippoglossus stenolepis         | Pacific halibut      | M                      | I          | I          | I         | I           | I                             | ХХ               | ×        | ×        | X        | Х                    | Х         | Х          | Ι           | Х        | I             | Ι              | I                         | I                       | Ι                     | I           |
| Hippoglossoides robustus        | Bering flounder      | Μ                      | Ι          | I          | Ι         | Ι           | 1                             | ХХ               | ×        | ×        | ×        | Ι                    | Ι         | Ι          | Ι           | Х        | Ι             | Ι              | Ι                         | Ι                       | Ι                     | Ι           |
| Reinhardtius hippoglossoides    | Greenland halibut    | Μ                      | Ι          | Ι          | Ι         |             | 1                             | ХХ               | ×        | ×        | ×        | Х                    | ×         | ×          | Ι           | Х        | Ι             | Ι              | Ι                         | Ι                       | Ι                     | Ι           |
| Platichthys stellatus           | starry flounder      | M/B                    | Х          | Ι          | Х         | Х           | Х                             | ХХ               | ×        | ×        | ×        | Ι                    | Ι         | I          | Ι           | Х        | I             | I              | Ι                         | I                       | Ι                     | I           |
| Pleuronectes quadrituberculatus | Alaska plaice        | Μ                      | I          | Ι          | Ι         | I           | 1                             | ХХ               | ×        | ×        | ×        | Ι                    | Ι         | Ι          | Ι           | Х        | Ι             | Ι              | Ι                         | I                       | Ι                     | Ι           |
| Pleuronectes glacialis          | Arctic flounder      | B/M                    | Х          | I          | ×         | I           | X                             | – X              | Ι        | Ι        | Ι        | Ι                    | Ι         | Ι          | Ι           | Х        | Ι             | Ι              | Ι                         | I                       | Ι                     | Ι           |
| Limanda proboscidea             | longhead dab         | Μ                      | ×          | Ι          | ×         | Ι           | X                             | - Х              | Ι        | Ι        | Ι        | Ι                    | Ι         | Ι          | Ι           | Х        | Ι             | Ι              | Ι                         | Ι                       | Ι                     | Ι           |
| Limanda aspera                  | yellowfin sole       | Σ                      | ×          | I          | $\times$  | I           | $\times$                      | ×                | ×        | ×        | ×        | ×                    | I         | T          | T           | ×        | Ι             | I              | 1                         | Ι                       | Ι                     | T           |
| Limanda sakhalinensis           | Sakhalin sole        | Μ                      | ×          | I          | ×         | I           | ×                             | X<br>X           | ×        | Ι        | ×        | Ι                    | ×         | Ι          | Ι           | Х        | Ι             | Ι              | Ι                         | Ι                       | Ι                     | Ι           |
| Sources:                        |                      |                        | -          |            |           | -<br>-<br>( |                               |                  |          |          |          |                      |           |            |             |          |               |                |                           |                         |                       |             |

Moulton and George,(2000); Mecklenburg, Mecklenburg, and Thorsteinson, et al., (2002); Froese and Pauly, (2003). Notes:

| <br><b>M</b> = Marine   | X = Present     |
|-------------------------|-----------------|
| <br><b>B</b> = Brackish | FW = Freshwater |
| = Absent                | A = Anadromous  |

| Table III.C-1                                                          |
|------------------------------------------------------------------------|
| Estimated Number of Jobs by Sector, North Slope Borough Residents Only |

|                      | 1980  | 1988  | 1993  | 1998  | 2003  |
|----------------------|-------|-------|-------|-------|-------|
| Federal Government   | 100   | 83    | 37    | 39    | 61    |
| State Government     | 12    | 20    | 25    | 35    | 26    |
| City Government      | —     | 71    | 61    | 57    | 66    |
| NSB Government       | 642   | 1,087 | 893   | 989   | 777   |
| NSB School District  | —     | 419   | 345   | 289   | 409   |
| Private Construction | 201   | 95    | 21    | 66    | 43    |
| Regional/Village     |       | 311   | 304   | 407   | 383   |
| Corporation          |       |       |       |       |       |
| Transportation       | 107   | 122   | 45    | 43    | 53    |
| Oil Industry         | 30    | 46    | 21    | 16    | 23    |
| Service              | 71    | 84    | 53    | 83    | 108   |
| Other                | 176   | 168   | 138   | 368   | 242   |
| Total                | 1,689 | 2,506 | 1,943 | 2,392 | 2,191 |

#### Sources:

1980 data from Alaska Consultants, Inc., (1981); 1988, 1993, 1998, and 2003 data are from North Slope Borough Economic Profile and Census Reports.

#### Note:

**NSB** = North Slope Borough

| Table III.C-2                                                    |   |
|------------------------------------------------------------------|---|
| Employment of Residents by Sector, North Slope Communities, 2003 | 5 |

| Sector               | Anaktuvuk<br>Pass | Atqasuk | Barrow | Kaktovik | Nuiqsut | Point<br>Hope | Point<br>Lay | Wainwright |
|----------------------|-------------------|---------|--------|----------|---------|---------------|--------------|------------|
| Federal Government   | 1                 | 0       | 45     | 1        | 0       | 10            | 2            | 2          |
| State Government     | 2                 | 0       | 22     | 0        | 1       | 0             | 1            | 0          |
| City Government      | 12                | 1       | 21     | 3        | 5       | 14            | 2            | 8          |
| NSB Government       | 51                | 20      | 464    | 27       | 29      | 44            | 24           | 48         |
| NSB School District  | 30                | 20      | 194    | 21       | 27      | 62            | 29           | 44         |
| NSB CIP              | 0                 | 0       | 4      | 0        | 2       | 0             | 1            | 3          |
| Oil Industry         | 3                 | 0       | 14     | 1        | 3       | 2             | 0            | 0          |
| Private Construction | 4                 | 0       | 23     | 5        | 3       | 1             | 4            | 4          |
| ASRC                 | 3                 | 0       | 69     | 5        | 3       | 1             | 4            | 3          |
| Village Corporation  | 19                | 27      | 87     | 18       | 37      | 60            | 9            | 38         |
| Finance              | 0                 | 0       | 5      | 0        | 0       | 0             | 1            | 0          |
| Transportation       | 0                 | 0       | 48     | 0        | 1       | 3             | 1            | 1          |
| Communication        | 0                 | 0       | 8      | 0        | 0       | 0             | 0            | 0          |
| Trade                | 0                 | 1       | 27     | 0        | 0       | 2             | 0            | 1          |
| Service              | 4                 | 0       | 103    | 0        | 0       | 0             | 1            | 0          |
| Ilkisagvik College   | 0                 | 0       | 58     | 0        | 0       | 2             | 1            | 1          |
| Other                | 2                 | 3       | 132    | 3        | 10      | 25            | 5            | 18         |
| Total                | 131               | 72      | 1,324  | 84       | 121     | 226           | 85           | 171        |

#### Source:

2003 Economic Profile and Census Report, Volume IX, Department of Planning and Community Service North Slope Borough.

|                              | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2005 |
|------------------------------|------|------|------|------|------|------|------|
| Anchorage-Mat Su Region      | 131  | 132  | 135  | 141  | 144  | 148  | 157  |
| Kenai Peninsula Borough      | 16   | 16   | 16   | 17   | 17   | 17   | 16   |
| Fairbanks North Star Borough | 31   | 31   | 32   | 33   | 33   | 34   | 36   |
| Total for 3 Areas            | 178  | 178  | 183  | 191  | 194  | 199  | 209  |
| Alaska Total                 | 261  | 261  | 269  | 275  | 278  | 284  | 292  |

# Table III.C-3 Employment Estimates (In thousands) (nonagricultural wage and salary employment)

Source:

Alaska Department of Labor and Workforce Development, Research and Analysis Section.

 Table III.C-4

 Annual Bowhead Whale Subsistence Harvest for Chukchi Sea Villages, 1982-2005

| Year | Barrow | Wainwright | Point Hope | Kivalina |
|------|--------|------------|------------|----------|
| 1982 | 0      | 2          | 1          | 0        |
| 1983 | 2      | 2          | 1          | 0        |
| 1984 | 4      | 2          | 2          | 1        |
| 1985 | 5      | 2          | 1          | 0        |
| 1986 | 8      | 3          | 2          | 0        |
| 1987 | 7      | 4          | 5          | 1        |
| 1988 | 11     | 4          | 5          | 0        |
| 1989 | 10     | 2          | 0          | 0        |
| 1990 | 11     | 5          | 3          | 0        |
| 1991 | 12     | 4          | 6          | 1        |
| 1992 | 22     | 0          | 2          | 1        |
| 1993 | 23     | 5          | 2          | 0        |
| 1994 | 16     | 4          | 5          | 2        |
| 1995 | 19     | 5          | 1          | 1        |
| 1996 | 24     | 3          | 3          | 0        |
| 1997 | 30     | 3          | 4          | 0        |
| 1998 | 25     | 3          | 3          | 0        |
| 1999 | 24     | 5          | 2          | 0        |
| 2000 | 18     | 5          | 3          | 0        |
| 2001 | 27     | 6          | 4          | 0        |
| 2002 | 22     | 1          | 0          | 0        |
| 2003 | 16     | 5          | 4          | 0        |
| 2004 | 21     | 4          | 3          | 0        |
| 2005 | 29     | 3          | 7          | 0        |

Sources:

S.R. Braund and Assocs. (1984); Stoker and Krupnik, (1993); AEWC, (1993), (1994), (1995); Philo et al., (1994); Suydam et al., (1995); S.R. Braund and Assocs. (2002); S.R. Braund and Assocs. and North Slope Borough Department of Wildlife Management, (2006).

|      |        | Number of Whales |           |            |          |  |  |  |  |
|------|--------|------------------|-----------|------------|----------|--|--|--|--|
| Year | Barrow | Wainwright       | Point Lay | Point Hope | Kivalina |  |  |  |  |
| 1980 | 0      | 0                | 15-18     | 23-35      | 3-5      |  |  |  |  |
| 1981 | 5      | 0                | 29-38     | 4-7        | 10-15    |  |  |  |  |
| 1982 | 3-5    | 0                | 28-33     | 17         | 4-5      |  |  |  |  |
| 1983 | 3      | 0                | 18        | 20-31      | 24       |  |  |  |  |
| 1984 | 0      | 0                | 0         | 30         | 27       |  |  |  |  |
| 1985 | 0      | 0                | 18        | 30         | 120-200  |  |  |  |  |
| 1986 | 0      | 5                | 33        | 30         | 7        |  |  |  |  |
| 1987 | 0      | 47               | 22-35     | 40         | 4        |  |  |  |  |
| 1988 | 0      | 3                | 40        | 59         | 6        |  |  |  |  |
| 1989 | 1      | 0                | 16        | 17         | 0        |  |  |  |  |
| 1990 | 0      | 0                | 62        | 16         | 1        |  |  |  |  |
| 1991 | 1      | 5                | 35        | 39         | 1        |  |  |  |  |
| 1992 | 0      | 20               | 24        | 15         | 10       |  |  |  |  |
| 1993 | 2      | 0                | 77        | 79         | 3        |  |  |  |  |
| 1994 | 5      | 0                | 56        | 53         | 3        |  |  |  |  |
| 1995 | 0      | 0                | 31        | 40         | 3        |  |  |  |  |
| 1996 | 2      | 0                | 41        | 15         | 7        |  |  |  |  |
| 1997 | 8      | 4                | 3         | 32         | 1        |  |  |  |  |
| 1998 | 1      | 38               | 48        | 52         | 0        |  |  |  |  |
| 1999 | 1      | 3                | 47        | 33         | 1        |  |  |  |  |
| 2000 | 1      | 0                | 0         | 16         | 44       |  |  |  |  |
| 2001 | 1      | 23               | 34        | 24         | 0        |  |  |  |  |
| 2002 | 1      | 37               | 47        | 23         | 3        |  |  |  |  |
| 2003 | 2      | 38               | 36        | 34         | 0        |  |  |  |  |
| 2004 | 1      | 0                | 53        | 29         | 1        |  |  |  |  |
| 2005 | 7      | 1                | 41        | ?          | 2        |  |  |  |  |

 Table III.C-5

 Annual Beluga Whale Harvest for Barrow, Wainwright, Point Lay, Point Hope, and Kivalina, 1980-2005

#### Sources:

Alaska Beluga Whale Committee [ABWC], (2002), (2006); Fuller and George, (1997); Lowry et al., (1989); Burns and Frost, (1989); Impact Assessment, (1989); Burns and Seaman, (1986); Braund and Burnham, (1984).

| Table III.C-6                                                                                |   |
|----------------------------------------------------------------------------------------------|---|
| Annual Walrus Harvest for Barrow, Wainwright, Point Lay, Point Hope, and Kivalina, 1985-2008 | 5 |

| Harvest |        | Ν          | umber of Walrus |            |          |
|---------|--------|------------|-----------------|------------|----------|
| Season  | Barrow | Wainwright | Point Lay       | Point Hope | Kivalina |
| 1985    |        |            |                 |            |          |
| 1986    |        |            |                 |            |          |
| 1987    | 54     |            | 6               |            |          |
| 1988    | 1-62   | 0-59       | 0               |            |          |
| 1989    | 14     | 43         | 0               | 2          | 46       |
| 1990    | 7      | 0          | 0               | 5          | 0        |
| 1991    | 23     | 32         | 0               | 0          | 0        |
| 1992    | 26     | 48         | 0               | 5          | 1        |
| 1993    | 27     | 44         | 1               | 5          | 12       |
| 1994    | 16     | 68         | 1               | 6          | 16       |
| 1995    | 12     | 83         | 4               | 0          | 38       |
| 1996    | 13     | 24         | 4               | 0          | 13       |
| 1997    | 48     | 50         | 7               | 3          | 2        |
| 1998    | 24     | 69         | 8               | 5          | 0        |
| 1999    | 17     | 48         | 6               | 5          | 0        |
| 2000    | 19     | 36         | 6               | 6          | 0        |
| 2001    | 37     | 94         | 3               | 2          | 0        |
| 2002    | 39     | 119        | 11              | 16         | 0        |
| 2003    | 51     | 29         | 9               | 12         | 0        |
| 2004    | 52     | 47         | 5               | 20         | 0        |
| 2005    | 5      | 21         | 5               | 0          | 4        |

#### Sources:

USDOI, FWS, (1997), (2002); FWS, MTRP Tagging Database, 1989-2005; Braund, (1993); Braund and Burnham, (1984); CPDB, (1996); Fuller and George, (1997).

| Table III.C-7                        |               |            |             |               |           |
|--------------------------------------|---------------|------------|-------------|---------------|-----------|
| Annual Polar Bear Harvest for Barrow | , Wainwright, | Point Lay, | Point Hope, | and Kivalina, | 1983-2005 |

|                 | Number of Bears |            |           |            |          |  |  |  |
|-----------------|-----------------|------------|-----------|------------|----------|--|--|--|
| Harvest Season* | Barrow          | Wainwright | Point Lay | Point Hope | Kivalina |  |  |  |
| 1983/84         | 27              | 34         | 8         | 30         | 3        |  |  |  |
| 1984/85         | 33              | 18         | 0         | 18         | 3        |  |  |  |
| 1985/86         | 14              | 8          | 6         | 17         | 2        |  |  |  |
| 1986/87         | 18              | 13         | 4         | 13         | 1        |  |  |  |
| 1987/88         | 15              | 9          | 2         | 9          | 5        |  |  |  |
| 1988/89         | 29              | 14         | 2         | 9          | 1        |  |  |  |
| 1989/90         | 14              | 9          | 1         | 23         | 5        |  |  |  |
| 1990/91         | 14              | 6          | 3         | 18         | 3        |  |  |  |
| 1991/92         | 22              | 3          | 0         | 9          | 2        |  |  |  |
| 1992/93         | 26              | 8          | 3         | 17         | 1        |  |  |  |
| 1993/94         | 30              | 10         | 1         | 8          | 1        |  |  |  |
| 1994/95         | 11              | 7          | 1         | 20         | 2        |  |  |  |
| 1995/96         | 18              | 14         | 1         | 7          | 0        |  |  |  |
| 1996/97         | 40              | 9          | 6         | 14         | 0        |  |  |  |
| 1997/98         | 18              | 6          | 3         | 12         | 0        |  |  |  |
| 1998/99         | 16              | 2          | 0         | 18         | 3        |  |  |  |
| 1999/00         | 17              | 5          | 4         | 10         | 0        |  |  |  |
| 2000/01         | 28              | 10         | 1         | 15         | 1        |  |  |  |
| 2001/02         | 25              | 2          | 1         | 9          | 0        |  |  |  |
| 2002/03         | 20              | 5          | 1         | 12         | 1        |  |  |  |
| 2003/04         | 10              | 13         | 3         | 10         | 0        |  |  |  |
| 2004/05         | 2               | 5          | 4         | 9          | 2        |  |  |  |
| 2005/06***      | ?               | ?          | ?         | ?          | ?        |  |  |  |

#### Source:

Schliebe, Amstrup, and Garner, (1995); Schliebe, (2006).

Notes:

\* Harvest runs from 1 July to 30 June.

\*\* Atqasuk harvested 2 bears during the 1988/89 season.

\*\*\* Harvest season incomplete.

#### Table III.C-8

#### Breakdown of Total Harvest by Subsistence-Harvest Category for Point Hope, Alaska, 1992. The 1993 Population of Point Hope was 699; The Total Number of Households was 156

| Subsistence Harvest<br>Category | Total Weight | Pounds Per<br>Household | Pounds Per<br>Capita |
|---------------------------------|--------------|-------------------------|----------------------|
| Birds                           | 9,429        | 60                      | 13                   |
| Fish                            | 30,589       | 196                     | 44                   |
| Invertebrates                   | 88           | 1                       | 0                    |
| Marine Mammals                  | 262,009      | 1,680                   | 375                  |
| Plants                          | 2,720        | 17                      | 4                    |
| Terrestrial Mammals             | 35,548       | 228                     | 51                   |
| Total                           | 340,383      | 2,182                   | 487                  |

Source:

Fuller and George, (1997).

| Table III.C-9                                                               |  |
|-----------------------------------------------------------------------------|--|
| Top Five Species Harvested at Point Hope, Alaska during Calendar Year, 1992 |  |

| Top Five<br>Species<br>Harvested | Edible Pounds<br>Harvested | Number<br>Harvested | Pounds<br>Per<br>Household | Pounds Per<br>Capita | Percent of<br>Total<br>Harvest |
|----------------------------------|----------------------------|---------------------|----------------------------|----------------------|--------------------------------|
| Beluga                           | 137,172                    | 98                  | 879                        | 196                  | 40.3%                          |
| Walrus                           | 55,797                     | 72                  | 358                        | 80                   | 16.4%                          |
| Bearded Seal                     | 28,242                     | 160                 | 181                        | 40                   | 8.3%                           |
| Caribou                          | 26,303                     | 225                 | 169                        | 38                   | 7.7%                           |
| Bowhead                          | 23,365                     | 3                   | 150                        | 33                   | 6.9%                           |

Source:

Fuller and George, (1997).

#### Table III.C-10 Participation in Subsistence Harvest Activities, Point Hope Alaska, 1992, of 156 Households, 142 Households Participated in This Survey

|                               | Number | r of Household | s        |               | Per   | cent of House | holds    |               |
|-------------------------------|--------|----------------|----------|---------------|-------|---------------|----------|---------------|
| Activity                      | Often  | Sometimes      | Vacation | Not at<br>All | Often | Sometimes     | Vacation | Not at<br>All |
| Fall Whaling                  | 4      | 5              | 0        | 133           | 3%    | 4%            | 0%       | 94%           |
| Fish                          | 86     | 29             | 1        | 26            | 61%   | 20%           | 1%       | 18%           |
| Helped Whaling<br>Crew        | 92     | 27             | 2        | 21            | 55%   | 19%           | 1%       | 15%           |
| Hunt Caribou                  | 71     | 27             | 1        | 43            | 50%   | 19%           | 1%       | 30%           |
| Hunt Moose,<br>Bear, or Sheep | 35     | 27             | 2        | 78            | 25%   | 19%           | 1%       | 55%           |
| Hunt Seal                     | 78     | 29             | 0        | 35            | 55%   | 20%           | 0%       | 25%           |
| Hunt Walrus                   | 70     | 33             | 0        | 39            | 49%   | 23%           | 0%       | 27%           |
| Hunt Waterfowl<br>and Eggs    | 81     | 27             | 1        | 33            | 57%   | 19%           | 1%       | 23%           |
| Make Sleds or<br>Boats        | 53     | 26             | 0        | 63            | 37%   | 18%           | 0%       | 44%           |
| Pick Berries                  | 81     | 39             | 1        | 21            | 57%   | 27%           | 1%       | 15%           |
| Sew Skins,<br>Make Parkas     | 49     | 35             | 0        | 58            | 35%   | 25%           | 0%       | 41%           |
| Spring Whaling                | 98     | 16             | 4        | 24            | 69%   | 11%           | 3%       | 17%           |
| Тгар                          | 14     | 22             | 0        | 106           | 10%   | 15%           | 0%       | 75%           |

#### Source:

Fuller and George, (1997).

# Table III.C-11 Point Hope, Amount of Food Consumed Harvested from Local Sources<sup>1</sup>

|                | 19     | 998     | 20     | 03      |
|----------------|--------|---------|--------|---------|
| Amount         | Number | Percent | Number | Percent |
| None           | 4      | 2.9%    | 10     | 7.0%    |
| Very Little    | 11     | 8.2%    | 16     | 11.3%   |
| Less Than Half | 23     | 17.2%   | 23     | 16.2%   |
| Half           | 34     | 25.4%   | 28     | 19.7%   |
| More Than Half | 34     | 25.4%   | 30     | 21.1%   |
| Nearly All     | 19     | 14.2%   | 15     | 10.6%   |
| All            | 9      | 6.7%    | 20     | 14.1%   |
| Total          | 134    | 100%    | 142    | 100%    |

#### Source:

Fuller and George, (1997).

#### Note:

<sup>1</sup> Results include only those households responding to the census survey and the query about the amount of subsistence harvested by the household.

#### Table III.C-12

Point Hope Money Spent on Subsistence Activities, 2003<sup>1</sup>

| Amount              | Number | Percent |
|---------------------|--------|---------|
| \$0 to \$100        | 27     | 22.5%   |
| \$200 to \$400      | 9      | 7.5%    |
| \$500 to \$700      | 10     | 8.3%    |
| \$800 to \$1,200    | 11     | 9.2%    |
| \$1,200 to \$3,000  | 22     | 18.3%   |
| \$3,100 to \$9,500  | 22     | 18.3%   |
| \$9,600 to \$20,000 | 18     | 15.1%   |
| \$21,000+           | 1      | 0.8%    |
| Total               | 120    | 100%    |

#### Source:

Fuller and George, (1997).

#### Note:

<sup>1</sup> Results include only those households responding to the census and the questions about money spent on subsistence activities.

#### Table III.C-13a Kivalina Marine Mammal Subsistence Harvests for 1964-1965, 1965-1966, 1982-1983, 1983-1984, and 1991-1992

| Resource                   |           |           | Number Take | n               |           |
|----------------------------|-----------|-----------|-------------|-----------------|-----------|
| Resource                   | 1964-1965 | 1965-1966 | 1982-1983   | 1983-1984       | 1991-1992 |
| Bearded seal               | 153       | 119       | 134         | 60              | 139       |
| Spotted seal               | 4         | 1         | 1           | 1               | 30        |
| Ringed seal                | 908       | 467       | 172         | 109             | 110       |
| Ribbon seal                | NR        | NR        | 1           | NR              | 8         |
| Walrus                     | 0         | 3         | 51          | 4               | 28        |
| Beluga                     | 6         | 12        | 27          | 28              | 10        |
| Bowhead whale <sup>a</sup> | 0         | 0         | 0           | 1               | 1         |
| Gray whale                 | 0         | 0         | 0           | part of carcass | 0         |
| Polar bear                 | NR        | 1         | NR          | 2               | 8         |

Notes:

Two additional bowhead whales were taken in 1994.

NR None reported

#### Table III.C-13b Kivalina Land Mammal Subsistence Harvests for 1964-1965, 1965-1966, 1982-1983, 1983-1984, and 1991-1992

| Resource  |           |           | Number Taker | า         |           |
|-----------|-----------|-----------|--------------|-----------|-----------|
| Resource  | 1964-1965 | 1965-1966 | 1982-1983    | 1983-1984 | 1991-1992 |
| Caribou   | 256       | 1,010     | 346          | 564       | 351       |
| Moose     | NR        | 4         | 6            | 6         | 17        |
| Grizzly   | 1         | 2         | NR           | 2         | 3         |
| Fox       | 6         | 19        | 47           | 58        | 21        |
| Sheep     | NR        | NR        | 2            | NR        | U         |
| Wolf      | 1         | 1         | NR           | 1         | 9         |
| Wolverine | 17        | 21        | 12           | 10        | 23        |
| Lynx      | NR        | 6         | 1            | NR        | 0         |
| Porcupine | 1         | 1         | 1            | NR        | 0         |
| Mink      | NR        | 1         | NR           | NR        | 2         |
| Otter     | NR        | NR        | 1            | NR        | 2         |
| Hare      | NR        | NR        | NR           | NR        | 0         |
| Squirrel  | NR        | NR        | 3            | 53        | 10        |

Notes:

NR None reported

## Table III.C-13c

| Resource  |           |           | <b>Pounds Taken</b> |           |           |
|-----------|-----------|-----------|---------------------|-----------|-----------|
|           | 1964-1965 | 1965-1966 | 1982-1983           | 1983-1984 | 1991-1992 |
| Char      | 93,995    | 28,140    | 69,059              | 68,467    | 69,792    |
| Cod       | NR        | 6,955     | 9                   | 4,299     | 6,095     |
| Burbot    | NR        | 2         | 2                   | 2         | 516       |
| Grayling  | NR        | 40        | 290                 | 968       | 644       |
| Salmon    | 1,425     | 116       | 464                 | 2,107     | 5,081     |
| Whitefish | 2,500     | 13        | 100                 | 1,608     | 4,662     |
| Sculpin   | ND        | ND        | 9                   | 9         | ND        |
| Smelt     | ND        | ND        | ND                  | 20        | 22        |

Notes:

NR None reportedND No data collected

| Rivalilla Biru Subs | istence naivests i        | 101 1904-1905, 19         | 05-1900, 1902-               | 1903, 1903-190               | 4, anu 1991-1992          |
|---------------------|---------------------------|---------------------------|------------------------------|------------------------------|---------------------------|
| Resource            | 1964-1965<br>Number Taken | 1965-1966<br>Number Taken | 1982-1983<br>Number<br>Taken | 1983-1984<br>Number<br>Taken | 1991-1992<br>Number Taken |
| Geese               | ND                        | ND                        | 215                          | 387                          | 944                       |
| Ducks               | ND                        | ND                        | 134                          | 210                          | 609                       |
| Ptarmigan           | ND                        | 16                        | 46                           | 242                          | 637                       |
| Cranes              | ND                        | ND                        | 4                            | 4                            | 12                        |
| Snowy Owls          | ND                        | ND                        | 15                           | 26                           | 29                        |
| Swans               | ND                        | ND                        | 1                            | NR                           | 0                         |
| Murres              | ND                        | 10                        | ND                           | 18                           | ND                        |

#### Table III.C-13d Kivalina Bird Subsistence Harvests for 1964-1965, 1965-1966, 1982-1983, 1983-1984, and 1991-1992

Notes:

ND No data collected.

NR None reported.

#### Table III.C-13e

Kivalina Plant Subsistence Harvests for 1964-1965, 1984, 1965-1966. 1982-1983, 1983-1984, and 1991-1992

| Resource      | 1964-1965<br>Ibs taken                               | 1965-1966<br>Ibs taken | 1982-1983<br>Ibs taken | 1983-1984<br>Ibs taken | 1991-1992<br>Ibs taken                            |
|---------------|------------------------------------------------------|------------------------|------------------------|------------------------|---------------------------------------------------|
| Blackberries  | 550                                                  | 181                    | 457                    | 591                    | See mixed                                         |
| Sourdock      | 260                                                  | 213                    | 85                     | NR                     | See mixed                                         |
| Eskimo Potato | ND                                                   | ND                     | 40                     | NR                     | See mixed                                         |
| Salmonberries | ND                                                   | ND                     | 1,721                  | 14                     | See mixed                                         |
| Blueberries   | ND                                                   | ND                     | 461                    | 488                    | See mixed                                         |
| Mixed         | 370<br>(salmonberries,<br>blackberries,<br>sourdock) | 283<br>(berries)       | ND                     | ND                     | 4,615<br>(recorded as<br>berries,<br>not as type) |

Notes:

ND No data collected.

NR None reported.

#### Sources of data for Tables III.C-13a-13e:

Burch, (1985); Alaska Department of Fish and Game Community Profile Database.

#### Table III.C-14

#### Importance of Subsistence Foods to Households in NANA Region (Indicated by: "How Much of Your Own Food Did Your Family Catch, Hunt. Or Fish for This Year?"

| Response           | Kivalina | Noatak | Kotzebue |
|--------------------|----------|--------|----------|
| "All of our food"  | 5.6%     | —      | 5.6%     |
| "Most of our food" | L6.7%    | 57.1%  | 14.9%    |
| Half of our food"  | 38.9%    | 28.6%  | 16.1%    |
| "Some of our food" | 38.9%    | 14.3%  | 49.1%    |
| "None of our food" | —        | —      | 14.3%    |
| Total              | 100.0%   | 100.0% | 100.0%   |

#### Sources:

NANA Regional Strategy, Community Survey, 1978, as reported in Red Dog Mine Project EIS, February, 1984; Draft EIS Navigation Improvements Delong Mountain Terminal, Alaska.

|              | it, Point                              |
|--------------|----------------------------------------|
|              | Nainwrigh                              |
|              | Atqasuk,                               |
|              | nnic Composition of Barrow, Atqasuk, V |
| 5            | position o                             |
| ble III.C-15 | nnic Com                               |

|                         | State of Alaska | Alaska  | Barrow     | MO      | Atqasuk    | suk     | Wainwright | right   | Point Lay  | Lay     | Point      | Point Hope |
|-------------------------|-----------------|---------|------------|---------|------------|---------|------------|---------|------------|---------|------------|------------|
|                         | Population      | Percent | Population | Percent | Population | Percent | Population | Percent | Population | Percent | Population | Percent    |
| Total                   | 626,932         |         | 4,581      |         | 228        |         | 546        |         | 247        |         | 757        |            |
| Hispanic or             |                 |         |            |         |            |         |            |         |            |         |            |            |
| Latino                  | 25,852          | 4.1     | 153        | 3.3     | 0          | 0.0     | 0          | 0'0     | 9          | 2.4     | 13         | 1.7        |
| Not Hispanic or         |                 |         |            |         |            |         |            |         |            |         |            |            |
| Latino                  | 601,080         | 95.9    | 4,428      | 2.96    | 228        | 100     | 546        | 100     | 241        | 97.5    | 744        | 98.2       |
| Population of           |                 |         |            |         |            |         |            |         |            |         |            |            |
| one race                | 570,626         | 91.0    | 4,063      | 88.7    | 227        | 9.66    | 531        | 97.2    | 233        | 94.3    | 728        | 96.1       |
|                         |                 |         |            |         |            |         |            |         |            |         |            |            |
| White                   | 423,788         | 67.6    | 972        | 21.2    | 11         | 4.8     | 37         | 6.7     | 28         | 11.3    | 99         | 8.7        |
| Black or African-       |                 |         |            |         |            |         |            |         |            |         |            |            |
| American                | 21,073          | 3.4     | 44         | 1.0     | 0          | 0.0     | 1          | 0.2     | 0          | 0.0     | 1          | 0.1        |
| American Indian         |                 |         |            |         |            |         |            |         |            |         |            |            |
| or Alaska Native        | 96,505          | 15.4    | 2,558      | 55.8    | 215        | 94.3    | 493        | 90.2    | 204        | 82.5    | 629        | 87.0       |
|                         |                 |         |            |         |            |         |            |         |            |         |            |            |
| Asian                   | 24,741          | 3.9     | 429        | 9.4     | -          | 0.4     | 0          | 0.0     | -          | 0.4     | 1          | 0.1        |
| Native Hawaiian         |                 |         |            |         |            |         |            |         |            |         |            |            |
| and Pacific<br>Islander | 3,181           | 0.5     | 59         | 1.3     | 0          | 0.0     | 0          | 0.0     | 0          | 0.0     | 0          | 0.0        |
|                         |                 |         |            |         |            |         |            |         |            |         |            |            |
| some other race         | 1,388           | 0.2     | 1          | 0.0     | 0          | 0.0     | 0          | 0.0     | 0          | 0.0     | 1          | 0.1        |
| Two or more             |                 |         |            |         |            |         |            |         |            |         |            |            |
| races                   | 30,454          | 4.9     | 365        | 8.0     | -          | 0.4     | 15         | 2.7     | 14         | 5.6     | 29         | 3.8        |
| Source.                 |                 |         |            |         |            |         |            |         |            |         |            |            |

Source: Census Table SF-1, http://146.63.75.45/census2000/Census\_lv2.asp.

#### Table III.C-16

# Population Counts for Native Subsistence-Based Communities in the Arctic Ecoregion; Total American Indian and Alaskan Native Population Percentages

| Community`               | Total Residents | Percent American Indian/Alaska<br>Native |
|--------------------------|-----------------|------------------------------------------|
| North Slope Borough      | 7,385           | 68.4%                                    |
| Kaktovik                 | 293             | 74.4                                     |
| Nuiqsut                  | 433             | 88.2                                     |
| Barrow                   | 4,581           | 57.2                                     |
| Wainwright               | 546             | 90.3                                     |
| Point Lay                | 247             | 82.6                                     |
| Point Hope               | 757             | 87.1                                     |
| Northwest Arctic Borough | 7,208           | 82.5                                     |
| Kivalina                 | 377             | 96.6                                     |
| Kotzebue                 | 3,082           | 71.2                                     |
| Noorvik                  | 634             | 90.1                                     |
| Buckland                 | 406             | 95.8                                     |
| Deering                  | 136             | 93.4                                     |
| Nome Census Area         | 9,196           | 75.2                                     |
| Diomede                  | 146             | 92.5                                     |
| Shismaref                | 562             | 93.2                                     |
| Wales                    | 152             | 83.6                                     |

#### Source:

USDOC, Bureau of the Census, (2000).

#### Table III.C-17

Median Household, Median Family, Per-Capita Incomes; Number of People in Poverty; Percent of the Total Borough or Native Subsistence-based Community Population

| Community                | Median<br>Household<br>Income | Median<br>Family<br>Income | Per-Capita<br>Income | Number of People<br>in Poverty (Percent<br>of Community<br>Population) |
|--------------------------|-------------------------------|----------------------------|----------------------|------------------------------------------------------------------------|
| North Slope Borough      | \$63,173                      | \$63,810                   | \$20,540             | 663 (9.1%)                                                             |
| Kaktovik                 | 55,625                        | 60,417                     | 22,031               | 18 (6.6)                                                               |
| Nuiqsut                  | 48,036                        | 46,875                     | 14,876               | 10 (2.4)                                                               |
| Barrow                   | 67,097                        | 68,203                     | 22,902               | 390 (8.6)                                                              |
| Wainwright               | 54,722                        | 58,125                     | 16,710               | 70 (12.5)                                                              |
| Point Lay                | 68,750                        | 75,833                     | 18,003               | 18 (7.4)                                                               |
| Point Hope               | 63,125                        | 66,250                     | 16,641               | 112 (14.8)                                                             |
| Northwest Arctic Borough | 45,796                        | 45,230                     | 15,286               | 1,243 (17.4)                                                           |
| Kivalina                 | 30,833                        | 30,179                     | 8,360                | 99 (26.4)                                                              |
| Kotzebue                 | 57,163                        | 58,068                     | 18,289               | 401 (13.1)                                                             |
| Noorvik                  | 51,964                        | 52,708                     | 12,020               | 51 (7.6)                                                               |
| Buckland                 | 38,333                        | 40,000                     | 9,624                | 49 (11.9)                                                              |
| Deering                  | 33,333                        | 43,438                     | 11,000               | 8 (5.8)                                                                |
| Nome Census Area         | 41,250                        | 44,189                     | 15,476               | 1,569 (17.4)                                                           |
| Diomede                  | 23,750                        | 24,583                     | 9,944                | 56 (35.4)                                                              |
| Shishmaref               | 30,714                        | 29,306                     | 10,487               | 89 (16.3)                                                              |
| Wales                    | 33,333                        | 39,583                     | 14,877               | 28 (18.3)                                                              |

Source:

USDOC, Bureau of the Census, (2000).

|                |                     | 100   |           |                                          |                                                                                                                                                                                                                       |
|----------------|---------------------|-------|-----------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | F                   | F     | Date      |                                          | Constant of Missel                                                                                                                                                                                                    |
| Vessel Name    | Iype                | I ONS | wrecked   | Location                                 | Cause of Wreck                                                                                                                                                                                                        |
| Caulaincourt   | French whaling ship | 657   | 9/5/1861  | At Point Belcher                         | Stove by ice; was quickly full of water and lost.                                                                                                                                                                     |
| Henry Kneeland | Whaling ship        | 304   | 6/22/1864 | In the Chukchi Sea                       | Struck an ice cake, filled instantly, and lost.                                                                                                                                                                       |
| Gratitude      | Whaling bark        | 337   | 7/2/1865  | 40 mi from Cape<br>Lisburne              | Stove by ice and sank while trying to escape the C.S.S. Shenandoah<br>and aet into the protection of arounded ice.                                                                                                    |
| Ontario        | Whaling bark        | 489   | 9/27/1866 | In the Chukchi Sea                       | Abandoned after colliding with the <i>Helen Mar</i> in a gale on September 27, 1866. With the vessel in this damaged condition, the crew refused durity and she was abandhored with 1.050 barrels of whale oil aboard |
| Hae Hawaii     | Whaling bark        | 368   | 9/22/1868 | In the Seahorse                          | Anchors dragged in a gale and the vessel went ashore and was lost.                                                                                                                                                    |
|                |                     |       |           | Islands, off Point<br>Franklin           |                                                                                                                                                                                                                       |
| Eagle          | Whaling bark        | 336   | 9/30/1869 | On Seahorse Shoal,<br>off Point Franklin | Grounded and lost; crew rescued by the vessel John Carver.                                                                                                                                                            |
| Almira         | Whaling ship        | 310   | 8/26/1870 | Near Point Barrow                        | Stove by ice and lost.                                                                                                                                                                                                |
| Hibernia       | Whaling ship        | 256   | 8/28/1870 | About 2 mi SW of<br>Point Barrow         | Ice stove hole in bow and vessel ran aground. Sold at auction for \$150.                                                                                                                                              |
| Comet          | Whaling brig        | 255   | 9/2/1871  | Between Point<br>Franklin and            | Crushed between grounded floe and moving pack ice and lost.                                                                                                                                                           |
|                |                     |       |           | Seanorse Islands                         |                                                                                                                                                                                                                       |
| Roman          | Whaling bark        | 358   | 9/7/1871  | In the Seahorse<br>Islands, off Point    | Crushed between grounded floe and moving pack ice. Vessel sank less than an hour after being carried off by the ice. Crew escaped over the                                                                            |
|                |                     |       |           | Franklin                                 | Ice.                                                                                                                                                                                                                  |
| Awashonks      | Whaling bark        | 380   | 9/8/1871  | S of Wainwright Inlet                    | Crushed and lost after being pushed partly onto ice. Wreck was still visible in 1872.                                                                                                                                 |
| Julian         | Whaling ship        | 356   | 9/8/1871  | S of Wainwright Inlet                    | Crushed in ice and abandoned.                                                                                                                                                                                         |
|                |                     |       |           | 2 mi NE of                               | Abandoned after trapped in ice. In 1872, found high and dry S of Point                                                                                                                                                |
| Kohola         | Whaling brig        | 270   | 9/9/1871  | Wainwright Inlet                         | Belcher.                                                                                                                                                                                                              |
| Carlotta       | Whaling bark        | 480   | 9/12/1871 | Point Belcher, near<br>Wainwright Inlet  | Abandoned after trapped in ice.                                                                                                                                                                                       |
| Fanny          | Whaling bark        | 391   | 9/13/1871 | 6 mi S of Point                          | Abandoned after trapped in ice and crushed.                                                                                                                                                                           |
|                |                     |       |           | Belcher, ¼ mi from shore                 |                                                                                                                                                                                                                       |
| Monticello     | Whaling bark        | 356   | 9/13/1871 | 4 mi S of Point                          | Trapped in ice and abandoned. In 1872, hull of vessel was identified;                                                                                                                                                 |
|                |                     |       |           | Belcher                                  | bow and stern were $1/2$ mi apart.                                                                                                                                                                                    |
| Champion       | Whaling ship        | 367   | 9/14/1871 | Point Belcher, near<br>Wainwright Inlet  | Abandoned after trapped in ice.                                                                                                                                                                                       |
| Concordia      | Whaling bark        | 368   | 9/14/1871 | Point Belcher, near<br>Wainwright Inlet  | Abandoned after trapped in ice; burned by Inupiaq Eskimos.                                                                                                                                                            |
|                |                     |       |           | >                                        |                                                                                                                                                                                                                       |

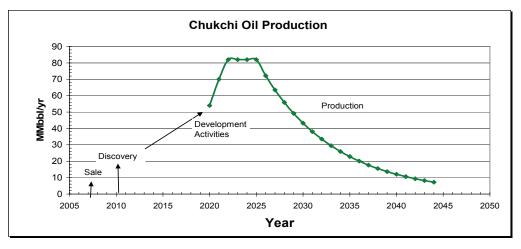
| Shipwrecks in the    | Shipwrecks in the Chukchi Sea Planning Area (continued) | Area (contil | nued)     |                                         |                                                                                                                                                                                                        |
|----------------------|---------------------------------------------------------|--------------|-----------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      |                                                         |              | Date      |                                         |                                                                                                                                                                                                        |
| Vessel Name          | Type                                                    | Tons         | Wrecked   | Location                                | Cause of Wreck                                                                                                                                                                                         |
| Contest              | Whaling bark                                            | 341          | 9/14/1871 | Point Belcher, near<br>Wainwright Inlet | Abandoned after trapped in ice.                                                                                                                                                                        |
| Elizabeth Swift      | Whaling bark                                            | 327          | 9/14/1871 | Point Belcher, near<br>Wainwright Inlet | Abandoned after trapped in ice.                                                                                                                                                                        |
| Emily Morgan         | Whaling bark                                            | 365          | 9/14/1871 | 1 mi N of Point<br>Belcher              | Abandoned after trapped in ice and crushed. By 1872, wreck had drifted 1 mi N of Point Belcher, and in 1873 the wreck was still visible.                                                               |
| Eugenia              | Whaling bark                                            | 315          | 9/14/1871 | Point Belcher, near<br>Wainwright Inlet | Ice snapped rudder and vessel was abandoned after it became trapped in ice: it was later crushed.                                                                                                      |
| Florida              | Whaling ship                                            | 470          | 9/14/1871 | In the Seahorse                         | Abandoned after trapped in ice and forced ashore by ice. In 1872, the                                                                                                                                  |
|                      |                                                         |              |           | Islands, off Point<br>Franklin          | vessel was found ashore at Seahorse Islands and was burned to<br>water's edge by Inupiaq Eskimos. Somme accounts have the vessel<br>drifting N to Barrow.                                              |
| Gay Head             | Whaling ship                                            | 300          | 9/14/1871 | Point Belcher, near<br>Wainwright Inlet | Abandoned after trapped in ice; in 1872, found burned by Inupiag<br>Eskimos.                                                                                                                           |
| George               | Whaling bark                                            | 259          | 9/14/1871 | Point Belcher, near<br>Wainwright Inlet | Abandoned after trapped in ice and crushed.                                                                                                                                                            |
| George<br>Howland    | Whaling bark                                            | 361          | 9/14/1871 | Point Belcher, near<br>Wainwright Inlet | Abandoned after trapped in ice.                                                                                                                                                                        |
| Henry Taber          | Whaling bark                                            | 296          | 9/14/1871 | Point Belcher, near<br>Wainwright Inlet | Abandoned after trapped in ice.                                                                                                                                                                        |
| James D.<br>Thompson | Whaling bark                                            | 432          | 9/14/1871 | Point Belcher, near<br>Wainwright Inlet | Abandoned after trapped in ice.                                                                                                                                                                        |
| John Wells           | Whaling bark                                            | 357          | 9/14/1871 | Point Belcher, near<br>Wainwright Inlet | Abandoned after trapped in ice.                                                                                                                                                                        |
| Mary                 | Whaling ship                                            | 373          | 9/14/1871 | S of Wainwright Inlet                   | Abandoned after trapped in ice and crushed.                                                                                                                                                            |
| Massachusetts        | Whaling bark                                            | 356          | 9/14/1871 | Point Belcher, near<br>Wainwright Inlet | Abandoned after trapped in ice. In 1872, hull had been carried around Point Barrow by ice.                                                                                                             |
| Navy                 | Whaling bark                                            | 385          | 9/14/1871 | Point Belcher, near<br>Wainwright Inlet | Abandoned after trapped in ice.                                                                                                                                                                        |
| Oliver Crocker       | Whaling bark                                            | 305          | 9/14/1871 | Point Belcher, near<br>Wainwright Inlet | Abandoned after trapped in ice.                                                                                                                                                                        |
| Paiea                | Whaling bark                                            | 386          | 9/14/1871 | Point Belcher, near<br>Wainwright Inlet | Abandoned after trapped in ice.                                                                                                                                                                        |
| Reindeer             | Whaling ship                                            | 332          | 9/14/1871 | Point Belcher, near<br>Wainwright Inlet | Abandoned after trapped in ice. In 1872, found 5 mi S of Point Belcher.                                                                                                                                |
| Seneca               | Whaling bark                                            | 328          | 9/14/1871 | Point Belcher, near<br>Wainwright Inlet | Abandoned and lost after trapped in ice. Vessel survived the crush of 1871 and was taken in tow by the bark Florence in July 1872. Later, it was cut adrift in bad weather, ran aground, and was lost. |

| Shipwrecks in the  | Shipwrecks in the Chukchi Sea Planning Area (continued) | Area (conti | nued)           |                             |                                                                                                                                 |
|--------------------|---------------------------------------------------------|-------------|-----------------|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Vessel Name        | Tyne                                                    | Tons        | Date<br>Wrecked | l ocation                   | Cause of Wreck                                                                                                                  |
| Thomas             | Whaling bark                                            | 461         | 9/14/1871       | N of Wainwright Inlet       | Abandoned and lost after trapped in ice. In 1872, vessel was found 2                                                            |
| Dickason           |                                                         | ,           |                 |                             | mi N of Wainwright Inlet with water flowing in and out of her.                                                                  |
| Victoria           | Trading brig                                            | 149         | 9/14/1871       | S of Wainwright Inlet       | Abandoned and lost after trapped in ice.                                                                                        |
| William Rotch      | Whaling ship                                            | 290         | 9/14/1871       | S of Wainwright Inlet       | Forced ashore by ice and abandoned.                                                                                             |
| Roscoe             | Whaling bark                                            | 313         | 8/19/1872       | Off Point Barrow            | Stove while at anchor and abandoned.                                                                                            |
| Arctic             | Whaling bark                                            | 431         | 7/7/1876        | 18 mi from the "Bend"       | Crushed in ice and abandoned. Crew reached shore and was                                                                        |
|                    | )                                                       |             |                 | (Point Belcher)             | rescued by the vessel Onward.                                                                                                   |
| Three Brothers     | Whaling bark                                            | 357         | 9/11/1877       | Off Point Barrow            | Abandoned in ice and lost; whale catch saved.                                                                                   |
| W.A.<br>Farnsworth | Whaling bark                                            | 432         | 9/15/1877       | Near Point Barrow           | Stove by ice, filled with water, capsized, and sank.                                                                            |
| William H. Allen   | Trading brig                                            | 157         | 8/2/1878        | Off Cape Smyth              | Stove by ice and sank.                                                                                                          |
| Florence           | Whaling bark                                            | 245         | 8/8/1878        | 4 mi S of Point Barrow      | Stove by ice and sank.                                                                                                          |
| Daniel Webster     | Whaling bark                                            | 327         | 7/12/1881       | 5 mi S of Point Barrow      | Crushed by ice and sank rapidly. Crew escaped to Point Barrow and some walked to Icy Cape and sailed in the bark <i>Coral</i> . |
| North Star         | Steam whaling bark                                      | 489         | 7/8/1882        | Off Point Barrow, 2 1/2     | Crushed in ice on her maiden voyage under command of L.C. Owen                                                                  |
|                    | )                                                       |             |                 | mi from shore               | and the "force of ice was so great that the cracking of her timbers                                                             |
|                    |                                                         |             |                 |                             | could be heard on shore." Crew made way over ice to U.S. Army                                                                   |
|                    |                                                         |             |                 |                             | Signal Service Station.                                                                                                         |
| John Howland       | Whaling bark                                            | 384         | 7/17/1883       | S of Point Hope             | Stove by ice and condemned. Boat burned on July 20 and sank on July 21.                                                         |
| Cyane              | Whaling bark                                            | 295         | 8/23/1883       | 5 mi NE of Point<br>Belcher | Vessel stranded in fog and heavy SW gale and went to pieces.                                                                    |
| Louisa             | Whaling bark                                            | 304         | 9/24/1883       | Off Point Hope              | Struck ice in a gale and sank.                                                                                                  |
| Bowhead            | Steam whaling bark                                      | 533         | 8/11/1884       | Blossom Shoals, near        | Made fast to grounded ice to clean boilers. She was truck and holed                                                             |
|                    |                                                         |             |                 | lcy Cape                    | by a piece of drifting ice and sank quickly. Crew was rescued by the nearby steam whalers <i>Narwhal</i> and <i>Balaena</i> .   |
| George and         | Whaling bark                                            | 343         | 8/10/1885       | 9 mi N of Wainwright        | Driven ashore and wrecked in SW gale after parting anchor chain                                                                 |
| Susan              |                                                         |             |                 | Inlet                       | and colliding with the bark <i>Mabel</i> . All crew but 3 rescued by the revenue cutter <i>Corwin</i> .                         |
| Mabel              | Whaling bark                                            | 188         | 8/10/1885       | At Wainwright Inlet         | After being fouled by the whaler George and Susan in a gale, the                                                                |
|                    | D                                                       |             |                 |                             | vessel went ashore and stranded. It became a total wreck. The                                                                   |
|                    |                                                         |             |                 |                             | revenue cutter Corwin tried to get a hawser on board but failed. The                                                            |
|                    |                                                         |             |                 |                             | Corwin was able to rescue the crew. Hulk still on beach in 1886.                                                                |

| Shipwrecks in the    | Shipwrecks in the Chukchi Sea Planning Area (continued) | vrea (conti | nued)      |                                                          |                                                                                                                                                                                                                                |
|----------------------|---------------------------------------------------------|-------------|------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      |                                                         |             | Date       |                                                          |                                                                                                                                                                                                                                |
| Vessel Name          | Type                                                    | Tons        | Wrecked    | Location                                                 | Cause of Wreck                                                                                                                                                                                                                 |
| Clara Light          | Whaling<br>schooner/tender                              | 179         | 8/31/1886  | 15 mi N of Point<br>Franklin                             | Abandoned in ice and lost.                                                                                                                                                                                                     |
| Fleetwing            | Whaling bark                                            | 328         | 8/3/1888   | 1 mi NE of Point<br>Barrow                               | Chain cable parted in heavy SW gale and vessel went ashore on shoal.<br>Ship was abandoned by crew, sold at auction, and gear salvaged.<br>Remains were burned by Inupiag Eskimos on August 15.                                |
| Mary and Susan       | Whaling bark                                            | 327         | 8/3/1888   | 4 mi S of Point<br>Barrow                                | Lost on outlying reef in a gale. Crew rescued by the cutter <i>Bear</i> the same day. Vessel burned on August 4.                                                                                                               |
| lno                  | Schooner                                                | 98          | 8/8/1888   | At Cape Smyth                                            | Driven ashore in sudden SW gale and stranded when anchors dragged.                                                                                                                                                             |
| Ohio                 | Whaling bark                                            | 206         | 10/3/1888  | At Point Hope                                            | The <i>Ohio</i> was driven onto the beach in a heavy gale and snowstorm<br>and grounded. The vessel broke up and was a total loss. After 8<br>months, some of the crew were rescued; 25 were lost.                             |
| Thomas Pope          | Whaling bark/tender                                     | 226         | 7/28/1890  | Off Point Hope                                           | Masts were cut away in a gale. Vessel was stove by ice and stranded.<br>Crew and cargo were taken off by steamer <i>William Lewis</i> and brig <i>F.A.</i><br><i>Barstow</i> .                                                 |
| Spy                  | Sloop                                                   | 17          | 11/25/1890 | At Point Barrow                                          | Caught in ice and crushed while heading for winter quarters.                                                                                                                                                                   |
| William Lewis        | Steam bark                                              | 463         | 10/3/1891  | At Point Barrow                                          | Ran ashore in gale and snowstorm and piled up on a snow covered                                                                                                                                                                |
|                      |                                                         |             |            |                                                          | salid spit at Politi barrow wren captain miscook it for such rote. Grew and cargo rescued by steamer <i>Navarch</i> . On March 20, 1892, the wreck was accidentally burned by salvers.                                         |
| Emily<br>Schroeder   | Schooner                                                | ć           | 10/13/1893 | Marryatt Inlet, Point<br>Hope Lagoon                     | Dragged anchor and driven ashore in storm. Seen hard aground as late as 1896.                                                                                                                                                  |
| Hidalgo              | Brig                                                    | 174         | 7/24/1896  | 8 mi W of Cape<br>Thompson, within 1<br>mi of Jabbertown | Forced ashore by ice and broken up by sea and ice. Cutter <i>Bear</i> took crew to Unalaska.                                                                                                                                   |
| Navarch              | Steam whaling bark                                      | 494         | 8/12/1897  | Off Blossom Shoals,<br>near Icy Cape                     | Lost off Blossom Shoals but later drifted in ice to Point Barrow.                                                                                                                                                              |
| Orca                 | Steam whaling bark                                      | 628         | 9/21/1897  | N of Seahorse                                            | Ice tore away propeller and rudder and part of the stern was crushed                                                                                                                                                           |
|                      |                                                         |             |            | Islands, oπ ⊬olnt<br>Franklin                            | between two immense ice rioes. At the time, the Orca was the world s largest steam whaler. The steam whaler <i>Belvedere</i> rescued all hands and the crew later walked 100 mi to Barrow to overwinter.                       |
| Jessie H.<br>Freeman | Steam whaling bark                                      | 516         | 9/22/1897  | N of Seahorse<br>Islands, off Point<br>Franklin          | Crushed in ice and abandoned on September 24. Vessel was later<br>burned accidentally by Inupiaq Eskimos and sank. The crew escaped to<br>the steam whaler <i>Belvedere</i> and later walked to Point Barrow to<br>overwinter. |
| Rosario              | Schooner                                                | 141         | 7/2/1898   | ¾ mi SW of Point<br>Barrow                               | Crushed in pack ice near Point Barrow. Crew rescued by the revenue cutter <i>Bear</i> .                                                                                                                                        |
| Grampus              | Steam whaling bark                                      | 326         | 7/18/1901  | Near Point Barrow                                        | Nipped in ice. Vessel was beached and condemned; all hands were saved.                                                                                                                                                         |
| Laura Madsen         | Whaling schooner                                        | 345         | 10/14/1905 | At anchorage off<br>Point Barrow                         | Caught in ice and crushed.                                                                                                                                                                                                     |

|                      |                                       |       | Date       |                                                       |                                                                                                                                                                                                                     |
|----------------------|---------------------------------------|-------|------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Vessel Name          | Type                                  | Tons  | Wrecked    | Location                                              | Cause of Wreck                                                                                                                                                                                                      |
| Ivy                  | Schooner                              | 142   | 9/1/1908   | At Point Barrow                                       | Driven ashore by ice pack. Crew took passage to Seattle on schooner Volante. Vessel was salvaged but it sank the next year near Barrow.                                                                             |
| Helen Johnston       | Gas schooner                          | 39    | 7/29/1910  | 7 mi E of Point Hope                                  | Pounded to pieces by ice in a strong SE gale. The crew was rescued by the cutter <i>Bear</i> .                                                                                                                      |
| Transit              | Schooner                              | 547   | 8/25/1913  | 5 mi SW of Cape<br>Smyth                              | Wrecked when ice pushed it ashore. On July 30, 1914, vessel was located on the beach 10 mi S of Cape Smyth. Captain and crew escaped over the ice to Barrow and returned S on the schooner <i>Hetty B</i> .         |
| Arctic               | Auxiliary gas<br>schooner             | 669   | 8/10/1924  | 16 mi S of Point<br>Barrow                            | Crushed in ice while on a trading and whaling voyage. The crew was rescued by the vessel <i>Boxer</i> . The <i>Arctic</i> was the former <i>H.D</i> . <i>Bendixsen</i> .                                            |
| Lady Kindersly       | Canadian power<br>schooner            | ż     | 8/31/1924  | Off Point Barrow                                      | Caught in ice and crushed. Crew rescued by vessel Boxer. The ship carried cargo of machinery and stores for northern outposts.                                                                                      |
| Lettie               | Gas screw                             | ££    | 9/9/1924   | ½ mi NE of<br>Wainwright Inlet and<br>½ mi from shore | Vessel got out of channel, stranded and was lost.                                                                                                                                                                   |
| Baychimo             | Canadian<br>trading/supply<br>steamer | 1,322 | 11/24/1931 | Just S of Point<br>Barrow                             | Caught in ice and abandoned. Vessel drifted for years in Arctic ice, was sighted and even boarded a number of times, but finally disappeared and considered a ghost ship. It was officially listed as lost in 1934. |
| <b>Arnold Liebes</b> | Gas boat                              | ċ     | 1/1/1934   | Off Point Barrow                                      | Wrecked.                                                                                                                                                                                                            |
| C.B. Brower          | Gas boat                              | ذ     | 1/1/1934   | Off Point Barrow                                      | Wrecked.                                                                                                                                                                                                            |
| Eli-Yuk              | Oil screw                             | 35    | 9/2/1963   | Off Wainwright                                        | Foundered.                                                                                                                                                                                                          |
| Basil                | Diesel boat                           | 28    | 9/7/1950   | At Cape Lisburne                                      | Stranded on the beach and lost.                                                                                                                                                                                     |
|                      |                                       |       |            |                                                       |                                                                                                                                                                                                                     |

Source: USDOI, MMS, Alaska OCS Region, Alaska Shipwreck Database (2007).


| Table IV.A-1                                          |
|-------------------------------------------------------|
| Exploration and Development Scenario, Chukchi Sea OCS |

| Scenario Element                        | Range     | Comments                                        |
|-----------------------------------------|-----------|-------------------------------------------------|
| Oil production (billion barrels)        | 1         | First development project only                  |
| Natural gas production                  | 0         | Delayed for North Slope gas line; reinjected    |
|                                         |           | 2-5 wells are dry holes or subcommercial        |
| Exploration wells                       | 3-6       | shows                                           |
| Delineation wells                       | 4-8       | Confirm and define the commercial discovery     |
|                                         |           | Central platform with processing facility;      |
| Production platforms                    | 1         | supports 4-20 subsea satellite templates        |
| Production wells                        | 80-120    | Total includes 20-80 subsea production wells    |
| Service wells                           | 20-40     | All service wells are on platform               |
| In-field flowlines (miles)              | 10-50     | Gathering system from subsea wells              |
| Offshore sales pipeline (miles)         | 30-150    | Possible distance to landfall                   |
|                                         |           | Connecting to existing/future North Slope       |
| Onshore sales pipeline (miles)          | Up to 300 | pipelines                                       |
| Peak production (thousand barrels       |           | Oil production only; associated gas is          |
| per day)                                | 200-250   | reinjected                                      |
| New landfall                            | 1         | Point Belcher near Wainwright                   |
| New support shore base                  | 1         | Point Belcher near Wainwright                   |
| New processing facility                 | 1         | Collocated with shore base                      |
| New waste facility                      | 1         | Collocated with shore base                      |
|                                         |           | 475 tons/well with 80% recycled for all         |
| Drilling-fluid discharge by exploration |           | exploration and delineation wells (95 tons      |
| wells (tons)                            | 665-1330  | discharged for 7-14 wells)                      |
| Rock-cutting discharge by exploration   |           | 600 tons/well (7-14 wells total)                |
| wells (tons)                            | 4200-8400 |                                                 |
|                                         |           | 80% of drilling fluids are recycled; remaining  |
|                                         |           | waste fluids and rock cuttings for on-platform  |
|                                         |           | wells will be disposed of in service wells.     |
| Discharges during development           |           | Drilling wastes from subsea wells will be       |
| drilling                                | 0         | barged to an onshore disposal facility.         |
| Years of activity                       | 30-40     | Period from lease sale to end of oil production |

Source: USDOI, MMS, Alaska OCS Region (2006).

| Table IV.A-2a<br>Possible Time | V.A-2a<br>le Timeta | Table IV.A-2a<br>Possible Timetable for Development | /elopment            |                                 |                         |                     |                 |                  |                                |                       |                                  |     |                                        |                                      |
|--------------------------------|---------------------|-----------------------------------------------------|----------------------|---------------------------------|-------------------------|---------------------|-----------------|------------------|--------------------------------|-----------------------|----------------------------------|-----|----------------------------------------|--------------------------------------|
| Year                           | Seismic<br>Surveys  | Exploration<br>Wells                                | Delineation<br>Wells | Exploration<br>Drilling<br>Rigs | Production<br>Platforms | Production<br>Wells | Subsea<br>Wells | Service<br>Wells | Production<br>Drilling<br>Rigs | In-Field<br>Flowlines | Offshore<br>Pipelines<br>(miles) | New | Annual<br>Oil<br>Production<br>(MMbbl) | Daily<br>Oil<br>Production<br>(Bopd) |
| 2005<br>2006<br>2007<br>2008   | 444                 |                                                     |                      |                                 |                         |                     |                 |                  |                                |                       |                                  |     |                                        |                                      |
| 2009                           | 3                   | 1                                                   |                      | 1                               |                         |                     |                 |                  |                                |                       |                                  |     |                                        |                                      |
| 2010<br>2011                   | с<br>С              | -                                                   | 6                    | ~ ~                             |                         |                     |                 |                  |                                |                       |                                  |     |                                        |                                      |
| 2012                           | 1 ←                 |                                                     | 10                   |                                 |                         |                     |                 |                  |                                |                       |                                  |     |                                        |                                      |
| 2013                           | <del>~</del> 1      |                                                     | ъ                    | <del>, -</del>                  |                         |                     |                 |                  |                                |                       |                                  |     |                                        |                                      |
| 2014                           | <del></del>         | ~ ~                                                 |                      | <del></del>                     |                         |                     |                 |                  |                                |                       |                                  | ~   |                                        |                                      |
| 2016                           |                     | _                                                   |                      | _                               |                         |                     |                 |                  |                                |                       |                                  |     |                                        |                                      |
| 2017                           |                     |                                                     |                      |                                 |                         |                     |                 |                  |                                |                       | 30                               |     |                                        |                                      |
| 2018                           |                     |                                                     |                      |                                 |                         |                     |                 |                  | ,                              | I                     | 30                               |     |                                        |                                      |
| 2019                           |                     |                                                     |                      |                                 |                         | ,                   | ω               | 1                | 2                              | വ                     | 30                               |     |                                        |                                      |
| 2020                           |                     |                                                     |                      |                                 | ~                       | 9,                  | ω (             | ი I              | ი ·                            | ı<br>م                |                                  |     | 54.0                                   | 147,945                              |
| 2021                           |                     |                                                     |                      |                                 |                         | <del>0</del> 0      | 00 O            | n n              | 4 ~                            | u u                   |                                  |     | 70.0                                   | 191,781<br>224 668                   |
| 2002                           |                     |                                                     |                      |                                 |                         | <u>o</u> 6          | 0 0             | nц               | 10                             | סע                    |                                  |     | 0.20                                   | 224,030                              |
| 2024                           |                     |                                                     |                      |                                 |                         | <u>0</u> 0          | οœ              | n u              | C                              | 2                     |                                  |     | 82.0                                   | 224,658                              |
| 2025                           |                     |                                                     |                      |                                 |                         | 10                  | I               | 9 4              |                                |                       |                                  |     | 82.0                                   | 224,658                              |
| 2026                           |                     |                                                     |                      |                                 |                         |                     |                 |                  |                                |                       |                                  |     | 72.2                                   | 197,808                              |
| 2027                           |                     |                                                     |                      |                                 |                         |                     |                 |                  |                                |                       |                                  |     | 63.5                                   | 173,973                              |
| 2028                           |                     |                                                     |                      |                                 |                         |                     |                 |                  |                                |                       |                                  |     | 55.9<br>40.2                           | 153,151<br>134 705                   |
| 2020                           |                     |                                                     |                      |                                 |                         |                     |                 |                  |                                |                       |                                  |     | 43.2                                   | 118,630                              |
| 2021                           |                     |                                                     |                      |                                 |                         |                     |                 |                  |                                |                       |                                  |     | 40.0<br>28 4                           | 10,030                               |
| 2032                           |                     |                                                     |                      |                                 |                         |                     |                 |                  |                                |                       |                                  |     | 33.5<br>33.5                           | 91,781                               |
| 2033                           |                     |                                                     |                      |                                 |                         |                     |                 |                  |                                |                       |                                  |     | 29.5                                   | 80,822                               |
| 2034                           |                     |                                                     |                      |                                 |                         |                     |                 |                  |                                |                       |                                  |     | 26.0                                   | 71,233                               |
| 2035                           |                     |                                                     |                      |                                 |                         |                     |                 |                  |                                |                       |                                  |     | 22.8                                   | 62,466                               |
| 2036                           |                     |                                                     |                      |                                 |                         |                     |                 |                  |                                |                       |                                  |     | 20.1                                   | 55,068                               |
| 1002<br>2038                   |                     |                                                     |                      |                                 |                         |                     |                 |                  |                                |                       |                                  |     | 17.1                                   | 40,430                               |
| 2030                           |                     |                                                     |                      |                                 |                         |                     |                 |                  |                                |                       |                                  |     | 2.0                                    | 37 534                               |
| 2040                           |                     |                                                     |                      |                                 |                         |                     |                 |                  |                                |                       |                                  |     | 12.1                                   | 33,151                               |
| 2041                           |                     |                                                     |                      |                                 |                         |                     |                 |                  |                                |                       |                                  |     | 10.6                                   | 29,041                               |
| 2042                           |                     |                                                     |                      |                                 |                         |                     |                 |                  |                                |                       |                                  |     | 9.8                                    | 26,849                               |
| 2043                           |                     |                                                     |                      |                                 |                         |                     |                 |                  |                                |                       |                                  |     | 8.2                                    | 22,466                               |
| 2044                           |                     |                                                     |                      |                                 |                         |                     |                 |                  |                                |                       |                                  |     | 6.2                                    | 16,986                               |
| 2045<br>2046                   |                     |                                                     |                      |                                 |                         |                     |                 |                  |                                |                       |                                  |     |                                        |                                      |
| 2047                           |                     |                                                     |                      |                                 |                         |                     |                 |                  |                                |                       |                                  |     |                                        |                                      |
|                                | 25                  | 4                                                   | 9                    | 7                               | -                       | 80                  | 48              | 28               | 20                             | 30                    | 60                               |     | 1000                                   |                                      |
| Notes: (                       | Notes: (1 mo/yr)    |                                                     | (4 mo/yr)            |                                 | (30 inj wells)          | ells)               |                 | (rig/years)      | rs)                            |                       |                                  |     |                                        |                                      |

#### Table IV.A-2b. Possible Timetable for Production



## Table IV.A-3 Commercial Development Potential for Sale 193 Alternatives

| Chukchi Sea, Sale 193<br>Alternatives         | Opportunity Index<br>(Commercial Chance) |
|-----------------------------------------------|------------------------------------------|
| Alternative 1<br>(Full Program Area Proposal) | 1.0                                      |
| Alternative 2<br>(No Lease Sale)              | 0.0                                      |
| Alternative 3<br>(Corridor I Deferral)        | 0.64                                     |
| Alternative 4<br>(Corridor II Deferral)       | 0.85                                     |

Source:

USDOI, MMS, Alaska OCS Region (2006).

#### Table IV.A-4

### Large and Small Spill Sizes, Source of Spill, Type of Oil, Number and Size of Spill and Receiving Environment We Assume for Analysis in this EIS by Section

| EIS<br>Section | Source of<br>Spill                                                | Type<br>of Oil        | Number and Size of Spill(s)                                 | Receiving<br>Environment                                                        |
|----------------|-------------------------------------------------------------------|-----------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------|
| Large Spi      | lls (≥1,000 barrels)                                              |                       |                                                             |                                                                                 |
| IV.C           | <b>Offshore</b><br>Pipeline<br>Platform/Storage Tank              | Crude<br>Or<br>Diesel | 1 spill<br>4,600<br>Or 1,500 barrels                        | Open Water<br>Under Ice<br>On Top of Sea Ice<br>Broken Ice<br>Coastal Shoreline |
| Small Spi      | lls <sup>1</sup> (< 1,000 barrels)                                |                       |                                                             |                                                                                 |
| IV.C           | Offshore and/or Onshore<br>Operational Spills<br>from All Sources | Diesel<br>or<br>Crude | 133spills <1 barrel43spills $\geq$ 1 barrel but <25 barrels | Open Water<br>On Top of Sea Ice<br>Broken Sea Ice<br>Snow/Ice                   |
|                | Onshore and/or Offshore                                           |                       |                                                             | Tundra<br>Coastal Shoreline                                                     |
|                | Operational Spills from<br>All Sources                            | Refined               | 440 spills of 0.7 barrels each                              | Cuasiai Shureiine                                                               |

#### Source:

USDOI, MMS, Alaska OCS Region (2006).

#### Table IV.A-5 Small Crude Oil Spills: Assumed Spills over the Production Life of Chukchi Sea Sale 193

|                         |                                                         | Assumed S                   | mall Crude-Oil S               | pills <500 barrels               |                                          |  |  |  |
|-------------------------|---------------------------------------------------------|-----------------------------|--------------------------------|----------------------------------|------------------------------------------|--|--|--|
| Sale 193<br>Alternative | Resources<br>(Bbbl) <sup>1</sup>                        | Spill Rate<br>(Spills/Bbbl) | Assumed<br>Spill Size<br>(bbl) | Estimated<br>Number of<br>Spills | Estimated Total<br>Spill Volume<br>(bbl) |  |  |  |
| I Proposed Action       | 1                                                       | 178                         | 3                              | 178                              | 534                                      |  |  |  |
| II No Lease Sale        | 0                                                       | 178                         | 3                              | 0                                | 0                                        |  |  |  |
| III Corridor I          | 0.64                                                    | 178                         | 3                              | 114                              | 342                                      |  |  |  |
| IV Corridor II          | 0.85                                                    | 178                         | 3                              | 152                              | 453                                      |  |  |  |
| Alternative             | Assumed Small Crude-Oil Spills ≥ 500 and ≤1,000 barrels |                             |                                |                                  |                                          |  |  |  |
| I Proposed Action       | 1                                                       | 0.64                        | 680                            | 0.64                             | 680                                      |  |  |  |
| II No Sale              | 0                                                       | 0.64                        | 680                            | 0                                | 0                                        |  |  |  |
| III Corridor I          | 0.64                                                    | 0.64                        | 680                            | 0.41                             | 680                                      |  |  |  |
| IV Corridor II          | 0.85                                                    | 0.64                        | 680                            | 0.54                             | 680                                      |  |  |  |

#### Source:

USDOI, MMS, Alaska OCS Region (2006).

#### Note:

<sup>1</sup>The estimation of oil spills is based on the estimated resources. If these resources are not produced then no oil spills occur.

#### Table IV.A-6 Small Refined Oil Spills: Assumed Spills over the Production Life of Chukchi Sea Sale 193

| Sale193<br>and its Alternatives | Resource<br>Range (Bbbl) | Spill Rate<br>(Spills/Bbbl) | Average<br>Spill Size<br>(bbl) | Estimated<br>Number of<br>Spills <sup>1</sup> | Estimated<br>Total Spill Volume<br>(bbl) <sup>1</sup> |
|---------------------------------|--------------------------|-----------------------------|--------------------------------|-----------------------------------------------|-------------------------------------------------------|
| I Proposed Action               | 1                        | 440                         | 0.7 (29 gal)                   | 440                                           | 308                                                   |
| II No Sale                      | 0                        | 440                         | 0.7 (29 gal)                   | 0                                             | 0                                                     |
| III Corridor I                  | 0.6402                   | 440                         | 0.7 (29 gal)                   | 282                                           | 197                                                   |
| IV Corridor II                  | 0.8457                   | 440                         | 0.7 (29 gal)                   | 373                                           | 250                                                   |

#### Source:

USDOI, MMS, Alaska OCS Region (2006).

**Note:** <sup>1</sup> The fractional estimated mean spill number and volume is rounded to the nearest whole number.

#### Table IV.C-1

#### Sale 193 Employment and Personal Income Effects

|                                              | Er     | mployment Annua<br>Average<br>Jobs | I     | Annual A                 | al Personal Incor<br>Average in 100,00<br>Constant 2006 \$ |       |  |  |  |
|----------------------------------------------|--------|------------------------------------|-------|--------------------------|------------------------------------------------------------|-------|--|--|--|
| Area of Residence//<br>Phase of OCS Activity | Direct | Indirect and<br>Induced            | Total | For<br>Direct<br>Workers | For Indirect<br>and Induced<br>Workers                     | Total |  |  |  |
| North Slope Borough                          | (a)    |                                    |       |                          |                                                            |       |  |  |  |
| Exploration                                  | 2      | 1                                  | 3     | 2                        | 1                                                          | 3     |  |  |  |
| Development                                  | 22     | 8                                  | 30    | 14                       | 5                                                          | 19    |  |  |  |
| Production                                   | 8 3 11 |                                    | 11    | 6                        | 2                                                          | 8     |  |  |  |
| South Central Alaska and Fairbanks (b)       |        |                                    |       |                          |                                                            |       |  |  |  |
| Exploration                                  | 215    | 108                                | 323   | 94                       | 19                                                         | 113   |  |  |  |
| Development                                  | 1,054  | 527                                | 1,581 | 108                      | 22                                                         | 130   |  |  |  |
| Production                                   | 502    | 251                                | 753   | 43                       | 9                                                          | 52    |  |  |  |

#### Sources:

Jack Faucett Associates, Inc. (2000); USDOI, MMS (2006).

#### Table IV.C-2 Sociocultural Effects from Routine Activities

|                                                                                                                                                          |                                                                                 | Pha                                                                                           | ase of Project                                                                                                            |                                                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
|                                                                                                                                                          | Seismic                                                                         |                                                                                               | Development                                                                                                               |                                                                                          |
| Characteristic                                                                                                                                           | Survey                                                                          | Exploration                                                                                   | and Production                                                                                                            | Decommissioning                                                                          |
| Households, families, and also wider are responsible for acquiring, distribu                                                                             | networks of kinsh                                                               |                                                                                               |                                                                                                                           | edded in groups that                                                                     |
| Employment/Income<br>Characteristics                                                                                                                     | negligible effect t<br>Fund (APF) whic<br>Slope Borough (I<br>Improvement Pro   | o extent that pro<br>h is an importan<br>NSB) communiti<br>ogram (CIP), whi<br>SB communities | epject revenues accrue<br>t source of income to<br>so or are allocated to<br>ch has been an impo                          |                                                                                          |
| <b>Demographics</b><br>Change in population size, density,<br>and rate of change<br>Ethnic and racial composition<br>Residential Stability               | anticipated for the<br>population and fe<br>employment. Co<br>supply base, with | ese locations. New newcomers a<br>ould be measurant<br>an increase in                         | legligible effect in Ba<br>re expected from pro<br>ble in Wainwright be                                                   | cause of proximity to employment reverses                                                |
| Workforce Changes                                                                                                                                        |                                                                                 |                                                                                               | for Alaskan Native a gother activities.                                                                                   | s observers on                                                                           |
| Influx and outflow of temporary<br>workers<br>Changes to age structure of<br>community due to outmigration of<br>adults to project-related<br>employment | Hope , as no pro<br>Negligible effect<br>are expected from                      | ject-related activ<br>in Barrow, as it f<br>n project-related                                 | negligible effect in F<br>rity is anticipated for<br>nas a large populatio<br>I employment. Could<br>to supply base and t | these locations.<br>n and few newcomers<br>d be measurable in                            |
| Outmigration of higher trained or skilled labor force                                                                                                    | workers through                                                                 | the communities                                                                               | <ol> <li>Communities have</li> </ol>                                                                                      | vement of temporary<br>e experienced influx of<br>as a result construction.              |
| Removal of adults and especially<br>harvesters from community for<br>employment in remote project<br>areas<br>Removal of trained individuals             | to supply base to Petroleum emplo                                               | the extent that<br>yment generally                                                            | asurable in Wainwrig<br>residents seek and s<br>has not translated to<br>policies are in place                            | o employment for                                                                         |
| from community to work in project-<br>related employment                                                                                                 |                                                                                 |                                                                                               |                                                                                                                           |                                                                                          |
| Employment/Income<br>Characteristics                                                                                                                     | negligible effect t<br>important source<br>allocated to NSB<br>NSB communitie   | o extent that pro<br>of income to ho<br>CIP, which has<br>s.                                  | eliect revenues accrue<br>useholds in NSB cor<br>been an important s                                                      | ource of employment in                                                                   |
| Social Well Being<br>Risk, safety and health                                                                                                             | harvest to occur                                                                | farther offshore,                                                                             |                                                                                                                           | esources which cause<br>sk for hunters; change<br>nt from traditional                    |
| Displacement/relocation concerns                                                                                                                         | health concerns                                                                 | from ingesting fo                                                                             | the availability of wil<br>ood contaminated fro<br>st pronounced in the                                                   |                                                                                          |
| The ability of future Alaskan Native to care for themselves in either                                                                                    | because of the p                                                                | resence of onsh                                                                               | ore infrastructure.                                                                                                       | ·                                                                                        |
| traditional way or cash economy<br>Community leadership, family,<br>and/or kinship networks                                                              | subsistence harv<br>area. For examp                                             | est, with effects<br>le, disruption of                                                        | sharing networks an                                                                                                       | ed activities on<br>immediately affected<br>id task groups could<br>ead whale harvest or |
| destabilized                                                                                                                                             | food was perceiv                                                                |                                                                                               |                                                                                                                           |                                                                                          |

 Table IV.C-2

 Sociocultural Effects from Routine Activities (continued)

| Sociocultural Effects from Routine                                                                                                                                                       |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| sharing. Subsistence is a central acti subsistence activity.                                                                                                                             | vity that embodies these va                                                                                                                                                                      | naintenance of the community, cooperation, and lues, with bowhead whale hunting the paramount                                                                                                                                                                                                                                                                                                                 |
| Subsistence Values<br>Loss or damage to property or<br>equipment used in wildlife<br>harvesting<br>Present or future loss of income<br>and/or income-in-kind from wildlife<br>harvesting | Section IV.C.1.I. Highest<br>Conflict avoidance agreen<br>to property. Indirect effects<br>of subsistence resources in<br>times.<br>Indirect effects proportional<br>subsistence-distribution ne | elated to effects on subsistence harvest. See<br>potential for change is in Wainwright area.<br>nent should eliminate the potential loss or damage<br>s could be realized, if disturbance or displacement<br>requires traveling farther distances or greater<br>al to effects of project-related activities on<br>etwork. For example, disruption of sharing<br>e would reflect a loss of income-in-kind from |
| Known Cultural, Historical, and<br>Archaeological Resources                                                                                                                              |                                                                                                                                                                                                  | Potential effects to sites from disturbance are mitigated.                                                                                                                                                                                                                                                                                                                                                    |
| <b>Cultural Continuity</b><br>Language, spiritual teachings,<br>knowledge transfer<br>Conflicts with newcomers with<br>different values                                                  | are anticipated.<br>Conflicts with values of ne<br>Hope, as no project-relate<br>Barrow as it has a diverse<br>from project-related emplo<br>because of proximity to su                          | guage, spiritual teachings, or knowledge transfer<br>wcomers should negligible at Point Lay and Point<br>d activity is anticipated for these locations and in<br>population and few newcomers are expected<br>byment. Could be measurable in Wainwright<br>pply base. Wainwright's previous experience<br>f the CIP and Industry Orientation Program should                                                   |
| Structure of Borough, City, and Tribal and not-for-profit corporations, and not                                                                                                          | Institutional Organiz<br>government, and the Nativo<br>ongovernmental organizatio                                                                                                                | e Alaskan Regional and various village for-profit                                                                                                                                                                                                                                                                                                                                                             |
| Governmental Functions<br>Size, structure, and functions of<br>local government<br>Land use, planning, zoning and<br>permitting<br>Community infrastructure and<br>services              | None. Short-term activity<br>no onshore industrial activ<br>service demands.                                                                                                                     | with Negligible at the NSB level as this is a                                                                                                                                                                                                                                                                                                                                                                 |

Table IV.C-2 Sociocultural Effects from Routine Activities (continued)

| Sociocultural Effects from Routine            |                                                                                                                                                                                                                                                                                                                                      |
|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Non-Governmental Organizations                | Considerable effort expended by existing organizations, such as Alaska Eskimo Whaling Commission effort in conflict avoidance negotiations.                                                                                                                                                                                          |
| Organizational capability and characteristics | Once project construction completed, the agreement and monitoring will become routine as in the Northstar annual-open-water meeting.                                                                                                                                                                                                 |
| Distribution of power and authority           | Opportunities for participation structured under NEPA and other statutes should not change.                                                                                                                                                                                                                                          |
| Interorganizational cooperation               | Capacity and characteristics of other organizations could be affected to the extent that the activity represents a new activity for them to consider and they must develop the expertise and financial resources to participate which could cause organizational stress.                                                             |
|                                               | High level of interorganizational cooperation and integration currently exists<br>at the regional level, although this may need to accommodate organizations<br>for which the activity represents a new activity. Cooperative management<br>policies implemented by the Department of the Interior should moderate<br>these effects. |
|                                               |                                                                                                                                                                                                                                                                                                                                      |
|                                               |                                                                                                                                                                                                                                                                                                                                      |

#### Source:

Characteristics derived from "Principles and guidelines for social impact assessment in the USA" in Impact Assessment and Project Appraisal, v. 21, no. 3, pp 231-250, (September 2003); Determining Significance of Environmental Effects: An Aboriginal Perspective. Canadian Environmental Assessment Agency's Research and Development Program, Research and Development Monograph Series, 2000 (http://www.ceaa-acee.gc.ca) and Socioeconomic and Resource Use Considerations in The Norton Basin Environment and Possible Consequences of Planned Offshore Oil Development. 1984. Outer Continental Shelf Environmental Assessment Program.

### Table V-1 Alaska North Slope Oil and Gas Discoveries as of March 2006

|                      |                                | Location             |                        | Location of        |              |            |                        |                             |
|----------------------|--------------------------------|----------------------|------------------------|--------------------|--------------|------------|------------------------|-----------------------------|
|                      |                                |                      | Production             |                    |              | Production |                        |                             |
|                      | Name                           | Pool                 | Oil, Gas               | Facility           | Discovery    | Began      | Category               | Ranking Criteria            |
| Past                 | t Development And Pro          | duction              |                        |                    |              |            |                        |                             |
| 1                    | South Barrow                   | Onshore              | Gas                    | Onshore            | 1949         | 1950       | Field                  | _                           |
|                      | Prudhoe Bay                    | Onshore              | Oil                    | Onshore            | 1967         | 1977       | Field                  | —                           |
| 3                    | Lisburne                       | Onshore              | Oil                    | Onshore            | 1967         | 1981       | Field                  | _                           |
| 4                    | Kuparuk                        | Onshore              | Oil                    | Onshore            | 1969         | 1981       | Field                  | —                           |
| 5                    | East Barrow                    | Onshore              | Gas                    | Onshore            | 1974         | 1981       | Field                  | _                           |
| 6                    | Milne Point                    | Onshore              | Oil                    | Onshore            | 1969         | 1985       | Field                  | _                           |
| 7                    | Endicott                       | Offshore             | Oil                    | Offshore           | 1978         | 1986       | Field                  | _                           |
| 8                    | Sag Delta                      | Offshore             | Oil                    | Onshore            | 1976         | 1989       | Field                  | _                           |
| 9                    | Sag Delta North                | Offshore             | Oil                    | Offshore           | 1982         | 1989       | Satellite <sup>1</sup> | _                           |
| 10                   | Schrader Bluff                 | Onshore              | Oil                    | Onshore            | 1969         | 1991       | Satellite <sup>2</sup> | When                        |
| 11                   | Walakpa                        | Onshore              | Gas                    | Onshore            | 1980         | 1992       | Field                  | Production                  |
| 12                   | Point McIntyre                 | Offshore             | Oil                    | Onshore            | 1988         | 1993       | Field                  | Began                       |
| 13                   | North Prudhoe Bay              | Onshore              | Oil                    | Onshore            | 1970         | 1993       | Field                  | _                           |
|                      | Niakuk                         | Offshore             | Oil                    | Onshore            | 1985         | 1994       | Field                  | _                           |
|                      | Sag River                      | Onshore              | Oil                    | Onshore            | 1969         | 1994       | Satellite <sup>3</sup> | _                           |
|                      | West Beach                     | Onshore              | Oil                    | Onshore            | 1976         | 1994       | Field                  | _                           |
|                      | Cascade                        | Onshore              | Oil                    | Onshore            | 1993         | 1996       | Field                  | _                           |
|                      | West Sak                       | Onshore              | Oil                    | Onshore            | 1969         | 1997       | Satellite <sup>2</sup> | _                           |
|                      | Badami                         | Offshore             | Oil                    | Onshore            | 1990         | 1998       | Field                  | _                           |
|                      | Eider                          | Offshore             | Oil                    | Offshore           | 1998         | 1998       | Satellite1             | _                           |
|                      | Tarn                           | Onshore              | Oil                    | Onshore            | 1991         | 1998       | Field                  | —                           |
|                      | Tabasco                        | Onshore              | Oil                    | Onshore            | 1992         | 1998       | Satellite <sup>2</sup> | _                           |
|                      | Midnight Sun                   | Onshore              | Oil                    | Onshore            | 1998         | 1999       | Satellite <sup>4</sup> | —                           |
|                      | Alpine                         | Onshore              | Oil                    | Onshore            | 1994         | 2000       | Field                  | _                           |
|                      | Northstar                      | Offshore             | Oil                    | Offshore           | 1984         | 2001       | Field                  | _                           |
|                      | Aurora                         | Onshore              | Oil                    | Onshore            | 1999         | 2001       | Satellite <sup>4</sup> | _                           |
|                      | NW Eileen/Borealis             | Onshore              | Oil                    | Onshore            | 1999         | 2001       | Field                  | _                           |
|                      | Polaris                        | Onshore              | Oil                    | Onshore            | 1999         | 2001       | Satellite              | _                           |
|                      | Meltwater                      | Onshore              | Oil                    | Onshore            | 2000         | 2001       | Pool                   | _                           |
|                      | Palm                           | Onshore              | Oil                    | Onshore            | 2000         | 2002       | Pool                   | _                           |
|                      | Orion                          | Onshore              | Oil                    | Onshore            | 2001         | 2002       | Satellite              |                             |
|                      | Raven                          | Onshore              | Oil                    | Onshore            | ?            | 2006       | Pool                   |                             |
|                      | sent Development               | 0                    | 011                    | 0                  | •            |            |                        |                             |
|                      | Fiord (CD 3)                   | Onshore              | Oil                    | Onshore            | 1992         | (2006)     | Pool                   | When                        |
|                      | Nanuq (CD 4)                   | Onshore              | Oil                    | Onshore            | 1996         | (2006)     | Pool                   | Production                  |
|                      | Oooguruk                       | Offshore             | Oil                    | Offshore           | 2003         | (2008)     | Pool                   | Is Expected                 |
|                      | sonably Foreseeable Fu         |                      |                        |                    | 2000         | (2000)     | 1 001                  |                             |
|                      | Nikaitchuq                     | Offshore             | Oil                    | Offshore           | 2004         |            | Pool                   |                             |
|                      | Alpine West (CD 5)             | Onshore              | Oil                    | Onshore            | 1998         |            | Pool                   |                             |
|                      | Lookout (CD 6)                 | Onshore              | Oil                    | Onshore            | 2001         |            | Pool                   | Ranked in order of          |
|                      |                                |                      | 0.1                    | 0                  |              |            |                        |                             |
|                      | Tuvaaq<br>Liberty              | Offshore<br>Offshore | Oil                    | Offshore           | 2005<br>1983 |            | Prospect<br>Pool       | the chance and<br>timing of |
|                      | Spark (CD 7)                   | Onshore              | Gas & Oil              | Onshore            | 2000         |            | Pool                   | future development          |
|                      |                                | Onshore              |                        |                    |              | <u> </u>   |                        | rature development          |
|                      | Carbon<br>Moose's Tooth        | Onshore              | Oil & Gas<br>Gas & Oil | Onshore<br>Onshore | 2004<br>2001 |            | Prospect<br>Prospect   | (highest = first)           |
|                      |                                |                      |                        |                    | 2001         |            | Prospect               | (ilignest = lirst)          |
|                      | Rendezvous<br>Kalubik          | Onshore<br>Offshore  | Gas & Oil<br>Oil       | Onshore<br>Onshore | 1992         |            |                        |                             |
|                      |                                |                      | Oil                    |                    |              | <u> </u>   | Prospect<br>Prospect   |                             |
|                      | Thetis Island                  | Offshore             |                        | Offshore           | 1993         | <u> </u>   | Prospect               |                             |
|                      | Sikulik<br>Curudur Pov         | Onshore              | Gas                    | Onshore            | 1988         | —          | Pool                   |                             |
|                      | Gwydyr Bay<br>Boto's Wiskod    | Offshore             | Oil<br>Oil             | Onshore<br>Onshore | 1969         | <u>⊢ −</u> | Pool                   |                             |
|                      | Pete's Wicked<br>Point Thomson | Onshore              |                        |                    | 1997         | <u> </u>   | Prospect               |                             |
|                      |                                | Onshore              | Gas & Oil              | Onshore            | 1977         | —          | Pool                   |                             |
|                      | Sandpiper                      | Offshore             | Gas & Oil              | Offshore           | 1986         | _          | Pool                   |                             |
|                      | Mikkelson                      | Onshore              | Oil                    | Onshore            | 1978         | <u> </u>   | Prospect               |                             |
|                      | Sivuliiq (Hammerhead)          | Offshore             | Oil                    | Offshore           | 1985         |            | Pool                   |                             |
|                      | 0                              | ()nohoro             | Oil                    | Onshore            | 1994         | —          | Show                   |                             |
| 54                   | Sourdough                      | Onshore              |                        | Quark              | 4004         |            |                        |                             |
| 54<br>55             | Yukon Gold                     | Onshore              | Oil                    | Onshore            | 1994         | —          | Show                   |                             |
| 54<br>55<br>56       | Yukon Gold<br>Flaxman Island   | Onshore<br>Offshore  | Oil<br>Oil             | Offshore           | 1975         | -          | Prospect               |                             |
| 54<br>55<br>56<br>57 | Yukon Gold                     | Onshore              | Oil                    |                    |              |            |                        |                             |

#### Table V-1 Alaska North Slope Oil and Gas Discoveries as of March 2006 (continued)

|    | Name                     | Location<br>of Field or<br>Pool | Production<br>Oil, Gas | Location of<br>Production<br>Facility | Discovery | Production<br>Began | Category | Ranking Criteria |
|----|--------------------------|---------------------------------|------------------------|---------------------------------------|-----------|---------------------|----------|------------------|
| Sp | oeculative Future Develo | pment                           |                        |                                       |           |                     |          |                  |
| 59 | Hemi Springs             | Onshore                         | Oil                    | Onshore                               | 1984      | —                   | Pool     | -                |
| 60 | Ugnu                     | Onshore                         | Oil                    | Onshore                               | 1984      | —                   | Pool     | —                |
| 61 | Umiat                    | Onshore                         | Oil                    | Onshore                               | 1946      | —                   | Pool     | —                |
| 62 | Fish Creek               | Onshore                         | Oil                    | Onshore                               | 1949      | —                   | Show     | —                |
| 63 | Simpson                  | Onshore                         | Oil                    | Onshore                               | 1950      | —                   | Prospect | —                |
| 64 | East Kurupa              | Onshore                         | Gas                    | Onshore                               | 1976      | —                   | Show     | Insufficient     |
| 65 | Meade                    | Onshore                         | Gas                    | Onshore                               | 1950      | —                   | Prospect | Information to   |
| 66 | Wolf Creek               | Onshore                         | Gas                    | Onshore                               | 1951      | —                   | Show     | Estimate Chance  |
| 67 | Gubik                    | Onshore                         | Gas                    | Onshore                               | 1951      | —                   | Pool     | of Development   |
| 68 | Square Lake              | Onshore                         | Gas                    | Onshore                               | 1952      | _                   | Show     | _                |
| 69 | East Umiat               | Onshore                         | Gas                    | Onshore                               | 1964      | —                   | Prospect | —                |
| 70 | Kavik                    | Onshore                         | Gas                    | Onshore                               | 1969      | —                   | Show     | —                |
| 71 | Kemik                    | Onshore                         | Gas                    | Onshore                               | 1972      | _                   | Show     | _                |

#### Notes:

Field information is taken from State of Alaska, Dept. of Natural Resources Annual Report December, 2004 and Petroleum News Footnotes for Satellites identify the associated production unit:

<sup>1</sup>Duck Island Unit;

<sup>2</sup>Kuparuk River Unit; <sup>3</sup>Milne Point Unit;

<sup>4</sup>Prudhoe Bay Unit.

Parentheses indicate when production startup is expected.

Definitions: Field—infrastructure (pads/wells/facilities) installed to produce one or more pools.

Satellite—a pool developed from an existing pad.

Pool—petroleum accumulation with defined limits.

Prospect—a discovery tested by several wells.

Show-a one-well discovery with poorly defined limits and production capacity.

# Table V-2Past Development:2005 Production and Reserve Data

|                          |                                 |                         |           |           |              | Produced                            |                  | Reser                       | ves <sup>2</sup> |
|--------------------------|---------------------------------|-------------------------|-----------|-----------|--------------|-------------------------------------|------------------|-----------------------------|------------------|
| Unit or Area             | Field                           | Type<br>(Oil or<br>Gas) | Discovery | Began     | Gas<br>(Bcf) | 2005<br>Oil<br>(MMbbl) <sup>1</sup> | Production to    | Oil<br>(MMbbl) <sup>1</sup> | Gas<br>(Bcf)     |
| Duck Island              | 1                               |                         |           | ſ         |              | 1                                   |                  | 1                           |                  |
|                          | Endicott                        | 0                       | 1973      | 1987      | -            | 454.988710                          | Endicott         | _                           | -                |
| —                        | Sag Delta<br>North <sup>2</sup> | 0                       | 1989      | 1989      | _            | "                                   | Endicott         | -                           | -                |
| —                        | Sag Delta <sup>2</sup>          | 0                       | 1976      | 1989      | -            | "                                   | Endicott         | -                           | _                |
| _                        | Eider                           | 0                       | 1998      | 1998      | -            | 2.718,616                           | Endicott         | -                           | 1                |
| —                        | lvishak                         | 0                       | -         | _         | -            | 8.102,357                           | Endicott         | "                           | "                |
| Duck Island<br>Unit      | _                               | -                       | -         | -         | -            | -                                   | -                | 131                         | 843              |
| Prudhoe Ba               |                                 |                         |           |           |              |                                     |                  |                             |                  |
| —                        | Prudhoe Bay                     | 0                       | 1967      | 1977      | -            | 283.684.252                         | Prudhoe          | "                           | "                |
| _                        | Lisburne                        | 0                       | 1968      | 1981      | -            | 156.991045                          | Lisburne         | 41                          | "                |
|                          | Niakuk                          | 0                       | 1985      | 1994      | -            | 83.893006                           | Lisburne         | 41                          | -                |
|                          | West Beach                      | 0                       | 1976      | 1994      | -            | 3.581710                            | Lisburne         | _                           | -                |
| _                        | N. Prudhoe<br>Bay               | 0                       | 1970      | 1993      | -            | 2.070780                            | Lisburne         | -                           | -                |
|                          | Point McIntyre                  | 0                       | 1988      | 1993      | -            | 396.736189                          | Lisburne         | 211                         | _                |
|                          | Prudhoe Bay<br>IPA's            | 0                       | _         | -         | -            | -                                   | -                | 2,839                       | 23,00<br>0       |
|                          | Midnight Sun                    | 0                       | 1998      | 1999      | -            | 13.474471                           | Prudhoe          | _                           |                  |
|                          | Aurora                          | 0                       | 1999      | 2001      | -            | 14.849654                           | Prudhoe          | _                           |                  |
| _                        | NW<br>Eileen/Boreali<br>s       | 0                       | 1999      | 2001      | -            | 37.925608                           | Prudhoe          | -                           | _                |
|                          | Polaris                         | 0                       | 1999      | 2001      | -            | 4.786145                            | Prudhoe          | -                           | _                |
|                          | Orion                           | 0                       | 1968      | 2003      | -            | 5.206855                            | Prudhoe          | _                           | _                |
|                          | P. Bay<br>Satellites            | 0                       | _         | _         | _            | _ "                                 | Prudhoe          | 473                         | l                |
| Kuparuk Riv              | /er                             |                         |           |           |              | •                                   | •                |                             |                  |
| _                        | Kuparuk River                   | 0                       | 1969      | 1981      | -            | 2,024.989583                        | Kuparuk          | 956                         | 1,000            |
|                          | Tabasco                         | 0                       | 1992      | 1998      | -            | 11.264871                           | Kuparuk          | 15                          | -                |
|                          | Tarn                            | 0                       | 1992      | 1998      | -            | 72.680379                           | Kuparuk          | 71                          | 50               |
|                          | West Sak                        | 0                       | 1969      | 1998      | -            | _                                   | Kuparuk          | 528                         | 100              |
|                          | Meltwater                       | 0                       | _         | 2001      | -            | 9.757986                            | Kuparuk          | -                           | _                |
|                          | Palm                            | 0                       |           | 2002      |              | _                                   | Kuparuk          | _                           | -                |
| Milne Point              | Milne Point                     | 0                       | 1969      | 1985      | -            | 18.979404                           | Milne Point      | _                           | _                |
|                          |                                 |                         | 1000      | 1000      |              | 1                                   |                  |                             |                  |
| —                        | Cascade <sup>4</sup>            | 0                       | 1993      | 1996      | -            | _                                   | Milne Point      | -                           | _                |
| —                        | Schrader Bluff                  | 0                       | 1969      | 1991      |              | 44.534458                           | Milne Point      | _                           |                  |
| —<br>Milne Point<br>Unit | Sag River<br>-                  | 0                       | 1968<br>- | 1994<br>_ | -            | 1.677089<br>–                       | Milne Point<br>– | -<br>479                    | <br>14           |
|                          |                                 | 0.0                     |           |           | 1            |                                     |                  | -                           |                  |
| Badami                   | Badami                          | O&G                     | 1990      | 1998      | -            | 4.498862                            | TAPS             | 2                           | -                |
| Colville<br>River        | Alpine                          | 0                       | 1994      | 2000      | _            | 184.71613<br>7                      | Kuparuk          | 450                         | 400              |
| Northstar                | Northstar                       | 0                       | 1984      | 2001      | -            | 89.636187                           | TAPS             | 152                         | 450              |
| NPR-A <sup>1</sup>       | East Barrow                     | G                       | 1974      | 1981      | 0.081        | -                                   | Barrow           | _                           | 5                |
| <u> </u>                 | South Barrow                    | G                       | 1949      | 1950      | 0.2.25       | -                                   | Barrow           | _                           | 4                |
| —                        | Walakpa                         | G                       | 1980      | 1993      | 1.516<br>7   | -                                   | Barrow           | -                           | 25               |
| All Units or Notes:      | Areas Total                     | -                       | —         | _         | -            | _                                   | _                | 6.4                         | 33               |

<sup>1</sup> Production information is from State of Alaska, Oil and Gas Conservation Commission (2005)
 <sup>2</sup> Reserves were estimated by subtracting 2005 production from State of Alaska, Oil and Gas Conservation Commission (2005) from the Reserve Data in ADNR (2006a).
 <sup>3</sup> Endicott includes Endicott, Sag Delta and Sag Delta North. Prudhoe Bay satellites include Midnight Sun, Aurora, Borealis, Polaris and Orion
 <sup>4</sup> Cascade is included in Milne Point.

### Table V-3Present Development:Estimated Reserve Data

| Unit or Area                 | Field      | Type<br>(Oil, Gas) | Discovery | Status                 | Oil Reserves<br>(MMbbl) |
|------------------------------|------------|--------------------|-----------|------------------------|-------------------------|
| Colville River               | CD 3 Fiord | Oil                | 1992      | Present<br>Development | 50                      |
| Colville River               | CD 4 Nanuq | Oil                | 1996      | Present<br>Development | 38                      |
| Oooguruk                     | Oooguruk   | Oil                | _         | Present<br>Development | 50-90                   |
| Total for All Units or Areas |            | _                  | _         | —                      | 158                     |

#### Table V-4 Future Lease Sales

| Sale                                                       | Proposed Sale<br>Date(s)                          | Area/Description                                                                                                                                                                                                                                                                                                | Resources or<br>Hydrocarbon<br>Potential |  |  |  |  |
|------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--|--|--|--|
| Federal                                                    |                                                   |                                                                                                                                                                                                                                                                                                                 |                                          |  |  |  |  |
| 2002-2007<br>Beaufort Sea<br>OCS Sale 202                  | April 2007                                        | As much as 8.7 million acres from the Canadian border on the east to Barrow on the west in the Beaufort Sea ( <i>Federal Register,</i> 2007).                                                                                                                                                                   | 340-557 mmbbl<br>Oil (Estimated)         |  |  |  |  |
| 2007-2012<br>Beaufort Sea<br>OCS Sales 209<br>and 217      | 2009 and 2011, respectively                       | As much as 33.29 million acres from the Canadian border on the east to Barrow on the west                                                                                                                                                                                                                       | 0.5-1.0 BBO                              |  |  |  |  |
| 2007-2012<br>Chukchi Sea<br>OCS Sales 193,<br>212, and 221 | November 2007,<br>2010, and 2012,<br>respectively | As much as 46.75 million acres from Barrow on the east to Point Hope on the south                                                                                                                                                                                                                               | 1.0 BBO                                  |  |  |  |  |
| Northeast NPR-A                                            | September 2006                                    | As much as 3 million acres of the Northeast NPR-A Planning Area (USDOI, BLM, 2005).                                                                                                                                                                                                                             | 0.50-2.2 Bbbl Oil<br>(Estimated)         |  |  |  |  |
| Northwest NPR-A                                            | September 2006                                    | As much as 9.98 million acres of the Northwest NPR-A Planning Area ( <i>USDOI, BLM and MMS 2003</i> ).                                                                                                                                                                                                          | 0.00-0.735 Bbbl<br>Oil Estimated         |  |  |  |  |
| South NPRA                                                 | To Be Determined                                  |                                                                                                                                                                                                                                                                                                                 |                                          |  |  |  |  |
| State Of Alaska                                            |                                                   |                                                                                                                                                                                                                                                                                                                 |                                          |  |  |  |  |
| North Slope<br>Areawide                                    | March 2006 <sup>1</sup><br>October 2006-2010      | As much as 5,100,000 acres of State-owned lands<br>between the Canning and Colville rivers and north<br>of the Umiat Baseline (about 69° 20' N.).                                                                                                                                                               | Moderate to<br>High                      |  |  |  |  |
| Beaufort Sea<br>Areawide                                   | March 2006 <sup>1</sup><br>October 2006-2010      | Unleased State-owned tide- and submerged lands<br>between the Canadian border and Point Barrow<br>and some coastal uplands acreage located along<br>the Beaufort Sea between the Staines and Colville<br>rivers. The gross proposed sale area is in excess<br>of 2,000,000 acres and is divided into 576 tracts | Moderate to<br>High                      |  |  |  |  |
| North Slope<br>Foothills<br>Areawide                       | May 2006<br>February 2007-2010 <sup>1</sup>       | State-owned lands lying between the National<br>Petroleum Reserve-Alaska and the Arctic National<br>Wildlife Refuge south of the Umiat Baseline and<br>north of the Gates of the Arctic National Park and<br>Preserve. The gross proposed sale area is in<br>excess of 7,000,000 acres.                         | Moderate                                 |  |  |  |  |
| Canada                                                     |                                                   |                                                                                                                                                                                                                                                                                                                 |                                          |  |  |  |  |
| Beaufort Sea                                               | May 2006                                          | Petroleum exploration rights on a total of two (2) parcels of land in the Beaufort Sea/Mackenzie Delta region of the Northwest Territories covering 156,348 hectares, more or less.                                                                                                                             | ?                                        |  |  |  |  |

#### Source:

ADNR (2006b) Five Year Oil and Gas Leasing Program; USDOI, MMS (2006).

Note:

1 Other than the April 2007 202 Sale, no decision has been made on whether these OCS sales will be held **Bbbl** = billion barrels.

### Table V-5 Detailed Reserve and Resource Estimates for the Cumulative Analysis

| Activity                                                         | Oil<br>(billions of<br>barrels) | Gas<br>(trillions of<br>cubic feet) |
|------------------------------------------------------------------|---------------------------------|-------------------------------------|
| Production of remaining reserves (Past and Present)              | 6.6                             | —                                   |
| Onshore–past (Prudhoe Bay and surrounding fields on State lands) | 6.15                            | —                                   |
| Offshore-past (Duck Island Unit and Northstar)                   | 0.28                            | —                                   |
| Onshore Present (CD3, CD4,)                                      | 0.08                            | —                                   |
| Offshore Present (Oooguruk)                                      | 0.07                            | —                                   |
| Reasonably Foreseeable Future Production (resources total)       | 3.5                             | 32.0                                |
| Onshore discovered gas                                           | —                               | 32.0                                |
| Onshore discovered, satellites, heavy oil, and reserve growth    | 2.0                             | —                                   |
| Offshore discovered (Beaufort)                                   | 0.5                             | —                                   |
| Undiscovered Offshore (Chukchi Sale 193)                         | 1.0                             |                                     |
| Speculative Production (resources total)                         | 7.7                             | 13.3                                |
| Onshore                                                          | 5.7                             | 9.0                                 |
| Offshore                                                         | 2.0                             | 4.3                                 |

Notes:

1. Reserves are proven and economically recoverable oil or gas produced through existing infrastructure.

2. Resources are unproven (undiscovered) oil and gas that could be produced with new infrastructure.

3. Reasonably foreseeable gas production includes gas from stranded reserves in Prudhoe Bay area fields. We subtract the gas consumed for field use (300 Bcf per year) from reserves (35 Tcf) until the expected startup of a North Slope gas pipeline in 2015.

4. Speculative production is entirely from undiscovered oil and gas resources with development delayed several decades in the future. Onshore gas resources are from NPRA as associated and non-associated pools. Offshore gas resources are from associated gas reinjected during oil production. Offshore gas would then be recovered through existing oil field infrastructure. Associated gas estimates assume a GOR of 1000 cf/bbl.

# Table V-6 Trans-Alaska Pipeline System and Proposed Future Natural Gas Projects

| Name                                                                      | Estimated<br>Pipeline<br>Length<br>(miles) | Project Description and Route                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------------------------------------------------------------------------|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                           |                                            | Active Project                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Trans-Alaska<br>Pipeline<br>(TAPS)                                        | 800                                        | The TAPS is the key transportation link for all North Slope oil fields. It has been in operation since 1977 and to date, has carried nearly 15 billion barrels of oil. Approximately 16.3 square miles are contained in the pipeline corridor that runs between Prudhoe Bay and Valdez. The Dalton Highway (or Haul Road) was constructed parallel to the pipeline between Prudhoe Bay and Fairbanks. The pipeline design capacity is 2 million barrels per day, and it reached near peak capacity in 1988. The TAPS 2005 year to date average barrels of oil pumped through pump station 1 was just under 900,000 barrels. The lower operational limit generally is thought to be between 200,000 and 400,000 barrels per day. If oil production from northern Alaska cannot be sustained above this minimum rate, the TAPS will become non-operational, and all oil production is likely to be shut in. Alyeska Pipeline Service Company is planning pipeline reconfiguration efforts between 2005 and 2011 to extend the economic life of the TAPS and North Slope oil fields. |
|                                                                           |                                            | Future Natural Gas Projects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| All-Alaska Gas<br>Pipeline                                                | 800                                        | The "All Alaska Gas Pipeline" is similar to the old "Trans-Alaska Gas System" project.<br>The route would originate in the Prudhoe Bay Unit and run parallel to the Trans-Alaska<br>oil pipeline to Valdez, then jog to the east to Anderson Bay to an LNG plant. There are<br>"variations" on this project depending on whether it is standalone or is connected, at<br>Delta Junction, to a transportation pipeline coming from Prudhoe Bay that goes into<br>Canada.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Alaska Natural<br>Gas<br>Transportation<br>System<br>(ANGTS) <sup>1</sup> | 2,102                                      | The ANGTS plan is a pipeline system connecting Alaska North Slope gas production through Canada to the lower 48. The new pipeline would run parallel to the TAPS from the North Slope to interior Alaska and then cross the Yukon Territory to connect to existing pipelines in Alberta. The primary market would be consumers in the U.S. Numerous permits, rights-of-way, and approvals have been obtained for the proposed pipeline route through Alaska and Canada. Downward revisions to construction costs and the recent increase in gas prices into the \$3-\$4-million/cubic-foot range make this project more appealing today. Currently, several variations to routes are being considered for the overland gas-pipeline system.                                                                                                                                                                                                                                                                                                                                       |
| Natural Gas to<br>Liquids<br>Conversion <sup>2</sup>                      | Will use existing<br>TAPS pipeline         | Atlantic Richfield Co. (ARCO) and Syntroleum Corp constructed a pilot-scale, natural gas to liquids (GTL) conversion facility in Puget Sound, Washington. BP began production at the GTL pilot project on the Kenai Peninsula in Alaska in July 2003. This plant is expected to operate at least through 2006 <sup>3.</sup> All of the major North Slope gas owners (BP-Amoco, Exxon-Mobil, and Connoco-Phillips-Alaska) are studying the feasibility of various gas-commercialization projects. GTL is an attractive option because it will use the existing TAPS pipeline (extending its life and lowering future tariffs) and produce clean-burning fuels to meet more stringent Environmental Protection Agency emission standards for vehicles. At the present time, the overall cost of a full-scale gas to liquids project is comparable to a similar sized LNG project. As an emerging technology, new cost-reduction breakthroughs are expected for gas to liquids projects.                                                                                             |
| Mackenzie Gas<br>Pipeline                                                 | 1,300                                      | The Mackenzie Gas Project is a proposed 1220-kilometre natural gas pipeline system<br>along the Mackenzie Valley of Canada's Northwest Territories to connect northern<br>onshore gas fields with North American markets The industries goal is to have natural<br>gas moving through the pipeline by 2010.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

**Notes:** <sup>1</sup> Thomas et al. (1996). <sup>2</sup> Alaska Report (1997).

3 Hult, J. (2006)

### Table V-7aOil and Gas Production 1969 to December 2005 on the North Slope of Alaska

| Production To Date | Oil<br>(billions of<br>barrels) | Gas<br>(trillions of<br>cubic feet) | Reference                                                             |  |  |
|--------------------|---------------------------------|-------------------------------------|-----------------------------------------------------------------------|--|--|
| Onshore            | 14.5                            | —                                   | State of Alaska, Alaska Oil and Gas<br>Conservation Commission (2005) |  |  |
| Offshore           | 0.5                             | —                                   |                                                                       |  |  |
| Total              | 15.0                            | 51.6                                | State of Alaska, DNR (2005)                                           |  |  |

Notes:

Table V-7b

#### Summary of Reserve and Resource Estimates for the Cumulative Analysis

| Production Activity                                               | Oil<br>(billions of<br>barrels) | Contribution of<br>by Volume<br>of OCS Oil (%) | Gas<br>(trillions of<br>cubic feet) | Contribution of<br>by Volume<br>of OCS Gas<br>(%) |
|-------------------------------------------------------------------|---------------------------------|------------------------------------------------|-------------------------------------|---------------------------------------------------|
| Low End of the Range (Past and Present)                           | 6.6                             | 15%                                            | 0                                   | 0                                                 |
| Middle Portion (Past, Present, and Reasonably Foreseeable)        | 10.1                            | 10%                                            | 32.0                                | 0                                                 |
| High End (Past, Present, Reasonably Foreseeable, and Speculative) | 17.8                            | 5.6%                                           | 45.3                                | 9.5                                               |

Source:

USDOI, MMS, Alaska OCS Region (2006).

#### Table V-7c

#### Detailed Reserve and Resource Estimates for the Cumulative Analysis

| Activity                                                         | Oil<br>(billions of<br>barrels) | Gas<br>(trillions of<br>cubic feet) |
|------------------------------------------------------------------|---------------------------------|-------------------------------------|
| Production of remaining reserves (Past and Present)              | 6.6                             | —                                   |
| Onshore–past (Prudhoe Bay and surrounding fields on State lands) | 6.15                            | —                                   |
| Offshore–past (Duck Island Unit and Northstar)                   | 0.28                            | —                                   |
| Onshore Present (CD3, CD4,)                                      | 0.08                            | —                                   |
| Offshore Present (Oooguruk)                                      | 0.07                            | —                                   |
| Reasonably Foreseeable Future Production (resources total)       | 3.5                             | 32.0                                |
| Onshore discovered gas                                           | —                               | 32.0                                |
| Onshore discovered, satellites, heavy oil, and reserve growth    | 2.0                             | —                                   |
| Offshore discovered (Beaufort)                                   | 0.5                             | —                                   |
| Undiscovered Offshore (Chukchi Sale 193)                         | 1.0                             | —                                   |
| Speculative Production (resources total)                         | 7.7                             | 13.3                                |
| Onshore                                                          | 5.7                             | 9.0                                 |
| Offshore                                                         | 2.0                             | 4.3                                 |

Notes:

5. Reserves are proven and economically recoverable oil or gas produced through existing infrastructure.

- 6. Resources are unproven (undiscovered) oil and gas that could be produced with new infrastructure.
- 7. Reasonably foreseeable gas production includes gas from stranded reserves in Prudhoe Bay area fields. We subtract the gas consumed for field use (300 Bcf per year) from reserves (35 Tcf) until the expected startup of a North Slope gas pipeline in 2015. Speculative production is entirely from undiscovered oil and gas resources with development delayed several decades in the future. Onshore gas resources are from NPRA as associated and non-associated pools. Offshore gas resources are from associated gas reinjected during oil production. Offshore gas would then be recovered through existing oil field infrastructure. Associated gas estimates assume a GOR of 1000 cf/bbl.

<sup>1.</sup> Oil production includes both crude oil and natural gas liquids that are blended into the stream carried by TAPS.

<sup>2.</sup> Large volumes of associated natural gas has been recovered with oil production, however 90% of it has been reinjected to increase oil recovery. In 2003, North Slope gas production was 3.3 Tcf (average 9.1 Bcf per day) and a total of 297 Bcf was consumed as fuel for facilities. Small amounts of natural gas have been produced fields in the Barrow area since the mid-1940's largely to supply energy for the village of Barrow.

#### Table V-8

Cumulative Oil-Spill-Occurrence Estimates ≥500 Barrels or ≥1,000 Barrels Resulting from Oil Development over the Assumed 15-- to-20 Year Production Life of Sale 193

|                                              | Crude-Oil Spills                       |                                |                           |                              |                             |                                                |  |
|----------------------------------------------|----------------------------------------|--------------------------------|---------------------------|------------------------------|-----------------------------|------------------------------------------------|--|
| Category                                     | Reserves<br>and<br>Resources<br>(Bbbl) | Spill<br>Rate<br>(Spills/Bbbl) | Size<br>Category<br>(bbl) | Assumed<br>Size<br>(Barrels) | Mean<br>Number of<br>Spills | Assumed<br>Number of<br>Spills for<br>Analysis |  |
| Offshore                                     |                                        |                                |                           |                              |                             |                                                |  |
| Past, Present, and<br>Reasonably Foreseeable | 0.85                                   | 0.53                           | ≥1000                     |                              | 0.45                        | 0                                              |  |
| Alternative I for Sale 193                   | 1.0                                    | 0.51                           | ≥1000                     |                              | 0.51                        | 0                                              |  |
| Total                                        | 1.85                                   | 0.51                           | ≥1000                     |                              | 0.96                        | 0                                              |  |
| Onshore                                      |                                        |                                |                           |                              |                             |                                                |  |
| Past, Present, and<br>Reasonably Foreseeable | 8.24                                   | 0.64                           | ≥500                      | 500–925                      | 5.3                         | 5                                              |  |
| Alternative I for Sale 193                   | 1.0                                    | 0.11                           | ≥500                      | 0                            | 0.11                        | 0                                              |  |
| Total                                        | 9.24                                   | 0.11                           | ≥500                      | 500-925                      | 5.4                         | 5                                              |  |
| TAPS Pipeline                                |                                        |                                |                           |                              |                             |                                                |  |
| Past, Present, and<br>Reasonably Foreseeable | 10.1                                   | 0.21                           | ≥500                      |                              | 1.91                        | 2                                              |  |
| Alternative I for Sale 193                   | 1.0                                    | 0.21                           | ≥500                      | 0                            | 0.21                        | 0                                              |  |
| Total                                        | 11.1                                   | 0.21                           | ≥500                      |                              | 2.12                        | 2                                              |  |

#### Source:

USDOI, MMS, Alaska OCS Region (2006).

#### Notes:

The Alaska Dept. of Environmental Conservation database has no significant crude oil spills on the North Slope resulting from well blowouts and no facility or onshore pipeline spills greater than 1,000 barrels for the years 1985-2000. This has recently changed and spill rates for the North Slope may be updated when spill size is validated for the GC-2 transit pipeline spill and validated spill data is collected.

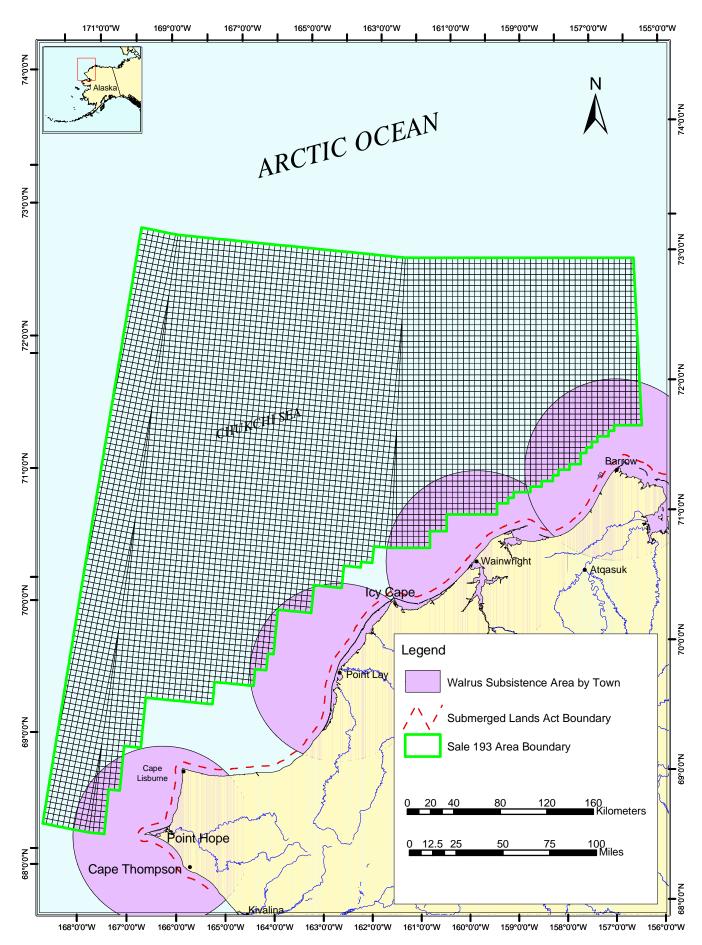



Figure II.B-1 Walrus Subsistence Areas

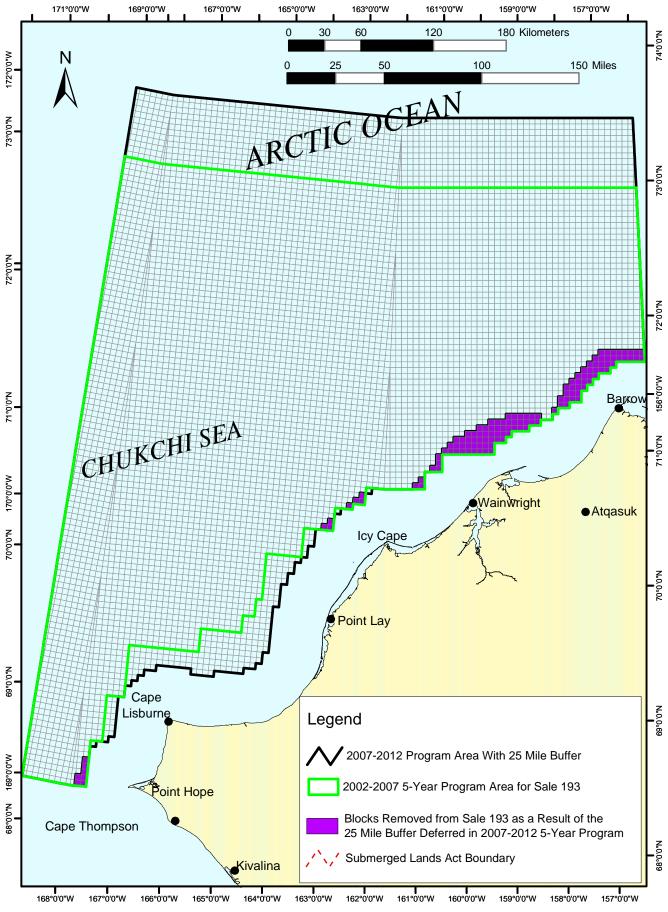



Figure II.B-2 2002-2007 5-Year Program Area for Sale 193 and 2007-2012 5-Year Program.

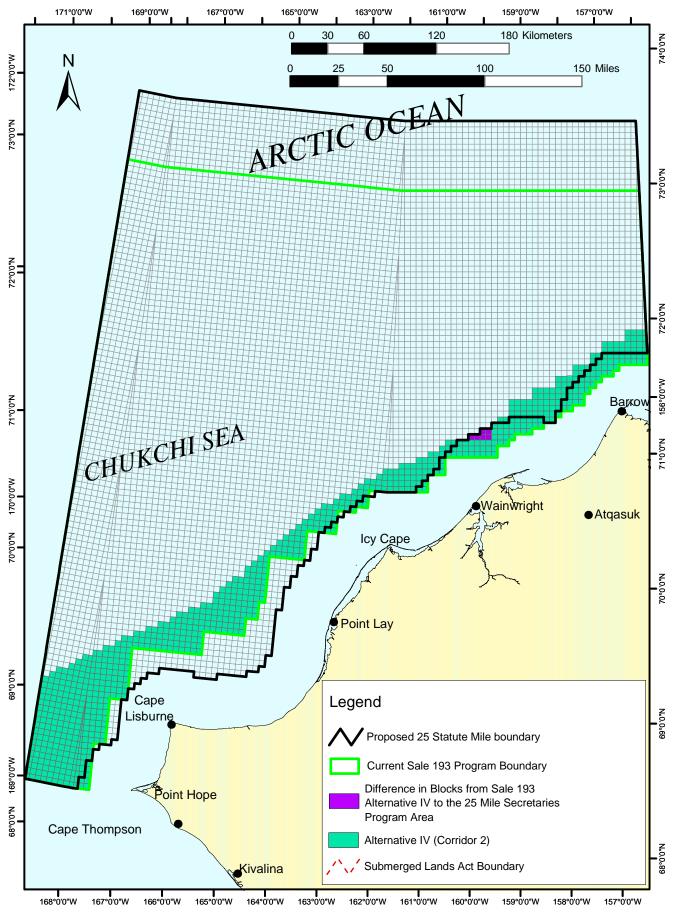
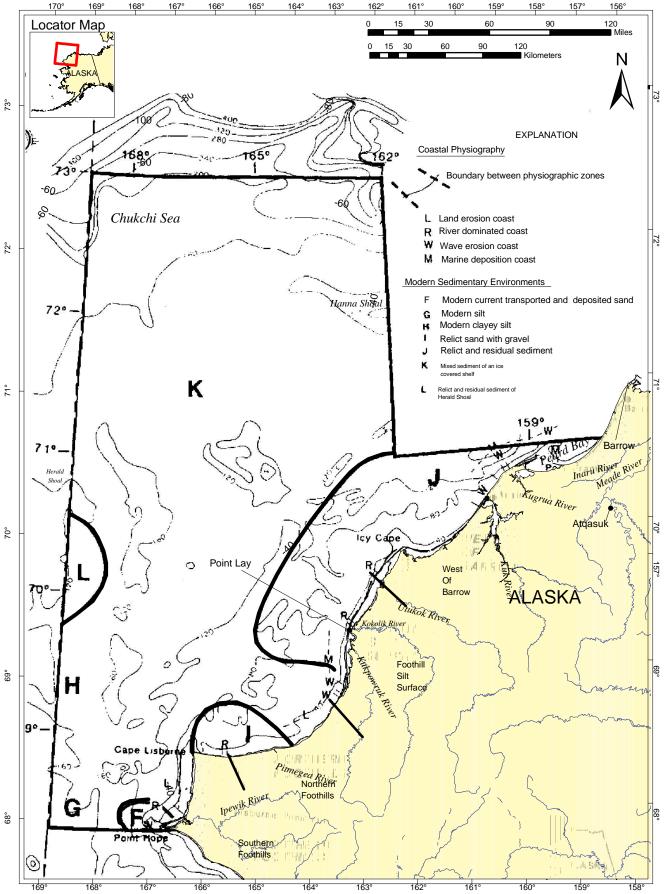
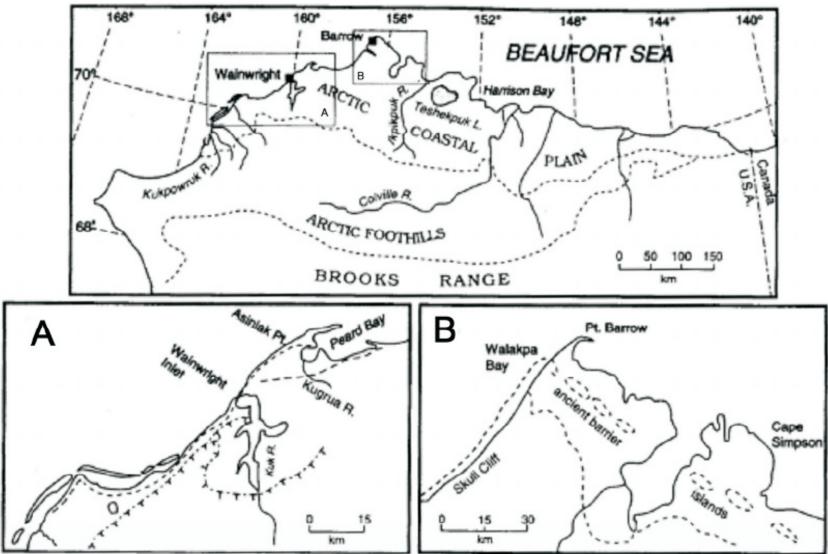
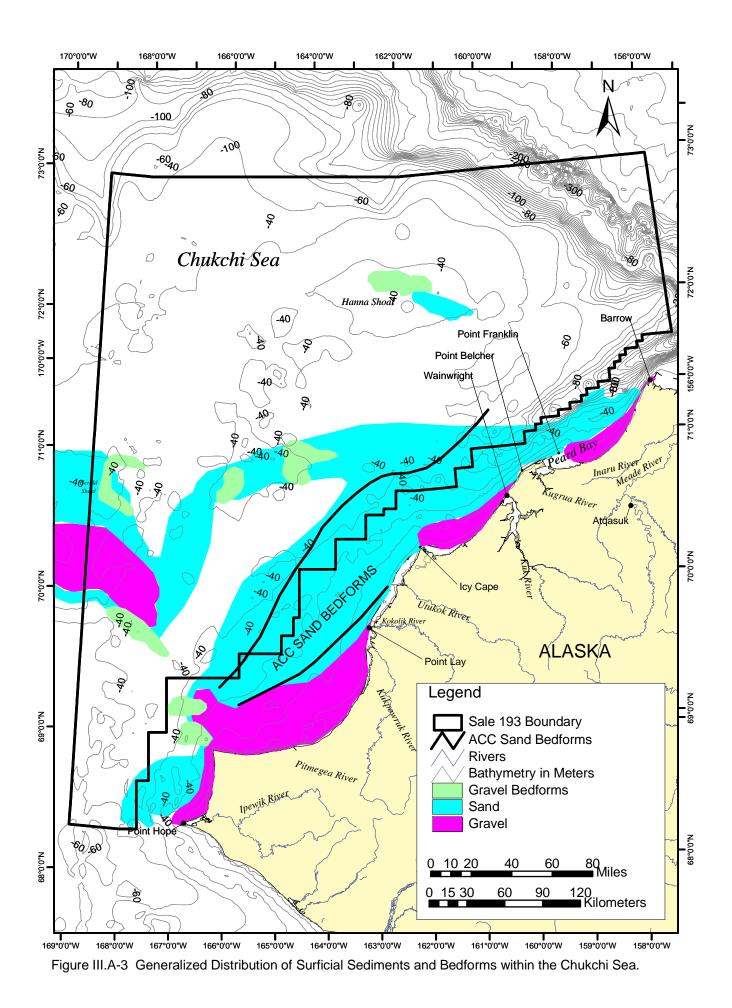
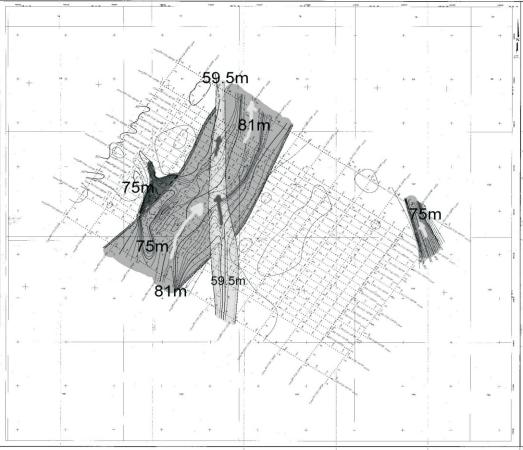




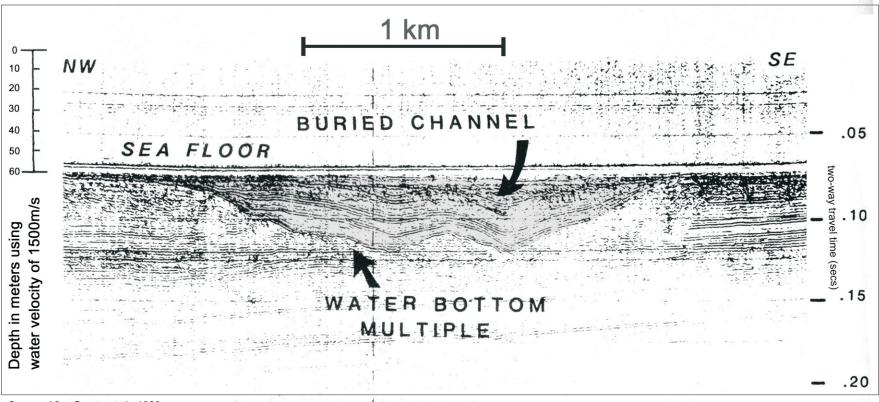

Figure II.B-3 Secretaries proposed program area 2007-2012 and the current Sale 193 Alternative IV (Corridor 2).





Source: McManus, Kelly, and Creager, 1969; Hartwell, 1973; Thurston and Theiss, 1987. Figure III.A-1 Coastal Physiography.



Source: After Brigham-Grette and Hopkins, 1994.


Figure III.A-2 Last Interglacial Shoreline and Barrier Beaches along the Chukchi and Beaufort Sea Coasts. A. Paleoshorelines, bay mouth bar, and spit complex constructed during the last interglaciation in the Wainwright area; B. Paleogeography of ancient spit, lagoon, and barrier islands near Barrow, Alaska.





Source: After Fugro-McClelland, 1989.

Figure III.A-4 Site Survey for the Popcorn Well Showing Three Successive Channel Events. The Depths to the Deepest Portions of the Channels (thalwag) are Shown in Meters.



Source: After Grantz et al., 1982.

Figure III.A-5 Segment of USGS Uniboom Line 012, Showing a Filled Paleochannel West of the Barrow Sea Valley.

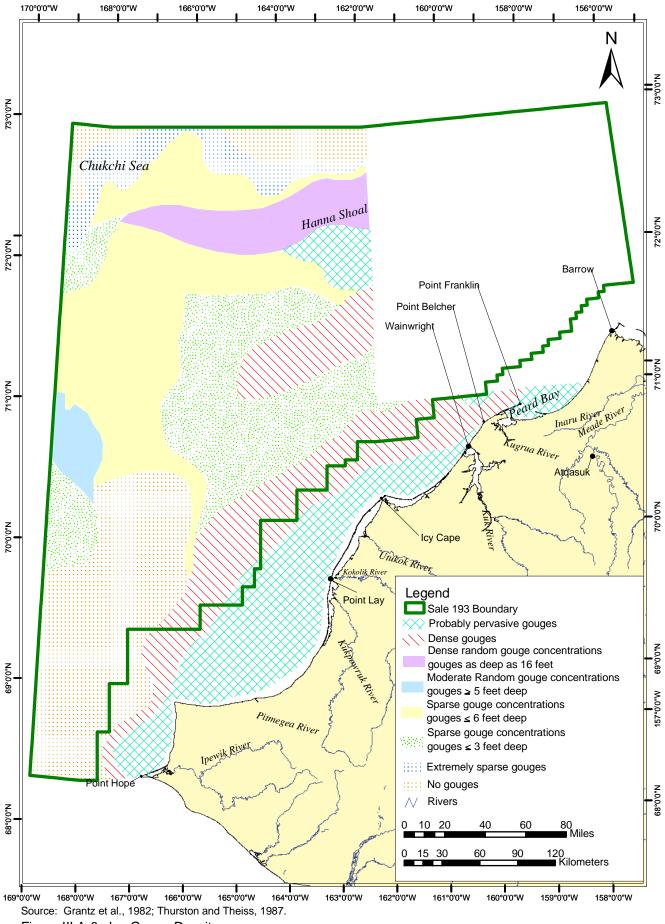



Figure III.A-6 Ice Gouge Density.

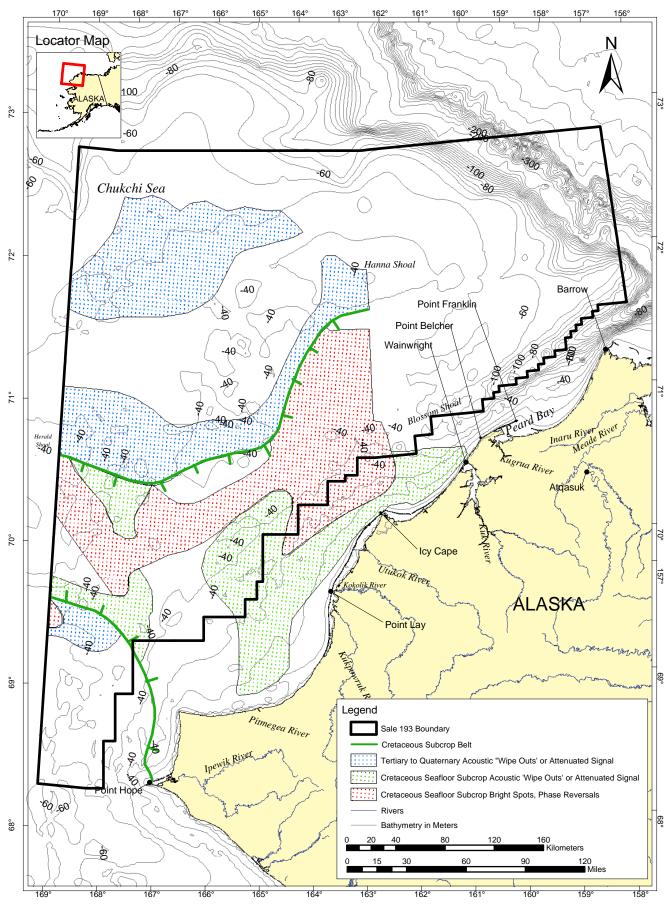
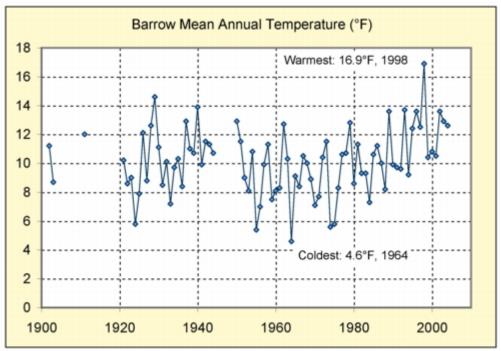
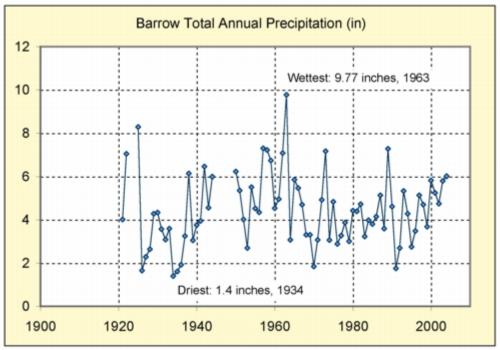





Figure III.A-7 Distribution of Near-Surface Acoustic Anomalies Possibly Related to Shallow Gas.



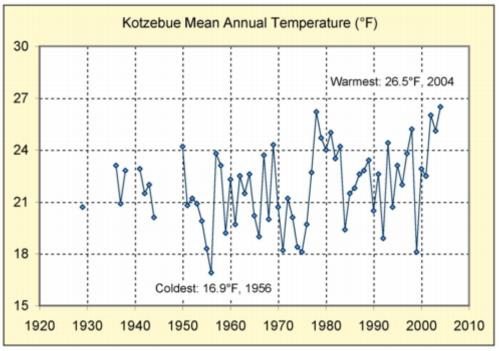

Source: Alaska Climate Research Center

Figure III.A-8 Barrow Mean Annual Temperature.



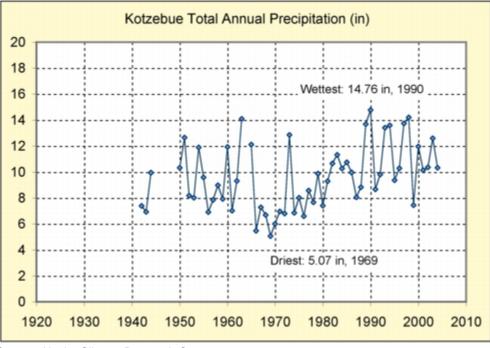

Source: Alaska Climate Research Center

Figure III.A-9 Barrow Total Annual Precipitation.



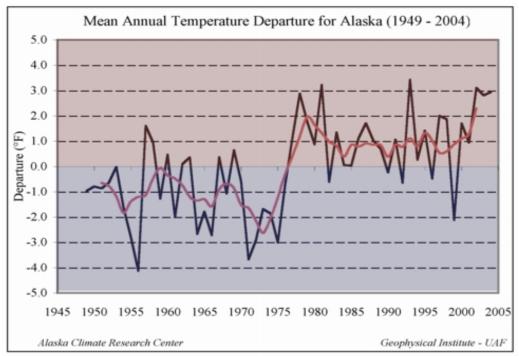
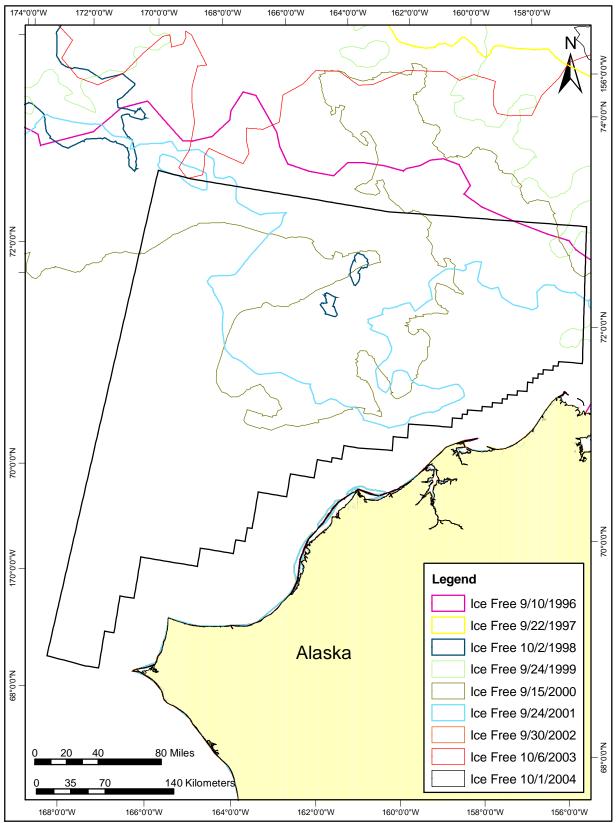

Source: Alaska Climate Research Center

Figure III.A-10 Kotzebue Mean Annual Temperature.

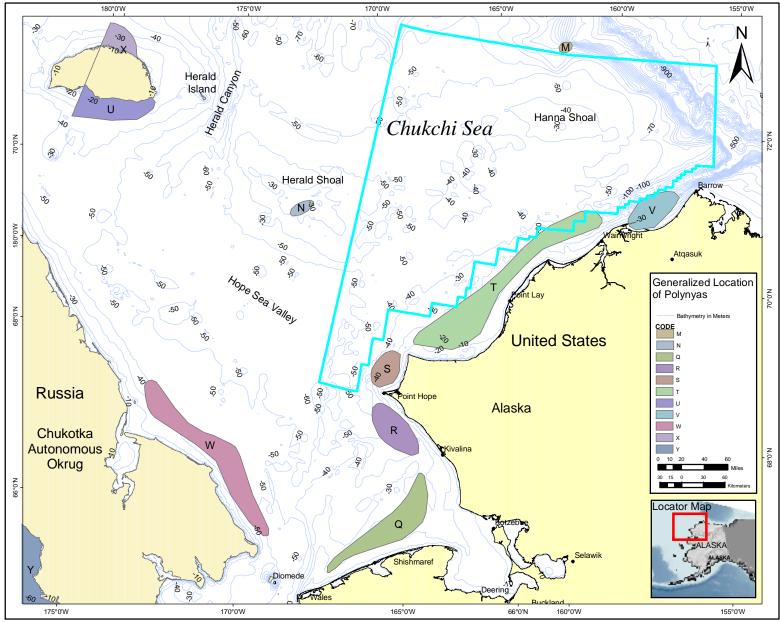


Source: Alaska Climate Research Center


Figure III.A-11 Kotzebue Total Annual Precipitation.



Source: Alaska Climate Research Center


Figure III.A-12 Mean Annual Temperature Departure for Alaska (1949-2004).

The heavy black line on the graph represents the aggregate mean annual temperature departure. The heavy red line on the graph represents the 5-year moving average temperature.



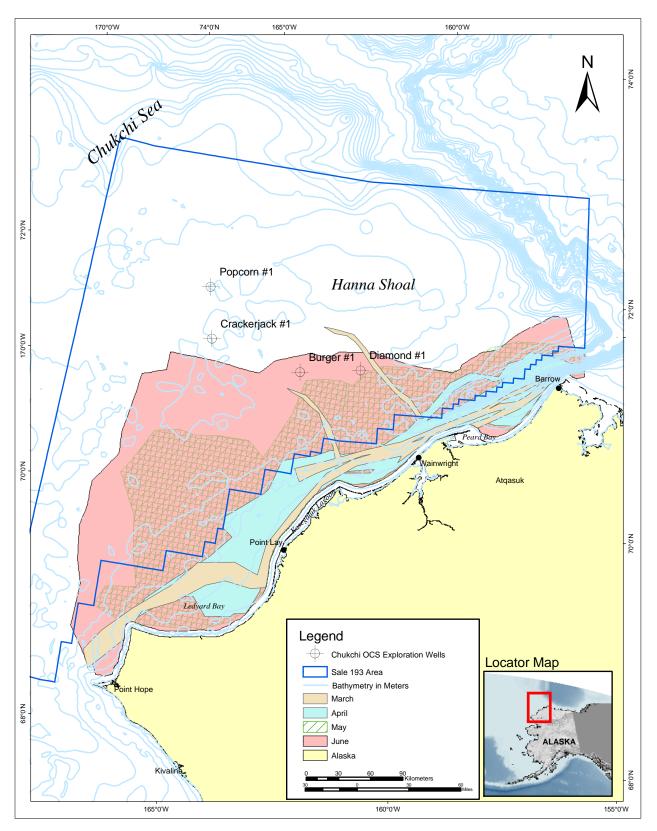
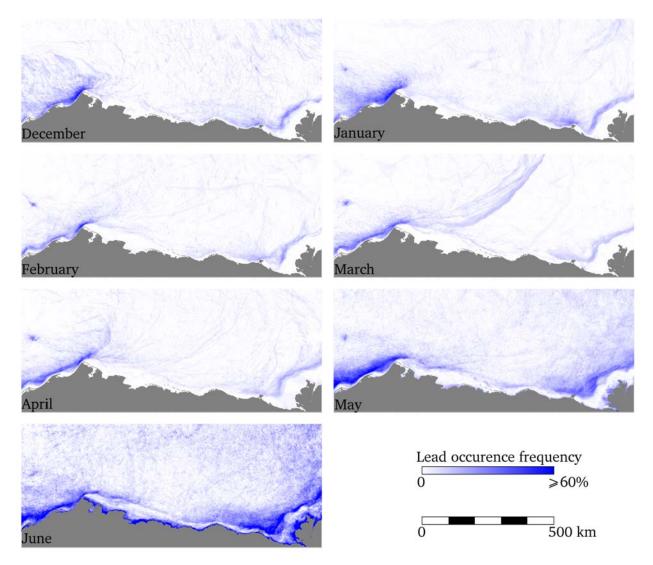
Source: USDOC, NOAA, National Ice Center 1996-2004.

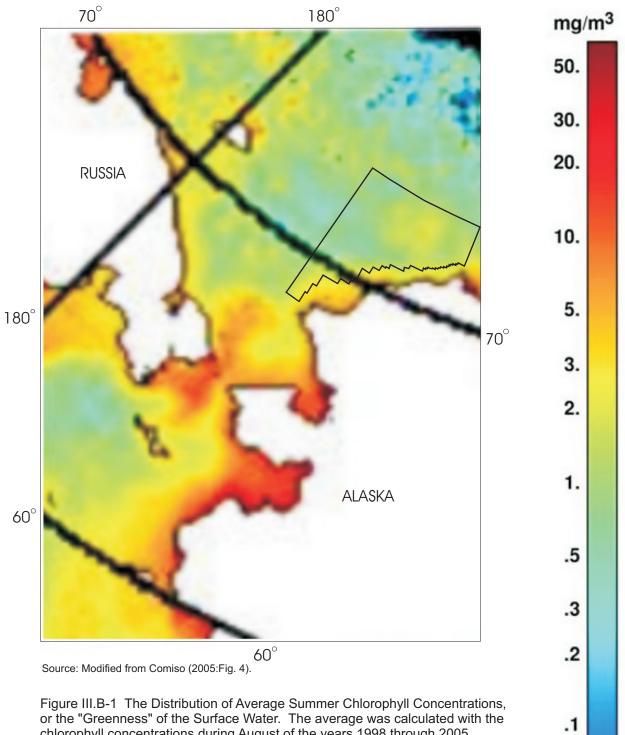
Figure III.A-13 Generalized Maximum Retreat of Sea Ice 1996-2004.



Source: Stringer and Groves, 1991.

Figure III.A-14 Generalized Location of Chukchi Polynyas.



Figure III.A-15 Maximum Polynya and Flaw Lead for 1995, 1997, 2003, and 2004.



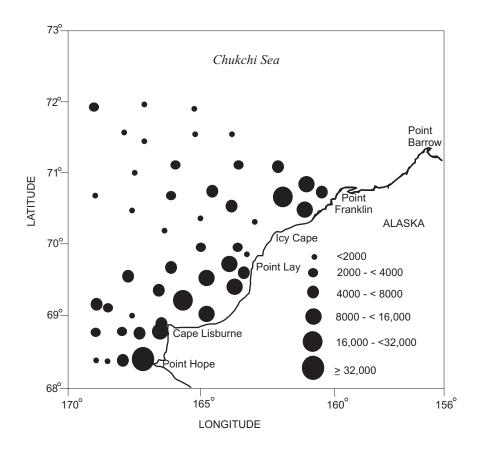
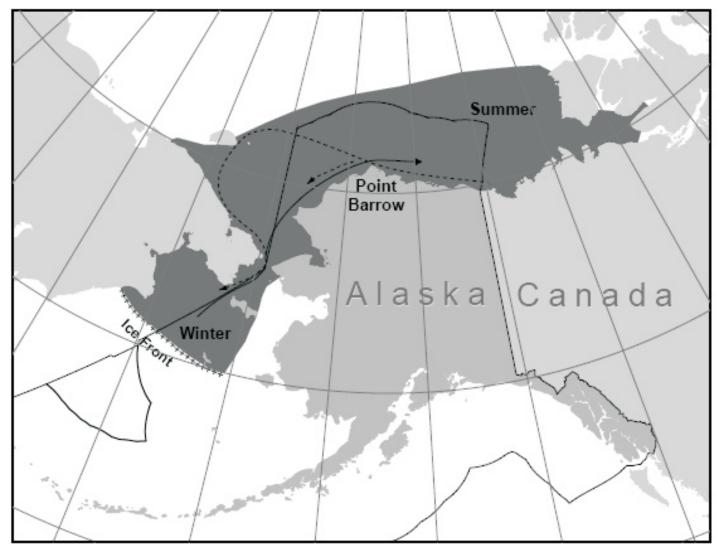

Source: Eiken et al., 2006.

Figure III.A-16 Monthly Recurrence Probability of Leads Derived from All Images for the Time Period 1993-2004.

### Average August 1998-2005




chlorophyll concentrations during August of the years 1998 through 2005. The proposed lease-sale area is in the upper right quarter of the figure.



Source: Feder et al. (1994: Fig. 8a).

Figure III.B-2. Abundance (ind/m<sup>2</sup>) of Snails and Other Epifaunal Mollusks in the Northeastern Chukchi Sea.



Source: Angliss and Outlaw (2005[Rev. 12/23/05]; Fig. 43).

Figure III.B-3 Approximate Distribution of the Western Arctic Stock Bowhead Whales (shaded dark area). Winter, Summer, and Spring/Fall Distributions are Depicted.

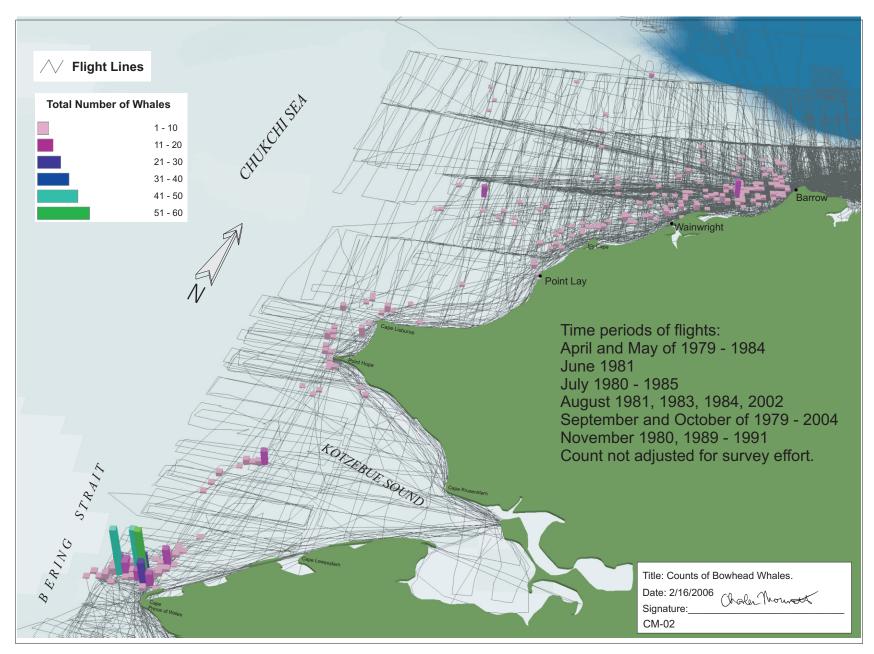
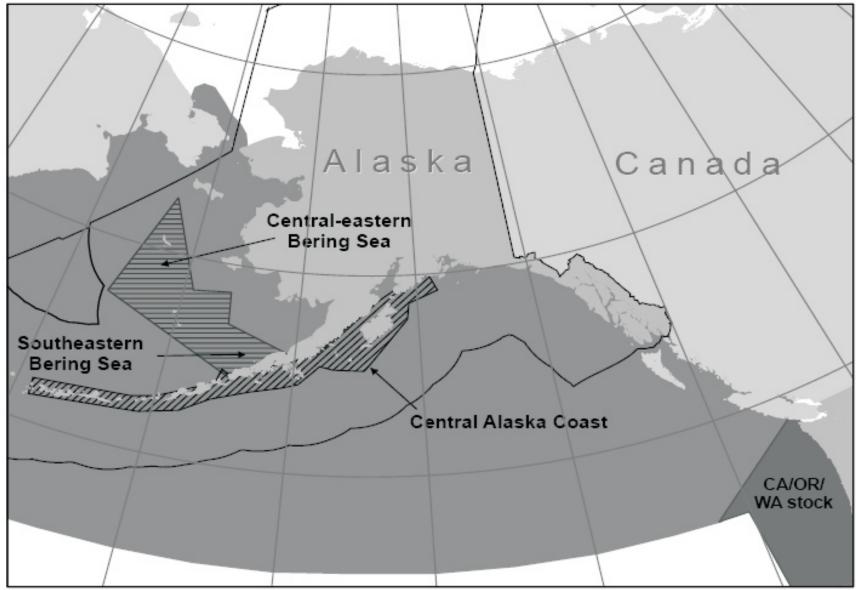
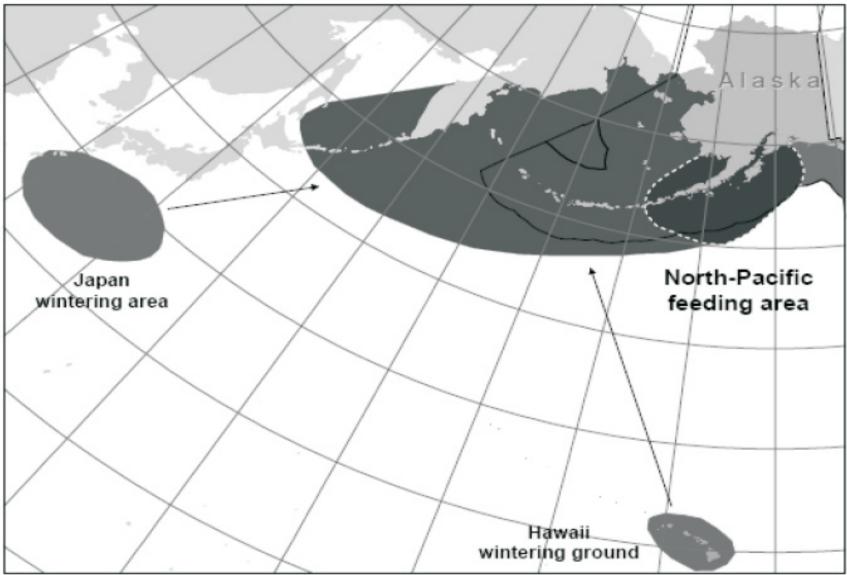





Figure III.B-4 Counts of Bowhead Whales in the Chukchi Sea taken by the MMS Bowhead Whale Aerial Survey Project (Counts are aggregated on a 5-km grid).



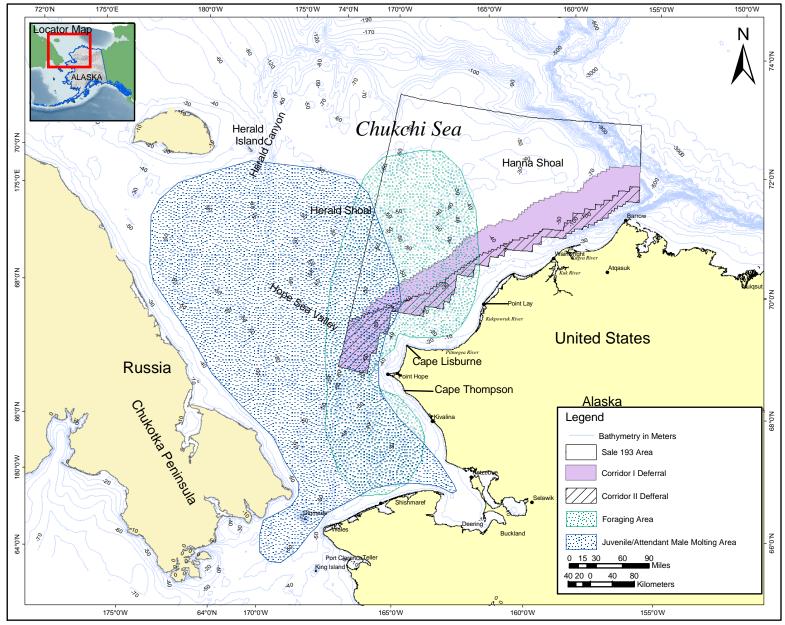

Source: Angliss and Lodge (2005 [Rev. 10/21/04]: Fig. 40).

Figure III.B-5 Approximate Distribution of Fin Whales in the Eastern North Pacific (shaded areas). Enclosed Area Indicates General Location of the Pollock Surveys from which Regional Estimates of the Fin Whale Population was made.



Source: Angliss and Outlaw (2005 [Rev. 1/12/06]: Fig. 38).

Figure III.B-6 Approximate Distribution of Humpback Whales in the Western North Pacific (shaded area). Feeding and Wintering Grounds are Presented. (Area within the dotted line is known to be an area of overlap with the Central North Pacific stock. See Figure 39 in Angliss and Outlaw (2005) for humpback whale distribution in the eastern north Pacific.)



Source: Hatch et al., 2000.

Figure III.B-7 Approximate Areas used by Common and Thick-Billed Murres from the Cape Lisburne and Cape Thompson Colonies when Foraging in Summer and by the Juvenile and Attendant Males during the Postnesting Molting Period (late August through mid-November).

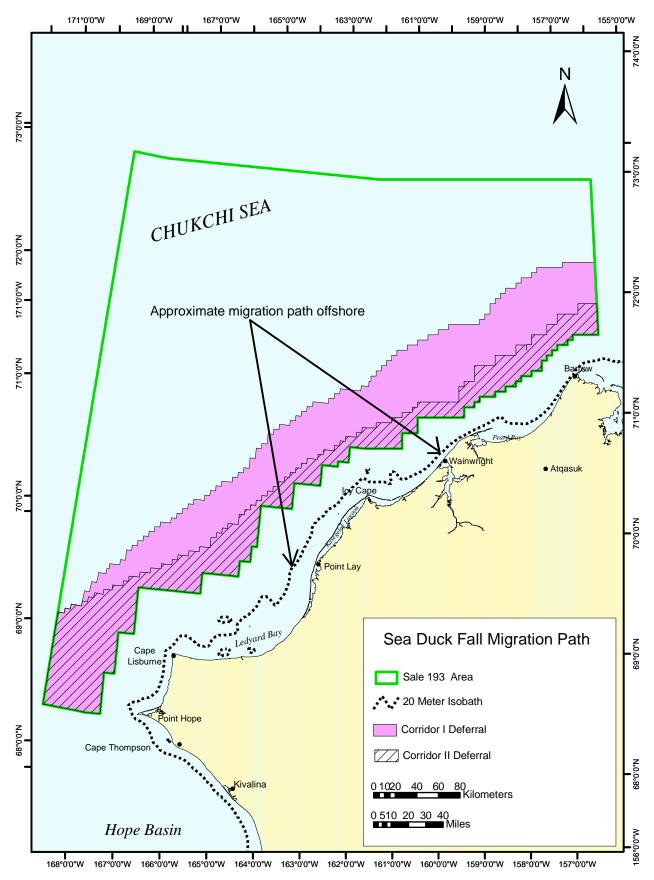



Figure III.B-8 Approximate Migration Distances from Shore for King Eiders, Common Eiders and Long-Tailed Ducks In Fall (these species tend to migrate along the 20-meter isobath).

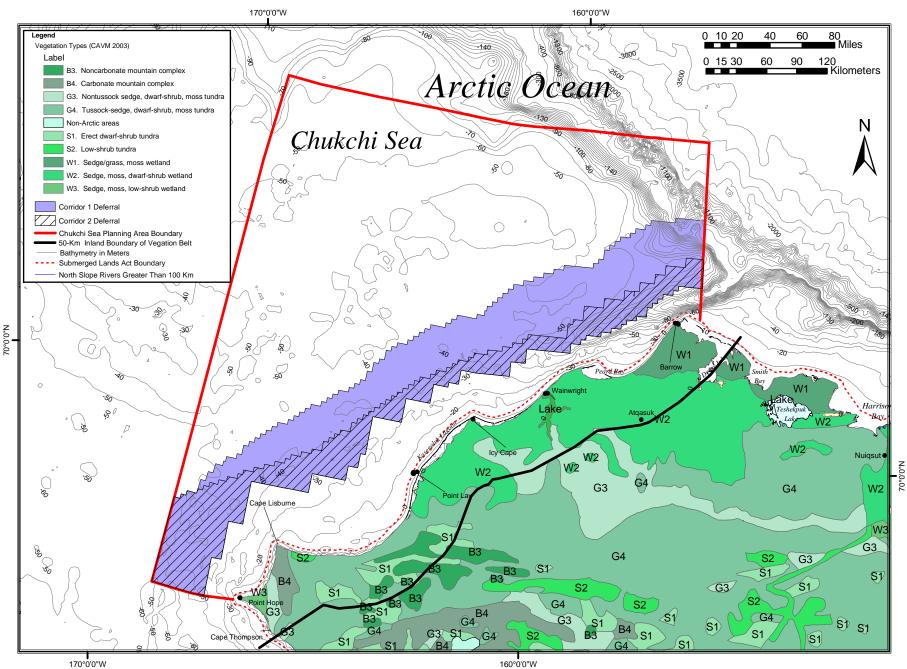
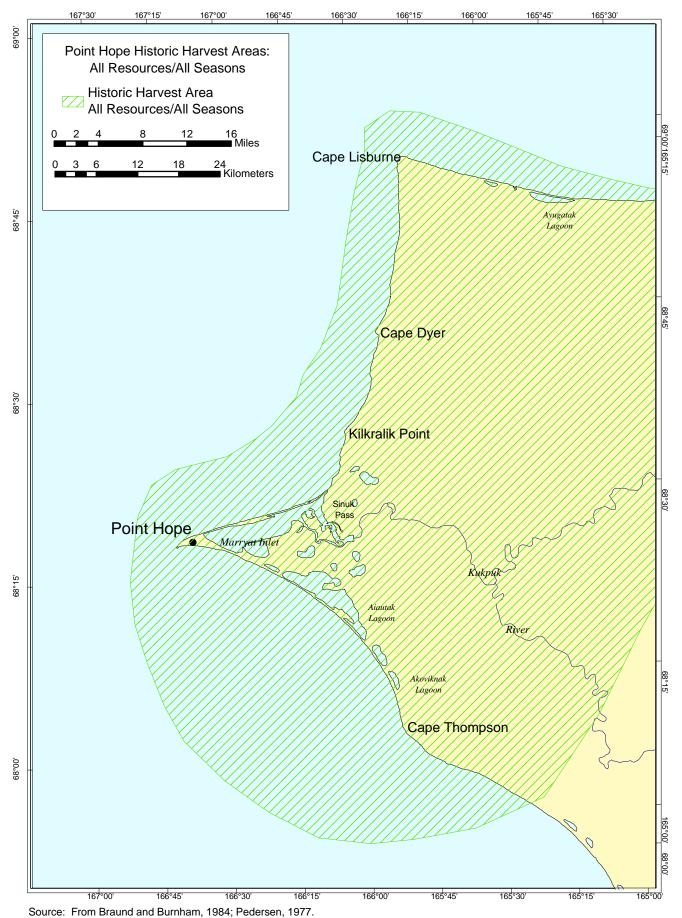
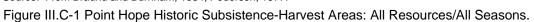





Figure III.B-9 Vegetation and Wetlands within a 50-km Belt from the Chukchi Shoreline.





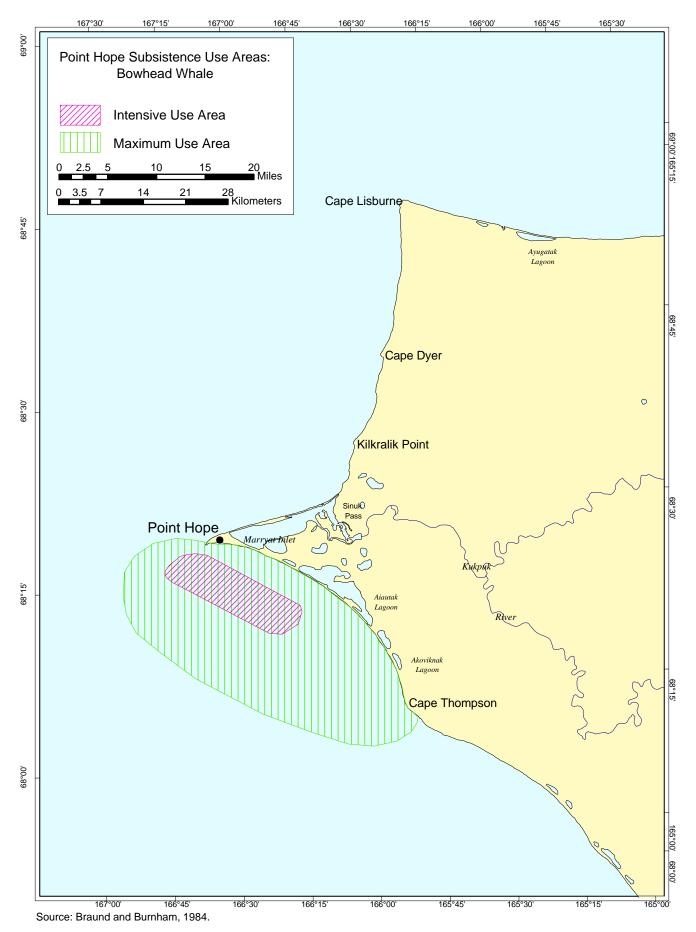
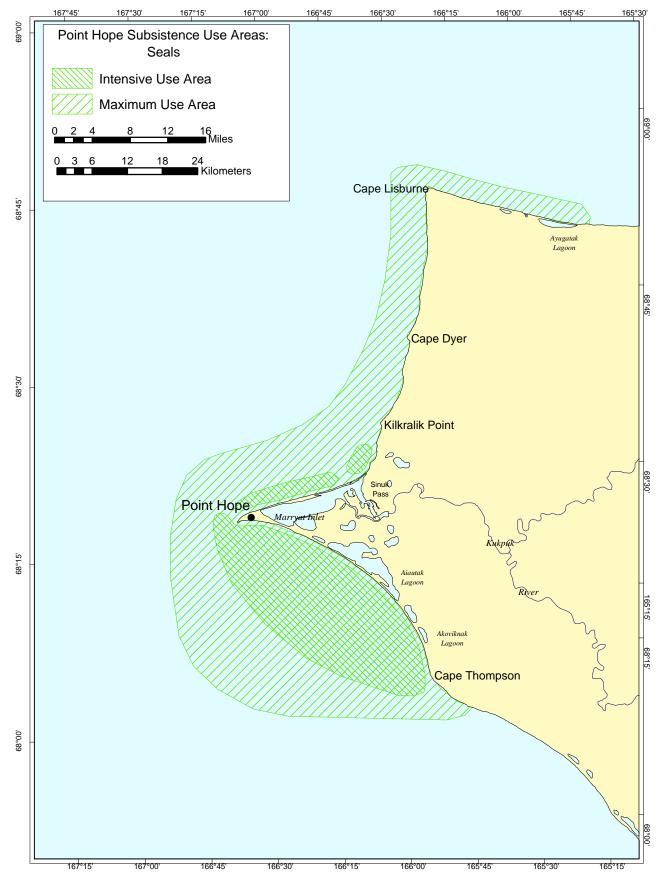
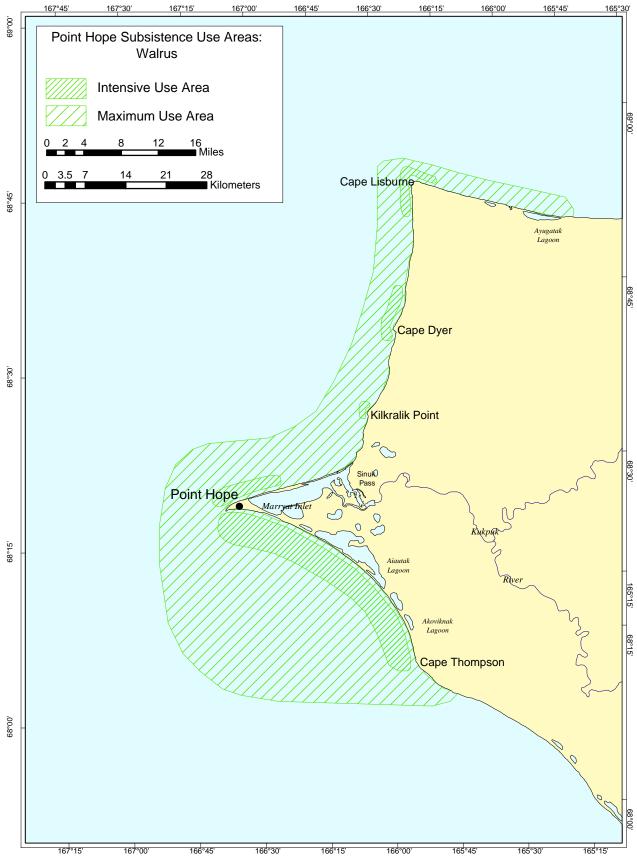





Figure III.C-2 Point Hope Subsistence-Use Areas: Bowhead Whale.



Source: Braund and Burnham, 1984.

Figure III.C-3 Point Hope Subsistence Use Areas: Seals.



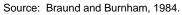
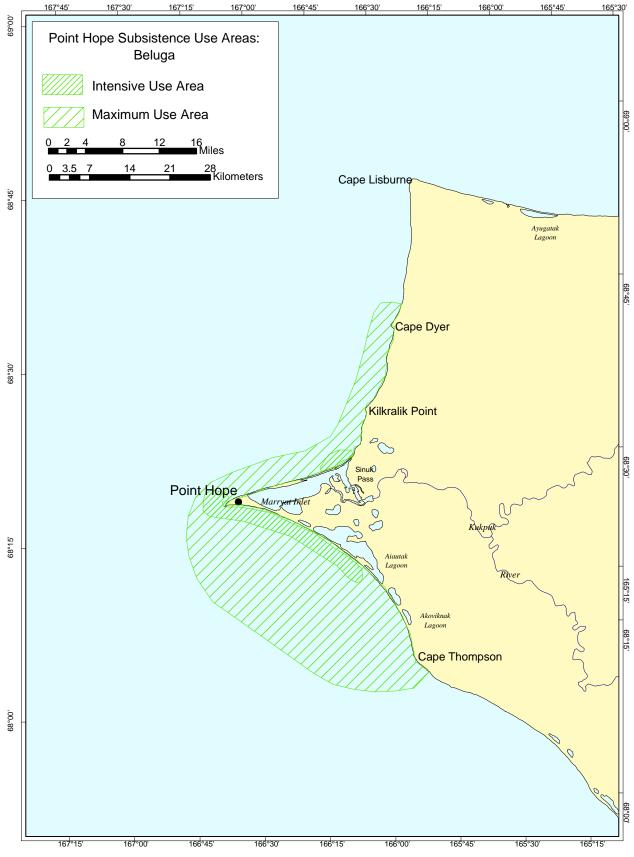




Figure III.C-4 Point Hope Subsistence Use Areas: Walrus.



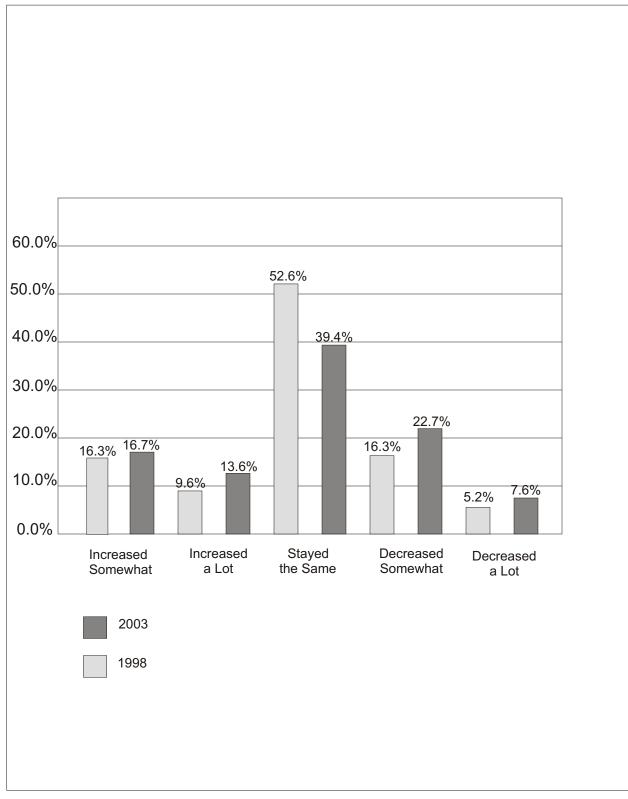

Source: Braund and Burnham, 1984.

Figure III.C-5 Point Hope Subsistence Use Areas: Beluga.

|                           | Jan | Feb<br>WINTER | Mar | Apr | May Jun<br>SPRING | Jul Aug<br>SUMMER | Sep | Oct Nov<br>FALL | Dec<br>WINTER |
|---------------------------|-----|---------------|-----|-----|-------------------|-------------------|-----|-----------------|---------------|
| Bowhead/<br>Beluga Whale  |     |               |     |     |                   |                   |     |                 |               |
| Seal/Ugruk                |     |               |     |     |                   |                   |     |                 |               |
| Walrus                    |     |               |     |     |                   |                   |     |                 |               |
| Birds/Eggs                |     |               |     |     |                   | Eggs              |     |                 |               |
| Caribou                   |     |               |     |     |                   |                   |     |                 |               |
| Ocean Fish                |     |               | C   | rab |                   | Ocean Fis         | sh  |                 |               |
| Berries/ Roots/<br>Plants |     |               |     |     |                   |                   |     |                 |               |
| Furbearer<br>Hunt/Trap    |     |               |     |     |                   |                   |     |                 |               |
| Freshwater Fish           |     |               |     |     |                   |                   |     |                 |               |

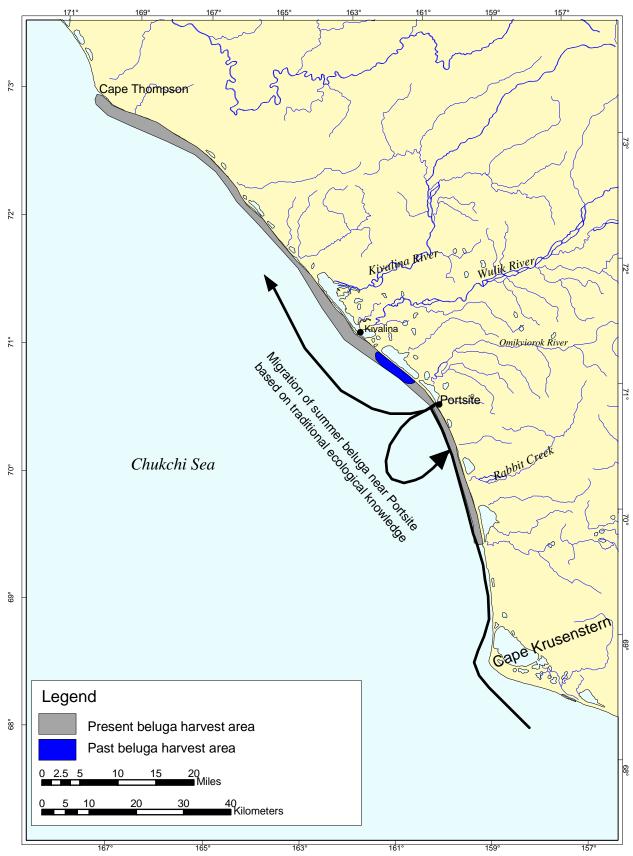

Source: Pedersen, 1977.

Figure III.C-6 Point Hope Annual Subsistence Cycle.



Source: Fuller and George, 1997; North Slope Borough, 2004.

Figure III.C-7 Point Hope: Changes in Subsistence Activity.



Source: Braund, 2000.

Figure III.C-8 The Past and Present Kivalina Hunting Areas for the Eastern Chukchi Sea (Summer) Stock of Beluga.



Figure III.C-9 Kivalina Hunting Area for Bowhead Whales.

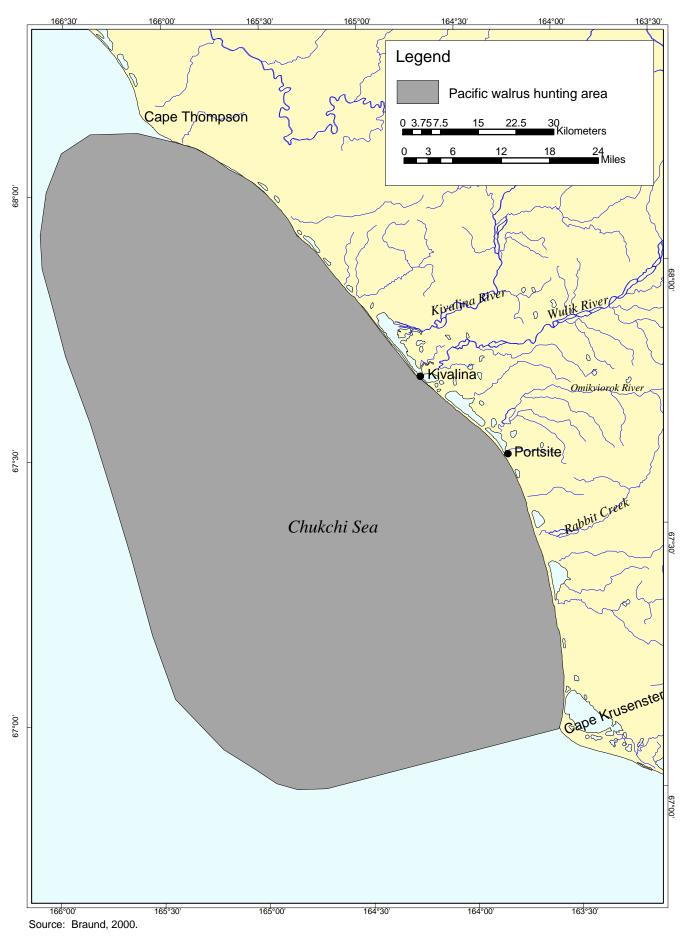



Figure III.C-10. Kivalina Hunting Area for Pacific Walrus.

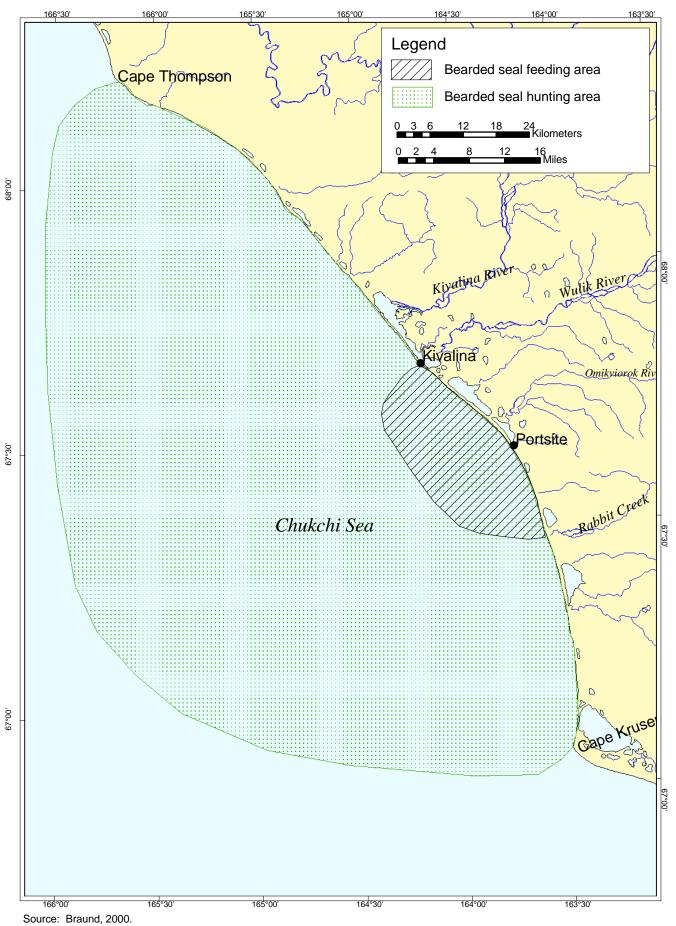
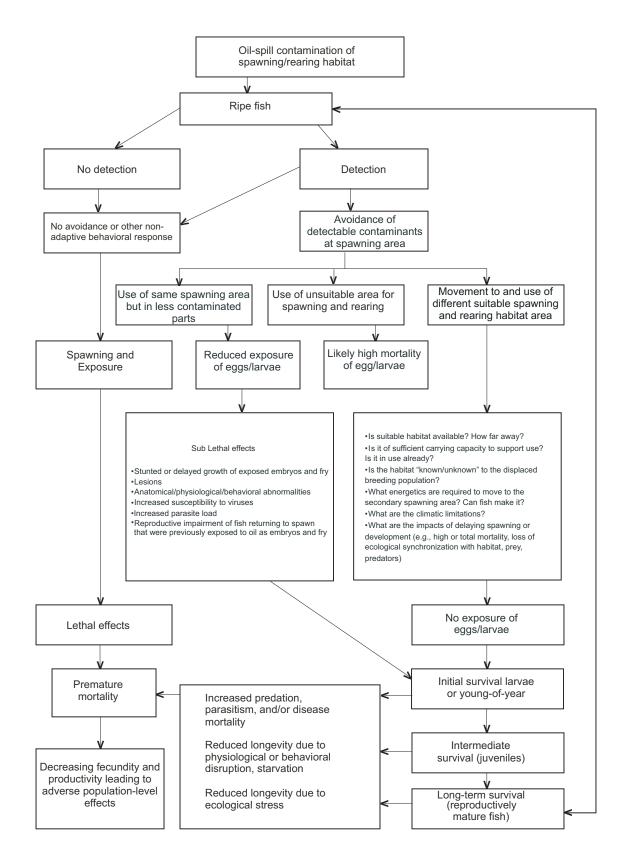
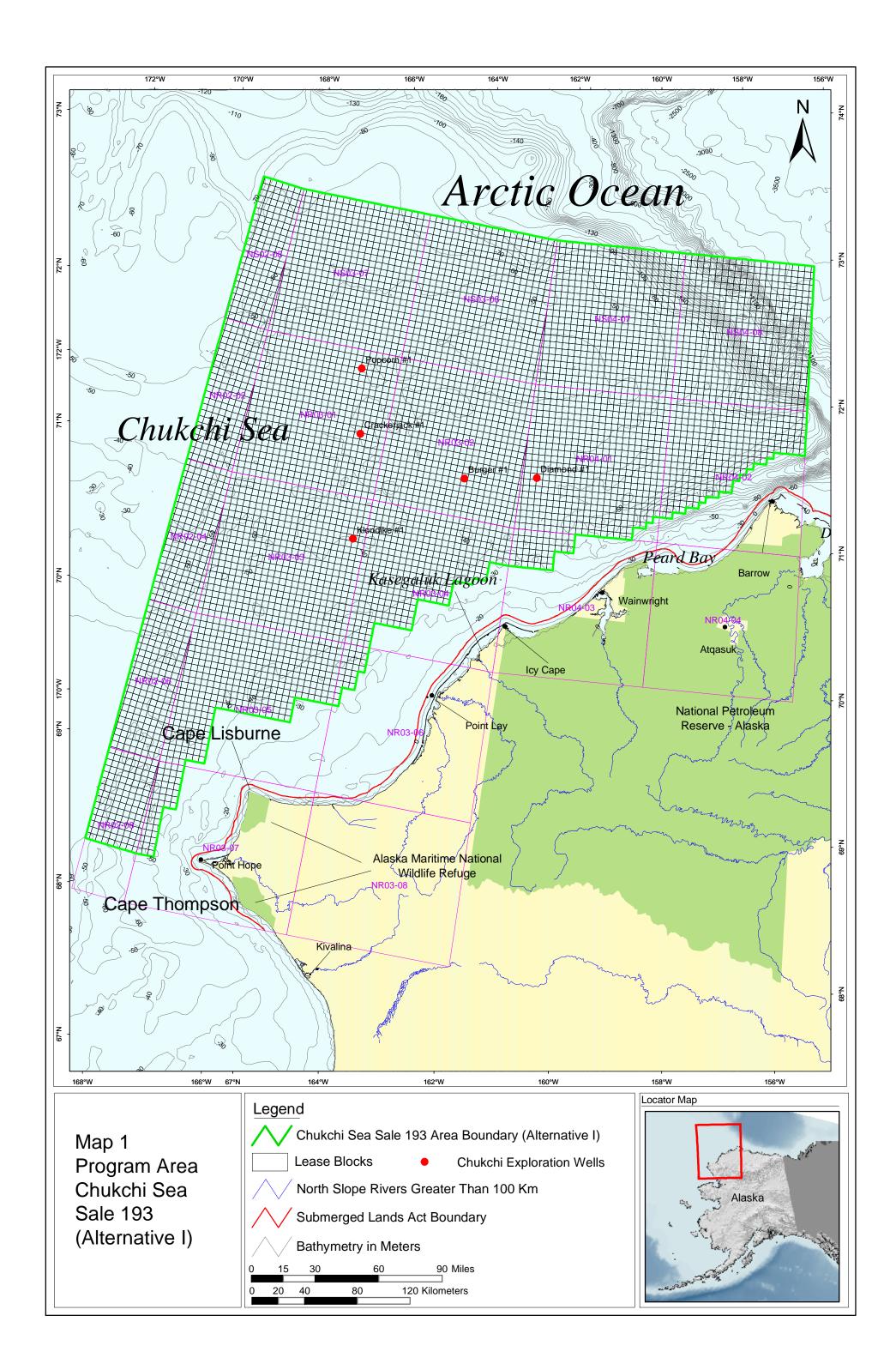
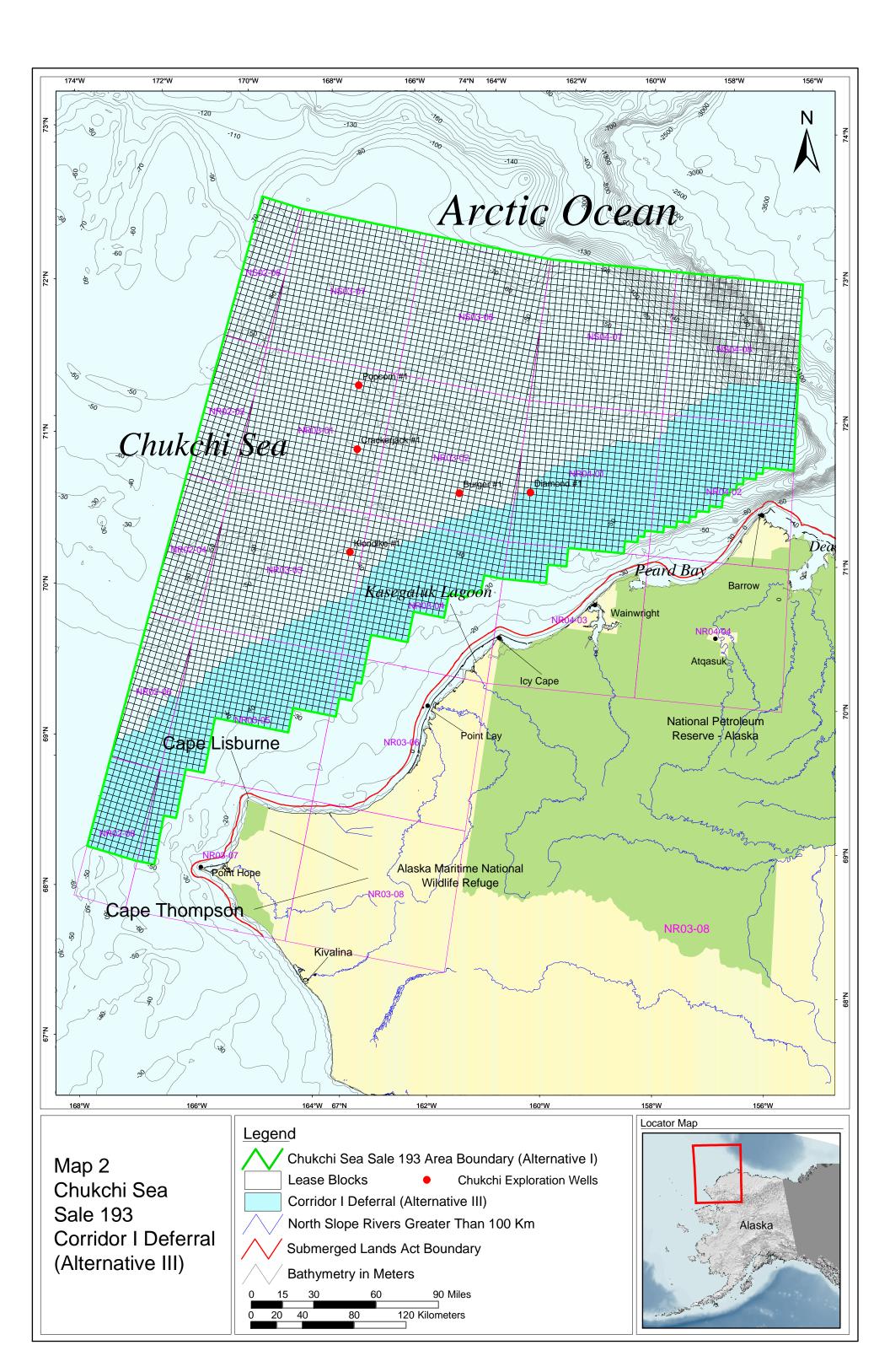
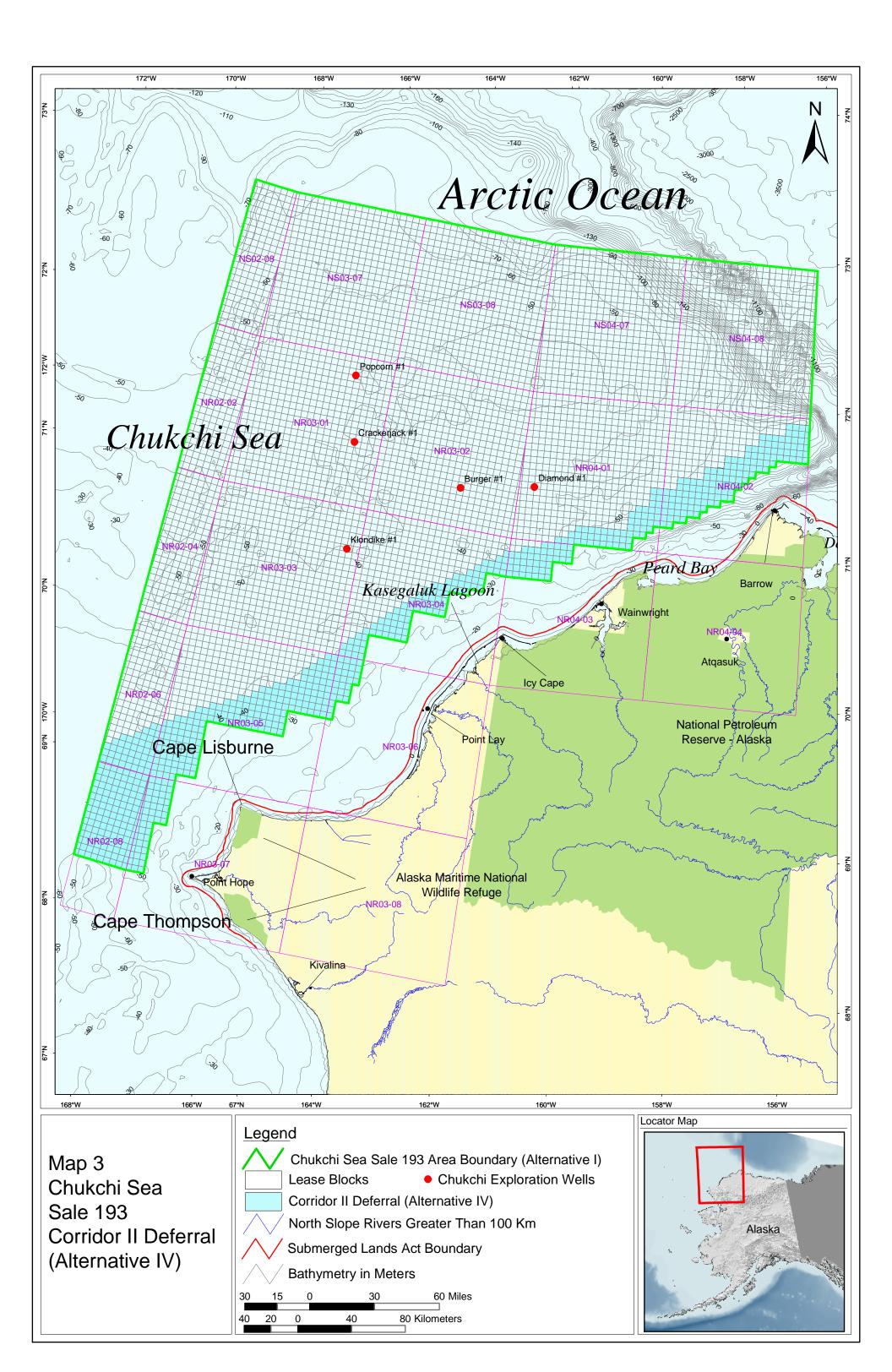
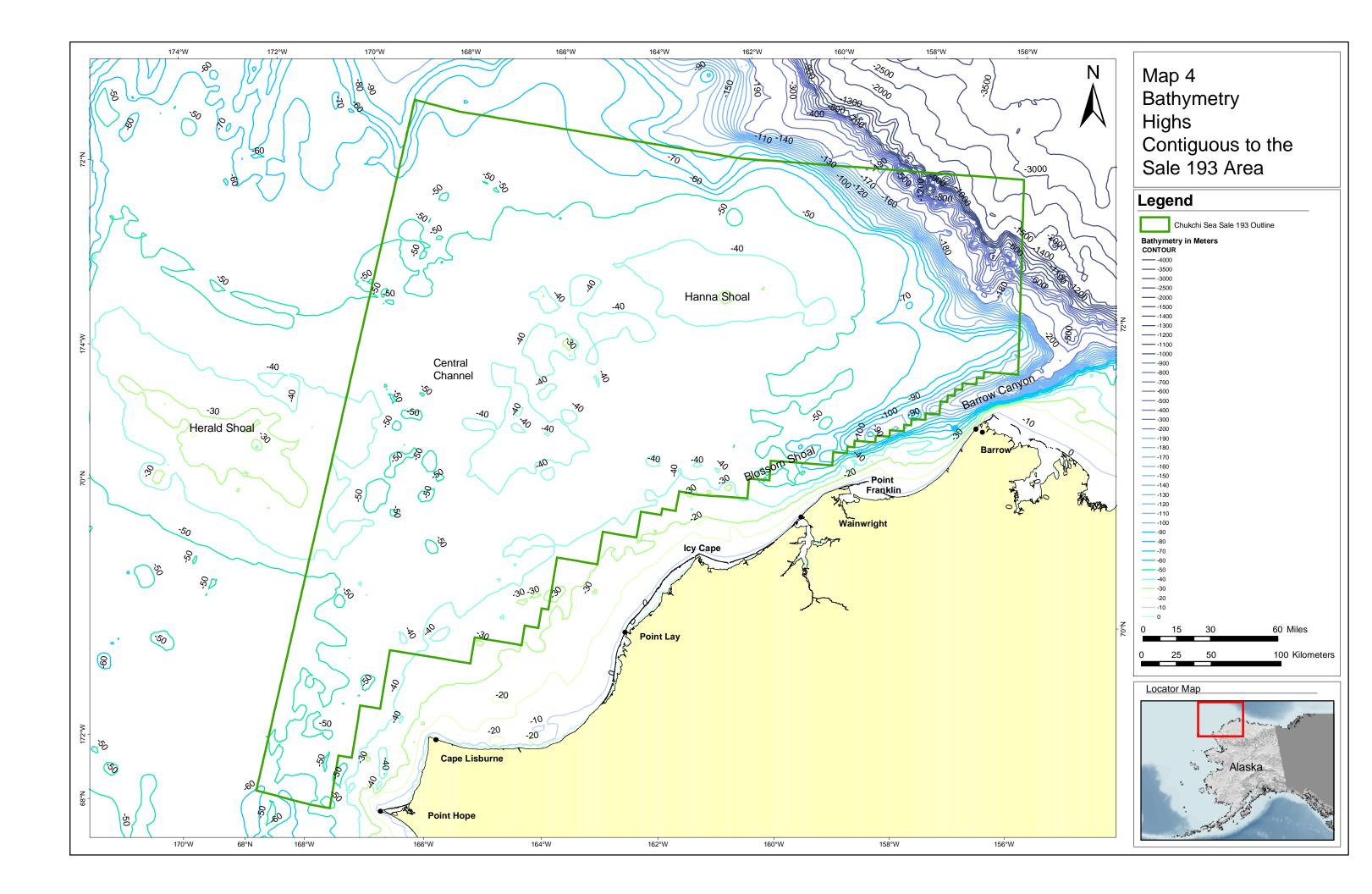
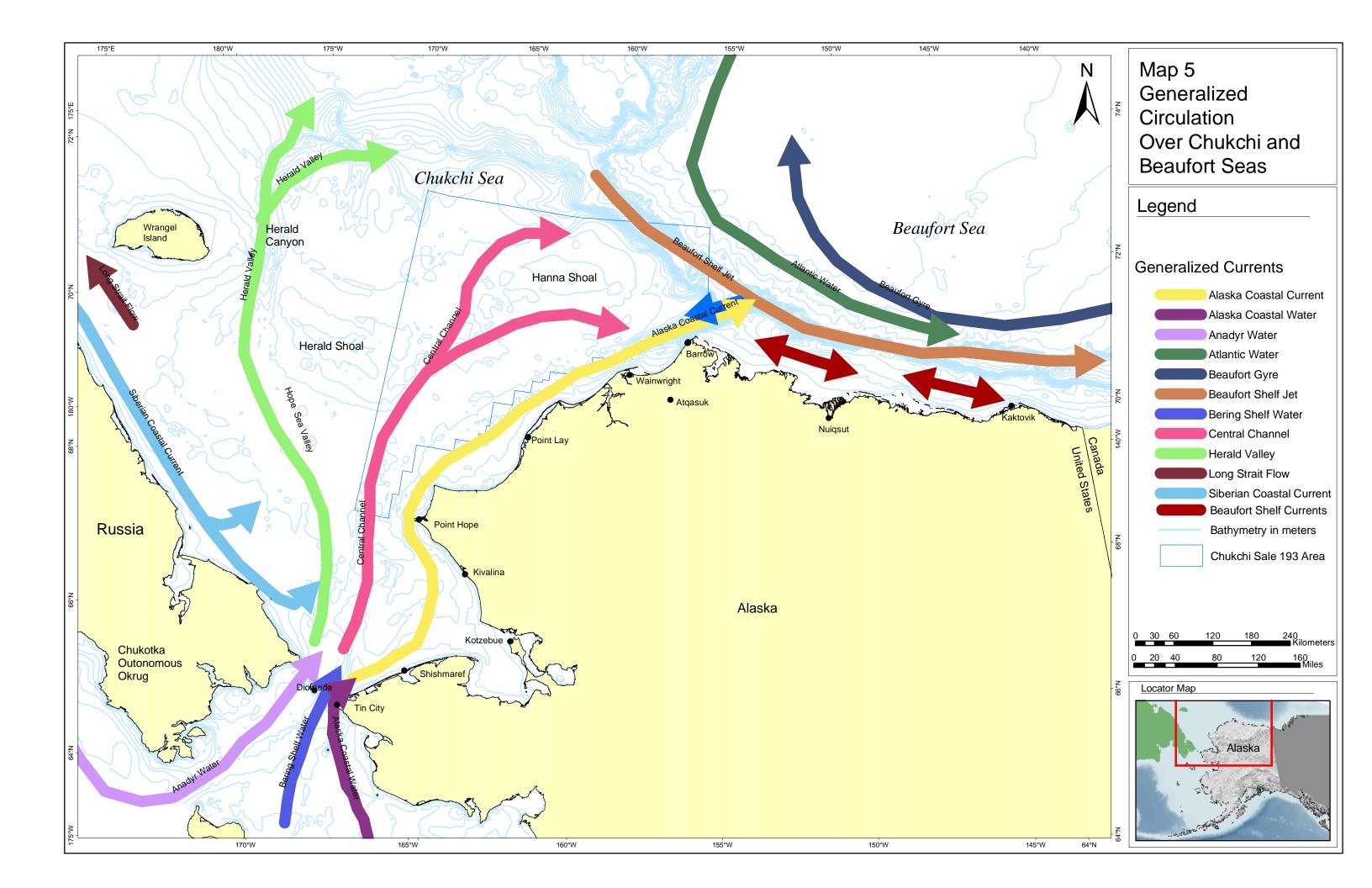
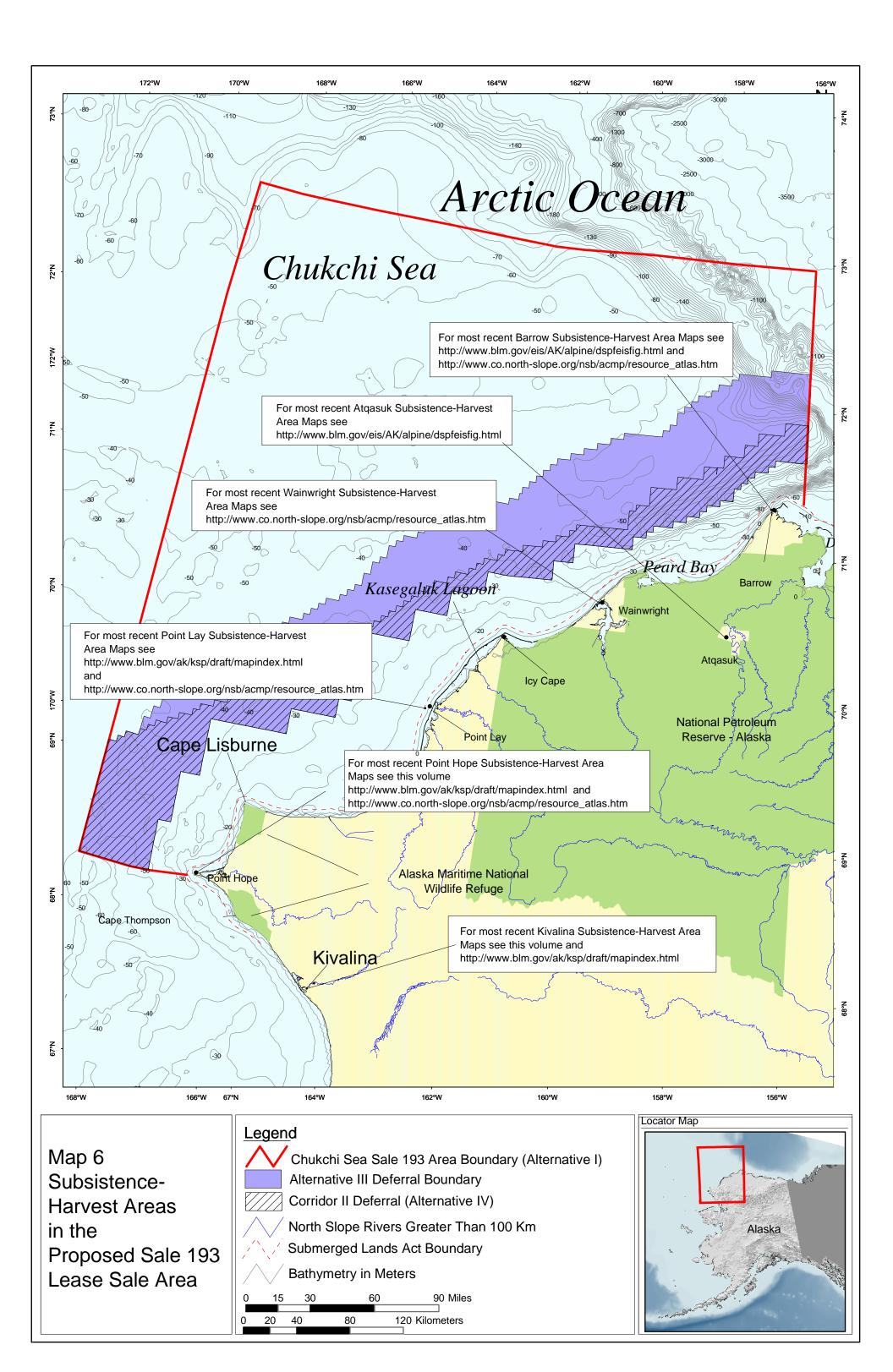
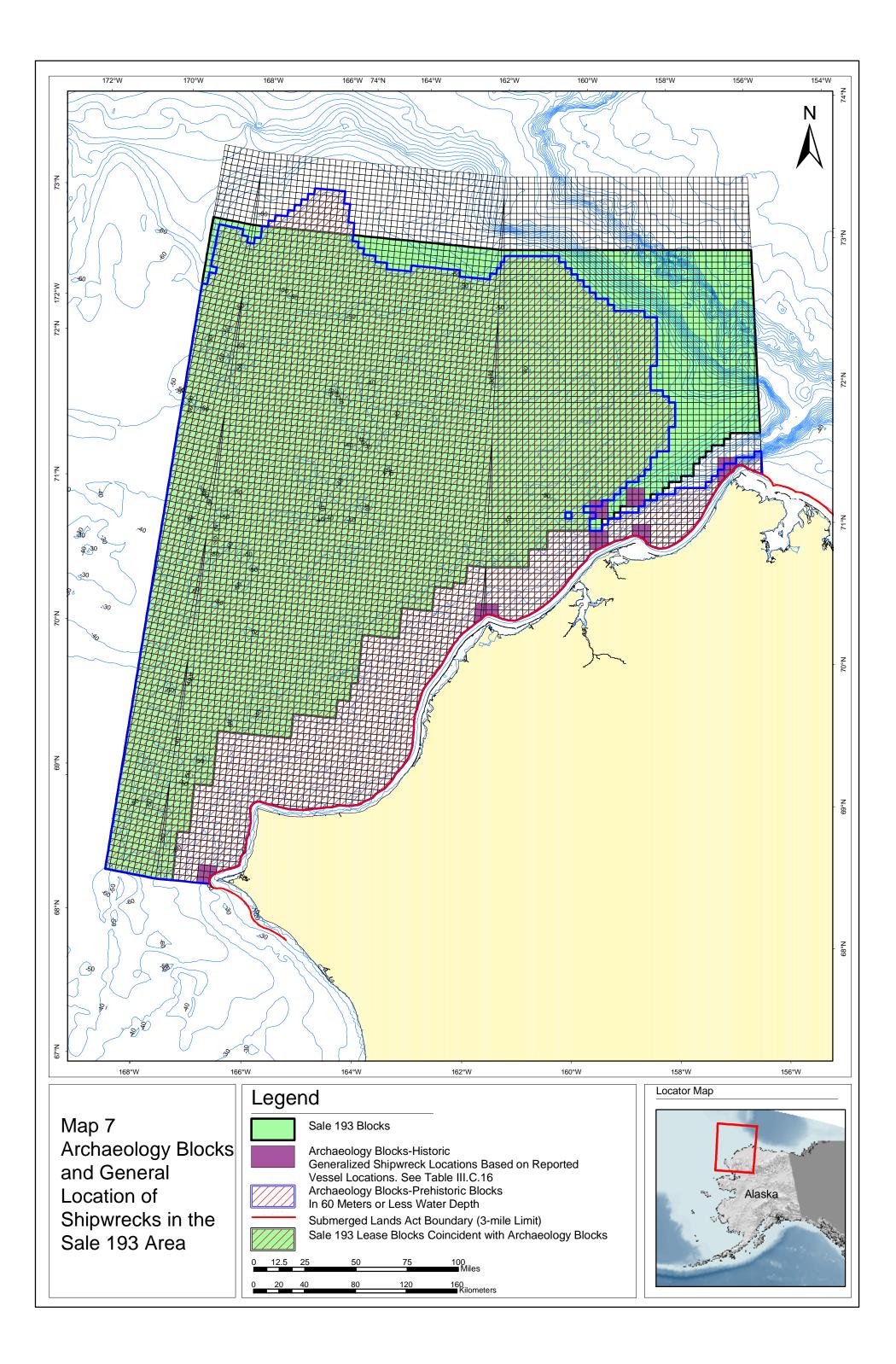



Figure III.C-11 Kivalina Hunting and Feeding Area of Bearded Seals.



Figure IV.C-1 Oil-Spill Impacts Model for Selected Fishes using Nearshore/Intertidal Substrates as Spawning and/or Rearing Habitats (e.g., pink or chum salmon, Pacific herring, capelin).














# **APPENDICES**

**APPENDIX A** 

INFORMATION, MODELS AND ASSUMPTIONS WE USE TO ANALYZE THE EFFECTS OF AN OIL SPILL IN THIS EIS

## **APPENDIX A**

A.1 OIL SPILL INFORMATION, MODELS, AND ASSUMPTIONS AND A.2 SUPPORTING TABLES

### TABLE OF CONTENTS OF APPENDIX A.1

| The Information, Models and Assumptions We Use to Analyze the Effects of Oil Spills in this E | EIS A.1-1       |
|-----------------------------------------------------------------------------------------------|-----------------|
| A. Estimates of the Source, Type, and Size of Oil Spills                                      | A.1-1           |
| 1. Source and Spill-Size Assumptions                                                          | A.1-1           |
| B. Behavior and Fate of Crude Oils                                                            | A.1-3           |
| 1. Processes Affecting the Fate and Behavior of Oil                                           | A.1-3           |
| 2. Oil Spill Persistence                                                                      | A.1-5           |
| 3. Shoreline Type                                                                             | A.1-5           |
| 3. Assumptions about Large Oil Spill Weathering                                               | A.1-6           |
| 4. Modeling Simulations of Oil Weathering                                                     | A.1-7           |
| C. Estimates of Where a Large Offshore Oil Spill May Go                                       | A.1-8           |
| 1. Inputs to the Oil-Spill-Trajectory Model                                                   | A.1-8           |
| 2. Oil-Spill-Trajectory Model Assumptions                                                     |                 |
| 3. Oil-Spill-Trajectory Simulation                                                            | A.1-12          |
| 4. Results of the Oil-Spill-Trajectory Model                                                  | A.1-13          |
| D. Oil-Spill-Risk-Analysis                                                                    | A.1-15          |
| 1. Chance of One or More Large Spills Occurring                                               | A.1-15          |
| 3. Results of the Oil-Spill-Risk Analysis: Combined Probabilities                             | A.1-19          |
| E. Small Oil Spills                                                                           | A.1-20          |
| 1. Results for Small Operational Crude Oil Spills                                             | A.1-21          |
| 2. Results for Small Operational Refined Oil Spills                                           | A.1 <b>-</b> 21 |
| BIBLIOGRAPHY                                                                                  | A.1-21          |

#### Appendix A.1 Table List

| <b>Table No.</b><br>Table A.1-1 | <b>Titles</b><br>Large and Small Spill Sizes, Source of Spill, Type of Oil, Size of Spill and Receiving<br>Environment We Assume for Analysis in this EIS by Section                                                       |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Table A.1-2                     | Number of Blowouts per Year in the Gulf of Mexico and Pacific OCS Regions                                                                                                                                                  |
| Table A.1-3                     | Gulf of Mexico Blowout Frequencies Recommended for Analyses                                                                                                                                                                |
| Table A.1-4                     | Exploration Spills on the Arctic OCS                                                                                                                                                                                       |
| Table A.1-5                     | Properties of Alpine Crude Oil (Composite)                                                                                                                                                                                 |
| Table A.1-6                     | The True Boiling Point Values used for the Alpine Composite Sample                                                                                                                                                         |
| Table A.1-7                     | Experimental Results from the Bench-Scale Laboratory Testing at 10 <sup>o</sup> C (50 <sup>o</sup> F) for the Alpine Composite Sample                                                                                      |
| Table A1-8                      | Land Segment ID and the Percent Type of Environmental Sensitivity Index Shoreline Closest to the Ocean for United States, Alaska Shoreline                                                                                 |
| Table A.1-9                     | Fate and Behavior of a Hypothetical 1,500-Barrel Oil Spill from a Platform in the Chukchi Sea                                                                                                                              |
| Table A.1-10                    | Fate and Behavior of a Hypothetical 4,600-Barrel Crude Oil Spill from a Pipeline in the Chukchi Sea                                                                                                                        |
| Table A.1-11                    | Fate and Behavior of a Hypothetical 1,500-Barrel Diesel Oil Spill from a Platform in the Chukchi Sea                                                                                                                       |
| Table A.1-12                    | Identification Number (ID) and Name of Environmental Resource Areas, Their Vulnerable Period in the Oil Spill Trajectory Model and Their Location on Environmental Resource Area Map A-2a, Map A-2b, Map A-2c, or Map A-2d |
| Table A.1-13                    | Environmental Resource Areas Used in the Analysis of Oil Spill Effects on Birds in Section IV.C                                                                                                                            |
| Table A.1-14                    | Environmental Resource Areas Used in the Analysis of Oil Spill Effects on Whales in Section IV.C                                                                                                                           |
| Table A.1-15                    | Environmental Resource Areas Used in the Analysis of Oil Spill Effects on Subsistence Resources in Section IV.C.                                                                                                           |
| Table A.1-15a                   | Environmental Resource Areas Used in the Analysis of Oil Spill Effects on Marine Mammals in Section IV.C                                                                                                                   |
| Table A.1-16                    | Land Segment Identification Number (ID) and the Geographic Place Names within the Land Segment                                                                                                                             |
| Table A.1-17                    | Assumptions about How Launch Areas are Serviced by Pipelines for the Oil-Spill-Trajectory Analysis for the Alternative I, The Proposed Action, Alternative III, Corridor I and Alternative IV, Corridor II                 |
| Table A.1-18                    | Pipeline Spill Frequency Triangular Distribution Properties                                                                                                                                                                |
| Table A.1-19                    | Platform Spill Frequency Triangular Distribution Properties                                                                                                                                                                |
| Table A.1-20                    | Well Blowout Spill Frequency Triangular Distribution Properties                                                                                                                                                            |
| Table A.1-21                    | Pipeline Arctic Effect Derivation Summary                                                                                                                                                                                  |
| Table A.1-22                    | Pipeline Arctic Effect Distribution Derivation Summary                                                                                                                                                                     |
| Table A.1-23                    | Platform Arctic Effect Derivation Summary                                                                                                                                                                                  |
| Table A.1-24                    | Platform Arctic Effect Distribution Derivation Summary                                                                                                                                                                     |
| Table A.1-25                    | Estimated Mean Number of Large Platform, Pipeline and Total Spills for Alternative I, the Proposed Action (Sale 193) and its Alternatives Over the Production Life                                                         |
| Table A.1-26                    | Estimated Chance of One or More Large Platform, Pipeline and Total Spills for Alternative I, the Proposed Action (Sale 193) and its Alternatives over the Production Life                                                  |
| Table A.1-27                    | Estimated Number of Total Spills and Chance of One or More for Alternative I, the Proposed Action (Sale 193) and its Alternatives Using Spill Rates at the 95% Confidence Interval Over the Production Life                |
| Table A.1-28                    | Small Crude-Oil Spills: Estimated Spill Rates for the Alaska North Slope                                                                                                                                                   |

| Table A.1-29 | Small Crude-Oil Spills: Assumed Spills over the Production Life of the Chukchi Sea Sale 193            |
|--------------|--------------------------------------------------------------------------------------------------------|
| Table A.1-30 | Small Crude-Oil Spills: Assumed Size Distribution over the Production Life of the Chukchi Sea Sale 193 |
| Table A.1-31 | Small Refined-Oil Spills: Estimated Rate for the Alaska North Slope                                    |

Table A.1-32Small Refined-Oil Spills: Assumed Spills over the Production Life of the Chukchi Sea Sale 193

#### Appendix A.1 Figure List

| Figures | Titles                                                                                                       |
|---------|--------------------------------------------------------------------------------------------------------------|
| A.1-1   | Fate of Oil Spills in the Ocean During the Arctic Summer                                                     |
| A.1-2   | Fate of Oil Spills in the Ocean During the Arctic Winter                                                     |
| A.1-3   | Gas Chromatograms for the Fresh Alpine Composite                                                             |
| A.1-4   | Nearshore Surface Currents Simulated by the NOAA Model for a Wind from the East of 10 Meters Per Second      |
| A.1-5.  | Basic Parts of a Fault Tree                                                                                  |
| A.1-6   | Typical Fault Tree for a Pipeline Spill                                                                      |
| A.1-7   | Typical Fault Tree for a Platform Spill                                                                      |
| A.1-8   | Schematic of Monte Carlo Process as a Cumulative Distribution Function                                       |
| A.1-9   | Poisson Distribution: Alternative I, Proposed Action, Total (Pipeline and Platform) over the Production Life |
| A.1-10  | Poisson Distribution Alternative III, Corridor I Total (Pipeline and Platform) over the Production Life      |
| A.1-11  | Poisson Distribution Alternative IV, Corridor II, Total (Pipeline and Platform) over the Production Life     |

#### Appendix A.1 Map List Map Titles

| Мар    | Titles                                                                                                     |
|--------|------------------------------------------------------------------------------------------------------------|
| A.1-1  | Study Area Used in the Oil-Spill-Trajectory Analysis                                                       |
| A.1-2a | Environmental Resource Areas Used in the Oil-Spill-Trajectory Analysis                                     |
| A.1-2b | Environmental Resource Areas Used in the Oil-Spill-Trajectory Analysis                                     |
| A.1-2c | Environmental Resource Areas Used in the Oil-Spill-Trajectory Analysis                                     |
| A.1-2d | Environmental Resource Areas Used in the Oil-Spill-Trajectory Analysis                                     |
| A.1-3a | Land Segments (1-39) Used in the Oil-Spill-Trajectory Analysis                                             |
| A.1-3b | Land Segments (40-85) Used in the Oil-Spill-Trajectory Analysis                                            |
| A.1-3c | Land Segments (86-126) Used in the Oil-Spill-Trajectory Analysis                                           |
| A.1-3d | Grouped Land Segments Used in the Oil-Spill-Trajectory Analysis                                            |
| A.1-4a | Hypothetical Launch Areas and Pipelines Used in the Oil-Spill-Trajectory Analysis for the Alternative I    |
| A.1-4b | Hypothetical Launch Areas and Pipelines Used in the Oil-Spill-Trajectory Analysis for the Alternative IIII |
| A.1-4c | Hypothetical Launch Areas and Pipelines Used in the Oil-Spill-Trajectory Analysis for the Alternative IV   |
|        | A 4 ····                                                                                                   |

# Appendix A.1: The Information, Models, and Assumptions We Use to Analyze the Effects of Oil Spills in this EIS.

We analyze crude and refined oil spills and their relative impact to environmental, economic, and sociocultural resource areas and the coastline that could result from offshore oil development in the Chukchi Sea Sale 193 area. Estimating oil-spill occurrence or oil-spill contact is an exercise in probability. Uncertainty exists regarding whether exploration or development will occur at all and if it does, the location, number, and size of oil spill(s) and the wind, ice and current conditions at the time of a spill(s). Although some of the uncertainty reflects incomplete or imperfect data, a considerable amount of uncertainty exists simply because it is difficult to predict events 15-40 years into the future.

We make a set of assumptions to analyze the effects of oil spills in a consistent manner. To judge the effect of a large oil spill, we estimate information regarding the type of oil, the general source of an oil spill, the location and size of a spill, the chemistry of the oil, how the oil will weather, how long it will remain, and where it will go. For small spills, we estimate the type of oil and number and size of a spill. We describe the rationale for these assumptions in the following subsections. The rationale for these assumptions is a mixture of project-specific information, modeling results, statistical analysis, and professional judgment. Based on these assumptions, we assume one large spill occurs and then analyze its effects. After we analyze the effects of a large oil spill, we consider the chance of one or more large oil spills ever occurring over the production life of the project. An analysis is done for small spills considering the number and volume of small spills. We assume small spills will occur over the life of the project.

## A. Estimates of the Source, Type, and Size of Oil Spills.

Table A.1-1 shows the general size categories, source of a spill(s), type of oil, size of spill(s) in barrels, and the receiving environment we assume in our analysis of the effects of oil spills in this Environmental Impact Statement (EIS) for the Alternative I, the Proposed Action; Alternative III, Corridor I; and Alternative IV, Corridor II. The sources of spills are divided generically into platform or pipeline. The type of crude oil used in this analysis is Alpine composite crude. We divide spills into two general size categories: small spills and large spills. Small spills are those less than (<)1,000 barrels (bbl). Large spills are greater than or equal to ( $\geq$ )1,000 bbl. Table A.1-1 shows the EIS section where we analyze the effects of large and small spill(s).

**A.1. Source and Spill-Size Assumptions.** The spill-size assumptions we use for large spills are based on the reported spills from production in the Gulf of Mexico and Pacific outer continental shelf (OCS) and what we believe is likely to occur. We estimate the likely large spill size based on the median spill size in the OCS from 1985-1999. We use Gulf of Mexico and Pacific spill sizes because until recently, no large spills had occurred on the Alaska North Slope. Small spills are based on the historic spill sizes from production on the onshore Alaska North Slope from 1989-2000. Stakeholders, including the North Slope Borough Science Advisory Committee, have stated that they would like spill rates from the Alaska North Slope used in arctic Alaska OCS EIS'. The assumption is that Alaska North Slope spills occur in more similar environments to the offshore Beaufort and Chukchi seas than the Gulf of Mexico and Pacific OCS.

A.1.a. Source and Type of Oil Spills. The source of large oil spills is generalized into two general categories: platforms and pipelines. The source is considered the place where large oil spills could originate from. Large platform spills include spills from wells in addition to any storage tanks located on the platform. Large pipeline spills include spills from the riser and offshore pipeline to the shore. Large platform spills are assumed to be either crude oil or diesel oil from storage tanks. Large pipeline spills are assumed to be crude oil. From oil samples recovered from wells, the Chukchi Sea seems to be characterized by relatively low sulfur (<18%), high-gravity ( $\geq$ 35°) American Petroleum Institute (API) crude oils (Sherwood et al., 1998:129). We looked for Alaska North Slope crude oils with similar API values and that had laboratory weathering data. Alpine composite crude oil has an API of 35° and was chosen to be representative for the oil-weathering simulations.

A.1.b. Historical Crude Oil Spills Greater Than or Equal to 1,000 Barrels on the Outer Continental Shelf. The Gulf of Mexico and Pacific OCS data show that the most likely location of a large spill is from a pipeline or a platform. The median size of a crude oil spill  $\geq$ 1,000 bbl from a pipeline from 1985-1999 on the OCS is 4,600 bbl, and the average is 6,700 bbl (Anderson and LaBelle, 2000). The median spill size for a platform on the OCS over the entire record from 1964-1999 based on trend analysis is 1,500 bbl, and the average is 3,300 bbl (Anderson and LaBelle, 2000). For purposes of analysis, we use the median spill size as the likely large spill size.

A.1.c. Historical Crude Oil Spills from Blowouts on the Outer Continental Shelf and Alaska North Slope.

We consider blowouts to be unlikely events. Blowout events often are equated with catastrophic spills; however, in recent years very few blowout events have resulted in spilled oil, and the volumes spilled often are small. All five of the blowout events  $\geq$ 1,000 bbl in the OCS database occurred between 1964 and 1970 (Table A.1-2). Following the Santa Barbara blowout in 1969, amendments to the OCS Lands Act and implementing regulations significantly strengthened safety and pollution-prevention requirements for offshore activities. Well-control training, redundant pollution-prevention equipment, and subsurface safety devices are among the provisions that were adopted in the regulatory program.

From 1971-2005, 276 exploration and development blowouts occurred, on the OCS while drilling approximately 34,000 wells and producing 15 billion barrels (Bbbl) of oil. From 1971-2005, 33 of those 276 blowouts resulted in oil spills of crude or condensate with the amount of oil spilled ranging from <1 bbl to 350 bbl. The total volume spilled from those 33 blowouts is approximately 1,600 bbl. The volume spilled from blowouts was approximately 0.0000001% of the volume produced. There were no spills  $\geq$ 1,000 bbl from blowouts in the last 35 years on the OCS. Table A.1-3 shows the U.S. Gulf of Mexico OCS blowout frequencies as reported by Holland (1997). These frequencies range from 5.9 x 10<sup>-3</sup> blowouts per well drilled for exploratory drilling to 5 x10<sup>-5</sup> blowouts per well for production.

The blowout record for the Alaska North Slope remains the same as previously reported in USDOI, MMS (2003) and is summarized. Of the 10 blowouts, 9 were gas and 1 was oil. The oil blowout in 1950 resulted from drilling practices that would not be relevant today. A third study confirmed that no crude oil spills  $\geq$ 100 bbl from blowouts occurred from 1985-1999 (Hart Crowser, Inc., 2000). Scandpower (2001) used statistical blowout frequencies modified to reflect specific field conditions and operative systems at Northstar. This report concludes that the blowout frequency for drilling the oil-bearing zone is  $1.5 \times 10^{-5}$  per well drilled. This compares to a statistical blowout frequency of  $7.4 \times 10^{-5}$  per well (for an average development well). This same report estimates that the frequency of oil quantities per well drilled for Northstar for a spill greater than (>) 130,000 bbl is 9.4 x  $10^{-7}$  per well.

A.1.d. Historical Exploration Spills on the Beaufort and Chukchi Outer Continental Shelf. The MMS estimates the chance of a large ( $\geq$ 1,000 bbl) oil spill from exploratory activities to be very low. On the Beaufort and Chukchi OCS, the oil industry drilled 35 exploratory wells. During the time of this drilling, industry has had 35 small spills totaling 26.7 bbl or 1,120 gallons (gal). Of the 26.7 bbl spilled, approximately 24 bbl were recovered or cleaned up. Table A.1-4 shows the exploration spills on the Beaufort and Chukchi OCS. Small (25 bbl or less) operational spills of diesel, refined fuel, or crude oil may occur. The MMS estimates this could be a typical scenario during exploratory drilling in the Beaufort and Chukchi seas. These small spills often are onto containment on platforms, facilities or gravel islands or onto ice and may be cleaned up.

No exploratory drilling blowouts have occurred on the Alaskan OCS. One exploration drilling blowout of gas has occurred on the Canadian Beaufort. Up to 1990, 85 exploratory wells were drilled in the Canadian Beaufort Sea and one shallow gas blowout has occurred. A second incident was not included at the Amaluligak wellsite with the Molikpaq drill platform. This resulted in a gas flow through the diverter, with some leakage around the flange. The incident does not qualify as a blowout by the definition used in other databases and, therefore, was excluded (Devon Canada Corporation, 2004). From 1971-2005, industry has drilled approximately 172 exploration wells in the Pacific OCS, 51 in the Atlantic OCS, 13,142 in the Gulf of Mexico OCS, and 98 in the Alaska OCS, for a total of 13,463 exploration wells. From 1971-2005, there were 66 blowouts during exploration drilling. Of those 66 blowouts, four resulted in oil spills of 200, 100, 11 and 0.8 bbl, respectively. No large spills ( $\geq$ 1,000 bbl) have occurred from 1971-2005 during exploration drilling. Therefore, approximately 13,000 wells have been drilled, and four spills resulted in crude reaching the environment from blowouts during exploration drilling.

# B. Behavior and Fate of Crude Oils.

There are scientific laboratory data and field information from accidental and research oil spills about the behavior and fate of crude oil. We discuss the background information on the fate and behavior of oil in arctic environments and its behavior and persistence properties along various types of shorelines. We also make several assumptions about oil weathering to perform modeling simulations of oil weathering specific to the size spills we estimate for analysis purposes.

**B.1. Generalized Processes Affecting the Fate and Behavior of Oil.** Several processes alter the chemical and physical characteristics and toxicity of spilled oil. Collectively, these processes are referred to as weathering or aging of the oil and, along with the physical oceanography and meteorology, the weathering processes determine the oil's fate. The major oil-weathering processes are spreading, evaporation, dispersion, dissolution, emulsification, microbial degradation, photochemical oxidation, and sedimentation to the seafloor or stranding on the shoreline (Payne et al., 1987; Boehm, 1987; Lehr, 2001) (Figs. A.1-1 and A.1-2).

The physical properties of a crude oil spill, the environment it occurs in, and the source and rate of the spill will affect how an oil spill behaves and weathers. Tables A.1-5, A.1-6 and A.1-7 show the physical properties of Alpine composite crude oil and Figure A.1-3 shows the gas chromatogram.

The environment in which a spill occurs, such as the water surface or subsurface, spring ice-overflow, summer open-water, winter under ice, or winter broken ice, will affect how the spill behaves. In ice-covered waters, many of the same weathering processes are in effect; however, the sea ice changes the rates and relative importance of these processes (Payne, McNabb, and Clayton, 1991).

After a spill occurs, spreading and advection begin. The slick spreads horizontally in an elongated pattern oriented in the direction of wind and currents and nonuniformly into thin sheens (0.5-10 micrometers [ $\mu$ m]) and thick patches (0.1-10 millimeters[mm]) (Elliott, 1986; Elliott, Hurford, and Penn, 1986; Galt et al., 1991). In the cooler arctic waters, oil spills spread less and remain thicker than in temperate waters because of differences in the viscosity of oil due to temperature. This property will reduce spreading. An oil spill in broken ice would spread less and would spread between icefloes into any gaps greater than about 8-15 centimeters (cm) (Free, Cox, and Shultz, 1982).

The presence of broken ice tends to slow the rate of spreading (S.L. Ross Environmental Research Ltd. and D.F. Dickens Assocs. Ltd., 1987). Oil spreading and floe motion were studied to determine how floe motion, ice concentration, slush concentration, and oil types affect spreading in ice. Spreading rates were lowered as ice concentrations increased; but for ice concentrations <20-30%, there was very little effect. Slush ice rapidly decreased spreading. If the ice-cover motion increased, then spreading rates increased, especially with slush ice present (Gjosteen and Loset, 2004). Oil spilled beneath a wind-agitated field of pancake ice would be pumped up onto the surface of the ice or, if currents are slow enough, bound up in or below the ice (Payne et al., 1987). Once oil is encapsulated in ice, it has the potential to move distances from the spill site with the moving ice.

Evaporation results in a preferential loss of the lighter, more volatile hydrocarbons, increasing density and viscosity and reducing vapor pressure and toxicity (Mackay, 1985). Evaporation of volatile components accounts for 30-40% of crude loss, with approximately 25% occurring in the first 24 hours (Fingas, Duval, and Stevenson, 1979; National Research Council, 1985). The initial evaporation rate increases with increasing wind speeds, temperatures, and sea state. Evaporative processes occur on spills in ice-covered waters, although at a lower rate (Jordan and Payne, 1980). Fuel oils (diesel) evaporate more rapidly than crude, on the order of 13% within 40 hours at 23 °Celsius (73 °Fahrenheit); a larger overall percentage of diesel eventually will evaporate. Evaporation decreases in the presence of broken ice and stops if the oil is under or encapsulated in the ice (Payne et al., 1987). The lower the temperature, the less crude oil evaporates. Both Prudhoe Bay and Endicott crudes have experimentally followed this pattern (Fingas, 1996). Oil between or on icefloes is subject to normal evaporation. Oil that is frozen into the underside of ice is unlikely to undergo any evaporation until its release in spring. In spring as the ice sheet deteriorates, the encapsulated oil will rise to the surface through brine channels in the ice. As oil is released to the surface, evaporation will occur. Dispersion of oil spills occurs from wind, waves, currents, or ice. Dispersion is an important breakup process that results in the transport of small oil particles (0.5  $\mu$ m-several mm) or oil-in-water emulsions into the water column (Jordan and Payne, 1980; National Research Council, 1985). Droplets <0.5 mm or less rise slowly enough to remain dispersed in the water column (Payne and McNabb, 1985). The dispersion rate is directly influenced by sea state; the higher the sea state and breaking waves, the more rapid the dispersion rate (Mackay, 1985). The presence of broken ice promotes dispersion (Payne et al., 1987). Any waves within the ice pack tend to pump oil onto the ice. Some additional oil dispersion occurs in dense, broken ice through floe-grinding action. More viscous and/or weathered crudes may adhere to porous icefloes, essentially concentrating oil within the floe field and limiting the oil dispersion.

Dissolution results in the loss of soluble, low-molecular-weight aromatics such as benzene, toluene, and xylenes (National Research Council, 1985). low-molecular weight aromatics, which are acutely toxic, rapidly dissolve into the water column. Dissolution, however, is very slow compared with evaporation; most volatiles usually evaporate rather than dissolve. Dissolved-hydrocarbon concentrations underneath a slick, therefore, tend to remain <1 part per million (Malins and Hodgins, 1981). Dissolved-hydrocarbon concentration can increase due to the promotion of dispersion by broken ice (Payne et al., 1987).

Emulsified oil results from oil incorporating water droplets in the oil phase and generally is referred to as mousse (Mackay, 1982). The measurable increases in viscosity and specific gravity observed for mousse change its behavior, including spreading, dispersion, evaporation, and dissolution (Payne and Jordan, 1985). The formation of mousse slows the subsequent weathering of oil. The presence of slush ice and turbulence promotes oil-in-water emulsions (Payne et al., 1987).

Most of the oil droplets suspended in the water column eventually will be degraded by bacteria in the water column or deposited on the seafloor. The rate of sedimentation depends on the suspended load of the water, the water depth, turbulence, oil density, and incorporation into zooplankton fecal pellets.

Subsurface blowouts or gathering-pipeline spills disperse small oil droplets and entrained gas into the water column. With sufficient gas, turbulence, and the necessary precursors in the oils, mousse forms by the time the oil reaches the surface (Payne, 1982; Thomas and McDonagh, 1991). For subsurface spills, oil rises rapidly to the water surface to form a slick. Droplets <50 microns in size, generally 1% of the blowout volume, could be carried several kilometers downcurrent before reaching the water surface (Environmental Sciences Limited, 1982). Blowout simulations show that convective cells set up by the rising oil and gas plume result in concentric rings of waves around the central plume. Surface currents within the ring should move outward, and surface currents outside the ring should move inward, resulting in a natural containment of some oil.

The subsurface release of oil droplets increases slightly the dissolution of oil, but the rapid rise of most oil to the surface suggests that the increase in dissolution—as a percentage of total spill volume—is fairly small. The resulting oil concentration, however, could be substantial, particularly for dispersed oil in subsurface plumes.

An oil spill that moved under landfast ice would follow this sequence:

- (1) The oil will rise to the under-ice surface and spread laterally, accumulating in the under-ice cavities (Glaeser and Vance 1971; NORCOR, 1975; Martin, 1979; Comfort et al., 1983).
- (2) For spills that occur when the ice sheet is still growing, the pooled oil will be encapsulated in the growing ice sheet (NORCOR, 1975; Keevil and Ramseier, 1975; Buist and Dickens, 1983; Comfort et al., 1983). In the spring as the ice begins to deteriorate, the encapsulated oil will rise to the surface through brine channels in the ice (NORCOR, 1975; Purves, 1978; Martin, 1979; Kisil, 1981; Dickins and Buist, 1981; Comfort et al., 1983).

The spread of oil under the landfast ice may be affected by the presence of currents, if the magnitude of those currents is large enough. A field study near Cape Parry in the Northwest Territories reported that currents up to 10 cm per second (cm/sec) were present. This current was insufficient to strip oil from under the ice sheet after the oil had ceased to spread (NORCOR, 1975). Laboratory tests have shown that currents in excess of 15-25 cm/sec are required to strip oil from under-ice depressions (Cammaert, 1980; Cox et al., 1980). Current speeds in the

nearshore Beaufort generally are <10 cm/sec during winter (Weingartner and Okkonen 2001). The area of contamination for oil under ice could increase if the ice were to move. Because the nearshore Beaufort and the very nearshore Chukchi is in the landfast ice area, the spread of oil due to ice movement would not be anticipated until spring breakup. Lately, breakout events of landfast ice, as described in Section III.A.4a and 4f, have occurred prior to spring.

Prince et al. (2003) discuss three northern spills and demonstrate that photo-oxidation and biodegradation play an important role in the long-term weathering of crude oils. Photo-oxidation and biodegradation would continue to weather the oil remaining.

Alpine composite crude oil will emulsify readily to form stable emulsions. Emulsification of some crude oils is increased in the presence of ice. With floe grinding, it is likely that Alpine crude may form mousse within a few hours, an order of magnitude more rapidly than in open water.

**B.2.** Oil-Spill Persistence. S.L. Ross et al. (2003) completed a study on the persistence of oil spilled on the surface of the water. The following definition of oil-slick persistence was used for this study: An oil slick is considered to be persisting on the sea surface when it can be observed to be a coherent slick, or perceptible segments of a coherent slick, by normal methods of slick detection, such as aerial surveillance.

They surveyed reports of oil-spill incidents throughout the world was completed. Major oil spill incidents from the *Torrey Canyon* in 1967 to the *Erika* in 1999/2000 have generated an immense amount of literature, but the information on oil-slick persistence (the critical parameter to this study) has seldom been detailed. The number of useable incidents was reduced, from an initial 154 to 84, by first removing the spills that occurred in inland or restricted waters (ports and harbors) then reduced further to 20 by applying other criteria (information availability, crude oil only). Of the final incident list, 13 were releases from tankers and 7 were oil-well blowouts. In addition to these, a database of 12 experimental spills was compiled, for which good persistence data existed. These experimental spills all involved much smaller oil volumes. Correlation analyses were carried out on three data sets and, although they by no means gave definitive results because of the small size of the sets, they did indicate the relative importance of different variables and their dependencies for each of the three data sets. Regression analysis with the three data sets showed that:

1. Wind speed did not have a statistically significant effect on persistence (as defined in this study).

2. Countermeasures effort did not have a statistically significant effect on persistence.

3. The following regressions of historic spill data should be used by MMS to estimate the mean persistence of slicks on open water for modeling purposes:

For spills  $\geq$  1,000 bbl in size: PD  $\geq$ 1000bbl = 0.0001S - 1.32T + 33.1 Where, PD = Spill persistence in days S = Spill size in bbl T = Water temperature in degrees Celsius

How long an oil spill persists on water based on these equations ranges from about 29 days in summer to 34 days in winter for a 1,500- or 4,600-bbl spill. These equations are based on limited spills of this size, as most of the spills in the database are either a magnitude of order larger or smaller and these estimates should be used with caution. Refinement of quantitative estimates of oil-slick persistence will depend on collecting further information on spills and their lifetime as slicks on the water. Currently, this information is not routinely collected during the oil-spill response.

**B.3.** Shoreline Type. The shoreline habitats and the estimation of the behavior and persistence of oil on intertidal habitats is based on an understanding of the dynamics of the coastal environments, not just the substrate type and grain size. The sensitivity of a particular intertidal habitat is an integration of the following factors: (1) shoreline type (substrate, grain size, tidal elevation, origin); (2) exposure to wave and tidal energy; (3) biological productivity and sensitivity; and (4) ease of cleanup. All of these factors are used to determine the relative

sensitivity of intertidal habitats. Key to the sensitivity ranking is an understanding of the relationships between physical processes; substrate; shoreline type; product type; fate and effect; and sediment-transport patterns. The intensity of energy expended on a shoreline by wave action, tidal currents, and river currents directly affects the persistence of stranded oil. The need for shoreline-cleanup activities is determined, in part, by the slowness of natural processes in removal of oil stranded on the shoreline. These concepts have been used in the development of the ESI, which ranks shoreline environments as to their relative sensitivity to oil spills, potential biological injury, and ease of cleanup. Generally speaking, areas exposed to high levels of physical energy, such as wave action and tidal currents, and low biological activity rank low on the scale, whereas sheltered areas with associated high biological activity rank highest. A comprehensive shoreline habitat-ranking system has been developed for the entire United States. The shoreline habitats delineated on the Northwest Alaska and North Slope of Alaska are listed in order of increasing sensitivity to spilled oil:

1A) Exposed Rocky Shore 1B) Exposed Solid Manmade Structure 3A) Fine- to Medium-Grained Sand Beaches 3C) Tundra Cliffs 4) Coarse-Grained Sand Beaches 5) Mixed Sand and Gravel Beaches 6A) Gravel Beaches 7) Exposed Tidal Flats 8A) Sheltered Rocky Shores and Sheltered Scarps in Bedrock, Mud, or Clay 8B) Sheltered, Solid Manmade Structures **8E)** Peat Shorelines 9A) Sheltered Tidal Flats 9B) Sheltered Vegetated Low Banks 10A) Salt- and Brackish-Water Marshes 10E) Inundated Low-Lying Tundra U) Unranked

The ESI rankings progress from low to high susceptibility to oil spills. In many cases, the shorelines also are ranked with multiple codes such as 10E/7. The first number is the most landward shoreline type, saltmarsh, with exposed tidal flats being the shoreline type closest to the water. For purposes of analysis, we use the shoreline type closest to the water. Table A.1-8 shows the percentage length of each ESI ranking for the most seaward shoreline type for each land segment in United States, Alaska waters. No ESI data are available for Russia.

The percentage length of each ESI type was derived by determining the length of coastline for each land segment. The length of each ESI type was determined for that land segment and then calculated as a percentage of the total land segment length.

# **B.4.** Assumptions about Large Oil-Spill Weathering:

- The crude oil properties will be similar to Alpine composite crude oil (Table A.1-5, 6, and 7).
- The size of the crude or diesel spill is 1,500 or 4,600 bbl.
- The wind, wave, and temperature conditions are as described.
- The spill is a surface spill.
- Meltout spills occur into 50% ice cover.
- The properties predicted by the model are those of the thick part of the slick.
- The spill occurs as an instantaneous spill over a short period of time.
- The fate and behavior are as modeled (Tables A.1-9, 10 and 11).
- The oil spill persists for up to 30 days in open water.

Uncertainties exist, such as:

• the actual size of the oil spill or spills, should they occur;

- whether the spill is instantaneous or chronic;
- wind, current, wave, and ice conditions at the time of a possible oil spill; and
- the crude oil properties at the time of a possible spill.

**B.5. Modeling Simulations of Oil Weathering.** To judge the effect of an oil spill, we estimate information regarding how much oil evaporates, how much oil is dispersed and how much oil remains after a certain time period. We derive the weathering estimates of Alpine Composite crude oil and arctic diesel from modeling results from the SINTEF Oil Weathering Model (OWM) Version 3.0 (Reed et al., 2005a) for up to 30 days.

B.5.a. Alpine Composite Laboratory Test Results. Alpine oil composite was chosen for simulations of oil weathering, because it is a light crude oil that falls within the category of 35-40° API oils estimated to occur in the Sale 193 area. On July 21, 2001, ConocoPhillips gathered a crude oil sample from the Alpine central processing facility. The oil sample was named Alpine Composite. This sample was sent to SINTEF for Laboratory benchmark testing as described in Daling and Strom (1999) and Reed et al. (2005b). The Alpine Composite is a paraffinic crude oil, with a density of 0.834 grams per milliliter. The Alpine Composite contains a relatively large amount of lower molecular-weight compounds. The Alpine Composite contains approximately 4% wax and <0.1 % asphaltenes by weight. The Alpine composite has a high amount of lighter components, and evaporative loss will vield great changes in physical properties for the oil. The Alpine Composite has an initial pour point at -18 °C (-0.4 °F). As the Alpine composite has a large evaporative loss, it also displays the greatest change in pour point with evaporation. The low pour points are due to high amounts of light components in the oils, keeping heavier components as wax in solution. Upon evaporative loss, the chemical composition changes, and, for example, as wax is allowed to precipitate, the pour point is getting higher. The maximum water content of the Alpine Composite water-in-oil-emulsions is high (all are above 80%). The rate of formation is relatively fast, after approximately 30 minutes the Alpine Composite water in oil-emulsions reached a water content above 50 % by volume. The fast emulsification rates are typical for paraffinic crude oils.

**B.5.b.** Alpine Composite Simulations of Oil Weathering. We use the SINTEF OWM to perform simulations of oil weathering. The SINTEF OWM changes both oil properties and physical properties of the oil. The oil properties include density, viscosity, pour point, flash point, and water content. The physical processes include spreading, evaporation, oil-in-water dispersion, and water uptake. The SINTEF OWM Version 3.0 performs a 30-day time horizon on the model-weathering calculations, but with a warning that the model is not verified against experimental field data for more than 4-5 days. The SINTEF OWM has been tested with results from three full-scale field trials of experimental oil spills (Daling and Strom, 1999).

The SINTEF OWM does not incorporate the effects of the following:

- currents;
- beaching;
- containment;
- photo-oxidation;
- microbiological degradation;
- adsorption to particles; and
- encapsulation by ice.

The simulated Alpine composite crude oil spill sizes are 1,500 or 4,600 bbl. The diesel oil spill size is 1,500 bbl. We simulate two general scenarios: one in which the oil spills into open water and one in which the oil freezes into the ice and melts out into 50% ice cover. We assume open water is June through October, and a winter spill melts out in June. We assume the spill starts at the surface. For open water, we model the weathering of the 1,500- or 4,600-bbl spills as if they are instantaneous spills. For the meltout spill scenario, we model the entire spill volume as an instantaneous spill. Although different amounts of oil could melt out at different times, the MMS took the conservative approach, which was to assume all the oil was released at the same time. We report the results at the end of 1, 3, 10, and 30 days.

For purposes of analysis, we look at the mass balance of the oil spill; how much is evaporated, dispersed and remaining. Tables A.1-9, 10, and 11 summarize the results we assume for the amount evaporated, dispersed, and remaining for Alpine Composite crude oil and diesel oil in our analysis of the effects of oil on environmental and sociocultural resources. The Alpine Composite contains a relatively large amount of lower molecular-weight compounds, and approximately 29% and 33% of its original volume evaporated within 1 and 3 days, respectively, at both summer and winter temperatures. Alpine Composite will form water-in-oil-emulsion with a maximum water content of 80% at both winter and summer temperatures, yielding approximately five times the original spill volume (Reed et al. 2005b). At the average wind speeds over the Sale 193 area, dispersion is slow, ranging from 0-16%. However, at higher wind speeds (e.g., 15 m/s wind speed) the slick will be almost removed from the sea surface within a day.

# C. Estimates of Where a Large Offshore Oil Spill May Go.

We study how and where large offshore spills move by using a computer model called the Oil-Spill-Risk Analysis model (Smith et al., 1982). By large, we mean spills  $\geq$ 1,000 bbl. This model analyzes the likely paths of oil spills in relation to biological, physical, and sociocultural resource areas. The model uses information about the physical environment, including files of wind, sea ice, and current data. It also uses the locations of environmental resource areas, sociocultural resource areas, barrier islands, and the coast that are within the model study area.

# C.1. Inputs to the Oil-Spill-Trajectory Model.

- study area
- arctic seasons
- location of the coastline
- location of environmental resource areas
- location of land segments
- location of boundary segments
- location of hypothetical launch areas
- location of hypothetical pipelines and transportation assumptions
- current and ice information from two general circulation models
- wind information

**C.1.a. Study Area and Boundary Segments.** Map A.1-1 shows the Chukchi Sea Sale 193 oil-spill-trajectory study area extends from lat. 68° N. to 75° N. and from long. 134° W. to 174° E. The study area is formed by 38 boundary segments and the Beaufort and Chukchi seas (United States and Russia) coastline. The boundary segments are vulnerable to spills in both arctic summer and winter. We chose a study area large enough to mostly contain the paths of 2,700 hypothetical oil spills each through as long as 360 days.

**C.1.b.** Arctic Seasons. We define three time periods for the trajectory analysis of oil spills. The first is from June 1 through October 31 and generally represents open water or arctic summer. We ran 1,125 trajectories in the arctic summer. The second is from November 1 through May 31 and generally represents ice cover or arctic winter. We also ran 1,575 trajectories in the arctic winter. The last is annual, which is from January through December, and represents the entire year. We ran 2,700 trajectories over the annual season.

**C.1.c.** Locations of Environmental Resource Areas. Maps A.1-2a, A.1-2b, A.1-2c and A.1-2d show the location of the 84 environmental resource areas (ERA's). These ERA's represent concentrations of wildlife, subsistence-hunting areas, and subsurface habitats. Our analysts designate these ERA's. The analysts also designate in which months these ERA's are vulnerable to spills. The names or abbreviations of the ERA's and their months in which they are vulnerable to spills are shown in Table A.1-12. Information regarding the general and specific ERA's for birds, subsistence resources, whales, and polar bears is found in Tables A.1-13, 14, 15, and 15a. We also include Land as an additional environmental resource area. Land is the entire study area coastline and is made up of the individual land segments (LS's) 1 through 126 which are described below.

**C.1.d. Location of Land Segments.** The coastline was further analyzed by dividing the Chukchi (United States and Russia) and Beaufort seas coastline into 126 land segments. Maps A.1-3a, A.1-3b and A.1-3c show the location of these 126 land segments. Land segments are vulnerable to spills in both summer and winter. The model defines summer as June through October and winter from November through May. The land segment identification numbers (ID) and the geographic place names within the land segment are shown in Table A.1-16. Some land segments were grouped together to represent geographic places. These grouped land segments are shown on Map A.1-3d and are as follows:

| Grouped Land Segment Name                                          | Land Segment ID's    |
|--------------------------------------------------------------------|----------------------|
| Wrangel Island Nature Reserve Natural World Heritage Site (Russia) | 1-12                 |
| Bering Land Bridge National Preserve                               | 41, 42, 45-50        |
| Selawik National Wildlife Refuge                                   | 56                   |
| Cape Krusenstern National Monument                                 | 57-59                |
| Alaska Maritime National Wildlife Refuge                           | 62, 63, 65           |
| National Petroleum Reserve Alaska                                  | 76, 77, 80-83, 86-93 |
| Kasegaluk Lagoon Special Area (NPR-A)                              | 76-77                |
| Teshekpuk Lake Special Area (NPR-A)                                | 89-93                |
| Arctic National Wildlife Refuge                                    | 103-111              |
| Ivvavik National Park (Canada)                                     | 112-117              |
| Kendall Island Bird Sanctuary (Canada)                             | 124-125              |
| Russia Chukchi Coast                                               | 1-39                 |
| United.States Chukchi Coast                                        | 40-84                |
| Unites States Beaufort Coast                                       | 85-111               |
| Canada Beaufort Coast                                              | 112-126              |

#### C.1.e. Location of Proposed and Alternative Hypothetical Launch Areas and Hypothetical Pipeline

**Segments.** The MMS does not know where companies may lease, explore and eventually develop resources. Although we know some areas are more likely than others, we need to look at all of the Sale area that are open to leasing and cover those areas in an oil spill analysis. The maps of launch areas and pipeline segments are hypothetical locations meant to cover the Sale 193 area for analysis and are not meant to represent or suggest any particular development scenario.

Map A-4a shows the location of the 13 hypothetical launch areas (LA1-LA13) and 11 hypothetical pipeline segments (P1-P11) from 5 hypothetical pipelines, the sites where large oil spills could originate, if they were to occur. Pipeline locations are entirely hypothetical. They are not meant to represent five proposed pipelines nor any real or planned pipeline locations. They are spaced along the coast to evaluate differences in oil-spill trajectories from different locations along the coast.

Hypothetical launch points were spaced at one-tenth-degree intervals in the north-south direction (about 11.25 kilometers [km]) and one-third-degree intervals in the east-west direction (about 12.67 km). At this resolution, there were 1,002 total launch points in space, grouped into 13 launch areas (LA1-LA13).

A total of 2,700 trajectories (1,575 in winter; 1,125 in summer) from each hypothetical launch point over the 15 years of wind data (1982-1996), and results of these trajectory simulations were combined to represent platform spills from 13 launch areas (LA1 through LA13 Map A.1-4a). LA1 through LA3 are >150 mi offshore. LA4 through LA7 are approximately 90-150 mi offshore. LA9 through LA13 are approximately 30-90 mi offshore. Pipeline spills were represented by 2,700 trajectories (1,575 in winter; 1,125 in summer) launched from each grid point along each pipeline segment (P1 through P11, Map A.1-4a).

Maps A.1-4b and Map A.1-4c show the location of the launch areas and pipelines for Alternative III and IV, respectively, to indicate where launch points would be removed. Table A.1-17 shows the transportation assumptions for the launch areas and their associated pipelines.

For Sale 193 Alternative I, we assume no oil large spills occur during exploration activities. Development/production activities for Sale 193 could occur in any of the launch areas (LA1-LA13) or along any of the pipeline segments (P1-P11).

**C.1.f. Current and Ice Information from a General Circulation Model.** For the Chukchi Sea Sale 193, we use two general circulation models to simulate currents  $(U_{current})$  or ice  $(U_{ice})$ , depending on whether the location is nearshore or offshore.

*C.1.f(1) Offshore.* Offshore of the 10- to 20-meter (m) bathymetry contour, the wind-driven and density-induced ocean-flow fields and the ice-motion fields are simulated using a three-dimensional, coupled, ice-ocean hydrodynamic model (Haidvogel, Hedstrom, and Francis, 2001). The model is based on the ocean model of Haidvogel, Wilkin, and Young (1991) and the ice models of Hibler (1979) and Mellor and Kantha (1989). This model simulates flow properties and sea-ice evolution in the western Arctic during the years 1982-1996. The coupled system uses the S-Coordinate Rutgers University Model (SCRUM) and Hibler viscous-plastic dynamics and the Mellor and Kantha thermodynamics. It is forced by daily surface geostrophic winds and monthly thermodynamic forces. The model is forced by thermal fields for the years 1982-1996. The thermal fields are interpolated in time from monthly fields. The location of each trajectory at each time interval is used to select the appropriate ice concentration. The pack ice is simulated as it grows and melts. The edge of the pack ice is represented on the model grid. Depending on the ice concentration, either the ice or water velocity with wind drift from the stored results of the Haidvogel, Hedstrom, and Francis (2001) coupled ice-ocean model is used. A major assumption used in this analysis is that the ice-motion velocities and the ocean daily flows calculated by the coupled ice-ocean model adequately represent the flow components. Comparisons with data illustrate that the model captures the first-order transport and the dominant flow (Haidvogel, Hedstrom, and Francis, 2001).

*C.1.f(2)* Nearshore. Inshore of the 10- to 20-m bathymetry contour in the Beaufort Sea,  $U_{current}$  is simulated using a two-dimensional (2D) hydrodynamic model developed by the National Oceanic and Atmospheric Administration (NOAA) (Galt, 1980, Galt and Payton, 1981). This model does not have an ice component. The 2D model incorporated the barrier islands in addition to the coastline. The model of the shallow water is based on the wind forcing and the continuity equation. The model was originally developed to simulate wind-driven, shallow-water dynamics in lagoons and shallow coastal areas with a complex shoreline. The solutions are determined by a finite element model, where the primary balance is between the wind forcing friction, the pressure gradients, coriolis accelerations, and the bottom friction. The time dependencies are considered small, and the solution is determined by iteration of the velocity and sea level equations, until the balanced solution is calculated. The wind is the primary forcing function, and a sea level boundary condition of no anomaly produced by the particular wind stress is applied far offshore, the northern boundary of the oil-spill-trajectory analysis domain. An example of the currents simulated by this model for a 10-m/sec wind is shown in Figure A.1-4.

The results of the model were compared to current meter data from the Endicott Environmental Monitoring Program to determine if the model was simulating the first order transport and the dominant flow. The model simulation was similar to the current meter velocities during summer. Example time series from 1985 show the current flow at Endicott Station ED1 for the U (east-west) and V (north-south) components plotted on the same axis with the current derived from the NOAA model for U and V (Der-U and Der-V). The series show many events that coincide in time, and that the currents derived from the NOAA model generally are in good correspondence with the measured currents. Some of the events in the measured currents are not particularly well represented, and that probably is due to forcing of the current by something other than wind, such as low frequency alongshore wave motions.

**C.1.f(3)** Landfast Ice Mask. In both the offshore and nearshore models, we added an ice mask within the 0-m and approximately 10- to 20-m water-depth contours to simulate the observed shorefast-ice zone. For each month October through June we apply the monthly ice mask, one for each of those months. For the Beaufort Sea and a portion of the Chukchi Sea the landfast ice mask was derived from the minimum landfast ice observed each month from October to June in a study titled Mapping and Characterization of Recurring Spring Leads and Landfast ice in the Beaufort and Chukchi Seas (Eiken et al., 2006). For the southern Chukchi to the Bering Strait the landfast ice mask was taken from Stringer, Barrett, and Schreurs (1980) and was applied from December to May. The Canadian Beaufort minimum landfast ice limit was taken from Arctic Environmental Sensitivity Atlas System

produced by Environment Canada (2000) and is applied October to June. The documentation in the Arctic Environmental Atlas describes the sources of that data as follows:

1. ATMOSPHERIC ENVIRONMENT SERVICE. 1974-1986. Canadian Ice Charts. Ice Forecasting Central, Environment Canada, Ottawa.

2. CANADA CENTRE FOR REMOTE SENSING. 1973-1983. Selected LANDSAT Imagery. Energy, Mines and Resources Canada, Ottawa.

3. SPEDDING, L.G. and B.W. DANIELEWICZ. 1983. Artificial Islands and Their Effect on Regional Landfast Ice Conditions in the Beaufort Sea. Joint Report Esso Resources Canada Limited and Dome Petroleum Limited, Calgary.

For the Russian Chukchi coast landfast minimum, we reviewed monthly National Ice Center data in ArcGIS for the period 1979-2004. We applied a query to distinguish landfast ice. We conservatively placed the minimum landfast ice line between the 10- and 20-m contour for the months in which landfast ice was present along the coast (October to June).  $U_{ice}$  is zero for the landfast ice mask for the months in which it is applied.

**C.1.g. Wind Information.** We use 15 of the 17-year reanalysis of the wind fields provided to us by Rutgers. The TIROS Operational Vertical Sounder (TOVS) has flown on NOAA polar-orbiting satellites since 1978. Available from July 7, 1979, through December 31, 1996, and stored in Hierarchical Data Format, the TOVS Pathfinder (Path-P) dataset provides observations of areas poleward of lat. 60° N. at a resolution of approximately 100 x 100 km. The TOVS Path-P data were obtained using a modified version of the Improved Initialization Inversion Algorithm (31) (Chedin et al., 1985), a physical-statistical retrieval method improved for use in identifying geophysical variables in snow- and ice-covered areas (Francis, 1994). Designed to address the particular needs of the polar-research community, the dataset is centered on the North Pole and has been gridded using an equal-area azimuthal projection, a version of the Equal-Area Scalable Earth-Grid (EASE-Grid) (Armstrong and Brodzik, 1995).

Preparation of a basinwide set of surface-forcing fields for the years 1980 through 1996 has been completed (Francis, 1999). Improved atmospheric forcing fields were obtained by using the bulk boundary-layer stratification derived from the TOVS temperature profiles to correct the 10-m level geostrophic winds computed from the National Center for Environmental Prediction Reanalysis surface pressure fields. These winds are compared to observations from field experiments and coastal stations in the Arctic Basin and have an accuracy of approximately 10% in magnitude and 20 degrees in direction.

**C.1.h. Oil-Spill Scenario.** For purposes of this trajectory simulation, all spills occur instantaneously. For each trajectory simulation, the start time for the first trajectory was the first day of the season (winter or summer) of the first year of wind data (1982) at 6 a.m. Greenwich Mean Time (GMT). The summer season consists of June 1-October 30, and the winter season is November 1-May 31. Each subsequent trajectory was started every 2 days at 6 a.m. GMT. The spatial resolution of the trajectory simulations was well within the spatial resolution of the input data, and the interval of time between releases was sufficiently short to sample weather-scale changes in the input winds (Price et al., 2004).

# C.2. Oil-Spill-Trajectory Model Assumptions:

- Oil spills occur in the hypothetical launch areas or along hypothetical pipeline segments.
- Companies transport the produced oil through pipelines.
- An oil spill reaches the water.
- An oil spill encapsulated in the landfast ice does not move until the ice moves or it melts out.
- Oil spills occur and move without consideration of weathering. The oil spills are simulated each as a point with no mass or volume. The weathering of the oil is estimated in the stand-alone SINTEF OWM model.
- Oil spills occur and move without any cleanup. The model does not simulate cleanup scenarios. The oil-spill trajectories move as though no booms, skimmers, or any other response action is taken.

• Oil spills stop when they contact the mainland coastline, but not the offshore barrier islands in Stefansson Sound.

Uncertainties exist, such as:

- the actual size of the oil spill or spills, should they occur;
- whether the spill reaches the water;
- whether the spill is instantaneous or a long-term leak;
- the wind, current, and ice conditions at the time of a possible oil spill;
- how effective cleanup is;
- the characteristics of crude oil at the time of the spill;
- how Alpine Composite crude oil will spread; and
- whether or not production occurs.

**C.3. Oil-Spill-Trajectory Simulation.** The trajectory-simulation portion of the model consists of many hypothetical oil-spill trajectories that collectively represent the mean surface transport and the variability of the surface transport as a function of time and space. The trajectories represent the Lagrangian motion that a particle on the surface might take under given wind, ice, and ocean-current conditions. Multiple trajectories are simulated to give a statistical representation, over time and space, of possible transport under the range of wind, ice, and ocean-current conditions that exist in the area.

Trajectories are constructed from simulations of wind-driven and density-induced ocean flow fields and the icemotion field. The basic approach is to simulate these time- and spatially dependent currents separately, then combine them through linear superposition to produce an oil-transport vector. This vector is then used to create a trajectory. Simulations are performed for three seasons: winter (November-May), summer (June-October), and annual (January-December). The choice of this seasonal division was based on meteorological, climatological, and biological cycles and consultation with Alaska OCS Region analysts.

For cases where the ice concentration is below 80%, each trajectory is constructed using vector addition of the ocean current field and 3.5% of the instantaneous wind field—a method based on work done by Huang and Monastero (1982), Smith et al. (1982), and Stolzenbach et al. (1977). For cases where the ice concentration is 80% or greater, the model ice velocity is used to transport the oil. Equations 1 and 2 show the components of motion that are simulated and used to describe the oil transport for each spillete:

1  $U_{\text{oil}} = U_{\text{current}} + 0.035 U_{\text{wind}}$  or

2  $U_{\text{oil}} = U_{\text{ice}}$ 

where:  $U_{oil} = oil drift vector$   $U_{current} = current vector (when ice concentration is <80%)$   $U_{wind} = wind speed at 10 m above the sea surface$  $U_{ice} = ice vector (when ice concentration is <math>\geq$ 80%)

The wind-drift factor was estimated to be 0.035, with a variable drift angle ranging from 0°-25° clockwise. The drift angle was computed as a function of wind speed according to the formula in Samuels, Huang, and Amstutz (1982). (The drift angle is inversely related to wind speed.)

The trajectories age while they are in the water and/or on the ice. For each day that the hypothetical spill is in the water, the spill ages—up to a total of 360 days. While the spill is in the ice ( $\geq$ 80% concentration), the aging process is suspended. The maximum time allowed for the transport of oil in the ice is 360 days, after which the trajectory is terminated. After coming out of the ice, into open water, the trajectory ages to a maximum of 30 days.

# C.4. Results of the Oil-Spill-Trajectory Model.

**C.4.a.** Conditional Probabilities: Definition and Application. The chance that an oil spill will contact a specific ERA or land or boundary segment within a given time of travel from a certain location or spill site is termed a conditional probability. The condition is that we assume a spill occurs. Conditional probabilities assume a spill has occurred and the transport of the spilled oil depends only on the winds, ice, and ocean currents in the study area.

For the Chukchi Sea Sale 193, we estimate conditional probabilities of contact within 3, 10, 30, 60, 180, or 360 days during summer. Summer spills are spills that begin in June through October. Therefore, if any contact to an ERA or land segment is made by a trajectory that began before the end of October, it is considered a *summer contact* and is counted along with the rest of the contacts from spills launched in summer. We also estimate the conditional probability of contact from spills that start in winter, freeze into the landfast ice, and melt out in spring. We estimate contacts from these spills for 3, 10, 30, 60, 180, or 360 days. Winter spills are spills that begin in November through May, melt out of the ice, and contact during the open-water period. Therefore, if any contact to an ERA or land segment is made by a trajectory that began by the end of May, it is considered a *winter contact* and is counted along with the rest of the contacts from spills launched in the winter.

*C.4.a(1) Conditional Probabilities: Results.* The chance of a spill contacting, assuming a spill has occurred, is taken from the conditional oil-spill-trajectory model results summarized generally below and listed in Tables A.2-1 through A.2-72. For specific analysis of conditional probabilities in regard to specific resources please see Section IV.C.

C.4.a(1)(a) Comparisons between Spill Location and Season. The primary differences of contact between hypothetical launch areas and pipeline segments are geographic in the perspective of west to east and nearshore versus offshore. Offshore spill locations take longer to contact the coast and nearshore ERA's, if contact occurs at all. Winter spill contact to nearshore and coastal resources is less often and, to a lesser extent, due to the landfast ice in place from December to April. Hypothetical spills have a stochastic northerly or southwesterly direction of spread.

The western edge of the proposed lease area is adjacent to Russian territory. Table A.1-91 shows the range of annual conditional probabilities that an oil spill starting at particular location will contact Russian waters within 3, 10, 30, 60, 180, or 360 days. The chance of contact is estimated to gridded boxes within the study area boundary on the Russian side of the boundary. The chance of an oil spill contacting Russian territory is 2% or less within 180 days for a spill starting in the northeast portion of the proposed lease area (LA7, LA8, and LA13; Map A.1-4A). The chance of a spill contacting Russian territory is slightly greater for launch areas in central parts of the proposed lease area (LA2, LA3, LA5, LA6, and LA11). For those launch areas, the chance of a spill contacting Russian territory is 5% or less within 60 days. The chance of a spill contacting Russian territory is higher for the western edge of the proposed lease area (LA 1, LA 4, and LA9). For those launch areas, the chance of a spill contacting Russian territory is about 9% or less within 10 days.

### C.4.a(1)(b) Generalities Through Time.

**3 Days:** In general, contact to individual land segments (LS's) and ERA Land is due to hypothetical spills from the nearshore pipeline segments where assumed hypothetical pipelines could come ashore. There is a <0.5% chance of a large spill contacting the ERA Land or individual land segments from launch areas or pipeline segments that begin approximately 30-150 mi offshore from the coast. Launch areas or pipeline segments adjacent to or on top of ERA's have the highest percent chance of contact within 3 days.

During the entire year (annual), pipeline segments P1, P6, P9 or P11 have a <0.5-3 % chance of contacting individual LS's 64 (Point Hope), 65 (Cape Lisburne), 72-74 (Point Lay-Kasegaluk Lagoon), 79 (Wainwright), or 82 (Skull Cliff) (Table A.2-7). All other launch areas and pipeline segments have a <0.5% chance of contacting individual land segments within 3 days over the entire year. The chance of contact to ERA Land ranges from 1-6% for P1, P6, P9, or P11 (Table A.2-1). All other launch areas and pipeline segments have a <0.5% chance of contact to Land (Table A.2-1). During the summer, pipeline segments P1, P6, P9, or P11 have a <0.5-5% chance of contacting individual LS's 64 (Point Hope), 65 (Cape Lisburne), 72-74 (Point Lay-Kasegaluk Lagoon), 79

(Wainwright), or 80-83 (Eluksingiak Point-Nulavik) (Table A.2-31). All other launch areas (both nearshore and offshore) and pipeline segments have a <0.5% chance of contacting individual land segments within 3 days over summer. During the winter, pipeline segments P1, P6, or P11 have a <0.5-3 % chance of contacting individual LS's 64 (Point Hope), 65 (Cape Lisburne), 72-74 (Point Lay-Kasegaluk Lagoon), or 82 (Skull Cliff) (Table A.2-56). All other launch areas (both nearshore and offshore) and pipeline segments have a <0.5% chance of contacting individual LS's within 3 days over winter (Table A.2-56).

Launch areas or pipeline segments adjacent to or on top of ERA's have the highest percent chance of contact. During the entire year, launch areas LA1-LA13 have a <0.5-28% chance of contacting individual ERA's (Table A.2-1). Pipeline segments P1-P11 have a <0.5-39% chance of contacting individual ERA's (Table A.2-1). During summer, launch areas LA1-LA13 have a <0.5-56% chance of contacting individual ERA's (Table A.2-25). During summer, pipeline segments P1-P11 have a <0.5-57% chance of contacting individual ERA's (Table A.2-25). During winter, launch areas LA1-LA13 have a <0.5-27% chance of contacting individual ERA's (Table A.2-25). During winter, launch areas LA1-LA13 have a <0.5-27% chance of contacting individual ERA's (Table A.2-49). During winter, pipeline segments P1-P11 have a <0.5-40% chance of contacting individual ERA's (Table A.2-49).

10 Days: During the entire year (annual), pipeline segments P1, P3, P6, P9 or P11 have a <0.5-6 % chance of contacting individual LS's 64-66 (Point Hope-Ayugatak Lagoon), 71-75 (Sitkok Point-Icy Cape), or 78-85 (Point Collie to Barrow) (Table A.2-8). Nearshore launch areas LA9-LA13 have a <0.5-2% chance of contacting LS's 64-65 (Point Hope-Cape Lisburne), 71-75(Sitkok Point-Icy Cape), 79-80 (Wainwright-Kugrua Bay) or 84-85 (Barrow area) (Table A.2-8). All other launch areas and pipeline segments have a <0.5% chance of contacting individual land segments within 10 days over the entire year. The chance of contact to ERA Land ranges from 7-17% for P1, P3, P6, P9, or P11 (Table A.2-2) and 1-4% for LA9-LA13. All other launch areas and pipeline segments have a <0.5% chance of contact to ERA Land (Table A.2-2). During summer, pipeline segments P1, P3, P6, P9, or P11 have a <0.5-8% chance of contacting individual land segments (Point Hope-Ayugatak Lagoon), 65 (Cape Lisburne), 71-76 (Sitkok Point-Avak Inlet), or 78-85 (Nivat Point-Barrow) (Table A.2-32). Nearshore launch areas LA9-LA13 and offshore LA8 have a <0.5-4% chance of contacting LS's 64-65 (Point Hope - Cape Lisburne), 71-75(Sitkok Point-Icy Cape), 79-80 (Wainwright-Kugrua Bay) or 83-85 (Nulavik) (Table A.2-32). All other launch areas (both nearshore and offshore) and pipeline segments have a <0.5% chance of contacting individual land segments within 10 days over summer. During winter, pipeline segments P1, P6, P9, or P11 have a <0.5-6% chance of contacting individual LS's 64-65 (Point Hope-Cape Lisburne), 72-75 (Point Lay-Icy Cape), 79-80 (Wainwright-Kugrua Bay) and 82-85 (Skull Cliff-Barrow) (Table A.2-56). Nearshore launch areas LA10, LA11 or LA13 have a <0.5-1% chance of contacting 72-75(Point Lay-Icy Cape) or 84-85(Barrow Area) (Table A.2-56). All other launch areas (both nearshore and offshore) and pipeline segments have a <0.5% chance of contacting individual land segments within 10 days over winter (Table A.2-56).

Launch areas or pipeline segments adjacent to or on top of ERA's have the highest percent chance of contact. During the entire year, launch areas LA1 through LA13 have a <0.5-40% chance of contacting individual ERA's (Table A.2-2). Pipeline segments P1 through P11 have a <0.5-47% chance of contacting individual ERA's (Table A.2-2). During summer, launch areas LA1 through LA13 have a <0.5-63% chance of contacting individual ERA's (Table A.2-26). During summer, pipeline segments P1 through P11 have a <0.5-67% chance of contacting individual ERA's (Table A.2-26). During summer, pipeline segments P1 through P11 have a <0.5-67% chance of contacting individual ERA's (Table A.2-26). During winter, launch areas LA1 through LA13 have a <0.5-67% chance of contacting individual ERA's (Table A.2-26). During winter, launch areas LA1 through LA13 have a <0.5-37% chance of contacting individual ERA's (Table A.2-50). During winter, pipeline segments P1 through P11 have a <0.5-51% chance of contacting individual ERA's (Table A.2-50).

**30 Days:** Within 30 days, large spills from the southern and western portion of the planning area (P1, LA4 or LA9) have a small chance (<0.5-1%) of contacting Russian Chukchi coastline individual land segments. The percent chance of contacting the grouped land segments Russia Chukchi Coastline (ERA 95) ranges from 1-5% from LA1, LA4, LA9, P1, P2, or P3. If large oil spills contact the U.S shoreline along the Chukchi coast, most of the contact occurs within 30 days.

During the entire year (annual), P1, LA4 or LA9 have a <0.5-1 % chance of contacting LS's 27or 34-39 (Rigol, Tepeken-Uelen, Russia) (Table A.2-9). P1, P3, P5, P6, P9, LA5, LA9, LA10 or LA 11 have a <0.5%-8% chance of contacting individual LS's 64-66 (Point Hope-Ayugatak Lagoon), or 71-77 (Sitkok Point-Noketlek Point) (Table A.2-9). LA7, LA8, LA11-LA13, or P8-P11 have a <0.5-5% chance of contacting individual LS's 78-86 (Point

Collie-Plover Islands) (Table A.2-9). All other launch areas (both nearshore and offshore) and pipeline segments have a <0.5% chance of contacting individual LS's within 30 days over the entire year (Table A.2-9).

During summer, P1, P3, LA4 or LA9 have a <0.5-2 % chance of contacting LS's 27or 34-39 (Rigol, Enumino, Mys Serdtse-Kamen, Uelen, Russia) and a <0.5-9% chance of contacting LS's 63-66 (Cape Seppings-Ayugatak Lagoon) (Table A.2-23). P1, P3, P5, P6, P8-P11, LA4, LA5, or LA7-LA13 have a <0.5%-13% chance of contacting at least one individual LS's 63-86 (Cape Seppings-Plover Islands) (Table A.2-9). All other launch areas (both nearshore and offshore) and pipeline segments have a <0.5% chance of contacting individual land segments within 30 days over summer (Table A.2-23).

During winter, P1, P2, LA4 or LA9 have a <0.5-1 % chance of contacting LS's 27, 35, 36 or 39 (Rigol, Tepeken-Uelen, Russia) and a <0.5-2% chance of contacting LS's 63-66 (Cape Seppings-Ayugatak Lagoon) (Table A.2-57). P1, P3, P5, P6, P8-P11, LA4, LA5, or LA7-LA13 have a <0.5%-7% chance of contacting LS's 64-65 (Point Hope-Cape Lisburne), 74-75 (Kuchaurak-Icy Cape), or 78-85 (Point Collie-Barrow) (Table A.2-57). All other launch areas (both nearshore and offshore) and pipeline segments have a <0.5% chance of contacting individual land segments within 30 days over winter (Table A.2-57).

Launch areas or pipeline segments adjacent to or on top of ERA's have the highest percent chance of contact. During the entire year, launch areas LA1-LA13 have a <0.5-51% chance of contacting individual ERA's (Table A.2-3). Pipeline segments P1-P11 have a <0.5-58% chance of contacting individual ERA's (Table A.2-3). During summer, launch areas LA1-LA13 have a <0.5-69% chance of contacting individual ERA's (Table A.2-27). During summer, pipeline segments P1-P11 have a <0.5-71% chance of contacting individual ERA's (Table A.2-27). During winter, launch areas LA1-LA13 have a <0.5-79% chance of contacting individual ERA's (Table A.2-27). During winter, launch areas LA1-LA13 have a <0.5-59% chance of contacting individual ERA's (Table A.2-27). During winter, pipeline segments P1-P11 have a <0.5-63% chance of contacting individual ERA's (Table A.2-51).

# D. Oil-Spill-Risk Analysis.

A measure of oil-spill impact is determined by looking at the chance of one or more large spills occurring and then contacting a resource of concern. This analysis helps determine the relative spill occurrence and contact associated with oil and gas production in different regions of the proposed sale area. Combined probabilities are estimated using the conditional probabilities, the historical oil-spill rates, the resource estimates, and the assumed transportation scenarios. These are combined through matrix multiplication to estimate the mean number of one or more large spills occurring and contacting.

**D.1. Chance of One or More Large Spills Occurring.** The chance of one or more large spills occurring is derived from two components: (1) the spill rate and (2) the resource volume estimates. The spill rate is multiplied by the resource volume to estimate the mean number of spills. Oil spills are treated statistically as a Poisson process, meaning that they occur independently of one another. If we constructed a histogram of the chance of exactly 0 spills occurring during some period, the chance of exactly 1 spill, 2 spills, and so on, the histogram would have a shape known as a Poisson distribution. An important and interesting feature of this distribution is that it is entirely described by a single parameter, the mean number of spills. Given its value, you can calculate the entire histogram and estimate the chance of one or more large spills occurring. The oil-resource volume estimate is 1 Bbbl for Alternative I, the Proposed Action.

**D.1.a.** Large Spill Rates. We derive the large oil spill rates from a modeling study done by the Bercha Group, Inc. (2006a). This study examined alternative oil-spill-occurrence estimators for the Chukchi Sea using a fault-tree method. Using fault trees, oil-spill data from the Gulf of Mexico were modified and incremented to represent expected Arctic performance and included both Arctic and non-Arctic variability.

Fault-tree analysis is a method for estimating the spill rate resulting from the interactions of other events. Fault trees are logical structures that describe the causal relationship between the basic system components and events resulting in system failure. Fault-tree models are a graphical technique that provides a systematic description of the combinations of possible occurrences in a system, which can result in an undesirable outcome. Figure A-5 shows the generalized parts of a fault tree starting with the top event. The top event is defined as the failure under

investigation. In this case, it is either a large pipeline or platform spill. A series of events that lead to the top event are described and connected by logic gates. Logic gates define the mathematical operations conducted between events.

Figure A-6 shows a typical fault tree for large pipeline spills. The most serious undesirable outcome, such as a large pipeline spill, was selected as the top event. A fault tree was constructed by relating the sequences of events that, individually or in combination, could lead to the leak or spill. The tree was constructed by deducing, in turn, the preconditions for the top event and then successively for the next levels of events, until the basic causes were identified. In Figure A-6, these events included corrosion, third-party impact, operation impact, mechanical failure, and natural hazards—unknown and Arctic. These sub-resultant events were further elucidated to determine their base cause. For example, corrosion could be internal or external corrosion; third-party impact could be due to fishing, trawling, jackup, or anchor impact. Figure A-7 shows a typical fault tree for a large platform spill. The most serious undesirable outcome, such as a large platform spill, was selected as the top event. Events include a process facility release, a storage tank release, structural failure, hurricane or storm, collision, and Arctic. The sub-resultant events that make up the Arctic included ice force, low temperature, and others.

Probabilities were assigned to each event so that the probability of the top event was estimated. This required knowledge of the probable failure rates for each event. At an OR gate in a fault tree, the probabilities were added to give the probability of the next event. The fault trees in the Bercha Group, Inc. (2006a) report were composed entirely of OR gates. The computation of resultant events consisted of the addition of the probabilities of events at each level of the fault tree to obtain the resultant probability at the next higher value.

In the Bercha Group Inc. (2006a) study, fault trees were used to transform historical spill statistics for non-Arctic regions to predictive spill-occurrence estimates for the Beaufort Sea program area. The Bercha Group, Inc. (2006a) fault-tree analysis focused on Arctic effects as well as the variance in non-Arctic effects such as spill size and spill frequency. Arctic effects were treated as a modification of existing spill causes as well as unique spill causes. Modification of existing spill causes included those that also occur in other OCS regions but at a different frequency, such as trawling accidents. Unique spill causes included events that occur only in the Arctic, such as ice gouging, strudel scour, upheaval buckling, thaw settlement, and other for pipelines. For platforms, unique spill causes included ice force, low temperature, and other.

The treatment of uncertainties in the probabilities assigned to each event was estimated as discussed in the following.

**Treatment of Uncertainties:** The measures of uncertainty calculated were expanded beyond Arctic effects in each fault-tree event to include the non-Arctic variability in spill size, spill frequency, and facility parameters including wells drilled, number of platforms and subsea wells and subsea pipeline length. The inclusion of these types of variability—Arctic effects, non-Arctic data and facility parameters—is intended to provide a realistic estimate of spill-occurrence indicators and their resultant variability.

The treatment of uncertainties was examined through numerical simulation. To assess the impact of uncertainties in the Arctic effects incorporated fault trees, ranges around the expected value were estimated for all the Arctic effects, both modified and unique for Arctic effects. The numerical distributions generated through these perturbations in the expected values were modeled as triangular distributions and input to the numerical simulation analysis conducted as part of the result generation (Bercha Group, Inc. 2006a).

In order to model the variability of the base data and its distribution through the Arctic effects, using the Monte Carlo approach, an appropriate distribution needs to be derived. As in the previous study Bercha Group, Inc. (2006b), a triangular distribution was selected. The triangular distribution typically is used as a descriptor of a population for which there is only limited sample data, as is the current case. The distribution is based on knowledge of a minimum and maximum, which was derived from the historical data here, and an educated guess as to what the modal value might be. Here, the modal value was chosen to be a function of the average historical value. Despite being a simplistic description of a population, the triangular distribution is a very useful one for modeling processes where the relationship between variables is understood, but data are scarce.

Also, when combining several variables in a functional relationship using numerical methods, as is done in Monte Carlo Simulation, the triangular distribution is a preferred one due to its simplicity and relatively accurate probabilistic resultant when evaluated by a large number of random draws, as occurs in the Monte Carlo process. The data used here typifies sparse data with a preferred or modal value and an easily identifiable maximum and minimum. Then, for the case of the simple upper and lower 100% confidence interval (called High and Low), the expected value E (or mean value) of the triangular distribution can be expressed as:

E = (High + Mode + Low) / 3

For maximum and minimum that are not at the 100% confidence interval level, such as those at 90% confidence levels, a Monte Carlo computation is used to evaluate the expected value of each distribution. Based on the historical data, the triangular distribution expected value computed from the low, mode, and high values at 90% confidence intervals are given in Tables A.1-18, A.1-19 and A.1-20 for pipelines, platforms, and wells respectively.

Numerical simulation methods are tools for evaluating the properties of complex, as well as nondeterministic processes. Problems can have an enormous number of dimensions or a process that involves a path with many possible branch points, each of which is governed by some fundamental probability of occurring. A type of numerical simulation, called Monte Carlo simulation, was used to obtain the outcome of a set of interactions for equations in which the independent variables are described by distributions of any arbitrary form. The Monte Carlo simulation is a systematic method for selecting values from each of the independent variable distributions and computing all valid combinations of these values to obtain the distribution of the dependent variable. This was done using a computer, so that thousands of combinations can be rapidly computed and assembled to give the output distribution.

Consider the example of the following equation:

### $\mathbf{X} = \mathbf{X}_{1}\mathbf{S} + \mathbf{X}_{2}$

Where, X is the dependent variable, S is the size of the spill in bbl, and  $X_1$  and  $X_2$  are correlation coefficients. Suppose now that  $X_1$  and  $X_2$  are some arbitrary distributions that can be described by a collection of values  $X_1$  and  $X_2$ . What we do in the Monte Carlo process, figuratively, is to put the collection of the  $X_1$  values into one hat, the  $X_1$  hat, and the  $X_2$  values into an  $X_2$  hat. We then randomly draw one value from each of the hats and compute the resultant value of the dependent variable, X. This is done several thousand times. Thus, a resultant or dependent variable distribution, X, is estimated from the computations of all valid combinations of the independent variables (X<sub>1</sub> and X<sub>2</sub>), for a given S.

Generally, the resultant can be viewed as a cumulative distribution function as illustrated in Figure A.1-8. Such a cumulative distribution function (CDF) also is a measure of the accuracy or, conversely, the variance of the distribution. As can be seen from this figure, if the distribution is a vertical line, no matter where one draws on the vertical axis, the same value of the variable will result, that is, the variable is a constant. At the other extreme, if the variable is completely random, the distribution will be represented as a diagonal straight line between the minimum and maximum value. Intermediate qualitative descriptions of the randomness of the variable follow from inspection of the CDF in Figure A-7. For example, if we are interested in confidence intervals, we simply take the value of the abscissa corresponding to the appropriate confidence interval, say 0.95 or 95%.

**D.1.a(1)** Fault-Tree Input Data and Their Uncertainty Variations. The Arctic effects include modifications to events associated with the historical data set from other OCS regions, hereafter called Arctic modified effects, and adding spill events unique to the arctic environment, hereafter called Arctic unique effects. Arctic modified effects are those changing the frequency component of certain contributions to events such as anchor impacts which could occur both in the Arctic and temperate zones. Arctic modified effects for pipelines apply to external corrosion, internal corrosion, anchor impact, jackup rig or spud barges, trawl/fishing net, rig anchoring, workboat anchoring, mechanical connection failure or material failure, and mudslide events. Table A.1-21 shows the input rationalization of the Arctic modified effects for pipelines. Arctic modified effects for platforms apply to process facility release, storage tank release, structural failure, hurricane/storm and collision events. Table A.1-23 shows the input rationalizations of the Arctic modified effects for platform events. The frequency increments in this table

are given as the median values calculated using the Monte Carlo method with inputs as the low, expected, and high values.

Arctic unique effects are additive components that are unique to the Arctic environment. Quantification of existing events for the Arctic was done in a relatively cursory way restricted to engineering judgment.

For pipelines, Arctic unique effects included ice gouging, strudel scour, upheaval buckling, thaw settlement, and other. Table A.1-21 shows the input rationalization of the Arctic unique effects for pipelines. A reproducible but relatively elementary analysis of gouging and scour effects was carried out. The ice-gouge failure rate was calculated using an exponential failure distribution for a 2.5-m cover, 0.2-m average gouge depth, and 4-gougesper-kilometer-year flux. Strudel scour was assumed to occur only in shallow water, with an average frequency of four scours per square mile and 100 ft of bridge length with a 10% conditional pipeline failure probability. Upheaval-buckling and thaw-settlement effect assessments were included on the basis of professional judgment; no engineering analysis was carried out for the assessment of frequencies to be expected for these effects. Upheaval buckling was assumed to have a failure frequency of 20% of that of strudel scour. Thaw settlement was assumed to have a failure frequency of 10% of that of strudel scour. Table A.1-22 shows the variance in the pipeline arctic effect inputs. The existing MMS databases on pipeline mileage were used as they stood with all their inherent inaccuracies. Arctic unique effects for platforms included ice force, low temperature and other. Table A.1-24 shows the variance in the platform Arctic unique effect inputs. No Arctic unique effects were estimated for the wells, which were considered to blow out with frequencies the same as those for the Gulf of Mexico. The above information summarizes the input data to the fault trees and their uncertainty variation. For further information the reader is directed to Bercha Group, Inc. (2006a).

#### D.1.a(2) Results for Spill Rates.

| Туре      | Mean                                     | Mean                         |
|-----------|------------------------------------------|------------------------------|
| Platforms | 0.21 spills per billion barrels produced | 6 spills per thousand years  |
| Pipelines | 0.30 spills per billion barrels produced | 8 spills per thousand years  |
| Total     | 0.51 spills per billion barrels produced | 14 spills per thousand years |

The annual rates were weighted by the annual production over the total production or the year over the total years, and the prorated rates were summed to determine the rates over the life of the project as shown above. Bercha Group, Inc. (2006a) calculated confidence intervals on the total spill rate per billion barrels at the 95% confidence interval (CI) are as follows:

| Туре  | Mean                                     | 95% CI                                        |
|-------|------------------------------------------|-----------------------------------------------|
| Total | 0.51 spills per billion barrels produced | 0.32-0.77 spills per billion barrels produced |

D.1.b. Resource-Volume Estimates. The resource volume estimates are discussed in Section IV.A.2.a.

**D.1.c. Transportation Assumptions.** Appendix A.1 Section C - Estimates of Where an Oil Spill May Go discusses the transportation assumptions for the launch areas and their associated hypothetical pipelines.

**D.1.d. Results for the Chance of One or More Large Spills Occurring.** The chance of one or more large spills occurring does not factor in the chance that a development project occurs. Given the many logistical, economic, and engineering factors, there is probably a <10% chance that a commercial field will be leased, discovered, and developed. However, because leasing and exploration could lead to a development project, the MMS must evaluate what would happen if a development occurred even though the chance of that happening is probably very small in a frontier area like the Chukchi Sea. Our estimate of one or more large spills occurring assumes there is a 100% chance that a project will be developed and 1 Bbbl of oil will be produced. Clearly, this overstates the oil-spill occurrence associated with leasing and exploration in the Chukchi Sea where it is unlikely a development will occur from those activities. If a development occurs, this oil-spill analysis more accurately represents the chance of one or more large spills occurring.

The chance of one or more large spills occurring assumes there is a 100% chance that a project will be developed and 1 Bbbl of oil will be produced. The large spill rates used in this section are all based on spills per billion barrels. Using the above mean large spill rates, Table A.1-25 shows the estimated mean number of large oil spills for Alternative I, the Proposed Action and its alternatives. For Alternative I, the Proposed Action, we estimate 0.30 pipeline spills and 0.21 platform (and well) spills for a total over the life of Sale 193 production of 0.51 spills. Table A.1-27 shows the estimated total number of oil spills for the Proposed Action using spill rates at the 95% CI. For Alternative I, the Proposed Action, total spills over the life of the Sale 193 production range from 0.32-0.77 spills. For purposes of analysis, one large spill was assumed to occur and is analyzed in this EIS.

For Alternative III, Corridor I, we estimate 0.19 pipeline spills and 0.13 platform (and well) spills for a total over the life of Sale 193 production of 0.33 spills. Table A.1-27 shows the estimated total number of oil spills for the Proposed Action using spill rates at the 95% CI. For Alternative III, Corridor I, total spills over the life of the Sale 193 production range from 0.20-0.49 spills. For purposes of analysis, one large spill was assumed to occur and is analyzed in this EIS.

For Alternative IV, Corridor II, we estimate 0.25 pipeline spills and 0.18 platform (and well) spills for a total over the life of Sale 193 production of 0.43 spills. Table A.1-27 shows the estimated total number of oil spills for the Proposed Action using spill rates at the 95% CI. For Alternative IV, Corridor II, total spills over the life of the Sale 193 production range from 0.27-0.65 spills. For purposes of analysis, one large spill was assumed to occur and is analyzed in this EIS.

Using the above mean spill rates, Table A.1-26 shows the chance of one or more large pipeline spills occurring is 26% and the chance of one or more large platform (wells and platform) spills is 19% for Alternative I, the Proposed Action over the life of production. The total is derived from the sum of the platform, wells and pipeline mean number of spills. The chance of one or more large spills total occurring is 40% for Alternative I, the Proposed Action over the life of production. Figure A.1-9 shows the Poisson distribution. The chance of no spills occurring is 60% for Alternative I, the Proposed Action. Table A.1-27 shows the chance of one or more large spills total for Alternative I, the Proposed Action using spill rates at the 95% CI. For Alternative I, the Proposed Action, the percent chance of one or more large spills total ranges from 27-54% at the 95% confidence interval (Table A.1-27).

Table A.1-26 shows the chance of one or more large pipeline spills occurring is 17% and the chance of one or more large platform (wells and platform) spills is 12% for Alternative III, Corridor I over the life of production. The total is the sum of the platform, wells and pipeline mean number of spills. The chance of one or more large spills total occurring is 28% for Alternative III, Corridor I. Figure A.1-10 shows the Poisson distribution. The chance of no spills occurring is 72% for Alternative III, the Corridor I. Table A.1-27 shows the chance of one or more large spills total for Alternative III, the Corridor I using spill rates at the 95% CI. For Alternative III, the Corridor I, the percent chance of one or more large spills total ranges from 18-39% at the 95% confidence interval (Table A.1-27).

Table A.1-26 shows the chance of one or more large pipeline spills occurring is 22% and the chance of one or more large platform (wells and platform) spills is 16% for Alternative IV, Corridor II over the life of production. The total is the sum of the platform, wells and pipeline mean number of spills. The chance of one or more large spills total occurring is 35% for Alternative IV, Corridor II. Figure A.1-11 shows the Poisson distribution. The chance of no spills occurring is 65% for Alternative IV, the Corridor II. Table A.1-27 shows the chance of one or more large spills total for Alternative IV, the Corridor II using spill rates at the 95% CI. For Alternative IV, the Corridor II, the percent chance of one or more large spills total ranges from 24-48% at the 95% CI (Table A.1-27).

**D.2.** Chance of a Large Spill Contacting. The chance of a large spill contacting is taken from the oil-spill-trajectory model results summarized in Section C.4.b and listed in Tables A.2-1 through A.2-72.

**D.3. Results of the Oil-Spill-Risk Analysis: Combined Probabilities.** Tables A.2-73 through A.2-90 show the annual combined probabilities for the Proposed Action and its alternatives. The combined probabilities reflect the chance of one or more large spills occurring and contacting over the assumed production life of the lease area. For the most part, the chance of one or more large spills occurring and contacting ERAs and land segments is 7% or less over 30 days or 14% or less over 360 days for Alternative I. For ERA's, with a chance of occurrence and contact  $\geq 0.5\%$ , the chance of one or more large spills occurring and contacting a certain ERA

ranges from 1-4%, 1-5% and 1-7% within 3,10 and 30 days respectively for Alternative I. The chance of one or more large spills occurring and contacting a certain ERA ranges from 1-2%, 1-3% and 1-3% within 3, 10, and 30 days respectively for Alternative III. The chance of one or more large spills occurring and contacting a certain ERA ranges from 1-3%, 1-4% and 1-5% within 3, 10, and 30 days, respectively, for Alternative IV. The chance of one or more large spills occurring and contacting individual land segments is 1% or less within 30 days. For Alternative I, land segments with a 1% chance of one or more spills occurring and contacting after 30 days include LS's 72 (Point Lay), 73 (Tungaich Point), 74 (Kasegaluk Lagoon), and 75 (Icy Cape). For Alternative III, land segments with a 1% chance of one or more spills occurring and contacting after 30 days include LS's 73 (Tungaich Point). For Alternative IV, land segments with a 1% chance of one or more spills occurring and contacting after 30 days include LS's 73 (Tungaich Point). For Alternative IV, land segments with a 1% chance of one or more spills occurring and contacting after 30 days include LS's 73 (Tungaich Point). For Alternative IV, land segments with a 1% chance of one or more spills occurring and contacting after 30 days include LS's 73 (Tungaich Point), 73 (Tungaich Point), and 74 (Kasegaluk Lagoon).

# E. Small Oil Spills.

Small spills are spills that are <1,000 bbl. We analyze the effects of small spills in Section IV.C. We consider two types of small spills: crude oil and refined oil.

We use the Alaska North Slope record of small spills. We expect the same companies and regulators to participate offshore in the Chukchi Sea as those that are now operating on the onshore Alaska North Slope. We expect similar but not exact environmental conditions. We believe it is reasonable to assume that the rate in the Beaufort Sea will be similar to the rate on the Alaska North Slope. The OCS rate of crude and refined small spills is approximately 3,460 spills per billion barrels, and the North Slope rate is approximately 618 spills per billion barrels. For whatever reason, the spill rate on the Alaska North Slope is significantly less than the OCS rate.

The analysis of operational small oil spills uses historical oil-spill databases and simple statistical methods to derive general information about small crude and refined oil spills that occur on the Alaska North Slope. This information includes estimates of how often a spill occurs for every billion barrels of oil produced (oil-spill rates), the mean (average) number of oil spills, and the mean and median size of oil spills from facilities, pipelines, and flowlines combined. We then use this information to estimate the number, size, and distribution of operational small spills that may occur from Chukchi Sea Sale 193. The analysis of operational small oil spills considers the entire production life of the Chukchi Sea sale and assumes the following:

- commercial quantities of hydrocarbons are present in the multiple-sale Program Area, and
- these hydrocarbons will be developed and produced at the estimated resource levels.

Uncertainties exist, such as

- the estimates required for the assumed resource levels, or
- the actual size of a crude- or refined-oil spill.

We use the history of crude and refined oil spills reported to the State of Alaska, Department of Environmental Conservation (ADEC) and the Joint Pipeline Office to determine crude and refined oil-spill rates and patterns from Alaska North Slope oil and gas exploration and development activities for spills ≥1gallon and <1,000 bbl. Refined oil includes aviation fuel, diesel fuel, engine lube, fuel oil, gasoline, grease, hydraulic oil, transformer oil, and transmission oil. The Alaska North Slope oil-spill analysis includes onshore oil and gas exploration and development spills from the Point Thompson Unit, Badami Unit, Kuparuk River Unit, Milne Point Unit, Prudhoe Bay West Operating Area, Prudhoe Bay East Operating Area, and Duck Island Unit.

The Alaska North Slope oil-spill database of all spills  $\geq 1$  gallon is from ADEC. Oil-spill information is provided to ADEC by private industry according to the State of Alaska Regulations 18 AAC 75. The totals are based on initial spill reports and may not contain updated information. The ADEC database integrity is most reliable for the period 1989 and after due to increased scrutiny after the *Exxon Valdez* oil spill (Volt, 1997, pers. commun.). For this analysis, the database integrity cannot be validated thoroughly. However, we use this information, because it is the only information available to us about small spills. For this analysis, the ADEC database is spot-checked against spill records from ARCO Alaska, Inc. and British Petroleum, Inc. All spills  $\geq 1$  gallon are included in the dataset.

We use the time period January 1989 through December 2000 in this analysis of small oil spills for the Chukchi Sea.

A simple analysis of operational small oil-spills is performed. Alaska North Slope oil-spill rates are estimated without regard to differentiating operation processes. The ADEC database base structure does not facilitate quantitative analysis of Alaska North Slope oil-spill rates separately for platforms, pipelines, or flowlines.

**E.1. Results for Small Operational Crude Oil Spills.** The analysis of Alaska North Slope crude oil spills is performed collectively for all facilities, pipelines, and flowlines. The pattern of crude oil spills on the Alaska North Slope is one of numerous small spills. Of the crude oil spills that occurred between 1989 and 2000, 31% were  $\leq 2$  gallons (gal); 55% were  $\leq 5$  gal. Ninety-eight percent of the crude oil spills were <1,050 gal (25 bbl), and 99% were <2,520 gal (60 bbl). The spill sizes in the database range from <1 gal-38,850 gal (925 bbl). The average crude oil-spill size on the Alaska North Slope is 113.4 gal (2.7 bbl), and the median spill size is 5 gal. For purposes of analysis, this EIS assumes an average crude oil-spill size of 126 gal (3 bbl).

Table A.1-28 shows the estimated crude oil-spill rate for the Alaska North Slope is 178 spills per billion barrels produced for spills less than 500 bbl and 0.64 spills per billion barrels produced for spills  $\geq$ 500 bbls. Table A.1-29 shows the assumed number, size, and total volume of small spills for the Proposed Action and alternatives. Table A.1-30 shows the assumed size distribution of those spills for the Proposed Action and alternatives.

The causes of Alaska North Slope crude oil spills, in decreasing order of occurrence by frequency, are leaks, faulty valve/gauges, vent discharges, faulty connections, ruptured lines, seal failures, human error, and explosions. The cause of approximately 30% of the spills is unknown.

**E.2. Results for Small Operational Refined Oil Spills.** The typical refined products spilled are aviation fuel, diesel fuel, engine lube, fuel oil, gasoline, grease, hydraulic oil, transformer oil, and transmission oil. Diesel spills are 58% of refined oil spills by frequency and 83% by volume. Engine lube oil spills are 10% by frequency and 3% by volume. Hydraulic oil is 26% by frequency and 10% by volume. All other categories are <1% by frequency and volume. Refined oil spills occur in conjunction with oil exploration and production. The refined oil spills correlate to the volume of Alaska North Slope crude oil produced. As production of crude oil has declined, so has the number of refined oil spills. Table A.1-31 shows that from January 1989-December 2000, the spill rate for refined oil is 440 spills per billion barrels produced. Table A.1-32 shows the assumed refined oil spills during the lifetime of the Proposed Action and its alternatives.

**E.3.** Assumptions for Purposes of Small Spill Analysis. The average crude-oil spill size is 126 gal (3 bbl) for spills less than 500 bbl. An estimated 178 small crude oil spills could occur during the 25-year oil-production period for Alternative I (Table A.1-29), an average of over 7 per year. The average refined-oil spill size is 29 gal (0.7 bbl) and an estimated 440 refined-oil spills would occur during the 25-year oil-production period for Alternative I (Table A.1-32), an average of 17.6 per year. Overall, an estimated 25 crude and refined oil spills less than 500 barrels would occur each year of production for Alternative I. The average crude-oil spill size is 680 bbl for spills  $\geq$  500 bbl. An estimated 1 small crude oil spill  $\geq$  500 bbl could occur during the 25-year oil-production period for Alternative I, III, or IV (Table A.1-29).

### BIBLIOGRAPHY

- Anderson, C.M. and R.P. LaBelle. 2000. Update of Comparative Occurrence Rates for Offshore Oil Spill. *Spill Science and Technology* 65/6:303-321.
- Armstong, R.L. and M.J. Brodzik. 1995. An Earth-Gridded SSM/I Data Set for Crysopheric Studies and Global Change Monitoring. *Advanced Space Research* 16:155-163.
- Bercha Group, Inc. 2006a. Alternative Oil Spill Occurrence Estimators and their Variability for the Chukchi Sea -Fault Tree Method. OCS Study MMS 2006-033. Anchorage, AK: USDOI, MMS, Alaska OCS Region, 136 pp. plus appendices.
- Bercha Group, Inc. 2006b. Alternative Oil Spill Occurrence Estimators and their Variability for the Beaufort Sea -Fault Tree Method. OCS Study MMS 2005-061. Anchorage, AK: USDOI, MMS, Alaska OCS Region, 137 pp. plus appendices.
- Bergman, R.D., R.L. Howard, K.F. Abraham, and M.W. Weller. 1977. Water Birds and Their Wetland Resources in Relation to Oil Development at Storkerson Point, Alaska. Resource Publication 129. Washington, DC: USDOI, FWS, 38 pp.
- Boehm, P.D. 1987. Transport and Transformation Processes Regarding Hydrocarbon and Metal Pollutants in Offshore Sedimentary Environments. In: Long-Term Environmental Effects of Offshore Oil and Gas Development, D.F. Boesch and N.N. Rabalais, eds. London: Elsevier Applied Sciences, pp. 233-286.
- Braund, S.R. and D.C. Burnham. 1984. Subsistence Economics and Marine Resource Use Patterns. *In*: The Barrow Arch Environment and Possible Consequences of Planned Offshore Oil and Gas Development. Proceedings of a Synthesis Meeting, J.C. Truett, ed. Girdwood, Ak., Anchorage, AK: USDOI, MMS, Alaska OCS Region and USDOC, NOAA, OCSEAP.
- Buist, I.A. and D.F. Dickins. 1983. Fate and Behavior of Water-in-Oil Emulsions in Ice. Canadian Offshore Oilspill Research Association Report CS 11. Calgary, Alberta, Canada: Dome Petroleum Ltd.
- Burch, E.S., Jr. 1985. Subsistence Production in Kivalina, Alaska: A Twenty-Year Perspective. Technical Report 28. Juneau, AK: State of Alaska, Dept. of Fish and Game, Subsistence Div.
- Cammaert, A.B. 1980. Oil and Gas under Ice Laboratory Study. No. RWC17. Canadian Marine Drilling Ltd. and Canada Environmental Protection Service.
- Chedin, A., N.A. Scott, C. Wahiche, and P. Moulineir. 1985. The Improved Initialization Inversion Method: A High Resolution Physical Method for Temperature Retrievals from Satellites of the TIROS-N Series. *Journal of Climate and Applied Meteorology* 24:128-143.
- Comfort, G., T. Roots, L. Chabot, and F. Abbott. 1983. Oil Behavior under Multi-Year Ice at Griper Bay, NWT. Proceedings of the Sixth Arctic and Marine Oilspill Program Technical Seminar. Ottawa, Ont., Canada: Environment Canada.
- Connors, P.G.; J.P. Myers, and F.A. Pitelka. 1979. Seasonal Habitat use by Arctic Alaskan Shorebirds. *Studies* Avian Biology 2:107-112.

- Connors, P.G., C.S. Connors, and K.G. Smith. 1984. Shorebird Littoral Zone Ecology of the Alaskan Beaufort Coast. Final Reports of Principal Investigators, Outer Continental Shelf Environmental Assessment Program 23. Boulder, CO: USDOC, NOAA, OCSEAP and USDOI, MMS, Alaska OCS Region, pp 295-396.
- Cox, C., L.A. Schultz, R.P. Johnson, and R.A. Shelsby. 1980. The Transport and Behavior of Oil Spilled in and under Sea Ice. Boulder, CO: USDOC, NOAA, OCSEAP and USDOI, BLM, Alaska OCS Office.
- Dau, C. P. and W.W. Larned. 2004. Aerial Population Survey of Common Eiders and Other Waterbirds in Nearshore Waters and Along Barrier Islands of the Arctic Coastal Plain of Alaska, 24-27 June 2004. Anchorage, AK: USDOI, FWS, Migratory Bird Management.
- Dau, C. P. and W.W. Larned. 2005. Aerial Population Survey of Common Eiders and other Waterbirds in Near Shore Waters and along Barrier Islands of the Arctic Coastal Plain of Alaska, 24-27 June 2005. Anchorage, AK: USDOI, FWS, Migratory Bird Management.
- Daling, P.S. and T. Strom. 1999. Weathering of Oils at Sea: Model/Field Data Comparisons. *Spill Science and Technology* 51:63-74.
- Devon Canada Corporation. 2004. Devon Beaufort Sea Exploration Drilling Program. Devon Canada Corporation, Calgary Alberta, Canada.
- Dickins, D.F. and I.A. Buist. 1981. Oil and Gas under Sea Ice. CV-1, Vols. I-II. Calagary, Alberta, Canada: Dome Petroleum Ltd.
- Dickson, D.L., R.C. Cotter, J.E. Hines, and M.F. Kay. 1997. Distribution and Abundance of King Eiders in the Western Canadian Arctic. *In*: Occasional Paper 94, D.L. Dickson, ed. Ottawa, Ont., Canada: Canadian Wildlife Service, pp. 29-40.
- Divoky, G.J. 1984. The Pelagic and Nearshore Birds of the Alaskan Beaufort Sea: Biomass and Trophics. *In: The Alaskan Beaufort Sea Ecosystems and Environments*, P.W. Barnes, D. M. Schell and E. Reimnitz, eds. New York: Academic Press, Inc., pp. 417-437.
- Earnst, S.L., R.A. Stehn, R.M. Platte, W.W. Larned, and E.J. Mallek. 2005. Population Size and Trend of Yellow-Billed Loons in Northern Alaska. *The Condor* 107:289-304.
- Eicken, H., L.H. Shapiro, A.G Gaylord, A. Mahoney, and P.W.Cotter. 2006. Mapping and Characterization of Recurring Spring Leads and Landfast Ice in the Beaufort and Chukchi Seas. OCS Study MMS 2005-068. Anchorage, AK: USDOI, MMS, Alaska OCS Region, 141 pp. plus appendices.
- Elliott, A.J. 1986. Shear Diffusion and the Spread of Oil in the Surface Layers of the North Sea. *Deutsch Hydrography Zvenya* 39:113-137.
- Elliott, A.J., N. Hurford, and C.J. Penn. 1986. Shear Diffusion and the Spreading of Oil Slicks. *Marine Pollution Bulletin* 17:308-313.
- Environment Canada. 2000. The Arctic Environmental Sensitivity Atlas System (AESAS) computer software application. Yellowknife, NWT, Canada: Environment Canada, Prairie and Northern Region, Environmental Protection Branch.
- Environmental Sciences Limited. 1982. Biological Impacts of Three Oil Spill Scenarios in the Beaufort Sea. Calgary, Alb., Canada: Dome Petroleum Ltd.

- *Federal Register*. 2001. Final Determination of Critical Habitat for the Spectacled Eider. *Federal Register* 6625:9146-9185.
- Fingas, M.F. 1996. The Evaporation of Oil Spills: Variations with Temperature and Correlations with Distillation Data. *In*: Nineteenth Arctic and Marine Oilspill Program Technical Seminar, Calgary, Alb., Canada. Ottawa, Ont., Canada: Environment Canada, pp. 29-72.
- Fingas, M.F., W.S. Duval, and G.B. Stevenson. 1979. Basics of Oil Spill Cleanup. Ottawa, Ont., Canada: Environment Canada, 155 pp.
- Fischer, J.B. and W.W. Larned. 2004. Summer Distribution of Marine Birds in the Western Beaufort Sea. *Arctic* 572:143-159.
- Flint, P.L., D.L. Lacroix, J.A. Reed, and R.B. Lanctot. 2004. Movements of Flightless Long-Tailed Ducks during Wing Molt. Waterbirds 271:35-40.
- Francis, J.A. 1994. Improvements to TOVS Retrievals Over Sea Ice and Applications to Estimating Arctic Energy Fluxes. *Journal of Geophysical Research* 99(D5):10,395-10,408.
- Francis, J.A. 1999. The NASA/NOAA TOVS Polar Pathfiner 18 Years of Arctic Data. *In*: The 5th Conference on Polar Meteorology and Oceanography. Dallas, TX: American Meteorological Society.
- Free, A.P., J.C. Cox, and L.A. Schultz. 1982. Laboratory Studies of Oil Spill Behavior in Broken Ice Fields. In: Proceedings of the Fifth Arctic Marine Oil Spill Program Technical Seminar, Edmonton, Alb., Canada. Ottawa, Ont., Canada: Environment Canada, pp. 3-14.
- Galt, J.A. 1980. A Finite Element Solution Procedure for the Interpolation of Current Data in Complex Regions. *Journal of Physical Oceanography* 10(12):1984-1997.
- Galt, J.A. and D.L. Payton. 1981. Finite-Element Routines for the Analysis and Simulation of Nearshore Currents. In: Commptes Rendus du Colloque, Mechanics of Oil Slicks, Paris. Paris: International Association for Hydraulic Research, pp 121-122.
- Galt, J.A., G.Y. Watabayshi, D.L. Dalton, and J.C. Pearson. 1991. Trajectory Analysis for the *Exxon Valdez*: Hindcast Study. *In*: Proceedings of the 1991 International Oil Spill Conference (Prevention, Behavior, Control, Cleanup), San Diego, Calif. Washington, DC: USCG; API; USEPA, pp. 629-634.
- Gill, R., C. Handel, and P. Connors. 1985. Bird Utilization of Peard Bay and Vicinity, Chapter 4. *In*: Environmental Characteristics and Biological Utilization of Peard Bay, P. Kinney, ed. OCS Study MMS 85-0112. Anchorage, AK: USDOC, NOAA, and USDOI, MMS, pp. 244-303.
- Gjosteen, J K. O and S. Loset. 2004. Laboratory Experiments on Oil Spreading in Broken Ice. *Cold Regions Science and Technology* 382-3:103-116.
- Glaeser, J.L., Lt. J.G. and Lt. Cmdr. G. Vance. 1971. A Study of the Behavior of Oilspills in the Arctic. Report AD 717 142. Washington, DC: U.S. Coast Guard.
- Haidvogel, D.B., J.L. Wilkin, and R. Young. 1991. A Semi-spectral Primative Equation Ocean Circulation Model Using Vertical Sigma and Orthogonal Curvilinear Horizontal Coordinates. *Journal of Computational Physics* 94:151-185.
- Haidvogel, D.B., K.S. Hedstrom, and J. Francis. 2001. Numerical Simulations of Atmosphere/Ocean/Sea Ice Interaction in the Arctic Ocean 1982-1996. OCS Study MMS 2001-069. Anchorage, AK: USDOI, MMS, Alaska OCS Region, 62 pp.
- Hart Crowser Inc. 2000. Estimation of Oil Spill Risk from Alaska North Slope, Trans Alaska Pipeline and Arctic Canada Oil Spill Data Sets. OCS Study MMS 2000-007. Anchorage AK: USDOI, MMS, Alaska OCS Region.

- Hibler, W.D., III. 1979. A Dynamic Thermodynamic Sea Ice Model. *Journal of Physical Oceanography* 9:815-846.
- Holland, P. 1997. Offshore Blowouts Causes and Control. Houston, TX: Gulf Publishing Company.
- Huang, J.C. and F.M. Monastero. 1982. Review of the State-of-the-Art of Oilspill Simulation Models. Washington, DC: American Petroleum Institute.
- Huntington, H. P. and N.I. Mymrin. 1996. Traditional Ecological Knowledge of Beluga Whales. An Indigenous Knowledge Pilot Project in the Chukchi and Northern Bering Seas. Final Report. Anchorage, AK: Inuit Circumpolar Conference.
- Impact Assessment, Inc. 1989. Point Lay Case Study. OCS Study MMS 89-0093. Anchorage, AK: USDOI, MMS, Alaska OCS Region, 532 pp.
- Johnson, S.R. 1993. An Important Early Autumn Staging Area for Pacific Brant: Kasegaluk Lagoon, Chukchi Sea, Alaska. *Journal of Field Ornithology* 64:539-548.
- Johnson, S.R., 2000. Pacific Eider. Chapter 13. In: The Natural History of an Arctic Oil Field: Development and the Biota, J.C. Truett and S.R. Johnson, eds. San Diego, CA: Academic Press, pp. 259-275.
- Johnson, S.R. and W.J. Richardson. 1982. Waterbird Migration near the Yukon and Alaskan Coast of the Beaufort Sea: II. Moult Migration of Seaducks in Summer. *Arctic* 352:291-301.
- Johnson, S.R. and D.R. Herter. 1989. The Birds of the Beaufort Sea. Anchorage, AK: BPXA.
- Johnson, S.R., D.R. Herter, and M.S.W. Bradstreet. 1987. Habitat Use and Reproductive Success of Pacific Eiders Somateria mollissima v-nigra During a Period of Industrial Activity. Biological Conservation 41:77-89.
- Johnson, S.R., D.A. Wiggins, and P.F. Wainwright. 1993. Late-Summer Abundance and Distribution of Marine Birds in Kasegaluk Lagoon, Chukchi Sea, Alaska. *Arctic* 463:212-227.
- Johnson, S.R., P.G. Connors, G.J. Divoky, R. Meehan, and D.W. Norton. 1987. Coastal and Marine Birds. *In*: Proceedings of a Synthesis Meeting: The Diapir Field Environment and Possible Consequences of Planned Oil and Gas Development, P.R. Becker, ed. Chena Hot Springs, Ak. Anchorage, AK : USDOC, NOAA, OCSEAP, and USDOI, MMS, Alaska OCS Region, pp. 131-145.
- Johnson, S.R., L.E. Noel, W.J. Gazey, and V.C. Hawkes. 2005. Aerial Monitoring of Marine Waterfowl in the Alaskan Beaufort Sea. *Environmental Monitoring and Assessment* 108:1-43.
- Jordan, R.E. and J.R. Payne. 1980. Fate and Weathering of Petroleum Spills in the Marine Environment: A Literature Review and Synopsis. Ann Arbor, MI: Ann Arbor Science Publishers, Inc., 174 pp.
- Kassam, K-A. S. and Wainwright Traditional Council. 2001. Passing on the Knowledge. Mapping Human Ecology in Wainwright, Alaska. Calgary, Alb., Canada: University of Calgary, The Arctic Institute of North America.
- Keevil, B.E. and R. Ramseier. 1975. Behavior of Oil Spilled Under Floating Ice. 1975 Conference on Prevention and Control of Oil Pollution. Washington, DC: American Petroleum Institute, pp. 497-501.
- Kisil, C.A. 1981. A Study of Oil and Gas in Fresh and Salt Water-Ice Ssystems. Toronto, Ont., Canada: University of Toronto.
- Kochnev, A.A. 2002. Autumn Aggregations of Polar Bears on Wrangel Island and Their Importance for the Population. *In*: Marine Mammals of the Holarctic. Moscow: Marine Mammal Council, pp. 137-138.
- Kochnev, A.A. 2004. Warming of the Eastern Arctic and Present Status of the Pacific Walrus (Odobenus rosmarus divergens) Population. In: Marine Mammals of the Holarctic, V.M. Belkovich, ed. Moscow: KMK Scientific Press, 609 pp.

- Kochnev, A.A. In prep. Research on Polar Bear Autumn Aggregations on Chukotka, 1989-2004. In: Polar Bears: Proceedings of the 14th Working Meeting of the IUCN/SSC Polar Bear Specialist Group, Seattle, Wash., Jun. 20-24, 2005.
- Kochnev, A.A., V.M. Etylin, I. Kavry, E.B. Siv-Siv, and V. Tanko. 2003. Traditional Knowledge of Chukotka Native Peoples Regarding Polar Bear Habitat Use. Final Report. Anchorage, AK: USDOI, National Park Service, 165 pp.
- Laing, K. and B. Platte. 1994. Ledyard and Peard Bays Spectacled Eider Surveys, August 18-19, 1992-1993. Unpublished trip report. Anchorage, AK: USDOI, FWS.
- Lehnhausen, W.A. and S.E. Quinlan. 1981. Bird Migration and Habitat Use at Icy Cape, Alaska. Unpublished manuscript. Anchorage, AK: USDOI, FWS, Office of Special Studies, 298 pp.
- Lehr, W.J. 2001. Review of Modeling Procedures for Oil Spill Weathering. In: *Oil Spill Modelling and Processes*, C.A. Brebbia, ed. Boston, MA: WIT Press, pp. 51-90.
- Leirvik, F., T.J. Schrader, and M.O. Moldestad. 2005. Weathering Properties of Endicott, Milne Point Unit, High Island Composite, The Alpine Composite, the Neptune Field Composite and North Star Oil Samples. *In*: Revision of the OCS Weathering Model: Phases II and III, M. Reed, P. Daling, M.O. Moldestad, P.J. Brandvik, J. Resby, F. Leirvik, O. Johansen, K. Skognes, B. Hetland, and T.J. Schrader, eds. OCS Study 2005-020. Anchorage, AK: USDOI, MMS, Alaska OCS Region, 15 pp. plus appendices.
- Ljungblad, D.K., S.E. Moore, J.T. Clarke, and J.C. Bennett. 1986. Aerial Surveys of Endangered Whales in the Northern Bering, Eastern Chukchi, and Alaskan Beaufort Seas, 1985: With a Seven Year Review, 1979-85. OCS Study MMS 86-0002. Anchorage, AK: USDOI, MMS, Alaska OCS Region, 142 pp.
- Mackay, D. 1982. Fate and Behaviour of Oil Spills. *In*: Oil Dispersants in Canadian Seas Research Appraisal and Recommendations. Report EPS 3-EC-82-2. Ottawa, Ont., Canada: Environment Canada, pp. 7-27.
- Mackay, D. 1985. The Physical and Chemical Fate of Spilled Oil. In: Petroleum Effects in the Arctic Environment, F.R. Engelhardt, ed. New York: Elsevier Applied Science, pp. 37-59.
- Malins, D.C. and H.O. Hodgins. 1981. Petroleum and Marine Fishes: A Review of Uptake, Disportion, and Effects. *Environmental Science Technology* 1511:1272-1280.
- Martin, S. 1979. A Field Study of Brine Drainage and Oil Entrainment in First-Year Sea Ice. *Journal of Glaciology* 22:473-502.
- Mellor, G.L. and L. Kantha. 1989. An Ice-Ocean Coupled Model. *Journal of Geophysical Research* 94:10,937-10,954.
- Mel'nikov, V.V. 2000. Humpback Whales *Megaptera novaeangliae* off Chukchi Peninsula. *Oceonology* 406:844-849.
- Mel'nikov, V.V., D.I.; Litovka, L.A. Zagrebin, G.M. Zelensky, L.I. Ainana, and I.A. Zagregin. 2004. Shore-Based Counts of Bowhead Whales along the Chukotka Peninsula in May and June 1999-2001. Arctic 57(3)290-298.
- Mel'nikov, V.V. and A.V. Bobkov. 1993. Bowhead Whale Migration in the Chuckchee Sea. Russian Journal of Marine Biology 193:180-185.
- Monnett, C. and S.D. Treacy. 2005. Aerial Surveys of Endangered Whales in the Beaufort Sea, Fall 2002-2004. OCS Study MMS 2005-037. Anchorage, AK: USDOI, MMS, Alaska OCS Region, 169 pp.
- National Research Council. 1985. Oil in the Sea: Inputs, Fates, and Effects. Washington, DC: National Academy Press, 601 pp.
- Noel, L.E., S.R. Johnson, G.M. O'Doherty, and M.K. Butcher. 2005. Common eider (*Somateria mollissima* v-nigrum) Nest Cover and Depredation on Central Alaskan Beaufort Sea Barrier Islands. *Arctic* 582:129-136.

- Noel, L.E. and S.R. Johnson. 1997. The Status of Snow Geese in the Sagavanirktok River Delta Area, Alaska: 1997 Monitoring Program. Final Report. Anchorage, AK: BPXA, 18 pp.
- NORCOR Engineering and Research. 1975. The Interaction of Crude Oil with Arctic Sea Ice. Beaufort Sea Technical Report No. 27. Victoria, BC: Canada, Department of the Environment, Beaufort Sea Project, 145+ pp.
- North Slope Borough. 2001. Bowhead Whale Harvest Locations for Barrow, Nuiqsut and Kaktovik. GIS data file. Barrow, AK: North Slope Borough, Department of Wildlife Management.
- Payne, J.R. 1982. The Chemistry and Formation of Water-in-Oil Emulsions and Tar Balls from the Release of Petroleum in the Marine Environment. Washington, DC: National Academy of Sciences, 142 pp.
- Payne, J.R. and S. Jordan. 1985. Petroleum Spills in the Marine Environment; the Chemistry and Formation of Water in Oil Emulsions and Tar Balls. Chelsea, MI: Lewis Publishers.
- Payne, J.R. and G.D. McNabb. 1985. Weathering of Petroleum in the Marine Environment. *MTS Journal* 18(3):24-42.
- Payne, J.R., G.D. McNabb, and J.R. Clayton. 1991. Oil Weathering Behavior in Arctic Environments. *In*: Proceedings from the Pro Mare Symposium on Polar Marine Ecology. Trondheim, Norway, pp. 631-662.
- Payne, J.R., G.D. McNabb, L.E. Hachmeister, B.E. Kirstein, J.R. Clayton, C.R. Phillips, R.T. Redding, C.L. Clary, G.S. Smith, and G.H. Farmer. 1987. Development of a Predictive Model for Weathering of Oil in the Presence of Sea Ice. OCS Study MMS 89-0003. Anchorage, AK: USDOC, NOAA, OCSEAP and USDOI, MMS, Alaska OCS Region, pp. 147-465.
- Petersen, M.R., W.W. Larned, and D.C. Douglas. 1999. At-Sea Distribution of Spectacled Eiders: A 120-Year-Old Mystery Resolved. *Auk* 1164:1009-1020.
- Piatt, J.F. and A.M. Springer. 2003. Advection, Pelagic Food Webs, and the Biogeography of Seabirds in Beringia. *Marine Ornithology* 31:141-154.
- Piatt, J.F., J.L. Wells, A. MacCharles, and B.S. Fadely. 1991. The Distribution of Seabirds and Fish in Relation to Ocean Currents in the Southeastern Chukchi Sea. *In*: Studies of High-Latitude Seabirds. 1. Behavioural, Energetic, and Oceanographic Aspects of Seabird Feeding Ecology. Occasional Paper Number 68. Ottawa, Ont., Canada: Canadian Wildlife Service, pp. 21-31.
- Powell, A., N.L. Phillips, E.A. Rexstad, and E.J. Taylor. 2005. Importance of the Alaskan Beaufort Sea to King Eiders (*Somateria spectabilis*). OCS Study MMS 2005-057. Anchorage, AK: USDOI, MMS, Alaska OCS Region, 30 pp.
- Price, J.M., W. R. Johnson., Z.-G. Ji, C.F. Marshall, and G.B. Rainey. 2004. Sensitivity Testing for Improved Efficiency of a Statistical Oil Spill Risk Analysis Model. *Environmental Modelling & Software* 19(7-8):671-679.
- Prince, R.C., R.M. Garrett, R.E. Bare, M.J. Grossman, T. Townsend, J.M. Suflita, K. Lee, E.H. Owens, G.A. Sergy, J.F. Braddock, J.E. Lindstrom, and R.R. Lessard. 2003. The Roles of Photooxidation and Biodegradation in Long-term Weathering of Crude and Heavy Fuel Oils. *Spill Science & Technology Bulletin* 82:145-156.
- Purves, F. 1978. The Interaction of Crude Oil and Natural Gas with Laboratory-Grown Saline Ice. Environment Canada, Report No. EPS-4-EC-78-9. ARCTEC Canada Ltd.
- Reed, M., N. Ekrol, O. Johansen, and M.K. Ditlevsen. 2005a. SINTEF Oil Weathering Model User's Manual Version 3.0. Trondheim, Norway: SINTEF Applied Chemistry, 39 pp.
- Reed, M., P. Daling, M.O. Moldestad, P.J. Brandvik, J. Resby, F. Leirvik, O. Johansen, K. Skognes, B. Hetland, and T.J. Schrader, 2005b. Revision of the OCS-Weathering Model: Phases II and III. OCS Study 2005-020. Anchorage, AK: USDOI, MMS, Alaska OCS Region, 15 pp. plus appendices.

- Research Planning Institute. 2002. Environmental Sensitivity Index Classification of the Beaufort Sea and Chukchi Sea. OCS Study MMS 2003-006. Anchorage, AK: USDOI, MMS, Alaska OCS Region.
- Richardson, W.J. and S.R. Johnson. 1981. Waterbird Migration near the Yukon and Alaskan Coast of the Beaufort Sea: I. Timing, Routes, and Numbers in Spring. *Arctic* 342:108-121.
- Ritchie, R.J., R.M. Burgess, and R.S. Suydam. 2000. Status and Nesting Distribution of Lesser Snow Geese Chen caerulescens and Brant Branta bernicla nigricans on the Western Arctic Coastal Plain. Canadian Field-Naturalist 1143:395-404.
- Ritchie, R.J., J.E. Shook, R.M. Burgess, and R.S. Suydam. 2004. Recent Increases of Snow Geese Breeding on the Ikpikpuk River Delta, Northern Alaska (Abstract). *In*: Proceedings of the Tenth Alaska Bird Conference 2004, Anchorage, Ak., Mar. 15-19, 2004.
- Roseneau, D.G., M.F. Chance, P.F. Chance, and G.V. Byrd. 2000. Monitoring Seabird Populations in Areas of Oil and Gas Development on the Alaskan Continental Shelf: Cape Lisburne and Cape Thompson Seabird Studies, 1995-1997. OCS Study MMS 99-0011. Anchorage, AK: USDOI, MMS, Alaska OCS Region, 147 pp.
- Samuels, W.B., N.E. Huang, and D.E. Amstutz. 1982. An Oilspill Trajectory Analysis Model with a Variable Wind Deflection Angle. *Ocean Engineering* 94:347-360.
- S.L. Ross Environmental Research Ltd. 1994. Spill-Related Properties of Fresh and Weathered Alaskan Crude Oils. Anchorage, AK: Alaska Clean Seas.
- S.L. Ross Environmental Research Ltd. and D.F. Dickins Associates Ltd. 1987. Field Research Spills to Investigate the Physical and Chemical Fate of Oil in Pack Ice. Report No. 062. Ottawa, Ont., Canada: Environment Canada, Environmental Emergencies Technologies Division.
- S.L. Ross Environmental Research Ltd., Alun Lewis Oil Spill Consultancy, Bercha Group, Inc., and PCCI. 2003. Persistence of Crude Oil Spills on Open Water. OCS Study MMS 2003-0047. Anchorage, AK: USDOI, MMS, Alaska OCS Region, 74 pp.
- S.R. Braund and Assocs. and University of Alaska Anchorage, ISER. 1993. North Slope Subsistence Study: Wainwright, 1988 and 1989. OCS Study MMS 91-0073. Anchorage, AK: USDOI, MMS, Alaska OCS Region, 383 pp.
- S.R. Braund and Assocs. and University of Alaska Anchorage, ISER. 1993. North Slope Subsistence Study: Barrow, 1987, 1988 and 1989. OCS Study MMS 91-0086. Anchorage, AK: USDOI, MMS, Alaska OCS Region, 466 pp.
- Scandpower. 2001. Blowout Frequency Assessment of Northstar. 27.83.01/R1. Kjeller, Norway: Scandpower, 40 pp. plus appendices.
- Sherwood, K.W., J.D. Craig, R.T. Lothamer, P.P. Johnson, and S.A. Zerwick. 1998. Chukchi Shelf Assessment Province. *In*: Undiscovered Oil and Gas Resources, Alaska Federal Offshore (as of January 1995), K.W. Sherwood, ed. OCS Monograph MMS 98-0054. Anchorage, AK: USDOI, MMS, Alaska OCS Region, pp. 115-196.
- Smith, R.A., J.R. Slack, T. Wyant, and K.J. Lanfear. 1982. The Oilspill Risk Analysis Model of the U.S. Geological Survey. Geological Survey Professional Paper 1227. Washington, DC: U.S. Government Printing Office, 40 pp.
- Sobelman, S.S. 1985. The Economics of Wild Resource Use in Shishmaref, Alaska. Technical Paper No. 112. Juneau, AK: State of Alaska, Dept. of Fish and Game, Div. of Subsistence.
- Sowls, A.L., S.A. Hatch, and C.J. Lensink. 1978. Catalog of Alaskan Seabird Colonies. FWS/OBS-78/78. Washington, DC: USDOI, FWS, Office of Biological Services.

- Springer, A.M., D.G. Roseneau, E.C. Murphy, and M.I. Springer. 1984. Environmental Controls of Marine Food Webs: Food Habits of Seabirds in the Eastern Chukchi Sea. *Canadian Journal of Fisheries and Aquatic Sciences* 41:1202-1215.
- Stephensen, S.W. and D.B. Irons. 2003. Comparison of Colonial Breeding Seabirds in the Eastern Bering Sea and Gulf of Alaska. *Marine Ornithology* 31:167-173.
- Stickney, A.A. and R.J. Ritchie. 1996. Distribution and Abundance of Brant (*Branta bernicla*) on the Central Arctic Coastal Plain of Alaska. *Arctic* 491:44-52.
- Stolzenbach, K.D., S. Madsen, E.E. Adams, A.M. Pollack, and C.K. Cooper. 1977. A Review and Evaluation of Basic Techniques for Predicting the Behavior of Surface Oil Slicks. Report No. MITSG 77-8. Cambridge, MA: MIT Sea Grant Program, Ralph M. Parsons Laboratory, 322 pp.
- Stringer, W.J. and J.E. Groves. 1991. Location and Areal Extent of Polynyas in the Bering and Chukchi Seas. *Arctic* 44:164-171.
- Stringer, W.J., S.A. Barrett, and L.K. Schreurs. 1980. Nearshore Ice Conditions and Hazards in the Beaufort, Chukchi and Bering Seas. UAGR 274. Fairbanks, AK: University of Alaska, Geophysical Research Institute, 164 pp.
- Suydam R.S., L.F. Lowry, K.J. Frost, G.M. O'Corry-Crowe, and D. Pikok, Jr. 2001. Satellite Tracking of Eastern Chukchi Sea Beluga Whales into the Arctic Ocean. Arctic 543:237-243.
- Suydam, R.S., L.F. Lowry, and K.J. Frost. 2005. Distribution and Movements of Beluga Whales fromt the Eastern Chukchi Sea Stock during Summer and Early Autumn. Final Report. Anchorage, AK: USDOI, MMS, Alaska OCS Region, 48 pp.
- Swartz, L.G. 1967. Distribution and Movements of Birds in the Bering and Chukchi Seas. *Pacific Science* 21:332-347.
- Thomas, D. and M. McDonagh. 1991. Underwater Releases of Oil. *In*: Proceedings of the 1991 International Oil Spill Conference (Prevention, Behavior, Control, Cleanup), San Diego, Calif., Mar. 4-7, 1991. Washington, DC: USCG, API, USEPA, pp.724-725.
- Treacy, S.D. 1988. Aerial Surveys of Endangered Whales in the Beaufort Sea, Fall 1987. OCS Study MMS 89-0030. Anchorage, AK: USDOI, MMS, Alaska OCS Region, 141 pp.
- Treacy, S.D. 1989. Aerial Surveys of Endangered Whales in the Beaufort Sea, Fall 1988. OCS Study MMS 89-0033. Anchorage, AK: USDOI, MMS, Alaska OCS Region, 101 pp.
- Treacy, S.D. 1990. Aerial Surveys of Endangered Whales in the Beaufort Sea, Fall 1989. OCS Study MMS 90-0047. Anchorage, AK: USDOI, MMS, Alaska OCS Region, 104 pp.
- Treacy, S.D. 1991. Aerial Surveys of Endangered Whales in the Beaufort Sea, Fall 1990. OCS Study MMS 91-0055. Anchorage, AK: USDOI, MMS, Alaska OCS Region, 107 pp.
- Treacy, S.D. 1992. Aerial Surveys of Endangered Whales in the Beaufort Sea, Fall 1991. OCS Study MMS 92-0017. Anchorage, AK: USDOI, MMS, Alaska OCS Region, 92 pp.
- Treacy, S.D. 1993. Aerial Surveys of Endangered Whales in the Beaufort Sea, Fall 1992. OCS Study MMS 93-0023. Anchorage, AK: USDOI, MMS, Alaska OCS Region, 135 pp.
- Treacy, S.D. 1994. Aerial Surveys of Endangered Whales in the Beaufort Sea, Fall 1993. OCS Study MMS 94-0032. Anchorage, AK: USDOI, MMS, Alaska OCS Region, 78 pp.
- Treacy, S.D. 1995. Aerial Surveys of Endangered Whales in the Beaufort Sea, Fall 1994. OCS Study MMS 95-0033. Anchorage, AK: USDOI, MMS, Alaska OCS Region, Environmental Studies, 116 pp.

- Treacy S.D. 1996. Aerial Surveys of Endangered Whales in the Beaufort Sea, Fall 1995. OCS Study MMS 96-0006. Anchorage, AK: USDOI, MMS, Alaska OCS Region, Environmental Studies Program, 70 pp.
- Treacy, S.D. 1997. Aerial Surveys of Endangered Whales in the Beaufort Sea, Fall 1996. OCS Study MMS 97-0016. Anchorage, AK: USDOI, MMS, Alaska OCS Region, 115 pp.
- Treacy, S.D. 1998. Aerial Surveys of Endangered Whales in the Beaufort Sea, Fall 1997. OCS Study MMS 98-0059. Anchorage, AK: USDOI, MMS, Alaska OCS Region, 143 pp.
- Treacy, S.D. 2000. Aerial Surveys of Endangered Whales in the Beaufort Sea, Fall 1998-1999. OCS Study MMS 2000-066. Anchorage, AK: USDOI, MMS, Alaska OCS Region, 135 pp.
- Treacy, S.D. 2001. Aerial Surveys of Endangered Whales in the Beaufort Sea, Fall 2000. OCS Study MMS 2001-014. Anchorage, AK: USDOI, MMS, Alaska OCS Region, 111 pp.
- Treacy, S.D. 2002. Aerial Surveys of Endangered Whales in the Beaufort Sea, Fall 2001. OCS Study MMS 2002-061. Anchorage, AK: USDOI, MMS, Alaska OCS Region, 117 pp.
- Troy, D.M. 2003. Molt Migration of Spectacled Eiders in the Beaufort Sea Region. Anchorage, AK: BPXA, 17 pp.
- USDOC, NOAA. 2002. NW Arctic, Alaska ESI: ESI (Environmental Sensitivity Index Shoreline Types Lines and Polygons). *In*: Geographic Information Systems Data. Seattle, WA: USDOC, NOAA, Hazardous Materials Response Division, Office of Response and Restoration.
- USDOI, BLM and MMS. 2003. Northwest National Petroleum Reserve-Alaska Final Integrated Activity Plan/Environmental Impact Statement. BLM/AK/PL-04/002+3130+930. 3 Vols. Anchorage, AK: USDOI, BLM and MMS.
- USDOI, MMS, Alaska OCS Region. 2001. Nuiqsut Public Hearing on the Liberty Development and Production Plan Draft EIS. Nuiqsut, Ak., Mar. 19, 2001. Anchorage, AK: USDOI, MMS, Alaska OCS Region.
- USDOI, MMS, Alaska OCS Region. 2003. Beaufort Sea Planning Area Sales 186, 195, and 202 Oil and Gas Lease Sale Final EIS. OCS EIS/EA MMS 2003-001. Anchorage, AK: USDOI, MMS, Alaska OCS Region.
- Vermeer, K. and G.G. Anweiler. 1975 Oil Threat to Aquatic Birds along the Yukon Coast. *Wilson Bulletin* 87:467-480.
- Volt, G. 1997. Telephone conversation in April 1997 from C. Smith, USDOI, MMS, Alaska OCS Region, to G. Volt, State of Alaska, Dept. of Environmental Conservation, Spill Prevention and Response, Anchorage Office; subject: ADEC oil-spill database quality assurance/quality control.
- Weingartner, T.J. and S.R. Okkonen. 2001. Beaufort Sea Nearshore Under-Ice Currents: Science, Analysis and Logistics. *In*: University of Alaska Coastal Marine Institute Final Report. OCS Study MMS 2001-068. Fairbanks, AK: University of Alaska, Fairbanks, 17 pp.
- Wisniewski, J. 2005. Subsistence and Sociocultural Resources. In: MMS Chukchi Sea Science Update, Anchorage, Ak., Oct. 31, 205. Anchorage, AK: USDOI, MMS, Alaska OCS Region.

# Table A.1-1Large and Small Spill Sizes, Source of Spill, Type of Oil, Number and Size of Spill andReceiving Environment We Assume for Analysis in this EIS by Section

| EIS<br>Section | Source of<br>Spill                                                | Type<br>of Oil        | Number and Size of Spill(s)Receiving(Barrels)Environment                           |
|----------------|-------------------------------------------------------------------|-----------------------|------------------------------------------------------------------------------------|
| Large Spil     | ls (≥1,000 barrels)                                               |                       |                                                                                    |
| IV.C           | <b>Offshore</b><br>Pipeline<br>Platform/Storage Tank              | Crude<br>Or<br>Diesel | 1 spillOpen Water4,600On Top of Sea IceOr 1,500 barrelsBroken IceCoastal Shoreline |
| Small Spil     | ls <sup>1</sup> (< 1,000 barrels)                                 |                       |                                                                                    |
| IV.C           | Offshore and/or Onshore<br>Operational Spills<br>from All Sources | Diesel<br>or<br>Crude | 133 spills <1 barrelOpen Water43 spills $\geq$ 1 barrel but <25 barrels            |
|                | Onshore and/or Offshore<br>Operational Spills from All<br>Sources | Refined               | 440 spills of 0.7 barrels each                                                     |

Note:

<sup>1</sup> These numbers are for Alternative I, the Proposed Action. Tables A.1-29 through A.1-32 in Appendix A.1 show the distribution of small crude and refined spills by Alternative.

#### Source:

USDOI, MMS, Alaska OCS Region (2006).

# Table A.1-2 Number of Blowouts per Year in the Gulf of Mexico and Pacific OCS Regions

|              |                       | Total with<br>Condensate/<br>Oil | Con         | mount o<br>densate<br>Barrels | e/Oil                                      | Pro   | oduc | tion      |       | Γ     | Drill       | ing         |         | Workover/<br>Completion | Wells<br>Drilled |
|--------------|-----------------------|----------------------------------|-------------|-------------------------------|--------------------------------------------|-------|------|-----------|-------|-------|-------------|-------------|---------|-------------------------|------------------|
| Year         | Number of<br>Blowouts |                                  | Development | Exploration                   | Total<br>Exploration<br>and<br>Development | Total | Fire | Hurricane | Other | Total | Exploration | Development | Unknown | Total                   | Total            |
| 1956         | 1                     | 0                                | —           | —                             | 0                                          | —     | —    | —         |       | _     | _           | _           | —       | —                       | —                |
| 1957         | 1                     | 0                                | _           | —                             | 0                                          | _     | —    | —         |       | _     |             | _           | —       |                         | —                |
| 1958         | 2                     | 1                                | Minimal     | —                             | 1                                          | 1     | 1    | —         |       | _     |             | _           | —       |                         | —                |
| 1959<br>1960 | 1<br>2                | 0                                |             |                               | 0                                          |       | _    | _         |       |       | _           | _           | _       |                         |                  |
| 1961         | 0                     | 0                                |             |                               | 0                                          |       |      |           |       |       |             | _           |         |                         |                  |
| 1962         | 1                     | 0                                |             | _                             | 0                                          |       | _    | _         |       | _     |             | -           | _       |                         |                  |
| 1963         | 1                     | 0                                |             | _                             | 0                                          |       |      |           |       | _     | _           | -           | _       | _                       | _                |
| 1964         | 7                     | 3                                | 10,380      | _                             | 10,380                                     | 3     | 1    | 2         |       | _     | _           | _           | _       |                         |                  |
| 1965         | 5                     | 2                                | 1688        | <u> </u>                      | 1,688                                      | 1     | Ŀ    | 1         |       | 1     |             | _           | 1       |                         |                  |
| 1966         | 2                     | 2                                | Minimal     | —                             | 1                                          | _     | _    | _         |       | 1     | _           | _           | 1       | _                       | _                |
| 1967         | 1                     | 1                                | Minimal     |                               | 1                                          | 1     | _    | _         | 1     | _     | _           |             | _       | _                       | _                |
| 1968         | 9                     | 0                                |             | —                             | 0                                          |       | _    | _         | _     | _     | _           | _           | _       | _                       | _                |
| 1969         | 3                     | 3                                | 82500       | —                             | 82500                                      | 2     | _    | _         | 2     | 1     | _           | 1           | _       | _                       | —                |
| 1970         | 23                    | 3                                | 83000       | _                             | 83000                                      | 2     | 2    | _         |       | 1     | _           | 1           | _       | _                       | _                |
| 1971         | 9                     | 1                                | 450         | —                             | 450                                        | 1     | 1    |           |       | _     | _           | _           | _       |                         | 851              |
| 1972         | 5                     | 1                                | Minimal     | _                             | 1                                          |       |      | _         |       | 1     | _           | -           | 1       |                         | 845              |
| 1973         | 3                     | 1                                | Minimal     | _                             | 1                                          | _     | _    | _         |       | 1     |             | 1           | ·       |                         | 820              |
| 1974         | 6                     | 2                                | 275         | _                             | 275                                        | 2     |      | 2         |       |       | _           | -           | _       |                         | 802              |
| 1975         | 7                     | 1                                | Minimal     | —                             | 1                                          |       |      |           |       | _     | _           | _           | _       | 1                       | 842              |
| 1976         | 6                     | 0                                |             | —                             | 0                                          |       |      |           |       | _     | _           | _           | _       |                         | 1078             |
| 1977         | 10                    | 0                                |             | _                             | 0                                          | _     | _    | _         |       | _     | _           | _           | _       |                         | 1240             |
| 1978         | 12                    | 1                                | Minimal     | _                             | 1                                          | _     | _    | _         |       | _     | _           | _           | _       | 1                       | 1164             |
| 1979         | 5                     | 2                                | Minimal     | _                             | 1                                          | _     | _    | _         |       | 2     | _           | 2           | _       | _                       | 1140             |
| 1980         | 8                     | 2                                | 1           | _                             | 1                                          | 1     |      |           | 1     | 1     | _           | 1           | —       | _                       | 1158             |
| 1981         | 10                    | 4                                | 64          |                               | 64                                         | —     | —    | —         |       | 2     | _           | 2           | —       | 2                       | 1208             |
| 1982         | 9<br>12               | 2<br>0                           | Minimal     | —                             | 1<br>0                                     |       | —    | —         |       | 1     | _           | 1           | —       | 1                       | 1255<br>1180     |
| 1983<br>1984 | 5                     | 0                                |             |                               | 0                                          |       | _    | _         |       | _     |             | -           | _       |                         | 1352             |
| 1985         | 6                     | 1                                | 40          | —                             | 40                                         | 1     | _    | _         | 1     | _     | _           | _           | _       | _                       | 1169             |
| 1986         | 2                     | 0                                | _           | —                             | 0                                          |       | —    | —         |       | _     |             | I           | _       | _                       | 694              |
| 1987         | 13                    | 1                                | 60          | —                             | 60                                         | _     |      |           |       | 1     |             | 1           |         | _                       | 845              |
| 1988<br>1989 | 3<br>12               | 0                                |             |                               | 0                                          |       |      |           |       | _     |             |             |         | _                       | 950<br>947       |
| 1989         | 7                     | 3                                | 20.5        |                               | 20.5                                       | 1     |      |           | 1     | _     | $\vdash$    | _           | _       | 2                       | 1018             |
| 1991         | 6                     | 1                                |             | 0.8                           | 0.8                                        |       | _    | _         | _     | 1     | 1           | _           | _       |                         | 726              |
| 1992         | 1                     | 1                                | _           | 100                           | 100                                        | _     | _    | _         |       | 1     | 1           | _           |         | _                       | 431              |
| 1993<br>1994 | 2                     | 0                                | —           |                               | 0                                          |       | _    | —         |       | _     |             | _           | -       | —                       | 879              |
|              | 0                     | 0                                |             |                               | 0                                          |       | -    | -         |       | _     | -           |             | -       |                         | 845              |
| 1995<br>1996 | 1<br>4                | 0                                |             |                               | 0                                          |       |      |           |       |       |             |             |         |                         | 798<br>889       |
| 1990         | 5                     | 0                                |             |                               | 0                                          |       | _    | _         |       | _     |             | _           | _       |                         | 954              |
| 1998         | 7                     | 1                                | 1.5         |                               | 1.5                                        | 1     | —    | —         | 1     | —     | _           | _           | —       |                         | 993              |
| 1999         | 5                     | 0                                | _           |                               | 0                                          | _     | —    | _         |       |       |             | _           |         |                         | 962              |
| 2000         | 9<br>10               | 3                                | 1           | 200                           | 200                                        |       |      |           |       | 2     | 2           |             |         | 1                       | 1315             |
| 2001<br>2002 | 6                     | 1                                | 350         | _                             | 1<br>350                                   | 1     | _    | 1         |       | _     |             | -           |         | 1                       | 1261<br>929      |
| 2002         | 5                     | 1                                | 10          | _                             | 10                                         |       | _    | ·         |       | _     |             | _           | _       | 1                       | 886              |
| 2004         | 4                     | 2                                | 5.4         | 11                            | 16.4                                       | 1     | —    | —         | 1     | —     | —           | -           | —       | 1                       | 894              |
| 2005         | 4                     | 0                                | _           | —                             | _                                          | _     | —    | _         |       | _     |             | _           |         | _                       | 659              |
| Total        | 278                   | 43                               | 178,480     | 311.8                         |                                            | 17    | —    | —         | —     | 17    | _           | —           | —       | 9                       | 33979            |

Source: USDOI, MMS, Alaska OCS Region (2006).

## Table A.1-3 Gulf of Mexico Blowout Frequencies Recommended for Analyses

| Phase                |             | U.S. Gulf of Mexico<br>OCS Experienced<br>and Recommended<br>Frequency | Units                                   |
|----------------------|-------------|------------------------------------------------------------------------|-----------------------------------------|
| Exploration Drilling | Shallow Gas | 0.00382                                                                | Blowouts per well drilled               |
|                      | Deep        | 0.00210                                                                | Blowouts per well drilled               |
|                      | Total       | 0.00593                                                                | Blowouts per well drilled               |
| Development          | Shallow Gas | 0.00257                                                                | Blowouts per well drilled               |
| Drilling             | Deep        | 0.00142                                                                | Blowouts per well drilled               |
| Drining              | Total       | 0.00399                                                                | Blowouts per well drilled               |
| Workover             | —           | 0.00136                                                                | Blowouts per well workover <sup>1</sup> |
| VVOIKOVEI            | —           | 0.00017                                                                | Blowouts per well-year                  |
| Production           | _           | 0.00005                                                                | Blowouts per well-year                  |
|                      | _           | 0.000007                                                               | Blowouts per wireline run <sup>2</sup>  |
| Wireline             | _           | 0.000017                                                               | Blowouts per wireline job <sup>2</sup>  |
|                      | _           | 0.000028                                                               | Blowouts per well-year                  |
| Completion           | _           | 0.00021 <sup>3</sup>                                                   | Blowouts per well completion            |

Notes: <sup>1</sup> One workover every 8 well-years. <sup>2</sup> 4.2 wireline runs per well-year, 1.7 wireline jobs per well-year. <sup>3</sup> Based on trend analyses.

Source: Holland (1997).

|             | Exploration Spills on the Arctic OCS |
|-------------|--------------------------------------|
|             | on the                               |
|             | Spills (                             |
| A.1-4       | ration (                             |
| Table A.1-4 | Explo                                |

| Area         Area         24H         Contaminated           17         Sonio         712/1981         11:00 Mukuk Island         Desel         0.55         Leaking line on portable fuel trailer         Sorbents used to remove spli. Contaminated           17         Sonio         712/1981         14:00 Mukuk Island         Desel         0.55         Leaking line on opticabilitie on ditch witch.         Event weet for encore.         Privation of the source of t | Lease | Sale C | Sale Operator    | Date       | Time  | Facility                | Substance       | Amt.  | Cause of Spill                                                        | Response Action                                             | Amount    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------|------------------|------------|-------|-------------------------|-----------------|-------|-----------------------------------------------------------------------|-------------------------------------------------------------|-----------|
| 71         Solio         72/1931         11:00         Mukuk Island         Desel         0.50         Leaking ine on portable fuel trailer         Sorbents used to remove spill. Contaminated<br>gravel immoved.           71         Solio         7/12/1931         14:00         Mukuk Island         Desel         1.00         Verfilled Usel tank on equipment         Sorbents used to remove spill. Contaminated<br>gravel immoved.           71         Exxon         8/7/1981         Beaufort Sea1         Trains. Fluid         0.50         Overfilled Usel         Fluid pricked up and stored in pastic bags.           71         Exxon         11/1/1982         Astak Beaufort Sea1         Trains. Fluid         0.50         Overfilled Cuel tank from entity in the part of search<br>gravel immoved.           71         Exxon         11/1/1982         Astak Beaufort Sea1         Trains.         Fluid pricked up and stored in pastic bags.           71         Exxon         11/1/1982         Astach Sandort Sea1         Trains.         Fluid pricked up and stored in pastic bags.           71         Exxon         11/1/1982         None         Fluid pricked up.         Fluid pricked up.           71         Exxon         11/1/1982         Astach Sandort Sea1         Unknown         1.00         Fluid pricked up.         Fluid pricked up.           7                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | No.   | Area   |                  |            | 24 Hr |                         |                 |       | -                                                                     |                                                             | Recovered |
| 71         Solutio         722/1981         14.00 Mukuk Island         Desel         1.00         Overflied the lark on equipment         Soments see of the move split. Contaminated           71         Excon         87/1981         Beaufort Seal         Hydraulic Fluid         0.26         Overflied or and the witch.         Fluid picked up and stored in plastic bags           71         Excon         11/11/1982         Beaufort Seal         Hydraulic Fluid         0.26         Overflied cate of the mitch.         Fluid picked up and stored in plastic bags           71         Excon         11/11/1982         Beaufort Seal         Hydraulic Fluid         0.26         Overflied cate of the mitch.         Fluid picked up and stored in plastic bags           71         Excon         11/11/1982         Beaufort Seal         Hydraulic Fluid         0.26         Noverflied cate of the mitch.         Fluid picked up.         Stored in plastic bags           71         Excon         11/11/1982         Beaufort Seal         Hydraulic Fluid         0.28         Noverflied         0.28         Noverflied cate of the mitch.         Fluid picked up.         More           71         Amoon         10/11/1982         10.56         Carmar Explorer II         Unknown         10         District Math.         District Math.         District Math.         Dis                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0344  |        | Sohio            | 7/22/1981  | 11:00 |                         |                 | 0.50  | Leaking line on portable fuel trailer                                 |                                                             | 0.05      |
| 11         Excon         8/1/1981         Beaufort Seal         Hydraulic Fluid         100         Brock         Huld picked up and stored in plastic bags.           71         Excon         11/1/1982         Beaufort Seal         Hydraulic Fluid         0.25         Overfiling of transmission fluid.         Fluid picked up and stored in plastic bags.           71         Excon         11/1/1982         Beaufort Seal         100         Downling of transmission fluid.         Fluid picked up and stored in plastic bags.           71         Excon         11/1/1982         Beaufort Seal         100         Downling of transmission fluid.         Fluid picked up and stored in plastic bags.           71         Excon         11/1/1982         Beaufort Seal         Hydraulic Fluid         0.25         Broken hydraulic line on ditch witch.         Fluid picked up and stored in plastic bags.           87         Yiel         91/100         94/1982         18:55         Gamare Explorer II         Unknown         100         Bage.         Dom picket up.                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0344  |        |                  | 7/22/1981  | 14:00 | Mukluk Island           | Diesel          | 1.00  |                                                                       | Sorbents used to remove spill. Contaminated gravel removed. | 1.00      |
| 11         Excon         884/1961         C Beaufort Sea1         Trans. Fluid         0.25         Orerfiling of transmission fluid.         Fluid picked up and blaced in plastic bags.           11         Excon         111/1982         Alaska Beaufort Sea1         Diesei         0.30         Brenk mydraulic Fluid         Drenk mydrauli                                                                                                                                                                                                                                                                                                                                                                                   | 0280  |        |                  | 8/7/1981   |       | _                       | Hydraulic Fluid | 1.00  | Broken hydraulic line on ditch witch.                                 | with shovels.                                               | 1.00      |
| 71         Exoron         11/11/1982         Beaufort Seal         Hydraulic Fluid         0.56         Boketh Nydraulic line.         Fluid picked up and stored in plastic bags.           71         Exoron         11/11/1982         Beaufort Seal         3.00         Overfilied catos 90-14. Worffilied.         Fluid picked up and stored in plastic bags.           71         Exoron         11/21/1982         Beaufort Seal         100         718         Fankon Gatos 90-14. Worffilied.         Fluid picked up and stored in plastic bags.           71         Exoron         11/21/1982         NAA         Beaufort Seal         10.0         Tansifer of tastel Island         Unschulden         Fluid picked up and stored in plastic bags.           87         Niell         9/71/1982         14:0         Cammar Explorer II         Unknown         1.0         Transifer of testel Island         None           87         Shell         9/71/1982         16:00         Beechey Pt. Grawel Island         Unknown         1.0         Dage:         Dimensel of on diffiship to         None           87         Shell         9/71/1982         10:00         Beechey Pt. Grawel Is.         Uuthon         Dimensel of on diffiship to         None           87         Shell         9/14/1982         10:00         Beechey Pt. Grawel Is.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0280  |        | Exxon            | 8/8/1981   |       | _                       | Trans. Fluid    |       |                                                                       |                                                             | 0.25      |
| T1         Exonon         1/11/1982         Alasisa Beaufort Seal         Desel         3.00         Overfiled catco 90-3 tank.         Fluid picked up and stored in plastic bags.           71         Exonon         1/11/1982         Beaufort Seal         Hores         1.00         Tenk on catco 90-3 tank.         Fluid picked up and stored in plastic bags.           71         Exonon         1/11/1982         Beaufort Seal         Hyriaulic Fluid         0.25         Broken hyriaulic fluid         0.26           87         Union Oil         9/4/1982         NA         Sandpiper Gravel Island         Unknown         1.00         Fransfer of test tank from driliship to         None           87         Nell         9/14/1982         18:56         Cammar Explorer II         Lupthord         0.0         Bransfer.         Sonohert pads.         Sonohert pads.           87         Shell         9/14/1982         16:00         Beechey Pt. Gravel Island         Unknown         1.00         Intrasfer of test tank from driliship to         None           87         Shell         9/14/1982         10:00         Beechey Pt. Gravel Island         Unknown         1.00         Lander State           87         Shell         9/14/1982         10:00         Beechey Pt. Gravel Island         Unknown <t< td=""><td>0280</td><td></td><td></td><td>1/11/1982</td><td></td><td></td><td>Hydraulic Fluid</td><td></td><td></td><td></td><td>0.50</td></t<>                                                                                                                                                                                                                                                                                                                                                                        | 0280  |        |                  | 1/11/1982  |       |                         | Hydraulic Fluid |       |                                                                       |                                                             | 0.50      |
| 71         Excorn         11/17/1982         Beaufort Sea1         Diseel         1.00         Tark on catco 90-14 overfiled.         Fluid picked up and stored in plastic bags.           71         Amcoo         31/6/1982         NA         Sanotybier Gravel Island.         Unknown         1.00         Exempting for micro favel Island.         Unknown         1.00         Neeping for micro favel Island.         Nethon Micrown         1.00         Sonbart pads.         Sonbart pads.         Sonbart pads.         None           87         Union Oil         94/1982         18:50         Carmar Explorer II         Unknown         1.00         Nashing down cement unit, drains not         None           87         Shell         9/5/1982         18:50         Carmar Explorer II         Unknown         1.00         Nashing down cement unit, drains not         None           87         Shell         9/5/1982         18:50         Carmar I Driliship         0.00         Tansfer.         Union Oil         Tansfer.         Depiloyed orbit pads and pump.           87         Shell         9/5/1982         10:00         Beechey Pt. Gravel Is.         Lube Oil         Dader tiped over lube oil/water seperator.         Depiloyed orbit pads and pump.           87         Shell         9/14/1982         10:00         Beechey Pt. Gr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0280  |        | Exxon            | 1/11/1982  |       | _                       | Diesel          | 3.00  |                                                                       |                                                             | 3.00      |
| 71         Exoon         1/21/1882         Beaufort Sea 1         Hydraulic Fluid         0.25         Brocken tydraulic line on ditch witch.         Fluid picked up.           71         Amoco         3/16/1922         NA         Sandpiper Gravel Island         Unknown         1.00         Beaping from Gravel Island.         Unknown         1.00         Beaping From From Gravel Island.         Unknown         Exon         Exon         Unknown         Unknown         Exon         Unknown         Unknown         Unknown         Unknown         Unknown         Unknown         U                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0280  |        | Exxon            | 1/17/1982  |       | _                       | Diesel          | 1.00  | Tank on catco 90-14 overfilled.                                       |                                                             | 1.00      |
| 71         Amoco         315(1932         NA         Sandpiper Gravel Island         Unknown         1.00         Transfer of feast latind         None         Sorbent pads.           87         Union Oli         94/1932         14:00         Carmar Explorer II         Unknown         1.00         Transfer of feast latin from drillship to         None           87         Sheli         9/5/1982         18:55         Carmar Explorer II         Light Oil         0.50         Washing down cement unit, drains not         None           87         Sheli         9/14/1982         19:00         Carmar II Drillship         Diseel         30.00         Transfer of rest latin from drillship to         None           87         Sheli         9/14/1982         19:00         Beechey Pt. Gravel Is.         Lube Oil         1.00         Ladder tipped over lube oil dum         Oil deared during fuel         Deployed sorbents. Contaminated           87         Exxon         1/15/1983         10:00         Beechey Pt. Gravel Is.         Lube Oil         1.00         Ladder tipped over lube oil dum         Oil deared during fuel         Deployed sorbents. Contaminated           87         Exxon         1/15/1983         10:00         Beechey Pt. Gravel Is.         Lube Oil         1.00         Ladder tipped over lube oil dum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0280  |        |                  | 1/21/1982  |       | _                       | Hydraulic Fluid | 0.25  |                                                                       |                                                             | 0.25      |
| 87         Union Oil         94/1982         14:30         Cammar Explorer II         Unknown         1.00         transfer of test tank from driliship to         None           87         Shell         9/5/1982         18:56         Cammar Explorer II         Light Oil         0.50         Washen         None           87         Shell         9/5/1982         18:56         Cammar Ti Driliship         Diange.         None           87         Shell         9/14/1982         19:00         Beechey Pt. Garwel IS.         Lube Oil         0.50         Washen         Deployed sorbent pads and pump.           87         Shell         9/14/1982         19:00         Beechey Pt. Garwel IS.         Lube Oil         1.00         Loader tipped over lube oil drum         Oil cleaned up with sorbents. Contaminated tavel sorbent pads and pump.           86         Excon         1/15/1983         10:00         Beechey Pt. Garvel IS.         Hydraulic Fluid         2.50         Hydraulic line on backhoe broke         Igaroh in water. Boom deployed with Barbon in water. Boom deploye                                                                                                                                                                                                                                                                                                                                           | 0371  |        |                  | 3/16/1982  |       | Sandpiper Gravel Island | Unknown         | 1.00  |                                                                       |                                                             | Unknown   |
| 87         Shell         9/5/1982         18:55         Canmar Explorer II         Light Oil         0:30         Washing down cernent unit, drains not         None           87         Shell         9/14/1982         19:00         Canmar II Drillship         Diesel         30:00         Tark vent overflowed during fuel         Deployed sorbent pads and pump.           87         Shell         9/14/1982         19:00         Beechey Pt. Gravel Is.         Lube Oil         10:00         Beechey Pt. Gravel Is.         Lube Oil         10:00         Loader tipped over lube oil drum         Deployed sorbents pads and pump.           8F         Excon         1/15/1983         10:00         Beechey Pt. Gravel Is.         Lube Oil         1.00         Loader tipped over lube oil drum         Deployed sorbents with sorbents. Contaminated gravel removed           8F         Excon         1/15/1983         10:00         Beechey Pt. Gravel Is.         Hydraulic line on backhoe broke         Sorbents used and contaminated gravel removed           8F         Excon         8/29/1983         6:30         Beechey Pt. Gravel Is.         Hydraulic line on backhoe broke         1 galon in water. Boom deployed with           8F         Excon         8/29/1983         6:30         Beechey Pt. Gravel Is.         Hydraulic line on backhoe broke         1 galon in water. Boom deployed with </td <td>0849</td> <td></td> <td></td> <td>9/4/1982</td> <td>14:00</td> <td>Canmar Explorer II</td> <td>Unknown</td> <td>1.00</td> <td>Transfer of test tank from drillship to barge.</td> <td></td> <td>None</td>                                                                                                                                                                                                                   | 0849  |        |                  | 9/4/1982   | 14:00 | Canmar Explorer II      | Unknown         | 1.00  | Transfer of test tank from drillship to barge.                        |                                                             | None      |
| 87         Shell         9/14/1982         19:00 Canmar II Drillship         Diesel         30:00         Tank vent overflowed during fuel         Deployed sorbent pads and pump.           BF         Exxon         11/11/1982         10:00         Beechey Pt. Gravel Is.         Lube Oil         1.00         Loader tipped over lube oil drum         Oil cleaned up with sorbents. Contaminated gravel           BF         Exxon         1/15/1983         10:00         Beechey Pt. Gravel Is.         Diesel         0.12         Fuel truck spilled diesel as it climbed a Sorbents used and contaminated gravel           BF         Exxon         1/12/1983         10:00         Beechey Pt. Gravel Is.         Hydraulic Fluid         2.50         Hydraulic line on backhoe broke         Sorbents. Contaminated gravel removed           BF         Exxon         8/29/1983         6:30         Beechey Pt. Gravel Is.         Hydraulic Fluid         0.20         Hydraulic line on backhoe broke         Spill contaminated gravel removed           BF         Shell         8/30/1983         6:30         Beechey Pt. Gravel Is.         Hydraulic Fluid         0.00         Brokens broke         Spill contaminated gravel removed           BF         Shell         8/30/1983         1:30         Beechey Pt. Gravel Is.         Hydraulic Fluid         0.0         Brokenschobe broke         Spill                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0871  |        | Shell<br>Western | 9/5/1982   | 18:55 | _                       | Light Oil       |       |                                                                       |                                                             | None      |
| BFExxon11/11/198210:00Beechey Pt. Gravel Is.Lube Oil1.00Loader tipped over lube oil drumOil cleaned up with sorbents. Contaminated<br>gravel removedBFExxon1/15/198310:00Beechey Pt. Gravel Is.Diesel0.12Puel truck spilled diesel as it climbed aSorbents used and contaminated gravel<br>removedBFExxon1/23/19839:00Beechey Pt. Gravel Is.Hydraulic Fluid2.50Hydraulic line on backhoe broke1 gallon in water. Boom deployed with<br>sorbents. Contaminated gravel removedBFExxon8/29/19836:30Beechey Pt. Gravel Is.Hydraulic Fluid0.20Hydraulic line on backhoe brokeSpill contained on island surface. SorbentsBFShell8/30/19836:30Beechey Pt. Gravel Is.Hydraulic Fluid0.00Hydraulic line on backhoe brokeSpill contained on island surface. SorbentsBFShell8/30/19831:30Beechey Pt. Gravel Is.Hydraulic Fluid0.01DorbertsContaminated gravel removed.BFShell8/30/19831:30Beechey Pt. Gravel Is.Nortaulic Fluid0.037Hydraulic line brokeSpill contained SpirleBFShell3/21/19851:30Beechey Pt. Gravel Is.Mydraulic Fluid0.010DorbertsContaminated gravel removed.BFShell3/21/19851:30Beechey Pt. Gravel Is.Nortaulic Fluid0.020Hydraulic line brokeShellBFShell3/21/19851:30Ice Road to Tern IslandNortaulic Flu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N/A   |        |                  | 9/14/1982  | 19:00 |                         | Diesel          | 30.00 | Tank vent overflowed during fuel transfer.                            |                                                             | 30.00     |
| BFExxon1115/198310:00Beechey Pt. Gravel Is.Diesel0.12Fuel truck spilled diesel as it climbed a<br>temovedSorbents used and contaminated gravelBFExxon1/23/19839:00Beechey Pt. Gravel Is.Hydraulic Fluid2:50Hydraulic fine on backhoe broke1 gallon in water. Boom deployed with<br>sorbents. Contaminated gravel removedBFExxon8/29/19836:30Beechey Pt. Gravel Is.Hydraulic Fluid0.20Hydraulic line on backhoe broke1 gallon in water. Boom deployed with<br>sorbents. Contaminated gravel removedBFShell8/29/19836:30Beechey Pt. Gravel Is.Hydraulic Fluid0.20Hydraulic line on backhoe brokeSpill contained on island surface. SorbentsBFShell8/20/198517:30Beechey Pt. Gravel Is.Hydraulic Fluid0.37Hydraulic line brokeUnknownBFExxon2/26/198517:30Beechey Pt. Gravel Is.Saoline Fluid0.01Operational SpillInnownBFExxon3/2/1985Beechey Pt. Gravel Is.Waste Oil0.01Operational SpillSnow shoved into plastic bag.BFExxon3/2/198515:30Tem Gavel Is.Waste Oil2.00Drum of waste oil puncturedSnow shoved into plastic bag.BF8/20198515:30Forenel IslandCrude Oil1.00NellSnow shoved into plastic bag.ExxonBF8/2198515:30Forenel IslandCrude Oil1.00NellSnow shoved into plastic bag.Exxon <td>0191</td> <td></td> <td>Exxon</td> <td>11/11/1982</td> <td>10:00</td> <td>Beechey Pt. Gravel Is.</td> <td>Lube Oil</td> <td>1.00</td> <td>Loader tipped over lube oil drum</td> <td></td> <td>1.00</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0191  |        | Exxon            | 11/11/1982 | 10:00 | Beechey Pt. Gravel Is.  | Lube Oil        | 1.00  | Loader tipped over lube oil drum                                      |                                                             | 1.00      |
| BFExxon1/23/19839:00Beechey Pt. Gravel Is.Hydraulic Fluid2.50Hydraulic line on backhoe broke1 gallon in water. Boom deployed with<br>sorbents, Contaminated gravel removedBFExxon8/29/19836:30Beechey Pt. Gravel Is.Hydraulic Fluid0.20Hydraulic line on backhoe broke1 gallon in water. Boom deployed with<br>sorbents, Contaminated gravel removedBFExxon8/29/198517:30Beechey Pt. Gravel Is.Hydraulic Fluid0.20Hydraulic line on rollogonUnknownBFShell3/1/198517:30Beechey Pt. Gravel Is.Hydraulic Fluid0.37Hydraulic line brokeContaminated Snow RemovedBFShell3/1/19851:30Ice Road to Term IslandHydraulic Fluid0.37Hydraulic line brokeContaminated Snow RemovedBFExxon3/2/19851:30Ice Road to Term IslandHydraulic Fluid3.00Hydraulic line brokeContaminated Snow RemovedBFExxon3/2/19851:30Ice Road to Term IslandHydraulic Fluid3.00Derational SpillContaminated Snow RemovedBFExxon3/2/19851:30Ice Road to Term IslandHydraulic Fluid0.01Operational SpillSnow shoved into plastic bag.BFExxon3/2/19851:30Ice Road to Term IslandIcude Oil0.01Operational SpillSnow shoved into plastic bag.BFShell3/118515:30Tern Gravel Is.Waste Oil0.01Operational SpillSnow shoved into pla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0191  |        | Exxon            | 1/15/1983  | 10:00 | Beechey Pt. Gravel Is.  |                 | 0.12  | Fuel truck spilled diesel as it climbed a<br>40 degree ramp to island |                                                             | 0.12      |
| BFExxon8/29/19836:30Beechey Pt. Gravel Is.Hydraulic Fluid0.20Hydraulic line on backhoe brokeSpill contained on island surface. SorbentsBFShell8/30/198317:30Beechey Pt. Gravel Is.Hydraulic Fluid0.0.7Broken hydraulic line on rollogonUnknownBFShell3/1/198517:30Beechey Pt. Gravel Is.Hydraulic Fluid0.37Hydraulic line brokeContaminated Snow RemovedBFShell3/1/19851:30Ice Road to Term IslandHydraulic Fluid3.00Hydraulic line brokeContaminated Snow RemovedBFShell3/1/19851:30Ice Road to Term IslandHydraulic Fluid3.00Hydraulic line brokeNoknownBFExxon3/2/19851:30Ice Road to Term IslandHydraulic Fluid3.00NoknownSnow shoved into plastic bag.BFExxon3/2/19851:30Ice Road to Term IslandCrude Oil0.01Operational SpillSnow shoved into plastic bag.BFShell3/1/198515:30Tern Gravel Is.Waste OilDrum of waste oil puncturedSnow recoveredBF1/198515:30Tern Gravel IslandCrude Oil1.00Well Separator overflowed, crude oilLine boom deployedBF3/1/198515:30Tern Gravel IslandCrude Oil1.00Well Separator overflowed, crude oilLine boom deployedBF3/198515:30Tern Gravel IslandCrude Oil1.00Well Separator overflowed, crude oil <td>0191</td> <td></td> <td></td> <td>1/23/1983</td> <td>00:6</td> <td></td> <td>Hydraulic Fluid</td> <td>2.50</td> <td></td> <td>þe</td> <td>2.50</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0191  |        |                  | 1/23/1983  | 00:6  |                         | Hydraulic Fluid | 2.50  |                                                                       | þe                                                          | 2.50      |
| BF         Shell         8/30/1983         Ice Road to Tern Island         Hydraulic Fluid         10.0         Broken hydraulic line on rollogon         Unknown           BF         Exxon         2/26/1985         17:30         Beechey Pt. Gravel Is.         Hydraulic Fluid         0.37         Hydraulic line broke         Contaminated Snow Removed           BF         Shell         3/1/1985         1:30         Ice Road to Tern Island         Hydraulic Fluid         3.00         Hydraulic line broke         Contaminated Snow Removed           BF         Shell         3/1/1985         1:30         Ice Road to Tern Island         Hydraulic Fluid         3.00         Hydraulic line broke         Contaminated Snow Removed           BF         Exxon         3/2/1985         Beechey Pt. Gravel Is.         Gasoline         0.01         Operational Spill         Snow shoved into plastic bag.           BF         Exxon         3/2/1985         Beechey Pt. Gravel Is.         Waste Oil         2.00         Drum of waste oil punctured         Snow recovered           BF         3/4/1985         15:30         Tern Gravel Island         Crude Oil         1.00         Well Separator overflowed, crude oil         Line boom deployed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0191  |        | Exxon            | 8/29/1983  | 6:30  |                         | Hydraulic Fluid | 0.20  |                                                                       |                                                             | 0.25      |
| BF         Exxon         2/26/1985         17:30         Beechey Pt. Gravel Is.         Hydraulic Fluid         0.37         Hydraulic line broke         Contaminated Snow Removed           BF         Shell         3/1/1985         1:30         Ice Road to Tern Island         Hydraulic Fluid         3.00         Hydraulic line broke         Contaminated Snow Removed           BF         Shell         3/1/1985         1:30         Ice Road to Tern Island         Hydraulic Fluid         3.00         Hydraulic line broke         Unknown           BF         Exxon         3/2/1985         Beechey Pt. Gravel Is.         Gasoline         0.01         Operational Spill         Snow shoved into plastic bag.           BF         Exxon         3/2/1985         Beechey Pt. Gravel Is.         Waste Oil         2.00         Drum of waste oil punctured         Snow recovered           BF         Shell         3/4/1985         15:30         Tern Gravel Island         Crude Oil         1.00         Well Separator overflowed, crude oil         Line boom deployed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0196  |        |                  | 8/30/1983  |       |                         | Hydraulic Fluid |       |                                                                       | Unknown                                                     | Unknown   |
| BF         Shell         3/1/1985         1:30         Ice Road to Tern Island         Hydraulic Fluid         3.00         Hydraulic line broke         Unknown           BF         Exxon         3/2/1985         Beechey Pt. Gravel Is.         Gasoline         0.01         Operational Spill         Snow shoved into plastic bag.           BF         Exxon         3/2/1985         Beechey Pt. Gravel Is.         Waste Oil         2.00         Drum of waste oil punctured         Snow recovered           BF         Shell         3/4/1985         15:30         Tern Gravel Island         Crude Oil         1.00         Well Separator overflowed, crude oil         Line boom deployed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0191  |        |                  | 2/26/1985  | 17:30 |                         | Hydraulic Fluid |       |                                                                       |                                                             | 0.37      |
| BF         Exxon         3/2/1985         Beechey Pt. Gravel Is.         Gasoline         0.01         Operational Spill         Snow shoved into plastic bag.           BF         Exxon         3//1985         Beechey Pt. Gravel Is.         Waste Oil         2.00         Drum of waste oil punctured         Snow recovered           BF         Shell         3//1985         15:30         Tern Gravel Island         Crude Oil         1.00         Well Separator overflowed, crude oil         Line boom deployed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0196  |        |                  | 3/1/1985   | 1:30  |                         | Hydraulic Fluid | 3.00  | Hydraulic line broke                                                  |                                                             | 3.00      |
| BF         Exxon         3//1985         Beechey Pt. Gravel Is.         Waste Oil         2.00         Drum of waste oil punctured         Snow recovered           BF         Shell         3//1985         15:30         Tern Gravel Island         Crude Oil         1.00         Well Separator overflowed, crude oil         Line boom deployed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0191  |        |                  | 3/2/1985   |       | ls.                     | Gasoline        | 0.01  | Operational Spill                                                     |                                                             | 0.01      |
| BF Shell 34/1985 15:30 Tern Gravel Island Crude Oil 1.00 Well Separator overflowed, crude oil Line boom deployed escaped                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0191  |        |                  | 3⁄4/1985   |       | s.                      | Waste Oil       | 2.00  | Drum of waste oil punctured                                           |                                                             | 2.00      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0196  |        |                  | 3⁄4/1985   | 15:30 |                         | Crude Oil       |       |                                                                       |                                                             | Unknown   |

|               | s on the Arctic OCS |
|---------------|---------------------|
| (Continued)   | Spills on the       |
| Table A.1-4 ( | Exploration Spills  |

| Jaie Operator pare                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Date                                                                                                                              | Time                                                                               | Time Facility                                                                                                                                                                                                                                                                                                            | Substance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Amt.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Amt. Cause of Spill                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Response Action                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Amount                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                   | 24 Hr                                                                              |                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (Gal)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Recovered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Shell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3/6/1985                                                                                                                          | 16:30                                                                              |                                                                                                                                                                                                                                                                                                                          | Crude Oil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Test burner was operating poorly                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Containment Boom deployed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| BF Shell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9/24/1985                                                                                                                         | 16:00                                                                              |                                                                                                                                                                                                                                                                                                                          | Crude Oil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Shell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10/4/1985                                                                                                                         | 8:45                                                                               |                                                                                                                                                                                                                                                                                                                          | Jet fuel B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 800.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Contaminated Snow Removed. Test holes<br>drilled with no fuel below snow.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Shell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10/29/1985                                                                                                                        | 14:00                                                                              |                                                                                                                                                                                                                                                                                                                          | Crude Oil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Test oil burner malfunction                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Contaminated snow removed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| BF Shell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6/27/1986                                                                                                                         | 13:30                                                                              |                                                                                                                                                                                                                                                                                                                          | Crude Oil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Test oil burner malfunction                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Spray picked up with sorbents. Bladed up dirty snow.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 109 SWEPI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7/7/1989                                                                                                                          | 3:00                                                                               |                                                                                                                                                                                                                                                                                                                          | Hydraulic fluid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Hydraulic line connector                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sorbent pads                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 97 AMOCO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10/1/1991                                                                                                                         | 2:00                                                                               |                                                                                                                                                                                                                                                                                                                          | Hydraulic fluid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ARCO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7/24/1993                                                                                                                         |                                                                                    | Beaudril Kulluk                                                                                                                                                                                                                                                                                                          | Diesel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Residual fuel in bilge water                                                                                                                                                                                                                                                                                                                                                                                                                                                                | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ARCO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9/8/1993                                                                                                                          | 18:30                                                                              |                                                                                                                                                                                                                                                                                                                          | Hydraulic fluid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Seal on shale shaker failed                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ARCO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9/24/1993                                                                                                                         |                                                                                    | CANMAR Kulluk                                                                                                                                                                                                                                                                                                            | Fuel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Fuel transfer in rough weather                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3 gallons on deck of barge recovered, none in 3.00 sea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 124 ARCO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10/31/1993                                                                                                                        |                                                                                    | CANMAR Kulluk                                                                                                                                                                                                                                                                                                            | Fuel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Released during emptying of disposal<br>caisson                                                                                                                                                                                                                                                                                                                                                                                                                                             | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 87 Tenneco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1/24/1998                                                                                                                         | 13:00                                                                              |                                                                                                                                                                                                                                                                                                                          | Gear oil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 220.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 220.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 124 BP<br>Alaska                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1/20/1997                                                                                                                         |                                                                                    | Ice Road to Tern Island                                                                                                                                                                                                                                                                                                  | Diesel,<br>Hydraulic Fluid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Truck went through ice; fuel line<br>ruptured                                                                                                                                                                                                                                                                                                                                                                                                                                               | Scooped up contaminated snow and ice.<br>Some product entered water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Area           BF           BF | Shell<br>Shell<br>Shell<br>Shell<br>Shell<br>Shell<br>Shell<br>AMOCO<br>ARCO<br>ARCO<br>ARCO<br>ARCO<br>ARCO<br>ARCO<br>ARCO<br>A | 985<br>985<br>1985<br>1985<br>1985<br>1985<br>1993<br>1993<br>1993<br>1993<br>1993 | 385         385           385         1985           11985         11985           11986         11986           11991         11996           11993         11993           11993         11998           11993         11998           11993         11993           11993         11993           11993         11993 | 24 Hr     24 Hr       985     16:30     Tern Gravel Island       1985     16:00     Tern Gravel Island       1985     8:45     Enroute to Tern Gravel       1985     8:45     Enroute to Tern Gravel       1986     13:30     Tern Gravel Island       1981     3:00     Explorer III Drillship       1991     2:00     CANMAR Explorer       1993     18:30     CANMAR Kulluk       1993     18:30     CANMAR Kulluk       1993     18:30     CANMAR Kulluk       1993     13:00     SSDC/MAT       1998     13:00     SSDC/MAT | 24 Hr     24 Hr       985     16:30     Tern Gravel Island     C       985     16:30     Tern Gravel Island     C       1985     8:45     Enroute to Tern Gravel Jand     Jand       1985     8:45     Enroute to Tern Gravel Jand     Jand       1986     13:30     Tern Gravel Island     C       1986     13:30     Tern Gravel Island     C       1986     13:30     Tern Gravel Island     C       1991     2:00     Explorer III Drillship     H       1993     3:00     Explorer III Drillship     H       1993     18:30     CANMAR Kulluk     H       1993     18:30     CANMAR Kulluk     H       1993     13:00     SSDC/MAT     G       1998     13:00     SSDC/MAT     G       1997     Ice Road to Tern Island     H | 24 HrCrude Oil98516:30Tern Gravel IslandCrude Oil198516:00Tern Gravel IslandCrude Oil19858:45Enroute to Tern GravelJet fuel B19858:45Enroute to Tern GravelJet fuel B198613:30Tern Gravel IslandCrude Oil198613:30Tern Gravel IslandCrude Oil198613:30Tern Gravel IslandCrude Oil19863:00Explorer III DrillshipHydraulic fluid19912:00CANMAR ExplorerHydraulic fluid199318:30CANMAR KullukFuel199813:00SSDC/MATGear oil1997Ice Road to Tern IslandDiesel,1997Ice Road to Tern IslandDiesel, | 24 Hr(Ga)(Ga)38516:30Tern Gravel IslandCrude Oil15.00Test burner was operating poorly38516:30Tern Gravel IslandCrude Oil15.00Test burner was operating poorly19858:45Enroute to Tern Gravel IslandCrude Oil2.00Oil released from steam heat coil when19858:45Enroute to Tern Gravel IslandCrude Oil2.00Test oil burner matk moved198613:30Tern Gravel IslandCrude Oil3.00Test oil burner matfunction198613:30Explorer III DrillshipHydraulic fluid10.0Hydraulic line connector19812:00Explorer III DrillshipHydraulic fluid2.00Hydraulic line rupture19833:00Explorer III DrillshipHydraulic fluid10.0Hydraulic line rupture19912:00CANMAR ExplorerHydraulic fluid1.0.0Fuel1.0.0199318:30CANMAR KullukHuel0.05Released during emptying of disposal199318:30SSDC/MATGear oil0.50Released during emptying of disposal199313:00SSDC/MATGear oil0.50Released during emptying of disposal199313:00SSDC/MATDeal10.0Hydraulic fluid1.0.0199313:00SSDC/MATGear oil2.00Hydraulic fluid199413:00SSDC/MATDeal0.50Released during enring transfer199710:00SSDC/MA | 24 Hr24 Hr24 Hr24 Hr36516:30Tem Gravel IslandCrude Oli15.00Test burner was operating poorlyContainment Boom deployed198516:30Tem Gravel IslandCrude Oli2.00Nile teased from steam heat coli whenSorbents and hand shovel used19858:45Enroute to Tem GravelJet fuel B80.00Wire sing broke during helicopterContainment Boom Removed. Test holes198613:30Tem Gravel IslandCrude Oli2.00Test oil burner malfunctionContaminated Snow Removed. Test holes198613:30Tem Gravel IslandCrude Oli2.00Test oil burner malfunctionContaminated Snow Removed. Test holes198613:30Tem Gravel IslandCrude Oli2.00Test oil burner malfunctionContaminated Snow Removed. Test holes198613:30Tem Gravel IslandCrude Oli2.00Hydraulic fluid1.00Hydraulic fluid198113:30Explorer III DrillshipHydraulic fluid2.00Hydraulic fluid2.00Hydraulic fluid19932:00CANMAR ExplorerHydraulic fluid2.00Hydraulic fluid2.00Hydraulic fluid2.00199318:30CANMAR KullukHuel0.06Residual fuel in bige waterNoneNone199318:30CANMAR KullukFuel0.06Residual fuel in bige waterNone199313:0ExplorerBoud Wire Sign of explorerNoneNone199313:0CAN |

Source: USDOI, MMS, Alaska OCS Region (2006).

# Table A.1-5Properties of Alpine Crude Oil (Composite)

| Physical and Chemical Data for the Alpine | Composite |
|-------------------------------------------|-----------|
| Chemical/Physical Property                |           |
| Specific Gravity (60°F/15.56°C)           | 0.834     |
| Pour Point                                | -18       |
| Reference Temperature 1 (°C)              | 10        |
| Viscosity at Reference Temperature 1(cP)  | 103       |
| Wax (weight %)                            | 3.2       |
| Asphaltenes (weight %)                    | 0.06      |

# Table A.1-6

The True Boiling Point Values used for the Alpine Composite Sample

| Temperature [°C] | Evaporated [volume%] |
|------------------|----------------------|
| 85               | 8                    |
| 105              | 13                   |
| 135              | 19                   |
| 175              | 27                   |
| 205              | 33                   |
| 235              | 38                   |
| 265              | 45                   |
| 310              | 54                   |
| 350              | 62                   |
| 420              | 72                   |
| 525              | 89                   |

### Table A.1-7

Experimental Results from the Bench-Scale Laboratory Testing at 10<sup>o</sup>C (50<sup>o</sup>F) for the Alpine Composite Sample

| Chemical/Physical Property                                      | Fresh  | 150°C+ | 200°C+ | 250°C+ |
|-----------------------------------------------------------------|--------|--------|--------|--------|
| Boiling Point [°C]                                              | -      | 167    | 246    | 296    |
| Evaporation [vol%]                                              | 0      | 22     | 34     | 44     |
| Residue [weight%]                                               | 100    | 81     | 69     | 60     |
| Specific Gravity [g/L]                                          | 0.8340 | 0.8668 | 0.8845 | 0.8981 |
| Pour Point [°C]                                                 | -18    | -3     | 9      | 18     |
| Viscosity at Shear 10s <sup>-1</sup> [cP]                       | 103    | 118    | 839    | 1,160  |
| Viscosity of 50% Emulsion at Shear 10s <sup>-1</sup> [cP]       | -      | 120    | 920    | 2,940  |
| Viscosity of 75% Emulsion at Shear 10s <sup>-1</sup> [cP]       | -      | 780    | 2,970  | 7,130  |
| Viscosity of Max Water Emulsion at Shear 10s <sup>-1</sup> [cP] | -      | -      | 5,960  | 11,700 |
| Maximum Water Content in Emulsion [vol%]                        | -      | 80     | 80     | 80     |
| Halftime for Water Uptake [h]                                   | -      | 0.1    | 0.2    | 0.5    |
| Stability Ratio                                                 | -      | 0      | 1      | 0.8    |

Key:

- = Not determined % = percent vol = volume °C = degrees Celsius °F = degrees Fahrenheit cP = Centipoise

g/L = grams per Liter

h = hour

Source: Lerivik, F., T.J Schrader, and M.O. Moldestad, (2005).

Table A.1-8

| laska Shoreline     |
|---------------------|
| or United States, A |
| st to the Ocean f   |
| x Shoreline Close   |
| al Sensitivity Inde |
| e of Environment    |
| and the Percent Typ |
| and Segment ID an   |
| Ľ                   |

|          |                                                                                                          | ſ          |            |    |    |    |   |     |    |       |        |        |       |       |    |     |     |   |
|----------|----------------------------------------------------------------------------------------------------------|------------|------------|----|----|----|---|-----|----|-------|--------|--------|-------|-------|----|-----|-----|---|
| <u>0</u> | Geographic Place Names                                                                                   | <b>1</b> B | <b>1</b> B | 2A | 3A | 3C | 4 | 5   | 6A | 6B    | 7 8    | 8A 8   | 8B 8E | E 9A  | 9B | ₽ 4 | 6 п |   |
| 40       | Ah-Gude-Le-Rock, Dry Creek, Lopp Lagoon, Mint River                                                      |            |            | -  | 16 | 0  |   | 29  | 0  |       | 19     | 9      |       | ∞     |    | 15  | -   |   |
| 41       | Ikpek, Ikpek Lagoon, Pinguk River, Yankee River                                                          | ļ          |            | 4  | 30 | 2  | ļ | 0   |    |       | 22     | 5      |       | 6<br> |    | 4   | 2   |   |
| 42       | Arctic Lagoon, Kugrupaga Inlet, Nuluk River                                                              | ļ          |            | с  | 10 | 2  | ļ | 7   | 0  |       | 6      | 17     |       | - 17  |    | 31  | 2   |   |
| 43       | Sarichef Island, Shishmaref Airport                                                                      | ļ          |            | -  | 24 | 3  | - | с   |    |       | 6      | ا<br>« |       | 31    | 0  | 6   | 2   |   |
| 44       | Cape Lowenstern, Egg Island, Shishmaref, Shishmaref Inlet                                                | ļ          |            | 10 | 6  | 3  | 0 | ~   |    |       | 10     | 2      |       | - 22  |    | 26  |     |   |
| 45       |                                                                                                          | ļ          | ļ          | -  | 5  | 2  |   | ļ   |    |       | 5 1    | ا<br>∞ |       | - 15  |    | 51  | ļ   | - |
| 46       | Cowpack Inlet and River, Kalik River, Kividlo, Singeak, Singeakpuk River                                 | ļ          |            | 4  | 17 | 2  |   | ļ   |    |       | 26     | 5      |       | - 12  | -  | 28  | ļ   |   |
| 47       | Kitluk River, Northwest Corner Light, West Fork Espenberg River                                          | ļ          |            |    | 24 | 12 |   |     |    |       | 16 1   | 4      |       | 4     |    | 40  | ო   |   |
| 48       | Cape Espenberg, Espenberg, Espenberg River                                                               | 0          |            | 7  | 13 | 5  |   | 9   | 6  |       | 12 1   | 2      | -     | - 12  |    | 20  | ~   |   |
| 49       | Kungealoruk Creek, Kougachuk Creek, Pish River                                                           | ļ          |            | 0  | 5  | 7  |   | 20  |    |       | ،<br>ص | 4      |       | - 16  |    | 33  |     |   |
| 50       | Clifford Point, Cripple River, Goodhope River, Rex Point, Sullivan Bluffs                                | ļ          | ļ          |    |    |    |   | 24  | 18 |       | 0 2    | 22     |       | -     |    | 14  |     |   |
| 51       | Cape Deceit, Deering, Kugruk Lagoon and River, Sullivan Lake, Toawlevic Point                            | -          |            |    |    | -  | - | 23  | 9  |       | е<br>6 | `<br>∞ | -     | 2     |    | 4   | 9   |   |
| 52       | Motherwood Point, Ninemile Point, Willow Bay                                                             | 17         |            |    |    | 3  |   | 12  | 32 |       | 2      |        |       | - 2   |    | 17  | 12  |   |
| 53       | Kiwalik, Kiwalik Lagoon, Middle Channel Kiwalk River, Minnehaha Creek, Mud Channel<br>Creek, Mud Creek   | 4          | ļ          | ļ  | ~  | -  |   | 13  | 10 | ļ     | 11     | 0      |       | - 26  |    | 22  | 2   | ļ |
| 54       | Baldwin Peninsula, Lewis Rich Channel                                                                    | 2          |            | ļ  |    | 2  | ļ | 43  | 3  |       | 3      | 9      |       | 0     |    | 35  | 3   |   |
| 55       | Cape Blossom, Pipe Spit                                                                                  |            |            | ļ  |    | 10 | ļ | 35  | 10 |       |        | 2 -    |       | - 6   |    | 6   | 20  |   |
| 56       | Kinuk Island, Kotzebue, Noatak River                                                                     |            |            | ļ  |    | 3  | ļ | 2   | 8  |       | 4      | 5 (    | - 0   | - 29  |    | 47  | ļ   |   |
| 57       | Aukulak Lagoon, Igisukruk Mountain, Noak, Mount, Sheshalik, Sheshalik Spit                               |            |            | -  |    |    |   | 37  |    | •     |        | -      | -     | - 22  |    | 36  |     |   |
| 58       | Cape Krusenstern, Eigaloruk, Evelukpalik River, Kasik Lagoon, Krusenstern Lagoon,                        |            |            | ļ  |    | 8  | 0 | 30  | 7  |       | 4      | 3      |       | - 2   |    | 30  | 16  |   |
| 59       | Imik Lagoon, Ipiavik Lagoon, Kotlik Lagoon, Omikviorok River                                             | 0          | 0          |    |    | 1  |   | 62  | 9  |       | 3      | 6 -    | -     | - 2   |    | 9   | 14  |   |
| 60       | Imikruk Lagoon, Imnakuk Bluff, Kivalina, Kivalina Lagoon, Singigrak Spit, Kivalina<br>River, Wulik River |            |            | ļ  |    | 0  | 2 | 23  | 2  |       | -      | 5      |       | 8     |    | 35  | 22  |   |
| 61       | Asikpak Lagoon,Cape Seppings,Kavrorak Lagoon,Pusaluk Lagoon,Seppings Lagoon                              |            |            |    |    |    | ო | 32  | 13 |       |        | 2      |       |       |    |     | 49  |   |
| 62       | ()                                                                                                       | ļ          | ļ          |    | ļ  |    |   | 100 | ļ  | '<br> | 1      | 1      |       |       |    | ļ   | ļ   | ļ |
| 63       | Akoviknak Lagoon, Cape Thompson, Crowbill Point, Igilerak Hill, Kemegrak Lagoon                          | 7          | ļ          | ļ  | ļ  | ļ  | ļ | 93  | ļ  | •     | 1      | 1      |       |       | ļ  | ļ   | ļ   | ļ |
| 64       | Aiautak Lagoon, Ipiutak Lagoon, Kowtuk Point, Kukpuk River, Pingu Bluff, Point<br>Hope, Sinigrok Point,  | 16         |            |    |    |    |   | 82  | ю  |       |        |        |       |       |    |     |     |   |
| 65       | Buckland, Cape Dyer, Cape Lewis, Cape Lisburne                                                           | 29         | ļ          |    |    |    |   | 60  | 5  |       | 1      |        |       |       |    | ļ   | ļ   |   |
| 99       | Ayugatak Lagoon                                                                                          | 51         | ļ          | ļ  | ļ  | ļ  | ļ | 46  | ļ  | •     | 1<br>  | <br>   |       |       | ļ  | ļ   | ļ   | ļ |
| 67       | Cape Sabine, Pitmegea River                                                                              | 51         | ļ          | ļ  | ļ  | 6  | ļ | 40  |    | •     | י<br>  |        |       |       | ļ  | ļ   | ļ   | ļ |
| 68       | Agiak Lagoon, Punuk Lagoon                                                                               | i          | ļ          |    |    | 10 |   | 86  |    | •     | 1      | 1      |       |       |    | ļ   | ļ   |   |
| 69       | Cape Beaufort, Omalik Lagoon                                                                             | ļ          |            |    |    | 45 |   | 50  |    | ·<br> | '<br>  |        |       |       |    |     | ļ   | ļ |

Table A.1-8 (continued) Land Segment ID and the Percent Type of Environmental Sensitivity Index Shoreline Closest to the Ocean for United States, Alaska Shoreline

|    |                                                                                                                |    | ľ | ŀ     | ŀ   | ŀ      |      |        | ł    | ł | ł   |        |        |      |          |            |     |    |
|----|----------------------------------------------------------------------------------------------------------------|----|---|-------|-----|--------|------|--------|------|---|-----|--------|--------|------|----------|------------|-----|----|
| ₽  | Geographic Place Names                                                                                         | 1A | 8 | 2A 3. | ۷   | ЗС     | 4    | 2<br>2 | 6A 6 | B | 4   | 8<br>V | B<br>8 | E 9A | 0B       | <b>₽</b> ₹ | 6 п | ⊃  |
| 20 | Kuchaurak Creek, Kuchiak Creek                                                                                 |    |   |       | 20  | ε      |      | 34 -   | İ    |   |     |        | -      | 12   | <b>ග</b> | 9          | 10  |    |
| 2  | Kukpowruk River, Naokok, Sitkok Point                                                                          |    |   |       | 34  | - 2    |      | 21 -   |      |   |     |        |        | - 25 | ~        | 2          | 2   | e  |
| 72 | Kokolik River, Point Lay, Siksrikpak Point                                                                     |    |   |       | 30  | °.     |      | - 2    |      |   |     |        | с<br>Г | 19   | 19       |            | 5   | 4  |
| 73 | Akunik Pass, Tungaich Point, Tungak Creek                                                                      |    |   |       | 27  | 14     |      | - 2    |      |   |     |        |        | - 19 | ∞        |            | e   | 22 |
| 74 | Kasegaluk Lagoon, Solivik Island, Utukok River                                                                 |    |   |       | 21  | 8      |      | -      |      |   |     |        |        | - 19 | 6        |            |     | 43 |
| 75 | Akeonik, Icy Cape, Icy Cape Pass                                                                               |    |   |       | 25  | 12     |      | 14 -   |      |   |     |        | с<br>1 | 16   | 18       |            | 2   | 10 |
| 26 | Akoliakatat Pass, Avak Inlet, Tunalik River                                                                    |    |   |       | 21  | 21     |      | - 2    |      |   |     |        | 4      | 10   | 2        |            | 10  | 20 |
| 77 | Nivat Point, Nokotlek Point, Ongorakvik River                                                                  |    |   | 1     | 47  | 10     |      | 30 -   |      |   |     |        |        | - 2  | 6        | -          | -   | ~  |
| 78 | Kuk River, Point Collie, Sigeakruk Point,                                                                      |    |   | 1     | 46  | 13     |      | 23 -   |      |   |     |        | -      | с    | 2        |            | 6   | ი  |
| 29 | Point Belcher, Wainwright, Wainwright Inlet                                                                    |    |   |       | 26  | 26 -   |      | 37 -   |      |   |     |        |        |      | 11       |            |     |    |
| 80 | Eluksingiak Point, Igklo River, Kugrua Bay                                                                     | ļ  |   |       | 23  | 42 -   |      | 16 -   |      |   |     |        | 6      | 4    | 2        |            | 5   |    |
| 81 | Peard Bay, Point Franklin, Seahorse Islands, Tachinisok Inlet                                                  |    |   |       | 60  | 26 -   |      | - 2    |      |   |     |        | - 5    |      | 2        |            |     |    |
| 82 | Skull Cliff                                                                                                    | 5  |   |       |     | - 82   |      | 17 -   |      |   |     |        |        | -    |          |            | ļ   |    |
| 83 | Nulavik, Loran Radio Station                                                                                   | ٢  |   |       |     | 91 -   |      | - 8    |      |   |     |        |        | -    |          |            | ļ   |    |
| 84 | Walakpa River, Will Rogers and Wiley Post Memorial                                                             |    |   |       |     | 4      |      | - 96   |      |   |     |        |        |      |          |            |     |    |
| 85 | Barrow, Browerville, Elson Lagoon                                                                              |    |   |       |     |        | 20   | 38 -   |      |   | 5   |        | - 28   | 0    |          |            | 10  | -  |
| 86 | Dease Inlet, Plover Islands, Sanigaruak Island                                                                 | ļ  |   | `<br> | 11  |        | 15   | 23 -   |      | - | 3   |        | - 35   |      |          |            | с   |    |
| 87 | Igalik Island, Kulgurak Island, Kurgorak Bay, Tangent Point                                                    |    |   |       | - 2 |        | 4    | 5      |      |   | - 2 |        | - 34   | 4 27 | e        |            | 13  |    |
| 88 | Cape Simpson, Piasuk River, Sinclair River, Tulimanik Island                                                   |    |   | 1     |     |        | 4    | 5 -    | -    |   | 3   |        | - 19   | 9 48 | 7        |            | 4   | 15 |
| 89 | lkpikpuk River, Point Poleakoon, Smith Bay                                                                     |    |   |       |     |        |      | -      |      |   | 1   |        | 8      | 73   |          |            | ļ   | 19 |
| 06 | Drew Point, Kolovik, McLeod Point,                                                                             | ļ  | - |       |     |        | 25 - | -      | -    | - | 5   |        | - 60   | - (  |          |            |     |    |
| 91 | Lonely, Pitt Point, Pogik Bay, Smith River                                                                     |    |   |       |     |        | 6    | 8      |      |   | 4   |        | - 27   | 7 30 |          |            |     | 22 |
| 92 | Cape Halkett, Esook Trading Post, Garry Creek                                                                  |    |   |       | 0   | 3      | 16   |        |      |   | 5   |        | - 72   | -    |          |            | 4   |    |
| 93 | Atigaru Point, Eskimo Islands, Harrison Bay,                                                                   |    |   | `<br> | 15  | 27     | 8    | 2      |      |   | 2   |        | - 16   | - 6  |          | -          | 22  | 2  |
| 94 | Fish Creek, Tingmeachsiovik River                                                                              |    |   | `<br> | 11  | 4      | -    |        |      | - | 2   |        | ю<br>- | 32   |          |            | 38  |    |
| 92 | Anachlik Island, Colville River, Colville River Delta                                                          |    |   |       | 7   | 2      | -    |        |      | 4 | 42  |        | - 2    | 36   |          | -          | 8   | Ι  |
| 96 | Kalubik Creek, Oliktok Point, Thetis Mound,                                                                    |    |   |       | 19  | 0      | -    | 12     | 1    |   | 8   |        | 6<br>  | ٢    |          |            | 25  | 25 |
| 97 | Beechey Point, Bertoncini Island, Bodfish Island, Cottle Island, Jones Islands, Milne Point,<br>Simpson Lagoon | I  | I |       | 41  | 2<br>2 | -    | 18 -   |      |   | - 2 |        | 8      | 0    |          |            | 10  | 1  |
| 98 | Gwydyr Bay, Kuparuk River, Long Island                                                                         |    |   | `<br> | 10  | 1      |      | 23 -   |      | - | - 9 |        | ю<br>- | 23   |          |            | 26  | 7  |
| 66 | Duck Island, Foggy Island, Gull Island, Heald Point, Howe Island, Niakuk Islands, Point<br>Brower              | I  |   |       |     | 4      | -    | 14     | -    |   | 6   | -      | 2      | 51   | ļ        |            | 10  | 4  |
|    |                                                                                                                |    |   |       |     |        |      |        |      |   |     |        |        |      |          |            |     |    |

Table A.1-8 (continued)

Land Segment ID and the Percent Type of Environmental Sensitivity Index Shoreline Closest to the Ocean for United States, Alaska Shoreline

|     |                                                                                                                  |      | ŀ      | $\left  \right $ | ŀ    | $\left  \right $ | $\left  \right $ | ŀ      | -    | ŀ    |    |      | ļ      |    |    | 1 | 1  |    |
|-----|------------------------------------------------------------------------------------------------------------------|------|--------|------------------|------|------------------|------------------|--------|------|------|----|------|--------|----|----|---|----|----|
|     |                                                                                                                  |      |        |                  |      |                  |                  |        |      | _    | _  |      | _      |    | _  | 9 | 9  |    |
| 0   | ID Geographic Place Names                                                                                        | 1A 、 | 1B 2   | 2A 3             | 3A 3 | 3C 4             | 4 5              | 5 6A   | A 6B | 3 7  | 8A | N 8B | 8E     | 9A | 9B | ۷ | ш  | D  |
| 100 | 100 Foggy Island Bay, Kadleroshilik River, Lion Point, Shaviovik River, Tigvariak Island                         |      | ·<br>  | -                | , 10 |                  |                  | 8      |      | - 27 |    |      | 4      | £  |    |   | 39 | 5  |
| 101 | Bullen Point, Point Gordon, Reliance Point                                                                       |      |        | -                | 10   | ၊<br>က           | с<br>П           | 39     |      | - 5  |    |      | ε<br>Γ |    |    |   | 25 | 15 |
| 102 | Flaxman Island, Maguire Islands, North Star Island, Point Hopson, Point Sweeney, Point<br>Thomson, Staines River |      |        | -                | ÷    | ا<br>س           |                  | 37 2   |      | ∞    |    |      |        |    |    |   | 14 | 18 |
| 103 | Brownlow Point, Canning River, Tamayariak River                                                                  |      | '<br>  |                  |      | 2                | 18 6             | 9      |      | - 12 |    |      | - 7    | 35 |    |   | Ţ  | 19 |
| 104 | I Camden Bay, Collinson Point, Katakturuk River, Konganevik Point, Simpson Cove                                  | 1    |        |                  |      | ω<br>Ι           | 8                | 30     |      | 6    |    |      | - 14   | 2  | 2  |   | 10 | 26 |
| 105 | Anderson Point, Carter Creek, Itkilyariak Creek, Kajutakrok Creek, Marsh Creek, Sadlerochit<br>River             | I    |        |                  |      | -                | 14 30            | 0      | -    | - 21 |    | -    | 9      | 5  |    | 2 |    | 23 |
| 106 | Arey Island, Arey Lagoon, Barter Island, Hulahula River, Okpilak River                                           |      | '<br>  |                  |      |                  | 2 7              | 2      |      | - 23 |    |      | - 14   | 10 |    |   | Ι  | 43 |
| 107 | Bernard Harbor, Jago Lagoon, Kaktovik, Kaktovik Lagoon                                                           |      | '<br>  |                  |      | 7                | 4 2              | 23     |      | - 19 |    |      | 9      | 15 |    |   | -  | 34 |
| 108 | I Griffin Point, Oruktalik Lagoon, Pokok Lagoon                                                                  |      | '<br>  |                  |      | -                | 13 2             | 24     |      | - 20 |    |      | - 15   | 12 |    | - |    | 15 |
| 109 | Angun Lagoon, Beaufort Lagoon, Nuvagapak Lagoon,                                                                 | 1    | '<br>  | 1                |      | 5                | 28 1             | -<br>- |      | - 32 |    |      | - 15   | 0  |    |   | -  | 13 |
| 110 | 110 Aichilik River, Egaksrak Lagoon, Egaksrak River, Icy Reef, Kongakut River, Siku Lagoon                       |      | '<br>  |                  |      | -                | 3 1              | 2      |      | - 7  |    |      | с<br>- | 39 |    |   | 3  | 34 |
| 111 | Demarcation Bay, Demarcation Point, Gordon, Pingokraluk Lagoon                                                   |      | -<br>- |                  |      | 。<br>一           | 95,              | 1      |      | - 14 |    |      | 8      | -  |    |   |    | 17 |
| Ň   |                                                                                                                  |      |        |                  |      |                  |                  |        |      |      |    |      |        |    |    |   |    |    |

Key: ID = identification (number).

1A = Exposed Rocky Shore
1A = Exposed Rocky Shore
1B = Exposed Nave-cut Platforms in Bedrock, Mud or Clay
2A = Exposed Wave-cut Platforms in Bedrock, Mud or Clay
3A = Fine- to Medium-grained Sand Beaches.
3C = Tundra Cliffs.
4 = Coarse Grained Sand Beaches.
5 = Mixed Sand and Gravel Beaches.
6A = Gravel Beaches.
7 = Exposed Tidal Flats.
8A = Sheltered Nan-made Structures.
8E = Peat Shorel Ina.
9B = Sheltered Low-lying Tundra.
10A = Salt- and Brackish- water Marshes.

U= Unranked.

Source: USDOC, NOAA, (2002), Research Planning, Inc (2002).

| Table A.1-9                                                                                         |
|-----------------------------------------------------------------------------------------------------|
| Fate and Behavior of a Hypothetical 1,500-Barrel Crude Oil Spill from a Platform in the Chukchi Sea |

|                                                       |    | Summ | er Spill <sup>1</sup> |     |     | Melto | ut Spill <sup>2</sup> |     |
|-------------------------------------------------------|----|------|-----------------------|-----|-----|-------|-----------------------|-----|
| Time After Spill in Days                              | 1  | 3    | 10                    | 30  | 1   | 3     | 10                    | 30  |
| Oil Remaining (%)                                     | 71 | 67   | 62                    | 41  | 71  | 66    | 61                    | 55  |
| Oil Dispersed (%)                                     | 0  | 0    | 1                     | 2   | 0   | 1     | 2                     | 5   |
| Oil Evaporated (%)                                    | 29 | 33   | 37                    | 57  | 29  | 33    | 37                    | 40  |
| Thickness (mm)                                        | 1  | 1    | 1                     | 1   | 1.3 | 1     | 1                     | 1   |
| Discontinuous Area (km <sup>2</sup> ) <sup>3, 4</sup> | 7  | 29   | 139                   | 577 | 2   | 10    | 23                    | 188 |
| Estimated Coastline Oiled (km) <sup>5</sup>           |    |      | 25                    |     |     |       | 30                    |     |

### Table A.1-10 Fate and Behavior of a Hypothetical 4,600-Barrel Crude Oil Spill from a Pipeline in the Chukchi Sea

|                                                       |      | Sumn | ner Spill <sup>1</sup> |      |     | Melt | out Spill <sup>2</sup> |     |
|-------------------------------------------------------|------|------|------------------------|------|-----|------|------------------------|-----|
| Time After Spill in Days                              | 1    | 3    | 10                     | 30   | 1   | 3    | 10                     | 30  |
| Oil Remaining (%)                                     | 70   | 64   | 56                     | 44   | 71  | 66   | 61                     | 55  |
| Oil Dispersed (%)                                     | 1    | 3    | 7                      | 16   | 0   | 1    | 2                      | 5   |
| Oil Evaporated (%)                                    | 29   | 33   | 37                     | 40   | 29  | 33   | 37                     | 40  |
| Thickness (mm)                                        | 1.01 | 1    | 1                      | 1    | 1.3 | 1    | 1                      | 1   |
| Discontinuous Area (km <sup>2</sup> ) <sup>3, 4</sup> | 12   | 51   | 243                    | 1008 | 4   | 16   | 80                     | 332 |
| Estimated Coastline Oiled (km) <sup>5</sup>           |      |      | 42                     |      |     |      | 51                     |     |

### Table A.1-11

#### Fate and Behavior of a Hypothetical 1,500-Barrel Diesel Oil Spill from a Platform in the Chukchi Sea

|                          |     | Sumn | ner Spill <sup>1</sup> |    |     | Melt | out Spill <sup>2</sup> |     |
|--------------------------|-----|------|------------------------|----|-----|------|------------------------|-----|
| Time After Spill in Days | 1   | 3    | 10                     | 30 | 1   | 3    | 10                     | 30  |
| Oil Remaining (%)        | 80  | 47   | 68                     | -  | 88  | 65   | 20                     | 0   |
| Oil Dispersed (%)        | 11  | 40   | 68                     | -  | 3   | 11   | 40                     | 53  |
| Oil Evaporated (%)       | 9   | 23   | 31                     | -  | 9   | 24   | 40                     | 47  |
| Thickness (mm)           | 0.6 | 0.3  | 0.1                    | -  | 0.7 | 0.4  | 0.2                    | 0.1 |

#### Notes:

Calculated with the SINTEF oil-weathering model Version 3.0 of Reed et al. (2005) and assuming an Alpine Composite crude type or Diesel oil. For the Alternative I Sale 193 and its alternatives, the median pipeline spill is assumed to be 4,600 barrels. For the Alternative I Sale193 and its alternatives, the median platform spill is assumed to be 1,500 barrels.

<sup>1</sup> Summer (June 1-October 31), 8-knot wind speed, 2.7 degrees Celsius, 0.4-meter wave height.

<sup>2</sup> Meltout Spill (November 1-May 31). Spill is assumed to occur into first-year pack ice, pools 2-centimeter thick on ice surface for 2 days at -1 degrees Celsius prior to meltout into 50% ice cover, 10-knot wind speed, and 0.1 meter wave heights. <sup>3</sup> This is the area of oiled surface.

<sup>4</sup> Calculated from Equation 6 of Table 2 in Ford (1985) and is the discontinuous area of a continuing spill or the area swept by an instantaneous spill of a given volume. Note that ice dispersion occurs for about 30 days before meltout.

<sup>5</sup> Calculated from Equation 17 of Table 4 in Ford (1985) and is the result of stepwise multiple regressions for length of historical coastline affected.

#### Source:

Table A.1-12 Identification Number (ID) and Name of Environmental Resource Areas, Their Vulnerable Period in the Oil Spill Trajectory Model and Their Location on Environmental Resource Area Map A.1-2a, Map A.1-2b, Map A.1-2c, or Map A.1-2d

| 9     | N AME                                        |                         |                    |        | 2  |                                            |                  |        |
|-------|----------------------------------------------|-------------------------|--------------------|--------|----|--------------------------------------------|------------------|--------|
| 2     | NAME                                         |                         | VULNERABLE         | MAP    | ב  | NAWE                                       | VULNERABLE       | MAP    |
| -     | Kasegaluk Lagoon                             | Solivik Isl., Icy Cape  | May-October        | A.1-2b | 43 | Nuiqsut Subsistence Area                   | August-October   | A.1-2d |
| 7     | Point Barrow, Plover Islands                 | Elson Lag., Dease Inlet | May-October        | A.1-2a | 44 | Kaktovik Subsistence Area                  | August-October   | A.1-2c |
| ო     | ERA 3                                        |                         | September –October | A.1-2a | 45 | ERA 45                                     | April –October   | A.1-2b |
| 4     | ERA 4                                        |                         | January-December   | A.1-2a | 46 | Herald Shoal Polynya                       | January-December | A.1-2a |
| 5     | ERA 5                                        |                         | April-September    | A.1-2a | 47 | Ice/Sea Segment 10                         | January-December | A.1-2b |
| 9     | ERA 6                                        |                         | April –October     | A.1-2c | 48 | Ice/Sea Segment 11                         | January-December | A.1-2a |
| 2     | Endicott Causeway                            |                         | May-October        | A.1-2d | 49 | Hanna's Shoal Polynya                      | January-December | A.1-2a |
| œ     | Maguire, Flaxman Islands                     |                         | May-October        | A.1-2c | 50 | Ice/Sea Segment 12                         | January-December | A.1-2a |
| 6     | Stockton Islands                             |                         | May-October        | A.1-2d | 51 | Ice/Sea Segment 13                         | January-December | A.1-2a |
| 10    | Ledyard Bay SPEI Critical Habitat            |                         | May-October        | A.1-2d | 52 | Ice/Sea Segment 14                         | January-December | A.1-2b |
| 11    | Wrangel Island 12 nmi Buffer                 |                         | January-December   | A.1-2a | 53 | Ice/Sea Segment 15                         | January-December | A.1-2b |
| 12    | ERA 12                                       |                         | April-June         | A.1-2d | 54 | Ice/Sea Segment 16a                        | January-December | A.1-2b |
| 13    | ERA 13                                       |                         | January-December   | A.1-2a | 55 | Ice/Sea Segment 17                         | January-December | A.1-2d |
| 14    | Cape Thompson Seabird Colony Area            |                         | May-October        | A.1-2d | 56 | ERA 56                                     | August – October | A.1-2b |
| 15    | Cape Lisburne Seabird Colony Area            |                         | May-October        | A.1-2c | 57 | Ice/Sea Segment 19                         | January-December | A.1-2d |
| 16    | ERA 16                                       |                         | April-June         | A.1-2a | 58 | Ice/Sea Segment 20a                        | January-December | A.1-2d |
| 17    | Angun and Beaufort Lagoons                   |                         | May-October        | A.1-2c | 59 | ERA 59                                     | May-November     | A.1-2a |
| 18    | ERA 18                                       |                         | May-October        | A.1-2a | 09 | Ice/Sea Segment 22                         | January-December | A.1-2d |
| 19    | Chukchi Spring Lead 1                        |                         | April-June         | A.1-2a | 61 | ERA 61                                     | April-December   | A.1-2a |
| 20    | Chukchi Spring Lead 2                        |                         | April-June         | A.1-2b | 62 | Ice/Sea Segment 24a                        | January-December | A.1-2d |
| 21    | Chukchi Spring Lead 3                        |                         | April-June         | A.1-2b | 63 | ERA 63                                     | July-October     | A.1-2a |
| 22    | Chukchi Spring Lead 4                        |                         | April-June         | A.1-2b | 64 | Peard Bay                                  | May-October      | A.1-2d |
| 23    | Chukchi Spring Lead 5                        |                         | April-June         | A.1-2b | 65 | Smith Bay                                  | May-October      | A.1-2b |
| 24    | Beaufort Spring Lead 6                       |                         | April-June         | A.1-2b | 66 | ERA 66                                     | May-October      | A.1-2b |
| 25    | Beaufort Spring Lead 7                       |                         | April-June         | A.1-2b | 67 | Herschel Island                            | May-October      | A.1-2c |
| 26    | Beaufort Spring Lead 8                       |                         | April-June         | A.1-2b | 89 | Harrison Bay                               | May-October      | A.1-2b |
| 27    | Beaufort Spring Lead 9                       |                         | April-June         | A.1-2b | 69 | Harrison Bay/Colville Delta                | May-October      | A.1-2b |
| 28    | Beaufort Spring Lead 10                      |                         | April-June         | A.1-2b | 70 | ERA 70                                     | July-October     | A.1-2a |
| 29    | Ice/Sea Segment 1                            |                         | September-October  | A.1-2c | 71 | Simpson Lagoon, Thetis and Jones Island    | May-October      | A.1-2c |
| 30    | Ice/Sea Segment 2                            |                         | September-October  | A.1-2c | 72 | Gwyder Bay, Cottle, Return Islands W. Dock | May-October      | A.1-2c |
| 31    | Ice/Sea Segment 3                            |                         | September-October  | A.1-2c | 73 | Prudhoe Bay                                | May-October      | A.1-2c |
| 32    | Ice/Sea Segment 4                            |                         | September-October  | A.1-2c | 74 | Cross Island ERA                           | May-October      | A.1-2d |
| 33    | Ice/Sea Segment 5                            |                         | September-October  | A.1-2c | 75 | Water over Boulder Patch                   | January-December | A.1-2c |
| 34    | Ice/Sea Segment 6                            |                         | September-October  | A.1-2c | 76 | ERA 76                                     | January-December | A.1-2d |
| 35    | ERA 35                                       |                         | August-October     | A.1-2c | 77 | Foggy Island Bay                           | May-October      | A.1-2c |
| 36    | ERA 36                                       |                         | August-October     | A.1-2b | 78 | Mikkelsen Bay                              | May-October      | A.1-2c |
| 37    | ERA 37                                       |                         | April – June       | A.1-2c | 79 | ERA 79                                     | May-October      | A.1-2c |
| 38    | Point Hope Subsistence Area                  |                         | January-December   | A.1-2a | 80 | ERA 80                                     | May-October      | A.1-2c |
| 39    | Point Lay Subsistence Area                   |                         | January-December   | A.1-2a | 81 | Simpson Cove                               | May-October      | A.1-2c |
| 40    | Wainwright Subsistence Area                  |                         | January-December   | A.1-2a | 82 | ERA 82                                     | September        | A.1-2a |
| 41    | Barrow Subsistence Area 1                    |                         | April-May          | A.1-2a | 83 | Kaktovik ERA                               | May-October      | A.1-2c |
| 42    | Barrow Subsistence Area 2                    |                         | August-October     | A.1-2a | 99 | ERA 99                                     | May-October      | A.1-2b |
| Sourc | Source: USDOI, MMS, Alaska OCS Region (2006) | n (2006).               |                    |        | 1  |                                            |                  |        |

Table A.1-13 Environmental Resource Areas Used in the Analysis of Oil Spill Effects on Birds in Section IV.C

| !  |                                         |        |              |                                         |                                                                                                                                                 |                                                                                                                                                                                    |
|----|-----------------------------------------|--------|--------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Q  | NAME                                    | MAP    | VULNERABLE   | <b>GENERAL RESOURCE</b>                 | SPECIFIC RESOURCE                                                                                                                               | REFERENCE                                                                                                                                                                          |
| ~  | Kasegaluk Lagoon                        | A.1-2b | May-October  | Birds, Barrier Island                   | Birds: BLBR, LTDU, STEI, COEI, loons<br>(PALO, RTLO, and YBLO)                                                                                  | Lehnhausen and Quinlan, 1981; Johnson, 1993; Johnson, Wiggins, and<br>Wainwright, 1993; Laing and Platte, 1994, Dau and Larned, 2004.                                              |
| 7  | Point Barrow, Plover<br>Islands         | A.1-2a | May-October  | Birds, Barrier Island                   | Birds: SPEI, LTDU                                                                                                                               | Troy, 2003; Fischer and Larned, 2004.                                                                                                                                              |
| 7  | tt Causeway                             | A.1-2d | May-October  | Birds, Barrier Island                   | Birds: nesting COEI, molting LTDU, Pacific loons                                                                                                | Johnson, Wiggins, and Wainwright, 1993; Johnson, 2000; Fischer and<br>Larned, 2004.                                                                                                |
| œ  | Maguire, Flaxman<br>Islands             | A.1-2c | May-October  | Birds, Barrier Island                   | Birds: nesting COEI, molting LTDU, Pacific loons                                                                                                | Johnson, Wiggins, and Wainwright, 1993; Johnson, 2000; Fischer and<br>Larned, 2004; Flint et al., 2004; Johnson et al., 2005; Noel et al., 2005.                                   |
| 6  | Stockton Islands                        | A.1-2d | May-October  | Birds, Barrier Island                   | <b>Birds</b> : nesting COEI, molting LTDU, staging<br>SPEI                                                                                      | Johnson, Wiggins, and Wainwright, 1993;; Johnson, 2000, Table 2;<br>Troy, 2003; Fischer and Larned, 2004; Flint et al., 2004; Johnson et al.,<br>2005; Noel et al., 2005, Table 1. |
| 10 | Ledyard Bay SPEI<br>Critical Habitat    | A.1-2d | May-October  | Birds                                   | <b>Birds</b> : seabirds, molting/staging SPEI, staging YBLO                                                                                     | Federal Register; 2001; Laing and Platte, 1994; Petersen et al., 1999;<br>Piatt and Springer, 2003.                                                                                |
| 14 | Cape Thompson<br>Seabird Colony<br>Area | A.1-2d | May-October  | Birds                                   | <b>Birds</b> : seabirds, gulls, shorebirds, waterfowl, staging YBLO                                                                             | Springer et al., 1984; Piatt et al., 1991; Piatt and Springer, 2003;<br>Stephenson and Irons, 2003.                                                                                |
| 15 | Cape Lisburne<br>Seabird Colony<br>Area | A.1-2c | May-October  | Birds                                   | Birds: seabird breeding colony, staging YBLO                                                                                                    | Springer et al., 1984; Piatt et al., 1991; Roseneau et al., 2000; Piatt and Springer, 2003; Stephenson and Irons, 2003.                                                            |
| 17 | Angun and Beaufort<br>Lagoons           | A.1-2c | May-October  | Birds, Barrier Island                   | Birds: molting LTDU, scoters, staging shorebirds                                                                                                | Johnson and Herter, 1989.                                                                                                                                                          |
| 18 | ERA 18                                  | A.1-2a | May-October  | Birds                                   | Birds: seabird foraging area                                                                                                                    | Springer et al., 1984; Piatt and Springer, 2003.                                                                                                                                   |
| 19 | Chukchi Spring<br>Lead 1                | A.1-2a | April-June   | Whales, Birds, Marine<br>Mammals, Birds | <b>Birds</b> : seabird foraging area; spring migration<br>area for LTDU, eiders (KIEI and COEI), loons<br>(spp?)                                | Connors, Myers, and Pitelka,1979; Sowls et al., 1978; Johnson and<br>Herter, 1989; Piatt et al., 1991; Piatt and Springer, 2003.                                                   |
| 20 | Chukchi Spring<br>Lead 2                | A.1-2b | April-June   | Whales, Birds, Marine<br>Mammals        | <b>Birds</b> : spring migration axis via lead system<br>for LTDU, eiders (KIEI, COEI, probably SPEI),<br>loons (spp?)                           | Swartz, 1967; Johnson and Herter, 1989; Stringer and Groves, 1991.                                                                                                                 |
| 21 | Chukchi Spring<br>Lead 3                | A.1-2b | April-June   | Whales, Birds, Marine<br>Mammals        | <b>Birds</b> : spring migration axis via lead system<br>for LTDU, eiders (KIEI and COEI), loons<br>(spp?)                                       | Swartz, 1967; Johnson and Herter, 1989; Stringer and Groves, 1991.                                                                                                                 |
| 22 | Chukchi Spring<br>Lead 4                | A.1-2b | April-June   | Whales, Birds, Marine<br>Mammals        | <b>Birds</b> : spring migration axis via lead system<br>for LTDU, eiders (KIEI and COEI), loons<br>(spp?)                                       | Swartz 1967; Johnson and Herter, 1989; Stringer and Groves, 1991.                                                                                                                  |
| 23 | Chukchi Spring<br>Lead 5                | A.1-2b | April-June   | Whales, Birds, Marine<br>Mammals        | <b>Birds</b> : probable spring staging by SPEI and<br>STEI; spring migration area for LTDU, eiders<br>(KIEI and COEI), shorebirds, loons (spp?) | Connors, Myers, and Pitelka,1979; Sowls et al., 1978; Gill et al., 1985;<br>Johnson and Herter, 1989.                                                                              |
| 64 | Peard Bay                               | A.1-2d | July-October | Birds                                   | Birds: eiders (SPEI, STEI, KIEI, COEI), loons (PALO, RTLO, and YBLO)                                                                            | Laing and Platte, 1994; Fischer and Larned, 2004.                                                                                                                                  |
| 65 | Smith Bay                               | A.1-2b | May-October  | Birds, Marine Mammals                   | Birds: eiders (SPEI, KEI), loons (YBLO)                                                                                                         | Earnst, et al., 2005; Powell, et al., 2005; Ritchie, Burgess, and Suydam, 2000; Ritchie et al., 2004; Troy, 2003.                                                                  |
| 67 | Herschel Island                         | A.1-2c | May-October  | Birds                                   | Birds: LTDU, BLBR, scoters, eiders (spp?),<br>loons (spp?), shorebirds                                                                          | Vermeer and Anweiler, 1975; Richardson and Johnson, 1981; Johnson<br>and Richardson, 1982.                                                                                         |

| ٩  | NAME                                                      | MAP    | VULNERABLE  | <b>GENERAL RESOURCE</b>     | SPECIFIC RESOURCE                                                                                                                       | REFERENCE                                                                                                                                                                                                                                        |
|----|-----------------------------------------------------------|--------|-------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 68 | Harrison Bay                                              | A.1-2b | Mav-October | Birds. fish. marine mammals | Birds: eiders (KIEI, COEI), scoters (BLSC,<br>SUSC), geese (BLBR, CAGO, WFGO), loons<br>(spo?). and shorebirds                          | Connors et al., 1984; Dau and Larned, 2004; 2005; Fischer and Larned,<br>2004.                                                                                                                                                                   |
| 69 | Harrison<br>Bay/Colville<br>Delta                         | A.1-2b | May-October | Birds, fish, marine mammals | Birds: geese (BLBR), eiders (KIEI, COEI),<br>LTDU, scoters (BLSC, SUSC), and loons<br>(PALO, RTLO, and YBLO)                            | Bergman et al 1977; Johnson and Herter. 1989; Dau and Larned.<br>2004; 2005; Fischer and Larned. 2004.                                                                                                                                           |
| 71 | Simpson<br>Lagoon, Thetis<br>and Jones<br>Island          | A.1-2c | May-October | Birds, fish, marine mammals | Birds: geese (BLBR, LSGO, WFGO), eiders<br>(COEI, KIEI), LTDU, scoters (SUSC, WWSC),<br>shorebirds, and loons (PALO, RTLO, and<br>YBLO) | Richardson and Johnson, 1981; Connors et al., 1984; Divoky, 1984;<br>Johnson et al., 1987; Johnson and Herter, 1989; Stickney and Ritchie,<br>1996; Noel and Johnson, 1997; Truett et al., 1997; Johnson 2000.                                   |
| 72 | Gwyder Bay,<br>Cottle, Return<br>Islands and<br>West Dock | A.1-2c | May-October | als                         | Birds: geese (BLBR, LSGO, WFGO), eiders<br>(COEI, KIEI), LTDU, scoters (SUSC, WWSC),<br>shorebirds, and loons (PALO, RTLO, and<br>YBLO) | Stickney and Ritchie, 1996; Noel and Johnson, 1997; Truett et al.<br>1997; Johnson, 2000; Troy, 2003; Fischer and Larned, 2004,; Noel et<br>al., 2005; Powell et al., 2005.                                                                      |
| 73 | Prudhoe Bay                                               | A.1-2c | May-October | Birds, Fish, Marine Mammals | Birds: geese (BLBR, LSGO, WFGO), eiders<br>(COEI, KIEI), LTDU, scoters (SUSC, WWSC),<br>shorebirds, and loons (PALO, RTLO, and<br>YBLO) | Richardson and Johnson, 1981; Johnson and Richardson, 1982;<br>Stickney and Ritchie, 1996; Noel and Johnson, 1997; Truett et al. 1997;<br>Troy 2003; Dau and Larned 2004; 2005; Fischer and Larned 2004; Noel<br>et al. 2005; Powell et al. 2005 |
| 74 | Cross Island<br>ERA                                       | A.1-2d | May-October | Birds                       | <b>Birds</b> : eiders (SPEI, COEI, LTDU, scoters (all 3 species), and loons (PALO, RTLO, and YBLO)                                      | Divoky 1984; Johnson 2000; Troy 2003; Fig. 3; Dau and Larned 2004;<br>2005; Fischer and Larned 2004                                                                                                                                              |
| 76 | ERA 76                                                    | A.1-2d | May-October | Birds                       | Birds: eiders (KIEI, COEI), LTDU, scoters (all 3 species), and loons (PALO, RTLO, and YBLO)                                             | Divoky 1984; Richardson and Johnson 1981; Johnson and Richardson<br>1982; Alexander et al. 1997; Dickson et al. 1997;                                                                                                                            |
| 77 | Foggy Island<br>Bay                                       | A.1-2c | May-October | Birds                       |                                                                                                                                         |                                                                                                                                                                                                                                                  |
| 78 | Mikkelsen Bay                                             | A.1-2c | May-October | Birds                       | Birds: eiders (KIEI, COEI), LTDU, scoters, and loons (PALO and RTLO)                                                                    | Divoky 1984; Johnson 2000; Troy 2003; Dau and Larned 2004; 2005;<br>Fischer and Larned 2004; Flint et al. 2004; Noel et al. 2005                                                                                                                 |
| 79 | ERA 79                                                    | A.1-2c | May-October | Birds                       | Birds: eiders (KIEI, COEI), LTDU, scoters (SUSC, WWSC), and loons (spp?)                                                                | Richardson and Johnson 1981; Johnson and Richardson 1982;<br>Johnson and Herter 1989; Dau and Larned 2004; 2005; Fischer and<br>Larned 2004                                                                                                      |
| 81 | Simpson Cove                                              | A.1-2c | May-October | Birds                       | Birds: COEI, LTDU, PALO, scoters (SUSC,<br>WWSC)                                                                                        | Johnson and Herter 1989; Dau and Larned 2004; 2005; Fischer and Larned 2004                                                                                                                                                                      |
| 83 | Kaktovik ERA                                              | A.1-2c | May-October | Birds                       | Birds: COEI, LTDU, loons (PALO, RTLO, and YBLO)                                                                                         | Divoky 1984; Johnson and Herter 1989; Dau and Larned 2004; 2005;<br>Fischer and Larned 2004                                                                                                                                                      |

Table A.1-13 (Continued) Environmental Resource Areas Used in the Analysis of Oil Spill Effects on Birds in Section IV.C

Notes: Yellow-billed Loon (YBLO), Red-throated Loon (RTLO), Pacific Loon (PALO), Arctic Loon (ARLO), COEI (Common Eider), KIEI (King Eider), SPEI (Spectacled Eider), STEI (Steller's Eider), LTDU (Long-tailed Duck), Black Scoter (BLSC), Surf Scoter (SUSC), White-winged Scoter (WWSC), Black Brant (BLBR), White-fronted Goose (WFGO), Canada Goose (CAGO), Lesser Snow Goose (LSGO)

Table A.1-14

| Ö        |
|----------|
| 2        |
| n        |
| Ĕ        |
| မ္မ      |
| S        |
| ₽.       |
| es       |
| a        |
| Ę        |
| 2        |
| ō        |
| cts      |
| <u>e</u> |
| Ε        |
| Ξ        |
| jq       |
| ິ        |
| ö        |
| f        |
| s        |
| /si      |
| al)      |
| ۲<br>۲   |
| 6        |
| Ę        |
| <u> </u> |
| σ        |
| se       |
|          |
| as       |
| P        |
| 4        |
| ĕ        |
| Ň        |
| ŝ        |
| Re       |
| a        |
| nt       |
| ne       |
| nn       |
| 2        |
| ΪŽ       |
| ш        |
|          |

| ٩  | NAME                       | MAP    | VULNERABLE        | <b>GENERAL RESOURCE</b>          | SPECIFIC RESOURCE              | REFERENCE                                                                                                                                                   |
|----|----------------------------|--------|-------------------|----------------------------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9  | ERA 6                      | A.1-2c | April-October     | Whales                           | Bowhead Whales                 | Mel'nikov et al., 2004.                                                                                                                                     |
| 12 | ERA 12                     | A.1-2d | April-June        | Whales                           | Bowhead Whales                 | Ljungblad, D.K. et al., 1986.                                                                                                                               |
| 16 | ERA 16                     | A.1-2b | June-September    | Whales                           | Bowhead Whales, Grey<br>Whales | Mel'nikov and Bobkov, 1993.                                                                                                                                 |
| 19 | Chukchi Spring Lead 1      | A.1-2a | April-June        | Whales, Birds, Marine<br>Mammals | Bowhead Whales, Grey<br>Whales | Stringer and Groves, 1991; Ljungblad,<br>D.K. et al 1986.                                                                                                   |
| 20 | Chukchi Spring Lead 2      | A.1-2b | April-June        | Whales, Birds, Marine<br>Mammals | Bowhead Whales, Grey<br>Whales | Stringer and Groves, 1991; Ljungblad,<br>D.K. et al., 1986.                                                                                                 |
| 21 | Chukchi Spring Lead 3      | A.1-2b | April-June        | Whales, Birds, Marine<br>Mammals | Bowhead Whales, Grey<br>Whales | Stringer and Groves, 1991; Ljungblad,<br>D.K. et al., 1986.                                                                                                 |
| 22 | Chukchi Spring Lead 4      | A.1-2b | April-June        | Whales, Birds, Marine<br>Mammals | Bowhead Whales, Grey<br>Whales | Stringer and Groves, 1991; Ljungblad,<br>D.K. et al., 1986.                                                                                                 |
| 23 | Chukchi Spring Lead 5      | A.1-2b | April-June        | Whales, Birds, Marine<br>Mammals | Bowhead Whales, Grey<br>Whales | Stringer and Groves, 1991; Ljungblad,<br>D.K. et al., 1986.                                                                                                 |
| 24 | Beaufort Spring Lead 6     | A.1-2b | April-June        | Whales, Birds, Marine<br>Mammals | Bowhead Whales                 | Ljungblad, D.K. et al., 1986.                                                                                                                               |
| 25 | Beaufort Spring Lead 7     | A.1-2b | April-June        | Whales, Birds, Marine<br>Mammals | Bowhead Whales                 | Ljungblad, D.K. et al., 1986.                                                                                                                               |
| 26 | Beaufort Spring Lead 8     | A.1-2b | April-June        | Whales, Birds, Marine<br>Mammals | Bowhead Whales                 | Ljungblad, D.K. et al., 1986                                                                                                                                |
| 27 | Beaufort Spring Lead 9     | A.1-2b | April-June        | Whales, Birds, Marine<br>Mammals | Bowhead Whales                 | Ljungblad, D.K. et al., 1986.                                                                                                                               |
| 28 | Beaufort Spring Lead<br>10 | A.1-2b | April-June        | Whales, Birds, Marine<br>Mammals | Bowhead Whales                 | D.K.                                                                                                                                                        |
|    | lce/Sea Segment 1          | A.1-2c | September-October | Whales, Birds, Marine<br>Mammals | Bowhead Whales                 | Ljungblad, D.K. et al., 1986; Treacy,<br>1988, 1989, 1990, 1991, 1992, 1993,<br>1994, 1995, 1996, 1997, 1998, 2000,<br>2001, 2002; Monnett and Treacy 2005. |
| 30 | lce/Sea Segment 2          | A.1-2c | September-October | Whales, Birds, Marine<br>Mammals | Bowhead Whales                 | Ljungblad, D.K. et al., 1986; Treacy,<br>1988, 1989, 1990, 1991, 1992, 1993,<br>1994, 1995, 1996, 1997, 1998, 2000,<br>2001, 2002; Monnett and Treacy 2005. |
| 31 | lce/Sea Segment 3          | A.1-2c | September-October | Whales, Birds, Marine<br>Mammals | Bowhead Whales                 | Ljungblad, D.K. et al., 1986; Treacy,<br>1988, 1989, 1990, 1991, 1992, 1993,<br>1994, 1995, 1996, 1997, 1998, 2000,<br>2001, 2002; Monnett and Treacy 2005. |
| 32 | lce/Sea Segment 4          | A.1-2c | September-October | Whales, Birds, Marine<br>Mammals | Bowhead Whales                 | Ljungblad, D.K. et al., 1986; Treacy,<br>1988, 1989, 1990, 1991, 1992, 1993,<br>1994, 1995, 1996, 1997, 1998, 2000,<br>2001, 2002; Monnett and Treacy 2005. |

Table A.1-14 (Continued) Environmental Resource Areas Used in the Analysis of Oil Spill Effects on Whales in Section IV.C

| Env | Environmental Resource Areas Used in the Analy | Areas Use | ed in the Analysis of | sis of Oil Spill Effects on Whales in Section IV.C | es in Section IV.C |                                                                                                                                                              |
|-----|------------------------------------------------|-----------|-----------------------|----------------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ₽   | NAME                                           | MAP       | VULNERABLE            | GENERAL RESOURCE                                   | SPECIFIC RESOURCE  | REFERENCE                                                                                                                                                    |
| 33  | Ice/Sea Segment 5                              | A.1-2c    | September-October     | Whales, Birds, Marine<br>Mammals                   | Bowhead Whales     | Ljungblad, D.K. et al., 1986; Treacy,<br>1988, 1989, 1990, 1991, 1992, 1993,<br>1994, 1995, 1996, 1997, 1998, 2000,<br>2001, 2002; Monnett and Treacy, 2005. |
| 34  | Ice/Sea Segment 7                              | A.1-2c    | September-October     | Whales, Birds, Marine<br>Mammals                   | Bowhead Whales     | Ljungblad, D.K. et al., 1986; Treacy,<br>1988, 1989, 1990, 1991, 1992, 1993,<br>1994, 1995, 1996, 1997, 1998, 2000,<br>2001, 2002; Monnett and Treacy, 2005. |
| 35  | ERA 35                                         | A.1-2c    | August-October        | Whales                                             | Bowhead Whales     | Ljungblad, D.K. et al., 1986.                                                                                                                                |
| 36  | ERA 36                                         | A.1-2b    | August-October        | Whales                                             | Bowhead Whales     | Ljungblad, D.K. et al., 1986.                                                                                                                                |
| 27  | EDA 37                                         | JC 1 ∆    | Anril Line            | seleq/W                                            |                    | Ljungblad, D.K. et al., 1986; Treacy,<br>1988, 1989, 1990, 1991, 1992, 1993,<br>1994, 1995, 1996, 1997, 1998, 2000,<br>2001, 2002, Monuelt and Treacy, 2005, |
| 45  | _                                              | A.1-2b    | April-October         | Whales                                             |                    | Liungblad, D.K. et al., 1986.                                                                                                                                |
| 49  |                                                | A.1-2a    | January-December      | Whales                                             |                    | Ljungblad, D.K. et al., 1986; Stringer and<br>Groves 1991.                                                                                                   |
| 56  |                                                | A.1-2b    | August-October        | Whales                                             |                    | Ljungblad, D.K. et al., 1986.                                                                                                                                |
| 61  | ERA 61                                         | A.1-2a    | April-December        | Whales                                             | Fin Whales         | Melnikov                                                                                                                                                     |
| 63  | ERA 63                                         | A.1-2a    | July-October          | Whales                                             | Bowhead Whales     |                                                                                                                                                              |
| 65  | Smith Bay                                      | A.1-2b    | May-October           | Whales, Birds                                      | Bowhead Whales     | Ljungblad, D.K. et al., 1986; Treacy,<br>1988, 1989, 1990, 1991, 1992, 1993,<br>1994, 1995, 1996, 1997, 1998, 2000,<br>2001, 2002; Monnett and Treacy, 2005. |
| 70  | ERA 70                                         | A.1-2a    | July-October          | Whales                                             | Bowhead Whales     |                                                                                                                                                              |
| 80  | ERA 80                                         | A.1-2c    | April-June            | Whales,                                            | Bowhead Whales     | Ljungblad, D.K. et al., 1986; Treacy,<br>1988, 1989, 1990, 1991, 1992, 1993,<br>1994, 1995, 1996, 1997, 1998, 2000,<br>2001, 2002; Monnett and Treacy, 2005. |
| 82  | ERA 82                                         | A.1-2a    | September             | Whales                                             |                    | Mel'nikov and Bobkov, 1993                                                                                                                                   |
|     |                                                |           |                       |                                                    |                    |                                                                                                                                                              |

| Enviı | Environmental Resource Areas Used in the A | sed in the Ana | alysis of Oil Spill Effe | ects on Subsis      | nalysis of Oil Spill Effects on Subsistence Resources in Section IV.C     | IV.C                                                                                                                             |
|-------|--------------------------------------------|----------------|--------------------------|---------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| ₽     | NAME                                       | MAP            | VULNERABLE               | GENERAL<br>RESOURCE | SPECIFIC RESOURCE                                                         | REFERENCE                                                                                                                        |
| ო     | ERA 3                                      | Map A.1-2a     | September-October        | Subsistence         | Bowhead Whales, Grey<br>Whales, Walrus                                    | Mel'nikov and Bobkov, 1993                                                                                                       |
| 4     | ERA 4                                      | Map A.1-2a     | January-December         | Subsistence         | Bowhead Whales, Grey<br>Whales, Walrus                                    | Mel'nikov and Bobkov, 1993                                                                                                       |
| £     | ERA 5                                      | Map A.1-2a     | April-September          | Subsistence         | Polar Bears, Walrus, Seals                                                | Sobelman, 1985; Wisniewski,<br>2005                                                                                              |
| 13    | ERA 13                                     | Map A.1-2a     | January-December         | Subsistence         | Polar Bears, Walrus, Seals,<br>Bowhead Whales, Beluga<br>Whales           | Burch, 1985                                                                                                                      |
| 38    | Point Hope Subsistence Area                | Map A.1-2a     | January-December         | Subsistence         | Beluga Whales, Bowhead<br>Whales, Walrus, Seals                           | Braund & Burnham, 1984                                                                                                           |
| 39    | Point Lay Subsistence Area                 | Map A.1-2a     | January-December         | Subsistence         | Fish, Seals, Waterfowl,<br>Beluga Whales                                  | Braund & Burnham, 1984;<br>Impact Assessment, 1989;<br>Huntington and Mymrin, 1996;<br>USDOI, BLM, 2003                          |
| 40    | Wainwright Subsistence Area                | Map A.1-2a     | January-December         | Subsistence         | Bowhead Whales, Beluga<br>Whales                                          | Braund & Burnham, 1984;<br>Braund & Associates, 1993,<br>Kassam and Wainwright<br>Traditional Council, 2001;<br>USDOI, BLM, 2003 |
| 4     | Barrow Subsistence Area 1                  | Map A.1-2a     | April-May                | Subsistence         | Bowhead Whales, Beluga<br>Whales, Walrus, Waterfowl,<br>Seals, Ocean Fish | Braund & Burnham, 1984; S.R.<br>Braund & Associates, 1993;<br>North Slope Borough, 2001;<br>USDOI, BLM, 2003                     |
| 42    | Barrow Subsistence Area 2                  | Map A.1-2a     | August-October           | Subsistence         | Bowhead Whales, Beluga<br>Whales, Walrus, Waterfowl,<br>Seals, Ocean Fish | Braund & Burnham, 1984;<br>Braund & Associates, 1993;<br>North Slope Borough, 2001;<br>USDOI, BLM, 2003                          |
| 43    | Nuiqsut Subsistence Area                   | Map A.1-2d     | August-October           | Subsistence         | Bowhead Whales, Seals,<br>Waterfowl, Ocean Fish                           | Impact Assessment, 1990;<br>USDOI, MMS, 2001; North Slope<br>Borough, 2001                                                       |
| 44    | Kaktovik Subsistence Area                  | Map A.1-2c     | August-October           | Subsistence         | Bowhead Whales, Seals,<br>Walrus, Beluga Whales,<br>Waterfowl, Ocean Fish | Impact Assessment, 1990;<br>USDOI, MMS, 1997; North Slope<br>Borough, 2001                                                       |

0 ò . . ā ä ŝ 2 Ċ Table A.1-15

| Enviro                                                 | птепта к                                   | Environmental Resource Areas Used in the | used in the Analysis | s or UII spill Effects on | Analysis of Oll Spill Effects on Marine Mammals in Section IV.C | ction IV.C                                                                       |
|--------------------------------------------------------|--------------------------------------------|------------------------------------------|----------------------|---------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------------------|
| ٩                                                      | NAME                                       | MAP                                      | VULNERABLE           | <b>GENERAL RESOURCE</b>   | SPECIFIC RESOURCE                                               | REFERENCE                                                                        |
| ERA1                                                   | Kasegaluk<br>Lagoon                        | Map A.1-2b                               | May-October          | Marine Mammals            | Beluga Whales                                                   | Suydam et al., 2001; Suydam et al., 2005                                         |
| ERA 11                                                 | Wrangel<br>ERA 11 Island 12<br>nmi buffer  | Map A.1-2a                               | January - December   | Marine Mammals            | Polar Bears, Walrus                                             | Kochnev, 2002; Kochnev et al., 2003; Kochnev, In<br>prep.                        |
| ERA<br>59                                              | ERA 59                                     | Map A.1-2a                               | May -November        | Marine Mammals            | Polar Bears                                                     | Kochnev et al., 2003; Kochnev, In prep.                                          |
| LS 1, 11,<br>28, 29,<br>33, 34,<br>35, 36,<br>38,39,65 |                                            | Maps A.1-3a & b                          | January-December     | Marine Mammals            | Walrus                                                          | Ovsyanikov, 2003; Kochnev, 2004; Kochnev, In<br>prep.; USDOI, FWS, pers. commun. |
| LS 85                                                  | Barrow,<br>Browerville,<br>Elson<br>Lagoon | Map A.1-3b                               | January-December     | Marine Mammals            | Polar Bears                                                     | USDOI, FWS, pers. commun.                                                        |
| LS 95                                                  | Russian<br>Coastliine                      | Map A.1-3d                               | January-December     | Marine Mammals            | Polar Bears, Walrus                                             | Kochnev, In prep.                                                                |

in Section IV C 90 rino Ma N of Oil Shill Effort evled A oft of ho 6 < Table A.1-15a Environmental Re

| Table A.1-16                                                           |  |
|------------------------------------------------------------------------|--|
| Land Segment ID and the Geographic Place Names within the Land Segment |  |

| ID | Geographic Place Names                                                                     | ID | Geographic Place Names                                                                                   |
|----|--------------------------------------------------------------------------------------------|----|----------------------------------------------------------------------------------------------------------|
|    | Mys Blossom, Mys Fomy, Khishchnikov,                                                       |    | Mys Dzhenretlen, Eynenekvyk, Lit'khekay-Polar                                                            |
|    | Neozhidannaya, Laguna Vaygan                                                               |    | Station                                                                                                  |
| 1  | Mys Gil'der, Ushakovskiy, Mys Zapadnyy                                                     |    | Neskan, Laguna Neskan, Mys Neskan                                                                        |
|    | Mys Florens, Gusinaya                                                                      | -  |                                                                                                          |
| 4  | Mys Ushakova, Laguna Drem-Khed                                                             | 35 | Enurmino, Mys Keylu, Netakeniskhvin, Mys Neten,                                                          |
| 5  | Mys Evans, Neizvestnaya, Bukhta Pestsonaya                                                 |    | Mys Chechan, Mys Ikigur, Keniskhvik, Mys Serditse<br>Kamen                                               |
| 6  | Ostrov Mushtakova                                                                          | 37 | Chevgtun, Utkan, Mys Volnistyy                                                                           |
| 7  | Kosa Bruch                                                                                 | 38 | Enmytagyn, Inchoun, Inchoun, Laguna Inchoun,<br>Mitkulino, Uellen, Mys Unikin                            |
| 8  | Klark, Mys Litke, Mys Pillar, Skeletov, Mys Uering                                         | 39 | Cape Dezhnev, Mys Inchoun, Naukan, Mys Peek,<br>Uelen, Laguna Uelen, Mys Uelen                           |
|    | Nasha, Mys Proletarskiy, Bukhta Rodzhers                                                   | 40 | Ah-Gude-Le-Rock, Dry Creek, Lopp Lagoon, Mint<br>River                                                   |
| 10 | Reka Berri, Bukhta Davidova, , Khishchnika, Reka<br>Khishchniki                            | 41 | , Ikpek, Ikpek Lagoon, Pinguk River, Yankee River                                                        |
| 11 | Bukhta Somnitel'naya                                                                       |    |                                                                                                          |
|    | Zaliv Krasika, Mamontovaya, Bukhta Predatel'skaya                                          | 43 |                                                                                                          |
|    | Mys Kanayen, Mys Kekurnyy, Mys Shalaurova,<br>Veyeman                                      | 44 | Cape Lowenstern, Egg Island, Shishmaref, Shishmaref<br>Inlet                                             |
|    | Innukay, Laguna Innukay, Umkuveyem, Mys<br>Veuman                                          | 45 |                                                                                                          |
|    | Laguna Adtaynung, Mys Billingsa, Ettam,<br>Gytkhelen, Laguna Uvargina                      | 46 | Cowpack Inlet, Cowpack River, Kalik River, Kividlo, Singeak, Singeakpuk River, White Fish Lake           |
|    | Mys Emmatagen, Mys Enmytagyn, Uvargin                                                      | 47 | Kitluk River, Northwest Corner Light, West Fork<br>Espenberg River                                       |
| 17 | Enmaat'khyr, Kenmankautir, Mys Olennyy, Mys<br>Yakan, Yakanvaam, Yakan                     | 48 | Cape Espenberg, Espenberg, Espenberg River                                                               |
|    | Mys Enmykay, Laguna Olennaya, Pil'khikay, Ren,<br>Rovaam, Laguna Rypil'khin                | 49 | Kungealoruk Creek, Kougachuk Creek, Pish River                                                           |
| 19 | Laguna Kuepil'khin, Leningradskiy                                                          | 50 |                                                                                                          |
| 20 | , Kuekvun', Notakatryn, Pil'gyn, Tynupytku                                                 | 51 | Cape Deceit, Deering, Kugruk Lagoon, Kugruk River,<br>Sullivan Lake, Toawlevic Point                     |
| 21 | Laguna Kinmanyakicha, Laguna Pil'khikay, Amen,<br>Pil'khikay, Bukhta Severnaya, Val'korkey | 52 | Motherwood Point, Ninemile Point, Willow Bay                                                             |
|    | Ekiatan', Laguna Ekiatan, Kelyun'ya, Mys Shmidta,<br>Rypkarpi                              | 53 | Kiwalik, Kiwalik Lagoon, Middle Channel Kiwalk River,<br>Minnehaha Creek, Mud Channel Creek, Mud Creek   |
| 23 | Emuem, Kemuem, Koyvel'khveyergin, Laguna<br>Tengergin, Tenkergin                           | 54 | Baldwin Peninsula, Lewis Rich Channel                                                                    |
| 24 |                                                                                            | 55 | Cape Blossom, Pipe Spit                                                                                  |
| 25 | Laguna Amguema, Ostrov Leny, Yulinu                                                        | 56 | Kinuk Island, Kotzebue, Noatak River                                                                     |
| 26 | Ekugvaam, Reka Ekugvam, Kepin, Pil'khin                                                    | 57 | Aukulak Lagoon, Igisukruk Mountain, Noak, Mount,<br>Sheshalik, Sheshalik Spit                            |
|    | Laguna Nut, Rigol'                                                                         | 58 | Cape Krusenstern, Eigaloruk, Evelukpalik River, Kasik<br>Lagoon, Krusenstern Lagoon,                     |
|    | Kamynga, Ostrov Kardkarpko, Kovlyuneskin, Mys<br>Vankarem, Vankarema, Laguna Vankarema     | 59 | Imik Lagoon, Ipiavik Lagoon, Kotlik Lagoon,<br>Omikviorok River                                          |
| 29 | Akanatkhyrgyn, Nel'teyveyam, Mys Onman, Vel'may                                            |    | Imikruk Lagoon, Imnakuk Bluff, Kivalina, Kivalina<br>Lagoon, Singigrak Spit, Kivalina River, Wulik River |
| 30 | Laguna Kunergin, Nutepynmyn, Pyngopil'khin,<br>Laguna Pyngopil'khin                        | 61 | Asikpak Lagoon,Cape Seppings,Kavrorak<br>Lagoon,Pusaluk Lagoon,Seppings Lagoon                           |
| 31 | Alyatki, Zaliv Tasytkhin, Kolyuchin Bay                                                    |    | Atosik Lagoon,Chariot,Ikaknak Pond,Kisimilok<br>Mountain,Kuropak Creek,Mad Hill                          |

## Table A.1-16(Continued)Land Segment ID and the Geographic Place Names within the Land Segment

| Akoviknak Lagoon, Cape Thompson, Crowbill         56         Kalubik Creek, Oliktok Point, Thetis Mound,<br>Alautak Lagoon, Iputak Lagoon, Kowtuk Point,<br>Kukpuk River, Pingu Buff, Point Hope, Singrok         56         Kalubik Creek, Oliktok Point, Ibutak Lagoon,<br>Alautak Lagoon, Iputak Lagoon, Kowtuk Point,<br>Kukpuk River, Cape Lewis, Cape Lisburne         57         Islands, Milne Point, Birnson Lagoon           65         Buckland, Cape Dyer, Cape Lewis, Cape Lisburne         59         Caydyr Bay, Kupr, Long Jaland         Duck Island, Foggy Island, Gull Island, Heald Point,<br>Poggy Island Bay, Kadleroshilk River, Lion Point,<br>Cape Sabine, Pitmegea River         100         Shaviovik River, Tigvariak Island           68         Agiak Lagoon, Punuk Lagoon         101         Bullen Point, Point Gordon, Reliance Point           69         Flaxman Island, Maguie Islands, North Star Island<br>Point Hopson, Point Sweeney, Point Thomson,<br>Cape Beaufort, Omalik Lagoon         102         Staines River           70         Kuchaurak Creek, Kuchiak Creek         103         Brownlow Point, Carning River, Tamayariak River,<br>Point         Camden Bay, Collinson Point, Katakturuk River,<br>Deint, Caretor Creek, Itklyariak Creek,<br>Siksrikpak Point           73         Kuchaurak Lagoon, Solivik Island, Utukok River         104         Konganovik Point, Caree, Kuchik Kiver, Kaktovik<br>Kasegaluk Lagoon, Solivik Island, Utukok River         106         Kajuatkrok Creek, Marsh Creek, Sadlerochi River, Joson, Bay, Demarcation Point, Gardon, Raktovik, Kaktovik           74         Kubaurak Pass, Yang Hale, Hunghin Kerer                                                                                                             | ID | Geographic Place Names                                | ID  | Geographic Place Names                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-------------------------------------------------------|-----|--------------------------------------------------|
| Kukpuk River, Pingu Bluff, Point Hope, Sinigrok         Beechey Point, Bertoncini, Bodfish, Cottle and, Jor<br>91 Islands, Mine Point, Simpson Lagoon           65         Buckland, Cape Dyer, Cape Lewis, Cape Lisburne         98         Gwydyr Bay, Kuparuk River, Long Island           66         Agugatak Lagoon         99         Gwydyr Bay, Kuparuk River, Long Island, Point, Brower           67         Foggy Island Bay, Kadleroshilk River, Lion Point,<br>Cape Sabine, Pitmegea River         100         Shai'ovik River, Tiarai kisland, Point Brower           68         Agiak Lagoon, Punuk Lagoon         101         Bullen Point, Point Gordon, Reliance Point           69         Cape Beaufort, Omalik Lagoon         102         Staines River           70         Kuchaurak Creek, Kuchiak Creek         103         Brownichw Point, Simpson Cove           71         Kuchaurak Creek, Kuchiak Creek         103         Bornichw Point, Simpson Cove           72         Epizetika River, Kokolik River, Point Lay,<br>Siksrikpak Point         104         Konganevik Point, Simpson Cove           74         Kuchiak Lagoon, Solivik Island, Utukok River         109         Anderson Point, Carter Creek, Marsh Creek, Sadlerochit River           74         Kaconik, Loy Cape, Loy Cape Pass         106         Griffin Point, Oruktalik Lagoon, Pokok Lagoon           75         Akeonik, Loy Cape, Loy Cape Pass         109         Angun Lagoon                                                                                                                                                                                                                                                                                                                          | 63 | Point, Igilerak Hill, Kemegrak Lagoon                 | 96  | Kalubik Creek, Oliktok Point, Thetis Mound,      |
| 66<br>Ayugatak Lagoon         Duck Island, Fogy Island, Gull Island, Heald Point<br>Porgy Island, Diakuk Islands, Point Brower           67<br>Cape Sabine, Pitmegea River         100<br>Shariovik River, Tigvariak Island           68<br>Agiak Lagoon, Punuk Lagoon         101<br>Billen Point, Point Gordon, Reliance Point           69         Agiak Lagoon, Punuk Lagoon         101<br>Billen Point, Point Gordon, Reliance Point           69         Agiak Lagoon, Punuk Lagoon         102<br>Staines River         103<br>Billen Point, Statkuruk River, Tamayariak River           70         Kuchaurak Creek, Kuchiak Creek         103<br>Brownlow Point, Canning River, Tamayariak River           71         Kupowuck River, Naokok, Naokok Pass, Sitkok         Carmedne Bay, Collinson Point, Katakuruk River,<br>Point           72         Epizetka River, Kokolik River, Point Lay,<br>Siksrikpak Point         105<br>Kajutakrok Creek, Marsh Creek, Sadlerochit River           73         Akeonik, Ley Cape, Icy Cape Pass         108<br>River Okplak River         107<br>Lagoon, Baerlor Lagoon, Naogaon, Kaktovik, Kaktovik<br>Kasegaluk Lagoon, Solivik Island, Utukok River         108<br>Akoliakatat Pass, Avak Inlet, Tunalik River         109<br>Angun Lagoon, Beaufort Lagoon, Nuagapak Lago<br>Ongorakvik River, Point Nokotlek Point,<br>Ongorakvik River, Point Nokotlek Point,<br>Ongorakvik River, Point Collie, Sigeakruk<br>Point, Kokokus River, Kugrua Bay         113<br>Komakuk Beach, Fish Creek           74         Kukon River, Wainwright, Umainwright Inlet         112<br>Clarence Lagoon, Backhouse River, Iso<br>Ongorakvik River, Sathorse Islands,<br>Tachinisok Inlet <th></th> <th>Kukpuk River, Pingu Bluff, Point Hope, Sinigrok</th> <th></th> <th></th> |    | Kukpuk River, Pingu Bluff, Point Hope, Sinigrok       |     |                                                  |
| Ayugatak Lagoon         99         Howe Island, Niakuk Islands, point Brower           67         Cape Sabine, Pitmegea River         100         Shaviovik River, Tigvariak Island           68         Agiak Lagoon, Punuk Lagoon         101         Bullen Point, Point Gordon, Reliance Point           69         Flaxman Island, Maguire Islands, North Star Island         Reliance Point           70         Kuchaurak Creek, Kuchiak Creek         103         Brownlow Point, Canning River, Tamayariak River           71         Kuchaurak Creek, Kuchiak Creek         103         Brownlow Point, Canting River, Tamayariak River           71         Kuchaurak Creek, Kuchiak Creek         103         Brownlow Point, Canting River, Tamayariak River           72         Epizetika River, Kokolik River, Point Lay,<br>Siksrikgak Point         Sigman-Kape Lagoon, Barter Island, Hulahula           74         Kaesgaluk Lagoon, , Solivik Island, Utukok River         106         River, Okpilak River           74         Kasegaluk Lagoon, , Solivik Island, Utukok River         109         Angu Lagoon, Bearfer Island, Hulahula           75         Akeonik, Icy Cape, Icy Cape Pass         108         Griffin Point, Oruktalik Lagoon, Point Kagoon, Pokok Lagoon           76         Akolakatat Pass, Avak Inet, Tunalik River         109         Angu Lagoon, Bearfer Island, Hulahula           76         AkolakatatP                                                                                                                                                                                                                                                                                                                                                          |    | Buckland, Cape Dyer, Cape Lewis, Cape Lisburne        | 98  |                                                  |
| 67       Cape Sabine, Pitmegea River       100       Shaviovik River, Tigvariak Island         68       Agiak Lagoon, Punuk Lagoon       101       Bullen Point, Point Gordon, Reliance Point         69       Agiak Lagoon, Punuk Lagoon       101       Bullen Point, Point Gordon, Reliance Point         70       Kuchaurak Creek, Kuchiak Creek       102       Staines River       Tommon Nomice Network River, Tamayariak River         71       Kukpowruk River, Naokok, Naokok Pass, Sitkok       Carmden Bay, Collinson Point, Katakturuk River, Tamayariak River         71       Kukpowruk River, Kokolik River, Point Lay, Siksrikpak Point       Siksrikpak Point, Simspon Cove         72       Epizetka River, Kokolik River, Point Lay, Siksrikpak Point, Tungak Creek       108       Raderson Point, Carter Creek, Itiliyariak Creek, March Creek, March Creek, March Creek, Siksrikpak Point, Ingaich Point, Tungak Creek       107       Kasegaluk Lagoon, Solivik Island, Utukok River       107       Lagoon, Barter Island, Hulahula         74       Kasegaluk Lagoon, , Solivik Island, Utukok River       109       Angun Lagoon, Beaufort Lagoon, Nuvagapak Lago         75       Akeonik, Icy Cape, Icy Cape Pass       109       Angun Lagoon, Beaufort Lagoon, Nuvagapak Lago         76       Akoliaktat Pass, Avak Inlet, Tunalik River       109       Angun Lagoon, Barter Island, Hulahula         76       Akoliakstat Pass, Vak Niter       110                                                                                                                                                                                                                                                                                                                                     | 66 | Avugatak Lagoon                                       | aa  |                                                  |
| 68       Agiak Lagoon, Punuk Lagoon       101       Bullen Point, Point Gordon, Reliance Point         69       Flaxman Island, Maguire Islands, North Star Island         70       Kuchaurak Creek, Kuchiak Creek       102         70       Kuchaurak Creek, Kuchiak Creek       103         71       Kukpowruk River, Naokok, Naokok Pass, Sitkok       103         72       Epizetka River, Kokolik River, Point Lay,       104         73       Kukpowruk River, Naokok, Naokok Pass, Sitkok       Camden Bay, Collinson Point, Katakturuk River,         74       Kukpowruk River, Kokolik River, Point Lay,       Camderson Point, Carter Creek, Itkilyariak Creek,         74       Kukpowruk River, Naokok, Naokok Pass, Sitkok       105       Kajutakrok Creek, Marsh Creek, Sadlerochit River,         75       Epizetka River, Kokolik River, Point Lay,       Anderson Point, Carter Creek, Itkilyariak Creek,       106         74       Kasegaluk Lagoon, Solivik Island, Utukok River       107       Lagoon, Navagapak Lago         76       Akonikatat Pass, Avak Inlet, Tunaik River       109       Angun Lagoon, Beaufort Lagoon, Nuvagapak Lago         77       Mitliktavik, Nivat Point, Nokottek Point,       107       Ingokrakuk River, Sku Lagoon       108         77       Mitliktavik, River, Point Collie, Sigeakruk       107       Poerat Bay, Point, Gordon,       10                                                                                                                                                                                                                                                                                                                                                                                                                 | 67 |                                                       | 55  |                                                  |
| 69       Flaxman Island, Maguire Islands, North Star Island<br>Point Hopson, Point Sweeney, Point Thomson,<br>102 Islaines River         70       Kuchaurak Creek, Kuchiak Creek       103 Brownlow Point, Canning River, Tamayariak River,<br>Point         71       Kukpowruk River, Naokok, Naokok Pass, Sitkok<br>Point       104 Konganevik Point, Simpson Cove         72       Epizetka River, Kokolik River, Point Lay,<br>Siksrikpak Point       104 Konganevik Point, Simpson Cove         73       Anderson Point, Carter Creek, Itkilyariak Creek,<br>Makunik Pass, Tungaich Point, Tungak Creek       105 River, Okpilak River         74       Kasegaluk Lagoon, , Solivik Island, Utukok River       106 River, Okpilak River         74       Kasegaluk Lagoon, , Solivik Island, Utukok River       107 Lagoon, Baeufort Lagoon, Kaktovik, Kaktovik         75       Akeonik, Icy Cape, Icy Cape Pass       108 Griffin Point, Oruktalik Lagoon, Pokok Lagoon         76       Akoliakatat Pass, Avak Inlet, Tunglik River       110 Reef, Kongakut River, Siku Lagoon         76       Akoliakatat Pass, Avak Inlet, Tunglik River       110 Reef, Kongakut River, Siku Lagoon         77       Militkavik, Nivat Point, Nokotlek Point,<br>Ongorakvik River       110 Reef, Kongakut River, Siku Lagoon         78       Eluksingiak Point, Igkto River, Kugrua Bay       113 Komakuk Beach, Fish Creek         81       Peard Bay, Point Franklin, Seahorse Islands,<br>Tachinisok Inlet       112       Clarence Lagoon, Backhou                                                                                                                                                                                                                                                                     |    | Cape Sabine, Pitmegea River                           | 100 | Shaviovik River, Tigvariak Island                |
| Point Hopson, Point Sweeney, Point Thomson,<br>102 Staines River           70         Kuchaurak Creek, Kuchiak Creek         103 Brownlow Point, Canning River, Tamayariak River,<br>Camden Bay, Collinson Point, Katakturuk River,<br>Point           71         Kukpowruk River, Naokok, Naokok Pass, Sitkok<br>Point         103 Brownlow Point, Canning River, Tamayariak River,<br>Camden Bay, Collinson Point, Katakturuk River,<br>Point           72         Epizetka River, Kokolik River, Point Lay,<br>Bisksrikpak Point         104 Konganevik Point, Simpson Cove           73         Anderson Point, Carter Creek, Marsh Creek,<br>Mash Creek, Marsh Creek, Marsh Creek, Marsh Creek, Marsh Creek, Sadlerochtl River           74         Kusagaluk Lagoon, , Solivik Island, Utukok River         106 River, Okpilak River<br>Bernard Harbor, Jago Lagoon, Kaktovik, Kaktovik<br>Kasegaluk Lagoon, , Solivik Island, Utukok River           75         Akeonik, Icy Cape, Icy Cape Pass         108 Griffin Point, Oruktalik Lagoon, Pokok Lagoon<br>(Point Bogon, Egaksrak River, Ic<br>Ongorakvik River         109 Angun Lagoon, Beaufort Lagoon, Nagapak Lago<br>(Point Beicher, Wainwright Inlet         112 Clarence Lagoon, Backhouse River           76         Klimantavi, Kuk River, Point Collie, Sigeakruk<br>Point Beicher, Wainwright, Wainwright Inlet         112 Clarence Lagoon, Backhouse River           77         Mitlikki, Loran Radio Station         118 Herschel Island           81         Peard Bay, Point Franklin, Seahorse Islands,<br>Tachinisok Inlet         114 Nunaluk Spit           82         Saline Point         118 Hers                                                                                                                                       |    | Agiak Lagoon, Punuk Lagoon                            | 101 |                                                  |
| Cape Beaufort, Omalik Lagoon         102         Staines River           70         Kuchaurak Creek, Kuchiak Creek         103         Browniow Point, Canning River, Tamayariak River, 104           71         Kukpowruk River, Naokok, Naokok Pass, Sitkok         Camden Bay, Collinson Point, Katakturuk River, 104           72         Epizetka River, Kokolik River, Point Lay, Sitkok         Camden Bay, Collinson Point, Simpson Cove           73         Hakunik Pass, Tungaich Point, Tungak Creek         Anderson Point, Carter Creek, Itkilyariak Creek, Sadlerochit River           74         Kuspon, Solivik Island, Utukok River         106         River, Okpilak River           74         Kasegaluk Lagoon, Solivik Island, Utukok River         109         Angun Lagoon, Beaufort Lagoon, Nuvagapak Lago           75         Akeonik, Icy Cape, Icy Cape Pass         108         Griffin Point, Oruktalik Lagoon, Pokok Lagoon           76         Akoliakatat Pass, Avak Inlet, Tunalik River         109         Angun Lagoon, Beaufort Lagoon, Nuvagapak Lago           77         Mitliklavik, Nivat Point, Nokotlek Point, Oruktalik Kagoon         101         Point, Gardon, 101           78         Kimantavi, Kuk River, Point Collie, Sigeakruk         Demarcation Bay, Demarcation Point, Gordon, 101           79         Point Belcher, Wainwright, Wainwright Inlet         112         Clarence Lagoon, Backhouse River           80 <th>69</th> <th></th> <th></th> <th></th>                                                                                                                                                                                                                                                                                            | 69 |                                                       |     |                                                  |
| 70       Kuchaurak Creek, Kuchiak Creek       103       Brownlow Point, Canning River, Tamayariak River, Tamayariak River, Point         71       Kukpowruk River, Naokok, Naokok Pass, Sitkok       104       Konganevik Point, Simpson Cove         72       Epizetka River, Kokolik River, Point Lay, Siksrikpak Point       104       Konganevik Point, Carter Creek, Itkilyariak Creek, Sallerochit River, Arey Island, Arey Lagoon, Barter Island, Hulahula         73       Arey Island, Arey Lagoon, Barter Island, Hulahula       106       River, Okpilak River         74       Kasegaluk Lagoon, Solivik Island, Utukok River       107       Arey Island, Arey Lagoon, Barter Island, Hulahula         74       Kasegaluk Lagoon, Solivik Island, Utukok River       108       Griffin Point, Oruktalik Lagoon, Poak Lagoon         75       Akeonik, Icy Cape, Icy Cape Pass       108       Griffin Point, Oruktalik Lagoon, Poak Lagoon         76       Akoliakatat Pass, Avak Inlet, Tunalik River       109       Angun Lagoon, Beartor Lagoon, Nuvagapak Lago         76       Kkimantavi, Kuk River, Point Collie, Sigeakruk       101       Reef, Kongakut River, Siku Lagoon         77       Militikavik, Nivar Point, Igklo River, Kugrua Bay       113       Komakuk Beach, Fish Creek         81       Peard Bay, Point Franklin, Seahorse Islands, Tachinis Koland       114       Nunaluk Spit         82       Skull Cliff       115 <th></th> <th>Cape Beaufort, Omalik Lagoon</th> <th>102</th> <th></th>                                                                                                                                                                                                                                                                                 |    | Cape Beaufort, Omalik Lagoon                          | 102 |                                                  |
| Point       104       Konganevik Point, Simpson Cove         72       Epizetka River, Kokolik River, Point Lay,<br>Siksrikpak Point       105       Kagerand Point, Carter Creek, Itkilyariak Creek,<br>Marsh Creek, Marsh Creek, Sadlerochit River         73       Akunik Pass, Tungaich Point, Tungak Creek       106       River, Okpilak River         74       Kasegaluk Lagoon, , Solivik Island, Utukok River       107       Lagoon, Barter Island, Hulahula         74       Kasegaluk Lagoon, , Solivik Island, Utukok River       107       Lagoon, Dekok Lagoon, Nokok Lagoon         75       Akeonik, Icy Cape, Icy Cape Pass       108       Griffin Point, Oruktalik Lagoon, Pokok Lagoon         76       Akoliakata Pass, Avak Inlet, Tunalik River       109       Angun Lagoon, Beaufort Lagoon, Nuvagapak Lago         76       Akoliakatat Pass, Avak Inlet, Tunalik River       109       Angun Lagoon, Beaufort Lagoon, Nuvagapak Lago         77       Mitliktavik, Nivat Point, Nokotlek Point, Nokotlek Point, 101       Demarcation Bay, Demarcation Point, Gordon, 101       Pingokraluk Lagoon         78       Kilmantavi, Kuk River, Kugrua Bay       113       Komakuk Beach, Fish Creek         80       Eluksingiak Point, Igklo River, Kugrua Bay       113       Komakuk Beach, Fish Creek         81       Peard Bay, Point Franklin, Seahorse Islands, Tachinisok Inlet       114       Nunaluk Spit         <                                                                                                                                                                                                                                                                                                                                                                    | 70 | ·                                                     | 103 | Brownlow Point, Canning River, Tamayariak River  |
| 72       Epizetka River, Kokolik River, Point Lay,<br>Siksrikpak Point       Anderson Point, Carter Creek, Itkilyariak Creek,<br>Kajutakrok Creek, Marsh Creek, Marsh Creek, Marsh Creek, Sadlerochit River         73       Akunik Pass, Tungaich Point, Tungak Creek       106 River, Okpilak River         74       Bernard Harbor, Jago Lagoon, Kaktovik, Kaktovik         75       Akeonik, Icy Cape, Icy Cape Pass       108 Griffin Point, Oruktalik Lagoon, Pokok Lagoon         76       Akoliakatat Pass, Avak Inlet, Tunalik River       109 Angun Lagoon, Beaufort Lagoon, Nuvagapak Lago         76       Akoliakatat Pass, Avak Inlet, Tunalik River       109 Angun Lagoon, Beaufort Lagoon, Nuvagapak Lago         77       Mittiktavik, Nivat Point, Nokotlek Point,       101 Reef, Kongakut River, Egastrak Lagoon         78       Kilmantavi, Kuk River, Point Collie, Sigeakruk       Demarcation Bay, Demarcation Point, Gordon,         79       Point Belcher, Wainwright Inlet       112 Clarence Lagoon, Backhouse River         81       Peard Bay, Point Franklin, Seahorse Islands,       114 Nunaluk Spit         82       Skull Cliff       115 Herschel Island         83       Nulavik, Loran Radio Station       116 Ptarmagin Bay         84       Walakpa River, Will Rogers and Wiley Post       118 Sabine Point         85       Barrow, Browerville, Elson Lagoon       118 Sabine Point         86       Cape Simps                                                                                                                                                                                                                                                                                                                                                             | 71 |                                                       | 104 |                                                  |
| Siksrikpak Point       105 Kajutakrok Creek, Marsh Creek, Sadlerochit River         73       Akunik Pass, Tungaich Point, Tungak Creek       106 River, Qbjiak River         74       Kasegaluk Lagoon, Solivik Island, Utukok River       107 Bernard Harbor, Jago Lagoon, Barter Island, Hulahula         74       Kasegaluk Lagoon, Solivik Island, Utukok River       108 Griffin Point, Oruktalik Lagoon, Pokok Lagoon         75       Akeonik, Icy Cape, Icy Cape Pass       108 Griffin Point, Oruktalik Lagoon, Pokok Lagoon         76       Akoliakatat Pass, Avak Inlet, Tunalik River       109 Angun Lagoon, Beaufort Lagoon, Nuvagapak Lago         76       Mitliktavik, Nivat Point, Nokotlek Point,       109 Angun Lagoon, Beaufort Lagoon, Nuvagapak Lago         77       Mitliktavik, Nivat Point, Nokotlek Point,       100 Reef, Kongakut River, Egaksrak River, Ic         78       Mitliktavik, Nivat Point, Otollie, Sigeakruk       Demarcation Bay, Demarcation Point, Gordon,         79       Point Belcher, Wainwright, Wainwright Inlet       112 Clarence Lagoon, Backhouse River         80       Eluksingiak Point, Igklo River, Kugrua Bay       113 Komakuk Beach, Fish Creek         81       Peard Bay, Point Franklin, Seahorse Islands,       114 Nunaluk Spit         78       Skull Cliff       115 Herschel Island         83       Nulavik, Loran Radio Station       116 Ptarmagin Bay         84                                                                                                                                                                                                                                                                                                                                                                          | 72 |                                                       | 104 |                                                  |
| Akunik Pass, Tungaich Point, Tungak Creek106 River, Okpilak River74Kasegaluk Lagoon, , Solivik Island, Utukok RiverBernard Harbor, Jago Lagoon, Kaktovik, Kaktovik75Akeonik, Icy Cape, Icy Cape Pass108 Griffin Point, Oruktalik Lagoon, Pokok Lagoon76Akoliakatat Pass, Avak Inlet, Tunalik River109 Angun Lagoon, Beaufort Lagoon, Nuvagapak Lago77Mitliktavik, Nivat Point, Nokotlek Point,101 Reef, Kongakut River, Siku Lagoon, Egaksrak River, Ic78Mitliktavik, Nivat Point, Nokotlek Point,Demarcation Bay, Demarcation Point, Gordon,79Point Belcher, Wainwright, Wainwright Inlet112 Clarence Lagoon, Backhouse River80Eluksingiak Point, Igklo River, Kugrua Bay113 Komakuk Beach, Fish Creek81Peard Bay, Point Franklin, Seahorse Islands,<br>Tachinisok Inlet116 Ptarmagin Bay82Skull Cliff115 Herschel Island83Nulavik, Loran Radio Station116 Ptarmagin Bay84Walakpa River, Will Rogers and Wiley Post<br>Memorial117 Roland & Phillips Bay, Kay Point85Barrow, Browerville, Elson Lagoon118 Sabine Point86Dease Inlet, Plover Islands, Sanigaruak Island119 Shingle Point87Igalik Island, Kulgurak Island, Kurgorak Bay,<br>Tangent Point120 Trent and Shoalwater Bays88Cape Simpson, Piasuk River, Sinclair River,<br>Tulimanik Island120 Trent and Shoalwater Bays90Drew Point, Kolovik, McLeod Point,<br>River121 Shallow Bay, West Channel89Ikpikpuk River, Point Poleakoon, Smith Bay120<br>Trent and Shoalwater Bays                                                                                                                                                                                                                                                                                                                                                                                 |    |                                                       | 105 | Kajutakrok Creek, Marsh Creek, Sadlerochit River |
| 74Kasegaluk Lagoon, , Solivik Island, Utukok RiverBernard Harbor, Jago Lagoon, Kaktovik, Kaktovik75Akeonik, Icy Cape, Icy Cape Pass108Griffin Point, Oruktalik Lagoon, Pokok Lagoon76Akoliakatat Pass, Avak Inlet, Tunalik River109Angun Lagoon, Beaufort Lagoon, Nuvagapak Lago77Mitliktavik, Nivat Point, Nokotlek Point,<br>Ongorakvik River109Angun Lagoon, Beaufort Lagoon, Nuvagapak Lago78Kilmantavi, Kuk River, Point Collie, Sigeakruk<br>Point,Demarcation Bay, Demarcation Point, Gordon,<br>Pingokraluk Lagoon79Point Belcher, Wainwright, Wainwright Inlet112Clarence Lagoon, Backhouse River80Eluksingiak Point, Igklo River, Kugrua Bay113Komakuk Beach, Fish Creek81Peard Bay, Point Franklin, Seahorse Islands,<br>Tachinisok Inlet114Nunaluk Spit82Skull Cliff115Herschel Island83Nulavik, Loran Radio Station116Ptarmagin Bay84Walakpa River, Will Rogers and Wiley Post<br>Memorial117Roland & Phillips Bay, Kay Point85Barrow, Browerville, Elson Lagoon118Sabine Point86Dease Inlet, Plover Islands, Sanigaruak Island119Shingle Point87Igalik Island, Kulgurak Island, Kurgorak Bay,<br>Tangent Point120Trent and Shoalwater Bays88Cape Simpson, Piasuk River, Sinclair River,<br>Tulimanik Island121Shallow Bay, West Channel89Ipekpuk River, Point Poleakoon, Smith Bay120Trent and Shoalwater Bays80Dere Point, Kolovik, McLeod Point,                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 73 | Akunik Daga Tunggigh Daint Tunggk Crack               | 106 |                                                  |
| Kasegaluk Lagoon, , Solivik Island, Utukok River       107       Lagoon         75       Akeonik, Icy Cape, Icy Cape Pass       108       Griffin Point, Oruktalik Lagoon, Pokok Lagoon         76       Akoliakatat Pass, Avak Inlet, Tunalik River       109       Angun Lagoon, Beaufort Lagoon, Nuvagapak Lago         77       Mitliktavik, Nivat Point, Nokotlek Point,<br>Ongorakvik River       100       Ref. Kongakut River, Egaksrak Lagoon, Nuvagapak Lago         78       Kilmantavi, Kuk River, Point Collie, Sigeakruk       Demarcation Bay, Demarcation Point, Gordon, Pingokraluk Lagoon         79       Point Belcher, Wainwright, Wainwright Inlet       112       Clarence Lagoon, Backhouse River         80       Eluksingiak Point, Igklo River, Kugrua Bay       113       Komakuk Beach, Fish Creek         81       Peard Bay, Point Franklin, Seahorse Islands,<br>Tachinisok Inlet       114       Nunaluk Spit         82       Skull Cliff       115       Herschel Island         83       Nulavik, Loran Radio Station       116       Parmagin Bay         84       Walakpa River, Will Rogers and Wiley Post<br>Memorial       117       Roland & Phillips Bay, Kay Point         85       Barrow, Browerville, Elson Lagoon       118       Sabine Point         86       Dease Inlet, Plover Islands, Sanigaruak Island       119       Shingle Point         87 </th <th>74</th> <th>Akunik Pass, Tungaich Point, Tungak Creek</th> <th>106</th> <th></th>                                                                                                                                                                                                                                                                                                                        | 74 | Akunik Pass, Tungaich Point, Tungak Creek             | 106 |                                                  |
| 76       Akoliakatat Pass, Avak Inlet, Tunalik River       109       Angun Lagoon, Beaufort Lagoon, Nuvagapak Lago         77       Mitliktavik, Nivat Point, Nokotlek Point,<br>Ongorakvik River       Aichilik River, Egaksrak Lagoon, Egaksrak River, Ic         78       Kilmantavi, Kuk River, Point Collie, Sigeakruk<br>Point,       Demarcation Bay, Demarcation Point, Gordon,         79       Point Belcher, Wainwright, Wainwright Inlet       112       Clarence Lagoon, Backhouse River         80       Eluksingiak Point, Igklo River, Kugrua Bay       113       Komakuk Beach, Fish Creek         81       Peard Bay, Point Franklin, Seahorse Islands,<br>Tachinisok Inlet       114       Nunaluk Spit         82       Skull Cliff       115       Herschel Island         83       Nulavik, Loran Radio Station       116       Ptarmagin Bay         84       Walakpa River, Will Rogers and Wiley Post<br>Memorial       117       Roland & Phillips Bay, Kay Point         85       Barrow, Browerville, Elson Lagoon       118       Sabine Point         86       Dease Inlet, Plover Islands, Sanigaruak Island       119       Shingle Point         88       Cape Simpson, Piasuk River, Sinclair River,<br>Tulimanik Island       121       Shallow Bay, West Channel         89       Ixpikpuk River, Point Poleakoon, Smith Bay       120       Trent and Shoalwater Bays                                                                                                                                                                                                                                                                                                                                                                                                                |    | Kasegaluk Lagoon, ,Solivik Island,Utukok River        | 107 |                                                  |
| 77Mitliktavik, Nivat Point, Nokotlek Point,<br>Ongorakvik RiverAichilik River, Egaksrak Lagoon, Egaksrak River, Id<br>Aichilik River, Siku Lagoon78Kilmantavi, Kuk River, Point Collie, Sigeakruk<br>Point,Demarcation Bay, Demarcation Point, Gordon,<br>Pingokraluk Lagoon79Point Belcher, Wainwright, Wainwright Inlet112Clarence Lagoon, Backhouse River80Eluksingiak Point, Igklo River, Kugrua Bay113Komakuk Beach, Fish Creek81Peard Bay, Point Franklin, Seahorse Islands,<br>Tachinisok Inlet114Nunaluk Spit82Skull Cliff115Herschel Island83Nulavik, Loran Radio Station116Ptarmagin Bay84Walakpa River, Will Rogers and Wiley Post<br>Memorial117Roland & Phillips Bay, Kay Point85Barrow, Browerville, Elson Lagoon118Sabine Point86Dease Inlet, Plover Islands, Sanigaruak Island119Shingle Point87Igalik Island, Kulgurak Island, Kurgorak Bay,<br>Tangent Point120Trent and Shoalwater Bays88Cape Simpson, Piasuk River, Sinclair River,<br>Tulimanik Island121Shallow Bay, West Channel89Ikpikpuk River, Point Poleakoon, Smith Bay120Trent and Shoalwater Bays90Drew Point, Kolovik, McLeod Point,<br>River121Shallow Bay, Olivier Islands91Joheny JAS Shirport, Pitt Point, Pogik Bay, Smith<br>River122Uuter Shallow Bay, Olivier Islands92Cape Halkett, Esook Trading Post, Garry Creek123Outer Shallow Bay, Olivier Islands94Fish Creek,                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 75 | Akeonik, Icy Cape, Icy Cape Pass                      | 108 | Griffin Point, Oruktalik Lagoon, Pokok Lagoon    |
| Ongorakvik River110Reef, Kongakut River, Siku Lagoon78Kilmantavi, Kuk River, Point Collie, Sigeakruk<br>Point,Demarcation Bay, Demarcation Point, Gordon,<br>Pingokraluk Lagoon79Point Belcher, Wainwright, Wainwright Inlet112Clarence Lagoon, Backhouse River80Eluksingiak Point, Igklo River, Kugrua Bay<br>Eluksingiak Point, Igklo River, Kugrua Bay113Komakuk Beach, Fish Creek81Peard Bay, Point Franklin, Seahorse Islands,<br>Tachinisok Inlet114Nunaluk Spit82Skull Cliff115Herschel Island83Nulavik, Loran Radio Station116Ptarmagin Bay84Walakpa River, Will Rogers and Wiley Post<br>Memorial117Roland & Phillips Bay, Kay Point85Barrow, Browerville, Elson Lagoon118Sabine Point86Dease Inlet, Plover Islands, Sanigaruak Island119Shingle Point87Igalik Island, Kulgurak Island, Kurgorak Bay,<br>Tangent Point120Trent and Shoalwater Bays88Cape Simpson, Piasuk River, Sinclair River,<br>Tulimanik Island121Shallow Bay, West Channel89Ikpikpuk River, Point Poleakoon, Smith Bay120Trent and Shoalwater Bays90Drew Point, Kolovik, McLeod Point,<br>River121Shallow Bay, Olivier Islands91Lonely AFS Airport, Pitt Point, Pogik Bay,<br>Kalikpik River, Saktuina Point1229292Cape Halkett, Esook Trading Post, Garry Creek<br>Kalikpik River, Saktuina Point123Outer Shallow Bay, Olivier Islands93Atigaru Point, Eskimo Islands, Harriso                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 76 | Akoliakatat Pass, Avak Inlet, Tunalik River           | 109 |                                                  |
| 78Kilmantavi, Kuk River, Point Collie, Sigeakruk<br>Point,Demarcation Bay, Demarcation Point, Gordon,<br>10179Point Belcher, Wainwright, Wainwright Inlet112Clarence Lagoon, Backhouse River80Eluksingiak Point, Igklo River, Kugrua Bay113Komakuk Beach, Fish Creek81Peard Bay, Point Franklin, Seahorse Islands,<br>Tachinisok Inlet114Nunaluk Spit82Skull Cliff115Herschel Island83Nulavik, Loran Radio Station116Ptarmagin Bay84Walakpa River, Will Rogers and Wiley Post<br>Memorial117Roland & Phillips Bay, Kay Point85Barrow, Browerville, Elson Lagoon118Sabine Point86Dease Inlet, Plover Islands, Sanigaruak Island119Shingle Point87Igalik Island, Kulgurak Island, Kurgorak Bay,<br>Tangent Point120Trent and Shoalwater Bays88Cape Simpson, Piasuk River, Sinclair River,<br>Tulimanik Island121Shallow Bay, West Channel89Ikpikpuk River, Point Poleakoon, Smith Bay120Trent and Shoalwater Bays90Drew Point, Kolovik, McLeod Point,<br>River121Shallow Bay, Uest Channel91Lonely AFS Airport, Pitt Point, Pogik Bay, Smith<br>River, Saktuina Point123Outer Shallow Bay, Olivier Islands93Atigaru Point, Eskimo Islands, Harrison Bay,<br>Kalikpik River, Saktuina Point124Middle Channel, Gary Island94Fish Creek, Tingmeachsiovik River125Kendall Island                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 77 |                                                       | 440 |                                                  |
| Point,101Pingokraluk Lagoon79Point Belcher, Wainwright, Wainwright Inlet112Clarence Lagoon, Backhouse River80Eluksingiak Point, Igklo River, Kugrua Bay113Komakuk Beach, Fish Creek81Peard Bay, Point Franklin, Seahorse Islands,<br>Tachinisok Inlet114Nunaluk Spit82Skull Cliff115Herschel Island83Nulavik, Loran Radio Station116Ptarmagin Bay84Walakpa River, Will Rogers and Wiley Post<br>Memorial117Roland & Phillips Bay, Kay Point85Barrow, Browerville, Elson Lagoon118Sabine Point86Dease Inlet, Plover Islands, Sanigaruak Island119Shingle Point87Igalik Island, Kulgurak Island, Kurgorak Bay,<br>Tangent Point120Trent and Shoalwater Bays88Cape Simpson, Piasuk River, Sinclair River,<br>Tulimanik Island121Shallow Bay, West Channel89Ikpikpuk River, Point Poleakoon, Smith Bay120Trent and Shoalwater Bays90Drew Point, Kolovik, McLeod Point,<br>River121Shallow Bay, West Channel91Lonely AFS Airport, Pitt Point, Pogik Bay, Smith<br>River122Outer Shallow Bay, Olivier Islands93Atigaru Point, Eskimo Islands, Harrison Bay,<br>Kalikpik River, Saktuina Point124Middle Channel, Gary Island94Fish Creek, Tingmeachsiovik River125Kendall Island                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 78 |                                                       | 110 |                                                  |
| 80       Eluksingiak Point, Igklo River, Kugrua Bay       113       Komakuk Beach, Fish Creek         81       Peard Bay, Point Franklin, Seahorse Islands,<br>Tachinisok Inlet       114       Nunaluk Spit         82       Skull Cliff       115       Herschel Island         83       Nulavik, Loran Radio Station       116       Ptarmagin Bay         84       Walakpa River, Will Rogers and Wiley Post<br>Memorial       117       Roland & Phillips Bay, Kay Point         85       Barrow, Browerville, Elson Lagoon       118       Sabine Point         86       Dease Inlet, Plover Islands, Sanigaruak Island       119       Shingle Point         87       Igalik Island, Kulgurak Island, Kurgorak Bay,<br>Tangent Point       120       Trent and Shoalwater Bays         88       Cape Simpson, Piasuk River, Sinclair River,<br>Tulimanik Island       121       Shallow Bay, West Channel         89       Ikpikpuk River, Point Poleakoon, Smith Bay       120       Trent and Shoalwater Bays         90       Drew Point, Kolovik, McLeod Point,<br>River       121       Shallow Bay, West Channel         91       Lonely AFS Airport, Pitt Point, Pogik Bay, Smith<br>River       122       Shallow Bay, Olivier Islands         93       Atigaru Point, Eskimo Islands, Harrison Bay,<br>Kalikpik River, Saktuina Point       124       Middle Channel, Gary Island                                                                                                                                                                                                                                                                                                                                                                                                                         |    | Point,                                                | 101 |                                                  |
| 81Peard Bay, Point Franklin, Seahorse Islands,<br>Tachinisok Inlet114Nunaluk Spit82Skull Cliff115Herschel Island83Nulavik, Loran Radio Station116Ptarmagin Bay84Walakpa River, Will Rogers and Wiley Post<br>Memorial117Roland & Phillips Bay, Kay Point85Barrow, Browerville, Elson Lagoon118Sabine Point86Dease Inlet, Plover Islands, Sanigaruak Island119Shingle Point87Igalik Island, Kulgurak Island, Kurgorak Bay,<br>Tangent Point120Trent and Shoalwater Bays88Cape Simpson, Piasuk River, Sinclair River,<br>Tulimanik Island121Shallow Bay, West Channel89Ikpikpuk River, Point Poleakoon, Smith Bay120Trent and Shoalwater Bays90Drew Point, Kolovik, McLeod Point,<br>River121Shallow Bay, West Channel91Lonely AFS Airport, Pitt Point, Pogik Bay, Smith<br>River122Outer Shallow Bay, Olivier Islands93Atigaru Point, Eskimo Islands, Harrison Bay,<br>Kalikpik River, Saktuina Point124Middle Channel, Gary Island94Fish Creek, Tingmeachsiovik River125Kendall Island                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 79 | Point Belcher, Wainwright, Wainwright Inlet           | 112 | Clarence Lagoon, Backhouse River                 |
| Tachinisok Inlet114Nunaluk Spit82Skull Cliff115Herschel Island83Nulavik, Loran Radio Station116Ptarmagin Bay84Walakpa River, Will Rogers and Wiley Post<br>Memorial117Roland & Phillips Bay, Kay Point85Barrow, Browerville, Elson Lagoon118Sabine Point86Dease Inlet, Plover Islands, Sanigaruak Island119Shingle Point87Igalik Island, Kulgurak Island, Kurgorak Bay,<br>Tangent Point120Trent and Shoalwater Bays88Cape Simpson, Piasuk River, Sinclair River,<br>Tulimanik Island121Shallow Bay, West Channel89Ikpikpuk River, Point Poleakoon, Smith Bay120Trent and Shoalwater Bays90Drew Point, Kolovik, McLeod Point,<br>River121Shallow Bay, West Channel91Lonely AFS Airport, Pitt Point, Pogik Bay, Smith<br>River1229292Cape Halkett, Esook Trading Post, Garry Creek123Outer Shallow Bay, Olivier Islands93Atigaru Point, Eskimo Islands, Harrison Bay,<br>Kalikpik River, Saktuina Point124Middle Channel, Gary Island94Fish Creek, Tingmeachsiovik River125Kendall Island                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 80 |                                                       | 113 | Komakuk Beach, Fish Creek                        |
| 83       Nulavik, Loran Radio Station       116         84       Walakpa River, Will Rogers and Wiley Post<br>Memorial       117         85       Barrow, Browerville, Elson Lagoon       118         86       Dease Inlet, Plover Islands, Sanigaruak Island       119         87       Igalik Island, Kulgurak Island, Kurgorak Bay,<br>Tangent Point       120         87       Igalik Island, Kulgurak Island, Kurgorak Bay,<br>Tangent Point       120         88       Cape Simpson, Piasuk River, Sinclair River,<br>Tulimanik Island       121         89       Ikpikpuk River, Point Poleakoon, Smith Bay       120         90       Drew Point, Kolovik, McLeod Point,<br>River       121         91       Lonely AFS Airport, Pitt Point, Pogik Bay, Smith<br>River       122         92       Cape Halkett, Esook Trading Post, Garry Creek       123       Outer Shallow Bay, Olivier Islands         93       Atigaru Point, Eskimo Islands, Harrison Bay,<br>Kalikpik River, Saktuina Point       124       Middle Channel, Gary Island         94       Fish Creek, Tingmeachsiovik River       125       Kendall Island                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 81 |                                                       | 114 | Nunaluk Spit                                     |
| 84       Walakpa River, Will Rogers and Wiley Post<br>Memorial       117       Roland & Phillips Bay, Kay Point         85       Barrow, Browerville, Elson Lagoon       118       Sabine Point         86       Dease Inlet, Plover Islands, Sanigaruak Island       119       Shingle Point         87       Igalik Island, Kulgurak Island, Kurgorak Bay,<br>Tangent Point       120       Trent and Shoalwater Bays         88       Cape Simpson, Piasuk River, Sinclair River,<br>Tulimanik Island       121       Shallow Bay, West Channel         89       Ikpikpuk River, Point Poleakoon, Smith Bay       120       Trent and Shoalwater Bays         90       Drew Point, Kolovik, McLeod Point,<br>River       121       Shallow Bay, West Channel         91       Lonely AFS Airport, Pitt Point, Pogik Bay, Smith<br>River       122         92       Cape Halkett, Esook Trading Post, Garry Creek       123       Outer Shallow Bay, Olivier Islands         93       Atigaru Point, Eskimo Islands, Harrison Bay,<br>Kalikpik River, Saktuina Point       124       Middle Channel, Gary Island         94       Fish Creek, Tingmeachsiovik River       125       Kendall Island                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 82 | Skull Cliff                                           | 115 | Herschel Island                                  |
| Memorial117Roland & Phillips Bay, Kay Point85Barrow, Browerville, Elson Lagoon118Sabine Point86Dease Inlet, Plover Islands, Sanigaruak Island119Shingle Point87Igalik Island, Kulgurak Island, Kurgorak Bay,<br>Tangent Point120Trent and Shoalwater Bays88Cape Simpson, Piasuk River, Sinclair River,<br>Tulimanik Island121Shallow Bay, West Channel89Ikpikpuk River, Point Poleakoon, Smith Bay120Trent and Shoalwater Bays90Drew Point, Kolovik, McLeod Point,<br>River121Shallow Bay, West Channel91Lonely AFS Airport, Pitt Point, Pogik Bay, Smith<br>River12292Cape Halkett, Esook Trading Post, Garry Creek123Outer Shallow Bay, Olivier Islands93Atigaru Point, Eskimo Islands, Harrison Bay,<br>Kalikpik River, Saktuina Point124Middle Channel, Gary Island94Fish Creek, Tingmeachsiovik River125Kendall Island                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 83 |                                                       | 116 | Ptarmagin Bay                                    |
| 85Barrow, Browerville, Elson Lagoon118Sabine Point86Dease Inlet, Plover Islands, Sanigaruak Island119Shingle Point87Igalik Island, Kulgurak Island, Kurgorak Bay,<br>Tangent Point120Trent and Shoalwater Bays88Cape Simpson, Piasuk River, Sinclair River,<br>Tulimanik Island121Shallow Bay, West Channel89Ikpikpuk River, Point Poleakoon, Smith Bay120Trent and Shoalwater Bays90Drew Point, Kolovik, McLeod Point,121Shallow Bay, West Channel91Lonely AFS Airport, Pitt Point, Pogik Bay, Smith<br>River122Shallow Bay, Olivier Islands92Cape Halkett, Esook Trading Post, Garry Creek123Outer Shallow Bay, Olivier Islands93Atigaru Point, Eskimo Islands, Harrison Bay,<br>Kalikpik River, Saktuina Point124Middle Channel, Gary Island94Fish Creek, Tingmeachsiovik River125Kendall Island                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 84 |                                                       | 117 | Poland & Phillins Bay, Kay Point                 |
| 86       Dease Inlet, Plover Islands, Sanigaruak Island       119       Shingle Point         87       Igalik Island, Kulgurak Island, Kurgorak Bay,<br>Tangent Point       120       Trent and Shoalwater Bays         88       Cape Simpson, Piasuk River, Sinclair River,<br>Tulimanik Island       121       Shallow Bay, West Channel         89       Ikpikpuk River, Point Poleakoon, Smith Bay       120       Trent and Shoalwater Bays         90       Drew Point, Kolovik, McLeod Point,<br>River       121       Shallow Bay, West Channel         91       Lonely AFS Airport, Pitt Point, Pogik Bay, Smith<br>River       122         92       Cape Halkett, Esook Trading Post, Garry Creek       123         93       Atigaru Point, Eskimo Islands, Harrison Bay,<br>Kalikpik River, Saktuina Point       124         94       Fish Creek, Tingmeachsiovik River       125         94       Fish Creek, Tingmeachsiovik River       125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 85 |                                                       |     |                                                  |
| 87       Igalik Island, Kulgurak Island, Kurgorak Bay,<br>Tangent Point       120       Trent and Shoalwater Bays         88       Cape Simpson, Piasuk River, Sinclair River,<br>Tulimanik Island       121       Shallow Bay, West Channel         89       Ikpikpuk River, Point Poleakoon, Smith Bay       120       Trent and Shoalwater Bays         90       Drew Point, Kolovik, McLeod Point,<br>River       121       Shallow Bay, West Channel         91       Lonely AFS Airport, Pitt Point, Pogik Bay, Smith<br>River       122         92       Cape Halkett, Esook Trading Post, Garry Creek       123         93       Atigaru Point, Eskimo Islands, Harrison Bay,<br>Kalikpik River, Saktuina Point       124         94       Fish Creek, Tingmeachsiovik River       125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |                                                       |     |                                                  |
| 88       Cape Simpson, Piasuk River, Sinclair River,<br>Tulimanik Island       121       Shallow Bay, West Channel         89       Ikpikpuk River, Point Poleakoon, Smith Bay       120       Trent and Shoalwater Bays         90       Drew Point, Kolovik, McLeod Point,<br>Lonely AFS Airport, Pitt Point, Pogik Bay, Smith<br>River       121       Shallow Bay, West Channel         91       Lonely AFS Airport, Pitt Point, Pogik Bay, Smith<br>River       122         92       Cape Halkett, Esook Trading Post, Garry Creek       123       Outer Shallow Bay, Olivier Islands         93       Atigaru Point, Eskimo Islands, Harrison Bay,<br>Kalikpik River, Saktuina Point       124       Middle Channel, Gary Island         94       Fish Creek, Tingmeachsiovik River       125       Kendall Island                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 87 | Igalik Island, Kulgurak Island, Kurgorak Bay,         |     |                                                  |
| 90       Drew Point, Kolovik, McLeod Point,       121       Shallow Bay, West Channel         91       Lonely AFS Airport, Pitt Point, Pogik Bay, Smith<br>River       122         92       Cape Halkett, Esook Trading Post, Garry Creek       123       Outer Shallow Bay, Olivier Islands         93       Atigaru Point, Eskimo Islands, Harrison Bay,<br>Kalikpik River, Saktuina Point       124       Middle Channel, Gary Island         94       Fish Creek, Tingmeachsiovik River       125       Kendall Island                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 88 | Cape Simpson, Piasuk River, Sinclair River,           |     |                                                  |
| 91       Lonely AFS Airport, Pitt Point, Pogik Bay, Smith<br>River       122         92       Cape Halkett, Esook Trading Post, Garry Creek       123         93       Atigaru Point, Eskimo Islands, Harrison Bay,<br>Kalikpik River, Saktuina Point       124         94       Fish Creek, Tingmeachsiovik River       125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 89 | Ikpikpuk River, Point Poleakoon, Smith Bay            | 120 | Trent and Shoalwater Bays                        |
| River     122       92     Cape Halkett, Esook Trading Post, Garry Creek     123     Outer Shallow Bay, Olivier Islands       93     Atigaru Point, Eskimo Islands, Harrison Bay,<br>Kalikpik River, Saktuina Point     124     Middle Channel, Gary Island       94     Fish Creek, Tingmeachsiovik River     125     Kendall Island                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 90 |                                                       | 121 | Shallow Bay, West Channel                        |
| 93     Atigaru Point, Eskimo Islands, Harrison Bay,<br>Kalikpik River, Saktuina Point     124     Middle Channel, Gary Island       94     Fish Creek, Tingmeachsiovik River     125     Kendall Island                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 91 |                                                       | 122 |                                                  |
| Kalikpik River, Saktuina Point     124     Middle Channel, Gary Island       94     Fish Creek, Tingmeachsiovik River     125     Kendall Island                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |                                                       | 123 | Outer Shallow Bay, Olivier Islands               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    | Kalikpik River, Saktuina Point                        |     |                                                  |
| 95 Anachlik Island, Colville River, Colville River Delta 126 North Point, Pullen Island                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    | Fish Creek, Tingmeachsiovik River                     | 125 | Kendall Island                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 95 | Anachlik Island, Colville River, Colville River Delta | 126 | North Point, Pullen Island                       |

**Key:** ID = identification (number).

Table A.1-17 Assumptions about How Launch Areas are Serviced by Pipelines for the Oil-Spill-Trajectory Analysis for the Alternative I, The Proposed Action, Alternative III, Corridor I and Alternative IV, Corridor II

|              | Alternative I           |           | Alternative III         |           | Alternative IV          |
|--------------|-------------------------|-----------|-------------------------|-----------|-------------------------|
| Spill Box    | Serviced by Pipelines   | Spill Box | Serviced by Pipelines   | Spill Box | Serviced by Pipelines   |
| LA01         | P02, P03, P04, P05, P06 | LA01      | P02, P03, P04, P05, P06 | LA01      | P02, P03, P04, P05, P06 |
| LA02         | P04, P05, P06           | LA02      | P04, P05, P06           | LA02      | P04, P05, P06           |
| LA03         | P07, P08, P09           | LA03      | P07, P08, P09           | LA03      | P07, P08, P09           |
| LA04         | P02, P03                | LA04      | P02, P03                | LA04      | P02, P03                |
| 20V1         | P05, P06                | LA05      | P05, P06                | LA05      | P05, P06                |
| 90V7         | P08, P09                | LA06      | P08, P09                | LA06      | P08, P09                |
| LA07         | P10, P11                | LA07      | P10, P11                | LA07      | P10, P11                |
| 1408<br>LA08 | P10, P11                | LA08a     | P10, P11                | LA08      | P10, P11                |
| 60AJ         | P01                     | LA09a     | P01                     | LA09c     | P01                     |
| LA10         | P03                     | LA10a     | P03                     | LA10c     | P03                     |
| LA11         | P06                     | LA11a     | P06                     | LA11c     | P06                     |
| LA12         | P09                     | LA12a     | 60d                     | LA12c     | P09                     |
| LA13         | P11                     | LA13a     | P11                     | LA13c     | P11                     |

## Table A.1-18Pipeline Spill Frequency Triangular Distribution Properties

| Pipel   | GOM OCS<br>line Spills,<br>ategorized | Low     | High<br>Factor | Fr         | equenc | sy spill pe | r 10 <sup>5</sup> km-yea | ars      |
|---------|---------------------------------------|---------|----------------|------------|--------|-------------|--------------------------|----------|
|         | 1972-99                               | Factor  | Factor         | Historical | Low    | Mode        | High                     | Expected |
| By Diam | eter, By Spi                          | II Size |                |            | •      |             |                          |          |
| <10"    | Small                                 | 0       | 2.57           | 3.7974     | 0      | 1.6329      | 9.7592                   | 5.1720   |
|         | Medium                                | 0       | 2.57           | 6.6454     | 0      | 2.8575      | 17.0786                  | 9.0510   |
|         | Large                                 | 0       | 2.57           | 3.7974     | 0      | 1.6329      | 9.7592                   | 5.1720   |
|         | Huge                                  | 0       | 2.57           | 0.9493     | 0      | 0.4082      | 2.4398                   | 1.2930   |
|         | Small                                 | 0       | 2.57           | 2.4436     | 0      | 1.0507      | 6.2800                   | 3.3282   |
| ≥10"    | Medium                                | 0       | 2.57           | 6.1090     | 0      | 2.6269      | 15.7001                  | 8.3205   |
| 210     | Large                                 | 0       | 2.57           | 7.3308     | 0      | 3.1522      | 18.8401                  | 9.9846   |
|         | Huge                                  | 0       | 2.57           | 2.4436     | 0      | 1.0507      | 6.2800                   | 3.3282   |

Source:

Bercha Group, Inc. (2006a).

### Table A.1-19Platform Spill Frequency Triangular Distribution Properties

| Spill Size                               | Frequency<br>Unit                      | Low<br>Factor | High<br>Factor | Historical | Low    | Mode   | High   | Expected |
|------------------------------------------|----------------------------------------|---------------|----------------|------------|--------|--------|--------|----------|
| Small and<br>Medium Spills<br>50-999 bbl | spill per 10 <sup>4</sup><br>well-year | 0             | 2.88           | 1.5036     | 0.0000 | 0.1804 | 4.3303 | 2.1571   |
| Large and Huge<br>Spills ≥ 1000 bbl      | spill per 10 <sup>4</sup><br>well-year | 0             | 2.88           | 0.2506     | 0.0000 | 0.0301 | 0.7217 | 0.3595   |

Source:

Bercha Group, Inc. (2006a).

Table A.1-20 Well Blowout Spill Frequency Triangular Distribution Properties

|                           |                                     | Low    | High   |            | Fr        | equencie               | s           |          |
|---------------------------|-------------------------------------|--------|--------|------------|-----------|------------------------|-------------|----------|
| Event                     | FREQUENCY UNIT                      | Factor | Factor | Historical | Low       | Mode                   | High        | Expected |
|                           |                                     |        |        |            |           | nd Mediur<br>0-999 bbl |             |          |
| Production Well           | spill per 10 <sup>4</sup> well-year | 0.448  | 1.545  | 0.147      | 0.066     | 0.148                  | 0.227       | 0.147    |
| Exploration Well Drilling | spill per 10 <sup>4</sup> wells     | 0.439  | 2.036  | 1.966      | 0.863     | 1.032                  | 4.002       | 2.262    |
| Development Well Drilling | spill per 10 <sup>4</sup> wells     | 0.437  | 1.760  | 0.654      | 0.286     | 0.526                  | 1.151       | 0.692    |
|                           |                                     |        |        |            | Large Sp  | ills 1000-             | 9999 bbl    |          |
| Production Well           | spill per 10 <sup>4</sup> well-year | 0.448  | 1.545  | 1.028      | 0.460     | 1.037                  | 1.588       | 1.026    |
| Exploration Well Drilling | spill per 10 <sup>4</sup> wells     | 0.439  | 2.036  | 13.754     | 6.039     | 7.220                  | 28.001      | 15.824   |
| Development Well Drilling | spill per 10 <sup>4</sup> wells     | 0.437  | 1.760  | 4.570      | 1.998     | 3.671                  | 8.041       | 4.833    |
|                           |                                     |        |        | Small, M   | ledium an | d Large S              | Spills 50-9 | 999 bbl  |
| Production Well           | spill per 10 <sup>4</sup> well-year | 0.448  | 1.545  | 1.175      | 0.526     | 1.185                  | 1.815       | 1.173    |
| Exploration Well Drilling | spill per 10 <sup>4</sup> wells     | 0.439  | 2.036  | 15.719     | 6.903     | 8.252                  | 32.003      | 18.086   |
| Development Well Drilling | spill per 10 <sup>4</sup> wells     | 0.437  | 1.760  | 5.224      | 2.284     | 4.197                  | 9.192       | 5.525    |
|                           |                                     |        |        | L          | arge Spil | II 10000-1             | 49999 bbl   |          |
| Production Well           | spill per 10 <sup>4</sup> well-year | 0.448  | 1.545  | 0.441      | 0.197     | 0.444                  | 0.681       | 0.440    |
| Exploration Well Drilling | spill per 10 <sup>4</sup> wells     | 0.439  | 2.036  | 5.909      | 2.595     | 3.102                  | 12.031      | 6.799    |
| Development Well Drilling | spill per 10 <sup>4</sup> wells     | 0.437  | 1.760  | 1.963      | 0.858     | 1.577                  | 3.454       | 2.076    |
|                           |                                     |        |        |            | Huge S    | pill ≥1500             | 000 bbl     |          |
| Production Well           | spill per 10 <sup>4</sup> well-year | 0.448  | 1.545  | 0.294      | 0.132     | 0.296                  | 0.454       | 0.293    |
| Exploration Well Drilling | spill per 10 <sup>4</sup> wells     | 0.439  | 2.036  | 3.421      | 1.502     | 1.796                  | 6.965       | 3.936    |
| Development Well Drilling | spill per 10 <sup>4</sup> wells     | 0.437  | 1.760  | 1.963      | 0.858     | 1.577                  | 3.454       | 2.076    |

Source: Bercha Group, Inc. (2006a).

#### Table A.1-21 Pipeline Arctic Effect Derivation Summary

| CAUSE               | Spill    | Shallow       | Medium         | Deep               | Deserve                                                                                                  |
|---------------------|----------|---------------|----------------|--------------------|----------------------------------------------------------------------------------------------------------|
| CLASSIFICATION      | Size     | Historica     | I Expected F   | requency           | Reason                                                                                                   |
|                     |          |               | Change %       |                    |                                                                                                          |
| Eutoward -          |          | (00)          | 1              | DRROSION           | Louisbourgerstung and his official. Francesco (                                                          |
| External            | All      | (30)          | (30)           | (30)               | Low temperature and bio effects. Extra smart pigging                                                     |
| Internal            | All      | (30)          | (30)           |                    | Extra smart pigging.                                                                                     |
| Anchor Impact       | All      | (50)          | (50)           | PARTY IMPA<br>(50) | Low traffic.                                                                                             |
| Jackup Rig or Spud  |          | (50)          | (50)           | (50)               | Low facility density.                                                                                    |
| Barge               | All      | (50)          | (50)           | (50)               | Low facility defisity.                                                                                   |
| Trawl/Fishing Net   | All      | (50)          | (60)           | (70)               | Low fishing activity. Less bottom fishing in deeper                                                      |
| <b>5 5 5</b>        |          |               | × ,            | × ,                | water.                                                                                                   |
|                     |          |               |                | ATION IMPA         |                                                                                                          |
| Rig Anchoring       | All      | (20)          | (20)           | (20)               | Low marine traffic during ice season (8 months).                                                         |
| Work Boat Anchoring | All      | (20)          | (20)           | (20)               | Low work boat traffic during ice season (8 months).                                                      |
| <u> </u>            |          | 1             | ME             | CHANICAL           | 1                                                                                                        |
| Connection Failure  | All      |               |                |                    |                                                                                                          |
| Material Failure    | All      |               |                |                    |                                                                                                          |
| Mud Slide           | A II     | (60)          | (50)           | (40)               | Gradient low. Mud slide potential (gradient) increases                                                   |
| Widd Slide          | All      | (00)          | (50)           | (40)               | with water depth.                                                                                        |
| Storm/ Hurricane    | All      | (50)          | (50)           | (50)               | Fewer severe storms.                                                                                     |
|                     |          |               | ement per 10   |                    | -                                                                                                        |
|                     |          | Expected      | Expected       | Expected           |                                                                                                          |
|                     |          | Mode          | Mode           | Mode               |                                                                                                          |
|                     |          |               | •              | ARCTIC             | ·                                                                                                        |
|                     | S        | 0.3495        | 0.2796         |                    |                                                                                                          |
|                     | 3        | 0.0680        | 0.0544         |                    |                                                                                                          |
| Ice Gouging         | М        | 0.6178        | 0.4943         |                    | Ice gouge failure rate calculated using exponential                                                      |
|                     |          | 0.1210        | 0.0968         |                    | failure distribution for 2.5-m cover, 0.2-m average                                                      |
|                     | L        | 1.3438        | 1.0750         |                    | gouge depth, 2 gouges per km-yr flux. Spill size<br>Distribution explained in text Section 2.5.2. Medium |
|                     |          | 0.2610        | 0.2088         |                    | depth has 0.8 as many gouges as shallow.                                                                 |
|                     | н        | 0.3762        | 0.3010         |                    |                                                                                                          |
|                     |          | 0.0021        | 0.0364         |                    |                                                                                                          |
|                     | S        | 0.0012        |                |                    |                                                                                                          |
| Strudel Scour       | М        | 0.0038        |                |                    | Only in shallow water. Average frequency of 4                                                            |
|                     |          | 0.0020        |                |                    | scours/mile2 and 100 ft of bridge length with 10%                                                        |
|                     | L        | 0.0082        |                |                    | conditional Pipelines failure probability. The same spi                                                  |
|                     | <b>F</b> | 0.0045        |                |                    | size distribution as above.                                                                              |
|                     | н        | 0.0023        |                |                    |                                                                                                          |
|                     | ••       | 0.0012        |                |                    |                                                                                                          |
|                     | S        | 0.0004        | 0.0004         | 0.0004             | 4                                                                                                        |
|                     |          | 0.0002        | 0.0002         | 0.0002             | 4                                                                                                        |
|                     | М        | 0.0008        | 0.0008         | 0.0008             | All water depth. The failure frequency is 200/ of that a                                                 |
| Upheaval Buckling   |          | 0.0004        | 0.0004         | 0.0004             | All water depth. The failure frequency is 20% of that c<br>Strudel Scour.                                |
|                     | L        | 0.0009        | 0.0010         | 0.0009             |                                                                                                          |
|                     |          | 0.0005        | 0.0005         | 0.0005             | 1                                                                                                        |
|                     | Н        | 0.0002        | 0.0002         | 0.0002             | 1                                                                                                        |
|                     | 6        | 0.0002        | 0.0002         | 0.0002             |                                                                                                          |
|                     | S        | 0.0001        | 0.0001         | 0.0001             | ]                                                                                                        |
|                     | М        | 0.0004        | 0.0004         | 0.0004             |                                                                                                          |
| Thaw Settlement     |          | 0.0002        | 0.0002         | 0.0002             | All water depth. The failure frequency is 10% of that of                                                 |
|                     | L        | 0.0008        | 0.0008         | 0.0008             | Strudel Scour.                                                                                           |
|                     | -        | 0.0004        | 0.0004         | 0.0004             | 4                                                                                                        |
|                     | н        | 0.0002        | 0.0002         | 0.0002             | 4                                                                                                        |
|                     |          | 0.0001        | 0.0001         | 0.0001             |                                                                                                          |
|                     | S        | 0.8881        | 0.0701         | 0.0002             | 4                                                                                                        |
|                     |          | 0.0174        | 0.0137         | 0.0001             | 4                                                                                                        |
|                     | М        | 0.1557 0.0309 | 0.01238 0.0244 | 0.0003             | 25% Sum of above.                                                                                        |
| Other               |          | 0.0309        | 0.0244         | 0.0002             |                                                                                                          |
|                     | L        | 0.06667       | 0.0525         | 0.0003             | 1                                                                                                        |
|                     |          | 0.00007       | 0.0323         | 0.0002             | 1                                                                                                        |
|                     | н        |               |                |                    |                                                                                                          |

Source: Bercha Group, Inc (2006a).

Table A.1-22 Pipeline Arctic Effect Distribution Derivation Summary

| CAUSE<br>CLASSIFICATION     | Spill<br>Size |                    | Shallow |         |            | Medium     |                         |         | Deep    |         |
|-----------------------------|---------------|--------------------|---------|---------|------------|------------|-------------------------|---------|---------|---------|
|                             |               | Frequency Change % |         |         |            |            |                         |         |         |         |
|                             |               | Min                | Mode    | Max     | Min        | Mode       | Max                     | Min     | Mode    | Max     |
| CORROSION                   |               |                    |         |         |            |            |                         |         |         |         |
| External                    | All           | (90)               | (30)    | (10)    | (90)       | (30)       | (10)                    | (90)    | (30)    | (10)    |
| Internal                    | All           | (90)               | (30)    | (10)    | (90)       | (30)       | (10)                    | (90)    | (30)    | (10)    |
| THIRD PARTY IMPACT          |               |                    |         |         |            | (          |                         |         | (       | (1.4)   |
| Anchor Impact               | All           | (90)               | (50)    | (10)    | (90)       | (50)       | (10)                    | (90)    | (50)    | (10)    |
| Jackup Rig or Spud<br>Barge | All           | (90)               | (50)    | (10)    | (90)       | (50)       | (10)                    | (90)    | (50)    | (10)    |
| Trawl/Fishing Net           | All           | (90)               | (50)    | (10)    | (90)       | (60)       | (10)                    | (90)    | (70)    | (10)    |
| OPERATION IMPACT            |               |                    |         |         |            |            |                         |         |         |         |
| Rig Anchoring               | All           | (50)               | (20)    | (10)    | (50)       | (20)       | (10)                    | (50)    | (20)    | (10)    |
| Work Boat Anchoring         | All           | (50)               | (20)    | (10)    | (50)       | (20)       | (10)                    | (50)    | (20)    | (10)    |
| Connection Failure          | All           |                    |         |         |            |            |                         |         |         |         |
| Material Failure            | All           |                    |         |         |            |            |                         |         |         |         |
| NATURAL HAZARD              |               |                    |         |         |            |            |                         |         |         |         |
| Mud Slide                   | All           | (90)               | (60)    | (10)    | (90)       | (50)       | (10)                    | (90)    | (40)    | (10)    |
| Storm/ Hurricane            | All           | (90)               | (50)    | (10)    | (90)       | (50)       | (10)                    | (90)    | (50)    | (10)    |
|                             |               |                    |         | Fr      | equency In | crement pe | r 10 <sup>5</sup> km-ye | ar      |         |         |
| ARCTIC                      |               |                    | 1       | 1       |            | 1          |                         | 1       |         |         |
|                             | S             | 0.0060             | 0.0680  | 0.8290  | 0.0048     | 0.0544     | 0.6632                  |         |         |         |
| Ice Gouging                 | М             | 0.0090             | 0.1210  | 1.4670  | 0.0072     | 0.0968     | 1.1736                  |         |         |         |
|                             | L             | 0.0210             | 0.2610  | 3.1900  | 0.0168     | 0.2088     | 2.5520                  |         |         |         |
|                             | н             | 0.0060             | 0.0730  | 0.8930  | 0.0048     | 0.0584     | 0.7144                  |         |         |         |
|                             | S             | 0.0004             | 0.0012  | 0.0044  |            |            |                         |         |         |         |
| Strudel Scour               | м             | 0.0006             | 0.0020  | 0.0078  |            |            |                         |         |         |         |
|                             | L             | 0.0014             | 0.0045  | 0.0170  |            |            |                         |         |         |         |
|                             | н             | 0.0004             | 0.0012  | 0.0048  |            |            |                         |         |         |         |
|                             | s             | 0.00007            | 0.00023 | 0.00088 | 0.00007    | 0.00023    | 0.00088                 | 0.00007 | 0.00023 | 0.00088 |
| Upheaval Buckling           | М             | 0.00013            | 0.00041 | 0.00156 | 0.00013    | 0.00041    | 0.00156                 | 0.00013 | 0.00041 | 0.00156 |
| opricaval Bucking           | L             | 0.00028            | 0.00089 | 0.00340 | 0.00028    | 0.00089    | 0.00340                 | 0.00028 | 0.00089 | 0.00340 |
|                             | Н             | 0.00008            | 0.00025 | 0.00095 | 0.00008    | 0.00025    | 0.00095                 | 0.00008 | 0.00025 | 0.00095 |
|                             | s             |                    |         |         |            |            |                         |         |         |         |
| Thaw Settlement             | М             |                    |         |         |            |            |                         |         |         |         |
| I naw Settlement            | L             |                    |         |         |            |            |                         |         |         |         |
|                             | н             |                    |         |         |            |            |                         |         |         |         |
|                             | S             | 0.00161            | 0.01735 | 0.20858 | 0.00122    | 0.01366    | 0.16602                 | 0.00002 | 0.00006 | 0.00022 |
| Other                       | М             | 0.00244            | 0.03086 | 0.36910 | 0.00183    | 0.02430    | 0.29379                 | 0.00003 | 0.00010 | 0.00039 |
| Ouler                       | L             | 0.00567            | 0.06659 | 0.80260 | 0.00427    | 0.05242    | 0.63885                 | 0.00007 | 0.00022 | 0.00085 |
|                             | Н             | 0.00162            | 0.01862 | 0.22468 | 0.00122    | 0.01466    | 0.17884                 | 0.00002 | 0.00006 | 0.00024 |

**Key:** S= Small M= Medium L=Large H=Huge

Source: Bercha Group, Inc. (2006a).

## Table A.1-23Platform Arctic Effect Derivation Summary

|                          |               |                                        |                                | Deen       |                                                                                                     |  |
|--------------------------|---------------|----------------------------------------|--------------------------------|------------|-----------------------------------------------------------------------------------------------------|--|
| CAUSE CLASSIFICATION     | Spill<br>Size | Shallow Medium Deep                    |                                |            | Reason                                                                                              |  |
|                          | Size          | Historical Expected Frequency Change % |                                | y Change % |                                                                                                     |  |
|                          |               |                                        | CORRO                          |            |                                                                                                     |  |
| External                 | All           | (30)                                   | (30)                           | (30)       | Low temperature and bio effects. Extra smart pigging.                                               |  |
| Internal                 | All           | (30)                                   | (30)<br>THIRD PART             |            | Extra smart pigging.                                                                                |  |
| Anchor Impact            | All           | (50)                                   | (50)                           | (50)       | Low traffic.                                                                                        |  |
| Jackup Rig or Spud Barge | All           | (50)                                   | (50)                           | (50)       | Low facility density.                                                                               |  |
| Trawl/Fishing Net        | All           | (50)                                   | (60)                           | (70)       | Low fishing activity. Less bottom fishing in deep water.                                            |  |
|                          |               |                                        | OPERATION                      | NIMPACT    |                                                                                                     |  |
| Rig Anchoring            | All           | (20)                                   | (20)                           | (20)       | Low marine traffic during ice season (8 months).                                                    |  |
| Work Boat Anchoring      | All           | (20)                                   | (20)                           | (20)       | Low work boat traffic during ice season (8 months).                                                 |  |
|                          |               | Ī                                      | MECHAI                         | NICAL      | 1                                                                                                   |  |
| Connection Failure       | All           |                                        |                                |            |                                                                                                     |  |
| Material Failure         | All           |                                        | NATURAL                        |            |                                                                                                     |  |
| 1                        |               | 1                                      |                                |            | Gradient low. Mud slide potential (gradient) increases                                              |  |
| Mud Slide                | All           | (60)                                   | (50)                           | (40)       | with water depth.                                                                                   |  |
| Storm/ Hurricane         | All           | (50)                                   | (50)                           | (50)       | Fewer severe storms.                                                                                |  |
|                          |               |                                        | ncrement per 10 <sup>5</sup> l |            |                                                                                                     |  |
|                          |               | Expected                               | Expected                       | Expected   |                                                                                                     |  |
|                          |               | Mode                                   | Mode                           | Mode       |                                                                                                     |  |
| Г                        |               | 0.0/2=                                 | ARC                            | TIC        |                                                                                                     |  |
|                          | s             | 0.3495                                 | 0.2796                         |            | -                                                                                                   |  |
| -                        |               | 0.0680                                 |                                |            | Ice gouge failure rate calculated using exponential                                                 |  |
|                          | М             | 0.6178 0.1210                          | 0.4943                         |            | failure distribution for 2.5-m cover, 0.2-m average goug                                            |  |
| Ice Gouging              |               | 1.3438                                 | 1.0750                         |            | depth, 2 gouges per km-yr flux. Spill size Distribution                                             |  |
|                          | L             | 0.2610                                 | 0.2088                         |            | explained in text Section 2.5.2. Medium depth has 0.                                                |  |
|                          |               | 0.3762                                 | 0.3010                         |            | many gouges as shallow.                                                                             |  |
|                          | Н             | 0.0730                                 | 0.0584                         |            |                                                                                                     |  |
|                          | S             | 0.0021                                 |                                |            |                                                                                                     |  |
|                          | 3             | 0.0012                                 |                                |            |                                                                                                     |  |
|                          | М             | 0.0038                                 |                                |            | Only in shallow water. Average frequency of 2<br>scours/mile^2 and 100 ft of bridge length with 10% |  |
| Strudel Scour            |               | 0.0020                                 |                                |            |                                                                                                     |  |
|                          | L             | 0.0082                                 |                                |            | conditional P/L failure probability. The same spill size distribution as above.                     |  |
| -                        |               | 0.0045 0.0023                          |                                |            |                                                                                                     |  |
|                          | н             | 0.0023                                 |                                |            |                                                                                                     |  |
|                          |               | 0.0004                                 | 0.0004                         | 0.0004     |                                                                                                     |  |
|                          | S             | 0.0002                                 | 0.0002                         | 0.0002     |                                                                                                     |  |
|                          | М             | 0.0008                                 | 0.0008                         | 0.0008     |                                                                                                     |  |
| Upheaval Buckling        | IVI           | 0.0004                                 | 0.0004                         | 0.0004     | All water depth. The failure frequency is 20% of that of                                            |  |
| Sphouval Buoking         | L             | 0.0016                                 | 0.0016                         | 0.0016     | Strudel Scour.                                                                                      |  |
|                          | _             | 0.0009                                 | 0.0009                         | 0.0009     | _                                                                                                   |  |
|                          | н             | 0.0005                                 | 0.0005                         | 0.0005     | -                                                                                                   |  |
|                          |               | 0.0002                                 | 0.0002                         | 0.0002     |                                                                                                     |  |
|                          | S             |                                        |                                |            | -                                                                                                   |  |
| +                        |               |                                        |                                |            | 1                                                                                                   |  |
| Thaw                     | М             |                                        |                                |            | 1                                                                                                   |  |
| Settlement               | 1             |                                        |                                |            | 7                                                                                                   |  |
|                          | L             |                                        |                                |            |                                                                                                     |  |
|                          | Н             |                                        |                                |            |                                                                                                     |  |
|                          |               |                                        | A 4-4 -                        |            |                                                                                                     |  |
|                          | s             | 0.0880                                 | 0.0700                         | 0.0001     | -                                                                                                   |  |
|                          |               | 0.0173                                 | 0.0137                         | 0.0001     | -                                                                                                   |  |
|                          | М             | 0.1556 0.0309                          | 0.1238                         | 0.0002     | -                                                                                                   |  |
| Other                    |               | 0.0309                                 | 0.2692                         | 0.0001     | To be assessed as 25% of above.                                                                     |  |
|                          | L             | 0.0666                                 | 0.0524                         | 0.0004     | 1                                                                                                   |  |
| +                        |               | 0.0947                                 | 0.0754                         | 0.0002     | 1                                                                                                   |  |
|                          | н             | 0.0186                                 | 0.0147                         | 0.0001     | 1                                                                                                   |  |

Source: Bercha Group, Inc.(2006a).

Table A.1-24 Platform Arctic Effect Distribution Derivation Summary

|                             |               |                    | Shallow |         | Medium    |             |                         | Deep     |          |         |
|-----------------------------|---------------|--------------------|---------|---------|-----------|-------------|-------------------------|----------|----------|---------|
| CAUSE<br>CLASSIFICATION     | Spill<br>Size | Frequency Change % |         |         |           |             |                         |          |          |         |
|                             |               | Min                | Mode    | Max     | Min       | Mode        | Мах                     | Min      | Mode     | Max     |
| CORROSION                   |               |                    |         |         |           |             |                         |          |          |         |
| External                    | All           | (90)               | (30)    | (10)    | (90)      | (30)        | (10)                    | (90)     | (30)     | (10)    |
| Internal                    | All           | (90)               | (30)    | (10)    | (90)      | (30)        | (10)                    | (90)     | (30)     | (10)    |
| THIRD PARTY IMP             | АСТ           |                    |         |         |           |             |                         |          |          |         |
| Anchor Impact               | All           | (90)               | (50)    | (10)    | (90)      | (50)        | (10)                    | (90)     | (50)     | (10)    |
| Jackup Rig or<br>Spud Barge | All           | (90)               | (50)    | (10)    | (90)      | (50)        | (10)                    | (90)     | (50)     | (10)    |
| Trawl/Fishing Net           | All           | (90)               | (50)    | (10)    | (90)      | (60)        | (10)                    | (90)     | (70)     | (10)    |
| OPERATION IMPAC             | т             |                    |         |         |           |             |                         |          |          |         |
| Rig Anchoring               | All           | (50)               | (20)    | (10)    | (50)      | (20)        | (10)                    | (50)     | (20)     | (10)    |
| Work Boat<br>Anchoring      | All           | (50)               | (20)    | (10)    | (50)      | (20)        | (10)                    | (50)     | (20)     | (10)    |
| MECHANICAL                  |               |                    |         |         |           | •           | ·                       | •        |          |         |
| Connection<br>Failure       | All           |                    |         |         |           |             |                         |          |          |         |
| Material Failure            | All           |                    |         |         |           |             |                         |          |          |         |
| NATURAL HAZARD              | 1             |                    |         |         |           |             |                         |          |          |         |
| Mud Slide                   | All           | (90)               | (60)    | (10)    | (90)      | (50)        | (10)                    | (90)     | (40)     | (10)    |
| Storm/ Hurricane            | All           | (90)               | (50)    | (10)    | (90)      | (50)        | (10)                    | (90)     | (50)     | (10)    |
|                             |               |                    |         | Fre     | auency In | crement pe  | er 10 <sup>⁵</sup> km-y | ear      |          |         |
| ARCTIC                      |               |                    |         |         | 1         | · · · · · · |                         |          |          |         |
| Altonio                     | S             | 0.0060             | 0.0680  | 0.8290  | 0.0048    | 0.0544      | 0.6632                  | İ        | İ        |         |
|                             | M             | 0.0090             | 0.1210  | 1.4670  | 0.0072    | 0.0968      | 1.1736                  |          |          |         |
| Ice Gouging                 | L             | 0.0210             | 0.2610  | 3.1900  | 0.0168    | 0.2088      | 2.5520                  |          |          |         |
|                             | H             | 0.0060             | 0.0730  | 0.8930  | 0.0048    | 0.0584      | 0.7144                  |          |          |         |
|                             | S             | 0.0004             | 0.0012  | 0.0044  | 0.0010    | 0.0001      | •                       |          |          |         |
|                             | M             | 0.0006             | 0.0020  | 0.0078  |           |             |                         |          |          |         |
| Strudel Scour               | L             | 0.0014             | 0.0045  | 0.0170  |           |             |                         |          |          |         |
|                             | н             | 0.0004             | 0.0012  | 0.0048  |           |             |                         |          |          |         |
|                             | S             | 0.00007            | 0.00023 | 0.00088 | 0.00007   | 0.00023     | 0.00088                 | 0.00007  | 0.00023  | 0.00088 |
|                             | M             | 0.00013            | 0.00020 | 0.00156 | 0.00013   | 0.00020     | 0.00156                 | 0.00013  | 0.00020  | 0.00156 |
| Upheaval Buckling           |               | 0.00028            | 0.00089 | 0.00340 | 0.00028   | 0.00089     | 0.00340                 | 0.00028  | 0.00089  | 0.00340 |
|                             | H             | 0.00020            | 0.00025 | 0.00095 | 0.00020   | 0.00025     | 0.00095                 | 0.000020 | 0.00025  | 0.00095 |
|                             | S             | 0.00000            | 0.00020 | 0.00000 | 0.00000   | 0.00020     | 0.00000                 | 0.00000  | 0.00020  | 0.00000 |
| -                           | M             |                    |         |         |           |             |                         |          |          |         |
| Thaw Settlement             | <br>L         |                    |         |         |           |             |                         |          |          |         |
|                             | н             |                    |         |         |           |             |                         |          |          |         |
|                             | S             | 0.00161            | 0.01735 | 0.20858 | 0.00122   | 0.01366     | 0.16602                 | 0.00002  | 0.00006  | 0.00022 |
| <b>0</b> //                 | M             | 0.00244            | 0.03086 | 0.36910 | 0.00122   | 0.02430     | 0.29379                 | 0.00002  | 0.00010  | 0.00039 |
| Other                       | <br>L         | 0.00567            | 0.06659 | 0.80260 | 0.00427   | 0.05242     | 0.63885                 | 0.00007  | 0.00022  | 0.00085 |
|                             | н             | 0.00162            | 0.01862 | 0.22468 | 0.00122   | 0.01466     | 0.17884                 | 0.00002  | 0.000022 | 0.00024 |
|                             |               | 0.00102            | 0.01002 | 0.22400 | 0.00122   | 0.01400     | 0.17004                 | 0.00002  | 0.00000  | 0.00024 |

**Key:** S= Small M= Medium L=Large H=Huge

Source:

Bercha Group, Inc. (2006a).

# Table A.1-25Estimated Mean Number of Large Platform, Pipeline and Total Spills for Alternative I,the Proposed Action (Sale 193) and its Alternatives Over the Production Life

| Alterr | native          | Mean Number of<br>Platform Spills | Mean Number of<br>Pipeline Spills | Mean Number of<br>Spills Total |  |
|--------|-----------------|-----------------------------------|-----------------------------------|--------------------------------|--|
| I      | Proposed Action | 0.21                              | 0.30                              | 0.51                           |  |
| П      | No Sale         | 0                                 | 0                                 | 0                              |  |
|        | Corridor I      | 0.13                              | 0.19                              | 0.33                           |  |
| IV     | Corridor II     | 0.18                              | 0.25                              | 0.43                           |  |

Note: Total equals the sum of mean platform and pipeline spills

#### Source:

USDOI, MMS, Alaska OCS Region (2006).

#### Table A.1-26

Estimated Chance of One or More Large Platform, Pipeline and Total Spills for Alternative I, the Proposed Action (Sale 193) and its Alternatives Over the Production Life

| Altern | ative           | Percent Chance of<br>One or More<br>Platform Spills | Percent Chance of<br>One or More<br>Pipeline Spills | Percent Chance of<br>One or More Spills<br>Total |
|--------|-----------------|-----------------------------------------------------|-----------------------------------------------------|--------------------------------------------------|
| I      | Proposed Action | 19                                                  | 26                                                  | 40                                               |
| Ш      | No Sale         | 0                                                   | 0                                                   | 0                                                |
| III    | Corridor I      | 12                                                  | 17                                                  | 28                                               |
| IV     | Corridor II     | 16                                                  | 22                                                  | 35                                               |

Source:

USDOI, MMS, Alaska OCS Region (2006).

#### Table A.1-27

Estimated Mean Number of Total Spills and Chance of One or More for Alternative I, the Proposed Action (Sale 193) and its Alternatives Using Spill Rates at the 95% Confidence Interval Over the Production Life

| Alter | native          | 95% CI<br>Mean Number<br>of Spills Total | Percent Chance of<br>One or More<br>Spills Total |
|-------|-----------------|------------------------------------------|--------------------------------------------------|
| Ι     | Proposed Action | 0.32-0.77                                | 27-54                                            |
| Ш     | No Sale         | 0                                        | 0                                                |
| III   | Corridor I      | 0.20-0.49                                | 18-39                                            |
| IV    | Corridor II     | 0.27-0.65                                | 24-48                                            |

Source:

#### Table A.1-28 Small Crude-Oil Spills: Estimated Spill Rates for the Alaska North Slope

| Small Crude-Oil Spills <50  | 0 barrels, 1989-2000                                |                                                                                                                                     |
|-----------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Total Volume of Spills      | 135,127 gallons                                     | Note:                                                                                                                               |
| —                           | 3,217 barrels                                       | Oil-spill databases are from the ADEC,                                                                                              |
| Total Number of Spills      | 1,178 spills                                        | Anchorage, Juneau, and Fairbanks. Alaska<br>North Slope production data are derived from                                            |
| Average Spill Size          | 2.7 barrels                                         | the TAPS throughput data from Alyeska                                                                                               |
| Production (Crude Oil)      | 6.6 billion barrels                                 | Pipeline.                                                                                                                           |
| Spill Rate                  | 178 spills/billion barrels of crude oil<br>produced | Source:<br>USDOI, MMS, Alaska OCS Region (2003).                                                                                    |
| Small Crude-Oil Spills ≥ 50 | 0 barrels and <1,000, 1985-2000                     |                                                                                                                                     |
| Total Volume of Spills      | 171,150 gallons                                     |                                                                                                                                     |
| _                           | 4,075 barrels                                       |                                                                                                                                     |
| Total Number of Spills      | 6                                                   | Note:                                                                                                                               |
| Average Spill Size          | 680 barrels                                         | Oil-spill databases are from the ADEC,                                                                                              |
| Production (Crude Oil)      | 9.36 billion barrels                                | Anchorage, Juneau, and Fairbanks. BP Alaska<br>Inc. and Arco. Alaska North Slope production                                         |
| Spill Rate                  | 0.64 spills/billion barrels of crude oil produced   | data are derived from the TAPS throughput data<br>from Alyeska Pipeline.<br><b>Source:</b><br>USDOI, MMS, Alaska OCS Region (2003). |

#### Table A.1-29 Small Crude-Oil Spills: Assumed Spills over the Production Life of the Chukchi Sea Sale 193

|                         | Assumed Small Crude-Oil Spills <500 barrels |                             |                                |                                  |                                          |  |  |
|-------------------------|---------------------------------------------|-----------------------------|--------------------------------|----------------------------------|------------------------------------------|--|--|
| Sale 193<br>Alternative | Resources<br>(Bbbl) <sup>1</sup>            | Spill Rate<br>(Spills/Bbbl) | Assumed<br>Spill Size<br>(bbl) | Estimated<br>Number of<br>Spills | Estimated Total<br>Spill Volume<br>(bbl) |  |  |
| I Proposed Action       | 1                                           | 178                         | 3                              | 178                              | 534                                      |  |  |
| II No Sale              | 0                                           | 178                         | 3                              | 0                                | 0                                        |  |  |
| III Corridor I          | 0.640                                       | 178                         | 3                              | 114                              | 342                                      |  |  |
| IV Corridor II          | 0.845                                       | 178                         | 3                              | 152                              | 453                                      |  |  |
| Alternative             |                                             | Assumed Small               | Crude-Oil Spills ≥             | 500 and ≤1,000 bar               | rels                                     |  |  |
| I Proposed Action       | 1                                           | 0.64                        | 680                            | 0.64                             | 680                                      |  |  |
| II No Sale              | 0                                           | 0.64                        | 680                            | 0                                | 0                                        |  |  |
| III Corridor I          | 0.640                                       | 0.64                        | 680                            | 0.41                             | 680                                      |  |  |
| IV Corridor II          | 0.845                                       | 0.64                        | 680                            | 0.54                             | 680                                      |  |  |

**Note:** <sup>1</sup>The estimation of oil spills is based on the estimated resources. If these resources are not produced then no oil spills occur.

#### Source:

#### Table A.1-30 Small Crude-Oil Spills: Assumed Size Distribution over the Production Life of the Chukchi Sea Sale 193

| Size <sup>2</sup>       | Distribution<br>% in ADEC<br>database | Alternative<br>I<br>Proposed<br>Action | Alternative<br>II<br>No Sale | Alternative<br>III<br>Corridor I | Alternative<br>IV<br>Corridor II |
|-------------------------|---------------------------------------|----------------------------------------|------------------------------|----------------------------------|----------------------------------|
| <1 gallon               | 19.14                                 | 34                                     | 0                            | 22                               | 29                               |
| >1 and ≤5 gallons       | 35.37                                 | 63                                     | 0                            | 40                               | 53                               |
| >5 gallons and <1 bbl   | 20.41                                 | 36                                     | 0                            | 23                               | 31                               |
| Total <1 bbl            |                                       | 133                                    | 0                            | 85                               | 113                              |
| ≥1 bbl and ≤bbl 5       | 20.61                                 | 36                                     | 0                            | 23                               | 31                               |
| >5 and ≤25 bbl          | 3.92                                  | 7                                      | 0                            | 4                                | 6                                |
| > 25 and <500 bbl       | 1.4                                   | 2                                      | 0                            | 2                                | 2                                |
| ≥500 and ≤1,000 bbl     |                                       | 1                                      | 0                            | 1                                | 1                                |
| Total >1 and ≤1,000 bbl |                                       | 46                                     | 0                            | 30                               | 40                               |
| Total Volume (bbl)      |                                       | 1,214                                  | 0                            | 1,022                            | 1,133                            |

**Notes:** <sup>1</sup> Estimated number of spills is rounded to the nearest whole number.

<sup>2</sup> Spill-size distributions are allocated by multiplying the total estimated number of spills by the fraction of spills in that size category from the Alaska Department of Environmental Conservation (ADEC) database.

#### Source:

USDOI, MMS, Alaska OCS Region (2006).

#### Table A.1-31 Small Refined-Oil Spills: Estimated Rate for the Alaska North Slope

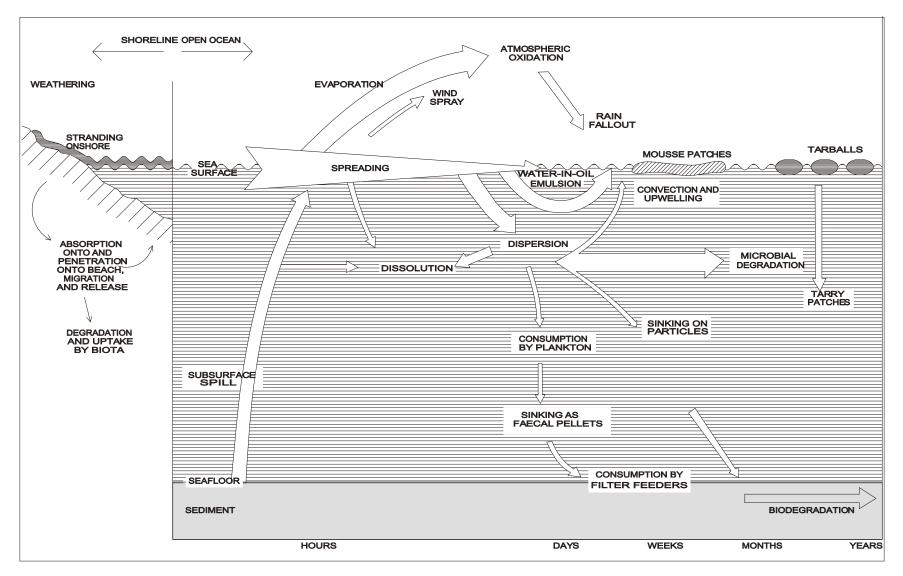
| Estimated Small Refined Spill Rate for the Alaska North Slope, 1989-2000 |                                                  |  |  |  |
|--------------------------------------------------------------------------|--------------------------------------------------|--|--|--|
| Total Volume of Spills                                                   | 94,195 gallons                                   |  |  |  |
|                                                                          | 2,243 barrels                                    |  |  |  |
|                                                                          |                                                  |  |  |  |
| Total Number of Spills                                                   | 2,915 spills                                     |  |  |  |
|                                                                          |                                                  |  |  |  |
| Average Spill Size                                                       | 0.7 barrels (29 gallons)                         |  |  |  |
|                                                                          |                                                  |  |  |  |
| Production (Crude Oil)                                                   | 6.6 billion barrels                              |  |  |  |
|                                                                          |                                                  |  |  |  |
| Spill Rate                                                               | 440 spills/billion barrels of crude oil produced |  |  |  |

#### Table A.1-32

Small Refined-Oil Spills: Assumed Spills over the Production Life of the Chukchi Sea Sale 193

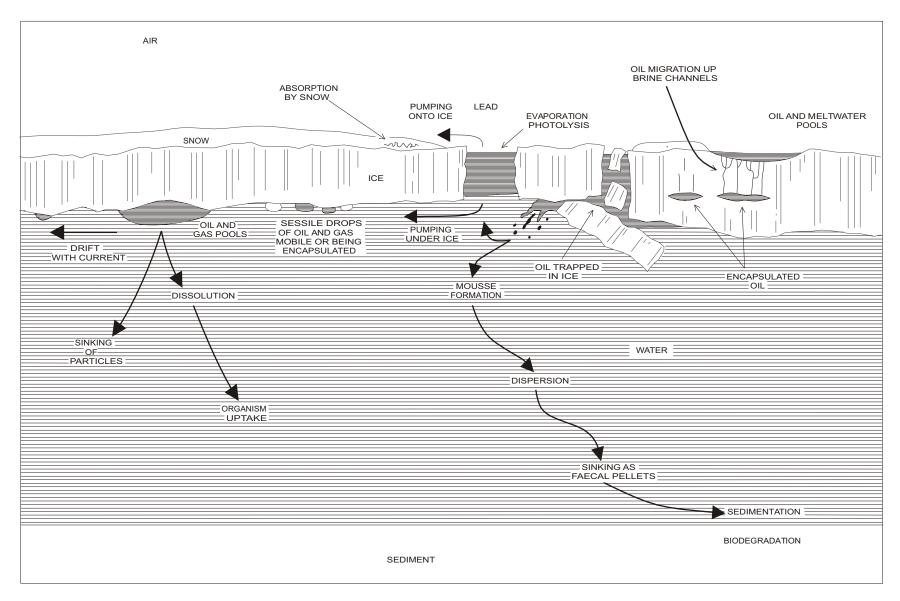
| Sale193<br>and its<br>Alternatives | Resource Range<br>(Bbbl) | Spill Rate<br>(Spills/Bbbl) | Average<br>Spill Size<br>(bbl) | Estimated<br>Number of<br>Spills <sup>1</sup> | Estimated<br>Total Spill Volume<br>(bbl) <sup>1</sup> |
|------------------------------------|--------------------------|-----------------------------|--------------------------------|-----------------------------------------------|-------------------------------------------------------|
| l Proposed<br>Action               | 1                        | 440                         | 0.7 (29 gal)                   | 440                                           | 308                                                   |
| II No Sale                         | 0                        | 440                         | 0.7 (29 gal)                   | 0                                             | 0                                                     |
| III Corridor I                     | 0.6402                   | 440                         | 0.7 (29 gal)                   | 282                                           | 197                                                   |
| IV Corridor II                     | 0.8457                   | 440                         | 0.7 (29 gal)                   | 373                                           | 250                                                   |

**Note:** <sup>1</sup> The fractional estimated mean spill number and volume is rounded to the nearest whole number.


Key:

Bbbl = Billion barrels.

bbl = barrel.


gal = gallon.

### Source:



Source: After MacKay, 1985, and Rasmussen, (1985).

Figure A.1-1. Fate of Oil Spills in the Ocean During Arctic Summer



Source: After Hillman and Shafer (1983), and Mackay, (1985).

Figure A-2. Fate of Oil Spills in the Ocean During Arctic Winter

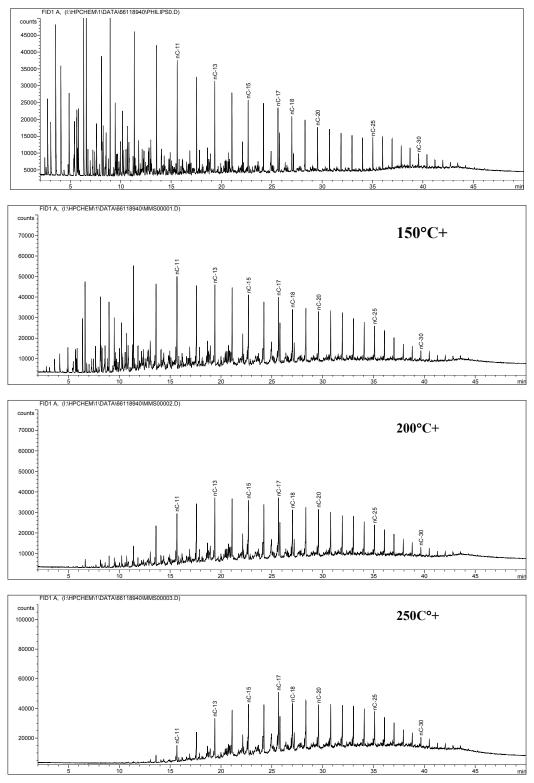



Figure A.1-3. Gas Chromatograms for the Fresh Alpine Composite and its Evaporated Residues

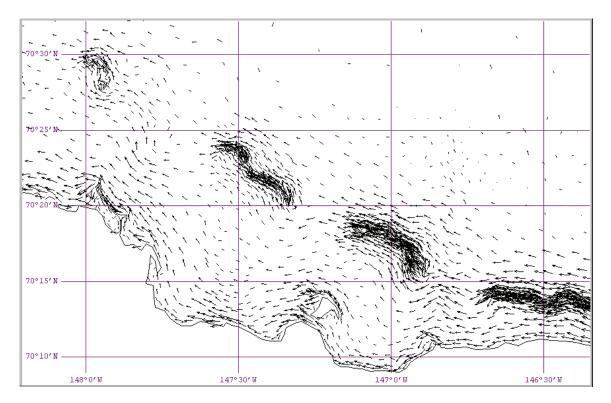



Figure A.1-4. Nearshore Surface Currents Simulated by the NOAA Model for a Wind from the East at 10 Meters Per Second

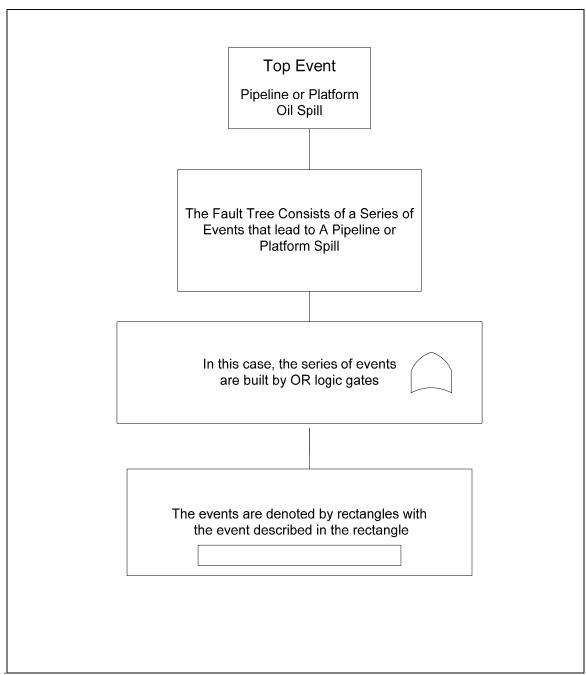



Figure A.1-5. Basic Parts of a Fault Tree

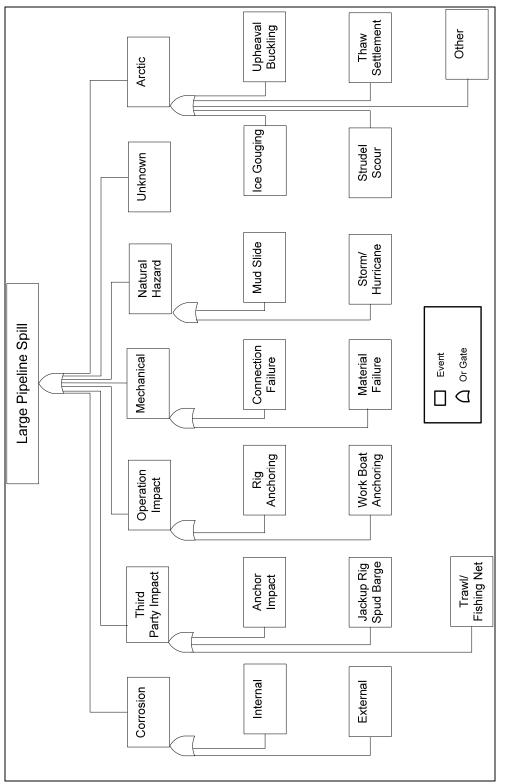



Figure A.1-6. Typical Fault Tree for A Pipeline Spill

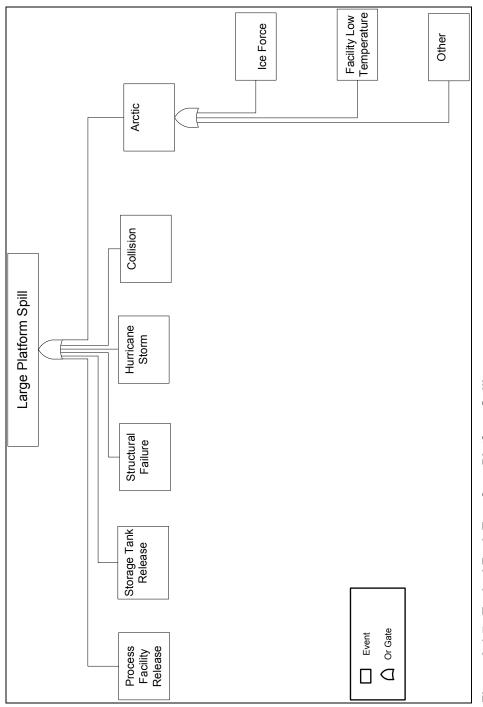



Figure A.1-7. Typical Fault Tree for a Platform Spill

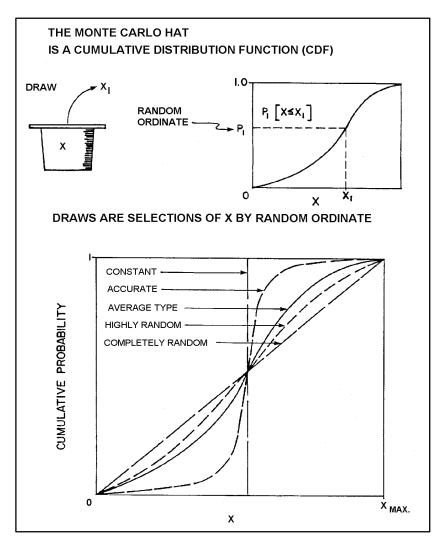
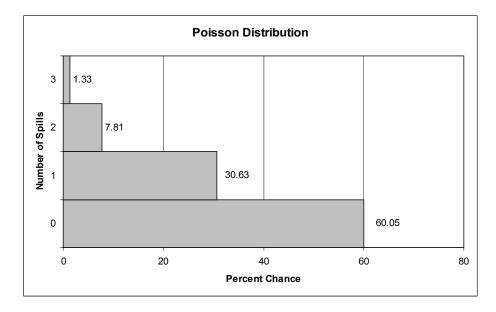
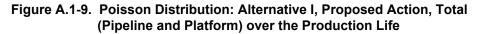
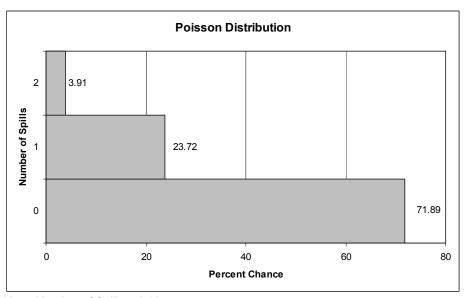
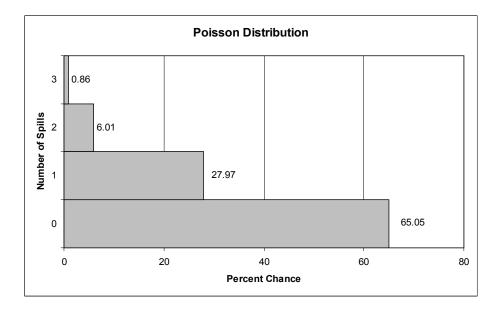






Figure A.1-8. Schematic of Monte Carlo Process as a Cumulative Distribution Function




Mean Number of Spills = 0.51 Percent Chance of One or More = 40% Percent Chance of No Spills = 60% Most Likely Number = 0





Mean Number of Spills = 0.33 Percent Chance of One or More = 28% Percent Chance of No Spills = 72% Most Likely Number = 0

Figure A.1-10. Poisson Distribution Alternative III, Corridor I Total (Pipeline and Platform) over the Production Life



Mean Number of Spills = 0.43 Percent Chance of One or More = 35% Percent Chance of No Spills = 65% Most Likely Number = 0

Figure A.1-11. Poisson Distribution Alternative IV, Corridor II, Total (Pipeline and Platform) over the Production Life

### **APPENDIX A.2**

### SUPPORTING TABLES FOR THE OSRA APPENDIX

#### Appendix A.2 Table List Table Titles

- Table A.2-1 Annual Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a Particular Location Will Contact a Certain Environmental Resource Area Within 3 Days, Chukchi Sale 193
- Table A.2-2Annual Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a<br/>Particular Location Will Contact a Certain Environmental Resource Area Within 10 Days, Chukchi Sale<br/>193
- Table A.2-3Annual Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a<br/>Particular Location Will Contact a Certain Environmental Resource Area Within 30 Days, Chukchi Sale<br/>193
- Table A.2-4Annual Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a<br/>Particular Location Will Contact a Certain Environmental Resource Area Within 60 Days, Chukchi Sale<br/>193
- Table A.2-5Annual Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a<br/>Particular Location Will Contact a Certain Environmental Resource Area Within 180 Days, Chukchi Sale<br/>193
- Table A.2-6 Annual Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a Particular Location Will Contact a Certain Environmental Resource Area Within 360 Days, Chukchi Sale 193
- Table A.2-7
   Annual Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a Particular Location Will Contact a Certain Land Segment Within 3 Days, Chukchi Sale 193
- Table A.2-8
   Annual Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a Particular Location Will Contact a Certain Land Segment Within 10 Days, Chukchi Sale 193
- Table A.2-9
   Annual Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a Particular Location Will Contact a Certain Land Segment Within 30 Days, Chukchi Sale 193
- Table A.2-10 Annual Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a Particular Location Will Contact a Certain Land Segment Within 60 Days, Chukchi Sale 193
- Table A.2-11 Annual Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a Particular Location Will Contact a Certain Land Segment Within 180 Days, Chukchi Sale 193
- Table A.2-12 Annual Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a Particular Location Will Contact a Certain Land Segment Within 360 Days, Chukchi Sale 193
- Table A.2-13 Annual Conditional Probabilities (Expressed As Percent Chance) That A Large Oil Spill Starting at a Particular Location Will Contact A Certain Group of Land Segments Within 3 Days, Chukchi Sale 193
- Table A.2-14 Annual Conditional Probabilities (Expressed As Percent Chance) That A Large Oil Spill Starting at a

   Particular Location Will Contact A Certain Group of Land Segments Within 10 Days, Chukchi Sale 193
- Table A.2-15 Annual Conditional Probabilities (Expressed As Percent Chance) That A Large Oil Spill Starting at a Particular Location Will Contact A Certain Group of Land Segments Within 30 Days, Chukchi Sea Sale 193
- Table A.2-16 Annual Conditional Probabilities (Expressed As Percent Chance) That A Large Oil Spill Starting at a Particular Location Will Contact A Certain Group of Land Segments Within 60 Days, Chukchi Sea Sale 193
- Table A.2-17 Annual Conditional Probabilities (Expressed As Percent Chance) That A Large Oil Spill Starting at a Particular Location Will Contact A Certain Group of Land Segments Within 180 Days, Chukchi Sea Sale 193
- Table A.2-18 Annual Conditional Probabilities (Expressed As Percent Chance) That A Large Oil Spill Starting at a Particular Location Will Contact A Certain Group of Land Segments Within 360 Days, Chukchi Sea Sale 193
- Table A.2-19 Annual Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a Particular Location Will Contact a Certain Boundary Segment Within 3 Days, Chukchi Sale 193

- Table A.2-20 Annual Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a Particular Location Will Contact a Certain Boundary Segment Within 10 Days, Chukchi Sale 193
- Table A.2-21 Annual Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a Particular Location Will Contact a Certain Boundary Segment Within 30 Days, Chukchi Sale 193
- Table A.2-22 Annual Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a Particular Location Will Contact a Certain Boundary Segment Within 60 Days, Chukchi Sale 193
- Table A.2-23 Annual Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a Particular Location Will Contact a Certain Boundary Segment Within 180 Days, Chukchi Sale 193
- Table A.2-24 Annual Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a Particular Location Will Contact a Certain Boundary Segment Within 360 Days, Chukchi Sale 193
- Table A.2-25 Summer Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a Particular Location Will Contact a Certain Environmental Resource Area Within 3 Days, Chukchi Sale 193
- Table A.2-26 Summer Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a Particular Location Will Contact a Certain Environmental Resource Area Within 10 Days, Chukchi Sale 193
- Table A.2-27 Summer Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a Particular Location Will Contact a Certain Environmental Resource Area Within 30 Days, Chukchi Sale 193
- Table A.2-28 Summer Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a Particular Location Will Contact a Certain Environmental Resource Area Within 60 Days, Chukchi Sale 193
- Table A.2-29 Summer Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a Particular Location Will Contact a Certain Environmental Resource Area Within 180 Days, Chukchi Sale 193
- Table A.2-30 Summer Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a Particular Location Will Contact a Certain Environmental Resource Area Within 360 Days, Chukchi Sale 193
- Table A.2-31 Summer Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a

   Particular Location Will Contact a Certain Land Segment Within 3 Days, Chukchi Sale 193
- Table A.2-32 Summer Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a Particular Location Will Contact a Certain Land Segment Within 10 Days, Chukchi Sale 193
- Table A.2-33 Summer Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a Particular Location Will Contact a Certain Land Segment Within 30 Days, Chukchi Sale 193
- Table A.2-34 Summer Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a Particular Location Will Contact a Certain Land Segment Within 60 Days, Chukchi Sale 193
- Table A.2-35 Summer Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a Particular Location Will Contact a Certain Land Segment Within 180 Days, Chukchi Sale 193
- Table A.2-36 Summer Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a Particular Location Will Contact a Certain Land Segment Within 360 Days, Chukchi Sale 193
- Table A.2-37 Summer Conditional Probabilities (Expressed As Percent Chance) That A Large Oil Spill Starting at a Particular Location Will Contact A Certain Group of Land Segments Within 3 Days, Chukchi Sale 193
- Table A.2-38 Summer Conditional Probabilities (Expressed As Percent Chance) That A Large Oil Spill Starting at a Particular Location Will Contact A Certain Group of Land Segments Within 10 Days, Chukchi Sale 193
- Table A.2-39 Summer Conditional Probabilities (Expressed As Percent Chance) That A Large Oil Spill Starting at a Particular Location Will Contact A Certain Group of Land Segments Within 30 Days, Chukchi Sea Sale 193
- Table A.2-40 Summer Conditional Probabilities (Expressed As Percent Chance) That A Large Oil Spill Starting at a Particular Location Will Contact A Certain Group of Land Segments Within 60 Days, Chukchi Sea Sale 193

- Table A.2-41 Summer Conditional Probabilities (Expressed As Percent Chance) That A Large Oil Spill Starting at a Particular Location Will Contact A Certain Group of Land Segments Within 180 Days, Chukchi Sea Sale 193
- Table A.2-42 Summer Conditional Probabilities (Expressed As Percent Chance) That A Large Oil Spill Starting at a Particular Location Will Contact A Certain Group of Land Segments Within 360 Days, Chukchi Sea Sale 193
- Table A.2-43 Summer Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a

   Particular Location Will Contact a Certain Boundary Segment Within 3 Days, Chukchi Sale 193
- Table A.2-44 Summer Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a Particular Location Will Contact a Certain Boundary Segment Within 10 Days, Chukchi Sale 193
- Table A.2-45 Summer Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a

   Particular Location Will Contact a Certain Boundary Segment Within 30 Days, Chukchi Sale 193
- Table A.2-46 Summer Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a Particular Location Will Contact a Certain Boundary Segment Within 60 Days, Chukchi Sale 193
- Table A.2-47 Summer Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a Particular Location Will Contact a Certain Boundary Segment Within 180 Days, Chukchi Sale 193
- Table A.2-48 Summer Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a

   Particular Location Will Contact a Certain Boundary Segment Within 360 Days, Chukchi Sale 193
- Table A.2-49 Winter Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a Particular Location Will Contact a Certain Environmental Resource Area Within 3 Days, Chukchi Sale 193
- Table A.2-50 Winter Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a Particular Location Will Contact a Certain Environmental Resource Area Within 10 Days, Chukchi Sale 193
- Table A.2-51 Winter Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a Particular Location Will Contact a Certain Environmental Resource Area Within 30 Days, Chukchi Sale 193
- Table A.2-52 Winter Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a Particular Location Will Contact a Certain Environmental Resource Area Within 60 Days, Chukchi Sale 193
- Table A.2-53 Winter Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a Particular Location Will Contact a Certain Environmental Resource Area Within 180 Days, Chukchi Sale 193
- Table A.2-54 Winter Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a Particular Location Will Contact a Certain Environmental Resource Area Within 360 Days, Chukchi Sale 193
- Table A.2-55 Winter Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a Particular Location Will Contact a Certain Land Segment Within 3 Days, Chukchi Sale 193
- Table A.2-56 Winter Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a Particular Location Will Contact a Certain Land Segment Within 10 Days, Chukchi Sale 193
- Table A.2-57 Winter Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a Particular Location Will Contact a Certain Land Segment Within 30 Days, Chukchi Sale 193
- Table A.2-58 Winter Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a Particular Location Will Contact a Certain Land Segment Within 60 Days, Chukchi Sale 193
- Table A.2-59 Winter Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a

   Particular Location Will Contact a Certain Land Segment Within 180 Days, Chukchi Sale 193
- Table A.2-60 Winter Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a Particular Location Will Contact a Certain Land Segment Within 360 Days, Chukchi Sale 193
- Table A.2-61 Winter Conditional Probabilities (Expressed As Percent Chance) That A Large Oil Spill Starting at a Particular Location Will Contact A Certain Group of Land Segments Within 3 Days, Chukchi Sale 193

- Table A.2-62 Winter Conditional Probabilities (Expressed As Percent Chance) That A Large Oil Spill Starting at a Particular Location Will Contact A Certain Group of Land Segments Within 10 Days, Chukchi Sale 193
- Table A.2-63 Winter Conditional Probabilities (Expressed As Percent Chance) That A Large Oil Spill Starting at a Particular Location Will Contact A Certain Group of Land Segments Within 30 Days, Chukchi Sea Sale 193
- Table A.2-64 Winter Conditional Probabilities (Expressed As Percent Chance) That A Large Oil Spill Starting at a Particular Location Will Contact A Certain Group of Land Segments Within 60 Days, Chukchi Sea Sale 193
- Table A.2-65 Winter Conditional Probabilities (Expressed As Percent Chance) That A Large Oil Spill Starting at a Particular Location Will Contact A Certain Group of Land Segments Within 180 Days, Chukchi Sea Sale 193
- Table A.2-66 Winter Conditional Probabilities (Expressed As Percent Chance) That A Large Oil Spill Starting at a Particular Location Will Contact A Certain Group of Land Segments Within 360 Days, Chukchi Sea Sale 193
- Table A.2-67 Winter Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a Particular Location Will Contact a Certain Boundary Segment Within 3 Days, Chukchi Sale 193
- Table A.2-68 Winter Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a

   Particular Location Will Contact a Certain Boundary Segment Within 10 Days, Chukchi Sale 193
- Table A.2-69 Winter Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a Particular Location Will Contact a Certain Boundary Segment Within 30 Days, Chukchi Sale 193
- Table A.2-70 Winter Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a Particular Location Will Contact a Certain Boundary Segment Within 60 Days, Chukchi Sale 193
- Table A.2-71 Winter Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a Particular Location Will Contact a Certain Boundary Segment Within 180 Days, Chukchi Sale 193
- Table A.2-72 Winter Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a Particular Location Will Contact a Certain Boundary Segment Within 360 Days, Chukchi Sale 193
- Table A.2-73 Combined Probabilities (Expressed as Percent Chance) of one or More Large Spills Greater than or Equal to 1,000 Barrels, and the Estimated Number of Spills (Mean), Occurring and Contacting a Certain Environmental Resource over the Assumed Production Life of the Lease Area Within 3 Days, Chukchi Sale 193
- Table A.2-74 Combined Probabilities (Expressed as Percent Chance) of one or More Large Spills Greater than or Equal to 1,000 Barrels, and the Estimated Number of Spills (Mean), Occurring and Contacting a Certain Environmental Resource over the Assumed Production Life of the Lease Area Within 10 Days, Chukchi Sale 193
- Table A.2-75 Combined Probabilities (Expressed as Percent Chance) of one or More Large Spills Greater than or Equal to 1,000 Barrels, and the Estimated Number of Spills (Mean), Occurring and Contacting a Certain Environmental Resource over the Assumed Production Life of the Lease Area Within 30 Days, Chukchi Sale 193
- Table A.2-76 Combined Probabilities (Expressed as Percent Chance) of one or More Large Spills Greater than or Equal to 1,000 Barrels, and the Estimated Number of Spills (Mean), Occurring and Contacting a Certain Environmental Resource over the Assumed Production Life of the Lease Area Within 60 Days, Chukchi Sale 193
- Table A.2-77 Combined Probabilities (Expressed as Percent Chance) of one or More Large Spills Greater than or Equal to 1,000 Barrels, and the Estimated Number of Spills (Mean), Occurring and Contacting a Certain Environmental Resource Area over the Assumed Production Life of the Lease Area Within 180 Days, Chukchi Sale 193
- Table A.2-78 Combined Probabilities (Expressed as Percent Chance) of one or More Large Spills Greater than or Equal to 1,000 Barrels, and the Estimated Number of Spills (Mean), Occurring and Contacting a Certain Environmental Resource Area over the Assumed Production Life of the Lease Area Within 360 Days, Chukchi Sale 193

- Table A.2-79 Combined Probabilities (Expressed as Percent Chance) of one or More Large Spills Greater than or Equal to 1,000 Barrels, and the Estimated Number of Spills (Mean), Occurring and Contacting a Certain Land Segment over the Assumed Production Life of the Lease Area Within 3 Days, Chukchi Sale 193
- Table A.2-80 Combined Probabilities (Expressed as Percent Chance) of one or More Large Spills Greater than or Equal to 1,000 Barrels, and the Estimated Number of Spills (Mean), Occurring and Contacting a Certain Land Segment over the Assumed Production Life of the Lease Area Within 10 Days, Chukchi Sale 193
- Table A.2-81 Combined Probabilities (Expressed as Percent Chance) of one or More Large Spills Greater than or Equal to 1,000 Barrels, and the Estimated Number of Spills (Mean), Occurring and Contacting a Certain Land Segment over the Assumed Production Life of the Lease Area Within 30 Days, Chukchi Sale 193
- Table A.2-82 Combined Probabilities (Expressed as Percent Chance) of one or More Large Spills Greater than or Equal to 1,000 Barrels, and the Estimated Number of Spills (Mean), Occurring and Contacting a Certain Land Segment over the Assumed Production Life of the Lease Area Within 60 Days, Chukchi Sale 193
- Table A.2-83 Combined Probabilities (Expressed as Percent Chance) of one or More Large Spills Greater than or Equal to 1,000 Barrels, and the Estimated Number of Spills (Mean), Occurring and Contacting a Certain Land Segment over the Assumed Production Life of the Lease Area Within 180 Days, Chukchi Sale 193
- Table A.2-84 Combined Probabilities (Expressed as Percent Chance) of one or More Large Spills Greater than or Equal to 1,000 Barrels, and the Estimated Number of Spills (Mean), Occurring and Contacting a Certain Land Segment over the Assumed Production Life of the Lease Area Within 360 Days, Chukchi Sale 193
- Table A.2-85 Combined Probabilities (Expressed as Percent Chance) of one or More Large Spills Greater than or Equal to 1,000 Barrels, and the Estimated Number of Spills (Mean), Occurring and Contacting a Certain Group of Land Segments over the Assumed Production Life of the Lease Area Within 3 Days, Chukchi Sale 193
- Table A.2-86 Combined Probabilities (Expressed as Percent Chance) of one or More Large Spills Greater than or Equal to 1,000 Barrels, and the Estimated Number of Spills (Mean), Occurring and Contacting a Certain Group of Land Segment over the Assumed Production Life of the Lease Area Within 10 Days, Chukchi Sale 193
- Table A.2-87 Combined Probabilities (Expressed as Percent Chance) of one or More Large Spills Greater than or Equal to 1,000 Barrels, and the Estimated Number of Spills (Mean), Occurring and Contacting a Certain Group of Land Segments over the Assumed Production Life of the Lease Area Within 30 Days, Chukchi Sale 193
- Table A.2-88 Combined Probabilities (Expressed as Percent Chance) of one or More Large Spills Greater than or Equal to 1,000 Barrels, and the Estimated Number of Spills (Mean), Occurring and Contacting a Certain Group of Land Segments over the Assumed Production Life of the Lease Area Within 60 Days, Chukchi Sale 193
- Table A.2-89 Combined Probabilities (Expressed as Percent Chance) of one or More Large Spills Greater than or Equal to 1,000 Barrels, and the Estimated Number of Spills (Mean), Occurring and Contacting a Certain Group of Land Segments over the Assumed Production Life of the Lease Area Within 180 Days, Chukchi Sale 193
- Table A.2-90 Combined Probabilities (Expressed as Percent Chance) of one or More Large Spills Greater than or Equal to 1,000 Barrels, and the Estimated Number of Spills (Mean), Occurring and Contacting a Certain Group of Land Segments over the Assumed Production Life of the Lease Area Within 360 Days, Chukchi Sale 193
- Table A.2-91 Range of Annual Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a Particular Location Will Contact Russian Waters Within 3, 10, 30, 60, 180 and 360 Days, Chukchi Sale 193

|    | Environmental Resource                           | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | Р  | Р | Р  | Р | Р  | Р  | Р | Р  | Р  | Р  | Р  |
|----|--------------------------------------------------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|---|----|---|----|----|---|----|----|----|----|
| ID | Area Name                                        | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 1  | 2 | 3  | 4 | 5  | 6  | 7 | 8  | 9  | 10 | 11 |
| _  | Land                                             | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 3  | - | 1  | - | -  | 6  | - | -  | 2  | -  | 4  |
| 1  | Kasegaluk Lagoon                                 | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | - | -  | - | -  | 4  | - | -  | -  | -  | -  |
| 6  | ERA 6                                            | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 2  | 3  | -  | - | -  | - | -  | -  | - | -  | 15 | -  | 25 |
| 10 | Ledyard Bay Spectacled<br>Eider Critical Habitat | -  | -  | -  | -  | -  | -  | -  | -  | -  | 6  | 4  | -  | -  | -  | - | 12 | - | -  | 31 | - | -  | -  | -  | -  |
|    | Cape Thompson Seabird<br>Colony Area             | -  | -  | -  | -  | -  | -  | -  | -  | 3  | -  | -  | I  | -  | 18 | - | 1  | - | -  | -  | - | -  | -  | -  | -  |
|    | Cape Lisburne Seabird<br>Colony Area             | -  | -  | -  | -  | -  | -  | -  | -  | 3  | 1  | -  | -  | -  | 24 | - | 14 | - | -  | -  | - | -  | -  | -  | -  |
|    | ERA 18                                           | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 1  | - | -  | - | -  | -  | - | -  | -  | -  | -  |
|    | Chukchi Spring Lead 1                            | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 8  | - | -  | - | -  | -  | - | -  | -  | -  | -  |
|    | Chukchi Spring Lead 2                            | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | - | 5  | - | -  | 1  | - | -  | -  | -  | -  |
|    | Chukchi Spring Lead 3                            | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | - | -  | - | -  | 8  | - | -  | -  | -  | -  |
|    | Chukchi Spring Lead 4                            | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | 2  | -  | -  | - | -  | - | -  | -  | - | -  | 14 | -  | -  |
|    | Chukchi Spring Lead 5                            | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | - | -  | - | -  | -  | - | -  | -  | -  | 9  |
|    | Beaufort Spring Lead 6                           | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | - | -  | - | -  | -  | - | -  | -  | -  | -  |
|    | ERA 35                                           | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 3  | 16 | 13 | -  | - | -  | - | -  | -  | - | 6  | 17 | -  | 18 |
|    | ERA 36                                           | -  | -  | -  | -  | 3  | -  | -  | -  | -  | 11 | 14 | -  | -  | -  | - | 1  | - | 6  | 15 | - | -  | -  | -  | -  |
|    | Pt. Hope Subsistence Area                        | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | 8  | - | 2  | - | -  | -  | - | -  | -  | -  | -  |
|    | Point Lay Subsistence Area                       | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | 1  | -  | -  | -  | - | -  | - | -  | 26 | - | -  | -  | -  | -  |
|    | Wainwright Subsistence<br>Area                   | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | - | -  | - | -  | 4  | - | -  | 23 | -  | 2  |
|    | Barrow Subsistence Area 1                        | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | - | -  | - | -  | -  | - | -  | -  | -  | 2  |
| 45 | ERA 45                                           | -  | -  | -  | -  | -  | -  | -  | -  | 3  | -  | -  | -  | -  | 14 | - | 5  | - | -  | -  | - | -  | -  | -  | -  |
|    | Herald Shoal Polynya                             | -  | -  | -  | 2  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1 | -  | - | -  | -  | - | -  | -  | -  | -  |
| 47 | Ice/Sea Segment 10                               | 2  | -  | -  | 10 | 13 | -  | -  | -  | -  | -  | -  | -  | -  | -  | 3 | -  | 1 | 7  | -  | - | -  | -  | -  | -  |
| 48 | Ice/Sea Segment 11                               | -  | -  | -  | -  | 2  | 25 | -  | -  | -  | -  | 2  | 1  | -  | -  | - | -  | - | 1  | -  | 9 | 39 | -  | -  | -  |
| 49 | Hanna's Shoal Polynya                            | -  | 1  | 22 | -  | -  | 2  | 1  | -  | -  | -  | -  | -  | -  | -  | - | -  | - | -  | -  | 8 | -  | -  | -  | -  |
|    | Ice/Sea Segment 12                               | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 3  | 17 | -  | -  | - | -  | - | -  | -  | - | 27 | 1  | -  | -  |
|    | Ice/Sea Segment 13                               | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 10 | 10 | -  | - | -  | - | -  | -  | - | -  | -  | -  | 25 |
| 52 | Ice/Sea Segment 14                               | -  | -  | -  | -  | -  | -  | -  | 8  | -  | -  | -  | -  | 17 | -  | - | -  | - | -  | -  | - | -  | -  | -  | -  |
|    | ERA 56                                           | -  | -  | -  | -  | -  | 7  | 5  | -  | -  | -  | 1  | 14 | 1  | -  | - | -  | - | -  | -  | 3 | 18 | 2  | -  | 1  |
| 64 | Peard Bay                                        | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | - | -  | - | -  | -  | - | -  | -  | -  | 15 |
|    | ERA 99                                           | -  | -  | -  | -  | 5  | -  | -  | -  | -  | 21 | 28 | -  | -  | -  | - | 1  | - | 12 | 29 | - | -  | -  | -  | -  |

 Table A.2-1
 Annual Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a Particular Location Will Contact a Certain Environmental Resource Area Within 3 Days, Chukchi Sale 193

|    | Environmental Resource                           | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | Р  | Р  | Р  | Р | Р  | Р  | Р  | Р  | Р  | Р  | Р  |
|----|--------------------------------------------------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|---|----|----|----|----|----|----|----|
| ID | Area Name                                        | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 1  | 2  | 3  | 4 | 5  | 6  | 7  | 8  | 9  | 10 | 11 |
| _  | LAND                                             | _  | -  | -  | -  | -  | -  | -  | -  | 1  | 4  | 3  | 2  | 4  | 7  | _  | 4  | - | -  | 17 | -  | -  | 7  | -  | 10 |
|    | Kasegaluk Lagoon                                 | -  | -  | -  | -  | -  | -  | -  | -  | -  | 2  | 2  | -  | -  | -  | -  | 1  | - | -  | 10 | -  | -  | 1  | -  | -  |
|    | Point Barrow. Plover Islands                     | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | - | -  | -  | -  | -  | -  | -  | -  |
|    | ERA 6                                            | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | 1  | 6  | 9  | -  | -  | -  | - | -  | -  | -  | -  | 21 | 1  | 30 |
| 10 | Ledyard Bay Spectacled<br>Eider Critical Habitat | -  | -  | -  | -  | 1  | -  | -  | -  | 1  | 12 | 7  | -  | -  | 2  | -  | 16 | - | -  | 34 | -  | -  | -  | -  | -  |
| 14 | Cape Thompson Seabird<br>Colony Area             | -  | -  | -  | -  | -  | -  | -  | -  | 5  | 1  | -  | -  | -  | 21 | -  | 3  | - | -  | -  | -  | -  | -  | -  | -  |
| 15 | Cape Lisburne Seabird<br>Colony Area             | -  | -  | -  | -  | -  | -  | -  | -  | 7  | 4  | -  | -  | -  | 27 | -  | 17 | - | -  | 1  | -  | -  | -  | -  | -  |
| 18 | ERA 18                                           | -  | -  | -  | 1  | -  | -  | -  | -  | 9  | 1  | -  | -  | -  | 7  | 1  | 2  | - | -  | -  | -  | -  | -  | -  | -  |
| 19 | Chukchi Spring Lead 1                            | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 9  | -  | 1  | - | -  | -  | -  | -  | -  | -  | -  |
|    | Chukchi Spring Lead 2                            | -  | -  | -  | -  | -  | -  | -  | -  | -  | 2  | -  | -  | -  | -  | -  | 6  | - | -  | 2  | -  | -  | -  | -  | -  |
|    | Chukchi Spring Lead 3                            | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | 2  | -  | -  | -  | -  | -  | - | -  | 11 | -  | -  | -  | -  | -  |
| 22 | Chukchi Spring Lead 4                            | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 2  | 3  | -  | -  | -  | -  | - | -  | 1  | -  | -  | 16 | -  | -  |
| 23 | Chukchi Spring Lead 5                            | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | - | -  | -  | -  | -  | -  | -  | 11 |
| 24 | Beaufort Spring Lead 6                           | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | - | -  | -  | -  | -  | -  | -  | -  |
| 25 | Beaufort Spring Lead 7                           | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | - | -  | -  | -  | -  | -  | -  | -  |
| 29 | Ice/Sea Segment 1                                | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | - | -  | -  | -  | -  | -  | -  | -  |
| 35 | ERA 35                                           | -  | -  | -  | -  | -  | 1  | 1  | 2  | -  | -  | 5  | 19 | 16 | -  | -  | -  | - | 1  | 1  | -  | 9  | 19 | 2  | 21 |
| 36 | ERA 36                                           | -  | -  | -  | 3  | 5  | 1  | -  | -  | -  | 13 | 17 | 2  | -  | -  | 3  | 2  | - | 9  | 18 | -  | 2  | 3  | -  | -  |
| 38 | Pt. Hope Subsistence Area                        | -  | -  | -  | -  | -  | -  | -  | -  | 2  | -  | -  | -  | -  | 13 | -  | 4  | - | -  | -  | -  | -  | -  | -  | -  |
| 39 | Point Lay Subsistence Area                       | -  | -  | -  | -  | -  | -  | -  | -  | -  | 6  | 5  | -  | -  | -  | -  | 3  | - | -  | 34 | -  | -  | -  | -  | -  |
| 40 | Wainwright Subsistence<br>Area                   | -  | -  | -  | -  | -  | -  | -  | -  | -  | 2  | 4  | 4  | -  | -  | -  | -  | - | -  | 10 | -  | -  | 31 | -  | 4  |
| 41 | Barrow Subsistence Area 1                        | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | - | -  | -  | -  | -  | -  | -  | 3  |
| 42 | Barrow Subsistence Area 2                        | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 2  | -  | -  | -  | - | -  | -  | -  | -  | -  | -  | -  |
| 45 | ERA 45                                           | -  | -  | -  | -  | -  | -  | -  | -  | 9  | 1  | -  | -  | -  | 24 | -  | 9  | - | -  | -  | -  | -  | -  | -  | -  |
| 46 | Herald Shoal Polynya                             | 2  | -  | -  | 10 | 1  | -  | -  | -  | 1  | -  | -  | -  | -  | -  | 10 | 1  | - | -  | -  | -  | -  | -  | -  | -  |
| 47 | Ice/Sea Segment 10                               | 4  | -  | -  | 13 | 19 | 2  | -  | -  | -  | 2  | 2  | -  | -  | -  | 6  | -  | 3 | 15 | 1  | -  | -  | -  | -  | -  |
| 48 | Ice/Sea Segment 11                               | 1  | 4  | 4  | -  | 8  | 36 | 3  | -  | -  | 2  | 12 | 4  | -  | -  | -  | -  | 4 | 11 | 3  | 16 | 47 | 1  | 1  | 1  |
|    | Hanna's Shoal Polynya                            | 1  | 7  | 40 | -  | 2  | 12 | 10 | 2  | -  | -  | 1  | -  | 1  | -  | -  | -  | 2 | 1  | -  | 25 | 4  | -  | 5  | -  |
|    | Ice/Sea Segment 12                               | -  | -  | -  | -  | -  | 3  | 1  | -  | -  | -  | 5  | 25 | 3  | -  | -  | -  | - | -  | -  | 1  | 35 | 4  | -  | 6  |
|    | Ice/Sea Segment 13                               | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 16 | 14 | -  | -  | -  | - | -  | -  | -  | 1  | 5  | 1  | 38 |
|    | Ice/Sea Segment 14                               | -  | -  | -  | -  | -  | -  | 1  | 14 | -  | -  | -  | -  | 23 | -  | -  | -  | - | -  | -  | -  | -  | -  | 2  | 3  |
|    | ERA 56                                           | -  | 1  | 2  | -  | 1  | 10 | 8  | -  | -  | -  | 3  | 17 | 4  | -  | -  | -  | 1 | 1  | -  | 6  | 21 | 5  | 3  | 5  |
|    | Peard Bay                                        | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | 4  | -  | -  | -  | - | -  | -  | -  | -  | 1  | -  | 18 |
|    | ERA 70                                           | 2  | 2  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 2 | -  | -  | -  | -  | -  | -  | -  |
| -  | ERA 99                                           | -  | -  | -  | 3  | 10 | 2  | -  | -  | -  | 25 | 32 | 2  | -  | -  | 3  | 3  | - | 18 | 34 | -  | 2  | 3  | -  | -  |

 Table A.2-2
 Annual Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a

 Particular Location Will Contact a Certain Environmental Resource Area Within 10 Days, Chukchi Sale 193

| ID |                                                  |   |    |    |    |    |    |    |    |    |    |    | LA |    | Ρ  | Ρ  | Ρ  | Ρ  | Ρ  | Ρ  | Ρ  | Ρ  | Ρ  | Ρ  | Ρ   |
|----|--------------------------------------------------|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|-----|
|    | Area Name                                        | 1 | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11  |
| —  | Land                                             | 1 | 1  | -  | 4  | 3  | 1  | 1  | 4  | 11 | 15 | 11 | 9  | 11 | 19 | 4  | 16 | 1  | 3  | 27 | -  | 3  | 19 | 3  | 18  |
|    | Kasegaluk Lagoon                                 | - | -  | -  | 1  | 2  | -  | -  | -  | 1  | 6  | 7  | 1  | -  | -  | 1  | 3  | -  | 2  | 16 | -  | 1  | 3  | -  | -   |
| 2  | Pt. Barrow, Plover Islands                       | - | -  | -  | -  | -  | -  | -  | 2  | -  | -  | -  | -  | 3  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | 1   |
| 3  | ERA 3                                            | - | -  | -  | 1  | -  | -  | -  | -  | 3  | 1  | -  | -  | -  | 3  | -  | 2  | -  | -  | -  | -  | -  | -  | -  | -   |
| 4  | ERA 4                                            | - | -  | -  | -  | -  | -  | -  | -  | 4  | -  | -  | -  | -  | 6  | -  | 1  | -  | -  | -  | -  | -  | -  | -  | -   |
| 6  | ERA 6                                            | - | -  | -  | -  | 2  | 2  | 2  | 4  | -  | 1  | 6  | 15 | 15 | -  | -  | -  | -  | 3  | 2  | -  | 5  | 32 | 4  | 36  |
| 10 | Ledyard Bay Spectacled<br>Eider Critical Habitat | - | -  | -  | 3  | 3  | 1  | -  | -  | 5  | 19 | 11 | 1  | -  | 5  | 2  | 22 | -  | 3  | 37 | -  | 1  | 2  | -  | -   |
| 11 | Wrangel Island 12nmi Buffer                      | 2 | 1  | -  | 1  |    | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 2  | -  | 1  | -  | -  | -  | -  | -  | -  | -   |
| 14 | Cape Thompson Seabird<br>Colony Area             | - | -  | -  | 1  | -  | -  | -  | -  | 8  | 2  | -  | -  | -  | 24 | -  | 5  | -  | -  | 1  | -  | -  | -  | -  | -   |
| 15 | Cape Lisburne Seabird<br>Colony Area             | - | -  | I  | 1  | 1  | -  | I  | -  | 10 | 8  | 1  | -  | -  | 30 | 1  | 20 | -  | 1  | 3  | -  | -  | I  | -  | -   |
| 16 | ERA 16                                           | - | -  | -  | -  | -  | -  | -  | -  | 3  |    | -  | -  | -  | 3  | -  | 1  | -  | -  | -  | -  | -  | -  | -  | -   |
| 18 | ERA 18                                           | 1 | -  | -  | 7  | 3  | -  | -  | -  | 17 | 8  | 2  | -  | -  | 16 | 5  | 10 | 1  | 2  | 3  | -  | -  | -  | -  | -   |
| 19 | Chukchi Spring Lead 1                            | - | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 10 | -  | 2  | -  | -  | -  | -  | -  | -  | -  | -   |
| 20 | Chukchi Spring Lead 2                            | - | -  | -  | -  | -  | -  | -  | 1  | -  | 4  | 1  | -  | -  | 1  | -  | 9  | -  | -  | 3  | -  | I  | -  | -  | -   |
|    | Chukchi Spring Lead 3                            | - | -  | -  | -  | 1  | -  | -  | -  | -  | 4  | 4  | -  | -  | -  | -  | 2  | -  | 1  | 13 | -  | -  | -  | -  | -   |
|    | Chukchi Spring Lead 4                            | - | -  | -  | -  | 1  | -  | -  | -  | -  | 1  | 5  | 5  | -  | -  | -  | -  | -  | 1  | 3  | -  | 1  | 20 | -  | -   |
| 23 | Chukchi Spring Lead 5                            | - | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | 1  | 2  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | 12  |
| 24 | Beaufort Spring Lead 6                           | - | -  | -  | -  | -  | -  | -  | 1  | -  | 1  | -  | -  | 2  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -   |
| 25 | Beaufort Spring Lead 7                           | - | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -   |
| 29 | Ice/Sea Segment 1                                | - | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 2  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1   |
| 30 | Ice/Sea Segment 2                                | - | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  |     |
| 35 | ERA 35                                           | 1 | 1  | 1  | -  | 2  | 4  | 5  | 5  | -  | -  | 7  | 23 | 19 | -  | -  | -  | 1  | 2  | 1  | 2  | 13 | 22 | 6  | 23  |
| 36 | ERA 36                                           | 2 | 1  | 1  | 6  | 9  | 3  | 1  | -  | 2  | 15 | 19 | 5  | 1  | 1  | 6  | 5  | 2  | 13 | 20 | 1  | 5  | 7  | -  | 1   |
| 38 | Pt. Hope Subsistence Area                        | - | -  | -  | 1  | -  | -  | -  | -  | 4  | 2  | -  | -  | -  | 17 | -  | 6  | -  | -  | 1  | -  | -  | -  | -  | -   |
| 39 | Point Lay Subsistence Area                       | - | -  | -  | 2  | 2  | -  | -  | -  | 1  | 15 | 9  | 1  | -  | 1  | 2  | 10 | -  | 2  | 40 | -  | 1  | 2  | -  | -   |
| 40 | Wainwright Subsistence<br>Area                   | - | -  | -  | 1  | 3  | 1  | -  | -  | -  | 7  | 11 | 13 | 2  | -  | 1  | 3  | -  | 4  | 17 | -  | 4  | 45 | -  | 8   |
| 41 | Barrow Subsistence Area 1                        | - | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 2  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 5   |
| 42 | Barrow Subsistence Area 2                        | - | -  | -  | -  | -  | -  | -  | 3  | -  | -  | -  | -  | 3  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | 1   |
| 45 | ERA 45                                           | - | -  | -  | 1  | 1  | -  | -  | -  | 14 | 5  | 1  | -  | -  | 30 | 1  | 14 | -  | -  | 3  | -  | -  | -  | -  | -   |
| 46 | Herald Shoal Polynya                             | 7 | 1  | -  | 18 | 4  | 1  | -  | -  | 4  | 3  | 1  | -  | -  | 1  | 19 | 4  | 2  | 3  | 1  | -  | 1  | -  | -  | -   |
| 47 | Ice/Sea Segment 10                               | 7 | 2  | 1  | 18 | 26 | 4  | 1  | -  | 1  | 6  | 6  | 2  | -  | -  | 11 | 2  | 6  | 22 | 5  | 1  | 3  | 2  | -  | -   |
| 48 | Ice/Sea Segment 11                               | 5 | 11 | 10 | 3  | 19 | 44 | 10 | 2  | -  | 9  | 26 | 12 | 4  | -  | 3  | 2  | 11 | 24 | 13 | 23 | 58 | 5  | 6  | 4   |
|    | Hanna's Shoal Polynya                            | 5 | 17 | 51 | 1  | 9  | 27 | 26 | 12 | -  | 3  | 8  | 6  | 9  | -  | 1  | 1  | 10 | 9  | 4  | 39 | 17 | 1  | 20 | 6   |
|    | Ice/Sea Segment 12                               | 1 | 1  | 1  | -  | 3  | 8  | 5  | 1  | -  | 1  | 10 | 34 | 9  | -  | -  | -  | 2  | 3  | 2  | 4  | 41 | 12 | 3  | 16  |
|    | Ice/Sea Segment 13                               | - | -  | -  | -  | -  | 1  | 3  | 1  | -  | -  | 2  | 24 | 18 | -  | -  | -  | -  | 1  | -  | 1  | 5  | 17 | 3  | 45  |
|    | Ice/Sea Segment 14                               | - | -  | -  | -  | -  | -  | 2  | 20 | -  | -  | -  | 2  | 28 | -  | -  | -  | -  | -  | -  | -  | -  | 1  | 5  | 7   |
| 53 | Ice/Sea Segment 15                               | - | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -   |
|    | ERA 56                                           | 2 | 4  | 6  | -  | 2  | 14 | 13 | 3  | -  | -  | 6  | 21 | 8  | -  | -  | -  | 3  | 2  | 1  | 10 | 24 | 9  | 8  | 10  |
|    | ERA 59                                           | - | -  | -  | 1  | -  | -  | -  | -  | 2  | -  | -  | -  | -  | 1  | -  | 1  | -  | -  | -  | -  | -  | -  | -  | -   |
|    | ERA 61                                           | - | -  | -  | -  | -  | -  | -  | -  | 3  | -  | -  | -  | -  | 4  | -  | 1  | -  | -  | -  | -  | -  | -  | -  | -   |
| -  | ERA 63                                           | 1 | 1  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | -  | -  | -   |
|    | Peard Bay                                        | - | -  | -  | -  | -  | -  | 1  | 2  | -  | -  | 1  | 4  | 8  | -  | -  | -  | -  | -  | -  | -  | 2  | 2  | 3  | 21  |
| -  | ERA 66                                           | - | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -   |
|    | ERA 70                                           | 3 | 4  | 2  | -  | 1  | 1  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 3  | -  | -  | 2  | 1  | -  | -  | -   |
|    | ERA 99                                           | 2 | 1  | 1  | 9  | 18 | 6  | 1  | -  | 2  | 29 | 37 | 7  | 1  | 1  | 9  | 8  | 3  | 26 | 39 | 2  | 8  | 9  | -  | 1   |
| 55 |                                                  | ~ |    |    | 5  | 10 | 0  |    | -  | ~  | 20 | 51 | 1  |    |    | 5  | 0  | 5  | 20 | 00 | ~  |    | 5  | -  | 1 I |

 Table A.2-3
 Annual Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a

 Particular Location Will Contact a Certain Environmental Resource Area Within 30 Days, Chukchi Sale 193

| ID | Environmental Resource<br>Area Name              | LA<br>1 | LA<br>2 | LA<br>3 | LA<br>4 | LA<br>5 | LA<br>6 | LA<br>7 | LA<br>8 | LA<br>9 | LA<br>10 | LA<br>11 | LA<br>12 | LA<br>13 | P<br>1 | P<br>2 | P<br>3 | P<br>4 | P<br>5 | P<br>6 | P<br>7 | P<br>8 | P<br>9 | P<br>10 | Р<br>11 |
|----|--------------------------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|----------|----------|----------|----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|---------|
| _  |                                                  | -       |         |         | -       |         | -       | -       |         | -       |          |          |          | _        |        |        | -      | -      | -      |        |        |        | -      |         |         |
|    | LAND                                             | 2       | 1       | 1       | 7       | 7       | 3       | 4       | 9       | 15      | 22       | 17       | 16       | 17       | 23     | 7      | 22     | 2      | 7      | 33     | 1      | 7      | 27     | 6       | 24      |
|    | Kasegaluk Lagoon                                 | -       | -       | -       | 2       | 3       | 1 -     | -<br>1  | -<br>4  | 1       | 9        | 9        | 3        | -<br>4   | 1-     | 2      | 4      | -      | 3      | 19     | -      | 2      | 4      | -       | - 1     |
|    | Point Barrow Plover Islands<br>ERA 3             | -       | -       | -       | -       |         | -       | -       |         | - 3     | -        | -        | -        | 4        | - 3    |        | - 2    | -      | -      |        |        | -      | -      |         |         |
| -  |                                                  | -       |         |         | 1       | -       |         |         | -       | 3<br>4  | 1        |          |          | -        | 3<br>6 | -      | _      |        |        | -      | -      |        |        | -       | -       |
|    | ERA 4                                            | -       | -       | -       | -       | -       | -       | -       | -       |         |          | -        | -        |          | -      | -      | 1      | -      | -      | -      | -      | -      | -      | -       | -       |
| -  | ERA 6                                            | 1       | 1       | 1       | 1       | 4       | 4       | 6       | 8       | -       | 2        | 10       | 21       | 20       | -      | 1      | -      | 1      | 5      | 4      | 2      | 9      | 39     | 8       | 41      |
|    | Ledyard Bay Spectacled<br>Eider Critical Habitat | -       | -       | -       | 4       | 5       | 1       | -       | -       | 6       | 23       | 13       | 2        | -        | 5      | 4      | 25     | -      | 5      | 39     | -      | 2      | 3      | -       | -       |
|    | Wrangel Island 12nmi Buffer                      | 3       | 1       | -       | 1       | 1       | -       | -       | -       | -       | -        | -        | -        | -        | -      | 2      | -      | 2      | 1      | -      | -      | -      | -      | -       | -       |
| 14 | Cape Thompson Seabird<br>Colony Area             | -       | -       | -       | 1       | -       | -       | -       | -       | 8       | 3        | -        | -        | -        | 24     | 1      | 6      | -      | -      | 1      | -      | -      | -      | -       | -       |
| 15 | Cape Lisburne Seabird<br>Colony Area             | -       | -       | -       | 2       | 1       | -       | -       | -       | 11      | 10       | 2        | -        | -        | 30     | 1      | 22     | -      | 1      | 4      | -      | -      | -      | -       | -       |
| 16 | ERA 16                                           | -       | -       | -       | -       | -       | -       | -       | -       | 4       | 1        | -        | -        | -        | 4      | -      | 1      | -      | -      | -      | -      | -      | -      | -       | -       |
| 18 | ERA 18                                           | 1       | -       | -       | 7       | 3       | -       | -       | -       | 18      | 8        | 2        | -        | -        | 16     | 5      | 11     | 1      | 2      | 3      | -      | -      | -      | -       | -       |
| 19 | Chukchi Spring Lead 1                            | -       | -       | -       | -       | -       | -       | -       | -       | 1       | -        | -        | -        | -        | 10     | -      | 2      | -      | -      | -      | -      | -      | -      | -       | -       |
| 20 | Chukchi Spring Lead 2                            | -       | -       | -       | -       | 1       | -       | -       | -       | 1       | 5        | 2        | -        | -        | 1      | -      | 9      | -      | 1      | 4      | -      | -      | -      | -       | -       |
|    | Chukchi Spring Lead 3                            | -       | -       | -       | 1       | 1       | -       | -       | -       | 1       | 5        | 4        | -        | -        | -      | 1      | 3      | -      | 2      | 14     | -      | -      | -      | -       | -       |
| 22 | Chukchi Spring Lead 4                            | -       | -       | -       | 1       | 2       | 1       | -       | -       | -       | 3        | 7        | 7        | -        | -      | 1      | 1      | -      | 3      | 5      | -      | 3      | 23     | -       | 1       |
| 23 | Chukchi Spring Lead 5                            | -       | -       | -       | -       | -       | -       | -       | -       | -       | -        | -        | 3        | 3        | -      | -      | -      | -      | -      | -      | -      | 1      | 3      | -       | 13      |
| 24 | Beaufort Spring Lead 6                           | -       | -       | -       | -       | -       | -       | -       | 1       | -       | -        | -        | -        | 2        | -      | -      | -      | -      | -      | -      | -      | -      | -      | -       | -       |
| 25 | Beaufort Spring Lead 7                           | -       | -       | -       | -       | -       | -       | -       | 1       | -       | -        | -        | -        | 2        | -      | -      | -      | -      | -      | -      | -      | -      | -      | -       | 1       |
| 29 | Ice/Sea Segment 1                                | -       | -       | -       | -       | -       | -       | 1       | 2       | -       | -        | -        | -        | 2        | -      | -      | -      | -      | -      | -      | -      | -      | -      | 1       | 1       |
|    | Ice/Sea Segment 2                                | -       | -       | -       | -       | 1       | -       | 1       | 1       | -       | -        | -        | -        | 1        | -      | -      | -      | -      | -      | -      | -      | -      | -      | 1       | -       |
| 31 | Ice/Sea Segment 3                                | -       | -       | -       | -       | 1       | -       | -       | 1       | -       | -        | -        | -        | -        | -      | -      | -      | -      | -      | -      | -      | -      | -      | -       | -       |
| 35 | ERA 35                                           | 1       | 2       | 3       | 1       | 3       | 7       | 8       | 8       | -       | 1        | 9        | 25       | 21       | -      | 1      | -      | 2      | 4      | 2      | 4      | 16     | 24     | 10      | 25      |
|    | ERA 36                                           | 2       | 2       | 1       | 7       | 11      | 4       | 2       | -       | 2       | 16       | 21       | 7        | 1        | 1      | 7      | 5      | 3      | 15     | 21     | 2      | 7      | 9      | 1       | 2       |
| 38 | Pt. Hope Subsistence Area                        | -       | -       | -       | 1       | -       | -       | -       | -       | 5       | 3        | 1        | -        | -        | 18     | -      | 7      | -      | -      | 2      | -      | -      | -      | -       | -       |
|    | Point Lay Subsistence Area                       | -       | -       | -       | 3       | 4       | 1       | -       | -       | 2       | 19       | 12       | 2        | -        | 1      | 3      | 13     | -      | 4      | 43     | -      | 2      | 3      | -       | -       |
| 40 | Wainwright Subsistence<br>Area                   | -       | -       | -       | 3       | 6       | 3       | 1       | 1       | 1       | 10       | 16       | 19       | 4        | -      | 3      | 5      | 1      | 7      | 22     | 1      | 8      | 53     | 1       | 11      |
|    | Barrow Subsistence Area 1                        | -       | -       | -       | -       | -       | -       | -       | 1       | -       | -        | -        | 1        | 3        | -      | -      | -      | -      | -      | -      | -      | -      | 1      | -       | 6       |
| 42 | Barrow Subsistence Area 2                        | -       | -       | -       | -       | -       | -       | 1       | 5       | -       | -        | -        | -        | 4        | -      | -      | -      | -      | -      | -      | -      | -      | -      | 1       | 2       |
| 45 | ERA 45                                           | -       | -       | -       | 1       | 1       | -       | -       | -       | 15      | 7        | 2        | -        | -        | 31     | 1      | 16     | -      | 1      | 4      | -      | -      | -      | -       | -       |
| 46 | Herald Shoal Polynya                             | 7       | 2       | -       | 19      | 5       | 1       | -       | -       | 4       | 3        | 2        | -        | -        | 1      | 21     | 5      | 3      | 4      | 2      | -      | 1      | 1      | -       | -       |
| 47 | Ice/Sea Segment 10                               | 8       | 4       | 1       | 19      | 28      | 6       | 1       | -       | 1       | 8        | 9        | 3        | 1        | 1      | 12     | 3      | 8      | 24     | 7      | 2      | 4      | 3      | 1       | 1       |
|    | Ice/Sea Segment 11                               | 7       | 14      | 14      | 7       | 25      | 48      | 16      | 6       | 1       | 14       | 34       | 19       | 10       | 1      | 6      | 6      | 14     | 30     | 19     | 27     | 63     | 10     | 12      | 10      |
|    | Hanna's Shoal Polynya                            | 9       | 23      | 56      | 4       | 15      | 34      | 36      | 21      | 1       | 7        | 16       | 15       | 18       | -      | 3      | 2      | 15     | 15     | 10     | 46     | 26     | 5      | 31      | 15      |
|    | Ice/Sea Segment 12                               | 2       | 4       | 4       | 1       | 5       | 11      | 9       | 3       | -       | 3        | 14       | 39       | 13       | -      | 1      | 1      | 4      | 7      | 4      | 7      | 45     | 20     | 7       | 21      |
|    | Ice/Sea Segment 13                               | 1       | 1       | 2       | -       | 2       | 4       | 6       | 3       | -       | 1        | 4        | 31       | 21       | -      | -      | -      | 1      | 2      | 1      | 3      | 9      | 28     | 6       | 49      |
|    | Ice/Sea Segment 14                               | -       | -       | 1       | -       | -       | 1       | 4       | 22      | -       | -        | -        | 4        | 29       | -      | -      | -      | -      | -      | -      | 1      | 1      | 2      | 7       | 9       |
|    | Ice/Sea Segment 15                               | -       | -       | -       | -       | -       | -       | 1       | 3       | -       | -        | -        | -        | 2        | -      | -      | -      | -      | -      | -      | -      | -      | -      | 1       | -       |
|    | Ice/Sea Segment 16a                              | -       | -       | -       | -       | -       | -       | -       | 1       | -       | -        | -        | -        | 1        | -      | -      | -      | -      | -      | -      | -      | -      | -      | 1       | -       |
|    | ERA 56                                           | 3       | 6       | 9       | 1       | 4       | 17      | 17      | 6       | -       | 1        | 8        | 23       | 11       | -      | 1      | -      | 5      | 4      | 2      | 13     | 27     | 11     | 12      | 13      |
|    | ERA 59                                           | -       | -       | -       | 1       | -       | -       | -       | -       | 2       | -        | -        | -        | -        | 1      | -      | 1      | -      | -      | -      | -      | -      | -      | -       | -       |
| -  | ERA 61                                           | -       | -       | -       | -       | -       | -       | -       | -       | 3       | 1        | -        | -        | -        | 5      | -      | 1      | -      | -      | -      | -      | -      | -      | -       | -       |
|    | ERA 63                                           | 1       | 1       | 1       | -       | -       | -       | -       | -       | -       | -        | -        | -        | -        | -      | -      | -      | 1      | -      | -      | -      | -      | -      | -       | -       |
| -  | Peard Bay                                        | -       | 1       | 1       | -       | 1       | 2       | 3       | 4       | -       | -        | 2        | 7        | 10       | -      | -      | -      | 1      | 1      | -      | 1      | 4      | 4      | 5       | 24      |
|    | ERA 66                                           | -       | -       | -       | -       | -       | -       | -       | 2       | -       | -        | -        | -        | 1        | -      | -      | -      | -      | -      | -      | -      | -      | -      | -       | -       |
|    | ERA 70                                           | 4       | 5       | 3       | -       | 1       | 2       | 1       | 1       | -       | -        | -        | -        | -        | -      | -      | -      | 4      | 1      | -      | 3      | 1      | -      | 1       | -       |
| 99 | ERA 99                                           | 3       | 3       | 1       | 13      | 22      | 9       | 2       | -       | 3       | 32       | 41       | 10       | 2        | 1      | 11     | 10     | 4      | 30     | 41     | 3      | 12     | 13     | 1       | 2       |

 Table A.2-4 Annual Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a

 Particular Location Will Contact a Certain Environmental Resource Area Within 60 Days, Chukchi Sale 193

| ID | Environmental Resource       |    |    |    |    |            |    |    |    |    |    |    | LA |    | Ρ        | Ρ  | Ρ  | Ρ  | Ρ  | Ρ  | Ρ  | Ρ  | Ρ  | Ρ  | Ρ  |
|----|------------------------------|----|----|----|----|------------|----|----|----|----|----|----|----|----|----------|----|----|----|----|----|----|----|----|----|----|
|    | Area Name                    | 1  | 2  | 3  | 4  | 5          | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 1        | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 |
| —  | LAND                         | 5  | 4  | 4  | 14 | 13         | 7  | 9  | 15 | 27 | 30 | 24 | 27 | 25 | 37       | 13 | 31 | 5  | 13 | 41 | 5  | 13 | 41 | 12 | 35 |
| 1  | Kasegaluk Lagoon             | -  | -  | -  | 4  | 5          | 1  | -  | -  | 1  | 12 | 11 | 3  | -  | 1        | 4  | 7  | -  | 5  | 22 | -  | 2  | 5  | -  | -  |
| 2  | Point Barrow, Plover Islands | 1  | 1  | 2  | -  | -          | 1  | 3  | 7  | -  | -  | -  | 2  | 6  | -        | -  | -  | 1  | -  | -  | 1  | 1  | 2  | 3  | 3  |
| 3  | ERA 3                        | -  | 1  | -  | 1  | -          | -  | -  | -  | 3  | 1  | -  | -  | -  | 3        | -  | 2  | -  | -  | -  | -  | -  | -  | -  | -  |
| 4  | ERA 4                        | -  | 1  | -  | I  | -          | -  | -  | -  | 4  | 1  | -  | -  | -  | 6        | -  | 1  | -  | -  | -  | -  | -  | -  | -  | -  |
| 6  | ERA 6                        | 1  | 2  | 3  | З  | 8          | 7  | 10 | 12 | -  | 5  | 15 | 29 | 25 | -        | 2  | 2  | 3  | 10 | 9  | 4  | 13 | 46 | 13 | 47 |
| 10 | Ledyard Bay Spectacled       | 1  |    | -  | 6  | 7          | 2  |    |    | 6  | 25 | 15 | 3  |    | 6        | 5  | 27 | 1  | 8  | 41 | 1  | 3  | 4  |    |    |
|    | Eider Critical Habitat       | 1  | -  | -  | 0  | 1          | 2  | -  | -  | 0  | 20 | 15 | 3  | -  | 0        | э  | 21 | I  | 0  | 41 | 1  | 3  | 4  | -  | -  |
| 11 | Wrangel Island 12 nmi Buffer | 3  | 1  | 1  | 1  | 1          | 1  | -  | -  | -  | -  | -  | -  | -  | -        | 2  | -  | 2  | 1  | -  | 1  | -  | -  | -  | -  |
| 14 | Cape Thompson Seabird        |    |    | -  | 1  |            |    | -  | -  | 8  | 3  | -  | -  |    | 25       | 1  | 7  |    |    | 2  |    |    |    |    |    |
|    | Colony Area                  | -  | -  | -  | 1  | -          | -  | -  | -  | 0  | 5  | -  | -  | -  | 25       | 1  | '  | -  | -  | 2  | -  | -  | -  | -  | -  |
| 15 | Cape Lisburne Seabird        |    |    | _  | 2  | 2          | -  | -  | _  | 11 | 11 | 2  | 1  |    | 32       | 1  | 23 |    | 2  | 5  |    |    | 1  | -  |    |
|    | Colony Area                  | -  | -  | -  | 2  | 2          | -  | -  | -  |    |    | 2  | 1  | -  | 52       | 1  |    | -  | 2  | 5  | -  | -  | 1  | -  | -  |
|    | ERA 16                       | -  | -  | -  | 1  | -          | -  | -  | -  | 8  | 1  | -  | -  | -  | 8        | 1  | 3  | -  | -  | -  | -  | -  | -  | -  | -  |
|    | ERA 18                       | 1  | I  | -  | 7  | 3          | -  | -  | -  | 18 | 8  | 2  | -  | -  | 16       | 5  | 11 | 1  | 2  | 3  | -  | -  | -  | -  | -  |
|    | Chukchi Spring Lead 1        | -  | -  | -  | -  | -          | -  | -  | -  | 1  | -  | -  | -  | -  | 11       | -  | 2  | -  | -  | -  | -  | -  | -  | -  | -  |
|    | Chukchi Spring Lead 2        | -  | -  | -  | -  | 1          | -  | -  | -  | 1  | 6  | 2  | 1  | -  | 1        | -  | 10 | -  | 1  | 5  | -  | 1  | 1  | -  | -  |
| 21 | Chukchi Spring Lead 3        | -  | -  | -  | 2  | 2          | -  | -  | -  | 1  | 6  | 5  | 1  | -  | 1        | 2  | 4  | -  | 3  | 15 | -  | 1  | 1  | -  | -  |
|    | Chukchi Spring Lead 4        | 1  | I  | -  | 2  | 4          | 1  | -  | -  | -  | 4  | 8  | 9  | 1  | -        | 2  | 2  | 1  | 4  | 7  | -  | 4  | 26 | -  | 2  |
|    | Chukchi Spring Lead 5        | 1  | I  | -  | I  | -          | 1  | 1  | 1  | -  | 1  | 1  | 4  | 4  | -        | 1  | -  | -  | -  | 1  | -  | 1  | 6  | 1  | 16 |
|    | Beaufort Spring Lead 6       | -  | -  | -  | -  | -          | -  | 1  | 2  | -  | -  | -  | 1  | 3  | -        | -  | -  | -  | -  | -  | -  | -  | 1  | 1  | 2  |
| 25 | Beaufort Spring Lead 7       | -  | -  | -  | -  | -          | -  | 1  | 2  | -  | -  | -  | 1  | 3  | -        | -  | -  | -  | -  | -  | -  | -  | 1  | 1  | 2  |
|    | Beaufort Spring Lead 8       | -  | -  | -  | -  | -          | -  | -  | 1  | -  | -  | -  | -  | -  | -        | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  |
| 27 | Beaufort Spring Lead 9       | -  | -  | -  | -  | -          | -  | -  | 1  | -  | -  | -  | -  | -  | -        | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  |
|    | Ice/Sea Segment 1            | -  | -  | -  | -  | -          | 1  | 1  | 3  | -  | -  | -  | 1  | 2  | -        | -  | -  | -  | -  | -  | -  | -  | -  | 2  | 1  |
|    | Ice/Sea Segment 2            | -  | -  | 1  | -  | -          | 1  | 2  | 2  | -  | -  | -  | -  | 1  | -        | -  | -  | -  | -  | -  | 1  | 1  | -  | 2  | -  |
| 31 | Ice/Sea Segment 3            | -  | -  | 1  | -  | -          | 1  | 1  | 1  | -  | -  | -  | -  | -  | -        | -  | -  | -  | -  | -  | 1  | 1  | -  | 1  | -  |
| 32 | Ice/Sea Segment 4            | -  | 1  | -  | 1  | -          | -  | -  | 1  | -  | -  | -  | -  | -  | -        | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  |
| 35 | ERA 35                       | 3  | 5  | 6  | 2  | 7          | 11 | 13 | 12 | -  | 2  | 12 | 29 | 25 | -        | 2  | I  | 5  | 8  | 3  | 7  | 20 | 28 | 14 | 29 |
| 36 | ERA 36                       | 3  | 3  | 2  | 8  | 13         | 6  | 2  | 1  | 2  | 17 | 23 | 9  | 2  | 1        | 7  | 5  | 4  | 18 | 22 | 3  | 9  | 12 | 1  | 3  |
| 38 | Pt. Hope Subsistence Area    | -  | -  | -  | 1  | 1          | -  | -  | -  | 5  | 3  | 1  | -  | -  | 18       | 1  | 8  | -  | 1  | 2  | -  | -  | -  | -  | -  |
| 39 | Point Lay Subsistence Area   | 1  | 1  | -  | 5  | 6          | 1  | -  | -  | 2  | 22 | 14 | 3  | -  | 1        | 5  | 16 | 1  | 6  | 45 | -  | 2  | 4  | -  | -  |
| 40 | Wainwright Subsistence Area  | 1  | 1  | 1  | 6  | 10         | 4  | 2  | 2  | 1  | 15 | 21 | 24 | 6  | 1        | 5  | 8  | 2  | 11 | 27 | 1  | 10 | 58 | 2  | 14 |
| 41 | Barrow Subsistence Area 1    | -  | 1  | -  | 1  | -          | -  | -  | 1  | -  | -  | -  | 2  | 4  | -        | -  | -  | -  | -  | -  | -  | -  | 2  | 1  | 9  |
| 42 | Barrow Subsistence Area 2    | 1  | 1  | 2  | 1  | 1          | 1  | 3  | 7  | -  | -  | 1  | 2  | 6  | -        | -  | 1  | 1  | -  | -  | 1  | 1  | 1  | 3  | 3  |
| 45 | ERA 45                       | -  | -  | -  | 2  | 1          | -  | -  | -  | 15 | 7  | 2  | -  | -  | 32       | 1  | 16 | -  | 1  | 4  | -  | -  | 1  | -  | -  |
| 46 | Herald Shoal Polynya         | 7  | 2  | -  | 20 | 5          | 1  | -  | -  | 4  | 4  | 2  | -  | -  | 1        | 21 | 5  | 3  | 5  | 3  | -  | 1  | 1  | -  | -  |
|    | Ice/Sea Segment 10           | 9  | 5  | 2  | 20 | 29         | 7  | 2  | -  | 1  | 10 | 11 | 5  | 1  | 1        | 12 | 4  | 9  | 26 | 9  | 4  | 7  | 6  | 1  | 2  |
|    | Ice/Sea Segment 11           | 10 | 18 | 19 | 9  | 29         | 52 | 23 | 11 | 2  | 18 | 38 | 28 |    | 1        | 7  | 8  | 18 | 34 | 24 | 31 | 67 | 19 | 19 | 18 |
|    | Hanna's Shoal Polynya        | 12 | 29 | 60 | 6  | 21         | 41 | 44 | 31 | 1  | 12 | 24 | 27 | 29 | 1        | 5  | 6  | 21 | 21 | 16 | 51 | 35 | 16 | 39 | 25 |
|    | Ice/Sea Segment 12           | 4  | 7  | 6  | 2  | 9          | 15 | 12 | 5  | -  | 5  | 18 | 44 | 16 | -        | 2  | 2  | 7  | 11 | 8  | 10 | 47 | 27 | 10 | 25 |
| 51 | Ice/Sea Segment 13           | 2  | 3  | 3  | 1  | 5          | 7  | 9  | 7  | -  | 3  | 9  | 37 | 24 | -        | 1  | 1  | 3  | 6  | 4  | 5  | 14 | 37 | 10 | 52 |
|    | Ice/Sea Segment 14           | 1  | 3  | 4  | -  | 1          | 4  | 8  | 24 | -  | -  | 2  | 6  | 31 | -        | -  | -  | 2  | 1  | -  | 4  | 4  | 4  | 10 | 11 |
|    | Ice/Sea Segment 15           | -  | 1  | 1  | -  | -          | 2  | 2  | 4  | -  | -  | I  | 1  | 2  | -        | -  | I  | I  | -  | -  | 2  | 1  | 1  | 2  | 1  |
| 54 | Ice/Sea Segment 16a          | -  | 1  | 2  | -  | -          | 2  | 2  | 3  | -  | -  | -  | 1  | 2  | -        | -  | -  | -  | -  | -  | 2  | 1  | -  | 2  | 1  |
| 55 | Ice/Sea Segment 17           | -  | -  | -  | -  | -          | -  | 1  | 1  | -  | -  | -  | -  | -  | -        | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  |
|    | ERA 56                       | 6  | 11 | 15 | 2  | 7          | 23 | 23 | 11 | -  | 2  | 10 | 27 | 16 | -        | 2  | -  | 9  | 7  | 3  | 19 | 32 | 15 | 18 | 18 |
| 59 | ERA 59                       | -  | -  | -  | 2  | -          | -  | -  | -  | 3  | 1  | -  | -  | -  | 2        | 1  | 1  | -  | -  | -  | -  | -  | -  | -  | -  |
| 61 | ERA 61                       | -  | -  | -  | -  | -          | -  | -  | -  | 3  | 1  | -  | -  | -  | 6        | -  | 1  | -  | -  | -  | -  | -  | -  | -  | -  |
|    | ERA 63                       | 2  | 2  | 1  | -  | -          | 1  | 1  | 1  | -  | -  | -  | -  | -  | -        | -  | -  | 2  | -  | -  | 1  | -  | -  | 1  | -  |
|    | Peard Bay                    | 1  | 1  | 2  | -  | 2          | 4  | 7  | 6  | -  | 1  | 4  | 12 | 14 | -        | -  | -  | 2  | 3  | 1  | 3  | 6  | 7  | 8  | 31 |
|    | ERA 66                       | -  | -  | -  | -  | -          | -  | -  | 3  | -  | -  | -  | -  | 2  | -        | -  | -  | -  | -  | -  | -  | -  | 1  | 1  | 1  |
|    | Colville/Harrison Bay        | -  | -  | -  | -  | -          | -  | -  | 1  | -  | -  | -  | -  | -  | -        | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  |
|    | ERA 70                       | 4  | 6  | 4  | -  | 2          | 3  | 2  | 2  | -  | 1  | 2  | 1  | 2  | -        | -  | -  | 5  | 2  | 1  | 4  | 2  | 1  | 2  | 1  |
|    | ERA 99                       | 5  | 5  | 3  | 15 | 27         | 12 | 4  | 2  | 4  | 35 |    | 16 |    | 2        | 13 | 12 | 7  | 34 |    | 5  | 16 | 20 | 3  | 6  |
|    |                              | 5  | 5  | 5  | 10 | <u>~ 1</u> | 14 | -7 | 4  | -1 | 00 | 70 | 10 | 5  | <u> </u> | 10 | 14 | '  | 7  | TT | 5  | 10 | 20 | 5  | 0  |

 Table A.2-5
 Annual Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a

 Particular Location Will Contact a Certain Environmental Resource Area Within 180 Days, Chukchi Sale 193

| 1 01 | ticular Location Will Cor           | nac     | ια      |         | um      |         | VIIC    | /////   | ent     |         | 1630     | Juit     |          | 1 60     |        |        | 50     |        | ayə    | , ப    | un     |        | Jaio   | ; 13    | <u> </u> |
|------|-------------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|----------|----------|----------|----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|----------|
| ID   | Environmental Resource<br>Area Name | LA<br>1 | LA<br>2 | LA<br>3 | LA<br>4 | LA<br>5 | LA<br>6 | LA<br>7 | LA<br>8 | LA<br>9 | LA<br>10 | LA<br>11 | LA<br>12 | LA<br>13 | Р<br>1 | Р<br>2 | Р<br>3 | Р<br>4 | Р<br>5 | Р<br>6 | Р<br>7 | P<br>8 | Р<br>9 | Р<br>10 | Р<br>11  |
| _    | LAND                                | 7       | 5       | 6       | 17      | 15      | 10      | 12      | 22      | 33      | 33       | 27       | 29       | 29       | 42     | 16     | 36     | 6      | 15     | 43     | 6      | 15     | 44     | 15      | 39       |
|      | Kasegaluk Lagoon                    | -       | -       | -       | 4       | 5       | 1       | -       | -       | 1       | 12       | 11       | 3        | -        | 1      | 4      | 7      | -      | 5      | 22     | -      | 2      | 5      | -       | -        |
|      | Point Barrow, Plover Islands        | 1       | 2       | 3       | 1       | 1       | 3       | 5       | 9       | -       | 1        | 1        | 2        | 7        | -      | 1      | -      | 2      | 1      | 1      | 3      | 3      | 2      | 5       | 3        |
|      | ERA 3                               |         | -       | -       | 1       | ÷.      | -       | -       | -       | 3       | 1        | -        | -        | -        | 3      | -      | 2      | -      | -      | -      | -      | -      | -      | -       | -        |
| -    | ERA 4                               | -       | -       | -       | -       | -       | -       | -       | -       | 4       | 1        | -        | -        | -        | 6      | -      | 1      | -      | -      | -      | -      | -      | -      | -       | -        |
|      | ERA 6                               | 2       | 3       | 4       | 3       | 8       | 8       | 12      | 14      | -       | 6        | 15       | 29       | 26       | -      | 2      | 2      | 3      | 10     | 9      | 5      | 14     | 46     | 14      | 47       |
| -    | Ledyard Bay Spectacled              |         | 5       | -       | -       | -       |         | 12      | 14      | _       |          |          |          | 20       |        |        |        | 5      | -      |        | 5      |        |        | 14      |          |
|      | Eider Critical Habitat              | 1       | -       | -       | 6       | 7       | 2       | -       | -       | 6       | 25       | 15       | 3        | -        | 6      | 5      | 27     | 1      | 8      | 41     | 1      | 3      | 4      | -       | -        |
|      | Wrangel Island                      | 3       | 1       | 1       | 1       | 1       | 1       | _       | -       | -       | _        | -        | _        | _        | -      | 2      | -      | 2      | 1      | -      | 1      | _      | _      | -       | -        |
|      | Cape Thompson Seabird               | 5       | 1       |         |         |         | -       | -       | -       | -       | -        | -        | -        | -        | -      | 2      |        | 2      | 1      |        |        | -      | -      | -       | -        |
| 1-4  | Colony Area                         | -       | -       | -       | 1       | -       | -       | -       | -       | 8       | 3        | -        | -        | -        | 25     | 1      | 7      | -      | -      | 2      | -      | -      | -      | -       | -        |
| 15   | Cape Lisburne Seabird               |         |         |         |         |         |         |         |         |         |          |          |          |          |        |        |        |        |        |        |        |        |        |         |          |
| 13   | Colony Area                         | -       | -       | -       | 2       | 2       | -       | -       | -       | 11      | 11       | 2        | 1        | -        | 32     | 1      | 23     | -      | 2      | 5      | -      | -      | 1      | -       | -        |
| 16   | ERA 16                              | -       | -       | -       | 1       | -       |         | -       | -       | 10      | 2        | -        | -        | -        | 10     | 1      | 4      |        | -      | -      |        | -      | -      |         |          |
|      | ERA 18                              | -       | -       | -       | 7       | - 3     | -       | -       | -       | 18      | 2        | - 2      | -        | -        | 16     | 5      | 4      | -      | - 2    | - 3    | -      | -      | -      | -       | -        |
| -    | =                                   | -       | -       |         |         | 3       |         |         |         |         | -        | -        | -        |          | -      | -      |        |        |        | 3      | -      |        |        | -       | -        |
|      | Chukchi Spring Lead 1               |         | -       | -       | -       | -       | -       | -       | -       | 1       | -        |          | -        | -        | 11     | -      | 2      | -      | -      | -      | -      | -      | -      | -       | -        |
|      | Chukchi Spring Lead 2               | -       | -       | -       | - 0     | 1       | -       | -       | -       | 1       | 6        | 2        | 1        | -        | 1      | - 0    | 10     | -      | 1      | 5      | -      | 1      | 1      | -       | -        |
|      | Chukchi Spring Lead 3               | -       | -       | -       | 2       | 2       | -       | -       | -       | 1       | 6        | 5        | 1        | -        | 1      | 2      | 4      | -      | 3      | 15     | -      | 1      | 1      | -       | -        |
|      | Chukchi Spring Lead 4               | -       | -       | -       | 2       | 4       | 1       | -       | -       | -       | 4        | 9        | 10       | 1        | -      | 2      | 2      | 1      | 4      | 7      | -      | 4      | 26     | -       | 2        |
|      | Chukchi Spring Lead 5               | -       | -       | -       | -       | -       | 1       | 1       | 1       | -       | -        | 1        | 4        | 4        | -      | -      | -      | -      | -      | 1      | -      | 1      | 6      | 1       | 16       |
|      | Beaufort Spring Lead 6              | -       | -       | 1       | -       | -       | 1       | 2       | 4       | -       | -        | 1        | 2        | 4        | -      | -      | -      | -      | -      | -      | 1      | 1      | 1      | 2       | 2        |
|      | Beaufort Spring Lead 7              | -       | 1       | 2       | -       | 1       | 2       | 3       | 4       | -       | -        | 1        | 2        | 4        | -      | -      | -      | 1      | 1      | -      | 2      | 2      | 1      | 3       | 2        |
|      | Beaufort Spring Lead 8              | -       | -       | -       | -       | -       | -       | -       | 1       | -       | -        | -        | -        | 1        | -      | -      | -      | -      | -      | -      | -      | -      | -      | -       | 1        |
|      | Beaufort Spring Lead 9              | -       | -       | -       | -       | -       | -       | -       | 1       | -       | -        | -        | -        | 1        | -      | -      | -      | -      | -      | -      | -      | -      | -      | -       | -        |
|      | Ice/Sea Segment 1                   | -       | -       | 1       | -       | -       | 1       | 2       | 3       | -       | -        | -        | 1        | 3        | -      | -      | -      | -      | -      | -      | 1      | 1      | -      | 2       | 1        |
| 30   | Ice/Sea Segment 2                   | -       | 1       | 1       | -       | -       | 1       | 2       | 2       | -       | -        | -        | -        | 1        | -      | -      | -      | -      | -      | -      | 1      | 1      | -      | 2       | -        |
| 31   | Ice/Sea Segment 3                   | -       | 1       | 1       | -       | -       | 1       | 2       | 2       | -       | -        | -        | -        | 1        | -      | -      | -      | -      | -      | -      | 1      | 1      | -      | 1       | -        |
| 32   | Ice/Sea Segment 4                   | 1       | -       | -       | -       | -       | 1       | -       | 1       | -       | -        | -        | -        | -        | -      | -      | 1      | -      | -      | -      | 1      | -      | -      | -       | -        |
| 35   | ERA 35                              | 3       | 5       | 6       | 2       | 7       | 11      | 13      | 12      | -       | 2        | 13       | 30       | 25       | -      | 2      | 1      | 5      | 8      | 4      | 8      | 20     | 29     | 15      | 30       |
| 36   | ERA 36                              | 3       | 3       | 2       | 8       | 13      | 6       | 2       | 1       | 2       | 17       | 23       | 9        | 2        | 1      | 8      | 6      | 4      | 18     | 22     | 3      | 9      | 12     | 1       | 4        |
| 38   | Pt. Hope Subsistence Area           | -       | -       | -       | 1       | 1       | -       | -       | -       | 5       | 3        | 1        | -        | -        | 18     | 1      | 8      | -      | 1      | 2      | -      | -      | -      | -       | -        |
| 39   | Point Lay Subsistence Area          | 1       | -       | -       | 5       | 6       | 1       | -       | -       | 2       | 22       | 14       | 3        | -        | 1      | 5      | 16     | 1      | 6      | 45     | -      | 2      | 4      | -       | -        |
|      | Wainwright Subsistence              | 4       | 4       | 4       | 0       | 40      |         | •       | ~       | 4       | 4.5      | ~        | ~        | ~        |        | -      | 0      | 0      |        | 07     | 0      | 10     |        | ~       |          |
|      | Area                                | 1       | 1       | 1       | 6       | 10      | 4       | 2       | 2       | 1       | 15       | 21       | 24       | 6        | 1      | 5      | 8      | 2      | 11     | 27     | 2      | 10     | 58     | 2       | 14       |
| 41   | Barrow Subsistence Area 1           | -       | -       | -       | -       | -       | -       | 1       | 1       | -       | -        | -        | 2        | 4        | -      | -      | -      | -      | -      | 1      | -      | -      | 2      | 1       | 9        |
| 42   | Barrow Subsistence Area 2           | 1       | 2       | 3       | 1       | 2       | 2       | 4       | 8       | -       | 1        | 1        | 2        | 6        | -      | 1      | -      | 2      | 2      | 1      | 2      | 2      | 2      | 4       | 3        |
|      | ERA 45                              | -       | -       | -       | 2       | 1       | -       | -       | -       | 15      | 7        | 2        | -        | -        | 32     | 1      | 16     | -      | 1      | 4      | -      | -      | 1      | -       | -        |
|      | Herald Shoal Polynya                | 7       | 2       | -       | 20      | 5       | 1       | -       | -       | 4       | 4        | 2        | -        | -        | 1      | 21     | 5      | 3      | 5      | 3      | -      | 1      | 1      | -       | -        |
|      | Ice/Sea Segment 10                  | 9       | 5       | 2       | 20      | 29      | 7       | 2       | -       | 1       | 10       | 11       | 5        | 1        | 1      | 12     | 4      | 9      | 26     | 9      | 4      | 7      | 6      | 1       | 2        |
|      | Ice/Sea Segment 11                  | 10      | 19      | 19      | 9       | 29      | 52      | 23      | 12      | 2       | 18       | 38       | 29       | 18       | 1      | 7      | 8      | 19     | 34     | 24     | 32     | 67     | 20     | 20      | 19       |
|      | Hanna's Shoal Polynya               | 13      | 29      | 61      | 6       | 21      | 42      | 45      | 31      | 1       | 13       | 24       | 28       | 30       | 1      | 5      | 6      | 22     | 22     | 16     | 52     | 36     | 17     | 40      | 27       |
|      | Ice/Sea Segment 12                  | 4       | 7       | 7       | 2       | 10      | 15      | 13      | 6       | -       | 6        | 18       | 44       | 16       | -      | 2      | 2      | 7      | 11     | 8      | 10     | 48     | 27     | 11      | 26       |
|      | Ice/Sea Segment 13                  | 2       | 3       | 4       | 1       | 5       | 7       | 9       | 7       | -       | 3        | 9        | 37       | 25       | -      | 1      | 1      | 3      | 6      | 5      | 5      | 14     | 37     | 10      | 52       |
|      | Ice/Sea Segment 14                  | 2       | 3       | 5       | 1       | 2       | 5       | 8       | 25      | -       | 1        | 3        | 7        | 32       | _      | 1      | -      | 2      | 2      | 1      | 5      | 5      | 4      | 11      | 11       |
|      | Ice/Sea Segment 15                  | -       | 1       | 2       | -       | 1       | 2       | 3       | 5       | -       | -        | 1        | 1        | 3        | _      | -      | -      | 1      | 1      | 1      | 2      | 2      | 1      | 3       | 1        |
|      | Ice/Sea Segment 16a                 | -       | 1       | 2       | -       | 1       | 2       | 3       | 4       | -       | -        | 1        | 1        | 3        | _      | _      | -      | 1      | 1      | -      | 2      | 2      | -      | 3       | 1        |
| 55   | Ice/Sea Segment 17                  | -       | -       | 1       | -       | -       | 1       | 1       | 1       | -       | -        | -        | -        | -        | -      | -      | -      | -      | -      | _      | 1      | -      | -      | 1       | -        |
|      | ERA 56                              | 6       | - 11    | 16      | 2       | - 8     | 23      | 24      | 12      | -       | - 3      | - 11     | 29       | - 18     | -      | 2      | -      | 9      | - 8    | - 4    | 20     |        | - 16   | 19      | - 19     |
|      | Ice/Sea Segment 20a                 | -       | -       | -       | -       | -       | -       | 24<br>1 | 3       | -       | -        | -        | - 29     | 2        | -      | -      | -      | 9      | 0<br>- | 4      | -      | -      | -      | 19      | -        |
|      | ERA 59                              | -       | -       | -       | - 2     | -       | -       | 1       | 5       | - 3     | - 1      | -        | -        | 2        | - 2    | - 1    | - 2    | -      | -      | -      | -      | -      | -      | 1       | -        |
|      | Ice/Sea Segment 22                  | -       | -       | -       | 2       | -       | -       | -       | - 1     | ა       | 1        | -        | -        | -        | 2      | I      | 2      | -      | -      | -      | -      | -      | -      | -       | -        |
|      | ERA 61                              | -       | -       |         | -       | -       |         | -       | 1       | -<br>2  | -        |          | -        |          | -      | -      | -      | -      |        | -      | -      | -      | -      | -       | -        |
|      |                                     |         | -       | -       |         | -       | -       | -       | -       | 3       | 1        | -        | -        | -        | 6      | -      | 1      | -      | -      | -      | -      | -      | -      | -       | -        |
|      | Ice/Sea Segment 24a                 | - 0     | - 0     | -       | -       | -       | -       | -       | 1       | -       | -        | -        | -        | -        | -      | -      | -      | -      | -      | -      | -      | -      | -      | -       | -        |
|      | ERA 63                              | 2       | 2       | 1       | -       | 1       | 1       | 1       | 1       | -       | -        | 1        | 1        | 1        | -      | -      | -      | 2      | 1      | -      | 1      | 1      | 1      | 1       | 1        |
| 64   | Peard Bay                           | 1       | 2       | 3       | 1       | 3       | 4       | 8       | 7       | -       | 1        | 4        | 12       | 15       | -      | 1      | -      | 2      | 3      | 2      | 3      | 7      | 8      | 9       | 31       |
|      | Smith Bay                           | -       | -       | -       | -       | -       | -       | -       | 1       | -       | -        | -        | -        | 1        | -      | -      | -      | -      | -      | -      | -      | -      | -      | -       | -        |
| 66   | ERA 66                              | 1       | 2       | 3       | -       | 1       | 2       | 3       | 4       | -       | -        | 1        | 1        | 2        | -      | -      | -      | 1      | 1      | 1      | 2      | 2      | 1      | 3       | 1        |
|      | Harrison Bay/Colville Delta         | -       | -       | -       | -       | -       | -       | -       | 1       | -       | -        | -        | -        | -        | -      | -      | -      | -      | -      | -      | -      | -      | -      | 1       | -        |
|      | ERA 70                              | 4       | 6       | 4       | -       | 2       | 3       | 2       | 2       | -       | 1        | 2        | 2        | 2        | -      | -      | -      | 5      | 2      | 1      | 4      | 3      | 1      | 2       | 2        |
|      | Kaktovik ERA                        | -       | -       | -       | -       | -       | -       | 1       | 2       | -       | -        | -        | -        | 1        | -      | -      | -      | -      | -      | -      | -      | -      | -      | 1       | -        |
|      | ERA 99                              | 5       | 5       | 3       | 15      | 27      | 12      | 4       | 2       | 4       | 35       | 45       | 16       | 4        | 2      | 13     | 12     | 7      | 34     | 44     | 5      | 16     | 21     | 3       | 6        |
|      | ** - Greater than 00 5 pc           |         |         |         | e th    |         |         |         |         |         |          |          |          | _        | – Di   |        | _      |        |        |        |        |        |        |         |          |

 Table A.2-6
 Annual Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a

 Particular Location Will Contact a Certain Environmental Resource Area Within 360 Days, Chukchi Sale 193

 Table A.2-7
 Annual Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a Particular Location Will Contact a Certain Land Segment Within 3 Days, Chukchi Sale 193

| ID | Land Segment Name              | LA<br>1 | LA<br>2 | LA<br>3 |   |   |   |   |   |   |   |   |   | LA<br>13 | - | - | - | - | - | - | - | P<br>8 | P<br>9 | Р<br>10 | Р<br>11 |
|----|--------------------------------|---------|---------|---------|---|---|---|---|---|---|---|---|---|----------|---|---|---|---|---|---|---|--------|--------|---------|---------|
| 64 | Kukpuk River, Point Hope       | -       | -       | -       | - | - | - | - | - | - | - | - | - | -        | 2 | - | - | - | - | - | - | -      | -      | -       | -       |
| 65 | Buckland, Cape Lisburne        | -       | -       | -       | - | - | - | - | - | - | - | - | - | -        | 1 | - | - | - | - | - | - | -      | -      | -       | -       |
| 72 | Point Lay, Siksrikpak Point    | -       | -       | -       | - | - | - | - | - | - | - | - | - | -        | - | - | - | - | - | 2 | I | I      | -      | -       | -       |
| 73 | Tungaich Point, Tungak Creek   | -       | -       | -       | - | - | - | - | - | - | - | - | - | -        | - | - | - | - | - | З | ١ | ١      | -      | -       | -       |
| 74 | Kasegaluk Lagoon, Solivik Isl. | -       | -       | -       | - | - | - | - | - | - | - | - | - | -        | - | - | - | - | - | 1 | - | -      | -      | -       | -       |
| 79 | Point Belcher, Wainwright      | -       | -       | -       | - | - | - | - | - | - | - | - | - | -        | - | - | - | - | - | 1 | ١ | ١      | 1      | -       | -       |
| 82 | Skull Cliff                    | -       | -       | -       | - | - | - | - | - | - | - | - | - | -        | - | - | - | - | - | - | - | -      | -      | -       | 3       |

# Table A.2-8 Annual Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a Particular Location Will Contact a Certain Land Segment Within 10 Days, Chukchi Sale 193

| ID | Land Segment Name               | LA<br>1 | LA<br>2 | LA<br>3 | LA<br>4 | LA<br>5 | LA<br>6 | LA<br>7 | LA<br>8 | LA<br>9 | LA<br>10 | LA<br>11 | LA<br>12 | LA<br>13 | Р<br>1 | P<br>2 | Р<br>3 | Р<br>4 | P<br>5 | P<br>6 | Р<br>7 | P<br>8 | P<br>9 | Р<br>10 | Р<br>11 |
|----|---------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|----------|----------|----------|----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|---------|
| 64 | Kukpuk River, Point Hope        | -       | -       | -       | -       | -       | -       | -       | -       | -       | -        | -        | -        | -        | 3      | -      | -      | -      | -      | -      | -      | -      | -      | -       | -       |
| 65 | Buckland, Cape Lisburne         | -       | -       | -       | -       | -       | -       | -       | -       | 1       | -        | -        | -        | -        | 3      | -      | 1      | -      | -      | -      | -      | -      | -      | -       | -       |
| 66 | Ayugatak Lagoon                 | -       | -       | -       | -       | -       | -       | -       | -       | -       | -        | -        | -        | -        | -      | -      | 1      | -      | -      | -      | -      | -      | -      | -       | -       |
| 71 | Kukpowruk River, Sitkok Point   | -       | -       | -       | -       | -       | -       | -       | -       | -       | 1        | -        | -        | -        | -      | -      | -      | -      | -      | 1      | -      | -      | -      | -       | -       |
| 72 | Point Lay, Siksrikpak Point     | -       | -       | -       | -       | -       | -       | -       | -       | -       | 1        | -        | -        | -        | -      | -      | -      | -      | -      | 4      | -      | -      | -      | -       | -       |
| 73 | Tungaich Point, Tungak Creek    | -       | -       | -       | -       | -       | -       | -       | -       | -       | 1        | 1        | -        | -        | -      | -      | -      | -      | -      | 6      | -      | -      | -      | -       | -       |
| 74 | Kasegaluk Lagoon, Solivik Isl.  | -       | -       | -       | -       | -       | -       | -       | -       | -       | 1        | 1        | -        | -        | -      | -      | -      | -      | -      | 3      | -      | -      | -      | -       | -       |
| 75 | Akeonik, Icy Cape               | -       | -       | -       | -       | -       | -       | -       | -       | -       | -        | 1        | -        | -        | -      | -      | -      | -      | -      | 2      | -      | -      | -      | -       | -       |
| 78 | Point Collie, Sigeakruk Point   | -       | -       | -       | -       | -       | -       | -       | -       | -       | -        | -        | -        | -        | -      | -      | -      | -      | -      | -      | -      | -      | 1      | -       | -       |
| 79 | Point Belcher, Wainwright       | -       | -       | -       | -       | -       | -       | -       | -       | -       | -        | -        | 1        | -        | -      | -      | -      | -      | -      | -      | -      | -      | 4      | -       | -       |
| 80 | Eluksingiak Point, Kugrua Bay   | -       | -       | -       | -       | -       | -       | -       | -       | -       | -        | -        | 1        | -        | -      | -      | -      | -      | -      | -      | -      | -      | 2      | -       | -       |
| 81 | Peard Bay, Point Franklin       | -       | -       | -       | -       | -       | -       | -       | -       | -       | -        | -        | -        | -        | -      | -      | -      | -      | -      | -      | -      | -      | -      | -       | 1       |
| 82 | Skull Cliff                     | -       | -       | -       | -       | -       | -       | -       | -       | -       | -        | -        | -        | -        | -      | -      | -      | -      | -      | -      | -      | -      | -      | -       | 4       |
| 83 | Nulavik, Loran Radio Station    | -       | -       | -       | -       | -       | -       | -       | -       | -       | -        | -        | -        | -        | -      | -      | -      | -      | -      | -      | -      | -      | -      | -       | 1       |
| 84 | Will Rogers & Wiley Post Mem.   | -       | -       | -       | -       | -       | -       | -       | -       | -       | -        | -        | -        | 1        | -      | -      | -      | -      | -      | -      | -      | -      | -      | -       | 2       |
| 85 | Barrow, Browerville, Elson Lag. | -       | -       | -       | -       | -       | -       | -       | -       | -       | -        | -        | -        | 2        | -      | -      | -      | -      | -      | -      | -      | -      | -      | -       | 1       |

|                |                        | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р  | Р  |
|----------------|------------------------|----|----|----|----|----|----|----|----|----|----|----|----|----|---|---|---|---|---|---|---|---|---|----|----|
| ID Land Seg    | gment Name             | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| 27 Laguna N    | ut, Rigol'             | -  | -  | -  | 1  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | - | - | - | - | - | - | - | - | - | -  | -  |
| 34 Tepken, N   | lemino                 | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | 1 | - | - | - | - | - | - | - | - | -  | -  |
| 35 Enurmino    | , Mys Neten            | -  | -  | -  | -  | -  | •  | -  | -  | 1  | •  | -  | -  | -  | 2 | - | - | - | - | - | - | - | - | -  | -  |
| 36 Mys Serd    | tse-Kamen              | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 1 | - | - | - | - | - | - | - | - | -  | -  |
| 37 Chegitun,   | Utkan, Mys Volnistyy   | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 1 | - | - | - | - | - | - | - | - | -  | -  |
| 38 Enmytagy    | n, Inchoun, Mitkulen   | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  |    | 1 | - | - | - | - | - | - | - | - | -  | -  |
| 39 Cape Dez    | hnev, Naukan, Uelen    | -  | -  | -  | -  | -  | •  | -  | 1  | 1  | -  | -  | -  | 1  | 1 | - | - | - | - | - | - | - | - | -  | -  |
| 64 Kukpuk R    | iver, Point Hope       | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 5 | - | 1 | - | - | - | - | - | - | -  | -  |
| 65 Buckland,   | Cape Lisburne          | -  | -  | -  | -  | -  | -  | -  | -  | 1  | 1  | -  | -  | -  | 4 | - | 2 | - | - | - | - | - | - | -  | -  |
| 66 Ayugatak    |                        | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | - | - | 1 | - | - | - | - | - | - | -  | -  |
| 70 Kuchaura    | k and Kuchiak Creek    | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | - | - | 1 | - | - | 1 | - | - | - | -  | -  |
| 71 Kukpowru    | uk River, Sitkok Point | -  | -  | -  | -  | -  | -  | -  | -  | -  | 2  | 1  | -  | 1  | 1 | - | 2 | - | - | 2 | - | - | - | -  | -  |
| 72 Point Lay   | , Siksrikpak Point     | -  | -  | -  | -  | -  | •  | -  | -  | -  | 3  | 1  | -  | -  | 1 | - | 2 | - | - | 5 | - | - | - | -  | -  |
| 73 Tungaich    | Point, Tungak Creek    | -  | -  | -  | -  | -  | -  | -  | -  | -  | 3  | 1  | -  | -  | - | - | 2 | - | - | 8 | - | - | - | -  | -  |
| 74 Kasegalul   | K Lagoon, Solivik Isl. | -  | -  | -  | -  | -  | -  | -  | -  | -  | 2  | 2  | -  | -  | - | - | 1 | - | 1 | 5 | - | - | - | -  | -  |
| 75 Akeonik, I  |                        | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 1  | 2  | -  | -  | - | - | 1 | - | 1 | 3 | - | - | - | -  | -  |
| 76 Avak Inle   | t, Tunalik River       | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | - | - | - | - | - | 1 | - | - | - | -  | -  |
| 77 Nivat Poir  | nt, Nokotlek Point,    | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | - | - | - | - | - | 1 | - | - | 1 | -  | -  |
| 78 Point Coll  | lie, Sigeakruk Point   | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | 1  | -  | - | - | - | - | - | - | - | - | 4 | -  | -  |
| 79 Point Belo  | cher, Wainwright       | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | 2  | -  | - | - | - | - | - | - | - | 1 | 7 | -  | -  |
| 80 Eluksingia  | ak Point, Kugrua Bay   | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 2  | 1  | - | - | - | - | - | - | - | 1 | 4 | -  | 1  |
| 81 Peard Ba    | y, Point Franklin      | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | 1  | 1 | - | - | - | - | - | - | - | 1 | -  | 2  |
| 82 Skull Cliff |                        | -  | -  | -  | -  | -  | •  | -  | -  | -  | •  | -  | 1  | 1  | 1 | - | - | - | - | - | - | - | - | -  | 5  |
| 83 Nulavik, L  | oran Radio Station     | -  | -  | -  | -  | -  | 1  | I  | 1  | -  | 1  | -  | 1  | 1  | 1 | I | - | - | - | - | - | - | - | -  | 3  |
| 84 Will Roge   | rs & Wiley Post Mem.   | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | 1  | 3  | - | - | - | - | - | - | - | - | - | 1  | 4  |
| 85 Barrow, B   | rowerville, Elson Lag. | -  | -  | -  | -  | -  | -  | 1  | 2  | -  | -  | -  | -  | 5  | - | - | - | - | - | - | - | - | - | 1  | 3  |
| 86 Dease Inl   | et, Plover Islands     | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 1  | - | - | - | - | - | - | - | - | - | -  | -  |

 Table A.2-9 Annual Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a Particular Location Will Contact a Certain Land Segment Within 30 Days, Chukchi Sale 193

|    |                                 | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р  | Р  |
|----|---------------------------------|----|----|----|----|----|----|----|----|----|----|----|----|----|---|---|---|---|---|---|---|---|---|----|----|
| ID | Land Segment Name               | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| 8  | E. Wrangel Island, Skeletov     | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | - | 1 | - | - | - | - | - | - | - | -  | -  |
| 27 | Laguna Nut, Rigol'              | -  | -  | -  | 1  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | - | 1 | - | - | - | - | - | - | - | -  | -  |
|    | Mys Dzhenretlen, Eynenekvyk     | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 1 | - | - | - | - | - | - | - | - | -  | -  |
| 33 | Neskan, Laguna Neskan           | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | - | - | - | - | - | - | - | - | - | -  | -  |
| 34 | Tepken, Memino                  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 1 | - | - | - | - | - | - | - | - | -  | -  |
| 35 | Enurmino, Mys Neten             | -  | -  | -  | -  | -  | -  | -  | -  | 2  | -  | -  | -  | -  | 2 | - | 1 | - | - | - | - | - | - | -  | -  |
| 36 | Mys Serdtse-Kamen               | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 2 | - | - | - | - | - | - | - | - | -  | -  |
| 37 | Chegitun, Utkan                 | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 1 | - | 1 | - | - | - | - | - | - | -  | -  |
| 38 | Enmytagyn, Inchoun, Mitkulen    | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 1 | - | - | - | - | - | - | - | - | -  | -  |
| 39 | Cape Dezhnev, Naukan, Uelen     | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 1 | - | - | - | - | - | - | - | - | -  | -  |
| 64 | Kukpuk River, Point Hope        | -  | 1  | -  | -  | -  | -  | -  | •  | 1  | 1  | -  | -  | •  | 5 | - | 1 | - | - | - | - | - | 1 | -  | -  |
| 65 | Buckland, Cape Lisburne         | -  | 1  | -  | 1  | -  | I  | 1  | 1  | 1  | 1  | -  | -  | 1  | 5 | 1 | 2 | 1 | - | 1 | 1 | - | • | -  | -  |
| 66 | Ayugatak Lagoon                 | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | - | - | 1 | - | - | 1 | - | - | - | -  | -  |
| 67 | Cape Sabine, Pitmegea River     | -  | -  | •  | -  | -  | •  | -  | 1  | -  | -  | -  | -  | -  | - | - | 1 | 1 | - | - | - | - | 1 | -  | -  |
| 68 | Agiak Lagoon, Punuk Lagoon      | -  | 1  | -  | -  | -  | -  | -  | •  | -  | -  | -  | -  | •  | - | - | 1 | - | - | - | - | - | 1 | -  | -  |
| 69 | Cape Beaufort, Omalik Lagoon    | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | - | - | 1 | - | - | - | - | - | - | -  | -  |
| 70 | Kuchaurak and Kuchiak Creek     | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | - | - | 1 | - | - | 1 | - | - | - | -  | -  |
| 71 | Kukpowruk River, Sitkok Point   | -  | -  | -  | -  | -  | -  | -  | -  | -  | 2  | 1  | -  | -  | - | - | 2 | - | - | 2 | - | - | - | -  | -  |
| 72 | Point Lay, Siksrikpak Point     | -  | -  | -  | -  | -  | -  | -  | -  | -  | 3  | 1  | -  | -  | - | - | 3 | - | - | 6 | - | - | - | -  | -  |
| 73 | Tungaich Point, Tungak Creek    | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 4  | 2  | -  | -  | - | 1 | 2 | - | - | 8 | - | - | - | -  | -  |
| 74 | Kasegaluk Lagoon, Solivik Isl.  | -  | -  | -  | 1  | 1  | -  | -  | -  | -  | 3  | 3  | -  | -  | - | 1 | 2 | - | 1 | 7 | - | - | 1 | -  | -  |
| 75 | Akeonik, Icy Cape               | -  | -  | -  | 1  | 1  | -  | -  | -  | -  | 2  | 3  | -  | -  | - | 1 | 1 | - | 1 | 4 | - | - | 1 | -  | -  |
| 76 | Avak Inlet, Tunalik River       | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | - | - | - | - | - | 1 | - | - | 1 | -  | -  |
| 77 | Nivat Point, Nokotlek Point,    | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | 1  | -  | - | - | - | - | - | 1 | - | - | 1 | -  | -  |
| 78 | Point Collie, Sigeakruk Point   | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | 1  | -  | - | - | - | - | 1 | 1 | - | - | 6 | -  | -  |
| 79 | Point Belcher, Wainwright,      | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 1  | 4  | 1  | - | - | - | - | 1 | - | - | 1 | 9 | -  | 1  |
| 80 | Eluksingiak Point, Kugrua Bay   | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | 3  | 1  | - | - | - | - | 1 | - | - | 2 | 5 | -  | 2  |
| 81 | Peard Bay, Point Franklin       | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | 2  | 1  | - | - | - | - | 1 | - | - | 1 | 2 | -  | 2  |
| 82 | Skull Cliff                     | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | 1  | - | - | - | - | - | - | - | - | 1 | -  | 7  |
| 83 | Nulavik, Loran Radio Station    | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | 1  | - | - | - | - | - | - | - | 1 | - | 1  | 3  |
| 84 | Will Rogers & Wiley Post Mem.   | -  | -  | -  | -  | -  | -  | 1  | 1  | -  | -  | -  | 1  | 4  | - | - | - | - | - | - | - | - | - | 1  | 5  |
| 85 | Barrow, Browerville, Elson Lag. | -  | -  | -  | -  | -  | -  | 1  | 4  | -  | -  | -  | 1  | 6  | - | - | - | - | - | - | - | - | - | 3  | 4  |
| 86 | Dease Inlet, Plover Islands     | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 1  | - | - | - | - | - | - | - | - | - | -  | -  |
| 87 | Igalik & Kulgurak Island,       | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | -  | - | - | - | - | - | - | - | - | - | -  | -  |

 Table A.2-10 Annual Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a Particular Location Will Contact a Certain Land Segment Within 60 Days, Chukchi Sale 193

|    |                                       | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | Ρ | Р | Р | Р | Ρ | Р | Р | Р | Р  | Р  | Р  |
|----|---------------------------------------|----|----|----|----|----|----|----|----|----|----|----|----|----|---|---|---|---|---|---|---|---|----|----|----|
| טו | Land Segment Name                     | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9  | 10 | 11 |
| 8  | E. Wrangel Island, Skeletov           | 1  | -  | -  | _  | -  | -  | -  | -  | _  | -  | -  | -  | _  | - | 1 | - | 1 | - | - | - | - | -  | -  | -  |
|    | Laguna Nut, Rigol'                    | -  | -  | -  | 1  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 1 | 1 | - | - | - | - | - | - | -  | -  | -  |
|    | Vankarem, Vankarem Laguna             | -  | -  | -  | 1  | -  | -  | -  | -  | -  | -  | -  | -  | -  | - | 1 | - | - | - | - | - | - | -  | -  | -  |
|    | Nutepynmin, Pyngopil'gyn              | -  | -  | -  | 1  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 1 | - | - | - | - | - | - | - | -  | -  | -  |
|    | Alyatki, Zaliv Tasytkhin              | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 1 | - | 1 | - | - | - | - | - | -  | -  | -  |
| 32 | Mys Dzhenretlen, Eynenekvyk           | -  | -  | -  | 1  | -  | -  | -  | -  | 2  | -  | -  | -  | -  | 1 | - | 1 | - | - | - | - | - | -  | -  | -  |
| 33 | Neskan, Laguna Neskan                 | -  | -  | -  | -  | -  | -  | -  | -  | 2  | -  | -  | -  | -  | 1 | - | 1 | - | - | - | - | - | -  | -  | -  |
| 34 | Tepken, Memino                        | -  | -  | -  | -  | -  | -  | -  | -  | 2  | -  | -  | -  | -  | 2 | - | 1 | - | - | - | - | - | -  | -  | -  |
|    | Enurmino, Mys Neten                   | -  | -  | -  | -  | -  | -  | -  | -  | 4  | 1  | -  | -  | -  | 4 | - | 1 | - | - | - | - | - | -  | -  | -  |
| 36 | Mys Serdtse-Kamen                     | -  | -  | -  | -  | -  | -  | -  | -  | 3  | -  | -  | -  | -  | 4 | - | 1 | - | - | - | 1 | - | -  | -  | -  |
| 37 | Chegitun, Utkan                       | -  | -  | -  | -  | -  | -  | -  | -  | 2  | -  | -  | 1  | -  | З | - | 1 | - | - | - | ١ | - | -  | -  | -  |
| 38 | Enmytagyn, Inchoun, Mitkulen          | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | 1  | 1  | -  | 2 | - | - | - | - | - | 1 | - | -  | -  | -  |
|    | Cape Dezhnev, Naukan, Uelen           | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 2 | - | - | - | - | - | 1 | - | -  | -  | -  |
| 64 | Kukpuk River, Point Hope              | -  | -  | I  | -  | I  | 1  | 1  | -  | 1  | 1  | -  | 1  | I  | 5 | I | 1 | I | - | - | - | 1 | -  | -  | -  |
|    | Buckland, Cape Lisburne               | -  | -  | 1  | -  | -  | 1  | 1  | -  | 1  | 1  | -  | -  | 1  | 5 | 1 | 3 | 1 | - | 1 | 1 | 1 | -  | -  | -  |
| 66 | Ayugatak Lagoon                       | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | - | - | 1 | - | - | 1 | - | - | -  | -  | -  |
| 67 | Cape Sabine, Pitmegea River           | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | 1  | 1  | -  | - | - | 1 | - | - | - | 1 | - | -  | -  | -  |
| 68 | Agiak Lagoon, Punuk Lagoon            | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | -  | -  | -  | - | - | 1 | - | - | - | 1 | - | -  | -  | -  |
| 69 | Cape Beaufort, Omalik Lagoon          | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | - | - | 1 | - | - | - | - | - | -  | -  | -  |
| 70 |                                       | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | - | - | 2 | - | - | 1 | - | - | -  | -  | -  |
| 71 | Kukpowruk River, Sitkok Point         | -  | -  | -  | -  | -  | -  | -  | -  | -  | 3  | 1  | -  | -  | - | - | 3 | - | - | 2 | - | - | -  | -  | -  |
|    | Point Lay, Siksrikpak Point           | -  | -  | -  | 1  | 1  | -  | -  | -  | -  | 4  | 1  | -  | -  | - | 1 | 3 | - | - | 6 | 1 | - | -  | -  | -  |
| 73 | Tungaich Point, Tungak Creek          | -  | -  | -  | 1  | 1  | -  | -  | -  | -  | 4  | 2  | -  | -  | - | 1 | 3 | - | 1 | 9 | - | - | -  | -  | -  |
| 74 | · · · · · · · · · · · · · · · · · · · | -  | -  | -  | 1  | 2  | -  | -  | -  | -  | 4  | 3  | 1  | -  | - | 1 | 2 | - | 2 | 7 | - | 1 | 1  | -  | -  |
| 75 | Akeonik, Icy Cape                     | -  | -  | -  | 1  | 2  | -  | -  | -  | -  | 3  | 3  | 1  | -  | - | 1 | 1 | - | 2 | 5 | - | - | 1  | -  | -  |
| 76 |                                       | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 1  | 1  | -  | -  | - | - | - | - | 1 | 1 | - | - | 1  | -  | -  |
| 77 | Nivat Point, Nokotlek Point,          | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | 1  | 1  | -  | - | - | - | - | - | 1 | - | - | 1  | -  | -  |
|    | Point Collie, Sigeakruk Point         | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 1  | 2  | 3  | -  | - | - | - | - | 1 | 1 | - | 1 | 8  | -  | 1  |
| 79 | Point Belcher, Wainwright,            | -  | -  | -  | -  | 1  | 1  | -  | -  | -  | 1  | 2  | 4  | 1  | - | - | - | - | 1 | 1 | - | 2 | 11 | -  | 2  |
| 80 | , <u> </u>                            | -  | -  | -  | -  | 1  | 1  | -  | -  | -  | -  | 1  | 5  | 2  | - | - | - | - | 1 | 1 | - | 2 | 8  | -  | 4  |
| 81 | Peard Bay, Point Franklin             | -  | -  | -  | -  | 1  | 1  | -  | -  | -  | -  | 1  | 3  | 1  | - | - | - | - | 1 | 1 | - | 1 | 3  | -  | 3  |
| 82 | Skull Cliff                           | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 1  | 3  | 2  | - | - | - | - | - | - | - | 1 | 3  | 1  | 8  |
| 83 | ,                                     | -  | -  | -  | 1  | 1  | 1  | 1  | 1  | I  | -  | 1  | 2  | 2  | 1 | - | - | - | 1 | I | 1 | 1 | 1  | 1  | 5  |
| 84 |                                       | -  | -  | -  | 1  | -  | -  | 2  | 2  | -  | -  | -  | 2  | 5  | 1 | - | - | - | - | - | - | 1 | 1  | 2  | 6  |
| 85 |                                       | -  | -  | -  | 1  | -  | -  | 3  | 6  | 1  | -  | 1  | З  | 9  | 1 | - | - | - | - | 1 | I | 1 | 2  | 5  | 6  |
| 86 |                                       | -  | -  | -  | -  | -  | -  | 1  | 1  | -  | -  | -  | -  | 2  | - | - | - | - | - | - | - | - | -  | 1  | 1  |
| 87 | Igalik & Kulgurak Island,             | 1  | 1  | 1  | -  | -  | 1  | 1  | 1  | 1  | -  | -  | -  | 1  | - | - | - | 1 | - | - | 1 | - | -  | 1  | -  |
| 88 | Cape Simpson, Piasuk River            | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | -  | - | - | - | - | - | - | - | - | -  | -  | -  |

 Table A.2-11 Annual Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a Particular Location Will Contact a Certain Land Segment Within 180 Days, Chukchi Sale 193

| п        | Land Segment Name               | LA  |   |   |   |   |   |   |     | LA |    |     | LA |        |   | Ρ | Ρ | Ρ   | Ρ   | Ρ | Ρ | Ρ   | Ρ  | Ρ  | Ρ  |
|----------|---------------------------------|-----|---|---|---|---|---|---|-----|----|----|-----|----|--------|---|---|---|-----|-----|---|---|-----|----|----|----|
| טו       | Land Segment Name               | 1   | 2 | 3 | 4 | 5 | 6 | 7 | 8   | 9  | 10 | 11  | 12 | 13     | 1 | 2 | 3 | 4   | 5   | 6 | 7 | 8   | 9  | 10 | 11 |
|          | E. Wrangel Island, Skeletov     | 1   | - | - | - | - | - | - | 1   | -  | -  | -   | -  | -      | - | 1 | - | 1   | -   | - | - | -   | -  | -  | -  |
|          | Ostrov Leny, Yulinu             | -   | - | - | 1 | - | - | - | -   | -  | -  | -   | -  | -      | - | 1 | - | -   | -   | - | - | -   | -  | -  | -  |
|          | Ekugvaam, Kepin, Pil'khin       | -   | - | - | 1 | - | - | - | -   | -  | -  | -   | -  | -      | - | 1 | - | -   | -   | - | - | -   | -  | -  | -  |
|          | Laguna Nut, Rigol'              | -   | - | - | 1 | - | - | - | -   | 1  | -  | -   | -  | -      | 1 | 1 | - | -   | -   | - | - | -   | -  | -  | -  |
|          | Laguna Nut, Rigol'              | -   | - | - | 1 | - | - | - | -   | 1  | -  | -   | -  | -      | - | 1 | - | -   | -   | - | - | -   | -  | -  | -  |
| 29       | Vankarem,Vankarem Laguna        | -   | - | - | 1 | - | - | - | -   | 1  | -  | -   | -  | -      | 1 | 1 | - | -   | -   | - | - | -   | -  | -  | -  |
|          | Nutepynmin, Pyngopil'gyn        | -   | - | - | 1 | - | - | - | -   | 1  | -  | -   | -  | -      | 1 | 1 | 1 | -   | -   | - | - | -   | -  | I  | -  |
|          | Alyatki, Zaliv Tasytkhin        | -   | - | - | 1 | - | - | - | -   | 1  | -  | -   | -  | -      | 1 | - | 1 | -   | -   | - | - | -   | -  | ١  | -  |
| 32       | Mys Dzhenretlen, Eynenekvyk     | -   | - | - | 1 | - | - | - | -   | 2  | -  | -   | -  | -      | 2 | - | 1 | -   | -   | - | - | -   | -  | I  | -  |
| 33       | Neskan, Laguna Neskan           | -   | - | - | 1 | - | - | - | -   | 2  | -  | -   | -  | -      | 2 | - | 1 | -   | -   | - | - | -   | -  | ١  | -  |
| 34       | Tepken, Memino                  | -   | - | - | - | - | - | - | -   | 3  | -  | -   | -  | -      | 3 | - | 1 | -   | -   | - | - | -   | -  | 1  | -  |
| 35       | Enurmino, Mys Neten             | -   | - | - | - | - | - | - | -   | 4  | 1  | -   | -  | -      | 5 | - | 2 | -   | -   | - | - | -   | -  | -  | -  |
| 36       | Mys Serdtse-Kamen               | -   | - | - | - | - | - | - | -   | 3  | -  | -   | -  | -      | 4 | - | 1 | -   | -   | - | - | -   | -  | -  | -  |
| 37       | Chegitun, Utkan                 | -   | - | - | - | - | - | - | -   | 2  | -  | -   | -  | -      | 4 | - | 1 | -   | -   | - | - | -   | -  | -  | -  |
| 38       | Enmytagyn, Inchoun, Mitkulen    | -   | - | - | - | - | 1 | - | -   | 1  | -  | -   | -  | -      | 2 | - | 1 | -   | -   | - | - | -   | -  | -  | -  |
| 39       | Cape Dezhnev, Naukan, Uelen     | -   | - | - | - | - | - | - | -   | 1  | -  | -   | -  | -      | 2 | - | - | -   | -   | - | - | -   | -  | -  | -  |
| 64       | Kukpuk River, Point Hope        | -   | - | - | - | - | - | - | -   | 1  | 1  | -   | -  | -      | 5 | - | 1 | -   | -   | - | - | -   | -  | -  | -  |
|          | Buckland, Cape Lisburne         | -   | - | - | - | - | - | - | -   | 1  | 1  | -   | -  | -      | 5 | - | 3 | -   | -   | 1 | - | -   | -  | -  | -  |
| 66       | Ayugatak Lagoon                 | -   | - | - | - | - | - | - | -   | -  | 1  | -   | -  | -      | - | - | 1 | -   | -   | 1 | - | -   | -  | -  | -  |
|          | Cape Sabine, Pitmegea River     | -   | - | - | - | - | - | - | -   | -  | -  | -   | -  | -      | - | - | 1 | -   | -   | - | - | -   | -  | -  | -  |
|          | Agiak Lagoon, Punuk Lagoon      | -   | - | - | - | - | - | - | -   | -  | -  | -   | -  | -      | - | - | 1 | -   | -   | - | - | -   | -  | -  | -  |
|          | Cape Beaufort, Omalik Lagoon    | -   | - | - | - | - | - | - | -   | -  | -  | -   | -  | -      | - | - | 1 | -   | -   | - | - | -   | -  | -  | _  |
|          | Kuchaurak and Kuchiak Creek     | -   | - | - | - | - | - | - | -   | -  | 1  | -   | -  | -      | - | - | 2 | -   | -   | 1 | - | -   | -  | -  | _  |
| 71       | Kukpowruk River, Sitkok Point   | -   | - | - | - | - | - | - | -   | -  | 3  | 1   | -  | -      | - | - | 3 | -   | -   | 2 | - | -   | -  | -  | -  |
| 72       | Point Lay, Siksrikpak Point     | -   | - | - | 1 | 1 | - | - | -   | -  | 4  | 1   | -  | -      | - | 1 | 3 | -   | -   | 6 | - | -   | -  | -  | -  |
| 73       |                                 | -   | - | - | 1 | 1 | - | - | -   | -  | 4  | 2   | -  | -      | - | 1 | 3 | -   | 1   | 9 | - | -   | -  | -  | _  |
| 74       |                                 | -   | - | - | 1 | 2 | - | - | -   | -  | 4  | 3   | 1  | -      | - | 1 | 2 | -   | 2   | 7 | - | 1   | 1  | -  | _  |
|          | Akeonik, Icy Cape               | -   | - | - | 1 | 2 | - | - | -   | -  | 3  | 3   | 1  | -      | - | 1 | 1 | -   | 2   | 5 | - | -   | 1  | -  | -  |
|          | Avak Inlet, Tunalik River       | -   | - | - | - | 1 | - | - | -   | -  | 1  | 1   | -  | -      | - | - | - | -   | 1   | 1 | - | -   | 1  | -  | -  |
| 77       | Nivat Point, Nokotlek Point,    | -   | - | - | - | - | - | - | -   | -  | 1  | 1   | 1  | -      | - | - | - | -   | -   | 1 | - | -   | 1  | -  | -  |
|          | Point Collie, Sigeakruk Point   | -   | - | - | 1 | 1 | - | - | -   | -  | 1  | 2   | 3  | -      | - | - | - | -   | 1   | 2 | - | 1   | 8  | -  | 1  |
|          | Point Belcher, Wainwright,      | -   | - | - | - | 1 | 1 | - | -   | -  | 1  | 2   | 4  | 1      | - | - | - | -   | 1   | 1 | - | 2   | 11 | -  | 2  |
|          | Eluksingiak Point, Kugrua Bay   | -   | - | - | - | 1 | 1 | - | -   | -  | 1  | 2   | 5  | 2      | - | - | - | -   | 1   | 1 | - | 2   | 9  | -  | 4  |
|          | Peard Bay, Point Franklin       | -   | - | - | - | 1 | 1 | - | -   | -  | 1  | 1   | 3  | 1      | - | - | - | -   | 1   | 1 | - | 1   | 3  | -  | 3  |
| 82       | Skull Cliff                     | _   | - | - | - | - | 1 | - | -   | -  | -  | 1   | 3  | 2      | - | - | - | -   | 1   | - | _ | 1   | 3  | 1  | 9  |
|          | Nulavik, Loran Radio Station    | -   | - | - | - | - | 1 | - | - 1 | -  | -  | 1   | 2  | 2      | - | - | - | -   | 1   | - | 1 | 2   | 1  | 1  | 5  |
| 84       | ,                               | -   | - | - | - | - | 1 | 3 | 3   | -  | -  | -   | 2  | 2<br>5 | - | - | - | -   | -   | - | 1 | 2   | 1  | 3  | 6  |
|          | Barrow, Browerville, Elson Lag. | -   | - | 1 | - | - | 1 | 3 | 7   | -  | -  | -   | 2  | 10     | - | - | - | -   | -   | - | 1 | 1   | 2  | 5  | 6  |
|          | Dease Inlet, Plover Islands     | -   | - | - | - | - | - | 1 | 2   | -  | -  | -   | 1  | 2      | - | - | - | -   | -   | - | - | -   | 1  | 1  | 1  |
|          | Igalik & Kulgurak Island        | - 1 | - | - | - | - | - | 1 | 2   | -  | -  | - 1 | 1  | 1      | - | - | - | - 1 | - 1 | - | - | - 1 |    | 1  | -  |
| 07<br>88 | Cape Simpson, Piasuk River      | -   | - | 1 | - | - | - | - | 1   | -  | -  | -   | -  | -      | - | - | - | -   | -   | - | 1 | -   | -  | -  | -  |
|          | Lonely, Pitt Point, Pogik Bay   | -   | - | - | - | - | - | - | 1   | -  | -  | -   | -  | -      | - | - | - | -   | -   | - | - | -   | -  | -  | -  |
| 3.1      | Lonely, Pill Point, Poyik Bay   | -   | - | - | - | - | - | - | I   | -  | -  | -   | -  | -      | - | - | - | -   | -   | - | - | -   | -  | -  | -  |

 Table A.2-12 Annual Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting

 at a Particular Location Will Contact a Certain Land Segment Within 360 Days, Chukchi Sale 193

 Table A.2-13 Annual Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting

 at a Particular Location Will Contact a Certain Group of Land Segments Within 3 Days, Chukchi Sale 193

| ID | Land Segment Name                           |   |   |   |   |   |   |   |   |   |    |    |    | LA |   |   |   |   |   |   |   | Ρ |   | •  | Ρ  |
|----|---------------------------------------------|---|---|---|---|---|---|---|---|---|----|----|----|----|---|---|---|---|---|---|---|---|---|----|----|
|    | Land Cogniont Name                          | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
|    | Alaska Maritime National<br>Wildlife Refuge | - | - | - | - | - | - | - | - | - | -  | -  | -  | -  | 1 | - | - | _ | - | - | - | - | - | -  | -  |
|    | National Petroleum Reserve                  |   |   |   |   |   |   |   |   |   |    |    |    |    |   |   |   |   |   |   |   |   |   |    |    |
| 89 | Alaska                                      | - | - | - | - | - | - | - | - | - | -  | -  | -  | -  | - | - | - | - | - | - | - | - | - | -  | 3  |
| 96 | United States Chukchi Coast                 | - | - | - | - | - | - | - | - | - | -  | -  | -  | -  | 3 | - | 1 | - | - | 6 | - | - | 2 | -  | 3  |

**Notes-** \*\* = Greater than 99.5 percent; - = less than 0.5 percent; LA = Launch Area, P = Pipeline. Rows with all values less than 0.5 percent are not shown.

#### Table A.2-14 Annual Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a Particular Location Will Contact a Certain Group of Land Segments Within 10 Days, Chukchi Sale 193

| ID | Land Segments Name           | LA<br>1 |   |   |   |   |   |   |   |   |   |   |   | LA<br>13 |   |   |   |   | Р<br>5 | -  | - | P<br>8 | P<br>9 | Р<br>10 | Р<br>11 |
|----|------------------------------|---------|---|---|---|---|---|---|---|---|---|---|---|----------|---|---|---|---|--------|----|---|--------|--------|---------|---------|
|    | Alaska Maritime National     |         |   |   |   |   |   |   |   |   |   |   |   |          |   |   |   |   |        |    |   |        |        |         |         |
| 88 | Wildlife Refuge              | -       | - | - | - | - | - | - | - | 1 | - | - | - | -        | 3 | - | 1 | - | -      | -  | - | -      | -      | -       | -       |
|    | National Petroleum Reserve   |         |   |   |   |   |   |   |   |   |   |   |   |          |   |   |   |   |        |    |   |        |        |         |         |
| 89 | Alaska                       | -       | - | - | - | - | - | - | - | - | - | - | 1 | 1        | - | - | - | - | -      | -  | - | -      | 2      | -       | 7       |
| 96 | United States Chukchi Coast  | -       | - | - | - | - | - | - | - | 1 | 4 | 3 | 2 | 2        | 6 | - | 4 | - | -      | 17 | - | -      | 7      | -       | 9       |
| 97 | United States Beaufort Coast | -       | - | - | - | - | - | - | - | - | - | - | - | 2        | - | - | - | - | -      | -  | - | -      | -      | -       | 1       |

**Notes-** \*\* = Greater than 99.5 percent; - = less than 0.5 percent; LA = Launch Area, P = Pipeline. Rows with all values less than 0.5 percent are not shown.

#### Table A.2-15 Annual Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a Particular Location Will Contact a Certain Group of Land Segments Within 30 Days, Chukchi Sale 193

| ID | Land Segment Name                           | LA<br>1 | LA<br>2 | LA<br>3 | LA<br>4 | LA<br>5 | LA<br>6 | LA<br>7 | LA<br>8 | LA<br>9 |    |    |   |   |    | P<br>2 | P<br>3 | P<br>4 | P<br>5 | P<br>6 | P<br>7 | P<br>8 | P<br>9 | Р<br>10 | Р<br>11 |
|----|---------------------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|----|----|---|---|----|--------|--------|--------|--------|--------|--------|--------|--------|---------|---------|
|    | Wrangel Is Nat Res Natural                  |         |         |         |         |         |         |         |         |         |    |    |   |   |    |        |        |        |        |        |        |        |        |         |         |
| 84 | World Heritage Site                         | 1       | -       | -       | -       | -       | -       | -       | -       | -       | -  | -  | - | - | -  | 1      | -      | -      | -      | -      | -      | -      | -      | -       | -       |
|    | Alaska Maritime National<br>Wildlife Refuge | -       | -       | -       | -       | -       | -       | -       | -       | 1       | 1  | -  | - | _ | 5  | -      | 2      | -      | -      | -      | -      | -      | -      | -       | -       |
|    | National Petroleum Reserve<br>Alaska        | -       | -       | -       | -       | _       | -       | -       | 1       | -       | -  | 2  | 5 | 4 | -  | -      | -      | -      | 1      | 1      | -      | 2      | 7      | 1       | 11      |
|    | Kasegaluk Lagoon Special<br>Use Area        | _       | -       | _       | -       | _       | -       | -       | _       | -       | -  | 1  | 1 | _ | _  | _      | _      | _      | -      | 1      | _      | -      | 1      | _       | _       |
|    | Russia Chukchi Coast                        | 1       | -       | -       | 2       | 1       | -       | -       | -       | 7       | 1  | -  | - | - | 8  | 2      | 2      | 1      | -      | -      | -      | -      | -      | -       | -       |
| 96 | United States Chukchi Coast                 | -       | -       | -       | 2       | 3       | 1       | 1       | 1       | 4       | 14 | 11 | 9 | 6 | 11 | 2      | 13     | -      | 3      | 27     | -      | 3      | 19     | 1       | 15      |
| 97 | United States Beaufort Coast                | -       | -       | -       | -       | -       | -       | 1       | 3       | -       | -  | -  | - | 6 | -  | -      | -      | -      | -      | -      | -      | -      | -      | 1       | 3       |

 Table A.2-16 Annual Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting

 at a Particular Location Will Contact a Certain Group of Land Segments Within 60 Days, Chukchi Sale 193

| ID | Land Segment Name                                 | LA<br>1 | LA<br>2 | LA<br>3 | LA<br>4 | LA<br>5 | LA<br>6 | LA<br>7 | LA<br>8 | LA<br>9 | LA<br>10 |    | LA<br>12 |   | Р<br>1 | P<br>2 | P<br>3 | P<br>4 | P<br>5 | P<br>6 | P<br>7 | P<br>8 | P<br>9 | Р<br>10 | Р<br>11 |
|----|---------------------------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|----------|----|----------|---|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|---------|
|    | Wrangel Is Nat Res Natural<br>World Heritage Site | 1       | 1       | -       | 1       | -       | -       | -       | -       | -       | -        | -  | -        | - | -      | 1      | -      | 1      | -      | -      | -      | -      | -      | -       | -       |
|    | Alaska Maritime National<br>Wildlife Refuge       | -       | -       | -       | -       | -       | -       | -       | -       | 2       | 1        | -  | -        | - | 5      | -      | 3      | -      | -      | 1      | -      | -      | -      | -       | -       |
|    | National Petroleum Reserve<br>Alaska              | -       | -       | -       | -       | 1       | 2       | 1       | 3       | -       | 1        | 4  | 8        | 6 | 1      | -      | -      | -      | 2      | 2      | 1      | 4      | 10     | 2       | 15      |
|    | Kasegaluk Lagoon Special<br>Use Area              | -       | -       | -       | -       | 1       | -       | -       | -       | -       | 1        | 2  | 1        | - | I      | -      | -      | -      | 1      | 2      | -      | -      | 2      | -       | -       |
| 91 | Teshekpuk Lake Special Use<br>Area                | -       | -       | -       | -       | -       | -       | -       | 1       | -       | -        | -  | -        | - | 1      | -      | -      | -      | -      | -      | -      | -      | -      | -       | -       |
| 95 | Russia Chukchi Coast                              | 2       | 1       | -       | 3       | 1       | -       | -       | -       | 10      | 2        | -  | -        | - | 11     | 3      | 4      | 1      | 1      | -      | -      | -      | -      | -       | -       |
| 96 | United States Chukchi Coast                       | -       | -       | 1       | 3       | 6       | 3       | 2       | 2       | 5       | 20       | 16 | 15       | 9 | 12     | 3      | 18     | 1      | 7      | 33     | 1      | 7      | 27     | 3       | 20      |
| 97 | United States Beaufort Coast                      | -       | -       | -       | -       | -       | -       | 2       | 6       | -       | -        | -  | 1        | 8 | -      | -      | -      | -      | -      | -      | -      | -      | -      | 3       | 4       |

# Table A.2-17 Annual Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a Particular Location Will Contact a Certain Group of Land Segments Within 180 Days, Chukchi Sale 193

| ID | Land Segment Name                                 | LA<br>1 | LA<br>2 | LA<br>3 | LA<br>4 | LA<br>5 | LA<br>6 | LA<br>7 | LA<br>8 | LA<br>9 | LA<br>10 | LA<br>11 | LA<br>12 | LA<br>13 | Р<br>1 | P<br>2 | P<br>3 | P<br>4 | P<br>5 | P<br>6 | P<br>7 | P<br>8 | P<br>9 | Р<br>10 | Р<br>11 |
|----|---------------------------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|----------|----------|----------|----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|---------|
|    | Wrangel Is Nat Res Natural<br>World Heritage Site | 2       | 1       | -       | 1       | 1       | -       | -       | -       | -       | -        | -        | -        | -        | -      | 1      | -      | 1      | 1      | -      | -      | -      | -      | -       | -       |
|    | Alaska Maritime National<br>Wildlife Refuge       | -       | -       | -       | -       | -       | -       | -       | -       | 2       | 1        | -        | -        | -        | 6      | -      | 3      | -      | -      | 1      | -      | -      | -      | -       | -       |
|    | National Petroleum Reserve<br>Alaska              | 1       | 2       | 2       | 1       | 4       | 4       | 4       | 6       | -       | 2        | 7        | 13       | 9        | -      | 1      | 1      | 2      | 5      | 4      | 3      | 7      | 17     | 4       | 21      |
|    | Kasegaluk Lagoon Special<br>Use Area              | -       | -       | -       | 1       | 1       | -       | -       | -       | -       | 1        | 2        | 1        | -        | -      | -      | -      | -      | 1      | 2      | -      | 1      | 2      | -       | -       |
| 91 | Teshekpuk Lake Special Use<br>Area                | -       | -       | I       | -       | -       | -       | -       | 1       | -       | -        | -        | -        | -        | -      | -      | -      | -      | -      | -      | -      | -      | -      | -       | -       |
| 95 | Russia Chukchi Coast                              | 4       | 2       | 1       | 7       | 1       | 1       | -       | 1       | 21      | 4        | 1        | -        | -        | 23     | 6      | 8      | 2      | 1      | 1      | 1      | -      | -      | -       | -       |
| 96 | United States Chukchi Coast                       | 1       | 1       | 1       | 7       | 11      | 6       | 4       | 5       | 6       | 26       | 23       | 23       | 13       | 14     | 7      | 23     | 2      | 12     | 40     | 3      | 12     | 39     | 5       | 28      |
| 97 | United States Beaufort Coast                      | 1       | 1       | 2       | -       | 1       | 1       | 5       | 11      | -       | -        | -        | 3        | 12       | -      | -      | -      | 1      | 1      | -      | 2      | 1      | 2      | 7       | 7       |

**Notes-** \*\* = Greater than 99.5 percent; - = less than 0.5 percent; LA = Launch Area, P = Pipeline. Rows with all values less than 0.5 percent are not shown.

#### Table A.2-18 Annual Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a Particular Location Will Contact a Certain Group of Land Segments Within 360 Days, Chukchi Sale 193

| ID | Land Segment Name                                 | LA<br>1 | LA<br>2 | LA<br>3 | LA<br>4 | LA<br>5 | LA<br>6 | LA<br>7 |    | LA<br>9 | LA<br>10 | LA<br>11 | LA<br>12 |    | Р<br>1 | P<br>2 | P<br>3 | P<br>4 | P<br>5 | P<br>6 | P<br>7 | P<br>8 | P<br>9 | Р<br>10 | Р<br>11 |
|----|---------------------------------------------------|---------|---------|---------|---------|---------|---------|---------|----|---------|----------|----------|----------|----|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|---------|
|    | Wrangel Is Nat Res Natural<br>World Heritage Site | 2       | 1       | -       | 1       | 1       | -       | -       | 2  | -       | -        | -        | 1        | 1  | -      | 1      | -      | 1      | 1      | -      | -      | -      | 1      | 1       | 1       |
|    | Alaska Maritime National<br>Wildlife Refuge       | -       | -       | -       | -       | -       | -       | -       | -  | 2       | 1        | -        | -        | -  | 6      | -      | 3      | -      | -      | 1      | -      | -      | -      | -       | -       |
|    | National Petroleum Reserve<br>Alaska              | 2       | 3       | 3       | 2       | 5       | 5       | 5       | 8  | -       | 4        | 8        | 15       | 11 | -      | 2      | 2      | 3      | 6      | 5      | 4      | 9      | 19     | 6       | 23      |
|    | Kasegaluk Lagoon Special<br>Use Area              | -       | -       | -       | 1       | 1       | -       | -       | -  | -       | 1        | 2        | 1        | -  | -      | -      | -      | -      | 1      | 2      | -      | 1      | 2      | -       | -       |
| 91 | Teshekpuk Lake Special Use<br>Area                | -       | -       | -       | -       | -       | -       | -       | 2  | -       | -        | -        | -        | 1  | -      | -      | -      | -      | -      | -      | -      | -      | -      | 1       | -       |
| 95 | Russia Chukchi Coast                              | 4       | 2       | 1       | 9       | 2       | 1       | 1       | 3  | 27      | 5        | 1        | 1        | 2  | 28     | 9      | 12     | 3      | 1      | 1      | 1      | 1      | 1      | 1       | 1       |
| 96 | United States Chukchi Coast                       | 1       | 1       | 2       | 7       | 11      | 6       | 6       | 6  | 6       | 27       | 24       | 24       | 13 | 14     | 7      | 23     | 2      | 12     | 41     | 3      | 12     | 40     | 6       | 29      |
| 97 | United States Beaufort Coast                      | 1       | 2       | 3       | 1       | 2       | 3       | 6       | 14 | -       | 1        | 2        | 5        | 14 | -      | 1      | 1      | 2      | 2      | 1      | 3      | 3      | 4      | 9       | 9       |

 Table A.2-19 Annual Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting

 at a Particular Location Will Contact a Certain Boundary Segment Within 3 Days, Chukchi Sale 193

|    | Roundary Sogment Name | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | Ρ | Ρ | Ρ | Ρ | Ρ | Ρ | Ρ | Ρ | Ρ | Ρ  | Р  |
|----|-----------------------|----|----|----|----|----|----|----|----|----|----|----|----|----|---|---|---|---|---|---|---|---|---|----|----|
| טו | Boundary Segment Name | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
|    |                       |    |    |    |    |    |    |    |    |    |    |    |    |    |   |   |   |   |   |   |   |   |   |    |    |

Notes- All boundary segments have all values less than 0.5%; therefore the data are not shown and the tables are left blank.

## Table A.2-20 Annual Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a Particular Location Will Contact a Certain Boundary Segment Within 10 Days, Chukchi Sale 193

|   | Boundary Segment Name | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | Ρ | Ρ | Ρ | Ρ | Ρ | Ρ | Ρ | Ρ | Ρ | Ρ  | Р  |
|---|-----------------------|----|----|----|----|----|----|----|----|----|----|----|----|----|---|---|---|---|---|---|---|---|---|----|----|
| U | Boundary Segment Name | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
|   |                       |    |    |    |    |    |    |    |    |    |    |    |    |    |   |   |   |   |   |   |   |   |   |    |    |

Notes- All boundary segments have all values less than 0.5%; therefore the data are not shown and the tables are left blank.

 Table A.2-21 Annual Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a Particular Location Will Contact a Certain Boundary Segment Within 30 Days, Chukchi Sale 193

| п  | Boundary Segment Name | LA |   |   |   |   |   |   |   |   |    |    |    | LA |   |   |   |   |   | Ρ | Ρ | Ρ | Ρ | Ρ  | Ρ  |
|----|-----------------------|----|---|---|---|---|---|---|---|---|----|----|----|----|---|---|---|---|---|---|---|---|---|----|----|
|    | Boundary Degment Name | 1  | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| 2  | Bering Strait         | -  | - | - | - | - | - | - | - | 1 | -  | -  | -  | -  | 1 | - | - | - | - | - | - | - | - | -  | -  |
| 16 | Chukchi Sea           | -  | 1 | - | - | - | - | - | - |   |    | -  | -  | -  | - | - | - | 1 | - | - | - | - | - | -  | -  |
| 18 | Chukchi Sea           | 1  | 2 | 3 | - | 1 | 2 | 1 | - | - | -  | 1  | -  | -  | - | - | - | 1 | 1 | - | 3 | 1 | - | 1  | -  |
| 19 | Chukchi Sea           | 1  | 2 | 3 | - | 1 | 1 | 2 | 1 | - | -  | -  | -  | -  | - | - | - | 1 | 1 | - | 2 | 1 | - | 1  | -  |
| 20 | Chukchi Sea           | -  | 1 | 2 | - | - | 1 | 1 | 1 | - | -  | -  | -  | -  | 1 | - | - | 1 | - | - | 1 | - | 1 | 1  | -  |
| 24 | Beaufort Sea          | -  | - | - | - | - | - | - | 1 | - | -  | -  | -  | -  | - | - | - | - | - | - | - | - | - | -  | -  |

**Notes-** \*\* = Greater than 99.5 percent; - = less than 0.5 percent; LA = Launch Area, P = Pipeline. Rows with all values less than 0.5 percent are not shown.

| Table A.2-22         Annual Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting |
|---------------------------------------------------------------------------------------------------------------------|
| at a Particular Location Will Contact a Certain Boundary Segment Within 60 Days, Chukchi Sale 193                   |

| ID | Boundary Segment Name | LA<br>1 | LA<br>2 | LA<br>3 | LA<br>4 | LA<br>5 | LA<br>6 | LA<br>7 | LA<br>8 | LA<br>9 | LA<br>10 |   | LA<br>12 |   | Р<br>1 | P<br>2 | P<br>3 | P<br>4 | P<br>5 | P<br>6 | P<br>7 | P<br>8 | P<br>9 | Р<br>10 | Р<br>11 |
|----|-----------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|----------|---|----------|---|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|---------|
| 2  | Bering Strait         | -       | -       | -       | -       | -       | -       | -       | -       | 1       | -        | - | -        | - | 1      | -      | -      | -      | -      | -      | -      | -      | -      | -       | -       |
| 15 | Chukchi Sea           | 1       | -       | -       | -       | -       | -       | -       | -       | -       | -        | - | -        | - | -      | -      | -      | 1      | -      | -      | -      | -      | -      | -       | -       |
| 16 | Chukchi Sea           | 1       | 1       | 1       | -       | -       | -       | -       | -       | -       | -        | - | -        | - | -      | -      | -      | 1      | -      | -      | 1      | -      | -      | -       | -       |
| 17 | Chukchi Sea           | 1       | 1       | 1       | -       | -       | 1       | -       | -       | -       | -        | - | -        | - | -      | -      | -      | 1      | -      | -      | 1      | -      | -      | -       | -       |
| 18 | Chukchi Sea           | 3       | 6       | 8       | 1       | 4       | 6       | 5       | 3       | -       | 2        | 3 | 2        | 2 | -      | 1      | -      | 5      | 4      | 2      | 7      | 5      | 1      | 5       | 2       |
| 19 | Chukchi Sea           | 3       | 7       | 8       | 1       | 3       | 6       | 6       | 3       | -       | 1        | 2 | 2        | 3 | -      | 1      | 1      | 6      | 3      | 1      | 8      | 3      | -      | 6       | 2       |
| 20 | Chukchi Sea           | 2       | 4       | 5       | -       | 2       | 3       | 4       | 4       | -       | 1        | 1 | 1        | 2 | -      | -      | -      | 3      | 2      | 1      | 4      | 2      | -      | 4       | 1       |
| 21 | Chukchi Sea           | -       | 1       | 1       | -       | -       | 1       | 1       | 1       | -       | -        | - | -        | 1 | -      | -      | -      | 1      | 1      | -      | 1      | -      | -      | 1       | -       |
| 22 | Chukchi Sea           | -       | -       | 1       | -       | -       | -       | 1       | 1       | -       | -        | - | -        | - | -      | -      | -      | -      | -      | -      | 1      | -      | -      | 1       | -       |
| 23 | Beaufort Sea          | -       | -       | -       | -       | -       | -       | 1       | 1       | -       | -        | - | -        | 1 | -      | -      | -      | -      | -      | -      | -      | -      | -      | 1       | -       |
| 24 | Beaufort Sea          | -       | -       | -       | -       | -       | -       | -       | 1       | -       | -        | - | -        | 1 | -      | -      | -      | -      | -      | -      | -      | -      | -      | 1       | -       |
| 25 | Beaufort Sea          | -       | -       | -       | -       | -       | -       | -       | 1       | -       | -        | - | -        | - | -      | -      | -      | -      | -      | -      | -      | -      | -      | -       | -       |
| 26 | Beaufort Sea          | -       | -       | -       | -       | -       | -       | -       | 1       | -       | -        | - | -        | - | -      | -      | -      | -      | -      | -      | -      | -      | -      | -       | -       |

Table A.2-23 Annual Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a Particular Location Will Contact a Certain Boundary Segment Within 180 Days, Chukchi Sale 193

| ID | Boundary Segment Name | LA<br>1 | LA<br>2 | LA<br>3 | LA<br>4 | LA<br>5 | LA<br>6 | LA<br>7 | LA<br>8 | LA<br>9 | LA<br>10 | LA<br>11 | LA<br>12 | LA<br>13 | Р<br>1 | P<br>2 | P<br>3 | P<br>4 | P<br>5 | P<br>6 | P<br>7 | P<br>8 | P<br>9 | Р<br>10 | Р<br>11 |
|----|-----------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|----------|----------|----------|----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|---------|
| 2  | Bering Strait         | -       | -       | -       | -       | -       | -       | -       | -       | 1       | -        | -        | -        | -        | 1      | -      | -      | -      | -      | -      | -      | -      | -      | -       | -       |
| 15 | Chukchi Sea           | 1       | 1       | 1       | -       | 1       | 1       | 1       | -       | -       | -        | -        | -        | -        | -      | -      | -      | 1      | 1      | -      | 1      | 1      | -      | 1       | -       |
| 16 | Chukchi Sea           | 2       | 2       | 1       | -       | 1       | 1       | 1       | -       | -       | -        | 1        | 1        | -        | -      | -      | -      | 2      | 1      | -      | 1      | 1      | -      | 1       | 1       |
| 17 | Chukchi Sea           | 2       | 2       | 2       | 1       | 1       | 2       | 1       | 1       | -       | 1        | 1        | 1        | 1        | -      | 1      | -      | 2      | 1      | 1      | 2      | 1      | -      | 1       | 1       |
| 18 | Chukchi Sea           | 5       | 9       | 11      | 2       | 6       | 9       | 9       | 6       | -       | 4        | 7        | 6        | 5        | -      | 2      | 1      | 7      | 7      | 5      | 10     | 9      | 3      | 8       | 5       |
| 19 | Chukchi Sea           | 7       | 12      | 14      | 3       | 9       | 12      | 14      | 9       | -       | 5        | 8        | 9        | 9        | -      | 2      | 2      | 10     | 9      | 6      | 14     | 10     | 6      | 14      | 8       |
| 20 | Chukchi Sea           | 5       | 9       | 11      | 1       | 7       | 10      | 9       | 8       | -       | 3        | 5        | 6        | 7        | -      | 1      | 1      | 8      | 7      | 4      | 10     | 8      | 4      | 9       | 7       |
| 21 | Chukchi Sea           | 1       | 2       | 3       | -       | 1       | 2       | 2       | 3       | -       | -        | 1        | 1        | 2        | -      | -      | -      | 1      | 2      | 1      | 2      | 2      | 1      | 3       | 1       |
| 22 | Chukchi Sea           | -       | -       | 1       | -       | -       | 1       | 1       | 2       | -       | -        | 1        | 1        | 1        | -      | -      | -      | -      | -      | 1      | 1      | 1      | 1      | 2       | 1       |
| 23 | Beaufort Sea          | -       | 1       | 2       | -       | -       | 1       | 2       | 2       | -       | -        | -        | 1        | 1        | -      | -      | -      | -      | -      | -      | 1      | 1      | -      | 2       | 1       |
| 24 | Beaufort Sea          | -       | -       | -       | -       | -       | -       | 1       | 2       | -       | -        | -        | -        | 1        | -      | -      | -      | -      | -      | -      | -      | -      | -      | 1       | 1       |
| 25 | Beaufort Sea          | -       | -       | -       | -       | -       | 1       | -       | 1       | -       | -        | 1        | 1        | 1        | -      | -      | -      | -      | -      | -      | 1      | 1      | 1      | -       | 1       |
| 26 | Beaufort Sea          | -       | -       | 1       | -       | -       | 1       | 1       | 1       | -       | -        | -        | 1        | 1        | -      | -      | -      | -      | -      | -      | 1      | 1      | -      | 1       | 1       |
| 27 | Beaufort Sea          | -       | -       | 1       | -       | -       | -       | 1       | 1       | -       | -        | -        | -        | 1        | -      | -      | -      | -      | -      | -      | 1      | -      | -      | 1       | -       |
| 28 | Beaufort Sea          | -       | -       | -       | -       | -       | -       | -       | 1       | -       | -        | -        | -        | -        | -      | -      | -      | -      | -      | -      | -      | -      | -      | -       | -       |
| 30 | Beaufort Sea          | -       | -       | -       | -       | -       | -       | -       | 1       | -       | -        | -        | -        | 1        | -      | -      | -      | -      | -      | -      | -      | -      | -      | -       | -       |

 Table A.2-24
 Annual Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting

 at a Particular Location Will Contact a Certain Boundary Segment Within 360 Days, Chukchi Sale 193

|    | Boundary Cogmont Name | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | Ρ | Ρ | Ρ | Ρ  | Ρ | Ρ | Ρ  | Ρ  | Ρ | Ρ  | Ρ  |
|----|-----------------------|----|----|----|----|----|----|----|----|----|----|----|----|----|---|---|---|----|---|---|----|----|---|----|----|
| טו | Boundary Segment Name | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 1 | 2 | 3 | 4  | 5 | 6 | 7  | 8  | 9 | 10 | 11 |
| 2  | Bering Strait         | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 1 | - | - | -  | - | - | -  | -  | - | -  | -  |
| 15 | Chukchi Sea           | 1  | 1  | 1  | -  | 1  | 1  | 1  | -  | -  | -  | -  | -  | 1  | - | - | - | 1  | 1 | - | 1  | 1  | - | 1  | -  |
| 16 | Chukchi Sea           | 2  | 2  | 1  | 1  | 1  | 1  | 1  | -  | -  | -  | 1  | 1  | -  | - | - | • | 2  | 1 | - | 1  | 1  | - | 1  | 1  |
| 17 | Chukchi Sea           | 2  | 2  | 2  | 1  | 1  | 2  | 1  | 1  | -  | 1  | 1  | 1  | 1  | - | 1 | - | 2  | 1 | 1 | 2  | 1  | 1 | 1  | 1  |
| 18 | Chukchi Sea           | 5  | 9  | 11 | 2  | 6  | 9  | 9  | 6  | -  | 4  | 7  | 6  | 5  | - | 2 | 1 | 7  | 7 | 5 | 10 | 9  | 4 | 8  | 5  |
| 19 | Chukchi Sea           | 7  | 13 | 14 | 3  | 9  | 13 | 15 | 9  | -  | 5  | 8  | 10 | 10 | - | 2 | 2 | 11 | 9 | 6 | 14 | 11 | 6 | 14 | 9  |
| 20 | Chukchi Sea           | 5  | 9  | 11 | 1  | 7  | 10 | 10 | 8  | -  | 3  | 6  | 6  | 7  | - | 1 | 1 | 8  | 7 | 4 | 11 | 8  | 4 | 10 | 7  |
| 21 | Chukchi Sea           | 1  | 2  | 3  | -  | 1  | 2  | 3  | 3  | -  | 1  | 1  | 2  | 2  | - | - | - | 1  | 2 | 1 | 3  | 2  | 1 | 3  | 1  |
| 22 | Chukchi Sea           | -  | -  | 1  | -  | -  | 1  | 1  | 2  | -  | -  | 1  | 1  | 1  | - | - | - | -  | - | 1 | 1  | 1  | 1 | 2  | 1  |
| 23 | Beaufort Sea          | 1  | 1  | 3  | -  | 1  | 2  | 2  | 3  | -  | 1  | 1  | 1  | 2  | - | - | - | 1  | 1 | 1 | 2  | 1  | 1 | 2  | 2  |
| 24 | Beaufort Sea          | -  | -  | 1  | -  | -  | 1  | 1  | 2  | -  | -  | -  | 1  | 2  | - | - | - | -  | - | - | 1  | 1  | - | 2  | 1  |
| 25 | Beaufort Sea          | -  | -  | -  | -  | -  | 1  | -  | 1  | -  | -  | 1  | 1  | 1  | - | - | - | -  | - | - | 1  | 1  | 1 | -  | 1  |
| 26 | Beaufort Sea          | -  | 1  | 1  | -  | -  | 1  | 2  | 2  | -  | -  | -  | 1  | 2  | - | - | - | -  | - | - | 1  | 1  | - | 2  | 2  |
| 27 | Beaufort Sea          | -  | -  | 1  | -  | -  | 1  | 1  | 2  | -  | -  | -  | 1  | 1  | - | - | - | -  | - | - | 1  | 1  | - | 1  | 1  |
| 28 | Beaufort Sea          | -  | -  | -  | 1  | -  | -  | -  | 1  | -  | -  | 1  | -  | -  | - | - | 1 | -  | - | - | -  | -  | - | -  | -  |
| 30 | Beaufort Sea          | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 1  | - | - | - | -  | - | - | -  | -  | - | -  | -  |
| 34 | Beaufort Sea          | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | -  | - | - | - | -  | - | - | -  | -  | - | -  | -  |
| 35 | Beaufort Sea          | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | -  | - | - | - | -  | - | - | -  | -  | - | -  | -  |

|    | Environmental Resource                           | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | Ρ  | Р | Р  | Р | Р  | Р  | Р  | Р  | Р  | Р  | Р  |
|----|--------------------------------------------------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|---|----|---|----|----|----|----|----|----|----|
| טו | Area Name                                        | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 1  | 2 | 3  | 4 | 5  | 6  | 7  | 8  | 9  | 10 | 11 |
| —  | LAND                                             | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | 6  | - | 1  | - | -  | 7  | -  | -  | 3  | -  | 7  |
| 1  | Kasegaluk Lagoon                                 | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | - | -  | - | -  | 9  | -  | -  | -  | -  | -  |
| 6  | ERA 6                                            | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 4  | 6  | -  | - | -  | - | -  | -  | -  | -  | 26 | -  | 46 |
| 10 | Ledyard Bay Spectacled<br>Eider Critical Habitat | -  | -  | -  | -  | -  | -  | -  | -  | -  | 12 | 8  | -  | -  | -  | - | 24 | - | -  | 62 | -  | -  | -  | -  | -  |
| 14 | Cape Thompson Seabird<br>Colony Area             | -  | -  | -  | -  | -  | -  | -  | -  | 5  | -  | -  | -  | -  | 36 | - | 1  | - | -  | -  | I  | -  | I  | I  | -  |
| 15 | Cape Lisburne Seabird<br>Colony Area             | -  | -  | -  | -  | -  | -  | -  | -  | 7  | 3  | -  | -  | -  | 49 | - | 28 | - | -  | -  | -  | -  | -  | -  | -  |
|    | ERA 18                                           | -  | -  | -  | -  | -  | -  | -  | -  | 3  | -  | -  | -  | -  | 2  | - | -  | - | -  | -  | •  | -  | -  | -  | -  |
|    | Chukchi Spring Lead 1                            | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 6  | - | -  | - | -  | -  | -  | -  | -  | -  | -  |
|    | Chukchi Spring Lead 2                            | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | - | 4  | - | -  | 1  | -  | -  | -  | -  | -  |
|    | Chukchi Spring Lead 3                            | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | - | -  | - | -  | 7  | -  | -  | -  | -  | -  |
|    | Chukchi Spring Lead 4                            | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | 2  | -  | -  | - | -  | - | -  | -  | -  | -  | 12 | -  | -  |
|    | Chukchi Spring Lead 5                            | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | - | -  | - | -  | -  | -  | -  | -  | -  | 9  |
|    | ERA 35                                           | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 6  | 38 | 30 | -  | - | -  | - | -  | -  | -  | 14 | 40 | 1  | 42 |
|    | ERA 36                                           | -  | -  | -  | 1  | 6  | 1  | -  | -  | -  | 25 | 34 | -  | -  | -  | 1 | 1  | - | 14 | 35 | -  | -  | 1  | -  | -  |
| 38 | Pt. Hope Subsistence Area                        | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 11 | - | 2  | - | -  | -  | -  | -  | -  | -  | -  |
| 39 | Point Lay Subsistence Area                       | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | - | -  | - | -  | 27 | -  | -  | -  | -  | -  |
| 40 | Wainwright Subsistence<br>Area                   | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | 2  | -  | -  | - | -  | - | -  | 4  | -  | -  | 26 | -  | 3  |
|    | Barrow Subsistence Area 2                        | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | - | -  | - | -  | -  | -  | -  | -  | -  | -  |
|    | ERA 45                                           | -  | -  | -  | -  | -  | -  | -  | -  | 5  | -  | -  | -  | -  | 25 | - | 9  | - | -  | -  | -  | -  | -  | -  | -  |
| 46 | Herald Shoal Polynya                             | -  | -  | -  | 1  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | - | -  | - | -  | -  | -  | -  | -  | -  | -  |
|    | Ice/Sea Segment 10                               | 2  | -  | -  | 11 | 14 | -  | -  | -  | 1  | -  | -  | -  | -  | -  | 4 | -  | 1 | 10 | -  | •  | -  | -  | -  | -  |
| 48 | Ice/Sea Segment 11                               | -  | -  | -  | -  | 1  | 24 | 1  | -  | 1  | -  | 1  | -  | -  | -  | - | -  | - | -  | -  | 12 | 37 | -  | -  | -  |
| 49 | Hanna's Shoal Polynya                            | -  | 1  | 15 | -  | -  | 1  | 1  | -  | -  | -  | -  | -  | -  | -  | - | -  | - | -  | -  | 5  | -  | -  | -  | -  |
|    | Ice/Sea Segment 12                               | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 3  | 16 | -  | -  | - | -  | - | -  | -  | -  | 28 | 1  | -  | -  |
| 51 | Ice/Sea Segment 13                               | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 10 | 10 | -  | - | -  | - | -  | -  | -  | -  | -  | -  | 22 |
| 52 | Ice/Sea Segment 14                               | -  | -  | -  | -  | -  | -  | -  | 9  | I  | -  | -  | -  | 17 | -  | - | -  | - | -  | -  | I  | -  | -  | I  | -  |
| 56 | ERA 56                                           | -  | -  | 1  | -  | -  | 18 | 12 | -  | -  | -  | 3  | 34 | 2  | -  | - | -  | - | -  | -  | 8  | 42 | 4  | 1  | 3  |
| 64 | Peard Bay                                        | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 3  | -  | - | -  | - | -  | -  | -  | -  | -  | -  | 36 |
| -  | ERA 70                                           | 1  | 1  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | - | -  | 1 | -  | -  | •  | -  | -  | I  | -  |
| 99 | ERA 99                                           | -  | -  | -  | 1  | 10 | 1  | -  | -  | -  | 41 | 56 | 1  | -  | -  | 1 | 1  | - | 24 | 57 | -  | -  | 1  | -  | -  |

 Table A.2-25
 Summer Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting

 at a Particular Location Will Contact a Certain Environmental Resource Area Within 3 Days, Chukchi Sale 193

|    | Environmental Resource         | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA  | LA | LA | Ρ  | Ρ  | Ρ  | Ρ | Ρ  | Ρ  | Ρ  | Ρ  | Ρ  | Ρ        | Ρ  |
|----|--------------------------------|----|----|----|----|----|----|----|----|----|----|-----|----|----|----|----|----|---|----|----|----|----|----|----------|----|
| ID | Area Name                      | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11  | 12 | 13 | 1  | 2  | 3  | 4 | 5  | 6  | 7  | 8  | 9  | 10       | 11 |
| —  | LAND                           | -  | -  | -  | -  | -  | -  | -  | 1  | 3  | 5  | 5   | 5  | 8  | 12 | -  | 6  | - | -  | 20 | -  | -  | 13 | 1        | 18 |
| 1  | Kasegaluk Lagoon               | -  | -  | -  | -  | -  | -  | -  | -  | _  | 4  | 5   | 1  | -  | -  | -  | 1  | - | -  | 21 | -  | -  | 2  | -        | -  |
|    | Point Barrow, Plover Islands   | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -   | -  | 2  | -  | -  | -  | - | -  | -  | -  | -  | -  | -        | -  |
| 3  | ERA 3                          | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -   | -  | -  | 1  | -  | -  | - | -  | -  | -  | -  | -  | -        | -  |
|    | ERA 6                          | -  | -  | -  | -  | -  | -  | -  | 2  | -  | -  | 3   | 13 | 17 | -  | -  | -  | - | -  | 1  | -  | 1  | 39 | 1        | 54 |
|    | Ledyard Bay Spectacled         | -  | 1  | -  | 1  | 1  | -  | -  | -  | 3  | 24 | 14  | 1  | -  | 4  | 1  | 32 | - | 1  | 67 | -  | -  | 1  | -        | _  |
|    | Eider Critical Habitat         |    |    |    | •  |    |    |    |    | Ŭ  |    | ••• |    |    | •  |    | 02 |   |    | 0. |    |    | •  | <u> </u> |    |
|    | Cape Thompson Seabird          | -  | -  | -  | -  | -  | -  | -  | -  | 11 | 1  | -   | -  | _  | 42 | -  | 5  | - | -  | -  | -  | -  | -  | -        | -  |
|    | Colony Area                    |    |    |    |    |    |    |    |    |    |    |     |    |    |    |    | Ŭ  |   |    |    |    |    |    | <u> </u> |    |
|    | Cape Lisburne Seabird          | -  | -  | -  | 1  | -  | -  | -  | -  | 14 | 9  | 1   | -  | -  | 54 | -  | 34 | - | -  | 3  | -  | -  | -  | -        | -  |
|    | Colony Area                    |    |    |    | -  |    |    |    |    |    | -  |     |    |    |    |    | -  |   |    | -  |    |    |    | —        |    |
| -  | ERA 18                         | -  | -  | -  | 3  | -  | -  | -  | -  | 20 | 3  | -   | -  | -  | 17 | 1  | 5  | - | -  | -  | -  | -  | -  | -        | -  |
|    | Chukchi Spring Lead 1          | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -   | -  | -  | 7  | -  | 1  | - | -  | -  | -  | -  | -  | -        | -  |
|    | Chukchi Spring Lead 2          | -  | -  | -  | -  | -  | -  | -  | -  | -  | 2  | -   | -  | -  | -  | -  | 5  | - | -  | 2  | -  | -  | -  | -        | -  |
|    | Chukchi Spring Lead 3          | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | 2   | -  | -  | -  | -  | -  | - | -  | 9  | -  | -  | -  | -        | -  |
|    | Chukchi Spring Lead 4          | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 2   | 3  | -  | -  | -  | -  | - | -  | 1  | -  | -  | 13 | -        | -  |
|    | Chukchi Spring Lead 5          | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -   | 1  | 1  | -  | -  | -  | - | -  | -  | -  | -  | -  | -        | 10 |
|    | Beaufort Spring Lead 6         | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -   | -  | 1  | -  | -  | -  | - | -  | -  | -  | -  | -  | -        | -  |
|    | Beaufort Spring Lead 7         | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -   | -  | 1  | -  | -  | -  | - | -  | -  | -  | -  | -  | -        | -  |
|    | Ice/Sea Segment 1              | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -   | -  | 2  | -  | -  | -  | - | -  | -  | -  | -  | -  | -        | -  |
|    | ERA 35                         | -  | -  | -  | -  | 1  | 2  | 2  | 4  | -  | -  | 12  | 45 | 37 | -  | -  | -  | - | 2  | 1  | -  | 21 | 46 | 5        | 49 |
|    | ERA 36                         | 1  | -  | -  | 6  | 13 | 3  | -  | -  | 1  | 30 | 40  | 4  | -  | -  | 6  | 6  | 1 | 22 | 42 | 1  | 4  | 6  | -        |    |
|    | Pt. Hope Subsistence Area      | -  | -  | -  | -  | -  | -  | -  | -  | 3  | 1  | -   | -  | -  | 18 | -  | 5  | - | -  | -  | -  | -  | -  | -        |    |
|    | Point Lay Subsistence Area     | -  | -  | -  | -  | -  | -  | -  | -  | -  | 6  | 7   | -  | -  | -  | -  | 3  | - | -  | 37 | -  | -  | 1  | -        | -  |
|    | Wainwright Subsistence<br>Area | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | 6   | 8  | 1  | -  | -  | -  | - | 1  | 11 | -  | -  | 38 | -        | 7  |
|    | Barrow Subsistence Area 2      | -  | -  | -  | -  | -  | -  | -  | 2  | -  | -  | -   | -  | 4  | -  | -  | -  | - | -  | -  | -  | -  | -  | -        | 1  |
| 45 | ERA 45                         | -  | -  | -  | -  | -  | -  | -  | -  | 15 | 3  | -   | -  | -  | 41 | -  | 16 | - | -  | 1  | -  | -  | -  | -        | -  |
| 46 | ERA 45                         | 2  | -  | -  | 9  | 2  | -  | -  | -  | -  | -  | -   | -  | -  | -  | 7  | 1  | - | 1  | -  | -  | -  | -  | -        | -  |
| 47 | Ice/Sea Segment 10             | 6  | 1  | -  | 15 | 22 | 3  | -  | -  | -  | 2  | 3   | -  | -  | -  | 10 | -  | 5 | 21 | 2  | -  | 1  | -  | -        | -  |
| 48 | Ice/Sea Segment 11             | 1  | 4  | 5  | -  | 6  | 34 | 4  | -  | -  | 1  | 6   | 3  | 1  | -  | -  | -  | 3 | 5  | 1  | 21 | 43 | 1  | 1        | -  |
| 49 | Hanna's Shoal Polynya          | -  | 5  | 29 | -  | 1  | 6  | 5  | 1  | -  | -  | -   | -  | -  | -  | -  | -  | 1 | -  | -  | 16 | 1  | -  | 2        | -  |
|    | Ice/Sea Segment 12             | -  | -  | -  | -  | -  | 4  | 2  | -  | -  | -  | 6   | 25 | 3  | -  | -  | -  | - | -  | -  | 1  | 37 | 5  | 1        | 6  |
|    | Ice/Sea Segment 13             | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -   | 17 | 16 | -  | -  | -  | - | -  | -  | -  | 2  | 4  | 2        | 35 |
|    | Ice/Sea Segment 14             | -  | -  | -  | -  | -  | -  | 1  | 17 | -  | -  | -   | -  | 23 | -  | -  | -  | - | -  | -  | -  | -  | -  | 4        | 2  |
|    | ERA 56                         | -  | 2  | 6  | -  | 2  | 25 | 20 | 1  | -  | -  | 8   | 41 | 9  | -  | -  | -  | 2 | 2  | 1  | 15 | 50 | 11 | 7        | 13 |
| 64 | Peard Bay                      | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -   | 3  | 11 | -  | -  | -  | - | -  | -  | -  | -  | 2  | 1        | 44 |
| 70 | ERA 70                         | 4  | 4  | 1  | -  | -  | -  | -  | -  | -  | -  | -   | -  | -  | -  | -  | -  | 4 | -  | -  | 1  | -  | -  | -        | -  |
| 99 | ERA 99                         | 1  | -  | -  | 8  | 20 | 5  | -  | -  | 1  | 48 | 63  | 5  | -  | -  | 8  | 8  | 1 | 36 | 66 | 1  | 5  | 7  | -        | -  |

Table A.2-26Summer Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at aParticular Location Will Contact a Certain Environmental Resource Area Within 10 Days, Chukchi Sale 193

| ID | Environmental Resource<br>Area Name              | LA<br>1 | LA<br>2 | LA<br>3 | LA<br>4 | LA<br>5 | LA<br>6 | LA<br>7 | LA<br>8 | LA<br>9 | LA<br>10 | LA<br>11 | LA<br>12 | LA<br>13 | P<br>1 | P<br>2 | P<br>3 | P<br>4 | P<br>5 | P<br>6 | P<br>7 | P<br>8 | P<br>9 | P<br>10 | P<br>11 |
|----|--------------------------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|----------|----------|----------|----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|---------|
| -  |                                                  | -       | _       | -       | -       | _       | -       | -       | -       | -       |          |          |          |          | -      | -      |        | •      | 7      | _      |        |        |        |         | -       |
|    | LAND                                             | 1       | 1       | 1       | 7       | 6       | 2       | 3       | 10      | 20      | 21       | 19       | 18       | 23       | 33     | 6      | 22     | 1      | -      | 36     | 1      | 7      | 32     | 6       | 34      |
|    | Kasegaluk Lagoon                                 | -       | -       | -       | 2       | 3       | -       | -       | -       | 1       | 11       | 13       | 3        | -        | 1      | 2      | 6      | -      | 4      | 31     | -      | 1      | 7      | -       | -       |
|    | Point Barrow, Plover Islands                     | -       | -       | -       | -       | -       | -       | 1       | 5       | -       | -        | -        | -        | 6        | -      | -      | -      | -      | -      | -      | -      | -      | -      | 2       | 1       |
| -  | ERA 3                                            | -       | -       | -       | 2       | -       | -       | -       | -       | 7       | 2        | -        | -        | -        | 7      | 1      | 4      | -      | -      | -      | -      | -      | -      | -       | -       |
|    | ERA 4                                            | -       | -       | -       | -       |         | -       |         |         | 3       | 1        | -        |          |          | 3      | -      | 1      |        |        |        | -      | -      |        |         |         |
|    | ERA 6                                            | -       | -       | -       | 1       | 3       | 3       | 5       | 9       | -       | 2        | 12       | 28       | 30       | -      | 1      | -      | 1      | 5      | 4      | 1      | 10     | 54     | 9       | 62      |
|    | Ledyard Bay Spectacled<br>Eider Critical Habitat | -       | -       | -       | 6       | 6       | 2       | -       | -       | 10      | 36       | 21       | 3        | -        | 10     | 5      | 41     | -      | 7      | 71     | 1      | 2      | 5      | -       | -       |
|    | Wrangel Island 12 nmi Buffer                     | 2       | 1       | 1       | 1       | 1       | -       | -       | -       | -       | -        | -        | -        | -        | -      | 1      | -      | 1      | 1      | -      | 1      | -      | -      | -       | -       |
|    | ERA 13                                           | -       | -       | -       | -       | -       | -       | -       | -       | -       | -        | -        | -        | -        | 1      | -      | -      | -      | -      | -      | -      | -      | -      | -       | -       |
| 14 | Cape Thompson Seabird<br>Colony Area             | -       | -       | -       | 2       | 1       | -       | -       | -       | 16      | 5        | 1        | -        | -        | 46     | 1      | 10     | -      | -      | 3      | -      | -      | -      | -       | -       |
| 15 | Cape Lisburne Seabird<br>Colony Area             | -       | 1       | -       | 3       | 2       | -       | -       | -       | 21      | 16       | 3        | -        | -        | 58     | 3      | 39     | -      | 2      | 8      | -      | -      | 1      | -       | -       |
| 16 | ERA 16                                           | -       | -       | -       | 1       | -       | -       | -       | -       | 5       | 1        | -        | -        | -        | 5      | -      | 2      | -      | -      | -      | -      | -      | -      | -       | -       |
| 18 | ERA 18                                           | 3       | 1       | •       | 16      | 7       | 1       | I       | -       | 42      | 18       | 5        | -        | I        | 37     | 12     | 24     | 2      | 5      | 8      | I      | 1      | 1      | -       | -       |
| 19 | Chukchi Spring Lead 1                            | -       | -       | -       | -       | -       | -       | -       | -       | 1       | -        | -        | -        | -        | 8      | -      | 1      | -      | -      | -      | -      | -      | -      | -       | -       |
| 20 | Chukchi Spring Lead 2                            | -       | -       | I       | -       | I       | -       | I       | -       | -       | 3        | 1        | -        | I        | -      | I      | 6      | I      | -      | 3      | I      | -      | -      | -       | -       |
| 21 | Chukchi Spring Lead 3                            | -       | -       | -       | -       | -       | -       | -       | -       | -       | 2        | 3        | -        | -        | -      | -      | -      | -      | 1      | 10     | -      | -      | -      | -       | -       |
|    | Chukchi Spring Lead 4                            | -       | -       | -       | -       | -       | -       | -       | -       | -       | -        | 3        | 3        | -        | -      | -      | -      | -      | 1      | 1      | -      | 1      | 14     | -       | -       |
| 23 | Chukchi Spring Lead 5                            | -       | 1       | -       | -       | -       | -       | -       | -       | -       | -        | -        | 2        | 2        | -      | -      | -      | -      | -      | -      | -      | 1      | 1      | -       | 10      |
| 24 | Beaufort Spring Lead 6                           | -       | -       | -       | -       | -       | -       | -       | 1       | -       | -        | -        | -        | 1        | -      | -      | -      | -      | -      | -      | -      | -      | -      | -       | -       |
| 25 | Beaufort Spring Lead 7                           | -       | -       | -       | -       | -       | -       | -       | -       | -       | -        | -        | -        | 1        | -      | -      | -      | -      | -      | -      | -      | -      | -      | -       | -       |
|    | Ice/Sea Segment 1                                | -       | -       | -       | -       | -       | -       | 1       | 3       | -       | -        | -        | -        | 4        | -      | -      | -      | -      | -      | -      | -      | -      | -      | 1       | 1       |
| 30 | Ice/Sea Segment 2                                | -       | -       | -       | -       | -       | -       | -       | 1       | -       | -        | -        | -        | 1        | -      | -      | -      | -      | -      | -      | -      | -      | -      | 1       | -       |
| 31 | Ice/Sea Segment 3                                | -       | -       | -       | -       | -       | -       | -       | 1       | -       | -        | -        | -        | -        | -      | -      | -      | -      | -      | -      | -      | -      | -      | -       | -       |
|    | ERA 35                                           | 2       | 2       | 2       | 1       | 4       | 10      | 11      | 13      | -       | 1        | 18       | 54       | 45       | -      | 1      | -      | 3      | 6      | 3      | 4      | 31     | 52     | 14      | 54      |
|    | ERA 36                                           | 4       | 2       | 2       | 14      | 22      | 8       | 2       | -       | 4       | 36       | 46       | 12       | 1        | 2      | 14     | 12     | 4      | 32     | 47     | 3      | 13     | 16     | 1       | 2       |
|    | Pt. Hope Subsistence Area                        | -       | -       | -       | 1       | 1       | -       | -       | -       | 8       | 4        | 1        | -        | -        | 24     | 1      | 9      | -      | 1      | 3      | -      | -      | -      | -       | -       |
|    | Point Lay Subsistence Area                       | -       | -       | -       | 2       | 3       | 1       | -       | -       | 2       | 15       | 13       | 2        | -        | 1      | 2      | 8      | -      | 4      | 45     | -      | 2      | 3      | -       | -       |
|    | Wainwright Subsistence Area                      | -       | -       | -       | 2       | 4       | 2       | 1       | -       | 1       | 6        | 18       | 21       | 4        | -      | 2      | 2      | 1      | 7      | 19     | -      | 7      | 53     | 1       | 13      |
|    | Barrow Subsistence Area 2                        | -       | -       | -       | -       | -       | -       | 1       | 8       | -       | -        | -        | 1        | 8        | -      | -      | -      | -      | -      | -      | -      | -      | -      | 2       | 3       |
|    | ERA 45                                           | -       | -       | -       | 3       | 1       | -       | -       | -       | 26      | 11       | 2        | -        | -        | 51     | 2      | 24     | -      | 1      | 6      | -      | -      | -      | -       | -       |
|    | Herald Shoal Polynya                             | 6       | 3       | 1       | 20      | 9       | 2       | -       | -       | 3       | 5        | 3        | -        | -        | 1      | 18     | 5      | 5      | 8      | 3      | 1      | 1      | 1      | -       | -       |
|    | Ice/Sea Segment 10                               | 10      | 4       | 2       | 21      | 29      | 7       | 1       | -       | 1       | 5        | 9        | 3        | -        | -      | 16     | 2      | 10     | 31     | 5      | 3      | 5      | 4      | 1       | 1       |
| -  | Ice/Sea Segment 11                               | 5       | 12      | 14      | 1       | 13      | 43      | 12      | 3       | -       | 2        | 13       | 9        | 4        | -      | 2      | -      | 11     | 14     | 4      | 30     | 51     | 4      | 7       | 3       |
|    | Hanna's Shoal Polynya                            | 4       | 14      | 40      | -       | 3       | 15      | 16      | 8       | -       | 1        | 2        | 2        | 3        | -      | -      | -      | 7      | 3      | 1      | 27     | 7      | -      | 11      | 1       |
|    | Ice/Sea Segment 12                               | 1       | 2       | 2       | -       | 3       | 12      | 8       | 2       | -       | 1        | 10       | 34       | 9        | -      | -      | -      | 2      | 3      | 1      | 7      | 46     | 11     | 5       | 14      |
|    | Ice/Sea Segment 13                               | -       | 1       | 1       | -       | 1       | 3       | 5       | 2       | -       | -        | 3        | 28       | 22       | -      | -      | -      | 1      | 1      | -      | 2      | 9      | 16     | 6       | 43      |
|    | Ice/Sea Segment 14                               | -       | -       | 1       | -       | -       | -       | 4       | 26      | -       | -        | -        | 2        | 27       | -      | -      | -      | -      | -      | -      | -      | -      | 1      | 8       | 7       |
|    | Ice/Sea Segment 15                               | -       | -       | -       | -       | -       | -       | -       | 2       | -       | -        | -        | -        | 1        | -      | -      | -      | -      | -      | -      | -      | -      | -      | 1       | -       |
|    | Ice/Sea Segment 16a                              | -       | -       | -       | -       | -       | -       | -       | 1       | -       | -        | -        | -        | -        | -      | -      | -      | -      | -      | -      | -      | -      | -      | -       | -       |
|    | ERA 56                                           | 5       | 9       | 15      | 1       | 6       | 34      | 32      | 8       | -       | 1        | 15       | 49       | 19       | -      | 1      | -      | 7      | 6      | 3      | 24     | 58     | 22     | 20      | 23      |
|    | ERA 59                                           | -       | -       | -       | 1       | -       | -       | -       | -       | 2       | 1        | -        | -        | -        | 2      | 1      | 1      | -      | -      | -      | -      | -      | -      | -       | -       |
|    | ERA 61                                           | -       | -       | -       | -       | -       | -       | -       | -       | 3       | 1        | -        | -        | -        | 3      | -      | 1      | -      | -      | -      | -      | -      | -      | -       | -       |
|    | ERA 63                                           | 2       | 2       | 1       | -       | -       | -       | -       | -       | -       | -        | -        | -        | -        | -      | -      | -      | 2      | -      | -      | -      | -      | -      | -       | -       |
|    | Peard Bay                                        | -       | -       | -       | -       | -       | 1       | 3       | 5       | -       | -        | 2        | 10       | 20       | -      | -      | -      | -      | 1      | -      | -      | 4      | 5      | 6       | 51      |
|    | ERA 66                                           | -       | - (     | -       | -       | -       | -       | -       | 2       | -       | -        | -        | -        | 1        | -      | -      | -      | -      | -      | -      | -      | -      | -      | 1       | -       |
|    | ERA 70                                           | 8       | 9       | 6       | -       | 1       | 2       | 1       | -       | -       | -        | -        | -        | -        | -      | -      | -      | 8      | 1      | -      | 5      | 1      | -      | 1       | -       |
|    | ERA 82                                           | -       | -       | -       | -       | -       | -       | -       | -       | 1       | -        | -        | -        | -        | 1      | -      | -      | -      | -      | -      | -      | -      | -      | -       | -       |
| 99 | ERA 99                                           | 4       | 3       | 2       | 19      | 33      | 12      | 2       | -       | 5       | 54       | 69       | 14       | 1        | 2      | 18     | 16     | 6      | 47     | 69     | 4      | 16     | 18     | 1       | 2       |

 Table A.2-27
 Summer Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a

 Particular Location Will Contact a Certain Environmental Resource Area Within 30 Days, Chukchi Sale 193

| ID | Environmental Resource                     |     |        |         |         |         | LA      |    |    |      |        |        |        |    | Ρ       | Ρ       | Ρ      | Ρ       | Ρ       | Ρ      | Ρ   | Ρ   | Ρ      | Ρ   | Р  |
|----|--------------------------------------------|-----|--------|---------|---------|---------|---------|----|----|------|--------|--------|--------|----|---------|---------|--------|---------|---------|--------|-----|-----|--------|-----|----|
|    | Area Name                                  | 1   | 2      | 3       | 4       | 5       | 6       | 7  | 8  | 9    | 10     | 11     | 12     | 13 | 1       | 2       | 3      | 4       | 5       | 6      | 7   | 8   | 9      | 10  | 11 |
| —  | Land                                       | 2   | 2      | 2       | 8       | 10      | 7       | 8  | 18 | 21   | 27     | 27     | 28     | 32 | 34      | 7       | 27     | 2       | 12      | 43     | 3   | 13  | 40     | 13  | 44 |
| 1  | Kasegaluk Lagoon                           | -   | -      | -       | 3       | 4       | 1       | -  | -  | 2    | 14     | 16     | 5      | -  | 1       | 3       | 7      | -       | 5       | 34     | -   | 3   | 8      | -   | -  |
|    | Point Barrow, Plover Islands               | -   | -      | -       | -       | -       | -       | 2  | 9  | -    | -      | -      | -      | 8  | -       | -       | -      | -       | -       | -      | -   | -   | -      | 3   | 3  |
| 3  | ERA 3                                      | -   | -      | -       | 2       | -       | -       | -  | -  | 7    | 2      | -      | -      | -  | 7       | 1       | 4      | -       | -       | -      | -   | -   | -      | -   | -  |
|    | ERA 4                                      | -   | -      | -       | -       | -       | -       | -  | -  | 3    | 1      | -      | -      | -  | 3       | -       | 1      | -       | -       | -      | -   | -   | -      | -   | -  |
| 6  | ERA 6                                      | 1   | 2      | 2       | 2       | 6       | 8       | 11 | 15 | -    | 3      | 16     | 35     | 36 | -       | 2       | 1      | 2       | 9       | 6      | 4   | 16  | 58     | 16  | 66 |
| 10 | Ledyard Bay Spectacled                     | 1   | -      | -       | 7       | 8       | 2       | -  | -  | 11   | 38     | 22     | 4      | -  | 11      | 6       | 43     | -       | 9       | 72     | 1   | 3   | 6      | -   | -  |
| 44 | Eider Critical Habitat                     | 2   | 1      | 1       | 1       | 1       | 1       |    |    |      |        |        |        |    |         | 2       |        | 2       | 1       |        | 1   |     |        |     |    |
| 11 | Wrangel Island12 nmi Buffer<br>ERA 13      | 2   | 1      | 1       | -       | 1       | 1       | -  | -  | -    | -      | -      | -      | -  | - 1     | 2       | -      | 2       | 1       | -      | 1   | -   | -      | -   | -  |
|    | Cape Thompson Seabird                      | -   | -      | -       | - 2     | - 1     | -       | -  | -  | - 16 | -      | -      |        | -  | -       | -       | -      | -       | -       | -      | -   | -   | -      | -   | -  |
| 14 | Colony Area                                | -   | -      | -       | 2       | 1       | -       | -  | -  | 10   | 0      |        | -      | -  | 46      | 1       | 11     | -       | -       | 3      | -   | -   | -      | -   | -  |
| 15 | Cape Lisburne Seabird                      | -   | -      | -       | 4       | 3       | -       | -  | -  | 22   | 19     | 4      | -      | -  |         |         |        |         |         |        |     |     |        |     |    |
|    | Colony Area                                |     | _      | _       | -       | 5       | _       | _  | _  | ~~   | 10     | -      | _      | _  | 58      | 3       | 40     | -       | 2       | 9      | -   | -   | 1      | -   | -  |
| 16 | ERA 16                                     | -   | -      | -       | 1       | -       | -       | -  | -  | 5    | 1      | -      | -      | -  | 5       | -       | 2      | -       | -       | -      | -   | -   | -      | -   | -  |
| -  | ERA 18                                     | 3   | 1      | -       | 16      | 7       | 1       | -  | -  | 42   | 19     | 5      | 1      | -  | 37      | 12      | 25     | 2       | 5       | 8      | -   | 1   | 1      | -   | -  |
|    | Chukchi Spring Lead 1                      | -   | -      | -       | -       | -       | -       | -  | -  | 1    | -      | -      | -      | -  | 8       | -       | 1      | -       | -       | -      | -   | -   | -      | -   | -  |
|    | Chukchi Spring Lead 2                      | -   | -      | -       | -       | -       | -       | -  | -  | -    | 3      | 1      | -      | -  | -       | -       | 6      | -       | -       | 3      | -   | -   | -      | -   | -  |
|    | Chukchi Spring Lead 3                      | -   | -      | -       | -       | -       | -       | -  | -  | -    | 2      | 3      | -      | -  | -       | -       | -      | -       | 1       | 10     | -   | -   | -      | -   | -  |
|    | Chukchi Spring Lead 4                      | -   | -      | -       | -       | -       | -       | -  | -  | -    | -      | 3      | 3      | -  | -       | -       | -      | -       | 1       | 1      | -   | 1   | 14     | -   | -  |
| 23 | Chukchi Spring Lead 5                      | -   | -      | -       | -       | -       | -       | -  | -  | -    | -      | -      | 2      | 2  | -       | -       | -      | -       | -       | -      | -   | 1   | 1      | -   | 10 |
| 24 | Beaufort Spring Lead 6                     | -   | -      | -       | -       | -       | -       | -  | 1  | -    | -      | -      | -      | 1  | -       | -       | -      | -       | -       | -      | -   | -   | -      | -   | -  |
|    | Beaufort Spring Lead 7                     | -   | -      | -       | -       | -       | -       | ١  | -  | ١    | ١      | -      | ١      | 1  | -       | 1       | -      | -       | -       | -      | -   | -   | -      | -   | -  |
|    | Ice/Sea Segment 1                          | -   | -      | -       | -       | -       | -       | 1  | 5  | 1    | 1      | -      | 1      | 5  | -       | 1       | -      | -       | -       | -      | -   | -   | -      | 2   | 2  |
| 30 | Ice/Sea Segment 2                          | -   | -      | -       | -       | -       | -       | 1  | 2  | -    | -      | -      | -      | 2  | -       | -       | -      | -       | -       | -      | -   | -   | -      | 2   | -  |
| 31 | Ice/Sea Segment 3                          | -   | -      | -       | -       | -       | -       | 1  | 2  | -    | -      | -      | -      | 1  | -       | -       | -      | -       | -       | -      | -   | -   | -      | 1   | -  |
|    | Ice/Sea Segment 5                          | -   | -      | -       | -       | -       | -       | -  | 1  | -    | -      | -      | -      | -  | -       | -       | -      | -       | -       | -      | -   | -   | -      | -   | -  |
|    | ERA 35                                     | 3   | 5      | 7       | 2       | 8       | 16      | 20 | 20 | -    | 2      | 22     | 60     | 50 | -       | 2       | -      | 6       | 10      | 5      | 9   | 38  | 58     | 24  | 59 |
|    | ERA 36                                     | 5   | 4      | 2       | 17      | 26      | 11      | 4  | 1  | 5    | 38     | 51     | 16     | 3  | 2       | 16      | 12     | 6       | 37      | 50     | 4   | 17  | 21     | 2   | 4  |
|    | Pt. Hope Subsistence Area                  | -   | -      | -       | 1       | 1       | -       | -  | -  | 8    | 6      | 1      | -      | -  | 24      | 1       | 10     | -       | 1       | 3      | -   | -   | -      | -   | -  |
|    | Point Lay Subsistence Area                 | -   | -      | -       | 3       | 5       | 2       | -  | -  | 2    | 18     | 16     | 3      | -  | 2       | 3       | 10     | -       | 6       | 48     | 1   | 3   | 5      | -   | -  |
| 40 | Wainwright Subsistence                     | 1   | 1      | -       | 3       | 8       | 5       | 2  | 2  | 1    | 9      | 23     | 27     | 7  | -       | 3       | 4      | 2       | 11      | 23     | 1   | 13  | 59     | 3   | 16 |
| 40 | Area                                       |     |        |         | -       | -       | -       | 0  | 10 |      | -      |        | 4      | 10 |         | -       |        |         |         | _      |     | _   |        | -   | 4  |
|    | Barrow Subsistence Area 2                  | -   | -      | -       | -       | -       | -       | 2  | 12 | -    | -      | - 0    | 1      | 10 | -       | - 0     | -      | -       | - 0     | -      | -   | -   | 1      | 3   | 4  |
|    | ERA 45                                     | - 7 | -<br>3 | -<br>1  | 3<br>21 | 2<br>9  | -       | -  | -  | 26   | 13     | 3<br>4 | -<br>1 | -  | 51<br>1 | 2<br>19 | 25     | -<br>5  | 2<br>8  | 8<br>5 | - 1 | - 2 | -      | -   | -  |
|    | Herald Shoal Polynya<br>Ice/Sea Segment 10 | 11  | 3<br>5 | 2       | 21      | 9<br>31 | 3<br>9  | 2  | -  | 3    | 6<br>6 | 4      | 5      | -  | -       | 19      | 6<br>2 | 5<br>11 | 8<br>33 | 5<br>6 | 3   | 6   | 1<br>5 | - 1 | -  |
|    | Ice/Sea Segment 11                         | 7   | 15     | 2<br>18 | 22      | 17      | 9<br>47 | 17 | 7  | -    | 4      | 20     | 15     | 8  | -       | 3       | 1      | 14      | 18      | 8      | 34  | 56  | 8      | 12  | 8  |
|    | Hanna's Shoal Polynya                      | 7   | 19     | 46      | 1       | 6       | 22      | 24 | 15 | -    | 4      | 20     | 8      | 9  | -       | 3       | -      | 14      | 5       | 0<br>4 | 35  | 15  | о<br>З | 20  | 6  |
|    | Ice/Sea Segment 12                         | 2   | 5      | 40<br>6 | 1       | 5       | 16      | 13 | 5  | -    | 2      | 13     | 38     | 13 | -       | 1       | -      | 5       | 6       | 4      | 11  | 50  | 16     | 10  | 17 |
| 51 | Ice/Sea Segment 13                         | 1   | 2      | 3       | -       | 2       | 7       | 10 | 5  | -    | -      | 5      | 34     | 26 | -       | -       | -      | 2       | 2       | 1      | 5   | 13  | 25     | 11  | 47 |
|    | Ice/Sea Segment 14                         | -   | 1      | 2       | -       | -       | 2       | 7  | 29 | -    | -      | 1      | 4      | 20 | -       | -       | -      | -       | 1       | -      | 1   | 2   | 23     | 13  | 9  |
|    | Ice/Sea Segment 15                         | -   | -      | -       | -       | -       | -       | 2  | 4  | -    | -      | -      | -      | 3  | -       | -       | -      | -       | -       | -      | 1   | -   | -      | 2   | 1  |
|    | Ice/Sea Segment 16a                        | -   | -      | -       | -       | -       | -       | 1  | 3  | -    | -      | -      | -      | 1  | -       | -       | -      | -       | -       | -      | -   | -   | -      | 1   | -  |
| 55 | Ice/Sea Segment 17                         | -   | -      | -       | -       | -       | -       | -  | 1  | -    | -      | -      | -      | -  | -       | -       | -      | -       | -       | -      | -   | -   | _      | -   | -  |
|    | ERA 56                                     | 7   | 14     | 22      | 1       | 9       | 40      | 40 | 15 | -    | 2      | 19     | 56     | 27 | -       | 2       | -      | 11      | 9       | 4      | 31  | 65  | 27     | 29  | 31 |
|    | ERA 59                                     | -   | -      | -       | 1       | -       | -       | -  | -  | 2    | 1      | -      | -      | -  | 2       | 1       | 1      | -       | -       | -      | -   | -   |        | -   | -  |
|    | ERA 61                                     | -   | -      | -       | -       | -       | -       | -  | -  | 3    | 1      | -      | -      | -  | 3       | -       | 1      | -       | -       | -      | -   | -   | -      | -   | -  |
|    | ERA 63                                     | 3   | 2      | 1       | -       | -       | -       | -  | 1  | -    | -      | -      | -      | -  | -       | -       | -      | 2       | -       | -      | 1   | -   | -      | -   | -  |
|    | Peard Bay                                  | -   | 1      | 2       | -       | 2       | 4       | 7  | 8  | -    | -      | 3      | 15     | 23 | -       | -       | -      | 1       | 2       | -      | 2   | 7   | 8      | 10  | 55 |
|    | Smith Bay                                  | -   | -      | -       | -       | -       | -       | -  | 1  | -    | -      | -      | -      | -  | -       | -       | -      | -       | -       | -      | -   | -   | -      | -   | -  |
| 66 | ERA 66                                     | -   | -      | -       | -       | -       | -       | -  | 4  | -    | -      | -      | -      | 2  | -       | -       | -      | -       | -       | -      | -   | -   | -      | 1   | 1  |
| 70 | ERA 70                                     | 9   | 10     | 7       | -       | 1       | 3       | 1  | 1  | -    | -      | 1      | 1      | 1  | -       | 1       | -      | 9       | 1       | -      | 7   | 2   | -      | 1   | -  |
|    | ERA 82                                     | -   | -      | -       | -       | -       | -       | -  | -  | 1    | -      | -      | -      | -  | 1       | -       | -      | -       | -       | -      | -   | -   | -      | -   | -  |
| 99 | ERA 99                                     | 5   | 5      | 3       | 21      | 36      | 15      | 4  | 1  | 6    | 54     | 70     | 18     | 3  | 3       | 19      | 16     | 7       | 50      | 69     | 5   | 20  | 22     | 3   | 4  |

 Table A.2-28
 Summer Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a

 Particular Location Will Contact a Certain Environmental Resource Area Within 60 Days, Chukchi Sale 193

| ID | Environmental Resource       | 1 4 | 1 4 | 1 4     | 1 4     | 1 4     | 1 4    | 1 4 | 1 4     | 1 4 | 1 4      | 1 4      | 1 4     | 1 A      | Р       | Р      | Р       | Р      | Р       | D        | Р      | D       | Р       | Р       | Р        |
|----|------------------------------|-----|-----|---------|---------|---------|--------|-----|---------|-----|----------|----------|---------|----------|---------|--------|---------|--------|---------|----------|--------|---------|---------|---------|----------|
| טו | Area Name                    | 1   | 2   | 1A<br>3 | LA<br>4 | LA<br>5 | 6      | 7   | LA<br>8 | 9   | LA<br>10 | LA<br>11 | 12      | LA<br>13 | P<br>1  | P<br>2 | Р<br>3  | Р<br>4 | Р<br>5  | P<br>6   | P<br>7 | P<br>8  | Р<br>9  | Р<br>10 | 11       |
|    |                              |     |     | -       |         | 12      |        | -   | -       | -   | -        | -        |         | _        |         |        | -       |        | -       | -        |        | -       | -       | -       |          |
|    | LAND                         | 3   | 2   | 3       | 10<br>3 | 4       | 8<br>1 | 12  | 23      | 23  | 29<br>14 | 28<br>16 | 32<br>5 | 35       | 36<br>1 | 9<br>3 | 29<br>7 | 3      | 14<br>6 | 44<br>34 | 4      | 16<br>3 | 45<br>8 | 18      | 47       |
| 1  | Kasegaluk Lagoon             | -   | -   |         | 3       |         |        | -   |         | 2   |          |          | -       | -        | -       | 3      |         | -      | ю<br>-  | -        |        | -       | -       | -       | -        |
|    | Point Barrow, Plover Islands | -   |     | 1       |         | -       | -      | 2   | 9       | -   | -        | -        | 1       | 8        | -       |        | -       | -      |         | -        | -      | -       | 1       | 4       | 3        |
| 3  | ERA 3                        | -   | -   | -       | 2       | -       | -      | -   | -       | 7   | 2        | -        | -       | -        | 7       | 1      | 4       | -      | -       | -        | -      | -       | -       | -       | -        |
| 4  | ERA 4                        | -   | -   | -       | -       | -       | -      | -   | -       | 3   | 1        | -        | -       | -        | 3       | -      | 1       | -      | -       | -        | -      | -       | -       | -       | -        |
| 6  | ERA 6                        | 2   | 3   | 4       | 2       | 7       | 10     | 16  | 18      | -   | 3        | 17       | 38      | 38       | -       | 2      | 1       | 3      | 10      | 7        | 5      | 18      | 59      | 21      | 67       |
| 10 | Ledyard Bay Spectacled       | 1   | -   | -       | 8       | 8       | 2      | 1   | 1       | 11  | 38       | 22       | 4       | -        | 11      | 6      | 43      | -      | 9       | 72       | 1      | 3       | 6       | _       | -        |
|    | Eider Critical Habitat       | _   |     |         |         |         |        |     |         |     |          |          |         |          |         |        | -       | •      |         |          |        | _       | -       |         | <u> </u> |
|    | Wrangel Island 12nmi Buffer  | 2   | 1   | 1       | 1       | 1       | 1      | -   | -       | -   | 1        | 1        | -       | -        | -       | 2      | -       | 2      | 1       | 1        | 1      | -       | -       | -       | -        |
| -  | ERA 13                       | -   | -   | -       | -       | -       | -      | -   | -       | -   | -        | -        | -       | -        | 1       | -      | -       | -      | -       | -        | -      | -       | -       | -       | -        |
| 14 | Cape Thompson Seabird        | -   | -   | -       | 2       | 1       | -      | -   | -       | 16  | 6        | 1        | -       | -        | 46      | 1      | 11      | -      | -       | 3        | -      | -       | -       | -       | -        |
|    | Colony Area                  |     |     |         |         | -       |        |     |         |     | -        | -        |         |          |         |        |         |        |         | -        |        |         |         |         | <u> </u> |
| 15 | Cape Lisburne Seabird        | -   | -   | -       | 4       | 3       | -      | -   | -       | 22  | 19       | 4        | -       | -        | 58      | 3      | 41      | -      | 3       | 9        | -      | -       | 1       | _       | -        |
|    | Colony Area                  |     |     |         |         | -       |        |     |         |     | _        | -        |         |          |         | -      |         |        |         | -        |        |         |         |         | <u> </u> |
|    | ERA 16                       | -   | -   | -       | 1       | -       | -      | -   | -       | 5   | 1        | -        | -       | -        | 5       | -      | 2       | -      | -       | -        | -      | -       | -       | -       | -        |
|    | ERA 18                       | 3   | 1   | -       | 16      | 7       | 1      | -   | -       | 42  | 20       | 5        | 1       | -        | 37      | 12     | 26      | 2      | 5       | 8        | -      | 1       | 1       | -       | -        |
|    | Chukchi Spring Lead 1        | -   | -   | -       | -       | -       | -      | -   | -       | 1   | -        | -        | -       | -        | 8       | -      | 1       | -      | -       | -        | -      | -       | -       | -       | -        |
| 20 | Chukchi Spring Lead 2        | -   | -   | -       | -       | -       | -      | -   | -       | -   | 3        | 1        | -       | -        | -       | -      | 6       | -      | -       | 3        | -      | -       | -       | -       | -        |
|    | Chukchi Spring Lead 3        | -   | -   | -       | -       | -       | -      | -   | -       | -   | 2        | 3        | -       | -        | -       | -      | -       | -      | 1       | 10       | -      | -       | -       | -       | -        |
|    | Chukchi Spring Lead 4        | -   | -   | -       | -       | -       | -      | -   | -       | -   | -        | 3        | 4       | -        | -       | -      | -       | -      | 1       | 1        | -      | 1       | 14      | -       | -        |
|    | Chukchi Spring Lead 5        | -   | -   | -       | -       | -       | -      | -   | -       | -   | -        | -        | 2       | 2        | -       | -      | -       | -      | -       | -        | -      | 1       | 1       |         | 10       |
|    | Beaufort Spring Lead 6       | -   | -   | -       | -       | -       | -      | -   | 1       | -   | -        | -        | -       | 2        | -       | -      | -       | -      | -       | -        | -      | -       | -       | -       | -        |
|    | Beaufort Spring Lead 7       | -   | -   | -       | -       | -       | -      | -   | -       | -   | -        | -        | -       | 1        | -       | -      | -       | -      | -       | -        | -      | -       | -       | -       | -        |
|    | Ice/Sea Segment 1            | -   | -   | -       | -       | -       | 1      | 3   | 6       | -   | -        | -        | 1       | 6        | -       | -      | -       | -      | -       | -        | 1      | 1       | -       | 3       | 3        |
|    | Ice/Sea Segment 2            | -   | -   | 1       | -       | -       | 1      | 4   | 4       | -   | -        | -        | 1       | 2        | -       | -      | -       | -      | -       | -        | 1      | 1       | -       | 3       | -        |
|    | Ice/Sea Segment 3            | -   | -   | 1       | -       | -       | 1      | 3   | 3       | -   | -        | -        | -       | 1        | -       | -      | -       | -      | -       | -        | 1      | 1       | -       | 2       | -        |
|    | Ice/Sea Segment 4            | -   | -   | -       | -       | -       | -      | 1   | 2       | -   | -        | -        | -       | -        | -       | -      | -       | -      | -       | -        | -      | -       | -       | -       | -        |
| 35 | ERA 35                       | 5   | 7   | 9       | 3       | 10      | 18     | 24  | 23      | -   | 2        | 23       | 61      | 52       | -       | 3      | -       | 7      | 12      | 5        | 11     | 40      | 59      | 27      | 61       |
| 36 | ERA 36                       | 5   | 4   | 3       | 18      | 27      | 11     | 4   | 1       | 5   | 39       | 51       | 17      | 3        | 2       | 16     | 12      | 6      | 37      | 50       | 4      | 18      | 22      | 3       | 5        |
|    | Pt. Hope Subsistence Area    | -   | -   | -       | 2       | 1       | -      | -   | -       | 8   | 6        | 2        | -       | -        | 24      | 1      | 10      | -      | 1       | 4        | -      | -       | -       | -       | -        |
|    | Point Lay Subsistence Area   | -   | -   | -       | 4       | 5       | 2      | 1   | -       | 2   | 19       | 16       | 3       | -        | 2       | 3      | 10      | -      | 6       | 48       | 1      | 3       | 5       | -       | -        |
| 40 | Wainwright Subsistence       | 1   | 1   | 1       | 4       | 9       | 6      | 4   | 3       | 1   | 10       | 25       | 29      | 9        | _       | 4      | 4       | 2      | 12      | 24       | 2      | 14      | 60      | 4       | 18       |
|    | Area                         |     | •   | -       | •       | Ŭ       | Ŭ      |     |         |     |          | 20       | -       |          |         | •      |         | _      |         |          | -      | • •     |         | -       | _        |
|    | Barrow Subsistence Area 2    | -   | -   | 1       | -       | -       | -      | 3   | 13      | -   | -        | -        | 2       | 11       | -       | -      | -       | -      | -       | -        | -      | -       | 1       | 5       | 4        |
| 45 | ERA 45                       | -   | -   | -       | 3       | 2       | -      | -   | -       | 26  | 13       | 3        | -       | -        | 51      | 2      | 26      | -      | 2       | 8        | -      | -       | -       | -       | -        |
|    | Herald Shoal Polynya         | 7   | 3   | 1       | 22      | 10      | 3      | 1   | -       | 3   | 6        | 4        | 1       | -        | 1       | 19     | 6       | 5      | 9       | 5        | 1      | 2       | 1       | 1       | -        |
| 47 | Ice/Sea Segment 10           | 11  | 5   | 2       | 22      | 31      | 9      | 2   | 1       | 1   | 6        | 12       | 5       | 1        | -       | 17     | 2       | 11     | 33      | 6        | 4      | 7       | 6       | 1       | 2        |
|    | Ice/Sea Segment 11           | 8   | 17  | 20      | 3       | 18      | 49     | 21  | 10      | -   | 5        | 22       | 20      | 10       | -       | 3      | 1       | 15     | 20      | 9        | 36     | 58      | 12      | 16      | 10       |
|    | Hanna's Shoal Polynya        | 9   | 23  | 49      | 2       | 9       | 28     | 31  | 22      | -   | 4        | 11       | 19      | 17       | -       | 2      | 1       | 14     | 8       | 7        | 40     | 22      | 14      | 27      | 14       |
|    | Ice/Sea Segment 12           | 4   | 8   | 9       | 1       | 7       | 19     | 17  | 8       | -   | 2        | 15       | 41      | 16       | -       | 2      | 1       | 7      | 7       | 3        | 13     | 52      | 21      | 14      | 20       |
|    | Ice/Sea Segment 13           | 2   | 3   | 5       | 1       | 3       | 9      | 15  | 9       | -   | 1        | 8        | 38      | 29       | -       | 1      | 1       | 3      | 3       | 2        | 7      | 17      | 30      | 15      | 49       |
| 52 | Ice/Sea Segment 14           | 1   | 2   | 4       | -       | 1       | 4      | 11  | 30      | -   | -        | 2        | 6       | 30       | -       | -      | -       | 2      | 1       | -        | 4      | 4       | 4       | 15      | 9        |
| 53 | Ice/Sea Segment 15           | -   | 1   | 2       | -       | 1       | 2      | 5   | 6       | -   | -        | 1        | 1       | 4        | -       | -      | -       | 1      | 1       | -        | 3      | 2       | -       | 4       | 1        |
|    | Ice/Sea Segment 16a          | -   | 1   | 3       | -       | 1       | 3      | 5   | 7       | -   | -        | 1        | 1       | 4        | -       | -      | -       | 1      | 1       | -        | 3      | 3       | -       | 5       | 1        |
| 55 | Ice/Sea Segment 17           | -   | -   | -       | -       | -       | -      | 1   | 2       | -   | -        | -        | -       | -        | -       | -      | -       | -      | -       | -        | -      | -       | -       | 1       | -        |
|    | ERA 56                       | 8   | 16  | 24      | 2       | 10      | 42     | 43  | 16      | -   | 2        | 20       | 57      | 28       | -       | 3      | -       | 13     | 11      | 4        | 33     | 67      | 29      | 31      | 32       |
|    | ERA 59                       | -   | -   | -       | 1       | -       | -      | -   | -       | 2   | 1        | -        | -       | -        | 2       | 1      | 1       | -      | -       | -        | -      | -       | -       | -       | -        |
|    | ERA 61                       | -   | -   | -       | -       | -       | -      | -   | -       | 3   | 1        | -        | -       | -        | 3       | -      | 1       | -      | -       | -        | -      | -       | -       | -       | -        |
|    | ERA 63                       | 3   | 2   | 1       | -       | -       | -      | 1   | 2       | -   | -        | -        | -       | -        | -       | -      | -       | 2      | -       | -        | 1      | -       | -       | 1       | -        |
|    | Peard Bay                    | 1   | 2   | 3       | -       | 2       | 5      | 10  | 10      | -   | -        | 4        | 17      | 24       | -       | -      | -       | 2      | 2       | -        | 3      | 9       | 10      | 13      | 56       |
|    | Smith Bay                    | -   | -   | -       | -       | -       | -      | -   | 1       | -   | -        | -        | -       | -        | -       | -      | -       | -      | -       | -        | -      | -       | -       | -       | -        |
|    | ERA 66                       | -   | -   | -       | -       | -       | -      | 1   | 4       | -   | -        | -        | -       | 2        | -       | -      | -       | -      | -       | -        | -      | -       | -       | 1       | 1        |
|    | Harrison Bay/Colville Delta  | -   | -   | -       | -       | -       | -      | -   | 1       | -   | -        | -        | -       | -        | -       | -      | -       | -      | -       | -        | -      | -       | -       | -       | -        |
| 70 | ERA 70                       | 9   | 10  | 8       | -       | 2       | 3      | 2   | 1       | -   | -        | 1        | 1       | 1        | -       | 1      | -       | 9      | 1       | -        | 7      | 2       | 1       | 1       | -        |
|    | ERA 82                       | -   | -   | -       | -       | -       | -      | -   | -       | 1   | -        | -        | -       | -        | 1       | -      | -       | -      | -       | -        | -      | -       | -       | -       | -        |
| 99 | ERA 99                       | 5   | 5   | 3       | 21      | 36      | 15     | 4   | 1       | 6   | 54       | 71       | 18      | 3        | 3       | 19     | 16      | 8      | 50      | 69       | 5      | 21      | 23      | 3       | 5        |

 Table A.2-29
 Summer Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a

 Particular Location Will Contact a Certain Environmental Resource Area Within 180 Days, Chukchi Sale 193

 Table A.2-30
 Summer Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a

 Particular Location Will Contact a Certain Environmental Resource Area Within 360 Days, Chukchi Sale 193

| ID | Environmental Resource                                    | LA     |        | LA     | LA      | LA      |         | LA       | LA             | LA     | LA      | LA      | LA       | LA              | Ρ       | Ρ       | Ρ        | Ρ      | Ρ       | Ρ        | Ρ       | Ρ       | Ρ       | Ρ        | Ρ       |
|----|-----------------------------------------------------------|--------|--------|--------|---------|---------|---------|----------|----------------|--------|---------|---------|----------|-----------------|---------|---------|----------|--------|---------|----------|---------|---------|---------|----------|---------|
|    | Area Name                                                 | 1      | 2      | 3      | 4       | 5       | 6       | 7        | 8              | 9      | 10      | 11      | 12       | 13              | 1       | 2       | 3        | 4      | 5       | 6        | 7       | 8       | 9       | 10       | 11      |
|    | LAND                                                      | 4      | 3      | 6      | 12      | 13      | 10      | 17       | 34             | 28     | 31      | 30      | 34       | 42              | 41      | 10      | 32       | 4      | 15      | 45       | 6       | 18      | 47      | 23       | 50      |
|    | Kasegaluk Lagoon                                          | -      | -      | - 0    | 3       | 4       | 1       | - 0      | -              | 2      | 14      | 16      | 5        | -               | 1       | 3       | 7        | -      | 6       | 34       | -       | 3       | 9       | -        | -       |
|    | Point Barrow, Plover Islands<br>ERA 3                     | -      | -      | 2      | - 2     | -       | 2       | 6        | 13             | -<br>7 | - 2     | -       | 1        | 10              | -7      | -       | -        | -      | -       | -        | 2       | 2       | 1       | 6        | 4       |
|    | ERA 3<br>ERA 4                                            | -      | -      | -      | -       | -       | -       | -        | -              | 3      | 2       | -       | -        | -               | 3       | -       | 4        | -      | -       | -        | -       | -       | -       | -        | -       |
|    | ERA 6                                                     | 2      | 3      | 6      | 2       | 8       | 12      | 20       | 22             | -      | 3       | 18      | 39       | 40              | -       | 2       | 1        | 4      | 11      | 7        | 7       | 20      | 60      | 24       | 68      |
|    | Ledyard Bay SPEI Crit Hab                                 | 1      | -      | -      | 8       | 8       | 2       | 1        | 1              | 11     | 38      | 22      | 4        | -               | 11      | 6       | 43       | -      | 9       | 72       | 1       | 3       | 6       | -        | -       |
|    | Wrangel Island 12nmi Buffer                               | 2      | 1      | 1      | 1       | 1       | 1       | -        | -              | -      | 1       | 1       | -        | -               | -       | 2       | -        | 2      | 1       | 1        | 1       | -       | -       | -        | -       |
| 13 | ERA 13                                                    | -      | -      | -      | -       | -       | -       | -        | -              | -      | -       | -       | -        | -               | 1       | -       | -        | -      | -       | -        | -       | -       | -       | -        | -       |
| 14 | Cape Thompson Seabird<br>Colony Area                      | -      | -      | -      | 2       | 1       | -       | -        | -              | 16     | 6       | 1       | -        | -               | 46      | 1       | 11       | -      | -       | 3        | -       | -       | -       | -        | -       |
| 15 | Cape Lisburne Seabird<br>Colony Area                      | -      | -      | -      | 4       | 3       | -       | -        | -              | 22     | 19      | 4       | -        | -               | 58      | 3       | 41       | -      | 3       | 9        | -       | -       | 1       | -        | -       |
| 16 | ERA 16                                                    | -      | -      | -      | 1       | -       | -       | -        | -              | 7      | 2       | -       | -        | -               | 7       | 1       | 3        | -      | -       | -        | -       | -       | -       | -        | -       |
|    | ERA 18                                                    | 3      | 1      | -      | 16      | 7       | 1       | -        | -              | 42     | 20      | 5       | 1        | -               | 37      | 12      | 26       | 2      | 5       | 8        | -       | 1       | 1       | -        | -       |
|    | Chukchi Spring Lead 1                                     | -      | -      | -      | -       | -       | -       | -        | -              | 1      | -       | -       | -        | -               | 8       | -       | 1        | -      | -       | -        | -       | -       | -       | -        | -       |
|    | Chukchi Spring Lead 2                                     | -      | -      | -      | -       | -       | -       | -        | -              | -      | 3       | 1       | -        | -               | -       | -       | 6        | -      | -       | 3        | -       | -       | -       | -        | -       |
|    | Chukchi Spring Lead 3                                     | -      | -      | -      | -       | -       | -       | -        | -              | -      | 2       | 3       | -        | -               | -       | -       | -        | -      | 1       | 10       | -       | -       | -       | -        | -       |
|    | Chukchi Spring Lead 4<br>Chukchi Spring Lead 5            | -      | -      | -      | -       | 1       | -       | -        | -              | -      | -       | 4       | 4        | - 2             | -       | -       | -        | -      | 1       | 1        | -       | 1       | 15<br>1 | -        | - 11    |
|    | Beaufort Spring Lead 6                                    | -      | -      | -      | -       | -       | 2       | - 3      | - 3            | -      | -       | -       | 2        | 4               | -       | -       | -        | -      | -       | -        | - 1     | 1       | 1       | - 3      | 1       |
|    | Beaufort Spring Lead 7                                    | -      | 2      | 4      | -       | -       | 4       | 6        | 5              | -      | -       | 1       | 2        | 4               | -       | -       | -        | 1      | 1       | -        | 4       | 4       | 1       | 4        | 1       |
|    | Beaufort Spring Lead 8                                    | _      | -      | -      | -       | -       | -       | 1        | 1              | -      | -       | -       | -        | 1               | -       | _       | -        | -      | -       | _        | -       | -       | -       | 1        | 1       |
|    | Beaufort Spring Lead 9                                    | -      | -      | -      | -       | -       | -       | -        | 1              | -      | -       | -       | -        | 1               | -       | -       | -        | -      | -       | -        | -       | -       | -       | 1        | -       |
| 29 | Ice/Sea Segment 1                                         | -      | -      | 1      | -       | -       | 1       | 3        | 6              | -      | -       | -       | 1        | 6               | -       | -       | -        | -      | -       | -        | 1       | 1       | -       | 4        | 3       |
| 30 | Ice/Sea Segment 2                                         | -      | -      | 1      | -       | -       | 1       | 4        | 4              | -      | -       | 1       | 1        | 2               | -       | -       | -        | -      | -       | -        | 1       | 2       | -       | 3        | -       |
| 31 | Ice/Sea Segment 3                                         | -      | -      | 1      | -       | -       | 1       | 3        | 3              | -      | -       | -       | -        | 1               | -       | -       | -        | -      | -       | -        | 1       | 1       | -       | 2        | -       |
|    | Ice/Sea Segment 4                                         | -      | -      | -      | -       | -       | -       | 1        | 2              | -      | -       | -       | -        | -               | -       | -       | -        | -      | -       | -        | -       | -       | -       | -        | -       |
|    | ERA 35                                                    | 5      | 7      | 10     | 3       | 10      | 19      | 24       | 23             | -      | 2       | 24      | 62       | 52              | -       | 3       | -        | 7      | 12      | 5        | 12      | 41      | 59      | 27       | 61      |
|    | ERA 36                                                    | 5      | 4      | 3      | 18      | 27      | 11      | 4        | 1              | 5      | 39      | 51      | 17       | 3               | 2       | 16      | 12       | 6      | 37      | 50       | 4       | 18      | 22      | 3        | 5       |
|    | Pt. Hope Subsistence Area                                 | -      | -      | -      | 2       | 1       | -       | -<br>1   | -              | 8<br>2 | 6<br>19 | 2<br>16 | -<br>3   | -               | 24<br>2 | 1       | 10<br>10 | -      | 1<br>6  | 4<br>48  | - 1     | - 3     | - 5     | -        | -       |
|    | Point Lay Subsistence Area<br>Wainwright Subsistence Area | -      | -      | -      | 4       | 5<br>9  | 2       | 4        | - 4            | 2      | 19      | 25      | 3<br>29  | 9               | -       | 3<br>4  | 4        | - 2    | 6<br>12 | 48<br>24 | 2       | 3<br>14 | 5<br>60 | - 4      | - 18    |
|    | Barrow Subsistence Area 1                                 | -      | -      | -      | -       | -       | -       | -        | -              | -      | -       | -       | 1        | 1               | -       | + -     | -        | -      | -       | -        | -       | -       | -       | 1        | 1       |
|    | Barrow Subsistence Area 2                                 | -      | -      | 1      | -       | -       | 1       | 4        | 14             | -      | -       | 1       | 2        | 11              | -       | -       | -        | -      | -       | -        | 1       | 1       | 1       | 5        | 4       |
|    | ERA 45                                                    | -      | -      | -      | 3       | 2       | -       | -        | -              | 26     | 13      | 3       | -        | -               | 51      | 2       | 26       | -      | 2       | 8        | -       | -       | -       | -        | -       |
|    | Herald Shoal Polynya                                      | 7      | 3      | 1      | 22      | 10      | 3       | 1        | -              | 3      | 6       | 4       | 1        | -               | 1       | 19      | 6        | 5      | 9       | 5        | 1       | 2       | 1       | 1        | -       |
|    | Ice/Sea Segment 10                                        | 11     | 5      | 2      | 22      | 31      | 9       | 2        | 1              | 1      | 6       | 12      | 5        | 1               | -       | 17      | 2        | 11     | 33      | 6        | 4       | 7       | 6       | 1        | 2       |
|    | Ice/Sea Segment 11                                        | 8      | 17     | 20     | 3       | 18      | 49      | 22       | 10             | -      | 5       | 22      | 20       | 11              | -       | 3       | 1        | 15     | 20      | 9        | 36      | 58      | 12      | 17       | 11      |
|    | Hanna's Shoal Polynya                                     | 10     | 23     | 50     | 2       | 10      | 29      | 34       | 23             | -      | 4       | 12      | 21       | 19              | -       | 2       | 1        | 15     | 9       | 7        | 42      | 24      | 15      | 29       | 16      |
|    | Ice/Sea Segment 12                                        | 4      | 8      | 9<br>5 | 1       | 7       | 19<br>9 | 17       | 8              | -      | 2       | 15<br>8 | 41<br>38 | 16<br>29        | -       | 2       | 1        | 7<br>3 | 7       | 3        | 13<br>7 | 52      | 21      | 14       | 21      |
|    | Ice/Sea Segment 13<br>Ice/Sea Segment 14                  | 2      | 4      | 5<br>5 | -       | 4       | 9<br>5  | 15<br>11 | 9<br>30        | -      | -       | 8       | 38<br>6  | <u>29</u><br>30 | -       | -       | -        | 3<br>2 | 4       | -        | 5       | 18<br>5 | 30<br>4 | 15<br>15 | 49<br>9 |
|    | Ice/Sea Segment 15                                        | -      | 1      | 3      | -       | 1       | 3       | 5        | 7              | -      | -       | 2       | 2        | 4               | -       | -       | -        | 2      | 1       | -        | 3       | 3       | 4       | 5        | 9       |
|    | Ice/Sea Segment 16a                                       | -      | 1      | 3      | -       | 1       | 3       | 6        | 8              | -      | -       |         | 2        | 4               | -       | -       | -        | 1      | 1       | -        | 3       | 3       | -       | 5        | 1       |
|    | Ice/Sea Segment 17                                        | -      | -      | -      | -       | -       | 1       | 2        | 2              | -      | -       | -       | -        | 1               | -       | -       | -        | -      | -       | -        | 1       | 1       | -       | 1        | -       |
|    | ERA 56                                                    | 8      | 16     | 24     | 2       | 11      | 42      | 43       | 16             | -      | 2       | 20      | 57       | 28              | -       | 3       | -        | 13     | 11      | 4        | 33      | 67      | 29      | 31       | 32      |
|    | Ice/Sea Segment 20a                                       | -      | -      | 1      | -       | -       | -       | 1        | 5              | -      | -       | -       | -        | 3               | -       | -       | -        | -      | -       | -        | -       | -       | -       | 2        | 1       |
|    | ERA 59                                                    | -      | -      | -      | 1       | -       | -       | -        | -              | 2      | 1       | -       | -        | -               | 2       | 1       | 1        | -      | -       | -        | -       | -       | -       | -        | -       |
|    | Ice/Sea Segment 22                                        | -      | -      | -      | -       | -       | -       | -        | 2              | -      | -       | -       | -        | 1               | -       | -       | -        | -      | -       | -        | -       | -       | -       | -        | -       |
|    | ERA 61<br>Ice/Sea Segment 24a                             | -      | -      | -      | -       | -       | -       | -        | -              | 3      | 1       | -       | -        | -               | 3       | -       | 1        | -      | -       | -        | -       | -       | -       | -        | -       |
|    | ERA 63                                                    | - 3    | - 2    | -<br>1 | -       | -       | -       | -<br>1   | 1              | -      | -       | -       | -        | 1<br>1          | -       | -       | -        | - 2    | -       | -        | - 1     | -       | -<br>1  | 1        | -       |
|    | Peard Bay                                                 | 1      | 2      | 4      | -       | 2       | 6       | 13       | <u>2</u><br>12 | -      | -       | -       | 18       | 25              | -       | -       | -        | 2      | - 3     | -        | 5       | 10      | 10      | 15       | - 56    |
|    | Smith Bay                                                 | -      | -      | -      | -       | -       | -       | 1        | 2              | -      | -       | -       | -        | 1               | -       | -       | -        | -      | -       | -        | -       | -       | -       | -        |         |
| 66 | ERA 66                                                    | -      | 1      | 4      | -       | 1       | 4       | 6        | 7              | -      | -       | 1       | 2        | 3               | -       | -       | -        | 1      | 1       | -        | 4       | 4       | 1       | 5        | 1       |
|    | Herschel Island                                           | -      | -      | -      | -       | -       | -       | -        | 1              | -      | -       | -       | -        | -               | -       | -       | -        | -      | -       | -        | -       | -       | -       | -        | -       |
| 68 | Harrison Bay                                              | -      | -      | -      | -       | -       | -       | -        | 1              | -      | -       | -       | -        | -               | -       | -       | -        | -      | -       | -        | -       | -       | -       | -        | -       |
| 69 | Harrison Bay/Colville Delta                               | -      | -      | -      | -       | -       | -       | 1        | 1              | -      | -       | -       | -        | 1               | -       | -       | -        | -      | -       | -        | -       | -       | -       | -        | -       |
| 70 | ERA 70                                                    | 9      | 10     | 8      | -       | 2       | 4       | 2        | 1              | -      | -       | 1       | 2        | 1               | -       | 1       | -        | 9      | 1       | -        | 7       | 3       | 1       | 1        | 1       |
| 76 | ERA 76                                                    | -      | -      | -      | -       | -       | -       | -        | 1              | -      | -       | -       | -        | 1               | -       | -       | -        | -      | -       | -        | -       | -       | -       | -        | -       |
|    | ERA 79                                                    | -      | -      | -      | -       | -       | -       | -        | 1              | -      | -       | -       | -        | -               | -       | -       | -        | -      | -       | -        | -       | -       | -       | 1        | -       |
|    | ERA 82                                                    | -      | -      | -      | -       | -       | -       | -        | -              | 1      | -       | -       | -        | -               | 1       | -       | -        | -      | -       | -        | -       | -       | -       | -        | -       |
|    | Kaktovik ERA<br>ERA 99                                    | -<br>5 | -<br>5 | -<br>3 | -<br>21 | -<br>36 | -<br>15 | 1        | 3<br>1         | - 6    | -<br>54 | -<br>71 | -<br>19  | 2               | - 3     | -<br>19 | -        | -      | -       | -<br>69  | -<br>5  | -<br>21 | -<br>24 | 2        | 1<br>5  |
| 00 |                                                           |        |        |        | 1.21    |         | 1.5     | 4        |                | n      | 54      | 11      | 19       | .5              | .5      | 19      | 16       | 8      | 50      | 09       | 0       | - Z T   | 1 /4    | · .1     | 1 3     |

 Table A.2-31
 Summer Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a Particular Location Will Contact a Certain Land Segment Within 3 Days, Chukchi Sale 193

| ID | Land Segment Name              | LA<br>1 | LA<br>2 | LA<br>3 | LA<br>4 | LA<br>5 |   | LA<br>7 | LA<br>8 |   |   |   |   | LA<br>13 |   | P<br>2 | P<br>3 | P<br>4 | P<br>5 | P<br>6 | P<br>7 | P<br>8 | P<br>9 | Р<br>10 | Р<br>11 |
|----|--------------------------------|---------|---------|---------|---------|---------|---|---------|---------|---|---|---|---|----------|---|--------|--------|--------|--------|--------|--------|--------|--------|---------|---------|
| 64 | Kukpuk River, Point Hope       | -       | -       | -       | -       | -       | - | -       | -       | - | - | - | - | -        | 4 | -      | -      | -      | -      | -      | -      | -      | -      | -       | -       |
|    | Buckland, Cape Lisburne        | -       | -       | -       | -       | -       | - | -       | -       | - | - | - | - | -        | 2 | -      | 1      | -      | -      | -      | -      | -      | -      | -       | -       |
| 72 | Point Lay, Siksrikpak Point    | -       | -       | -       | -       | -       | - | -       | -       | - | - | - | - | -        | - | -      | -      | -      | -      | З      | -      | -      | -      | -       | -       |
| 73 | Tungaich Point, Tungak Creek   | -       | -       | -       | -       | -       | - | -       | -       | - | - | - | - | -        | - | -      | -      | -      | -      | 3      | -      | -      | -      | -       | -       |
| 74 | Kasegaluk Lagoon, Solivik Isl. | -       | -       | -       | -       | -       | - | -       | 1       | 1 | 1 | - | - | -        | - | -      | -      | •      | -      | 1      | -      | 1      | •      | -       | -       |
|    | Point Belcher, Wainwright      | -       | -       | -       | -       | -       | - | -       | -       | - | - | - | - | -        | - | -      | -      | -      | -      | 1      | -      | -      | 2      | -       | -       |
| 81 | Peard Bay, Point Franklin      | -       | -       | -       | -       | -       | - | -       | -       | - | - | - | - | -        | - | -      | -      | -      | -      | -      | -      | -      | -      | -       | 1       |
| 82 | Skull Cliff                    | -       | -       | -       | -       | -       | - | -       | -       | - | - | - | - | -        | - | -      | -      | -      | -      | -      | -      | -      | -      | -       | 5       |
| 83 | Nulavik, Loran Radio Station   | -       | -       | -       | -       | -       | - | -       | -       | - | - | - | - | -        | - | -      | -      | -      | -      | -      | -      | -      | -      | -       | 1       |

**Notes-** \*\* = Greater than 99.5 percent; - = less than 0.5 percent; LA = Launch Area, P = Pipeline. Rows with all values less than 0.5 percent are not shown.

#### Table A.2-32 Summer Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a Particular Location Will Contact a Certain Land Segment Within 10 Days, Chukchi Sale 193

| ID | Land Segment Name               | LA<br>1 | LA<br>2 | LA<br>3 | LA<br>4 | LA<br>5 | LA<br>6 | LA<br>7 | LA<br>8 | LA<br>9 | LA<br>10 | LA<br>11 | LA<br>12 | LA<br>13 | Р<br>1 | P<br>2 | P<br>3 | P<br>4 | P<br>5 | P<br>6 | P<br>7 | P<br>8 | P<br>9 | Р<br>10 | Р<br>11 |
|----|---------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|----------|----------|----------|----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|---------|
| 64 | Kukpuk River, Point Hope        | -       | -       | -       | -       | -       | -       | -       | -       | 1       | -        | -        | -        | -        | 7      | -      | -      | -      | -      | -      | -      | -      | -      | -       | -       |
| 65 | Buckland, Cape Lisburne         | -       | -       | -       | -       | -       | -       | -       | -       | 1       | -        | -        | -        | -        | 4      | -      | 2      | -      | -      | -      | -      | ١      | -      | -       | -       |
| 66 | Ayugatak Lagoon                 | -       | -       | -       | -       | -       | -       | -       | -       | -       | -        | -        | -        | -        | -      | -      | 1      | -      | -      | 1      | -      | ١      | -      | 1       | -       |
| 71 | Kukpowruk River, Sitkok Point   | -       | -       | -       | -       | -       | -       | -       | -       | -       | 1        | -        | -        | -        | -      | -      | -      | -      | -      | 1      | -      | -      | -      | -       | -       |
| 72 | Point Lay, Siksrikpak Point     | -       | -       | -       | -       | -       | -       | -       | -       | -       | 1        | -        | -        | -        | -      | -      | -      | -      | -      | 6      | -      | -      | -      | -       | -       |
| 73 | Tungaich Point, Tungak Creek    | -       | -       | -       | -       | -       | -       | -       | -       | -       | 1        | 1        | -        | -        | -      | -      | -      | -      | -      | 6      | -      | -      | -      | -       | -       |
| 74 | Kasegaluk Lagoon, Solivik Isl.  | -       | -       | -       | -       | -       | -       | -       | -       | -       | -        | 1        | -        | -        | -      | -      | -      | -      | -      | 3      | -      | -      | -      | -       | -       |
| 75 | Akeonik, Icy Cape               | -       | -       | -       | -       | -       | -       | -       | -       | -       | -        | 1        | -        | -        | -      | -      | -      | -      | -      | 2      | -      | -      | -      | -       | -       |
| 76 | Avak Inlet, Tunalik River       | -       | -       | -       | -       | -       | -       | -       | -       | -       | -        | -        | -        | -        | -      | -      | -      | -      | -      | -      | -      | -      | 1      | -       | -       |
| 78 | Nivat Point, Nokotlek Point     | -       | -       | -       | -       | -       | -       | -       | -       | -       | -        | -        | -        | -        | -      | -      | -      | -      | -      | -      | -      | -      | 3      | -       | -       |
| 79 | Point Belcher, Wainwright       | -       | -       | -       | -       | -       | -       | -       | -       | -       | -        | -        | 1        | -        | -      | -      | -      | -      | -      | -      | -      | -      | 7      | -       | -       |
| 80 | Eluksingiak Point, Kugrua Bay   | -       | -       | -       | -       | -       | -       | -       | -       | -       | -        | -        | 1        | -        | -      | -      | -      | -      | -      | -      | -      | -      | 3      | -       | 1       |
| 81 | Peard Bay, Point Franklin       | -       | -       | -       | -       | -       | -       | -       | -       | -       | -        | -        | -        | -        | -      | -      | -      | -      | -      | -      | -      | -      | -      | -       | 2       |
| 82 | Skull Cliff                     | -       | -       | -       | -       | -       | -       | -       | -       | -       | -        | -        | -        | -        | -      | -      | -      | -      | -      | -      | -      | -      | -      | -       | 8       |
| 83 | Nulavik, Loran Radio Station    | -       | -       | -       | -       | -       | -       | -       | -       | -       | -        | -        | -        | 1        | -      | -      | -      | -      | -      | -      | -      | -      | -      | -       | 3       |
| 84 | Will Rogers & Wiley Post Mem.   | -       | -       | -       | -       | -       | -       | -       | -       | -       | -        | -        | -        | 2        | -      | -      | -      | -      | -      | -      | -      | -      | -      | -       | 3       |
| 85 | Barrow, Browerville, Elson Lag. | -       | -       | -       | I       | -       | -       | -       | 1       | -       | -        | -        | -        | 4        | -      | -      | -      | -      | -      | -      | -      | -      | -      | -       | 1       |

|    |                                 | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | Р | Р | Р | Р | Р | Р | Р | Р | Р  | Р        | Р  |
|----|---------------------------------|----|----|----|----|----|----|----|----|----|----|----|----|----|---|---|---|---|---|---|---|---|----|----------|----|
| ID | Land Segment Name               | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9  | 10       | 11 |
| 27 | Laguna Nut, Rigol'              | -  | -  | -  | 1  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | - | - | - | - | - | - | - | - | -  | -        | -  |
| 33 | Neskan, Laguna Neskan           | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | - | - | - | - | - | - | - | - | -  | -        | -  |
| 34 | Tepken, Memino                  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 1 | - | - | - | - | - | - | - | -  | -        | -  |
| 35 | Enurmino, Mys Neten             | -  | -  | -  | -  | -  | -  | -  | -  | 2  | -  | -  | -  | -  | 2 | - | 1 | - | - | - | - | - | -  | -        | -  |
| 36 | Mys Serdtse-Kamen               | -  | -  | -  | -  | -  | -  | -  | -  | 2  | -  | 1  | 1  | -  | 2 | - | 1 | 1 | - | - | - | - | -  | -        | -  |
|    | Chegitun, Utkan                 | -  | -  | -  | -  | -  | -  | -  | -  | 2  | -  | -  | -  | -  | 2 | - | 1 | - | - | - | - | - | -  | -        | -  |
|    | Enmytagyn, Inchoun, Mitkulen    | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 1 | - | - | - | - | - | - | - | -  | -        | -  |
|    | Cape Dezhnev, Naukan, Uelen     | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 1 | - | - | - | - | - | - | - | -  | -        | -  |
| 63 | Asikpak Lag., Cape Seppings,    | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1 | - | - | - | - | - | - | - | -  | -        | -  |
|    | Kukpuk River, Point Hope        | -  | -  | -  | -  | -  | -  | -  | -  | 3  | 1  | -  | -  | -  | 9 | - | 2 | - | - | 1 | - | - | -  | -        | -  |
|    | Buckland, Cape Lisburne         | -  | -  | -  | 1  | -  | -  | -  | -  | 2  | 1  | -  | -  | -  | 7 | - | 4 | - | - | 1 | - | - | -  | -        | -  |
|    | Ayugatak Lagoon                 | -  | -  | -  | -  | -  | -  | -  | -  | 1  | 1  | -  | -  | -  | 1 | - | 2 | - | - | 1 | - | - | -  | -        | -  |
| 67 | Cape Sabine, Pitmegea River     | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | - | - | 1 | - | - | 1 | - | - | -  | -        | -  |
| 68 | Agiak Lagoon, Punuk Lagoon      | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | - | - | 1 | - | - | - | - | - | -  | -        | -  |
| 69 | Cape Beaufort, Omalik Lagoon    | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | - | - | 1 | - | - | 1 | - | - | -  | -        | -  |
| 70 | Kuchaurak and Kuchiak Creek     | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | - | - | 1 | - | - | 1 | - | - | -  | -        | -  |
| 71 | Kukpowruk River, Sitkok Point   | -  | -  | -  | -  | -  | -  | -  | -  | -  | 2  | 1  | -  | -  | - | - | 2 | - | - | 3 | - | - | -  | -        | -  |
| 72 | Point Lay, Siksrikpak Point     | -  | -  | -  | -  | -  | -  | -  | -  | -  | 2  | 1  | -  | -  | - | - | 1 | - | - | 7 | - | - | -  | -        | -  |
| 73 | Tungaich Point, Tungak Creek    | -  | -  | -  | -  | -  | -  | -  | -  | -  | 2  | 2  | -  | -  | - | - | 1 | - | - | 9 | - | - | -  | -        | -  |
| 74 | Kasegaluk Lagoon, Solivik Isl.  | -  | -  | -  | 1  | 1  | -  | -  | -  | -  | 2  | 3  | -  | -  | - | 1 | 1 | - | 1 | 5 | - | - | 1  | -        | -  |
| 75 | Akeonik, Icy Cape               | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 1  | 3  | 1  | -  | - | - | - | - | 1 | 4 | - | - | 1  | -        | -  |
| 76 | Avak Inlet, Tunalik River       | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | - | - | - | - | - | 1 | - | - | 1  | -        | -  |
| 77 | Nivat Point, Nokotlek Point     | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | 1  | -  | - | - | - | - | 1 | 1 | - | - | 2  | -        | -  |
| 78 | Point Collie, Sigeakruk Point   | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 2  | 2  | -  | - | - | - | - | 1 | - | - | - | 7  | <u> </u> | -  |
| 79 | Point Belcher, Wainwright       | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 2  | 4  | 1  | - | - | - | - | 1 | - | - | 2 | 11 | <u> </u> | 1  |
| 80 | Eluksingiak Point, Kugrua Bay   | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | 4  | 1  | - | - | - | - | 1 | - | - | 1 | 5  | -        | 3  |
| 81 | Peard Bay, Point Franklin       | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | 2  | 1  | - | - | - | - | - | - | - | 1 | 2  | -        | 3  |
| 82 | Skull Cliff                     | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | 2  | - | - | - | - | - | - | - | - | 1  | -        | 11 |
| 83 | Nulavik, Loran Radio Station    | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | 2  | - | - | - | - | - | - | - | - | -  | 1        | 5  |
| 84 | Will Rogers & Wiley Post Mem.   | -  | -  | -  | -  | -  | -  | 1  | 1  | -  | -  | -  | 1  | 4  | - | - | - | - | - | - | - | - | -  | 1        | 6  |
| 85 | Barrow, Browerville, Elson Lag. | -  | -  | -  | -  | -  | -  | 1  | 5  | -  | -  | -  | 1  | 9  | - | - | - | - | - | - | - | - | -  | 3        | 4  |
| 86 | Dease Inlet, Plover Islands     | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 2  | - | - | - | - | - | - | - | - | -  | -        | -  |

Table A.2-33Summer Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at aParticular Location Will Contact a Certain Land Segment Within 30 Days, Chukchi Sale 193

|    |                                 | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | Р | Р | Р | Р | Р | Р | Р | Р | Р  | Р  | Р   |
|----|---------------------------------|----|----|----|----|----|----|----|----|----|----|----|----|----|---|---|---|---|---|---|---|---|----|----|-----|
| ID | Land Segment Name               | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9  | 10 | 11  |
| 8  | E. Wrangel Island, Skeletov     | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | - | 1 | - | - | - | - | - | - | -  | -  | -   |
| 27 | Laguna Nut, Rigol'              | -  | -  | -  | 1  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | - | - | - | - | - | - | - | - | -  | -  | -   |
|    | Mys Dzhenretlen, Eynenekvyk     | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 1 | - | - | - | - | - | - | - | -  | -  | - 1 |
|    | Neskan, Laguna Neskan           | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | - | - | - | - | - | - | - | - | -  | -  | -   |
| 34 | Tepken, Memino                  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 1 | - | - | - | - | - | - | - | -  | -  | -   |
| 35 | Enurmino, Mys Neten             | -  | -  | -  | -  | -  | -  | -  | -  | 2  | -  | -  | -  | -  | 2 | - | 1 | - | - | - | - | - | -  | -  | - 1 |
| 36 | Mys Serdtse-Kamen               | -  | -  | -  | -  | -  | -  | -  | -  | 2  | -  | -  | -  | -  | 2 | - | 1 | - | - | - | - | - | -  | -  | -   |
| 37 | Chegitun, Utkan                 | -  | -  | -  | -  | -  | -  | -  | -  | 2  | -  | -  | -  | -  | 2 | - | 1 | - | - | - | - | - | -  | -  | - 1 |
| 38 | Enmytagyn, Inchoun, Mitkulen    | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 1 | - | - | - | - | - | - | - | -  | -  | -   |
| 39 | Cape Dezhnev, Naukan, Uelen     | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 1 | - | - | - | - | - | - | - | -  | -  | -   |
| 63 | Asikpak Lag., Cape Seppings     | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1 | - | - | - | - | - | - | - | -  | -  | -   |
| 64 |                                 | -  | -  | -  | -  | -  | -  | -  | -  | 3  | 2  | -  | -  | -  | 9 | - | 2 | - | - | 1 | - | - | -  | -  | -   |
| 65 | Buckland, Cape Lisburne         | -  | -  | -  | 1  | -  | -  | -  | -  | 2  | 2  | 1  | -  | -  | 7 | 1 | 4 | - | - | 1 | - | - | -  | -  | -   |
| 66 | Ayugatak Lagoon                 | -  | -  | -  | -  | -  | -  | -  | -  | 1  | 1  | 1  | -  | -  | 1 | - | 2 | - | - | 1 | - | - | -  | -  | -   |
| 67 | Cape Sabine, Pitmegea River     | -  | -  | -  | -  | -  | -  | -  | -  | 1  | 1  | -  | -  | -  | 1 | - | 1 | - | - | 1 | - | - | 1  | -  | -   |
| 68 | Agiak Lagoon, Punuk Lagoon      | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | 1  | - | - | 1 | - | - | - | - | 1 | 1  | -  | -   |
| 69 | Cape Beaufort, Omalik Lagoon    | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | 1  | - | - | 1 | - | - | 1 | - | 1 | ١  | -  | -   |
| 70 | Kuchaurak and Kuchiak Creek     | -  | -  | 1  | -  | -  | -  | -  | •  | -  | 1  | -  | •  | -  | • | - | 1 | - | - | 1 | - | - | 1  | -  | -   |
| 71 | Kukpowruk River, Sitkok Point   | -  | -  | -  | -  | -  | •  | -  | -  | -  | 2  | 1  | •  | -  | • | • | 2 | - | • | 3 | - | 1 | 1  | -  | -   |
| 72 | Point Lay, Siksrikpak Point     | -  | -  | -  | -  | -  | -  | -  | -  | -  | 3  | 1  | -  | -  | - | - | 2 | - | - | 8 | - | - | -  | -  | -   |
| 73 | Tungaich Point, Tungak Creek    | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 4  | 2  | -  | -  | - | 1 | 2 | - | - | 9 | - | - | 1  | -  | -   |
| 74 | Kasegaluk Lagoon, Solivik Isl.  | -  | -  | -  | 1  | 1  | •  | -  | 1  | -  | 3  | 4  | 1  | 1  | - | 1 | 1 | - | 2 | 6 | - | 1 | 1  | -  | -   |
| 75 | Akeonik, Icy Cape               | -  | -  | -  | 1  | 1  | -  | -  | -  | -  | 2  | 4  | 1  | -  | - | - | - | - | 2 | 5 | - | - | 1  | -  | -   |
| 76 | Avak Inlet, Tunalik River       | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | 1  | -  | - | - | - | - | - | 1 | - | - | 1  | -  | -   |
| 77 | Nivat Point, Nokotlek Point     | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 1  | 2  | 1  | -  | - | - | - | - | 1 | 1 | - | - | 2  | -  | -   |
| 78 | Point Collie, Sigeakruk Point   | -  | -  | -  | -  | 1  | -  | -  | -  | -  | -  | 2  | 2  | -  | - | - | - | - | 1 | 1 | - | 1 | 8  | -  | -   |
| 79 | Point Belcher, Wainwright       | -  | -  | -  | -  | 1  | 1  | 1  | 1  | -  | -  | 3  | 6  | 1  | - | - | - | - | 1 | 1 | 1 | 3 | 13 | 1  | 2   |
| 80 | Eluksingiak Point, Kugrua Bay   | -  | -  | -  | -  | -  | 1  | -  | 1  | -  | -  | 1  | 4  | 2  | - | - | - | - | 1 | - | - | 2 | 6  | 1  | 4   |
| 81 | Peard Bay, Point Franklin       | -  | -  | -  | -  | 1  | 1  | -  | -  | -  | -  | 1  | 4  | 1  | - | - | - | - | 1 | - | - | 2 | 4  | 1  | 4   |
| 82 | Skull Cliff                     | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 2  | 3  | - | - | - | - | - | - | - | 1 | 2  | 1  | 13  |
| 83 | Nulavik, Loran Radio Station    | -  | -  | 1  | -  | -  | 1  | 1  | 1  | -  | -  | -  | 2  | 3  | - | - | - | - | - | - | 1 | 1 | -  | 1  | 6   |
| 84 | Will Rogers & Wiley Post Mem.   | -  | -  | -  | -  | -  | -  | 2  | 2  | -  | -  | -  | 2  | 6  | - | - | - | - | - | - | - | 1 | -  | 2  | 7   |
| 85 | Barrow, Browerville, Elson Lag. | -  | -  | -  | -  | -  | -  | 3  | 8  | -  | -  | -  | 1  | 11 | - | - | - | - | - | - | - | - | 1  | 6  | 5   |
| 86 | Dease Inlet, Plover Islands     | -  | -  | -  | -  | -  | -  | 1  | 2  | -  | -  | -  | -  | 2  | - | - | - | - | - | - | - | - | -  | 1  | 1   |
| 87 | Igalik & Kulgurak Island        | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 1  | - | - | - | - | - | - | - | - | -  | -  | -   |
| 88 | Cape Simpson, Piasuk River      | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | -  | - | - | - | - | - | - | - | - | -  | -  | -   |
| 89 | Ikpikpuk River, Point Poleakoon | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | -  | - | - | - | - | - | - | - | - | -  | -  |     |

 Table A.2-34
 Summer Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting

 at a Particular Location Will Contact a Certain Land Segment Within 60 Days, Chukchi Sale 193

|    |                                 | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | Ρ | Р | Р | Р | Р | Ρ | Р | Р | Р  | Р  | Р   |
|----|---------------------------------|----|----|----|----|----|----|----|----|----|----|----|----|----|---|---|---|---|---|---|---|---|----|----|-----|
| U  | Land Segment Name               | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9  | 10 | 11  |
| 8  | E. Wrangel Island, Skeletov     | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | - | 1 | - | - | - | - | - | - | -  | -  | -   |
| 27 | Laguna Nut, Rigol'              | -  | -  | -  | 1  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | - | - | - | - | - | - | - | - | -  | -  | - 1 |
|    | Nutepynmin, Pyngopil'gyn,       | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 1 | - | - | - | - | - | - | - | -  | -  | -   |
| 32 | Mys Dzhenretlen, Eynenekvyk     | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 1 | - | 1 | - | - | - | - | - | -  | -  | -   |
|    | Neskan, Laguna Neskan           | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 1 | - | - | - | - | - | - | - | -  | -  | -   |
| 34 | Tepken, Memino                  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 1 | - | - | - | - | - | - | - | -  | -  | -   |
| 35 | Enurmino, Mys Neten             | -  | -  | -  | -  | -  | -  | -  | -  | 2  | -  | -  | -  | -  | 3 | - | 1 | - | - | - | - | - | -  | -  | -   |
|    | Mys Serdtse-Kamen               | •  | -  | -  | •  | -  | •  | •  | -  | 2  | -  | -  | -  | -  | 2 | - | 1 | - | - | - | - | - | -  | -  | -   |
| 37 | Chegitun, Utkan                 | •  | -  | -  | •  | -  | •  | •  | •  | 2  | -  | -  | -  | -  | 2 | - | 1 | - | - | - | - | - | -  | -  | -   |
| 38 | Enmytagyn, Inchoun, Mitkulen    | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 1 | - | - | - | - | - | - | - | -  | -  | -   |
|    | Cape Dezhnev, Naukan, Uelen     | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 1 | - | - | - | - | - | - | - | -  | -  | -   |
|    | Asikpak Lag., Cape Seppings,    | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1 | - | - | - | - | - | - | - | -  | -  | -   |
|    | Kukpuk River, Point Hope        | -  | -  | -  | -  | -  | -  | -  | -  | 3  | 2  | -  | -  | -  | 9 | - | 2 | - | - | 1 | - | - | -  | -  | -   |
|    | Buckland, Cape Lisburne         | -  | -  | -  | 1  | 1  | -  | -  | -  | 2  | 2  | 1  | -  | -  | 7 | 1 | 4 | - | 1 | 2 | - | - | -  | -  | -   |
|    | Ayugatak Lagoon                 | -  | -  | -  | -  | -  | -  | -  | -  | 1  | 1  | 1  | -  | -  | 1 | - | 2 | - | - | 2 | - | - | -  | -  | -   |
| 67 | Cape Sabine, Pitmegea River     | -  | -  | -  | -  | -  | -  | -  | -  | 1  | 1  | -  | -  | -  | 1 | - | 2 | - | - | 1 | - | - | -  | -  | -   |
| 68 | Agiak Lagoon, Punuk Lagoon      | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | - | - | 1 | - | - | - | - | - | -  | -  | -   |
| 69 | Cape Beaufort, Omalik Lagoon    | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | - | - | 1 | - | - | 1 | - | - | -  | -  | -   |
| 70 | Kuchaurak and Kuchiak Creek     | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | - | - | 2 | - | - | 1 | - | - | -  | -  | -   |
| 71 | Kukpowruk River, Sitkok Point   | -  | -  | -  | -  | -  | -  | -  | -  | -  | 2  | 1  | -  | -  | - | - | 2 | - | - | 3 | - | - | -  | -  | -   |
| 72 | Point Lay, Siksrikpak Point     | -  | -  | -  | -  | -  | -  | -  | -  | -  | 3  | 1  | -  | -  | - | - | 2 | - | - | 8 | - | - | -  | -  | -   |
| 73 | Tungaich Point, Tungak Creek    | -  | -  | -  | 1  | 1  | -  | -  | -  | -  | 4  | 2  | -  | -  | - | 1 | 2 | - | 1 | 9 | - | - | 1  | -  | -   |
| 74 | Kasegaluk Lagoon, Solivik Isl.  | -  | -  | -  | 1  | 1  | -  | -  | -  | -  | 3  | 4  | 1  | -  | - | 1 | 2 | - | 2 | 6 | - | 1 | 1  | -  | -   |
| 75 | Akeonik, Icy Cape               | -  | -  | -  | 1  | 1  | -  | -  | -  | -  | 2  | 4  | 1  | -  | - | 1 | - | - | 2 | 6 | - | - | 1  | -  | -   |
| 76 | Avak Inlet, Tunalik River       | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | 1  | -  | - | - | - | - | 1 | 1 | - | - | 1  | -  | -   |
| 77 | Nivat Point, Nokotlek Point     | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 1  | 2  | 1  | -  | - | - | - | - | 1 | 1 | - | - | 2  | -  | -   |
| 78 | Point Collie, Sigeakruk Point   | -  | -  | -  | -  | 1  | -  | -  | -  | -  | -  | 3  | 3  | -  | - | - | - | - | 2 | 1 | - | 1 | 9  | -  | 1   |
| 79 | Point Belcher, Wainwright       | -  | -  | -  | -  | 1  | 1  | 1  | 1  | -  | -  | 3  | 6  | 2  | - | - | - | - | 2 | 1 | 1 | 3 | 13 | 1  | 2   |
| 80 | Eluksingiak Point, Kugrua Bay   | -  | -  | -  | -  | 1  | 1  | 1  | 1  | -  | -  | 1  | 5  | 3  | - | - | - | - | 1 | - | - | 3 | 7  | 1  | 5   |
| 81 | Peard Bay, Point Franklin       | -  | -  | -  | -  | 1  | 1  | 1  | -  | -  | -  | 2  | 4  | 2  | - | - | - | - | 1 | - | - | 2 | 4  | 1  | 4   |
| 82 | Skull Cliff                     | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | 3  | 3  | - | - | - | - | - | - | - | 1 | 2  | 1  | 13  |
| 83 | Nulavik, Loran Radio Station    | -  | -  | 1  | -  | 1  | 1  | 1  | 1  | -  | -  | -  | 2  | 3  | - | - | - | - | - | - | 1 | 2 | -  | 2  | 7   |
| 84 | Will Rogers & Wiley Post Mem.   | -  | -  | -  | -  | -  | 1  | 3  | 3  | -  | -  | -  | 2  | 6  | - | - | - | - | - | - | - | 1 | 1  | 3  | 8   |
| 85 | Barrow, Browerville, Elson Lag. | -  | -  | 1  | -  | -  | -  | 4  | 9  | -  | -  | -  | 2  | 12 | - | - | - | - | - | - | 1 | - | 1  | 7  | 6   |
| 86 | Dease Inlet, Plover Islands     | -  | -  | -  | -  | -  | -  | 1  | 2  | -  | -  | -  | -  | 2  | - | - | - | - | - | - | - | - | -  | 1  | 1   |
| 87 | Igalik & Kulgurak Island        | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 1  | - | - | - | - | - | - | - | - | -  | -  | -   |
| 88 | Cape Simpson, Piasuk River      | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | -  | - | - | - | - | - | - | - | - | -  | -  | -   |
| 89 | Ikpikpuk River, Point Poleakoon | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | -  | - | - | - | - | - | - | - | - | -  | -  | -   |
| 91 | Lonely, Pitt Point, Pogik Bay   | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | -  | - | - | - | - | - | - | - | - | -  | -  | -   |

 Table A.2-35
 Summer Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a Particular Location Will Contact a Certain Land Segment Within 180 Days, Chukchi Sale 193

|    |                                 | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | Р | Р | Р | Р | Р | Р | Р | Р | Р  | Р  | Р  |
|----|---------------------------------|----|----|----|----|----|----|----|----|----|----|----|----|----|---|---|---|---|---|---|---|---|----|----|----|
| ID | Land Segment Name               | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9  | 10 | 11 |
| 8  | E. Wrangel Island, Skeletov     | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 1  | - | 1 | - | - | - | - | - | - | -  | -  | -  |
| 26 | Ekugvaam, Kepin, Pil'khin       | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | -  | - | - | - | - | - | - | - | - | -  | -  | -  |
| 27 | Laguna Nut, Rigol'              | -  | -  | -  | 1  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | - | - | - | - | - | - | - | - | -  | -  | -  |
| 28 | Vankarem, Vankarem Laguna       | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | - | - | - | - | - | - | - | - | -  | -  | -  |
| 29 | Mys Onman, Vel'may              | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 1 | - | - | - | - | - | - | - | -  | -  | -  |
| 30 | Nutepynmin, Pyngopil'gyn        | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 1 | - | 1 | - | - | - | - | - | -  | -  | -  |
| 31 | Alyatki, Zaliv Tasytkhin        | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 1 | - | - | - | - | - | - | - | -  | -  | -  |
| 32 | Mys Dzhenretlen, Eynenekvyk     | -  | -  | -  | -  | -  | -  | -  | -  | 2  | -  | -  | -  | -  | 2 | - | 1 | - | - | - | - | - | -  | -  | -  |
| 33 | Neskan, Laguna Neskan           | -  | -  | -  | -  | -  | -  | -  | -  | 2  | 1  | -  | -  | -  | 1 | - | 1 | - | - | - | - | - | -  | -  | -  |
| 34 | Tepken, Memino                  | -  | -  | -  | -  | -  | -  | -  | -  | 2  | -  | -  | -  | -  | 2 | - | 1 | - | - | - | - | - | -  | -  | -  |
| 35 | Enurmino, Mys Neten             | -  | -  | -  | -  | -  | -  | -  | -  | 3  | 1  | -  | -  | -  | 3 | - | 1 | - | - | - | - | - | -  | -  | -  |
| 36 | Mys Serdtse-Kamen               | -  | -  | -  | -  | -  | -  | -  | -  | 2  | -  | -  | -  | -  | 2 | - | 1 | - | - | - | - | - | -  | -  | -  |
| 37 | Chegitun, Utkan                 | -  | -  | -  | -  | -  | -  | -  | -  | 2  | -  | -  | -  | -  | 2 | - | 1 | - | - | - | - | - | -  | -  | -  |
| 38 | Enmytagyn, Inchoun, Mitkulen    | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 1 | - | - | - | - | - | - | - | -  | -  | -  |
| 39 | Cape Dezhnev, Naukan, Uelen     | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 1 | - | - | - | - | - | - | - | -  | -  | -  |
| 63 | Asikpak Lag., Cape Seppings     | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1 | - | - | - | - | - | - | - | -  | -  | -  |
| 64 | Kukpuk River, Point Hope        | -  | -  | -  | -  | -  | -  | -  | -  | 3  | 2  | -  | -  | -  | 9 | - | 2 | - | - | 1 | - | - | -  | -  | -  |
|    | Buckland, Cape Lisburne         | -  | -  | -  | 1  | 1  | -  | -  | -  | 2  | 2  | 1  | -  | -  | 7 | 1 | 4 | - | 1 | 2 | - | - | -  | -  | -  |
|    | Ayugatak Lagoon                 | -  | -  | -  | -  | 1  | -  | -  | -  | 1  | 1  | 1  | -  | -  | 1 | - | 2 | - | - | 2 | - | - | -  | -  | 1  |
| 67 | Cape Sabine, Pitmegea River     | -  | -  | -  | -  | -  | -  | -  | -  | 1  | 1  | -  | -  | -  | 1 | - | 2 | - | - | 1 | - | - | -  | -  | -  |
|    | Agiak Lagoon, Punuk Lagoon      | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | - | - | 1 | - | - | - | - | - | -  | -  | -  |
| 69 | Cape Beaufort, Omalik Lagoon    | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | - | - | 1 | - | - | 1 | - | - | -  | -  | -  |
| 70 | Kuchaurak and Kuchiak Creek     | -  | -  | -  | -  | I  | -  | -  | -  | -  | 1  | -  | -  | -  | - | - | 2 | - | - | 1 | - | - | -  | -  | 1  |
| 71 | Kukpowruk River, Sitkok Point   | -  | -  | -  | -  | -  | -  | -  | -  | -  | 2  | 1  | -  | -  | - | - | 2 | - | - | 3 | - | - | -  | -  | -  |
|    |                                 | -  | -  | 1  | -  | -  | -  | -  | -  | -  | 3  | 1  | -  | -  | - | - | 2 | - | - | 8 | - | - | -  | -  | -  |
| 73 | Tungaich Point, Tungak Creek    | -  | -  | -  | 1  | 1  | -  | -  | -  | -  | 4  | 2  | -  | -  | - | 1 | 2 | - | 1 | 9 | - | - | 1  | -  | 1  |
| 74 | Kasegaluk Lagoon, Solivik Isl.  | -  | -  | -  | 1  | 1  | -  | -  | -  | -  | 3  | 4  | 1  | -  | - | 1 | 2 | - | 2 | 6 | - | 1 | 1  | -  | 1  |
|    | Akeonik, Icy Cape               | -  | -  | -  | 1  | 1  | -  | -  | -  | -  | 2  | 4  | 1  | -  | - | 1 | - | - | 2 | 6 | - | - | 1  | -  | -  |
| 76 | Avak Inlet, Tunalik River       | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | 1  | -  | - | - | - | - | 1 | 1 | - | - | 1  | -  | 1  |
| 77 | Nivat Point, Nokotlek Point     | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 1  | 2  | 1  | -  | - | - | - | - | 1 | 1 | - | - | 2  | -  | -  |
| 78 | Point Collie, Sigeakruk Point   | -  | -  | -  | -  | 1  | -  | -  | -  | -  | -  | 3  | 3  | -  | - | - | - | - | 2 | 1 | - | 1 | 9  | -  | 1  |
|    | Point Belcher, Wainwright       | -  | -  | -  | -  | 1  | 2  | 1  | 1  | -  | -  | 3  | 6  | 2  | - | - | - | - | 2 | 1 | 1 | 3 | 13 | 1  | 2  |
|    | Eluksingiak Point, Kugrua Bay   | -  | -  | -  | -  | 1  | 1  | 1  | 1  | -  | -  | 2  | 5  | 3  | - | - | - | - | 1 | - | - | 3 | 7  | 1  | 5  |
| 81 | Peard Bay, Point Franklin       | -  | -  | -  | -  | 1  | 1  | 1  | -  | -  | -  | 2  | 4  | 2  | - | - | - | - | 1 | - | - | 2 | 4  | 1  | 4  |
| 82 | Skull Cliff                     | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | 1  | 3  | 3  | - | - | - | - | - | - | - | 1 | 2  | 1  | 13 |
|    | Nulavik, Loran Radio Station    | -  | -  | 1  | -  | 1  | 1  | 1  | 1  | -  | -  | -  | 2  | 3  | - | - | - | - | - | - | 1 | 2 | 1  | 2  | 7  |
|    | Will Rogers & Wiley Post Mem.   | -  | 1  | 2  | -  | -  | 2  | 5  | 5  | -  | -  | 1  | 3  | 7  | - | - | - | - | - | - | 2 | 2 | 1  | 6  | 8  |
|    | Barrow, Browerville, Elson Lag. | -  | -  | 1  | -  | -  | 1  | 5  | 10 | -  | -  | -  | 2  | 13 | - | - | - | - | - | - | 1 | 1 | 2  | 8  | 7  |
|    | Dease Inlet, Plover Islands     | -  | -  | -  | -  | -  | -  | 1  | 3  | -  | -  | -  | -  | 3  | - | - | - | - | - | - | - | - | -  | 1  | 1  |
|    | Igalik & Kulgurak Island        | -  | -  | -  | -  | -  | -  | -  | 2  | -  | -  | -  | -  | 1  | - | - | - | - | - | - | - | - | -  | 1  | -  |
|    | Cape Simpson, Piasuk River      | -  | -  | -  | -  | 1  | -  | -  | 1  | -  | -  | -  | -  | -  | - | - | - | - | - | - | - | - | -  | -  | -  |
|    | Ikpikpuk River Point Poleakoon  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | -  | - | - | - | - | - | - | - | - | -  | -  | -  |
| 91 | Lonely, Pitt Point, Pogik Bay   | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 1  | - | - | - | - | - | - | - | - | -  | 1  | -  |

 Table A.2-36
 Summer Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting

 at a Particular Location Will Contact a Certain Land Segment Within 360 Days, Chukchi Sale 193

 Table A.2-37
 Summer Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a Particular Location Will Contact a Certain Group of Land Segments Within 3 Days, Chukchi Sale 193

| ID | Land Segment Name                           | LA |   |   |   |   |   |   |   |   |    |    |    | LA |   | - | - | - | - | - |   | Ρ |   | Ρ  | Ρ  |
|----|---------------------------------------------|----|---|---|---|---|---|---|---|---|----|----|----|----|---|---|---|---|---|---|---|---|---|----|----|
|    | Land Segment Name                           | 1  | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
|    | Alaska Maritime National<br>Wildlife Refuge | -  | - | - | - | - | - | - | - | - | -  | -  | -  | -  | 2 | - | 1 | - | - | - | - | - | - | -  | -  |
|    | National Petroleum Reserve<br>Alaska        | -  | - | - | - | - | - | - | - | - | -  | -  | -  | -  | - | - | - | - | - | 1 | - | - | - | 1  | 7  |
| 96 | United States Chukchi Coast                 | -  | - | - | - | - | - | - | - | - | -  | -  | -  | -  | 6 | - | 1 | - | - | 7 | - | I | 3 | 1  | 7  |

**Notes-** \*\* = Greater than 99.5 percent; - = less than 0.5 percent; LA = Launch Area, P = Pipeline. Rows with all values less than 0.5 percent are not shown.

#### Table A.2-38 Summer Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a Particular Location Will Contact a Certain Group of Land Segments Within 10 Days, Chukchi Sale 193

| ID | Land Segment Name                           | LA<br>1 | LA<br>2 |   |   |   | LA<br>6 |   |   |   |   |   |   | LA<br>13 | -  | P<br>2 | - | - | P<br>5 | -  | P<br>7 | P<br>8 | P<br>9 | Р<br>10 | Р<br>11 |
|----|---------------------------------------------|---------|---------|---|---|---|---------|---|---|---|---|---|---|----------|----|--------|---|---|--------|----|--------|--------|--------|---------|---------|
|    | Alaska Maritime National<br>Wildlife Refuge | -       | -       | - | - | - | -       | - | - | 1 | - | - | - | -        | 4  | -      | 2 | - | -      | -  | -      | -      | -      | -       | -       |
| 89 | National Petroleum Reserve<br>Alaska        | -       | -       | - | - | - | -       | - | - | - | - | 1 | 3 | 2        | -  | -      | - | - | -      | -  | -      | -      | 4      | I       | 14      |
|    | Kasegaluk Lagoon Special<br>Use Area        | -       | -       | - | - | - | -       | - | - | - | - | - | - | -        | -  | -      | - | - | -      | -  | -      | -      | 1      | 1       | -       |
| 95 | Russia Chukchi Coast                        | -       | -       | - | - | - | -       | - | - | - | - | - | - | -        | 1  | -      | - | - | -      | -  | -      | -      | -      | -       | -       |
| 96 | United States Chukchi Coast                 | -       | -       | - | - | - | -       | - | - | 2 | 5 | 5 | 4 | 3        | 12 | -      | 6 | - | -      | 20 | -      | -      | 13     | -       | 17      |
| 97 | United States Beaufort Coast                | -       | -       | - | - | - | -       | - | 1 | - | - | - | - | 5        | -  | -      | - | - | -      | -  | -      | -      | -      | -       | 2       |

**Notes-** \*\* = Greater than 99.5 percent; - = less than 0.5 percent; LA = Launch Area, P = Pipeline. Rows with all values less than 0.5 percent are not shown.

## Table A.2-39 Summer Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a Particular Location Will Contact a Certain Group of Land Segments Within 30 Days, Chukchi Sale 193

| ID | Land Segment Name                                 | LA<br>1 | LA<br>2 |   | LA<br>4 |   | LA<br>6 | LA<br>7 | LA<br>8 | LA<br>9 |    |    | LA<br>12 |    |    | P<br>2 | P<br>3 | P<br>4 | P<br>5 | P<br>6 | P<br>7 | P<br>8 | P<br>9 | Р<br>10 | Р<br>11 |
|----|---------------------------------------------------|---------|---------|---|---------|---|---------|---------|---------|---------|----|----|----------|----|----|--------|--------|--------|--------|--------|--------|--------|--------|---------|---------|
|    | Wrangel Is Nat Res Natural<br>World Heritage Site | 1       | 1       | - | 1       | 1 | -       | -       | -       | -       | -  | -  | -        | -  | -  | 1      | -      | 1      | 1      | -      | -      | -      | -      | -       | -       |
|    | Alaska Maritime National<br>Wildlife Refuge       | -       | -       | - | -       | - | -       | -       | -       | 3       | 1  | -  | -        | -  | 8  | -      | 4      | -      | -      | 1      | -      | -      | -      | -       | -       |
|    | National Petroleum Reserve<br>Alaska              | -       | -       | - | -       | 1 | 1       | 1       | 3       | -       | 1  | 4  | 10       | 8  | -  | -      | 1      | -      | 2      | 2      | -      | 3      | 11     | 2       | 23      |
|    | Kasegaluk Lagoon Special<br>Use Area              | -       | -       | - | -       | 1 | -       | -       | -       | -       | 1  | 2  | 1        | -  | -  | -      | -      | -      | 1      | 2      | -      | -      | 3      | -       | -       |
| 95 | Russia Chukchi Coast                              | 1       | 1       | - | 3       | 1 | -       | -       | -       | 11      | 3  | -  | -        | -  | 12 | 3      | 5      | 1      | 1      | -      | -      | -      | -      | -       | -       |
| 96 | United States Chukchi Coast                       | -       | -       | - | 3       | 4 | 2       | 2       | 2       | 8       | 18 | 19 | 18       | 11 | 20 | 3      | 18     | -      | 6      | 35     | -      | 6      | 32     | 3       | 29      |
| 97 | United States Beaufort Coast                      | -       | -       | - | -       | - | -       | 2       | 7       | -       | -  | -  | 1        | 11 | -  | -      | -      | -      | -      | -      | -      | -      | -      | 3       | 5       |

 Table A.2-40
 Summer Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a Particular Location Will Contact a Certain Group of Land Segments Within 60 Days, Chukchi Sale 193

| ID | Land Segment Name                                 | LA<br>1 | LA<br>2 | LA<br>3 | LA<br>4 | LA<br>5 | LA<br>6 | LA<br>7 | LA<br>8 | LA<br>9 | LA<br>10 |    |    | LA<br>13 | Р<br>1 | P<br>2 | P<br>3 | P<br>4 | P<br>5 | P<br>6 | P<br>7 | P<br>8 | P<br>9 | Р<br>10 | Р<br>11 |
|----|---------------------------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|----------|----|----|----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|---------|
|    | Wrangel Is Nat Res Natural<br>World Heritage Site | 1       | 1       | -       | 1       | 1       | -       | -       | -       | -       | -        | -  | -  | -        | -      | 1      | -      | 1      | 1      | -      | -      | -      | -      | -       | -       |
|    | Alaska Maritime National<br>Wildlife Refuge       | -       | -       | -       | 1       | -       | -       | -       | -       | 3       | 2        | 1  | -  | -        | 8      | 1      | 4      | -      | -      | 1      | -      | -      | -      | -       | -       |
|    | National Petroleum Reserve<br>Alaska              | -       | -       | 1       | -       | 2       | 3       | 2       | 8       | -       | 1        | 7  | 14 | 13       | -      | -      | -      | 1      | 3      | 3      | 1      | 7      | 15     | 4       | 28      |
|    | Kasegaluk Lagoon Special<br>Use Area              | -       | -       | -       | -       | 1       | -       | -       | -       | -       | 1        | 3  | 2  | -        | -      | -      | -      | -      | 1      | 2      | -      | -      | 4      | -       | -       |
| 91 | Teshekpuk Lake Special Use<br>Area                | -       | -       | -       | -       | -       | -       | -       | 1       | -       | -        | -  | -  | -        | -      | -      | -      | -      | -      | -      | -      | -      | -      | -       | -       |
| 95 | Russia Chukchi Coast                              | 1       | 1       | -       | 4       | 2       | -       | -       | -       | 12      | 3        | 1  | -  | -        | 13     | 3      | 5      | 1      | 1      | 1      | -      | -      | -      | -       | -       |
| 96 | United States Chukchi Coast                       | 1       | 1       | 1       | 5       | 9       | 6       | 4       | 5       | 9       | 24       | 26 | 26 | 17       | 21     | 4      | 21     | 1      | 11     | 42     | 2      | 13     | 40     | 7       | 37      |
| 97 | United States Beaufort Coast                      | -       | -       | 1       | -       | -       | -       | 4       | 14      | -       | -        | -  | 1  | 15       | -      | -      | -      | -      | -      | -      | -      | -      | 1      | 7       | 6       |

## Table A.2-41 Summer Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a Particular Location Will Contact a Certain Group of Land Segments Within 180 Days, Chukchi Sale 193

| ID | Land Segment Name                                 | LA<br>1 | LA<br>2 | LA<br>3 | LA<br>4 | LA<br>5 | LA<br>6 | LA<br>7 | LA<br>8 | LA<br>9 | LA<br>10 | LA<br>11 | LA<br>12 | LA<br>13 | Р<br>1 | P<br>2 | P<br>3 | P<br>4 | P<br>5 | P<br>6 | P<br>7 | P<br>8 | P<br>9 | Р<br>10 | P<br>11 |
|----|---------------------------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|----------|----------|----------|----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|---------|
|    | Wrangel Is Nat Res Natural<br>World Heritage Site | 1       | 1       | 1       | 1       | 1       | 1       | -       | 1       | -       | 1        | 1        | -        | 1        | -      | 1      | -      | 1      | 1      | 1      | 1      | -      | -      | 1       | -       |
|    | Alaska Maritime National<br>Wildlife Refuge       | -       | -       | -       | 1       | 1       | -       | -       | -       | 3       | 2        | 1        | -        | -        | 8      | 1      | 4      | -      | 1      | 2      | -      | -      | -      | -       | -       |
|    | National Petroleum Reserve<br>Alaska              | -       | 1       | 1       | 1       | 3       | 3       | 4       | 9       | -       | 1        | 7        | 16       | 14       | -      | 1      | 1      | 1      | 4      | 3      | 2      | 8      | 17     | 5       | 30      |
|    | Kasegaluk Lagoon Special<br>Use Area              | -       | -       | -       | -       | 1       | -       | -       | -       | -       | 1        | 3        | 2        | -        | -      | 1      | 1      | -      | 1      | 2      | -      | -      | 4      | -       | -       |
| 91 | Teshekpuk Lake Special Use<br>Area                | -       | -       | -       | -       | -       | -       | -       | 2       | -       | -        | -        | -        | 1        | -      | -      | I      | -      | -      | -      | -      | -      | -      | -       | -       |
| 95 | Russia Chukchi Coast                              | 2       | 1       | 1       | 5       | 2       | 1       | 1       | 1       | 14      | 4        | 1        | -        | 1        | 14     | 4      | 6      | 1      | 1      | 1      | 1      | -      | -      | 1       | -       |
| 96 | United States Chukchi Coast                       | 1       | 1       | 2       | 6       | 10      | 7       | 7       | 7       | 9       | 25       | 28       | 29       | 19       | 21     | 5      | 22     | 2      | 13     | 43     | 3      | 15     | 43     | 9       | 40      |
| 97 | United States Beaufort Coast                      | -       | -       | 1       | -       | -       | -       | 5       | 16      | -       | -        | -        | 2        | 17       | -      | -      | -      | -      | -      | -      | 1      | -      | 2      | 9       | 8       |

**Notes-** \*\* = Greater than 99.5 percent; - = less than 0.5 percent; LA = Launch Area, P = Pipeline. Rows with all values less than 0.5 percent are not shown.

## Table A.2-42 Summer Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a Particular Location Will Contact a Certain Group of Land Segments Within 360 Days, Chukchi Sale 193

| ID | Land Segment Name                                 | LA<br>1 | LA<br>2 | LA<br>3 | LA<br>4 |    |   | LA<br>7 |    | LA<br>9 |    |    | LA<br>12 |    |    | P<br>2 | P<br>3 | P<br>4 | P<br>5 | P<br>6 | P<br>7 | P<br>8 | P<br>9 | Р<br>10 | Р<br>11 |
|----|---------------------------------------------------|---------|---------|---------|---------|----|---|---------|----|---------|----|----|----------|----|----|--------|--------|--------|--------|--------|--------|--------|--------|---------|---------|
|    | Wrangel Is Nat Res Natural<br>World Heritage Site | 1       | 1       | 1       | 1       | 1  | 1 | 1       | 3  | -       | 1  | 1  | -        | 2  | -  | 1      | -      | 1      | 1      | 1      | 1      | -      | -      | 1       | 1       |
|    | Alaska Maritime National<br>Wildlife Refuge       | -       | -       | -       | 1       | 1  | - | -       | -  | 3       | 2  | 1  | -        | -  | 8  | 1      | 4      | -      | 1      | 2      | -      | -      | -      | -       | -       |
|    | National Petroleum Reserve<br>Alaska              | -       | 1       | 2       | 1       | 3  | 4 | 5       | 12 | -       | 2  | 8  | 17       | 16 | -  | 1      | 1      | 1      | 4      | 3      | 2      | 9      | 18     | 7       | 32      |
|    | Kasegaluk Lagoon Special<br>Use Area              | -       | -       | -       | -       | 1  | - | -       | -  | -       | 1  | 3  | 2        | -  | -  | 1      | -      | -      | 1      | 2      | -      | -      | 4      | -       | -       |
| 91 | Teshekpuk Lake Special Use<br>Area                | -       | -       | -       | -       | -  | - | 1       | 3  | -       | -  | -  | -        | 1  | -  | -      | -      | -      | -      | -      | -      | -      | -      | 1       | -       |
| 95 | Russia Chukchi Coast                              | 2       | 2       | 1       | 6       | 2  | 1 | 1       | 6  | 19      | 6  | 1  | 1        | 3  | 20 | 5      | 9      | 2      | 1      | 2      | 1      | -      | 1      | 1       | 1       |
| 96 | United States Chukchi Coast                       | 1       | 2       | 3       | 6       | 11 | 8 | 9       | 9  | 9       | 25 | 28 | 31       | 20 | 21 | 5      | 23     | 2      | 13     | 44     | 4      | 16     | 44     | 11      | 41      |
| 97 | United States Beaufort Coast                      | -       | -       | 2       | -       | -  | 2 | 7       | 20 | -       | -  | -  | 3        | 19 | -  | -      | -      | -      | -      | -      | 1      | 2      | 2      | 12      | 9       |

 Table A.2-43
 Summer Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a Particular Location Will Contact a Certain Boundary Segment Within 3 Days, Chukchi Sale 193

|   | Roundary Sogment Name | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | Ρ | Ρ | Ρ | Ρ | Ρ | Ρ | Ρ | Ρ | Ρ | Ρ  | Р  |
|---|-----------------------|----|----|----|----|----|----|----|----|----|----|----|----|----|---|---|---|---|---|---|---|---|---|----|----|
| U | Boundary Segment Name | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
|   |                       |    |    |    |    |    |    |    |    |    |    |    |    |    |   |   |   |   |   |   |   |   |   |    |    |

Notes- All boundary segments have all values less than 0.5%; therefore the data are not shown and the tables are left blank.

## Table A.2-44 Summer Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a Particular Location Will Contact a Certain Boundary Segment Within 10 Days, Chukchi Sale 193

|    | Boundary Segment Name | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | Ρ | Ρ | Ρ | Ρ | Ρ | Ρ | Ρ | Ρ | Ρ | Ρ  | Ρ  |
|----|-----------------------|----|----|----|----|----|----|----|----|----|----|----|----|----|---|---|---|---|---|---|---|---|---|----|----|
| שו | Boundary Segment Name | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
|    |                       |    |    |    |    |    |    |    |    |    |    |    |    |    |   |   |   |   |   |   |   |   |   |    |    |

Notes- All boundary segments have all values less than 0.5%; therefore the data are not shown and the tables are left blank.

 Table A.2-45
 Summer Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting

 at a Particular Location Will Contact a Certain Boundary Segment Within 30 Days, Chukchi Sale 193

| ID | Boundary Segment Name | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | Ρ | Ρ | Ρ | Ρ | Ρ | Ρ | Ρ | Ρ | Ρ | Ρ  | Р  |
|----|-----------------------|----|----|----|----|----|----|----|----|----|----|----|----|----|---|---|---|---|---|---|---|---|---|----|----|
|    | Boundary Segment Name | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| 2  | Bering Strait         | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 1 | - | - | - | - | - | - | - | - | -  | -  |
| 16 | Chukchi Sea           | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | I | - | - | 1 | - | - | - | - | - | -  | -  |
| 18 | Chukchi Sea           | -  | 1  | 1  | -  | -  | 1  | -  | -  | -  | -  | -  | -  | -  | ١ | - | - | 1 | - | - | 1 | - | - | -  | -  |
| 19 | Chukchi Sea           | -  | -  | 1  | -  | -  | 1  | 1  | -  | -  | -  | -  | -  | -  | - | - | 1 | - | - | - | 1 | - | - | 1  | -  |

**Notes-** \*\* = Greater than 99.5 percent; - = less than 0.5 percent; LA = Launch Area, P = Pipeline. Rows with all values less than 0.5 percent are not shown.

#### Table A.2-46 Summer Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a Particular Location Will Contact a Certain Boundary Segment Within 60 Days, Chukchi Sale 193

| ID | Boundary Segment Name | LA<br>1 | LA<br>2 | LA<br>3 | LA<br>4 | LA<br>5 | LA<br>6 | LA<br>7 | LA<br>8 | LA<br>9 | LA<br>10 | LA<br>11 | LA<br>12 |   | P<br>1 | P<br>2 | P<br>3 | P<br>4 | P<br>5 | P<br>6 | P<br>7 | P<br>8 | P<br>9 | Р<br>10 | Р<br>11 |
|----|-----------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|----------|----------|----------|---|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|---------|
| 2  | Bering Strait         | -       | -       | -       | -       | -       | -       | -       | -       | 1       | -        | -        | -        | - | 1      | -      | -      | -      | -      | -      | -      | -      | -      | -       | -       |
|    | Chukchi Sea           | 1       | 1       | 1       | -       | -       | -       | -       | -       | -       | -        | -        | -        | - | -      | -      | -      | 1      | -      | -      | 1      | -      | -      | -       | -       |
| 17 | Chukchi Sea           | 1       | 1       | 1       | -       | -       | 1       | -       | -       | -       | -        | -        | -        | - | -      | -      | -      | 1      | -      | -      | 1      | -      | -      | -       | -       |
| 18 | Chukchi Sea           | 1       | 3       | 4       | -       | 2       | 3       | 3       | 2       | -       | 1        | 2        | 1        | 1 | -      | -      | -      | 2      | 2      | 1      | 4      | 2      | -      | 3       | 1       |
| 19 | Chukchi Sea           | 1       | 2       | 3       | -       | 1       | 1       | 3       | 2       | -       | -        | 1        | 1        | 1 | -      | -      | -      | 1      | 1      | -      | 3      | 1      | -      | 3       | 1       |
| 20 | Chukchi Sea           | 1       | 1       | 1       | -       | -       | -       | 1       | 1       | -       | -        | -        | -        | - | -      | -      | -      | 1      | -      | -      | 1      | -      | -      | 1       | -       |
| 21 | Chukchi Sea           | -       | -       | 1       | -       | -       | -       | 1       | 1       | -       | -        | -        | -        | - | -      | -      | -      | -      | -      | -      | 1      | -      | -      | 1       | -       |
| 22 | Chukchi Sea           | -       | -       | -       | -       | -       | -       | -       | 1       | -       | -        | -        | -        | - | -      | -      | -      | -      | -      | -      | -      | -      | -      | 1       | -       |
| 23 | Beaufort Sea          | -       | -       | -       | -       | -       | -       | 1       | 1       | -       | -        | -        | -        | - | -      | -      | -      | -      | -      | -      | -      | -      | -      | -       | -       |
| 24 | Beaufort Sea          | -       | -       | -       | -       | -       | -       | -       | 1       | -       | -        | -        | -        | 1 | -      | -      | -      | -      | -      | -      | -      | -      | -      | -       | -       |
| 25 | Beaufort Sea          | -       | -       | -       | -       | -       | -       | -       | 1       | -       | -        | -        | -        | - | -      | -      | -      | -      | -      | -      | -      | -      | -      | 1       | -       |
| 26 | Beaufort Sea          | -       | -       | -       | -       | -       | -       | 1       | 1       | -       | -        | -        | -        | 1 | -      | -      | -      | -      | -      | -      | -      | -      | -      | 1       | -       |

 Table A.2-47
 Summer Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting

 at a Particular Location Will Contact a Certain Boundary Segment Within 180 Days, Chukchi Sale 193

| ID | Boundary Segment Name | LA<br>1 | LA<br>2 | LA<br>3 | LA<br>4 | LA<br>5 | LA<br>6 | LA<br>7 | LA<br>8 | LA<br>9 | LA<br>10 | LA<br>11 | LA<br>12 | LA<br>13 | Р<br>1 | P<br>2 | P<br>3 | P<br>4 | P<br>5 | P<br>6 | P<br>7 | P<br>8 | P<br>9 | Р<br>10 | Р<br>11 |
|----|-----------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|----------|----------|----------|----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|---------|
| 2  | Bering Strait         | -       | -       | -       | -       | -       | -       | -       | -       | 1       | -        | -        | -        | -        | 1      | -      | -      | -      | -      | -      | -      | -      | -      | -       | -       |
| 16 | Chukchi Sea           | 2       | 1       | 1       | -       | -       | -       | -       | -       | -       | -        | -        | -        | -        | -      | -      | -      | 2      | -      | -      | 1      | -      | -      | -       | -       |
| 17 | Chukchi Sea           | 1       | 2       | 2       | -       | 1       | 2       | 1       | -       | -       | -        | 1        | -        | -        | -      | -      | -      | 2      | 1      | 1      | 2      | 1      | -      | 1       | -       |
| 18 | Chukchi Sea           | 3       | 5       | 8       | 1       | 5       | 8       | 9       | 6       | -       | 3        | 7        | 6        | 5        | -      | 1      | 1      | 4      | 6      | 5      | 8      | 9      | 4      | 8       | 5       |
| 19 | Chukchi Sea           | 3       | 6       | 9       | 1       | 4       | 7       | 12      | 7       | -       | 3        | 6        | 8        | 7        | -      | 1      | 1      | 4      | 5      | 5      | 9      | 6      | 7      | 12      | 6       |
| 20 | Chukchi Sea           | 4       | 7       | 8       | 1       | 5       | 7       | 6       | 4       | -       | 1        | 5        | 6        | 5        | -      | 1      | -      | 6      | 5      | 2      | 9      | 7      | 4      | 6       | 7       |
| 21 | Chukchi Sea           | 1       | 1       | 3       | -       | -       | 1       | 2       | 3       | -       | -        | 1        | 1        | 2        | -      | -      | -      | 1      | -      | -      | 3      | 1      | 1      | 2       | 1       |
| 22 | Chukchi Sea           | -       | -       | 1       | -       | -       | -       | 1       | 1       | -       | -        | -        | 1        | 1        | -      | -      | -      | -      | -      | -      | -      | -      | -      | 1       | 1       |
| 23 | Beaufort Sea          | 1       | 1       | 3       | -       | -       | 1       | 2       | 2       | -       | -        | -        | 1        | 1        | -      | -      | -      | 1      | -      | -      | 2      | 1      | -      | 2       | 1       |
| 24 | Beaufort Sea          | -       | -       | 1       | -       | -       | -       | 1       | 1       | -       | -        | -        | -        | 1        | -      | -      | -      | -      | -      | -      | 1      | -      | -      | 2       | 1       |
| 25 | Beaufort Sea          | -       | 1       | 1       | -       | -       | 2       | 1       | 1       | -       | -        | 1        | 2        | 1        | -      | -      | -      | -      | -      | -      | 1      | 2      | 3      | 1       | 1       |
| 26 | Beaufort Sea          | -       | 1       | 2       | -       | -       | 1       | 3       | 2       | -       | -        | -        | 1        | 2        | -      | -      | -      | -      | -      | -      | 1      | 1      | -      | 3       | 2       |
| 27 | Beaufort Sea          | -       | -       | 1       | -       | -       | -       | 1       | 2       | -       | -        | -        | -        | 1        | -      | -      | -      | -      | -      | -      | 1      | -      | -      | 2       | -       |
| 28 | Beaufort Sea          | -       | -       | -       | -       | -       | -       | -       | 1       | -       | -        | -        | -        | -        | -      | -      | -      | -      | -      | -      | -      | -      | -      | -       | -       |
| 30 | Beaufort Sea          | -       | -       | -       | -       | -       | -       | -       | 1       | -       | -        | -        | -        | -        | -      | -      | -      | -      | -      | -      | -      | -      | -      | -       | -       |
| 31 | Beaufort Sea          | -       | -       | -       | -       | -       | -       | -       | 1       | -       | -        | -        | -        | -        | -      | -      | -      | -      | -      | -      | -      | -      | -      | -       | -       |

 Table A.2-48
 Summer Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a Particular Location Will Contact a Certain Boundary Segment Within 360 Days, Chukchi Sale 193

| ID | Boundary Segment Name | LA<br>1 | LA<br>2 | LA<br>3 | LA<br>4 | LA<br>5 | LA<br>6 | LA<br>7 | LA<br>8 | LA<br>9 | LA<br>10 | LA<br>11 | LA<br>12 | LA<br>13 | P<br>1 | P<br>2 | P<br>3 | P<br>⊿ | P<br>5 | P | P<br>7 | P<br>8 | P<br>9 | P<br>10 | P<br>11 |
|----|-----------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|----------|----------|----------|----------|--------|--------|--------|--------|--------|---|--------|--------|--------|---------|---------|
| 2  | Bering Strait         | -       | -       | 5       | -       | -       | -       | 1       | -       | 3       | -        |          | -        | -        | 1      | -      | 5      | -      | 5      | 0 |        | 0      | 3      | 10      |         |
|    |                       |         | -       | -       |         |         |         | -       |         | ļ       |          | -        |          |          | 1      | -      | -      | -      | -      | - | -      | -      | -      | -       | -       |
| 16 | Chukchi Sea           | 2       | 1       | 1       | -       | -       | -       | -       | -       | -       | -        | -        | -        | -        | -      | -      | -      | 2      | -      | - | 1      | -      | -      | -       | -       |
| 17 | Chukchi Sea           | 1       | 2       | 3       | -       | 1       | 2       | 1       | -       | -       | -        | 1        | -        | -        | -      | -      | -      | 2      | 1      | 1 | 2      | 1      | -      | 1       | -       |
| 18 | Chukchi Sea           | 3       | 5       | 8       | 1       | 5       | 8       | 9       | 6       | -       | 3        | 7        | 7        | 5        | -      | 1      | 1      | 5      | 6      | 5 | 8      | 9      | 5      | 8       | 5       |
| 19 | Chukchi Sea           | 3       | 7       | 10      | 1       | 5       | 8       | 12      | 8       | -       | 3        | 6        | 9        | 8        | -      | 1      | 1      | 5      | 5      | 5 | 9      | 7      | 8      | 13      | 7       |
| 20 | Chukchi Sea           | 4       | 7       | 8       | 1       | 5       | 8       | 6       | 4       | -       | 1        | 5        | 6        | 6        | -      | 1      | -      | 6      | 5      | 2 | 9      | 7      | 5      | 6       | 8       |
| 21 | Chukchi Sea           | 1       | 1       | 4       | -       | -       | 2       | 2       | 3       | -       | -        | 1        | 1        | 2        | -      | -      | -      | 1      | -      | - | 3      | 1      | 1      | 2       | 1       |
| 22 | Chukchi Sea           | -       | -       | 1       | -       | -       | -       | 1       | 1       | -       | -        | -        | 1        | 1        | -      | -      | -      | -      | -      | - | -      | -      | -      | 1       | 1       |
| 23 | Beaufort Sea          | 1       | 1       | 3       | -       | -       | 1       | 2       | 2       | -       | -        | -        | 1        | 1        | -      | -      | -      | 1      | -      | - | 2      | 1      | 1      | 2       | 1       |
| 24 | Beaufort Sea          | -       | -       | 1       | -       | -       | -       | 1       | 1       | -       | -        | -        | -        | 1        | -      | -      | -      | -      | -      | - | 1      | -      | -      | 2       | 1       |
| 25 | Beaufort Sea          | -       | 1       | 1       | -       | -       | 2       | 1       | 1       | -       | -        | 1        | 2        | 1        | -      | -      | -      | -      | -      | - | 1      | 2      | 3      | 1       | 1       |
| 26 | Beaufort Sea          | -       | 1       | 2       | -       | -       | 1       | 3       | 2       | -       | -        | -        | 1        | 2        | -      | -      | -      | -      | -      | - | 1      | 1      | -      | 3       | 2       |
| 27 | Beaufort Sea          | -       | -       | 1       | -       | -       | -       | 1       | 2       | -       | -        | -        | -        | 1        | -      | -      | -      | -      | -      | - | 1      | -      | -      | 2       | -       |
| 28 | Beaufort Sea          | -       | -       | -       | -       | -       | -       | -       | 1       | -       | -        | -        | -        | -        | -      | -      | -      | -      | -      | - | -      | -      | -      | -       | -       |
| 30 | Beaufort Sea          | -       | -       | -       | -       | -       | -       | -       | 1       | -       | -        | -        | -        | -        | -      | -      | -      | -      | -      | - | -      | -      | -      | -       | -       |
| 31 | Beaufort Sea          | -       | -       | -       | -       | -       | -       | -       | 1       | -       | -        | -        | -        | -        | -      | -      | -      | -      | -      | - | -      | -      | -      | -       | -       |
| 34 | Beaufort Sea          | -       | -       | -       | -       | -       | -       | 1       | 1       | -       | -        | -        | -        | 1        | -      | -      | -      | -      | -      | - | -      | -      | -      | -       | -       |
| 35 | Beaufort Sea          | -       | -       | -       | -       | -       | -       | -       | 1       | -       | -        | -        | -        | 1        | -      | -      | -      | -      | -      | - | -      | -      | -      | -       | -       |

| ID | Environmental Resource<br>Area Name              | LA<br>1 | LA<br>2 | LA<br>3 | LA<br>4 | LA<br>5 | LA<br>6 | LA<br>7 | LA<br>8 | LA<br>9 | LA<br>10 | LA<br>11 | LA<br>12 | LA<br>13 | P<br>1 | P<br>2 | Р<br>3 | Р<br>4 | Р<br>5 | P<br>6 | P<br>7 | P<br>8 | Р<br>9 | Р<br>10 | Р<br>11 |
|----|--------------------------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|----------|----------|----------|----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|---------|
| _  | LAND                                             | -       | -       | -       | -       | -       | -       | -       | -       | -       | -        | -        | -        | -        | 1      | -      | -      | -      | -      | 5      | -      | -      | 1      | -       | 1       |
| 1  | Kasegaluk Lagoon                                 | -       | -       | -       | -       | -       | -       | -       | -       | -       | -        | -        | -        | -        | -      | -      | -      | -      | -      | 1      | -      | -      | -      | -       | -       |
| 6  | ERA 6                                            | -       | -       | -       | -       | -       | -       | -       | -       | -       | -        | -        | 1        | 1        | -      | -      | -      | -      | -      | -      | -      | -      | 6      | -       | 10      |
| 10 | Ledyard Bay Spectacled<br>Eider Critical Habitat | -       | -       | -       | -       | -       | -       | -       | -       | -       | 1        | 1        | -        | -        | -      | -      | 3      | -      | -      | 9      | -      | -      | -      | -       | -       |
| 14 | Cape Thompson Seabird<br>Colony Area             | -       | -       | -       | -       | -       | -       | -       | -       | -       | -        | -        | -        | -        | 5      | -      | -      | -      | -      | -      | -      | -      | -      | -       | -       |
| 15 | Cape Lisburne Seabird<br>Colony Area             | -       | -       | -       | -       | -       | -       | -       | -       | 1       | -        | -        | -        | -        | 7      | -      | 4      | -      | -      | -      | -      | -      | -      | -       | -       |
| 19 | Chukchi Spring Lead 1                            | -       | -       | -       | -       | -       | -       | -       | -       | -       | -        | -        | -        | 1        | 9      | -      | 1      | 1      | 1      | -      | -      | ١      | -      | -       | -       |
| 20 | Chukchi Spring Lead 2                            | -       | -       | -       | -       | -       | -       | -       | -       | -       | -        | -        | -        | 1        | 1      | -      | 6      | -      | 1      | 1      | -      | ١      | -      | -       | -       |
| 21 | Chukchi Spring Lead 3                            | -       | -       | -       | -       | -       | -       | -       | -       | -       | -        | -        | -        | 1        | 1      | -      | 1      | 1      | 1      | 9      | -      | ١      | -      | -       | -       |
| 22 | Chukchi Spring Lead 4                            | -       | -       | -       | -       | -       | -       | -       | -       | -       | -        | -        | 2        | -        | -      | -      | -      | -      | -      | -      | -      | I      | 15     | -       | -       |
| 23 | Chukchi Spring Lead 5                            | -       | -       | -       | -       | -       | -       | -       | -       | -       | -        | -        | -        | -        | -      | -      | -      | -      | -      | -      | -      | I      | -      | -       | 10      |
| 24 | Beaufort Spring Lead 6                           | -       | -       | -       | -       | -       | -       | -       | -       | -       | -        | -        | -        | 1        | 1      | -      | -      | -      | -      | 5      | -      | I      | 1      | -       | 1       |
| 38 | Pt. Hope Subsistence Area                        | -       | -       | -       | -       | -       | -       | -       | -       | -       | -        | -        | -        | -        | 6      | -      | 2      | -      | -      | -      | -      | -      | -      | -       | -       |
| 39 | Point Lay Subsistence Area                       | -       | -       | -       | -       | -       | -       | -       | -       | -       | 1        | 1        | -        | -        | 1      | -      | 1      | -      | 1      | 25     | -      | ١      | -      | -       | -       |
| 40 | Wainwright Subsistence Area                      | -       | -       | -       | -       | -       | -       | -       | -       | -       | -        | -        | -        |          | -      | -      | -      | -      | -      | 3      | -      | I      | 22     | -       | 1       |
| 41 | Barrow Subsistence Area 1                        | -       | -       | -       | -       | -       | -       | -       | -       | -       | -        | -        | -        | 1        | -      | -      | -      | -      | -      | -      | -      | I      | -      | -       | 4       |
| 45 | ERA 45                                           | -       | -       | -       | -       | -       | -       | -       | -       | 2       | -        | -        | -        | -        | 7      | -      | 3      | -      | -      | -      | -      | -      | -      | -       | -       |
| 46 | Herald Shoal Polynya                             | -       | -       | -       | 2       | -       | -       | -       | -       | -       | -        | -        | -        | -        | -      | 1      | -      | -      | -      | -      | -      | -      | -      | -       | -       |
| 47 | Ice/Sea Segment 10                               | 1       | -       | -       | 9       | 12      | -       | -       | -       | -       | -        | -        | -        | -        | -      | 2      | -      | -      | 4      | -      | -      | -      | -      | -       | -       |
| 48 |                                                  | -       | -       | -       | -       | 2       | 26      | -       | -       | -       | -        | 3        | 1        | -        | -      | -      | -      | -      | 2      | -      | 6      | 40     | -      | -       | -       |
| 49 | Hanna's Shoal Polynya                            | -       | 1       | 27      | -       | -       | 2       | 2       | -       | -       | -        | -        | -        | -        | -      | -      | -      | -      | -      | -      | 11     | -      | -      | -       | -       |
| 50 | Ice/Sea Segment 12                               | -       | -       | -       | -       | -       | -       | -       | -       | -       | -        | 2        | 17       | -        | -      | -      | -      | -      | -      | -      | -      | 27     | 1      | -       | -       |
|    | Ice/Sea Segment 13                               | -       | -       | -       | -       | -       | -       | -       | -       | -       | -        | -        | 10       | 10       | -      | -      | -      | -      | -      | -      | -      | -      | -      | -       | 28      |
| 50 | Ico/Son Sogmont 14                               |         |         |         |         |         |         |         | 7       |         |          |          |          | 17       |        |        |        |        |        |        |        |        |        |         |         |

Table A.2-49 Winter Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a Particular Location Will Contact a Certain Environmental Resource Area Within 3 Days, Chukchi Sale 193

-Notes- \*\* = Greater than 99.5 percent; - = less than 0.5 percent; LA = Launch Area, P = Pipeline. Rows with all values less than 0.5 percent are not shown.

7

----

- 6 8

-

17

--

------\_ -

--- 3 9

--- \_

--

1

--

-------

--

52 Ice/Sea Segment 14

99 ERA 99

|    | Environmental Resource                           | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | Р  | Р  | Р | Р | Р  | Р  | Р  | Р  | Р  | Р   | Р  |
|----|--------------------------------------------------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|---|---|----|----|----|----|----|-----|----|
| ID | Area Name                                        | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 1  | 2  | 3 | 4 | 5  | 6  | 7  | 8  | 9  | 10  | 11 |
| —  | LAND                                             | -  | -  | -  | -  | -  | -  | -  | -  | 1  | 3  | 2  | 1  | 2  | 3  | -  | 2 | - | -  | 14 | -  | -  | 3  | -   | 4  |
| 1  | Kasegaluk Lagoon                                 | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | - | - | -  | 2  | -  | -  | -  | -   | -  |
| 6  | ERA 6                                            | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 2  | 3  | -  | -  | - | - | -  | -  | -  | -  | 9  | -   | 12 |
| 10 | Ledyard Bay Spectacled<br>Eider Critical Habitat | -  | -  | -  | -  | -  | -  | -  | -  | -  | 3  | 2  | -  | -  | -  | -  | 4 | - | -  | 11 | -  | -  | -  | -   | -  |
| 14 | Cape Thompson Seabird<br>Colony Area             | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 6  | -  | 1 | - | -  | -  | -  | -  | -  | -   | -  |
| 15 | Cape Lisburne Seabird Colony<br>Area             | -  | -  | -  | -  | -  | -  | -  | -  | 1  | 1  | -  | -  | -  | 7  | -  | 5 | - | -  | -  | -  | -  | -  | -   | -  |
|    | Chukchi Spring Lead 1                            | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 9  | -  | 1 | - | -  | -  | -  | -  | -  | -   | -  |
|    | Chukchi Spring Lead 2                            | -  | -  | -  | -  | -  | -  | -  | -  | -  | 2  | -  | -  | -  | -  | -  | 7 | - | -  | 2  | -  | -  | -  | -   | -  |
| 21 | Chukchi Spring Lead 3                            | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | 2  | -  | -  | -  | -  | - | - | -  | 12 | -  | -  | -  | -   | -  |
|    | Chukchi Spring Lead 4                            | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 2  | 3  | -  | -  | -  | - | - | -  | 1  | -  | -  | 18 | -   | -  |
| 23 | Chukchi Spring Lead 5                            | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | - | - | -  | -  | -  | -  | -  | -   | 11 |
| 24 | Beaufort Spring Lead 6                           | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | - | - | -  | -  | -  | -  | -  | -   | -  |
| 25 | Beaufort Spring Lead 7                           | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | - | - | -  | -  | -  | -  | -  | - 1 | -  |
|    | Pt. Hope Subsistence Area                        | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 9  | -  | 3 | - | -  | -  | -  | -  | -  | -   | -  |
|    | Point Lay Subsistence Area                       | -  | -  | -  | -  | -  | -  | -  | -  | -  | 6  | 3  | -  | -  | -  | -  | 3 | - | -  | 31 | -  | -  | -  | -   | -  |
| 40 | Wainwright Subsistence Area                      | -  | -  | -  | -  | -  | -  | -  | -  | -  | 2  | 2  | 2  | -  | -  | -  | 1 | - | -  | 10 | -  | -  | 27 | -   | 2  |
| 41 | Barrow Subsistence Area 1                        | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 2  | -  | -  | - | - | -  | -  | -  | -  | -  | -   | 6  |
|    | ERA 45                                           | -  | -  | -  | -  | -  | -  | -  | -  | 4  | -  | -  | -  | -  | 12 | -  | 4 | - | -  | -  | -  | -  | -  | - 1 | -  |
| 46 | Herald Shoal Polynya                             | 3  | -  | -  | 10 | -  | 1  | -  | -  | 1  | -  | -  | -  | -  | -  | 11 | 1 | - | 1  | -  | -  | -  | -  | -   | -  |
|    | Ice/Sea Segment 10                               | 3  | -  | -  | 12 | 17 | 1  | -  | -  | -  | 2  | 1  | -  | -  | -  | 4  | - | 1 | 10 | 1  | -  | -  | -  | -   | -  |
| 48 | Ice/Sea Segment 11                               | 1  | 4  | 3  | -  | 10 | 37 | 2  | -  | -  | 3  | 16 | 5  | -  | -  | -  | - | 4 | 15 | 4  | 12 | 51 | 2  | -   | 1  |
| 49 | Hanna's Shoal Polynya                            | 1  | 8  | 47 | -  | 2  | 16 | 13 | 3  | -  | -  | 1  | 1  | 1  | -  | -  | - | 3 | 2  | -  | 31 | 6  | -  | 7   | -  |
| 50 | Ice/Sea Segment 12                               | -  | -  | 1  | -  | -  | 2  | 1  | 1  | -  | 1  | 5  | 25 | 3  | -  | -  | - | - | 1  | I  | -  | 33 | 4  | -   | 7  |
| 51 | Ice/Sea Segment 13                               | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 15 | 13 | -  | -  | - | - | -  | -  | -  | -  | 5  | -   | 40 |
| 52 | Ice/Sea Segment 14                               | -  | -  | -  | -  | -  | -  | -  | 12 | -  | -  | -  | -  | 24 | -  | -  | - | - | -  | -  | -  | -  | -  | 1   | 3  |
| 99 | ERA 99                                           | -  | -  | -  | -  | 3  | -  | -  | -  | -  | 8  | 10 | -  | -  | -  | -  | - | - | 5  | 12 | -  | -  | -  |     | -  |

Table A.2-50 Winter Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at aParticular Location Will Contact a Certain Environmental Resource Area Within 10 Days, Chukchi Sale 193

| п  | Environmental Resource                           | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | Ρ  | Ρ  | Ρ  | Ρ  | Ρ  | Ρ  | Ρ  | Ρ  | Ρ  | Ρ  | Ρ  |
|----|--------------------------------------------------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|    | Area Name                                        | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 |
| —  | LAND                                             | 1  | -  | -  | 2  | 1  | -  | -  | 1  | 5  | 12 | 6  | 3  | 4  | 9  | 3  | 11 | -  | 1  | 21 | -  | 1  | 9  | -  | 7  |
| 1  | Kasegaluk Lagoon                                 | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 3  | 2  | -  | -  | -  | -  | 1  | -  | 1  | 5  | -  | -  | -  | -  | -  |
| 4  | ERA 4                                            | -  | -  | -  | -  | -  | -  | -  | -  | 5  | -  | -  | -  | -  | 8  | -  | 1  | -  | -  | -  | -  | -  | -  | -  | -  |
| 6  | ERA 6                                            | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | 1  | 5  | 5  | -  | -  | -  | -  | 1  | 1  | -  | 1  | 16 | -  | 18 |
| 10 | Ledyard Bay Spectacled<br>Eider Critical Habitat | -  | -  | -  | -  | 1  | -  | -  | -  | 1  | 7  | 4  | -  | -  | 1  | 1  | 8  | -  | 1  | 13 | -  | -  | -  | -  | -  |
|    | Wrangel Island                                   | 3  | -  | -  | 1  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 2  | -  | 1  | -  | -  | -  | -  | -  | -  | -  |
| 14 | Cape Thompson Seabird<br>Colony Area             | -  | -  | -  | -  | -  | -  | -  | -  | 2  | -  | -  | -  | -  | 8  | -  | 1  | -  | -  | -  | -  | -  | -  | -  | -  |
| 15 | Cape Lisburne Seabird<br>Colony Area             | -  | -  | -  | -  | -  | -  | -  | -  | 2  | 2  | -  | -  | -  | 9  | -  | 7  | -  | -  | -  | -  | -  | -  | -  | -  |
|    | ERA 16                                           | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  |
|    | Chukchi Spring Lead 1                            | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 11 | -  | 2  | -  | -  | -  | -  | -  | -  | -  | -  |
|    | Chukchi Spring Lead 2                            | -  | -  | -  | -  | -  | -  | -  | -  | 1  | 5  | 1  | -  | -  | 1  | -  | 10 | -  | -  | 3  | -  | -  | -  | -  | -  |
|    | Chukchi Spring Lead 3                            | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 6  | 4  | -  | -  | -  | 1  | 2  | -  | 1  | 15 | -  | -  | -  | -  | -  |
|    | Chukchi Spring Lead 4                            | -  | -  | -  | -  | 2  | 1  | -  | -  | -  | 2  | 5  | 6  | -  | -  | -  | -  | -  | 2  | 5  | -  | 2  | 25 | -  | -  |
|    | Chukchi Spring Lead 5                            | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | 2  | -  | -  | -  | -  | -  | -  | -  | -  | 2  | -  | 14 |
|    | Beaufort Spring Lead 6                           | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 2  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  |
|    | Beaufort Spring Lead 7                           | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 2  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  |
|    | Pt. Hope Subsistence Area                        | -  | -  | -  | -  | -  | -  | -  | -  | 2  | -  | -  | -  | -  | 12 | -  | 4  | -  | -  | -  | -  | -  | -  | -  | -  |
| 39 | Point Lay Subsistence Area                       | -  | -  | -  | 1  | 2  | -  | -  | -  | 1  | 15 | 7  | -  | -  | -  | 2  | 12 | -  | 1  | 36 | -  | -  | -  | -  | -  |
| 40 | Wainwright Subsistence<br>Area                   | -  | -  | -  | 1  | 2  | -  | -  | -  | -  | 7  | 7  | 7  | -  | -  | 1  | 4  | -  | 1  | 17 | -  | 1  | 38 | -  | 4  |
| 41 | Barrow Subsistence Area 1                        | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | 1  | 4  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | 9  |
|    | ERA 45                                           | -  | -  | -  | -  | -  | -  | -  | -  | 6  | 1  | -  | -  | -  | 16 | -  | 7  | -  | -  | -  | -  | -  | -  | -  | -  |
|    | Herald Shoal Polynya                             | 7  | -  | -  | 17 | 1  | -  | -  | -  | 4  | 1  | -  | -  | -  | 2  | 20 | 3  | 1  | -  | -  | -  | -  | -  | -  | -  |
|    | Ice/Sea Segment 10                               | 5  | 1  | -  | 16 | 23 | 2  | -  | -  | 1  | 7  | 4  | 1  | -  | 1  | 7  | 1  | 4  | 15 | 5  | 1  | 2  | 1  | -  | -  |
|    | Ice/Sea Segment 11                               | 4  | 10 | 7  | 5  | 24 | 45 | 9  | 1  | 1  | 13 | 35 | 14 | 5  | -  | 4  | 4  | 11 | 31 | 19 | 18 | 63 | 6  | 6  | 5  |
|    | Hanna's Shoal Polynya                            | 6  | 20 | 59 | 2  | 13 | 35 | 33 | 15 | -  | 4  | 11 | 9  | 12 | -  | 1  | 1  | 13 | 14 | 6  | 47 | 24 | 2  | 26 | 9  |
|    | Ice/Sea Segment 12                               | -  | 1  | 1  | -  | 3  | 5  | 3  | -  | -  | 2  | 10 | 34 | 8  | -  | -  | -  | 1  | 4  | 3  | 2  | 38 | 12 | 2  | 17 |
|    | Ice/Sea Segment 13                               | -  | -  | -  | -  | -  | -  | 1  | 1  | -  | -  | 1  | 22 | 16 | -  | -  | -  | -  | -  | -  | -  | 3  | 17 | 1  | 46 |
|    | Ice/Sea Segment 14                               | -  | -  | -  | -  | -  | -  | 1  | 15 | -  | -  | -  | 2  | 28 | -  | -  | -  | -  | -  | -  | -  | -  | 1  | 3  | 7  |
|    | Ice/Sea Segment 15                               | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  |
|    | ERA 59                                           | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  |
| -  | ERA 61                                           | -  | -  | -  | -  | -  | -  | -  | -  | 2  | -  | -  | -  | -  | 4  | -  | 1  | -  | -  | -  | -  | -  | -  | -  | -  |
| 99 | ERA 99                                           | -  | -  | -  | 3  | 8  | 2  | -  | -  | -  | 12 | 15 | 2  | -  | -  | 2  | 3  | 1  | 10 | 17 | -  | 3  | 3  | -  | -  |

 Table A.2-51
 Winter Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a

 Particular Location Will Contact a Certain Environmental Resource Area Within 30 Days, Chukchi Sale 193

|    | Environmental Resource                           | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | Р  | Р  | Р  | Р  | Р  | Р  | Р  | Р  | Р  | Р  | Р  |
|----|--------------------------------------------------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| ID | Area Name                                        | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 |
| _  | LAND                                             | 2  | 1  | -  | 6  | 4  | 1  | 1  | 2  | 10 | 18 | 10 | 8  | 6  | 15 | 6  | 18 | 1  | 4  | 27 | -  | 3  | 17 | 1  | 11 |
| 1  | Kasegaluk Lagoon                                 | -  | -  | -  | 1  | 2  | 1  | -  | -  | -  | 5  | 4  | 1  | -  | -  | 1  | 3  | -  | 2  | 8  | -  | 1  | 1  | -  | -  |
| 4  | ERA 4                                            | -  | -  | -  | -  | -  | -  | -  | -  | 5  | -  | -  | -  | -  | 8  | -  | 2  | -  | -  | -  | -  | -  | -  | -  | -  |
| 6  | ERA 6                                            | -  | 1  | 1  | 1  | 2  | 2  | 1  | 3  | -  | 1  | 5  | 11 | 8  | -  | -  | -  | 1  | 3  | 3  | 1  | 4  | 25 | 2  | 22 |
| 10 | Ledyard Bay Spectacled<br>Eider Critical Habitat | -  | -  | -  | 2  | 3  | 1  | -  | -  | 2  | 11 | 6  | 1  | -  | 1  | 2  | 11 | -  | 3  | 15 | -  | 1  | 1  | -  | -  |
| 11 | Wrangel Island                                   | 3  | 1  | -  | 1  | 1  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 2  | -  | 2  | -  | -  | -  | -  | -  | -  | -  |
| 14 | Cape Thompson Seabird<br>Colony Area             | -  | -  | -  | -  | -  | -  | -  | -  | 2  | 1  | -  | -  | -  | 9  | -  | 3  | -  | -  | -  | -  | -  | -  | -  | -  |
| 15 | Cape Lisburne Seabird<br>Colony Area             | -  | -  | -  | -  | 1  | -  | -  | -  | 3  | 4  | 1  | -  | -  | 10 | -  | 9  | -  | 1  | 1  | -  | -  | -  | -  | -  |
| 16 | ERA 16                                           | -  | -  | -  | -  | -  | -  | -  | -  | 3  | -  | -  | -  | -  | 3  | -  | 1  | -  | -  | -  | -  | -  | -  | -  | -  |
| 19 | Chukchi Spring Lead 1                            | -  | -  | -  | -  | -  | -  | -  | -  | 1  | 1  | -  | -  | -  | 12 | -  | 3  | -  | -  | -  | -  | -  | -  | -  | -  |
| 20 | Chukchi Spring Lead 2                            | -  | -  | -  | -  | 1  | -  | -  | -  | 1  | 7  | 2  | 1  | -  | 1  | -  | 12 | -  | 1  | 5  | -  | 1  | -  | -  | -  |
| 21 | Chukchi Spring Lead 3                            | -  | -  | -  | 2  | 2  | -  | -  | -  | 1  | 8  | 5  | 1  | -  | -  | 2  | 5  | -  | 2  | 17 | -  | -  | 1  | -  | -  |
| 22 | Chukchi Spring Lead 4                            | -  | -  | -  | 2  | 3  | 1  | -  | -  | -  | 4  | 9  | 10 | -  | -  | 1  | 1  | -  | 4  | 8  | -  | 4  | 29 | -  | 2  |
| 23 | Chukchi Spring Lead 5                            | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | 1  | 3  | 3  | -  | -  | -  | -  | -  | -  | 1  | 1  | 5  | 1  | 16 |
| 24 | Beaufort Spring Lead 6                           | -  | -  | -  | -  | -  | -  | -  | 2  | -  | -  | -  | -  | 2  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1  |
| 25 | Beaufort Spring Lead 7                           | -  | -  | -  | -  | -  | -  | -  | 2  | -  | -  | -  | -  | 2  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | 1  |
| 26 | Beaufort Spring Lead 8                           | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  |
| 38 | P.t Hope Subsistence Area                        | -  | -  | -  | -  | -  | -  | -  | -  | 2  | 1  | -  | -  | -  | 13 | -  | 5  | -  | -  | -  | -  | -  | -  | -  | -  |
| 39 | Point Lay Subsistence Area                       | 1  | -  | -  | 3  | 4  | 1  | -  | -  | 1  | 20 | 9  | 1  | -  | 1  | 3  | 16 | -  | 3  | 39 | -  | 1  | 1  | -  | -  |
| 40 | Wainwright Subsistence<br>Area                   | -  | -  | -  | 3  | 4  | 1  | -  | -  | -  | 11 | 11 | 14 | 1  | -  | 2  | 7  | -  | 4  | 21 | -  | 4  | 49 | -  | 7  |
| 41 | Barrow Subsistence Area 1                        | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | 1  | 5  | -  | -  | -  | -  | -  | -  | -  | -  | 2  | -  | 11 |
| 45 | ERA 45                                           | -  | -  | -  | -  | -  | -  | -  | -  | 7  | 2  | 1  | -  | -  | 17 | -  | 9  | -  | 1  | 1  | -  | -  | -  | -  | -  |
| 46 | Herald Shoal Polynya                             | 8  | 1  | -  | 18 | 1  | -  | -  | -  | 4  | 2  | -  | -  | -  | 2  | 21 | 4  | 1  | 1  | -  | -  | -  | -  | -  | -  |
| 47 | Ice/Sea Segment 10                               | 6  | 3  | 1  | 17 | 25 | 4  | 1  | -  | 1  | 10 | 7  | 2  | -  | 1  | 8  | 3  | 5  | 18 | 7  | 2  | 3  | 2  | -  | -  |
| 48 | Ice/Sea Segment 11                               | 7  | 13 | 12 | 10 | 31 | 49 | 16 | 5  | 2  | 22 | 44 | 22 | 11 | 1  | 8  | 9  | 15 | 38 | 28 | 22 | 68 | 12 | 13 | 12 |
| 49 | Hanna's Shoal Polynya                            | 10 | 26 | 64 | 6  | 21 | 43 | 45 | 25 | 1  | 11 | 22 | 19 | 25 | -  | 5  | 4  | 19 | 22 | 14 | 54 | 35 | 7  | 38 | 21 |
| 50 | Ice/Sea Segment 12                               | 1  | 3  | 2  | 1  | 5  | 8  | 6  | 2  | -  | 4  | 14 | 40 | 13 | -  | 1  | 1  | 3  | 7  | 5  | 4  | 41 | 22 | 5  | 24 |
| 51 | Ice/Sea Segment 13                               | -  | 1  | 1  | -  | 1  | 2  | 2  | 2  | -  | 1  | 4  | 29 | 18 | -  | -  | -  | 1  | 2  | 1  | 1  | 6  | 31 | 3  | 49 |
| 52 | Ice/Sea Segment 14                               | -  | -  | -  | -  | -  | -  | 1  | 17 | -  | -  | -  | 3  | 29 | -  | -  | -  | -  | -  | -  | -  | 1  | 2  | 3  | 9  |
| 53 | Ice/Sea Segment 15                               | -  | -  | -  | -  | -  | -  | -  | 2  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  |
| 59 | ERA 59                                           | -  | -  | -  | 1  | -  | -  | -  | -  | 2  | -  | -  | -  | -  | 1  | -  | 1  | -  | -  | -  | -  | -  | -  | -  | -  |
| 61 | ERA 61                                           | -  | -  | -  | -  | -  | -  | -  | -  | 3  | -  | -  | -  | -  | 6  | -  | 1  | -  | -  | -  | -  | -  | -  | -  | -  |
| 64 | Peard Bay                                        | -  | -  | -  | -  | -  | 1  | 1  | 1  | -  | -  | 1  | 1  | 2  | -  | -  | -  | -  | 1  | -  | 1  | 1  | 1  | 1  | 3  |
| 70 | ERA 70                                           | -  | 1  | 1  | -  | -  | 1  | 1  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | 1  | -  | 1  | -  |
| 99 | ERA 99                                           | 2  | 1  | -  | 7  | 13 | 4  | 1  | -  | 1  | 15 | 19 | 5  | 1  | -  | 5  | 5  | 2  | 15 | 21 | 1  | 6  | 6  | -  | 1  |

 Table A.2-52
 Winter Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a

 Particular Location Will Contact a Certain Environmental Resource Area Within 60 Days, Chukchi Sale 193

Table A.2-53 Winter Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at aParticular Location Will Contact a Certain Environmental Resource Area Within 180 Days, Chukchi Sale 193

| ID | Environmental Resource     | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | Ρ  | Р        | Р  | Р  | Ρ  | Р  | Ρ  | Р  | Р          | Ρ  | Р  |
|----|----------------------------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----------|----|----|----|----|----|----|------------|----|----|
|    | Area Name                  | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 1  | 2        | 3  | 4  | 5  | 6  | 7  | 8  | 9          | 10 | 11 |
| -  | LAND                       | 7  | 5  | 4  | 16 | 13 | 7  | 7  | 10 | 30 | 30 | 21 | 23 | 17 | 37 | 16       | 33 | 6  | 12 | 38 | 5  | 11 | 38         | 8  | 27 |
| 1  | Kasegaluk Lagoon           | -  | -  | -  | 5  | 6  | 1  | -  | -  | 1  | 11 | 8  | 3  | -  | 1  | 4        | 6  | 1  | 5  | 13 | _  | 2  | 3          | -  | -  |
|    | Point Barrow. Plover       |    | -  | -  | _  |    |    | -  | _  |    |    |    | -  |    |    |          | -  |    |    |    | -  | -  | -          | -  |    |
|    | Islands                    | 1  | 2  | 2  | -  | 1  | 2  | 3  | 5  | -  | -  | 1  | 2  | 4  | -  | -        | -  | 1  | 1  | -  | 2  | 2  | 2          | 3  | 3  |
| 4  | ERA 4                      | -  | -  | -  | -  | -  | -  | -  | -  | 5  | -  | -  | -  | -  | 9  | -        | 2  | -  | -  | -  | -  | -  | -          | -  | -  |
|    | ERA 6                      | 1  | 2  | 2  | 4  | 8  | 5  | 6  | 9  | 1  | 7  | 13 | 22 | 16 | 1  | 2        | 3  | 2  | 9  | 11 | 3  | 10 | 36         | 7  | 32 |
|    | Ledyard Bay Spectacled     |    |    |    | _  |    |    | -  |    | ~  | 10 |    |    |    | •  |          |    |    | -  |    | -  | •  |            |    | _  |
|    | Eider Critical Habitat     | -  | -  | -  | 5  | 7  | 1  | -  | -  | 3  | 16 | 10 | 2  | -  | 2  | 5        | 15 | 1  | 6  | 19 | -  | 3  | 3          | -  | -  |
|    | Wrangel Island             | 4  | 2  | -  | 1  | 1  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 3        | -  | 2  | 1  | -  | -  | -  | -          | -  | -  |
| 14 | Cape Thompson Seabird      |    |    |    |    |    |    |    |    | •  |    |    |    |    |    |          |    |    |    |    |    |    |            |    |    |
|    | Colony Area                | -  | -  | -  | -  | -  | -  | -  | -  | 2  | 1  | -  | -  | -  | 11 | -        | 4  | -  | -  | -  | -  | -  | -          | -  | -  |
| 15 | Cape Lisburne Seabird      | -  |    |    | 1  | 4  |    |    |    | 4  | 5  | 1  | 1  |    | 12 | -        | 11 |    | 1  | 2  |    | 1  | 1          |    |    |
|    | Colony Area                | -  | -  | -  | 1  | 1  | -  | -  | -  | 4  | э  | 1  | 1  | -  | 12 | -        | 11 | -  | 1  | 2  | -  | 1  | 1          | -  | -  |
| 16 | ERA 16                     | -  | -  | -  | 1  | -  | -  | -  | -  | 10 | 2  | -  | -  | -  | 10 | 1        | 4  | -  | -  | -  | -  | -  | -          | -  | -  |
| 18 | ERA 18                     | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -        | 1  | -  | -  | -  | -  | -  | -          | -  | -  |
| 19 | Chukchi Spring Lead 1      | -  | -  | -  | -  | -  | -  | -  | -  | 2  | 1  | -  | -  | -  | 13 | -        | 3  | -  | -  | -  | -  | -  | -          | -  | -  |
|    | Chukchi Spring Lead 2      | -  | -  | -  | 1  | 1  | -  | -  | -  | 1  | 8  | 3  | 1  | -  | 1  | 1        | 13 | -  | 2  | 6  | -  | 1  | 1          | -  | -  |
| 21 | Chukchi Spring Lead 3      | -  | -  | -  | 3  | 4  | 1  | -  | -  | 1  | 10 | 7  | 1  | -  | 1  | 3        | 6  | -  | 4  | 18 | -  | 1  | 1          | -  | -  |
| 22 | Chukchi Spring Lead 4      | 1  | -  | -  | 4  | 6  | 2  | -  | -  | 1  | 7  | 12 | 14 | 1  | 1  | 3        | 4  | 1  | 7  | 11 | -  | 5  | 34         | -  | 3  |
| 23 | Chukchi Spring Lead 5      | -  | -  | -  | -  | -  | 1  | 1  | 1  | -  | -  | 2  | 6  | 5  | -  | -        | -  | -  | 1  | 1  | 1  | 2  | 9          | 1  | 20 |
| 24 | Beaufort Spring Lead 6     | -  | -  | -  | -  | -  | -  | 1  | 4  | -  | -  | -  | 2  | 5  | -  | -        | -  | -  | -  | -  | -  | 1  | 1          | 1  | 3  |
| 25 | Beaufort Spring Lead 7     | -  | -  | -  | -  | -  | -  | 1  | 4  | -  | -  | -  | 1  | 4  | -  | -        | -  | -  | -  | -  | -  | 1  | 1          | 1  | 3  |
| 26 | Beaufort Spring Lead 8     | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 1  | -  | -        | -  | -  | -  | -  | -  | -  | -          | -  | -  |
|    | Beaufort Spring Lead 9     | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 1  | -  | -        | -  | -  | -  | -  | -  | -  | -          | -  | -  |
| 30 | Ice/Sea Segment 2          | -  | 1  | 1  | -  | -  | 1  | -  | -  | -  | -  | -  | -  | -  | -  | -        | -  | -  | -  | -  | 1  | 1  | -          | -  | -  |
|    | Ice/Sea Segment 3          | -  | 1  | 1  | -  | -  | 1  | -  | -  | -  | -  | -  | -  | -  | -  | -        | -  | -  | -  | -  | 1  | 1  | -          | -  | -  |
| 32 | Ice/Sea Segment 4          | -  | -  | 1  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -        | -  | -  | -  | -  | 1  | -  | -          | -  | -  |
| 35 | ERA 35                     | 2  | 4  | 4  | 1  | 4  | 5  | 4  | 4  | 1  | 1  | 4  | 6  | 5  | -  | 1        | -  | 4  | 5  | 2  | 4  | 5  | 6          | 5  | 7  |
| 36 | ERA 36                     | 1  | 2  | 1  | 2  | 3  | 2  | 1  | -  | 1  | 1  | 3  | 3  | 1  | -  | 1        | -  | 2  | 4  | 2  | 2  | 2  | 4          | -  | 3  |
| 38 | Pt Hope Subsistence Area   | -  | -  | -  | -  | -  | -  | -  | -  | 2  | 1  | -  | -  | -  | 14 | -        | 6  | -  | -  | 1  | -  | -  | -          | -  | -  |
|    | Point Lay Subsistence Area | 1  | -  | -  | 6  | 7  | 1  | -  | -  | 2  | 25 | 13 | 3  | -  | 1  | 6        | 20 | 1  | 6  | 42 | -  | 2  | 3          | -  | -  |
| 40 | Wainwright Subsistence     | 4  | 4  | 1  | 7  | 10 | 2  | 4  | 4  | 4  | 40 | 10 | 20 | 2  | 4  | <u> </u> | 44 | 2  | 10 | 20 | 4  | 7  | <b>F</b> 0 | 4  | 44 |
|    | Area                       | 1  | 1  | 1  | 7  | 10 | 3  | 1  | 1  | 1  | 18 | 19 | 20 | 3  | 1  | 6        | 11 | 2  | 10 | 29 | 1  | 7  | 56         | 1  | 11 |
| 41 | Barrow Subsistence Area 1  | -  | -  | -  | -  | -  | -  | 1  | 2  | -  | -  | 1  | 3  | 6  | -  | -        | -  | -  | -  | 1  | -  | 1  | 4          | 1  | 15 |
| 42 | Barrow Subsistence Area 2  | 1  | 2  | 2  | -  | 1  | 2  | 3  | 2  | -  | -  | -  | 2  | 2  | -  | -        | -  | 2  | 1  | -  | 2  | 2  | 2          | 2  | 2  |
| 45 | ERA 45                     | -  | -  | -  | -  | 1  | -  | -  | -  | 7  | 3  | 1  | 1  | -  | 19 | -        | 10 | -  | 1  | 2  | -  | 1  | 1          | -  | -  |
| 46 | Herald Shoal Polynya       | 8  | 1  | -  | 19 | 2  | -  | -  | -  | 4  | 2  | 1  | -  | -  | 2  | 22       | 4  | 1  | 1  | 1  | -  | -  | -          | -  | -  |
| 47 | Ice/Sea Segment 10         | 7  | 4  | 2  | 19 | 28 | 6  | 1  | -  | 2  | 13 | 10 | 5  | 1  | 1  | 9        | 5  | 7  | 21 | 10 | 4  | 7  | 6          | -  | 2  |
| 48 | Ice/Sea Segment 11         | 11 | 19 | 18 | 13 | 37 | 53 | 24 | 13 | 3  | 27 | 50 | 34 | 21 | 2  | 10       | 12 | 20 | 44 | 34 | 28 | 73 | 24         | 21 | 24 |
|    | Hanna's Shoal Polynya      | 15 | 33 | 68 | 9  | 29 | 51 | 54 | 37 | 2  | 18 | 33 | 33 | 37 | 1  | 8        | 9  | 26 | 30 | 23 | 59 | 44 | 17         | 48 | 34 |
|    | Ice/Sea Segment 12         | 4  | 6  | 5  | 3  | 11 | 12 | 9  | 4  | 1  | 8  | 20 | 46 | 16 | 1  | 2        | 3  | 7  | 14 | 10 | 8  | 44 | 30         | 8  | 28 |
|    | Ice/Sea Segment 13         | 1  | 2  | 2  | 1  | 5  | 5  | 5  | 5  | -  | 4  | 10 | 36 | 22 | -  | 1        | 2  | 3  | 7  | 6  | 3  | 11 | 42         | 6  | 54 |
| 52 | Ice/Sea Segment 14         | 1  | 3  | 4  | -  | 1  | 4  | 6  | 20 | -  | -  | 2  | 6  | 32 | -  | -        | -  | 2  | 1  | -  | 4  | 4  | 4          | 7  | 12 |
| 53 | Ice/Sea Segment 15         | -  | 1  | 1  | -  | -  | 1  | 1  | 2  | -  | -  | -  | 1  | 2  | -  | -        | -  | -  | -  | -  | 1  | 1  | 1          | 1  | 1  |
| 54 | Ice/Sea Segment 16a        | -  | 1  | 1  | -  | -  | 1  | -  | 1  | -  | -  | -  | -  | -  | -  | -        | -  | -  | -  | -  | 1  | -  | -          | -  | -  |
|    | ERA 56                     | 4  | 7  | 9  | 1  | 4  | 8  | 10 | 8  | -  | 2  | 4  | 6  | 8  | -  | 1        | 1  | 6  | 5  | 2  | 9  | 6  | 5          | 9  | 8  |
|    | ERA 59                     | -  | -  | -  | 2  | -  | -  | -  | -  | 3  | 1  | -  | -  | -  | 2  | 1        | 2  | -  | -  | -  | -  | -  | -          | -  | -  |
|    | ERA 61                     | -  | -  | -  | -  | -  | -  | -  | -  | 4  | -  | -  | -  | -  | 7  | -        | 1  | -  | -  | -  | -  | -  | -          | -  | -  |
|    | ERA 63                     | 1  | 2  | 1  | -  | -  | 1  | -  | 1  | -  | -  | 1  | -  | -  | -  | -        | -  | 1  | 1  | -  | 1  | 1  | -          | -  | -  |
| 64 | Peard Bay                  | 1  | 1  | 2  | 1  | 3  | 3  | 4  | 4  | -  | 1  | 4  | 8  | 7  | -  | 1        | 1  | 1  | 3  | 2  | 2  | 5  | 6          | 5  | 12 |
|    | ERA 66                     | -  | 1  | 1  | -  | -  | -  | -  | 2  | -  | -  | -  | 1  | 1  | -  | -        | -  | -  | -  | -  | -  | -  | 1          | -  | 1  |
|    | ERA 70                     | 1  | 2  | 2  | -  | 2  | 2  | 3  | 2  | -  | 1  | 2  | 2  | 2  | -  | -        | -  | 2  | 2  | 2  | 3  | 2  | 1          | 2  | 2  |
|    | ERA 99                     | 4  | 5  | 3  | 11 | 20 | 10 | 4  | 2  | 2  | 21 | 26 | 13 | 4  | 2  | 9        | 9  | 7  | 22 | 26 | 5  | 13 | 17         | 3  | 7  |

 Table A.2-54
 Winter Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a

 Particular Location Will Contact a Certain Environmental Resource Area Within 360 Days, Chukchi Sale 193

| 1 K<br>2 P<br>1s<br>4 E<br>6 E | -AND<br>Kasegaluk Lagoon<br>Point Barrow, Plover | 9    | 7   |        |     | 5   | 6   | 7      | 8   | 9   | 10 | 11   | 12  | 13  | 1       | 2  | 3  | 4   | 5      | 6   | 7  | 8   | Р<br>9 | 10  | 11  |
|--------------------------------|--------------------------------------------------|------|-----|--------|-----|-----|-----|--------|-----|-----|----|------|-----|-----|---------|----|----|-----|--------|-----|----|-----|--------|-----|-----|
| 2  P<br> s<br>4  E<br>6  E     |                                                  |      | 1   | 6      | 21  | 16  | 9   | 9      | 13  | 36  | 35 | 24   | 26  | 20  | 43      | 20 | 38 | 8   | 15     | 42  | 7  | 14  | 42     | 10  | 30  |
| 2  s<br>4 E<br>6 E             | Point Barrow, Plover                             | -    | -   | -      | 5   | 6   | 1   | -      | -   | 1   | 11 | 8    | 3   | -   | 1       | 4  | 6  | 1   | 5      | 13  | -  | 2   | 3      | -   | -   |
| 4 E<br>6 E                     |                                                  | 2    | 3   | 4      | 1   | 2   | 3   | 4      | 6   | -   | 1  | 2    | 3   | 5   |         | 1  | 1  | 3   | 2      | 2   | 4  | 3   | 3      | 4   | 3   |
| 6 E                            | slands                                           | 2    | 3   | 4      | 1   | 2   | 5   | 4      | 0   | -   | I  | 2    | 3   | 5   | -       | 1  | I  | 3   | 2      | 2   | 4  | 3   | 3      | 4   | 3   |
| 1                              | ERA 4                                            | -    | -   | -      | -   | -   | -   | -      | -   | 5   | -  | -    | -   | -   | 9       | -  | 2  | -   | -      | -   | -  | -   | -      | -   | -   |
| 10                             | ERA 6                                            | 1    | 2   | 2      | 4   | 8   | 5   | 6      | 9   | 1   | 7  | 13   | 23  | 17  | 1       | 2  | 3  | 3   | 9      | 11  | 3  | 10  | 36     | 7   | 33  |
|                                | _edyard Bay Spectacled                           | _    | _   | _      | 5   | 7   | 1   | _      | _   | 3   | 16 | 10   | 2   | _   | 2       | 5  | 15 | 1   | 6      | 19  | -  | 3   | 3      | -   | 1   |
| E                              | Eider Critical Habitat                           | _    | _   | _      |     |     |     | _      | _   | 5   | 10 | 10   | 2   | _   | 2       | -  | 10 |     | 0      | 10  | _  | 9   | 5      | _   |     |
|                                | Nrangel Island                                   | 4    | 2   | -      | 1   | 1   | -   | -      | -   | -   | -  | -    | -   | -   | -       | 3  | -  | 2   | 1      | -   | -  | -   | -      | -   | -   |
|                                | Cape Thompson Seabird                            | -    | -   | -      | -   | -   | -   | -      | -   | 2   | 1  | -    | -   | -   | 11      | _  | 4  | -   | -      | -   | -  | -   | _      | -   | _   |
| C                              | Colony Area                                      |      |     |        |     |     |     |        |     |     |    |      |     |     | ••      |    | -  |     |        |     |    |     |        |     |     |
| 15                             | Cape Lisburne Seabird                            | -    | -   | -      | 1   | 1   | -   | -      | -   | 4   | 5  | 1    | 1   | -   | 12      | _  | 11 | -   | 1      | 2   | -  | 1   | 1      | -   | _   |
| C                              | Colony Area                                      |      |     |        |     |     |     |        |     |     |    |      |     |     |         |    |    |     |        | _   |    | •   | •      |     |     |
|                                | ERA 16                                           | -    | -   | -      | 2   | -   | -   | -      | -   | 12  | 2  | -    | -   | -   | 12      | 1  | 5  | -   | -      | -   | -  | -   | -      | -   | -   |
|                                | ERA 18                                           | -    | -   | -      | -   | -   | -   | -      | -   | -   | -  | -    | -   | -   | -       | -  | 1  | -   | -      | -   | -  | -   | -      | -   | -   |
|                                | Chukchi Spring Lead 1                            | -    | -   | -      | -   | -   | -   | -      | -   | 2   | 1  | -    | -   | -   | 13      | -  | 3  | -   | -      | -   | -  | -   | -      | -   | -   |
|                                | Chukchi Spring Lead 2                            | -    | -   | -      | 1   | 1   | -   | -      | -   | 1   | 8  | 3    | 1   | -   | 1       | 1  | 13 | -   | 2      | 6   | -  | 1   | 1      | -   | -   |
|                                | Chukchi Spring Lead 3                            | -    | -   | -      | 3   | 4   | 1   | -      | -   | 1   | 10 | 7    | 1   | -   | 1       | 3  | 6  | -   | 4      | 18  | -  | 1   | 1      | -   | -   |
|                                | Chukchi Spring Lead 4                            | 1    | -   | -      | 4   | 6   | 2   | -      | -   | 1   | 7  | 12   | 14  | 1   | 1       | 3  | 4  | 1   | 7      | 11  | -  | 5   | 34     | -   | 3   |
|                                | Chukchi Spring Lead 5                            | -    | -   | -      | -   | -   | 1   | 1      | 1   | -   | -  | 2    | 6   | 5   | -       | -  | -  | -   | 1      | 1   | 1  | 2   | 9      | 1   | 20  |
|                                | Beaufort Spring Lead 6                           | -    | -   | -      | -   | -   | -   | 1      | 4   | -   | -  | -    | 2   | 5   | -       | -  | -  | -   | -      | -   | -  | 1   | 1      | 2   | 3   |
|                                | Beaufort Spring Lead 7                           | -    | 1   | 1      | -   | -   | 1   | 1      | 4   | -   | -  | -    | 2   | 5   | -       | -  | -  | -   | -      | -   | -  | 1   | 1      | 1   | 3   |
|                                | Beaufort Spring Lead 8                           | -    | -   | -      | -   | -   | -   | -      | 1   | -   | -  | -    | -   | 1   | -       | -  | -  | -   | -      | -   | -  | -   | -      | -   | 1   |
|                                | Beaufort Spring Lead 9                           | -    | -   | -      | -   | -   | -   | -      | 1   | -   | -  | -    | -   | 1   | -       | -  | -  | -   | -      | -   | -  | -   | -      | -   | -   |
|                                | Beaufort Spring Lead 10                          | -    | -   | -      | -   | -   | -   | -      | 1   | -   | -  | -    | -   | -   | -       | -  | -  | -   | -      | -   | -  | -   | -      | -   | -   |
|                                | ce/Sea Segment 1                                 | -    | -   | -<br>1 | -   | -   | 1   | 1      | 1   | -   | -  | -    | -   | -   | -       | -  | -  | -   | -      | -   | -  | - 1 | -      | 1   | -   |
|                                | ce/Sea Segment 2<br>ce/Sea Segment 3             | -    | 1   | 1      | -   | -   | 1   | 1      | 1   | -   | -  | -    | -   | 1   | -       | -  | -  | -   | -      | -   | 1  | 1   | -      | 1   | -   |
|                                |                                                  | -    | -   | 1      | -   | -   | 1   | -      | -   | -   | -  | -    | -   | -   | -       | -  | -  | -   | -      | -   | 1  | 1   | -      | -   | -   |
|                                | ce/Sea Segment 4<br>ERA 35                       | - 2  | - 4 | 4      | - 1 | - 5 | 6   | - 5    | - 5 | -   | 2  | - 5  | -7  | - 6 | -       | -  | -  | - 4 | - 5    | - 3 | 5  | 6   | - 7    | - 5 | - 8 |
|                                | ERA 35<br>ERA 36                                 | 2    | 4   | 4      | 2   | 3   | 2   | 5<br>1 | -   | -   | 2  | 3    | 3   | 1   | -       | 1  | 1  | 4   | 5<br>4 | 2   | 2  | 2   | 5      | -   | 3   |
|                                | Pt. Hope Subsistence Area                        | -    | -   | -      | -   | -   | -   | -      | -   | - 2 | 2  | -    | -   | -   | -<br>14 | -  | 6  | -   | 4      | 2   | -  | -   | -      | -   | 3   |
|                                | Point Lay Subsistence Area                       | -    | -   | -      | - 6 | 7   | - 1 | -      | -   | 2   | 25 | - 13 | - 3 | -   | 14      | 6  | 20 | -   | -      | 42  | -  | - 2 | - 3    | -   | -   |
| 14                             | Vainwright Subsistence                           |      | -   | -      | -   | 1   | -   | -      | -   | 2   |    | _    | -   |     | 1       | 0  | 20 |     | 0      |     | -  | 2   | -      |     | -   |
| 40                             | Area                                             | 1    | 1   | 1      | 7   | 10  | 3   | 1      | 1   | 1   | 18 | 19   | 20  | 3   | 1       | 6  | 11 | 2   | 10     | 29  | 1  | 7   | 56     | 1   | 12  |
|                                | Barrow Subsistence Area 1                        | -    | -   | -      | -   | -   | -   | 1      | 2   | -   | -  | 1    | 3   | 6   | -       | -  | -  | -   | -      | 1   | -  | 1   | 4      | 1   | 15  |
|                                | Barrow Subsistence Area 2                        | 2    | 3   | 3      | 1   | 3   | 3   | 3      | 3   | -   | 1  | 2    | 3   | 3   | -       | 1  | 1  | 3   | 2      | 2   | 3  | 3   | 2      | 3   | 2   |
| _                              | ERA 45                                           | -    | -   | -      | -   | 1   | -   | -      | -   | 7   | 3  | 1    | 1   | -   | 19      | -  | 10 | -   | 1      | 2   | -  | 1   | 1      | -   | -   |
|                                | Herald Shoal Polynya                             | 8    | 1   | -      | 19  | 2   | -   | -      | -   | 4   | 2  | 1    | -   | -   | 2       | 22 | 4  | 1   | 1      | 2   | -  | -   | -      | _   | _   |
|                                | ce/Sea Segment 10                                | 7    | 4   | 2      | 19  | 28  | 6   | 1      | -   | 2   | 13 | 11   | 5   | 1   | 1       | 9  | 5  | 7   | 21     | 11  | 4  | 7   | 7      | -   | 2   |
|                                | ce/Sea Segment 11                                | . 11 | 20  | 18     | 13  | 37  | 54  | 24     | 14  | 3   | 28 | 50   | 35  | 23  | 2       | 10 | 12 | 21  | 44     | 34  | 28 | 73  | 25     | 22  | 25  |
|                                | Hanna's Shoal Polynya                            | 15   | 33  | 68     | 10  | 29  | 51  | 54     | 38  | 2   | 19 | 33   | 33  | 38  | 1       | 8  | 9  | 26  | 31     | 23  | 60 | 45  | 18     | 48  | 34  |
|                                | ce/Sea Segment 12                                | 4    | 6   | 5      | 3   | 11  | 12  | 10     | 4   | 1   | 8  | 20   | 46  | 17  | 1       | 2  | 3  | 7   | 14     | 11  | 8  | 45  | 31     | 8   | 29  |
| 51 lo                          | ce/Sea Segment 13                                | 2    | 2   | 2      | 2   | 6   | 5   | 5      | 5   | -   | 4  | 10   | 37  | 22  | -       | 1  | 2  | 3   | 7      | 7   | 3  | 12  | 42     | 6   | 55  |
|                                | ce/Sea Segment 14                                | 2    | 4   | 5      | 1   | 3   | 5   | 6      | 21  | -   | 2  | 3    | 7   | 32  | -       | 1  | 1  | 3   | 3      | 2   | 5  | 5   | 4      | 8   | 13  |
| 53 Ic                          | ce/Sea Segment 15                                | -    | 1   | 2      | -   | 1   | 2   | 2      | 4   | -   | 1  | 1    | 1   | 3   | -       | -  | -  | 1   | 1      | 1   | 2  | 1   | 1      | 2   | 2   |
| 54 lo                          | ce/Sea Segment 16a                               | -    | 1   | 2      | -   | 1   | 1   | 1      | 2   | -   | -  | -    | -   | 1   | -       | -  | -  | 1   | 1      | -   | 2  | 1   | -      | 1   | 1   |
| 55 Ic                          | ce/Sea Segment 17                                | -    | 1   | 1      | -   | -   | 1   | -      | -   | -   | -  | -    | -   | -   | -       | -  | -  | -   | -      | -   | 1  | -   | -      | -   | -   |
| 56 E                           | ERA 56                                           | 4    | 8   | 10     | 2   | 6   | 9   | 11     | 9   | -   | 3  | 5    | 8   | 10  | -       | 1  | 1  | 7   | 6      | 4   | 10 | 8   | 7      | 11  | 11  |
|                                | ce/Sea Segment 20a                               | -    | -   | -      | -   | -   | -   | 1      | 1   | -   | -  | -    | -   | 1   | -       | -  | -  | -   | -      | -   | -  | -   | -      | 1   | -   |
| 59 E                           | ERA 59                                           | -    | -   | -      | 2   | -   | -   | -      | -   | 3   | 1  | -    | -   | -   | 2       | 1  | 2  | -   | -      | -   | -  | -   | -      | -   | -   |
|                                | ERA 61                                           | -    | -   | -      | -   | -   | -   | -      | -   | 4   | -  | -    | -   | -   | 7       | -  | 1  | -   | -      | -   | -  | -   | -      | -   | -   |
| 63 E                           | ERA 63                                           | 1    | 2   | 1      | -   | 1   | 1   | 1      | 1   | -   | -  | 1    | 1   | 1   | -       | -  | -  | 2   | 1      | 1   | 1  | 1   | 1      | 1   | 2   |
|                                | ERA 64                                           | 1    | 1   | 2      | 1   | 3   | 3   | 4      | 4   | -   | 2  | 4    | 8   | 7   | -       | 1  | 1  | 1   | 4      | 3   | 2  | 5   | 7      | 5   | 14  |
|                                | ERA 66                                           | 1    | 2   | 2      | 1   | 1   | 1   | 1      | 2   | -   | 1  | 1    | 1   | 2   | -       | 1  | -  | 1   | 1      | 1   | 2  | 1   | 2      | 1   | 1   |
| 69 E                           | ERA 69                                           | -    | -   | -      | -   | -   | -   | -      | 1   | -   | -  | -    | -   | -   | -       | -  | -  | -   | -      | -   | -  | -   | -      | 1   | -   |
| 70 E                           | ERA 70                                           | 1    | 2   | 2      | -   | 2   | 3   | 3      | 2   | -   | 1  | 3    | 2   | 3   | -       | -  | 1  | 2   | 2      | 2   | 3  | 3   | 1      | 2   | 2   |
| 99 E                           | ERA 99                                           | 4    | 5   | 3      | 11  | 20  | 10  | 4      | 2   | 2   | 21 | 27   | 14  | 4   | 2       | 9  | 9  | 7   | 23     | 27  | 5  | 13  | 19     | 3   | 7   |

 Table A.2-55
 Winter Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting

 at a Particular Location Will Contact a Certain Land Segment Within 3 Days, Chukchi Sale 193

| ID | Land Segment Name              |   |   |   |   |   |   |   |   |   |   |   |   | LA<br>13 |   |   |   |   |   |   |   |   | P<br>9 | Р<br>10 | Р<br>11 |
|----|--------------------------------|---|---|---|---|---|---|---|---|---|---|---|---|----------|---|---|---|---|---|---|---|---|--------|---------|---------|
| 64 | Kukpuk River, Point Hope       | - | - | - | - | - | - | - | - | - | - | - | - | -        | 1 | - | - | - | - | - | - | - | -      | -       | -       |
| 65 | Buckland, Cape Lisburne        | - | - | - | - | - | - | - | - | - | - | - | - | -        | 1 | - | - | - | - | - | - | - | -      | -       | -       |
| 72 | Point Lay, Siksrikpak Point    | - | - | - | - | - | - | - | - | - | - | - | - | -        | - | - | - | - | - | 1 | - | - | -      | -       | -       |
| 73 | Tungaich Point, Tungak Creek   | - | - | - | - | - | - | - | - | - | - | - | - | -        | - | - | - | - | - | 3 | - | - | -      | -       | -       |
| 74 | Kasegaluk Lagoon, Solivik Isl. | - | - | - | - | - | - | - | - | - | - | - | - | -        | - | - | - | - | - | 1 | - | - | -      | -       | -       |
| 82 | Skull Cliff                    | - | - | - | - | - | - | - | - | - | - | - | - | 1        | - | - | - | - | - | - | - | - | -      | -       | 1       |

**Notes-** \*\* = Greater than 99.5 percent; - = less than 0.5 percent; LA = Launch Area, P = Pipeline. Rows with all values less than 0.5 percent are not shown.

 Table A.2-56
 Winter Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a Particular Location Will Contact a Certain Land Segment Within 10 Days, Chukchi Sale 193

| ID | Land Segment Name               | LA<br>1 | LA<br>2 | LA<br>3 | LA<br>4 | LA<br>5 | LA<br>6 | LA<br>7 | LA<br>8 | LA<br>9 |   |   |   | LA<br>13 | Р<br>1 | - | P<br>3 |   | P<br>5 | P<br>6 | P<br>7 | P<br>8 | P<br>9 | Р<br>10 | Р<br>11 |
|----|---------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---|---|---|----------|--------|---|--------|---|--------|--------|--------|--------|--------|---------|---------|
| 64 | Kukpuk River, Point Hope        | -       | -       | -       | -       | -       | -       | -       | -       | -       | - | - | - | -        | 1      | - | -      | - | -      | -      | -      | -      | -      | -       | -       |
| 65 | Buckland, Cape Lisburne         | -       | -       | -       | -       | -       | -       | -       | -       | -       | - | - | - | -        | 1      | - | -      | - | -      | -      | -      | -      | -      | -       | -       |
| 72 | Point Lay, Siksrikpak Point     | -       | -       | -       | -       | -       | -       | -       | -       | -       | 1 | - | - | -        | -      | - | -      | - | -      | 3      | -      | -      | -      | -       | -       |
| 73 | Tungaich Point, Tungak Creek    | -       | -       | -       | -       | -       | -       | -       | -       | -       | 1 | - | - | -        | -      | - | -      | - | -      | 6      | -      | -      | -      | -       | -       |
|    | Kasegaluk Lagoon, Solivik Isl.  | -       | -       | -       | -       | -       | -       | -       | -       | -       | 1 | 1 | - | -        | -      | - | -      | - | -      | 4      | -      | -      | -      | -       | -       |
| 75 | Akeonik, Icy Cape               | -       | -       | -       | -       | -       | -       | -       | -       | -       | - | 1 | - | -        | -      | - | -      | - | -      | 1      | -      | -      | -      | -       | -       |
| 79 | Point Belcher, Wainwright       | -       | -       | -       | -       | -       | -       | -       | -       | -       | - | - | - | -        | -      | - | -      | - | -      | -      | -      | -      | 1      | -       | -       |
| 80 | Eluksingiak Point, Kugrua Bay   | -       | -       | -       | -       | -       | -       | -       | -       | -       | - | - | - | -        | -      | - | -      | - | -      | -      | -      | -      | 1      | -       | -       |
| 82 | Skull Cliff                     | -       | -       | -       | -       | -       | -       | -       | -       | -       | - | - | - | -        | -      | - | -      | - | -      | -      | -      | -      | -      | -       | 1       |
| 84 | Will Rogers & Wiley Post Mem.   | -       | -       | -       | -       | -       | -       | -       | -       | -       | - | - | - | 1        | -      | - | -      | - | -      | -      | -      | -      | -      | -       | 1       |
| 85 | Barrow, Browerville, Elson Lag. | -       | -       | -       | -       | -       | -       | -       | I       | I       | - | - | - | 1        | I      | - | -      | - | -      | -      | 1      | -      | -      | -       | 1       |

**Notes-** \*\* = Greater than 99.5 percent; - = less than 0.5 percent; LA = Launch Area, P = Pipeline. Rows with all values less than 0.5 percent are not shown.

 Table A.2-57
 Winter Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a Particular

 Location Will Contact a Certain Land Segment Within 30 Days, Chukchi Sale 193

|                                    | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | Ρ | Ρ | Р | Р | Р | Р | Ρ | Р | Р | Р  | Ρ  |
|------------------------------------|----|----|----|----|----|----|----|----|----|----|----|----|----|---|---|---|---|---|---|---|---|---|----|----|
| ID Land Segment Name               | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| 27 Laguna Nut, Rigol'              | -  | -  | -  | 1  | -  | -  | -  | -  | -  | -  | -  | -  | -  | - | 1 | - | - | - | - | - | - | - | -  | -  |
| 35 Enurmino, Mys Neten             | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 1 | - | - | - | - | - | - | - | - | -  | -  |
| 36 Mys Serdtse-Kamen               | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1 | - | - | - | - | - | - | - | - | -  | -  |
| 39 Cape Dezhnev, Naukan, Uelen     | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1 | - | - | - | - | - | - | - | - | -  | -  |
| 64 Kukpuk River, Point Hope        | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 2 | - | - | - | - | - | - | - | - | -  | -  |
| 65 Buckland, Cape Lisburne         | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 2 | - | 1 | - | - | - | - | - | - | -  | -  |
| 70 Kuchaurak and Kuchiak Creek     | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | - | - | 1 | - | - | - | - | - | - | -  | -  |
| 71 Kukpowruk River, Sitkok Point   | -  | -  | -  | -  | -  | -  | -  | -  | -  | 2  | -  | -  | -  | - | - | 2 | - | - | 1 | - | - | - | -  | -  |
| 72 Point Lay, Siksrikpak Point     | -  | -  | -  | -  | -  | -  | -  | -  | -  | 3  | 1  | -  | -  | - | - | 2 | - | - | 4 | - | - | - | -  | -  |
| 73 Tungaich Point, Tungak Creek    | -  | -  | -  | -  | -  | -  | -  | -  | -  | 3  | 1  | -  | -  | - | - | 2 | - | - | 7 | - | - | - | -  | -  |
| 74 Kasegaluk Lagoon, Solivik Isl.  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 2  | 1  | -  | -  | - | - | 1 | - | - | 6 | - | - | - | -  | -  |
| 75 Akeonik, Icy Cape               | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | 1  | -  | -  | - | - | 1 | - | - | 3 | - | - | - | -  | -  |
| 78 Point Collie, Sigeakruk Point   | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | - | - | - | - | - | - | - | - | 2 | -  | -  |
| 79 Point Belcher, Wainwright       | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | - | - | - | - | - | - | - | - | 3 | -  | -  |
| 80 Eluksingiak Point, Kugrua Bay   | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | - | - | - | - | - | - | - | - | 3 | -  | -  |
| 82 Skull Cliff                     | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | - | - | - | - | - | - | - | - | - | -  | 2  |
| 83 Nulavik, Loran Radio Station    | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | - | - | - | - | - | - | - | - | - | -  | 1  |
| 84 Will Rogers & Wiley Post Mem.   | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | - | - | - | - | - | - | - | - | - | -  | 2  |
| 85 Barrow, Browerville, Elson Lag. | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 2  | - | - | - | - | - | - | - | - | - | -  | 2  |

|                                    | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р  | Р  |
|------------------------------------|----|----|----|----|----|----|----|----|----|----|----|----|----|---|---|---|---|---|---|---|---|---|----|----|
| ID Land Segment Name               | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| 8 E. Wrangel Island, Skeletov      | 1  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | - | 1 | - | - | - | - | - | - | - | -  | -  |
| 27 Laguna Nut, Rigol'              | -  | -  | -  | 1  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 1 | 1 | - | - | - | - | - | - | - | -  | -  |
| 30 Nutepynmin, Pyngopil'gyn        | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | - | - | - | - | - | - | - | - | - | -  | -  |
| 32 Mys Dzhenretlen, Eynenekvyk     | -  | -  | -  | -  | -  | -  | 1  | 1  | 1  | -  | -  | -  | -  | 1 | - | 1 | 1 | - | - | 1 | - | 1 | -  | -  |
| 33 Neskan, Laguna Neskan           | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1 | - | - | - | - | - | - | - | - | -  | -  |
| 34 Tepken, Memino                  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 1 | - | - | - | - | - | - | - | - | -  | -  |
| 35 Enurmino, Mys Neten             | -  | -  | -  | -  | -  | -  | 1  | •  | 2  | -  | -  | -  | -  | 2 | - | 1 | • | - | - | • | - | 1 | -  | -  |
| 36 Mys Serdtse-Kamen               | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 1 | - | - | - | - | - | - | - | - | -  | -  |
| 37 Chegitun, Utkan                 | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 1 | - | - | - | - | - | - | - | - | -  | -  |
| 38 Enmytagyn, Inchoun, Mitkulen    | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1 | - | - | - | - | - | - | - | - | -  | -  |
| 39 Cape Dezhnev, Naukan, Uelen     | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1 | - | - | - | - | - | - | - | - | -  | -  |
| 64 Kukpuk River, Point Hope        | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 2 | - | - | - | - | - | - | - | - | -  | -  |
| 65 Buckland, Cape Lisburne         | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 3 | - | 1 | - | - | - | - | - | - | -  | -  |
| 70 Kuchaurak and Kuchiak Creek     | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | - | - | 1 | - | - | - | - | - | - | -  | -  |
| 71 Kukpowruk River, Sitkok Point   | -  | -  | -  | -  | -  | -  | -  | -  | -  | 2  | -  | -  | -  | - | - | 2 | - | - | 1 | - | - | - | -  | -  |
| 72 Point Lay, Siksrikpak Point     | -  | -  | -  | -  | -  | -  | -  | -  | -  | 3  | 1  | -  | -  | - | - | 3 | - | - | 4 | - | - | - | -  | -  |
| 73 Tungaich Point, Tungak Creek    | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 4  | 1  | -  | -  | - | 1 | 3 | - | - | 8 | - | - | - | -  | -  |
| 74 Kasegaluk Lagoon, Solivik Isl.  | -  | -  | -  | 1  | 1  | -  | -  | -  | -  | 3  | 2  | -  | -  | - | 1 | 2 | - | 1 | 7 | - | - | - | -  | -  |
| 75 Akeonik, Icy Cape               | -  | -  | -  | 1  | 1  | -  | -  | -  | -  | 2  | 2  | -  | -  | - | 1 | 1 | - | 1 | 4 | - | - | 1 | -  | -  |
| 76 Avak Inlet, Tunalik River       | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | - | - | - | - | - | 1 | - | - | - | -  | -  |
| 78 Point Collie, Sigeakruk Point   | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | - | - | - | - | - | 1 | - | - | 4 | -  | -  |
| 79 Point Belcher, Wainwright       | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | 2  | -  | - | - | - | - | - | - | - | - | 6 | -  | -  |
| 80 Eluksingiak Point, Kugrua Bay   | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | 2  | -  | - | - | - | - | - | - | - | 1 | 5 | -  | 1  |
| 81 Peard Bay, Point Franklin       | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | - | - | - | - | - | - | - | - | - | -  | 1  |
| 82 Skull Cliff                     | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | - | - | - | - | - | - | - | - | 1 | -  | 2  |
| 83 Nulavik, Loran Radio Station    | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | - | - | - | - | - | - | - | - | - | -  | 1  |
| 84 Will Rogers & Wiley Post Mem.   | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | 2  | - | - | - | - | - | - | - | - | - | -  | 3  |
| 85 Barrow, Browerville, Elson Lag. | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 3  | - | - | - | - | - | - | - | - | - | -  | 2  |

 Table A.2-58
 Winter Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a Particular Location Will Contact a Certain Land Segment Within 60 Days, Chukchi Sale 193

| ID Land Segment Name               | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | Ρ | Ρ | Р | Ρ | Ρ | Ρ | Ρ | Ρ | Ρ        | Ρ  | Р   |
|------------------------------------|----|----|----|----|----|----|----|----|----|----|----|----|----|---|---|---|---|---|---|---|---|----------|----|-----|
| ID Land Segment Name               | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9        | 10 | 11  |
| 7 E. Wrangel Island                | 1  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | - | - | - | - | - | - | - | - | -        | -  | -   |
| 8 E. Wrangel Island, Skeleton      | 1  | 1  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | - | 1 | - | 1 | - | - | - | - | -        | -  | -   |
| 24                                 | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | - | 1 | - | - | - | - | - | - | -        | -  | -   |
| 25 Ostrov Leny, Yulinu             | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | - | 1 | - | - | - | - | - | - | -        | -  | -   |
| 26 Ekugvaam ,Kepin, Pil'khin       | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | - | 1 | - | - | - | - | - | - | -        | -  | -   |
| 27 Laguna Nut, Rigol'              | 1  | -  | -  | 1  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 1 | 1 | - | - | - | - | - | - | -        | -  | -   |
| 28 Vankarem, Vankarem Laguna       | -  | -  | -  | 1  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | - | 1 | - | - | - | - | - | - | -        | -  | -   |
| 29 Mys Onman, Vel'may              | -  | -  | -  | 1  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | - | 1 | - | - | - | - | - | - | -        | -  | -   |
| 30 Nutepynmin, Pyngopil'gyn        | -  | -  | -  | 1  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 1 | 1 | 1 | - | - | - | - | - | -        | -  | -   |
| 31 Alyatki, Zaliv Tasytkhin        | -  | -  | -  | 1  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 1 | - | 1 | - | - | - | - | - | -        | -  | -   |
| 32 Mys Dzhenretlen, Eynenekvyk     | -  | -  | -  | 1  | -  | -  | -  | -  | 2  | -  | -  | -  | -  | 2 | - | 1 | - | - | - | - | - | -        | -  | -   |
| 33 Neskan, Laguna Neskan           | -  | -  | -  | -  | -  | -  | -  | -  | 2  | -  | -  | -  | -  | 2 | - | 1 | - | - | - | - | - | -        | -  | -   |
| 34 Tepken, Memino                  | -  | -  | -  | -  | -  | -  | -  | -  | 3  | -  | -  | -  | -  | 3 | - | 1 | - | - | - | - | - | -        | -  | -   |
| 35 Enurmino, Mys Neten             | -  | -  | -  | -  | -  | -  | -  | -  | 5  | 1  | -  | -  | -  | 5 | - | 2 | - | - | - | - | - | -        | -  | -   |
| 36 Mys Serdtse-Kamen               | -  | -  | -  | -  | -  | -  | -  | -  | 3  | -  | -  | -  | -  | 5 | - | 1 | - | - | - | - | - | -        | -  | -   |
| 37 Chegitun, Utkan                 | -  | -  | -  | -  | -  | -  | -  | -  | 3  | -  | -  | -  | -  | 4 | - | 1 | - | - | - | - | - | -        | -  | -   |
| 38 Enmytagyn, Inchoun, Mitkulen    | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 3 | - | - | - | - | - | - | - | -        | -  | - 1 |
| 39 Cape Dezhnev, Naukan, Uelen     | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 2 | - | - | - | - | - | - | - | -        | -  | -   |
| 64 Kukpuk River, Point Hope        | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 3 | - | 1 | - | - | - | - | - | -        | -  | -   |
| 65 Buckland, Cape Lisburne         | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 4 | - | 2 | - | - | - | - | - | -        | -  | -   |
| 67 Cape Sabine, Pitmegea River     | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | - | - | 1 | - | - | - | - | - | -        | -  | -   |
| 70 Kuchaurak Creek, Kuchiak        |    |    |    |    | _  | _  |    |    |    | 1  |    |    |    |   |   | 2 |   |   |   |   | - | _        |    |     |
| Сгеек                              | -  | -  | -  | -  |    | -  | -  | -  | -  |    | -  | -  | -  | - | - |   | - | - | - | - |   | <u> </u> | -  | -   |
| 71 Kukpowruk River, Sitkok Point   | -  | -  | -  | -  | -  | -  | -  | -  | -  | 3  | 1  | -  | -  | - | - | 3 | - | - | 2 | - | - | -        | -  | -   |
| 72 Point Lay, Siksrikpak Point     | -  | -  | -  | 1  | 1  | -  | -  | -  | -  | 4  | 1  | -  | -  | - | 1 | 4 | - | 1 | 5 | - | - | -        | -  | -   |
| 73 Tungaich Point, Tungak Creek    | -  | -  | -  | 1  | 1  | -  | -  | -  | 1  | 5  | 2  | -  | -  | - | 1 | 4 | - | 1 | 9 | - | - | -        | -  | -   |
| 74 Kasegaluk Lagoon, Solivik Isl.  | -  | -  | -  | 2  | 2  | -  | -  | -  | -  | 4  | 3  | 1  | -  | - | 2 | 3 | - | 2 | 8 | - | - | 1        | -  | -   |
| 75 Akeonik, Icy Cape               | -  | -  | -  | 2  | 2  | -  | -  | -  | -  | 3  | 3  | 1  | -  | - | 2 | 2 | - | 1 | 5 | - | - | 1        | -  | -   |
| 76 Avak Inlet, Tunalik River       | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 1  | 1  | -  | -  | - | - | - | - | 1 | 1 | - | 1 | 1        | -  | -   |
| 77 Nivat Point, Nokotlek Point     | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | - | - | - | - | - | 1 | - | - | -        | -  | -   |
| 78 Point Collie, Sigeakruk Point   | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 1  | 2  | 3  | -  | - | - | 1 | - | 1 | 2 | - | 1 | 7        | -  | 1   |
| 79 Point Belcher, Wainwright       | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 1  | 2  | 3  | -  | - | - | 1 | - | 1 | 2 | - | 1 | 9        | -  | 1   |
| 80 Eluksingiak Point, Kugrua Bay   | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 1  | 1  | 4  | 1  | - | - | - | - | 1 | 1 | - | 2 | 9        | -  | 3   |
| 81 Peard Bay, Point Franklin       | -  | -  | -  | -  | 1  | 1  | -  | -  | -  | 1  | 1  | 1  | -  | - | - | - | 1 | 1 | 1 | - | 1 | 2        | -  | 2   |
| 82 Skull Cliff                     | -  | -  | -  | -  | -  | 1  | 1  | -  | -  | -  | 1  | 2  | 1  | - | - | - | - | 1 | 1 | - | 1 | 4        | -  | 5   |
| 83 Nulavik, Loran Radio Station    | -  | -  | -  | -  | 1  | 1  | 1  | 1  | -  | -  | 1  | 2  | 2  | - | - | - | - | 1 | - | 1 | 1 | 1        | 1  | 4   |
| 84 Will Rogers & Wiley Post Mem.   | -  | -  | -  | -  | -  | -  | 1  | 1  | -  | -  | -  | 2  | 3  | - | - | - | - | - | - | - | - | 1        | 1  | 5   |
| 85 Barrow, Browerville, Elson Lag. | -  | -  | -  | -  | -  | -  | 2  | 5  | -  | -  | -  | 3  | 7  | - | - | - | - | - | - | - | 1 | 2        | 3  | 6   |
| 86 Dease Inlet, Plover Islands     | -  | -  | -  | -  | -  | -  | 1  | 1  | -  | -  | -  | 1  | 1  | - | - | - | - | - | - | - | - | 1        | 1  | 1   |
| 87 Igalik & Kulgurak Island        | 1  | 1  | 1  | -  | 1  | 1  | 1  | 1  | -  | -  | -  | -  | -  | - | - | - | 1 | - | - | 1 | 1 | -        | 1  | -   |

 Table A.2-59 Winter Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a Particular Location Will Contact a Certain Land Segment Within 180 Days, Chukchi Sale 193

|    | Land Commont Name               | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | Ρ | Ρ | Ρ | Ρ | Ρ | Ρ | Ρ | Ρ | Ρ  | Ρ  | Р  |
|----|---------------------------------|----|----|----|----|----|----|----|----|----|----|----|----|----|---|---|---|---|---|---|---|---|----|----|----|
| טו | Land Segment Name               | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9  | 10 | 11 |
| 7  | E. Wrangel Island               | 1  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | - | - | - | - | - | - | - | - | -  | -  | -  |
|    | E. Wrangel Island, Skeletov     | 1  | 1  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | - | 1 | - | 1 | - | - | - | - | -  | -  | -  |
| 24 |                                 | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | - | 1 | - | - | - | - | - | - | -  | -  | -  |
| 25 | Ostrov Leny, Yulinu             | -  | -  | -  | 1  | -  | -  | -  | -  | -  | -  | -  | -  | -  | - | 1 | - | - | - | - | - | - | -  | -  | -  |
| 26 | Ekugvaam, Kepin, Pil'khin       | -  | -  | -  | 1  | -  | -  | -  | -  | -  | -  | -  | -  | -  | - | 1 | - | - | - | - | - | - | -  | -  | -  |
|    | Laguna Nut, Rigol'              | 1  | -  | -  | 1  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 1 | 1 | - | - | - | - | - | - | -  | -  | -  |
| 28 | Vankarem, Vankarem Laguna       | -  | -  | -  | 1  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 1 | 1 | - | - | - | - | - | - | -  | -  | -  |
| 29 | Mys Onman, Vel'may              | -  | -  | -  | 1  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | - | 1 | - | - | - | - | - | - | -  | -  | -  |
|    | Nutepynmin, Pyngopil'gyn        | -  | -  | -  | 2  | -  | -  | -  | -  | 2  | -  | -  | -  | -  | 1 | 1 | 1 | - | - | - | - | - | -  | -  | -  |
|    | Alyatki, Zaliv Tasytkhin        | -  | -  | -  | 1  | -  | -  | -  | -  | 2  | -  | -  | -  | -  | 1 | 1 | 1 | - | - | - | - | - | -  | -  | -  |
|    | Mys Dzhenretlen, Eynenekvyk     | -  | -  | -  | 1  | -  | -  | -  | -  | 3  | -  | -  | -  | -  | 2 | - | 1 | - | - | - | - | - | -  | -  | -  |
|    | Neskan, Laguna Neskan           | -  | -  | -  | 1  | -  | -  | -  | -  | 3  | -  | -  | -  | -  | 2 | 1 | 1 | - | - | - | - | - | -  | -  | -  |
| 34 | Tepken, Memino                  | -  | -  | -  | -  | -  | -  | -  | -  | 4  | 1  | -  | -  | -  | 4 | - | 1 | - | - | - | - | - | -  | -  | -  |
| 35 | Enurmino, Mys Neten             | -  | -  | -  | 1  | -  | -  | -  | -  | 5  | 1  | -  | -  | -  | 6 | - | 2 | - | - | - | - | - | -  | -  | -  |
| 36 | Mys Serdtse-Kamen               | -  | -  | -  | -  | -  | -  | -  | -  | 4  | -  | -  | -  | -  | 5 | - | 2 | - | - | - | - | - | -  | -  | -  |
| 37 | Chegitun, Utkan                 | -  | -  | -  | -  | -  | -  | -  | -  | 3  | -  | -  | -  | -  | 5 | - | 1 | 1 | - | - | - | - | -  | -  | -  |
|    | Enmytagyn, Inchoun, Mitkulen    | -  | -  | -  | -  | -  | -  | -  | -  | 2  | -  | -  | -  | -  | 3 | - | 1 | - | - | - | - | - | -  | -  | -  |
| 39 | Cape Dezhnev, Naukan, Uelen     | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 3 | - | 1 | - | - | - | - | - | -  | -  | -  |
| 64 | Kukpuk River, Point Hope        | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 3 | - | 1 | - | - | - | - | - | -  | -  | -  |
| 65 | Buckland, Cape Lisburne         | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 4 | - | 2 | 1 | - | - | - | - | -  | -  | -  |
| 67 | Cape Sabine, Pitmegea River     | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | - | - | 1 | - | - | - | - | - | -  | -  | -  |
| 70 | Kuchaurak and Kuchiak Creek     | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -  | - | - | 2 | - | - | - | - | - | -  | -  | -  |
| 71 | Kukpowruk River, Sitkok Point   | -  | -  | -  | -  | -  | -  | -  | -  | -  | 3  | 1  | -  | -  | - | - | 3 | - | - | 2 | - | - | -  | -  | -  |
| 72 | Point Lay, Siksrikpak Point     | -  | -  | -  | 1  | 1  | -  | -  | -  | -  | 4  | 1  | -  | -  | - | 1 | 4 | - | 1 | 5 | - | - | -  | -  | -  |
| 73 | Tungaich Point, Tungak Creek    | -  | -  | -  | 1  | 1  | -  | -  | -  | 1  | 5  | 2  | -  | -  | - | 1 | 4 | 1 | 1 | 9 | - | - | -  | -  | -  |
| 74 | Kasegaluk Lagoon, Solivik Isl.  | -  | -  | -  | 2  | 2  | -  | -  | -  | -  | 4  | 3  | 1  | -  | - | 2 | 3 | - | 2 | 8 | - | - | 1  | -  | -  |
|    | Akeonik, Icy Cape               | -  | -  | -  | 2  | 2  | -  | -  | -  | -  | 3  | 3  | 1  | -  | - | 2 | 2 | - | 1 | 5 | - | - | 1  | -  | -  |
| 76 | Avak Inlet, Tunalik River       | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 1  | 1  | -  | -  | - | - | - | - | 1 | 1 | - | 1 | 1  | -  | -  |
| 77 | Nivat Point, Nokotlek Point     | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | - | - | - | - | - | 1 | - | - | -  | -  | -  |
| 78 | Point Collie, Sigeakruk Point   | -  | -  | -  | 1  | 1  | -  | -  | -  | -  | 2  | 2  | 3  | -  | - | - | 1 | - | 1 | 2 | - | 1 | 7  | -  | 1  |
|    | Point Belcher, Wainwright       | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 1  | 2  | 3  | -  | - | - | 1 | - | 1 | 2 | - | 1 | 9  | -  | 1  |
| 80 | Eluksingiak Point, Kugrua Bay   | -  | -  | -  | -  | 1  | -  | -  | -  | -  | 1  | 1  | 4  | 1  | - | - | - | - | 1 | 1 | - | 2 | 10 | -  | 3  |
| 81 | Peard Bay, Point Franklin       | -  | -  | -  | -  | 1  | 1  | -  | -  | -  | 1  | 1  | 1  | -  | - | - | - | 1 | 1 | 1 | - | 1 | 2  | -  | 2  |
| 82 | Skull Cliff                     | -  | -  | -  | -  | -  | 1  | 1  | -  | -  | -  | 1  | 2  | 1  | - | - | - | - | 1 | 1 | - | 1 | 4  | -  | 6  |
| 83 | Nulavik, Loran Radio Station    | -  | -  | -  | -  | 1  | 1  | 1  | 1  | -  | -  | 1  | 2  | 2  | - | - | - | - | 1 | - | 1 | 1 | 1  | 1  | 4  |
| 84 | Will Rogers & Wiley Post Mem.   | -  | -  | -  | -  | -  | -  | 1  | 1  | -  | -  | -  | 2  | 3  | - | - | - | - | - | - | - | - | 1  | 1  | 5  |
| 85 | Barrow, Browerville, Elson Lag. | -  | -  | -  | -  | -  | -  | 2  | 5  | -  | -  | 1  | 4  | 7  | - | - | - | - | - | - | - | 1 | 3  | 3  | 6  |
| 86 | Dease Inlet, Plover Islands     | -  | -  | -  | -  | -  | -  | 1  | 1  | -  | -  | -  | 1  | 1  | - | - | - | - | - | - | - | 1 | 1  | 1  | 1  |
| 87 | Igalik & Kulgurak Island        | 2  | 2  | 2  | 1  | 1  | 2  | 1  | 1  | -  | 1  | 1  | 1  | 1  | - | 1 | - | 2 | 1 | 1 | 2 | 2 | -  | 1  | 1  |
| 88 | Cape Simpson, Piasuk River      | 1  | 1  | 1  | -  | 1  | 1  | -  | 1  | -  | -  | -  | -  | -  | - | - | - | 1 | - | 1 | 1 | - | -  | -  | -  |

 Table A.2-60 Winter Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a Particular Location Will Contact a Certain Land Segment Within 360 Days, Chukchi Sale 193

 Table A.2-61 Winter Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting

 at a Particular Location Will Contact a Certain Group of Land Segments Within 3 Days, Chukchi Sale 193

| ID | Land Segment Name                           | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | Ρ | Ρ | Ρ | Ρ | Ρ | Ρ | Ρ | Ρ | Ρ | Ρ  | Ρ  |
|----|---------------------------------------------|----|----|----|----|----|----|----|----|----|----|----|----|----|---|---|---|---|---|---|---|---|---|----|----|
| טו | Land Segment Name                           | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
|    | Alaska Maritime National<br>Wildlife Refuge | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1 | - | - | - | - | - | - | - | - | -  | -  |
|    | National Petroleum Reserve<br>Alaska        | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | - | - | - | - | - | - | - | - | - | -  | 1  |
| 96 | United States Chukchi Coast                 | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | 1 | - | - | - | - | 5 | - | - | 1 | -  | 1  |

**Notes-** \*\* = Greater than 99.5 percent; - = less than 0.5 percent; LA = Launch Area, P = Pipeline. Rows with all values less than 0.5 percent are not shown.

### Table A.2-62 Winter Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a Particular Location Will Contact a Certain Group of Land Segments Within 10 Days, Chukchi Sale 193

| ID | Land Segment Name                           | LA<br>1 | LA<br>2 |   |   |   |   |   |   |   |   |   |   |   |   | P<br>2 | - | - | - | -  | - | - | - | Р<br>10 | Р<br>11 |
|----|---------------------------------------------|---------|---------|---|---|---|---|---|---|---|---|---|---|---|---|--------|---|---|---|----|---|---|---|---------|---------|
|    | Alaska Maritime National<br>Wildlife Refuge | -       | -       | - | - | - | - | - | - | - | - | - | - | - | 1 | -      | - | - | - | -  | - | - | - | -       | -       |
|    | National Petroleum Reserve<br>Alaska        | -       | -       | - | - | - | - | - | - | - | - | - | - | - | - | I      | - | - | - | -  | - | - | 1 | -       | 2       |
| 96 | United States Chukchi Coast                 | -       | -       | - | - | - | - | - | - | - | 3 | 2 | 1 | 1 | 3 | -      | 2 | - | - | 14 | - | - | 3 | -       | 3       |
| 97 | United States Beaufort Coast                | -       | -       | - | - | - | - | - | - | - | - | - | - | 1 | - | -      | - | - | - | -  | - | - | - | -       | 1       |

**Notes-** \*\* = Greater than 99.5 percent; - = less than 0.5 percent; LA = Launch Area, P = Pipeline. Rows with all values less than 0.5 percent are not shown.

#### Table A.2-63 Winter Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a Particular Location Will Contact a Certain Group of Land Segment Within 30 Days, Chukchi Sale 193

| ID | Land Segment Name                                 | LA<br>1 | LA<br>2 |   | LA<br>4 |   |   |   | LA<br>8 |   |    |   |   |   |   | P<br>2 | P<br>3 | P<br>4 | P<br>5 | P<br>6 | P<br>7 | P<br>8 | P<br>9 | Р<br>10 | P<br>11 |
|----|---------------------------------------------------|---------|---------|---|---------|---|---|---|---------|---|----|---|---|---|---|--------|--------|--------|--------|--------|--------|--------|--------|---------|---------|
|    | Wrangel Is Nat Res Natural<br>World Heritage Site | 1       | -       | - | -       | - | - | - | -       | - | -  | - | - | - | - | 1      | -      | -      | -      | -      | -      | -      | -      | -       | -       |
|    | Alaska Maritime National<br>Wildlife Refuge       | -       | -       | - | -       | - | - | - | -       | 1 | -  | - | - | - | 2 | -      | 1      | -      | -      | -      | -      | -      | -      | -       | -       |
|    | National Petroleum Reserve<br>Alaska              | -       | -       | - | -       | - | - | - | -       | - | -  | 1 | 1 | - | - | -      | -      | -      | -      | 1      | -      | -      | 4      | -       | 3       |
|    | Kasegaluk Lagoon Special<br>Use Area              | -       | -       | - | -       | - | - | - | -       | - | -  | - | - | - | - | -      | -      | -      | -      | 1      | -      | -      | -      | -       | -       |
| 95 | Russia Chukchi Coast                              | 1       | -       | - | 1       | - | - | - | -       | 3 | -  | - | - | - | 5 | 2      | 1      | -      | -      | -      | -      | -      | -      | -       | -       |
| 96 | United States Chukchi Coast                       | -       | -       | - | 1       | 1 | - | - | -       | 1 | 11 | 6 | 3 | 2 | 4 | 1      | 10     | ١      | 1      | 21     | -      | 1      | 9      | -       | 5       |
| 97 | United States Beaufort Coast                      | -       | -       | - | -       | - | - | - | 1       | - | -  | - | - | 2 | - | -      | -      | -      | -      | -      | -      | -      | -      | -       | 2       |

 Table A.2-64 Winter Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting

 at a Particular Location Will Contact a Certain Group of Land Segments Within 60 Days, Chukchi Sale 193

| ID | Land Segment Name                                 | LA<br>1 | LA<br>2 |   | LA<br>4 |   | LA<br>6 | LA<br>7 | LA<br>8 | LA<br>9 |    |   |   | LA<br>13 |   | - | Р<br>3 | P<br>4 | P<br>5 | P<br>6 | P<br>7 | P<br>8 | P<br>9 | Р<br>10 | Р<br>11 |
|----|---------------------------------------------------|---------|---------|---|---------|---|---------|---------|---------|---------|----|---|---|----------|---|---|--------|--------|--------|--------|--------|--------|--------|---------|---------|
|    | Wrangel Is Nat Res Natural<br>World Heritage Site | 1       | -       | - | -       | - | -       | -       | -       | -       | -  | - | - | -        | - | 1 | -      | 1      | -      | -      | -      | -      | -      | -       | -       |
|    | Alaska Maritime National<br>Wildlife Refuge       | -       | -       | - | -       | - | -       | -       | -       | 1       | -  | - | - | -        | 3 | - | 1      | -      | -      | -      | -      | -      | -      | -       | -       |
|    | National Petroleum Reserve<br>Alaska              | -       | -       | - | -       | 1 | 1       | -       | -       | -       | 1  | 2 | 3 | 1        | - | - | -      | -      | 1      | 1      | -      | 2      | 7      | -       | 5       |
|    | Kasegaluk Lagoon Special<br>Use Area              | -       | -       | - | -       | - | -       | -       | -       | -       | 1  | 1 | - | -        | - | - | -      | -      | -      | 1      | -      | -      | 1      | -       | -       |
| 95 | Russia Chukchi Coast                              | 2       | 1       | - | 3       | - | -       | -       | -       | 8       | 1  | - | - | -        | 9 | 3 | 3      | 1      | -      | -      | -      | -      | -      | -       | -       |
| 96 | United States Chukchi Coast                       | -       | -       | - | 3       | 4 | 1       | -       | 1       | 2       | 17 | 9 | 7 | 3        | 5 | З | 16     | I      | 4      | 27     | -      | 3      | 17     | 1       | 8       |
| 97 | United States Beaufort Coast                      | -       | -       | - | -       | - | -       | -       | 1       | -       | -  | - | - | 3        | - | - | -      | -      | -      | -      | -      | -      | -      | -       | 2       |

**Notes-** \*\* = Greater than 99.5 percent; - = less than 0.5 percent; LA = Launch Area, P = Pipeline. Rows with all values less than 0.5 percent are not shown.

 Table A.2-65 Winter Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting

 at a Particular Location Will Contact a Certain Group of Land Segments Within 180 Days, Chukchi Sale 193

| ID | Land Segment Name                                 | LA<br>1 | LA<br>2 |   |   | LA<br>5 |   |   | LA<br>8 |    |    |    | LA<br>12 |   |    | P<br>2 | Р<br>3 | P<br>4 | P<br>5 | P<br>6 | P<br>7 | P<br>8 | P<br>9 | Р<br>10 | Р<br>11 |
|----|---------------------------------------------------|---------|---------|---|---|---------|---|---|---------|----|----|----|----------|---|----|--------|--------|--------|--------|--------|--------|--------|--------|---------|---------|
|    | Wrangel Is Nat Res Natural<br>World Heritage Site | 2       | 1       | - | - | -       | - | - | -       | -  | -  | -  | -        | - | -  | 1      | -      | 2      | -      | -      | -      | -      | -      | -       | -       |
|    | Alaska Maritime National<br>Wildlife Refuge       | -       | -       | - | - | -       | - | - | -       | 1  | -  | -  | -        | - | 4  | -      | 2      | -      | -      | -      | -      | -      | -      | -       | -       |
|    | National Petroleum Reserve<br>Alaska              | 2       | 3       | 3 | 2 | 5       | 4 | 4 | 3       | -  | 3  | 6  | 11       | 6 | 1  | 1      | 1      | 3      | 5      | 5      | 4      | 7      | 17     | 4       | 14      |
|    | Kasegaluk Lagoon Special<br>Use Area              | -       | -       | - | 1 | 1       | - | - | -       | -  | 1  | 1  | 1        | - | -  | -      | -      | -      | 1      | 2      | -      | 1      | 1      | -       | -       |
| 95 | Russia Chukchi Coast                              | 5       | 2       | - | 8 | 1       | 1 | - | -       | 26 | 3  | 1  | -        | - | 29 | 8      | 10     | 3      | 1      | -      | -      | 1      | -      | -       | -       |
| 96 | United States Chukchi Coast                       | 1       | 1       | 1 | 8 | 11      | 4 | 3 | 3       | 4  | 27 | 20 | 19       | 8 | 8  | 8      | 24     | 2      | 11     | 37     | 2      | 9      | 35     | 3       | 20      |
| 97 | United States Beaufort Coast                      | 1       | 2       | 2 | - | 1       | 2 | 4 | 7       | -  | -  | 1  | 4        | 8 | -  | -      | -      | 1      | 1      | -      | 2      | 2      | 3      | 5       | 7       |

**Notes-** \*\* = Greater than 99.5 percent; - = less than 0.5 percent; LA = Launch Area, P = Pipeline. Rows with all values less than 0.5 percent are not shown.

| Table A.2-66 Winter Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting |
|-------------------------------------------------------------------------------------------------------------|
| at a Particular Location Will Contact a Certain Group of Land Segments Within 360 Days, Chukchi Sale 193    |

| ID | Land Segment Name                             | LA<br>1 | LA<br>2 | LA<br>3 | LA<br>4 | LA<br>5 | LA<br>6 | LA<br>7 | LA<br>8 | LA<br>9 | LA<br>10 | LA<br>11 | LA<br>12 | LA<br>13 | Р<br>1 | P<br>2 | P<br>3 | P<br>4 | P<br>5 | P<br>6 | P<br>7 | P<br>8 | P<br>9 | Р<br>10 | Р<br>11 |
|----|-----------------------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|----------|----------|----------|----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|---------|
|    | Wrangel Is Nat Res Nat<br>World Heritage Site | 2       | 1       | -       | 1       | 1       | -       | -       | 1       | -       | -        | -        | 1        | -        | -      | 1      | -      | 2      | 1      | -      | -      | -      | 1      | -       | -       |
|    | Alaska Maritime National<br>Wildlife Refuge   | -       | -       | -       | -       | -       | -       | -       | -       | 1       | -        | -        | -        | -        | 4      | -      | 2      | -      | -      | -      | -      | -      | -      | -       | -       |
|    | National Petroleum Reserve<br>Alaska          | 3       | 4       | 4       | 3       | 7       | 6       | 5       | 5       | -       | 5        | 9        | 13       | 7        | -      | 2      | 2      | 4      | 8      | 7      | 5      | 9      | 20     | 5       | 16      |
|    | Kasegaluk Lagoon Special<br>Use Area          | -       | -       | -       | 1       | 1       | -       | -       | -       | -       | 1        | 1        | 1        | -        | -      | -      | -      | -      | 1      | 2      | -      | 1      | 1      | -       | -       |
| 91 | Teshekpuk Lake Special Use<br>Area            | -       | -       | -       | -       | 1       | -       | -       | 1       | -       | -        | -        | -        | 1        | -      | -      | -      | -      | 1      | -      | -      | -      | -      | 1       | -       |
| 95 | Russia Chukchi Coast                          | 6       | 2       | -       | 12      | 2       | 1       | -       | 1       | 32      | 5        | 1        | 1        | 1        | 34     | 11     | 13     | 3      | 1      | 1      | 1      | 1      | 1      | -       | -       |
| 96 | United States Chukchi Coast                   | 1       | 1       | 1       | 8       | 12      | 5       | 3       | 3       | 4       | 28       | 21       | 20       | 9        | 8      | 8      | 24     | 2      | 11     | 39     | 2      | 9      | 37     | 3       | 21      |
| 97 | United States Beaufort Coast                  | 2       | 3       | 4       | 1       | 3       | 4       | 6       | 9       | -       | 2        | 3        | 6        | 10       | -      | 1      | 1      | 3      | 3      | 2      | 4      | 4      | 5      | 6       | 9       |

Table A.2-67 Winter Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a Particular Location Will Contact a Certain Boundary Segment Within 3 Days, Chukchi Sale 193

| п | Boundary Segment Name | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | Ρ | Ρ | Ρ | Ρ | Ρ | Ρ | Ρ | Ρ | Ρ | Ρ  | Ρ  |
|---|-----------------------|----|----|----|----|----|----|----|----|----|----|----|----|----|---|---|---|---|---|---|---|---|---|----|----|
|   | Boundary Segment Name | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
|   |                       |    |    |    |    |    |    |    |    |    |    |    |    |    |   |   |   |   |   |   |   |   |   |    |    |

Notes- All boundary segments have all values less than 0.5%; therefore the data are not shown and the tables are left blank.

### Table A.2-68 Winter Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a Particular Location Will Contact a Certain Boundary Segment Within 10 Days, Chukchi Sale 193

| Boundary Segment Name | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | LA | Ρ | Ρ | Ρ | Ρ | Ρ | Ρ | Ρ | Ρ | Ρ | Ρ  | Ρ  |
|-----------------------|----|----|----|----|----|----|----|----|----|----|----|----|----|---|---|---|---|---|---|---|---|---|----|----|
| Boundary Segment Name | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
|                       |    |    |    |    |    |    |    |    |    |    |    |    |    |   |   |   |   |   |   |   |   |   |    |    |

Notes- All boundary segments have all values less than 0.5%; therefore the data are not shown and the tables are left blank.

 Table A.2-69 Winter Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a Particular Location Will Contact a Certain Boundary Segment Within 30 Days, Chukchi Sale 193

| ID | Boundary Segment Name | LA<br>1 | LA<br>2 | LA<br>3 | LA<br>4 | LA<br>5 | LA<br>6 | LA<br>7 |   | LA<br>9 |   |   |   |   |   |   |   |   | P<br>5 | P<br>6 | P<br>7 | P<br>8 | P<br>9 | Р<br>10 | Р<br>11 |
|----|-----------------------|---------|---------|---------|---------|---------|---------|---------|---|---------|---|---|---|---|---|---|---|---|--------|--------|--------|--------|--------|---------|---------|
| 2  | Bering Strait         | -       | -       | -       | -       | -       | -       | -       | - | 1       | - | - | - | - | 2 | - | - | - | -      | -      | -      | -      | -      | -       | -       |
| 16 | Chukchi Sea           | -       | 1       | -       | -       | -       | -       | -       | - | -       | - | I | - | - | 1 | - | I | 1 | -      | -      | -      | I      | -      | -       | -       |
| 18 | Chukchi Sea           | 1       | 3       | 4       | -       | 1       | 2       | 2       | 1 | -       | - | 1 | - | - | 1 | - | 1 | 2 | 2      | -      | 4      | 1      | -      | 1       | -       |
| 19 | Chukchi Sea           | 1       | 3       | 4       | -       | 1       | 2       | 2       | 2 | -       | - | 1 | - | 1 | 1 | - | 1 | 2 | 1      | -      | 3      | 1      | -      | 2       | -       |
| 20 | Chukchi Sea           | 1       | 2       | 3       | -       | 1       | 1       | 1       | 1 | -       | - | 1 | - | - | 1 | - | 1 | 1 | 1      | -      | 2      | I      | -      | 1       | -       |
| 21 | Chukchi Sea           | -       | -       | 1       | -       | -       | -       | -       | - | -       | - | 1 | - | - | 1 | - | 1 | 1 | -      | -      | -      | I      | -      | -       | -       |
| 22 | Chukchi Sea           | -       | -       | -       | -       | -       | -       | -       | 1 | -       | - | 1 | - | - | 1 | - | 1 | 1 | -      | -      | -      | I      | -      | -       | -       |
| 23 | Beaufort Sea          | -       | -       | -       | -       | -       | -       | -       | 1 | -       | - | - | - | - | - | - | - | - | -      | -      | -      | -      | -      | -       | -       |
| 24 | Beaufort Sea          | -       | -       | -       | -       | -       | -       | -       | 1 | -       | - | - | - | - | - | - | - | - | -      | -      | -      | -      | -      | -       | -       |
| 25 | Beaufort Sea          | -       | -       | -       | -       | -       | -       | -       | 1 | -       | - | - | - | - | - | - | - | - | -      | -      | -      | -      | -      | -       | -       |

**Notes-** \*\* = Greater than 99.5 percent; - = less than 0.5 percent; LA = Launch Area, P = Pipeline. Rows with all values less than 0.5 percent are not shown.

| Table A.2-70 Winter Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting |
|-------------------------------------------------------------------------------------------------------------|
| at a Particular Location Will Contact a Certain Boundary Segment Within 60 Days, Chukchi Sale 193           |

| ID | Boundary Segment Name | LA<br>1 | LA<br>2 | LA<br>3 | LA<br>4 | LA<br>5 | LA<br>6 | LA<br>7 | LA<br>8 | LA<br>9 | LA<br>10 | LA<br>11 | LA<br>12 | LA<br>13 | Р<br>1 | P<br>2 | P<br>3 | P<br>4 | P<br>5 | P<br>6 | P<br>7 | P<br>8 | P<br>9 | Р<br>10 | Р<br>11 |
|----|-----------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|----------|----------|----------|----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|---------|
| 2  | Bering Strait         | -       | -       | -       | -       | -       | -       | -       | -       | 1       | -        | -        | -        | -        | 2      | -      | -      | 1      | -      | -      | -      | -      | -      | -       | -       |
| 15 | Chukchi Sea           | 1       | 1       | -       | -       | -       | -       | -       | -       | -       | -        | I        | -        | 1        | -      | -      | -      | 1      | -      | -      | 1      | -      | -      | -       | -       |
| 16 | Chukchi Sea           | 1       | 1       | -       | -       | 1       | 1       | -       | -       | -       | -        | I        | -        | 1        | -      | -      | -      | 2      | 1      | -      | 1      | -      | -      | -       | -       |
| 17 | Chukchi Sea           | 1       | 1       | 1       | -       | -       | -       | -       | -       | -       | -        | ١        | -        | 1        | -      | -      | -      | 1      | -      | -      | 1      | -      | -      | 1       | -       |
| 18 | Chukchi Sea           | 5       | 9       | 10      | 1       | 5       | 8       | 7       | 4       | -       | 2        | 5        | 3        | З        | -      | 1      | -      | 6      | 5      | 3      | 10     | 6      | 1      | 6       | 3       |
| 19 | Chukchi Sea           | 5       | 11      | 12      | 1       | 5       | 9       | 9       | 5       | -       | 2        | 3        | 3        | 5        | -      | 1      | 1      | 9      | 5      | 2      | 11     | 5      | -      | 7       | 3       |
| 20 | Chukchi Sea           | 2       | 5       | 7       | -       | 4       | 5       | 6       | 6       | -       | 1        | 2        | 2        | 3        | -      | -      | -      | 4      | 4      | 1      | 6      | 4      | -      | 6       | 2       |
| 21 | Chukchi Sea           | -       | 1       | 2       | -       | 1       | 1       | 2       | 2       | -       | -        | -        | -        | 1        | -      | -      | -      | 1      | 1      | -      | 2      | 1      | -      | 2       | -       |
| 22 | Chukchi Sea           | -       | -       | 1       | -       | -       | 1       | 1       | 2       | -       | -        | -        | -        | 1        | -      | -      | -      | -      | -      | -      | 1      | -      | -      | 1       | -       |
| 23 | Beaufort Sea          | -       | -       | -       | -       | -       | -       | 1       | 1       | -       | -        | -        | -        | 1        | -      | -      | -      | -      | -      | -      | -      | -      | -      | 1       | 1       |
| 24 | Beaufort Sea          | -       | -       | -       | -       | -       | -       | 1       | 1       | -       | -        | -        | -        | 1        | -      | -      | -      | -      | -      | -      | -      | -      | -      | 1       | -       |
| 25 | Beaufort Sea          | -       | -       | -       | -       | -       | -       | -       | 1       | -       | -        | -        | -        | -        | -      | -      | -      | -      | -      | -      | -      | -      | -      | -       | -       |
| 26 | Beaufort Sea          | -       | -       | -       | -       | -       | -       | -       | 1       | -       | -        | -        | -        | -        | -      | -      | -      | -      | -      | -      | -      | -      | -      | -       | -       |

 Table A.2-71 Winter Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a Particular Location Will Contact a Certain Boundary Segment Within 180 Days, Chukchi Sale 193

| ID | Boundary Segment Name                   | LA | LA |    | LA | LA |    | LA |    |   |    |    |    | LA | Ρ | Ρ | Ρ | Ρ  | Ρ  | P | Ρ  | Ρ  | Ρ | P  | Ρ   |
|----|-----------------------------------------|----|----|----|----|----|----|----|----|---|----|----|----|----|---|---|---|----|----|---|----|----|---|----|-----|
|    | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 1  | 2  | 3  | 4  | 5  | 6  | 1  | 8  | 9 | 10 | 11 | 12 | 13 | 1 | 2 | 3 | 4  | 5  | 6 | 1  | 8  | 9 | 10 | 11  |
| 2  | Bering Strait                           | -  | -  | -  | -  | -  | -  | -  | -  | 1 | -  | -  | -  | -  | 2 | - | - | -  | -  | - | -  | -  | - | -  | - 1 |
| 15 | Chukchi Sea                             | 2  | 2  | 2  | -  | 1  | 1  | 1  | -  | - | -  | 1  | -  | 1  | - | - | - | 2  | 1  | - | 2  | 1  | - | 1  | 1   |
| 16 | Chukchi Sea                             | 2  | 3  | 1  | -  | 2  | 2  | 1  | -  | - | 1  | 1  | 1  | 1  | - | 1 | 1 | 3  | 1  | 1 | 1  | 1  | - | 1  | 1   |
| 17 | Chukchi Sea                             | 2  | 2  | 2  | 1  | 1  | 1  | 1  | 1  | - | 1  | 1  | 1  | 1  | - | 1 | 1 | 2  | 1  | 1 | 2  | 1  | 1 | 1  | 1   |
| 18 | Chukchi Sea                             | 7  | 11 | 13 | 2  | 7  | 10 | 9  | 6  | - | 5  | 7  | 5  | 5  | - | 2 | 2 | 9  | 8  | 5 | 12 | 9  | 3 | 8  | 5   |
| 19 | Chukchi Sea                             | 10 | 16 | 17 | 4  | 12 | 16 | 16 | 10 | - | 7  | 10 | 9  | 11 | - | 3 | 3 | 14 | 12 | 6 | 17 | 13 | 5 | 15 | 9   |
| 20 | Chukchi Sea                             | 5  | 10 | 13 | 1  | 8  | 11 | 12 | 11 | - | 4  | 6  | 6  | 8  | - | 1 | 1 | 9  | 8  | 5 | 12 | 9  | 3 | 12 | 7   |
| 21 | Chukchi Sea                             | 1  | 2  | 2  | -  | 2  | 2  | 3  | 3  | - | 1  | 1  | 2  | 2  | - | - | - | 1  | 2  | 1 | 2  | 2  | 1 | 3  | 1   |
| 22 | Chukchi Sea                             | -  | -  | 1  | -  | -  | 1  | 1  | 3  | - | -  | 1  | 1  | 1  | - | - | - | -  | 1  | 1 | 1  | 1  | 2 | 2  | - 1 |
| 23 | Beaufort Sea                            | -  | -  | 1  | -  | -  | 1  | 1  | 2  | - | -  | -  | -  | 1  | - | - | - | -  | -  | - | 1  | 1  | - | 1  | 1   |
| 24 | Beaufort Sea                            | -  | -  | -  | -  | -  | -  | 1  | 2  | - | -  | -  | 1  | 1  | - | - | - | -  | -  | - | -  | -  | - | 1  | 1   |
| 25 | Beaufort Sea                            | -  | -  | -  | -  | -  | -  | -  | 2  | - | -  | -  | -  | -  | - | - | - | -  | -  | - | -  | -  | - | -  | -   |
| 26 | Beaufort Sea                            | -  | -  | -  | -  | -  | -  | -  | 1  | - | -  | -  | -  | 1  | - | - | - | -  | -  | - | -  | 1  | - | -  | - 1 |
| 27 | Beaufort Sea                            | -  | -  | 1  | -  | -  | -  | 1  | 1  | - | -  | -  | -  | 1  | - | - | - | -  | -  | - | 1  | -  | - | 1  | 1   |
| 28 | Beaufort Sea                            | -  | -  | -  | -  | -  | -  | -  | 1  | - | -  | -  | -  | -  | - | - | - | -  | -  | - | -  | -  | - | -  | -   |
| 30 | Beaufort Sea                            | -  | -  | -  | -  | -  | -  | -  | 1  | - | -  | -  | -  | 1  | - | - | - | -  | -  | - | -  | -  | - | -  | -   |

**Notes-** \*\* = Greater than 99.5 percent; - = less than 0.5 percent; LA = Launch Area, P = Pipeline. Rows with all values less than 0.5 percent are not shown.

 Table A.2-72
 Winter Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting at a Particular Location Will Contact a Certain Boundary Segment Within 360 Days, Chukchi Sale 193

| ID       | Boundary Segment Name | LA<br>1 | LA<br>2 | LA<br>3 | LA | LA<br>5 | LA | LA<br>7 | LA<br>8 | LA<br>9 | LA<br>10 | LA<br>11 | LA<br>12 | LA<br>13 | P<br>1 | P<br>2 | Р<br>3 | P<br>4 | P<br>5 | P | P<br>7 | P<br>8 | P<br>9 | P<br>10  | Р<br>11 |
|----------|-----------------------|---------|---------|---------|----|---------|----|---------|---------|---------|----------|----------|----------|----------|--------|--------|--------|--------|--------|---|--------|--------|--------|----------|---------|
| 2        | Bering Strait         | -       | 2       | 3       |    | 5       | 0  | -       | 0       | 9<br>1  | -        | -        | 12       | -        | 2      | 2      | -      | -      | -      | - | -      | 0      | 3      | 10       |         |
| 15       | Chukchi Sea           | 2       | 2       | 2       | -  | 1       | 1  | 1       | _       | -       | -        | 1        | -        | 1        | -      | -      | -      | 2      | 1      | - | 2      | 1      | _      | 1        | 1       |
| 16       | Chukchi Sea           | 2       | 3       | 1       | -  | 2       | 2  | 1       | -       | -       | 1        | 1        | 1        | 1        | -      | -      | 1      | 3      | 1      | 1 | 1      | 1      | _      | 1        | 1       |
| 17       | Chukchi Sea           | 2       | 2       | 2       | 1  | 1       | 1  | 1       | 1       | -       | 1        | 1        | 1        | 1        | -      | 1      | 1      | 2      | 1      | 1 | 2      | 1      | 1      | 1        | 1       |
|          |                       | 7       | 12      | 13      | 2  | 7       | 10 | 9       | 6       | -       | 5        | 8        | 6        | 6        | -      | 2      | 2      | 9      | 8      | 5 | 12     | 9      | 4      | 8        | 6       |
| -        |                       | 10      | 17      | 18      | 4  | 12      | 16 | 17      | 10      | -       | 7        | 10       | 10       | 11       | -      | 2      | 3      | 15     | 12     | 6 | 18     | 14     | 5      | 16       |         |
| 20       | Chukchi Sea           | 5       | 10      | 13      | 1  | 9       | 11 | 12      |         | -       | 4        | 6        | 6        | 8        | -      | 1      | 1      | 9      | 9      | 5 | 12     | 9      | 3      | 12       | 7       |
| 21       | Chukchi Sea           | 1       | 2       | 3       | -  | 2       | 2  | 3       | 4       | -       | +<br>1   | 2        | 2        | 2        | -      | -      | -      | 2      | 3      | 1 | 2      | 2      | 1      | 3        | 1       |
| 22       | Chukchi Sea           | -       | -       | 1       | -  | -       | 1  | 2       | 3       | -       | -        | 1        | 1        | 2        | -      | -      | -      | -      | 1      | 1 | 1      | 1      | 2      | 2        | 1       |
| 23       | Beaufort Sea          | 1       | 1       | 2       | 1  | 1       | 2  | 3       | 4       | -       | 1        | 1        | 1        | 3        | -      | -      | -      | 1      | 2      | 1 | 2      | 2      | 1      | 3        | 2       |
| 24       | Beaufort Sea          | -       | 1       | 1       | -  | 1       | 1  | 2       | 3       | -       | -        | 1        | 1        | 2        | -      | -      | -      | 1      | 1      | 1 | 1      | 1      | 1      | 2        | 1       |
| 25       | Beaufort Sea          | -       | -       | -       | -  | -       | -  | -       | 2       | -       | -        | 1        | -        | 1        | -      | -      | -      | -      | 1      | - | -      | -      | -      | -        | 1       |
| 26       | Beaufort Sea          | -       | -       | - 1     | -  | -       | -  | 1       | 2       | -       | -        | 1        | -        | 1        | -      | -      | -      | -      | 1      | - | -      | -      | -      | 1        | -       |
| 27       | Beaufort Sea          | -       | -       | 1       | -  | -       | 1  | 2       | 2       | -       | -        | -        | 1        | 2        | -      | -      | -      | -      | -      | - | 1      | 1      | 1      | 1        | 1       |
| 28       | Beaufort Sea          |         |         | -       | -  | -       | -  | -       | 2       | -       | -        | -        | -        | 2        | -      | -      | -      | -      | -      | - | -      |        | •      | $\vdash$ |         |
| 20<br>29 | Beaufort Sea          | -       | -       |         |    |         | -  |         | 1       |         |          |          |          | _        | _      |        |        |        |        |   |        | -      | -      | -        | -       |
|          |                       | -       | -       | -       | -  | -       | -  | -       | 1       | -       | -        | -        | -        | -        | -      | -      | -      | -      | -      | - | -      | -      | -      | -        | -       |
| 30       | Beaufort Sea          | -       | -       | -       | -  | -       | -  | -       | 1       | -       | -        | -        | -        | 1        | -      | -      | -      | -      | -      | - | -      | -      | -      | -        | -       |

Table A.2-73 Combined Probabilities (Expressed as Percent Chance) of One or More Spills Greater than or Equal to 1,000 Barrels, and the Estimated Number of Spills (Mean), Occurring and Contacting a Certain Environmental Resource over the assumed Production Life of the Lease Area Within 3 Days, Chukchi Sale 193

| ID | Environmental Resource Area Name              | Altern<br>Prop | ative I<br>losal |         | ative III<br>ridor I | Alternative IV<br>Corridor II |      |  |
|----|-----------------------------------------------|----------------|------------------|---------|----------------------|-------------------------------|------|--|
|    |                                               | Percent        | Mean             | Percent | Mean                 | Percent                       | Mean |  |
|    | Land                                          | 1              | 0.01             | -       | -                    | -                             | -    |  |
| 6  | ERA 6                                         | 1              | 0.01             | 1       | 0.01                 | 1                             | 0.1  |  |
| 10 | Ledyard Bay Spectacled Eider Critical Habitat | 4              | 0.04             | 2       | 0.02                 | 3                             | 0.3  |  |
| 14 | Cape Thompson Seabird Colony Area             | 1              | 0.01             | -       | -                    | -                             | -    |  |
| 15 | Cape Lisburne Seabird Colony Area             | 2              | 0.02             | 1       | 0.01                 | 1                             | 0.01 |  |
| 20 | Chukchi Spring Lead 2                         | 1              | 0.01             | -       | -                    | -                             | -    |  |
| 21 | Chukchi Spring Lead 3                         | 1              | 0.01             | -       | -                    | 1                             | 0.01 |  |
| 35 | ERA 35                                        | 1              | 0.01             | 1       | 0.01                 | 1                             | 0.01 |  |
| 36 | ERA 36                                        | 3              | 0.03             | 2       | 0.02                 | 2                             | 0.02 |  |
| 39 | Point Lay Subsistence Area                    | 2              | 0.02             | 1       | 0.01                 | 2                             | 0.02 |  |
| 40 | Wainwright Subsistence Area                   | 1              | 0.01             | 1       | 0.01                 | 1                             | 0.01 |  |
| 45 | ERA 45                                        | 1              | 0.01             | -       | -                    | 1                             | 0.01 |  |
| 47 | Ice/Sea Segment 10                            | 1              | 0.01             | 1       | 0.01                 | 1                             | 0.01 |  |
| 48 | Ice/Sea Segment 11                            | 1              | 0.01             | 1       | 0.01                 | 1                             | 0.01 |  |
| 50 | Ice/Sea Segment 12                            | 1              | 0.01             | 1       | 0.01                 | 1                             | 0.01 |  |
| 51 | Ice/Sea Segment 13                            | 1              | 0.01             | -       | -                    | -                             | -    |  |
| 56 | ERA 56                                        | 1              | 0.01             | 1       | 0.01                 | 1                             | 0.01 |  |

Notes- \*\* = Greater than 99.5 percent; - = less than 0.5 percent. Rows with all values less than 0.5 percent are not shown.

Table A.2-74 Combined Probabilities (Expressed as Percent Chance) of One or Spills Greater than or Equal to 1,000 Barrels, and the Estimated Number of Spills (Mean), Occurring and Contacting a Certain Environmental Resource over the assumed Production Life of the Lease Area Within 10 Days, Chukchi Sale 193

| ID | Environmental Resource Area Name              | Altern<br>Prop | ative I<br>losal |         | ative III<br>ridor I | Alternative IV<br>Corridor II |      |  |
|----|-----------------------------------------------|----------------|------------------|---------|----------------------|-------------------------------|------|--|
|    |                                               | Percent        | Mean             | Percent | Mean                 | Percent                       | Mean |  |
|    | Land                                          | 3              | 0.03             | 1       | 0.01                 | 2                             | 0.02 |  |
| 1  | Kasegaluk Lagoon                              | 1              | 0.01             | 1       | 0.01                 | 1                             | 0.01 |  |
| 6  | ERA 6                                         | 1              | 0.01             | 1       | 0.01                 | 1                             | 0.01 |  |
| 10 | Ledyard Bay Spectacled Eider Critical Habitat | 5              | 0.05             | 3       | 0.03                 | 4                             | 0.04 |  |
| 14 | Cape Thompson Seabird Colony Area             | 1              | 0.01             | -       | -                    | -                             | -    |  |
| 15 | Cape Lisburne Seabird Colony Area             | 2              | 0.02             | 1       | 0.01                 | 2                             | 0.02 |  |
| 18 | ERA 18                                        | 1              | 0.01             | -       | -                    | -                             | -    |  |
| 20 | Chukchi Spring Lead 2                         | 1              | 0.01             | -       | -                    | 1                             | 0.01 |  |
| 21 | Chukchi Spring Lead 3                         | 1              | 0.01             | 1       | 0.01                 | 1                             | 0.01 |  |
| 22 | Chukchi Spring Lead 4                         | 1              | 0.01             | -       | -                    | 1                             | 0.01 |  |
| 35 | ERA 35                                        | 2              | 0.02             | 1       | 0.01                 | 1                             | 0.01 |  |
| 36 | ERA 36                                        | 3              | 0.03             | 2       | 0.02                 | 3                             | 0.03 |  |
| 38 | Point Hope Subsistence Area                   | 1              | 0.01             | -       | -                    | -                             | -    |  |
| 39 | Point Lay Subsistence Area                    | 3              | 0.03             | 2       | 0.02                 | 3                             | 0.03 |  |
| 40 | Wainwright Subsistence Area                   | 2              | 0.02             | 1       | 0.01                 | 2                             | 0.02 |  |
| 45 | ERA 45                                        | 1              | 0.01             | 1       | 0.01                 | 1                             | 0.01 |  |
| 47 | Ice/Sea Segment 10                            | 1              | 0.02             | 1       | 0.01                 | 1                             | 0.01 |  |
| 48 | Ice/Sea Segment 11                            | 3              | 0.03             | 3       | 0.03                 | 3                             | 0.03 |  |
| 49 | Hanna's Shoal Polynya                         | 1              | 0.01             | 1       | 0.01                 | 1                             | 0.01 |  |
| 50 | Ice/Sea Segment 12                            | 1              | 0.01             | 1       | 0.01                 | 1                             | 0.01 |  |
| 51 | Ice/Sea Segment 13                            | 1              | 0.01             | 1       | 0.01                 | 1                             | 0.01 |  |
| 56 | ERA 56                                        | 1              | 0.01             | 1       | 0.01                 | 1                             | 0.01 |  |

Table A.2-75 Combined Probabilities (Expressed as Percent Chance) of One or More Large Spills Greater than or Equal to 1,000 Barrels, and the Estimated Number of Spills (Mean), Occurring and Contacting a Certain Environmental Resource over the assumed Production Life of the Lease Area Within 30 Days, Chukchi Sale 193

| ID | Environmental Resource Area Name              |         | ative I<br>oosal |         | ative III<br>ridor I |         | ative IV<br>idor II |
|----|-----------------------------------------------|---------|------------------|---------|----------------------|---------|---------------------|
|    |                                               | Percent | Mean             | Percent | Mean                 | Percent | Mean                |
|    | Land                                          | 7       | 0.07             | 3       | 0.03                 | 5       | 0.05                |
| 1  | Kasegaluk Lagoon                              | 2       | 0.02             | 1       | 0.01                 | 2       | 0.02                |
| 6  | ERA 6                                         | 3       | 0.03             | 2       | 0.02                 | 2       | 0.02                |
| 10 | Ledyard Bay Spectacled Eider Critical Habitat | 7       | 0.07             | 3       | 0.03                 | 5       | 0.05                |
| 14 | Cape Thompson Seabird Colony Area             | 1       | 0.01             | -       | -                    | 1       | 0.01                |
| 15 | Cape Lisburne Seabird Colony Area             | 3       | 0.03             | 1       | 0.01                 | 2       | 0.02                |
| 18 | ERA 18                                        | 2       | 0.02             | 1       | 0.01                 | 2       | 0.02                |
| 20 | Chukchi Spring Lead 2                         | 1       | 0.01             | 1       | 0.01                 | 1       | 0.01                |
| 21 | Chukchi Spring Lead 3                         | 2       | 0.02             | 1       | 0.01                 | 1       | 0.01                |
| 22 | Chukchi Spring Lead 4                         | 1       | 0.01             | 1       | 0.01                 | 1       | 0.01                |
| 35 | ERA 35                                        | 2       | 0.02             | 1       | 0.01                 | 2       | 0.02                |
| 36 | ERA 36                                        | 5       | 0.05             | 3       | 0.03                 | 4       | 0.04                |
| 38 | Point Hope Subsistence Area                   | 1       | 0.01             | -       | -                    | 1       | 0.01                |
| 39 | Point Lay Subsistence Area                    | 5       | 0.05             | 3       | 0.03                 | 4       | 0.04                |
| 40 | Wainwright Subsistence Area                   | 4       | 0.04             | 3       | 0.03                 | 4       | 0.04                |
| 45 | ERA 45                                        | 3       | 0.03             | 1       | 0.01                 | 2       | 0.02                |
| 46 | Herald Shoal Polynya                          | 1       | 0.01             | 1       | 0.01                 | 1       | 0.01                |
| 47 | Ice/Sea Segment 10                            | 3       | 0.03             | 2       | 0.02                 | 3       | 0.03                |
| 48 | Ice/Sea Segment 11                            | 6       | 0.06             | 5       | 0.06                 | 6       | 0.06                |
| 49 | Hanna's Shoal Polynya                         | 3       | 0.03             | 3       | 0.03                 | 3       | 0.03                |
| 50 | Ice/Sea Segment 12                            | 3       | 0.03             | 2       | 0.02                 | 3       | 0.03                |
| 51 | Ice/Sea Segment 13                            | 2       | 0.02             | 1       | 0.01                 | 2       | 0.02                |
| 52 | Ice/Sea Segment 14                            | 1       | 0.01             | -       | -                    | -       | -                   |
| 56 | ERA 56                                        | 2       | 0.02             | 2       | 0.02                 | 2       | 0.02                |
| 64 | Peard Bay                                     | 1       | 0.01             | -       | -                    | 1       | 0.01                |

Table A.2-76 Combined Probabilities (Expressed as Percent Chance) of One or More Large Spills Greater than or Equal to 1,000 Barrels, and the Estimated Number of Spills (Mean), Occurring and Contacting a Certain Environmental Resource over the assumed Production Life of the Lease Area Within 60 Days, Chukchi Sale 193

| ID | Environmental Resource Area Name              | Altern<br>Prop | ative I<br>osal |         | ative III<br>ridor I | Alternative IV<br>Corridor II |      |  |
|----|-----------------------------------------------|----------------|-----------------|---------|----------------------|-------------------------------|------|--|
|    |                                               | Percent        | Mean            | Percent | Mean                 | Percent                       | Mean |  |
|    | Land                                          | 9              | 0.1             | 5       | 0.05                 | 7                             | 0.08 |  |
| 1  | Kasegaluk Lagoon                              | 3              | 0.03            | 2       | 0.02                 | 3                             | 0.03 |  |
| 6  | ERA 6                                         | 4              | 0.04            | 2       | 0.02                 | 3                             | 0.03 |  |
| 10 | Ledyard Bay Spectacled Eider Critical Habitat | 8              | 0.08            | 4       | 0.04                 | 6                             | 0.06 |  |
| 14 | Cape Thompson Seabird Colony Area             | 1              | 0.01            | 1       | 0.01                 | 1                             | 0.01 |  |
| 15 | Cape Lisburne Seabird Colony Area             | 4              | 0.04            | 2       | 0.02                 | 3                             | 0.03 |  |
| 18 | ERA 18                                        | 3              | 0.03            | 1       | 0.01                 | 2                             | 0.02 |  |
| 20 | Chukchi Spring Lead 2                         | 2              | 0.02            | 1       | 0.01                 | 1                             | 0.01 |  |
| 21 | Chukchi Spring Lead 3                         | 2              | 0.02            | 1       | 0.01                 | 2                             | 0.02 |  |
| 22 | Chukchi Spring Lead 4                         | 2              | 0.02            | 1       | 0.01                 | 2                             | 0.02 |  |
| 35 | ERA 35                                        | 3              | 0.03            | 2       | 0.02                 | 3                             | 0.03 |  |
| 36 | ERA 36                                        | 5              | 0.05            | 3       | 0.03                 | 5                             | 0.05 |  |
| 38 | Point Hope Subsistence Area                   | 1              | 0.01            | 1       | 0.01                 | 1                             | 0.01 |  |
| 39 | Point Lay Subsistence Area                    | 6              | 0.07            | 4       | 0.04                 | 5                             | 0.05 |  |
| 40 | Wainwright Subsistence Area                   | 6              | 0.06            | 4       | 0.04                 | 5                             | 0.05 |  |
| 45 | ERA 45                                        | 3              | 0.03            | 1       | 0.01                 | 2                             | 0.02 |  |
| 46 | Herald Shoal Polynya                          | 2              | 0.02            | 1       | 0.01                 | 1                             | 0.01 |  |
| 47 | Ice/Sea Segment 10                            | 4              | 0.04            | 3       | 0.03                 | 3                             | 0.04 |  |
| 48 | Ice/Sea Segment 11                            | 8              | 0.09            | 7       | 0.07                 | 8                             | 0.08 |  |
| 49 | Hanna's Shoal Polynya                         | 6              | 0.06            | 4       | 0.05                 | 5                             | 0.05 |  |
| 50 | Ice/Sea Segment 12                            | 4              | 0.04            | 3       | 0.03                 | 4                             | 0.04 |  |
| 51 | Ice/Sea Segment 13                            | 3              | 0.03            | 2       | 0.02                 | 2                             | 0.03 |  |
| 52 | Ice/Sea Segment 14                            | 1              | 0.01            | -       | 0.00                 | 1                             | 0.01 |  |
| 56 | ERA 56                                        | 3              | 0.03            | 2       | 0.02                 | 2                             | 0.03 |  |
| 64 | Peard Bay                                     | 1              | 0.01            | 1       | 0.01                 | 1                             | 0.01 |  |

Table A.2-77 Combined Probabilities (Expressed as Percent Chance) of One or More Large Spills Greater than or Equal to 1,000 Barrels, and the Estimated Number of Spills (Mean), Occurring and Contacting a Certain Environmental Resource over the assumed Production Life of the Lease Area Within 180 Days, Chukchi Sale 193

| ID | Environmental Resource Area Name              | Altern<br>Prop | ative I<br>osal |         | ative III<br>ridor I |         | ative IV<br>idor II |
|----|-----------------------------------------------|----------------|-----------------|---------|----------------------|---------|---------------------|
|    |                                               | Percent        | Mean            | Percent | Mean                 | Percent | Mean                |
|    | Land                                          | 13             | 0.14            | 7       | 0.07                 | 10      | 0.11                |
| 1  | Kasegaluk Lagoon                              | 4              | 0.04            | 2       | 0.02                 | 3       | 0.03                |
| 6  | ERA 6                                         | 5              | 0.06            | 4       | 0.04                 | 5       | 0.05                |
| 10 | Ledyard Bay Spectacled Eider Critical Habitat | 8              | 0.09            | 5       | 0.05                 | 7       | 0.07                |
| 14 | Cape Thompson Seabird Colony Area             | 1              | 0.02            | 1       | 0.01                 | 1       | 0.01                |
| 15 | Cape Lisburne Seabird Colony Area             | 4              | 0.04            | 2       | 0.02                 | 3       | 0.03                |
| 16 | ERA 16                                        | 1              | 0.01            | 1       | 0.01                 | 2       | 0.02                |
| 18 | ERA 18                                        | 3              | 0.03            | 1       | 0.01                 | 1       | 0.01                |
| 20 | Chukchi Spring Lead 2                         | 2              | 0.02            | 1       | 0.01                 | 2       | 0.02                |
| 21 | Chukchi Spring Lead 3                         | 2              | 0.02            | 2       | 0.02                 | 2       | 0.02                |
| 22 | Chukchi Spring Lead 4                         | 3              | 0.03            | 1       | 0.01                 | 2       | 0.02                |
| 23 | Chukchi Spring Lead 5                         | 1              | 0.01            | -       | 0.00                 | 1       | 0.01                |
| 35 | ERA 35                                        | 4              | 0.04            | 3       | 0.03                 | 4       | 0.04                |
| 36 | ERA 36                                        | 6              | 0.06            | 4       | 0.04                 | 5       | 0.05                |
| 38 | Point Hope Subsistence Area                   | 1              | 0.01            | 1       | 0.01                 | 1       | 0.01                |
| 39 | Point Lay Subsistence Area                    | 7              | 0.08            | 4       | 0.04                 | 6       | 0.06                |
| 40 | Wainwright Subsistence Area                   | 7              | 0.08            | 5       | 0.05                 | 6       | 0.07                |
| 45 | ERA 45                                        | 3              | 0.03            | 1       | 0.01                 | 2       | 0.02                |
| 46 | Herald Shoal Polynya                          | 2              | 0.02            | 1       | 0.01                 | 2       | 0.02                |
| 47 | Ice/Sea Segment 10                            | 4              | 0.04            | 3       | 0.03                 | 4       | 0.04                |
| 48 | Ice/Sea Segment 11                            | 10             | 0.11            | 8       | 0.08                 | 10      | 0.10                |
| 49 | Hanna's Shoal Polynya                         | 8              | 0.09            | 6       | 0.07                 | 8       | 0.08                |
| 50 | Ice/Sea Segment 12                            | 5              | 0.05            | 4       | 0.04                 | 5       | 0.05                |
| 51 | Ice/Sea Segment 13                            | 4              | 0.04            | 3       | 0.03                 | 4       | 0.04                |
| 52 | Ice/Sea Segment 14                            | 1              | 0.01            | 1       | 0.01                 | 1       | 0.01                |
| 56 | ERA 56                                        | 4              | 0.04            | 3       | 0.03                 | 4       | 0.04                |
| 64 | Peard Bay                                     | 2              | 0.02            | 1       | 0.01                 | 2       | 0.02                |
| 70 | ERA 70                                        | 1              | 0.01            | -       | 0.00                 | 1       | 0.01                |

Table A.2-78 Combined Probabilities (Expressed as Percent Chance) of One or More Large Spills Greater than or Equal to 1,000 Barrels, and the Estimated Number of Spills (Mean), Occurring and Contacting a Certain Environmental Resource over the assumed Production Life of the Lease Area Within 360 Days, Chukchi Sale 193

| ID | Environmental Resource Area Name              | Altern<br>Prop | ative I<br>osal |         | ative III<br>ridor I | Alternative IV<br>Corridor II |      |  |
|----|-----------------------------------------------|----------------|-----------------|---------|----------------------|-------------------------------|------|--|
|    |                                               | Percent        | Mean            | Percent | Mean                 | Percent                       | Mean |  |
|    | Land                                          | 14             | 0.15            | 8       | 0.08                 | 11                            | 0.12 |  |
| 1  | Kasegaluk Lagoon                              | 4              | 0.04            | 2       | 0.02                 | 3                             | 0.03 |  |
|    | Barrow Plover Islands                         | 1              | 0.01            | 1       | 0.01                 | 1                             | 0.01 |  |
| 6  | ERA 6                                         | 6              | 0.06            | 4       | 0.04                 | 5                             | 0.05 |  |
| 10 | Ledyard Bay Spectacled Eider Critical Habitat | 8              | 0.09            | 5       | 0.05                 | 7                             | 0.07 |  |
| 14 | Cape Thompson Seabird Colony Area             | 1              | 0.02            | 1       | 0.01                 | 1                             | 0.01 |  |
| 15 | Cape Lisburne Seabird Colony Area             | 4              | 0.04            | 2       | 0.02                 | 3                             | 0.03 |  |
| 16 | ERA 16                                        | 1              | 0.01            | -       | 0.00                 | 1                             | 0.01 |  |
| 18 | ERA 18                                        | 3              | 0.03            | 1       | 0.01                 | 2                             | 0.02 |  |
| 20 | Chukchi Spring Lead 2                         | 2              | 0.02            | 1       | 0.01                 | 1                             | 0.01 |  |
| 21 | Chukchi Spring Lead 3                         | 2              | 0.02            | 1       | 0.01                 | 2                             | 0.02 |  |
| 22 | Chukchi Spring Lead 4                         | 3              | 0.03            | 2       | 0.02                 | 2                             | 0.02 |  |
| 23 | Chukchi Spring Lead 5                         | 1              | 0.01            | -       | 0.00                 | 1                             | 0.01 |  |
| 35 | ERA 35                                        | 4              | 0.04            | 3       | 0.03                 | 4                             | 0    |  |
| 36 | ERA 36                                        | 6              | 0.06            | 4       | 0.04                 | 5                             | 0.05 |  |
| 38 | Point Hope Subsistence Area                   | 1              | 0.01            | 1       | 0.01                 | 1                             | 0.01 |  |
| 39 | Point Lay Subsistence Area                    | 7              | 0.08            | 4       | 0.04                 | 6                             | 0.06 |  |
| 40 | Wainwright Subsistence Area                   | 8              | 0.08            | 5       | 0.05                 | 6                             | 0.07 |  |
| 42 | Barrow Subsistence Area 2                     | 1              | 0.01            | 1       | 0.01                 | 1                             | 0.01 |  |
| 45 | ERA 45                                        | 3              | 0.03            | 1       | 0.01                 | 2                             | 0.02 |  |
| 46 | Herald Shoal Polynya                          | 2              | 0.02            | 1       | 0.01                 | 2                             | 0.02 |  |
| 47 | Ice/Sea Segment 10                            | 4              | 0.05            | 3       | 0.03                 | 4                             | 0.04 |  |
| 48 | Ice/Sea Segment 11                            | 10             | 0.11            | 8       | 0.08                 | 10                            | 0.1  |  |
| 49 | Hanna's Shoal Polynya                         | 9              | 0.09            | 7       | 0.07                 | 8                             | 0.08 |  |
| 50 | Ice/Sea Segment 12                            | 5              | 0.06            | 4       | 0.04                 | 5                             | 0.05 |  |
| 51 | Ice/Sea Segment 13                            | 4              | 0.05            | 3       | 0.03                 | 4                             | 0.04 |  |
| 52 | Ice/Sea Segment 14                            | 2              | 0.02            | 1       | 0.01                 | 1                             | 0.01 |  |
| 56 | ERA 56                                        | 4              | 0.04            | 3       | 0.03                 | 4                             | 0.04 |  |
| 64 | Peard Bay                                     | 2              | 0.02            | 1       | 0.01                 | 2                             | 0.02 |  |
| 70 | ERA 70                                        | 1              | 0.01            | 1       | 0.00                 | 1                             | 0.01 |  |

Table A.2-79 Combined Probabilities (Expressed as Percent Chance) of One or More Large Spills Greater than or Equal to 1,000 Barrels, and the Estimated Number of Spills (Mean), Occurring and Contacting a Certain Land Segment over the Assumed Production Life of the Lease Area Within 3 Days, Chukchi Sale 193

| ID | Land Segment Name | Altern<br>Prop | ative I<br>losal | Alterna<br>Corr | ative III<br>idor I | Alternative IV<br>Corridor II |      |  |
|----|-------------------|----------------|------------------|-----------------|---------------------|-------------------------------|------|--|
|    |                   | Percent        | Mean             | Percent         | Mean                | Percent                       | Mean |  |
|    |                   |                |                  |                 |                     |                               |      |  |

Notes- All land segments have all values less than 0.5%; therefore the data are not shown and the tables are left blank.

Table A.2-80 Combined Probabilities (Expressed as Percent Chance) of One or More Large Spills Greater than or Equal to 1,000 Barrels, and the Estimated Number of Spills (Mean), Occurring and Contacting a Certain Land Segment over the Assumed Production Life of the Lease Area Within 10 Days, Chukchi Sale 193

| ID | Land Segment Name            | Altern<br>Prop | ative I<br>losal | Alterna<br>Corri | ative III<br>idor I | Alternative IV<br>Corridor II |      |  |
|----|------------------------------|----------------|------------------|------------------|---------------------|-------------------------------|------|--|
|    |                              | Percent        | Mean             | Percent          | Mean                | Percent                       | Mean |  |
| 73 | Tungaich Point, Tungak Creek | 1              | 0.01             | -                | 0.00                | -                             | 0.00 |  |

Notes- \*\* = Greater than 99.5 percent; - = less than 0.5 percent. Rows with all values less than 0.5 percent are not shown.

Table A.2-81Combined Probabilities (Expressed as Percent Chance) of One or More Large Spills Greaterthan or Equal to 1,000 Barrels, and the Estimated Number of Spills (Mean), Occurring and Contacting aCertain Land Segment over the Assumed Production Life of the Lease Area Within 30 Days, Chukchi Sale 193

| ID | Land Segment Name              |         | Alternative I<br>Proposal |         | ative III<br>idor I | Alternative IV<br>Corridor II |      |  |
|----|--------------------------------|---------|---------------------------|---------|---------------------|-------------------------------|------|--|
|    |                                | Percent | Mean                      | Percent | Mean                | Percent                       | Mean |  |
| 72 | Point Lay, Siksrikpak Point    | 1       | 0.01                      | -       | 0.00                | 1                             | 0.01 |  |
| 73 | Tungaich Point, Tungak Creek   | 1       | 0.01                      | 1       | 0.01                | 1                             | 0.01 |  |
| 74 | Kasegaluk Lagoon, Solivik Isl. | 1       | 0.01                      | -       | 0.00                | 1                             | 0.01 |  |
| 75 | Akeonik, Icy Cape              | 1       | 0.01                      | -       | 0.00                | -                             | 0.00 |  |

Notes- \*\* = Greater than 99.5 percent; - = less than 0.5 percent. Rows with all values less than 0.5 percent are not shown.

Table A.2-82Combined Probabilities (Expressed as Percent Chance) of One or More Large Spills Greaterthan or Equal to 1,000 Barrels, and the Estimated Number of Spills (Mean), Occurring and Contacting aCertain Land Segment over the Assumed Production Life of the Lease Area Within 60 Days, Chukchi Sale 193

| ID | Land Segment Name              | Alternative I<br>Proposal |      | Alternative III<br>Corridor I |      | Alternative IV<br>Corridor II |      |
|----|--------------------------------|---------------------------|------|-------------------------------|------|-------------------------------|------|
|    |                                | Percent                   | Mean | Percent                       | Mean | Percent                       | Mean |
| 71 | Kukpowruk River, Sitkok Point  | 1                         | 0.01 | -                             | 0.00 | -                             | 0.00 |
| 72 | Point Lay, Siksrikpak Point    | 1                         | 0.01 | 1                             | 0.01 | 1                             | 0.01 |
| 73 | Tungaich Point, Tungak Creek   | 1                         | 0.01 | 1                             | 0.01 | 1                             | 0.01 |
| 74 | Kasegaluk Lagoon, Solivik Isl. | 1                         | 0.01 | -                             | 0.00 | 1                             | 0.01 |
| 75 | Akeonik, Icy Cape              | 1                         | 0.01 | -                             | 0.00 | -                             | 0.00 |

Table A.2-83 Combined Probabilities (Expressed as Percent Chance) of One or More Large Spills Greater than or Equal to 1,000 Barrels, and the Estimated Number of Spills (Mean), Occurring and Contacting a Certain Land Segment over the Assumed Production Life of the Lease Area Within 180 Days, Chukchi Sale 193

| ID | Land Segment Name              |         | ative I<br>losal | Alterna<br>Corri | ative III<br>dor I | Alternative IV<br>Corridor II |      |  |
|----|--------------------------------|---------|------------------|------------------|--------------------|-------------------------------|------|--|
|    |                                | Percent | Mean             | Percent          | Mean               | Percent                       | Mean |  |
| 65 | Buckland, Cape Lisburne        | 1       | 0.01             | -                | 0.00               | -                             | 0.00 |  |
| 71 | Kukpowruk River, Sitkok Point  | 1       | 0.01             | -                | 0.00               | -                             | 0.00 |  |
| 72 | Point Lay, Siksrikpak Point    | 1       | 0.01             | 1                | 0.01               | 1                             | 0.01 |  |
| 73 | Tungaich Point, Tungak Creek   | 1       | 0.01             | 1                | 0.01               | 1                             | 0.01 |  |
| 74 | Kasegaluk Lagoon, Solivik Isl. | 1       | 0.01             | 1                | 0.01               | 1                             | 0.01 |  |
| 75 | Akeonik, Icy Cape              | 1       | 0.01             | 1                | 0.01               | 1                             | 0.01 |  |
| 78 | Point Collie, Sigeakruk Point  | 1       | 0.01             | -                | 0.00               | 1                             | 0.01 |  |
| 79 | Point Belcher, Wainwright      | 1       | 0.01             | 1                | 0.01               | 1                             | 0.01 |  |
| 80 | Eluksingiak Point, Kugrua Bay  | 1       | 0.01             | -                | 0.00               | 1                             | 0.01 |  |

Notes- \*\* = Greater than 99.5 percent; - = less than 0.5 percent. Rows with all values less than 0.5 percent are not shown.

Table A.2-84 Combined Probabilities (Expressed as Percent Chance) of One or More Large Spills Greater than or Equal to 1,000 Barrels, and the Estimated Number of Spills (Mean), Occurring and Contacting a Certain Land Segment over the Assumed Production Life of the Lease Area Within 360 Days, Chukchi Sale 193

| ID | Land Segment Name              |         | ative I<br>oosal |         | ative III<br>idor I | Alternative IV<br>Corridor II |      |  |
|----|--------------------------------|---------|------------------|---------|---------------------|-------------------------------|------|--|
|    |                                | Percent | Mean             | Percent | Mean                | Percent                       | Mean |  |
| 65 | Buckland, Cape Lisburne        | 1       | 0.01             | -       | 0.00                | -                             | 0.00 |  |
| 71 | Kukpowruk River, Sitkok Point  | 1       | 0.01             | -       | 0.00                | -                             | 0.00 |  |
| 72 | Point Lay, Siksrikpak Point    | 1       | 0.01             | 1       | 0.01                | 1                             | 0.01 |  |
| 73 | Tungaich Point, Tungak Creek   | 1       | 0.01             | 1       | 0.01                | 1                             | 0.01 |  |
| 74 | Kasegaluk Lagoon, Solivik Isl. | 1       | 0.01             | 1       | 0.01                | 1                             | 0.01 |  |
| 75 | Akeonik, Icy Cape              | 1       | 0.01             | 1       | 0.01                | 1                             | 0.01 |  |
| 78 | Point Collie, Sigeakruk Point  | 1       | 0.01             | -       | 0.00                | 1                             | 0.01 |  |
| 79 | Point Belcher, Wainwright      | 1       | 0.01             | 1       | 0.01                | 1                             | 0.01 |  |
| 80 | Eluksingiak Point, Kugrua Bay  | 1       | 0.01             | -       | 0                   | 1                             | 0.01 |  |

Notes- \*\* = Greater than 99.5 percent; - = less than 0.5 percent. Rows with all values less than 0.5 percent are not shown.

Table A.2-85 Combined Probabilities (Expressed as Percent Chance) of One or More Large Spills Greater than or Equal to 1,000 Barrels, and the Estimated Number of Spills (Mean), Occurring and Contacting a Certain Group of Land Segments over the Assumed Production Life of the Lease Area Within 3 Days, Chukchi Sale 193

| ID | Land Segment Name           | Altern<br>Prop | ative I<br>losal |         | ative III<br>idor I | Alternative IV<br>Corridor II |      |  |
|----|-----------------------------|----------------|------------------|---------|---------------------|-------------------------------|------|--|
|    |                             | Percent        | Mean             | Percent | Mean                | Percent                       | Mean |  |
| 96 | United States Chukchi Coast | 1              | 0.01             | -       | -                   | 1                             | 0.01 |  |

Notes- \*\* = Greater than 99.5 percent; - = less than 0.5 percent. Rows with all values less than 0.5 percent are not shown.

Table A.2-86 Combined Probabilities (Expressed as Percent Chance) of One or More Large Spills Greater than or Equal to 1,000 Barrels, and the Estimated Number of Spills (Mean), Occurring and Contacting a Certain Group of Land Segments over the Assumed Production Life of the Lease Area Within 10 Days, Chukchi Sale 193

| ID | Land Segment Name           | Altern<br>Prop | ative I<br>losal |         | ative III<br>idor I | Alternative IV<br>Corridor II |      |  |
|----|-----------------------------|----------------|------------------|---------|---------------------|-------------------------------|------|--|
|    |                             | Percent        | Mean             | Percent | Mean                | Percent                       | Mean |  |
| 96 | United States Chukchi Coast | 2              | 0.02             | 1       | 0.01                | 2                             | 0.02 |  |

Table A.2-87 Combined Probabilities (Expressed as Percent Chance) of One or More Large Spills Greater than or Equal to 1,000 Barrels, and the Estimated Number of Spills (Mean), Occurring and Contacting a Certain Group of Land Segments over the Assumed Production Life of the Lease Area Within 30 Days, Chukchi Sale 193

| ID | Land Segment Name                 | Altern<br>Prop | ative I<br>osal |         | ative III<br>idor I | Alternative IV<br>Corridor II |      |  |
|----|-----------------------------------|----------------|-----------------|---------|---------------------|-------------------------------|------|--|
|    |                                   | Percent        | Mean            | Percent | Mean                | Percent                       | Mean |  |
| 89 | National Petroleum Reserve Alaska | 1              | 0.01            | -       | -                   | 1                             | 0.01 |  |
| 95 | Russia Chukchi Coast              | 1              | 0.01            | -       | -                   | -                             | -    |  |
| 96 | United States Chukchi Coast       | 6              | 0.06            | 3       | 0.03                | 5                             | 0.05 |  |

Notes- \*\* = Greater than 99.5 percent; - = less than 0.5 percent. Rows with all values less than 0.5 percent are not shown.

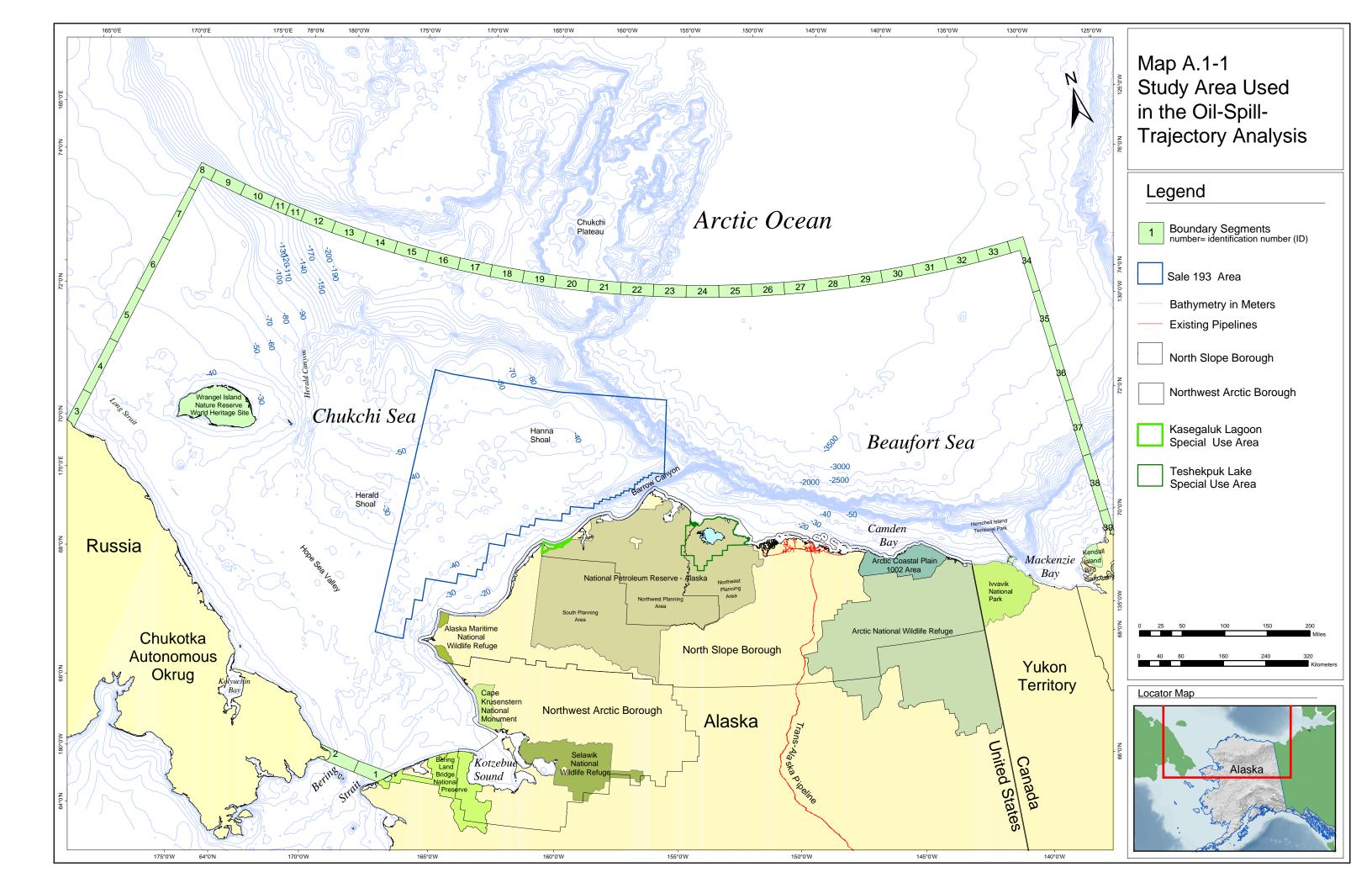
Table A.2-88 Combined Probabilities (Expressed as Percent Chance) of One or More Large Spills Greater than or Equal to 1,000 Barrels, and the Estimated Number of Spills (Mean), Occurring and Contacting a Certain Group of Land Segments over the Assumed Production Life of the Lease Area Within 60 Days, Chukchi Sale 193

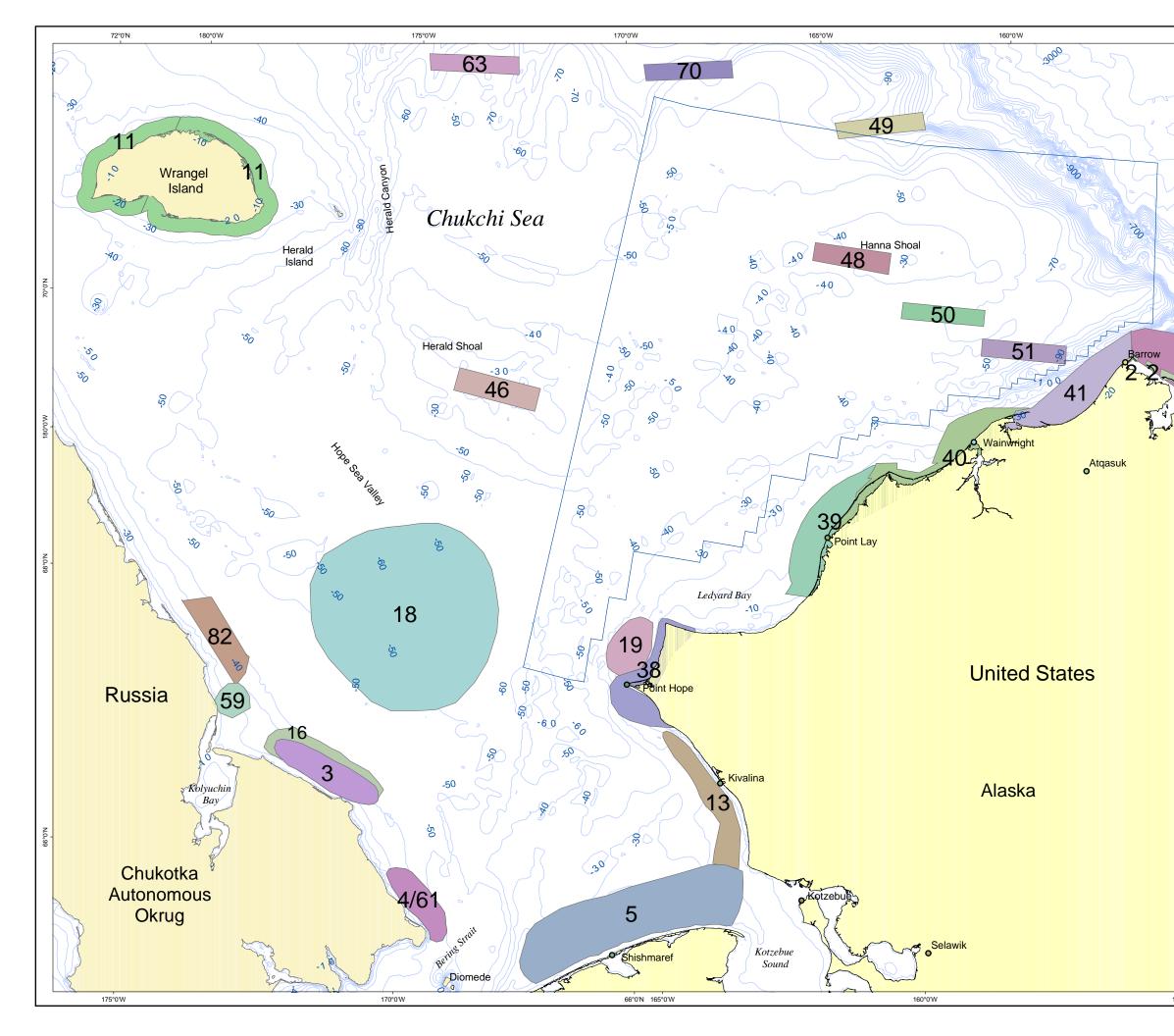
| ID | Land Segment Name                 | Altern<br>Prop |      |         | ative III<br>idor I | Alternative IV<br>Corridor II |      |
|----|-----------------------------------|----------------|------|---------|---------------------|-------------------------------|------|
|    |                                   | Percent        | Mean | Percent | Mean                | Percent                       | Mean |
| 89 | National Petroleum Reserve Alaska | 1              | 0.01 | 1       | 0.01                | 1                             | 0.01 |
| 95 | Russia Chukchi Coast              | 1              | 0.01 | -       | -                   | 1                             | 0.01 |
| 96 | United States Chukchi Coast       | 8              | 0.08 | 4       | 0.04                | 6                             | 0.06 |

**Notes-** \*\* = Greater than 99.5 percent; - = less than 0.5 percent. Rows with all values less than 0.5 percent are not shown.

Table A.2-89 Combined Probabilities (Expressed as Percent Chance) of One or More Large Spills Greater than or Equal to 1,000 Barrels, and the Estimated Number of Spills (Mean), Occurring and Contacting a Certain Group of Land Segments over the Assumed Production Life of the Lease Area Within 180 Days, Chukchi Sale 193

| ID | Land Segment Name                 | Altern<br>Prop | ative I<br>losal |         | ative III<br>idor I | Alternative IV<br>Corridor II |      |  |
|----|-----------------------------------|----------------|------------------|---------|---------------------|-------------------------------|------|--|
|    |                                   | Percent        | Mean             | Percent | Mean                | Percent                       | Mean |  |
| 88 | Alaska Maritime NWR               | 1              | 0.01             | -       | -                   | -                             | -    |  |
| 89 | National Petroleum Reserve Alaska | 2              | 0.02             | 2       | 0.02                | 2                             | 0.02 |  |
| 95 | Russia Chukchi Coast              | 2              | 0.02             | 1       | 0.01                | 1                             | 0.01 |  |
| 96 | United States Chukchi Coast       | 11             | 0.11             | 6       | 0.06                | 9                             | 0.09 |  |
| 97 | United States Beaufort Coast      | 1              | 0.01             | -       | -                   | 1                             | 0.01 |  |

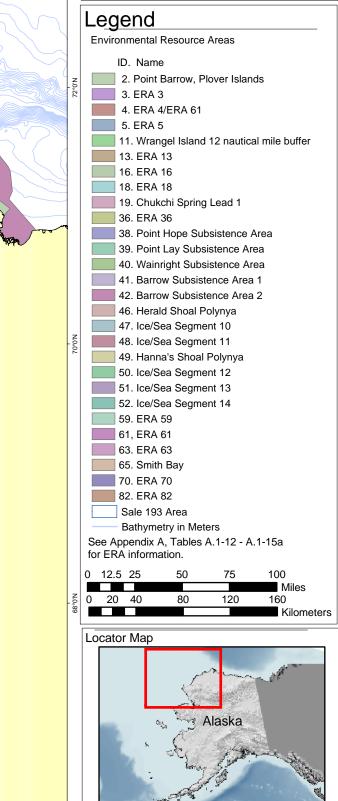

Notes- \*\* = Greater than 99.5 percent; - = less than 0.5 percent. Rows with all values less than 0.5 percent are not shown.


Table A.2-90 Combined Probabilities (Expressed as Percent Chance) of One or More Large Spills Greater than or Equal to 1,000 Barrels, and the Estimated Number of Spills (Mean), Occurring and Contacting a Certain Group of Land Segments over the Assumed Production Life of the Lease Area Within 360 Days, Chukchi Sale 193

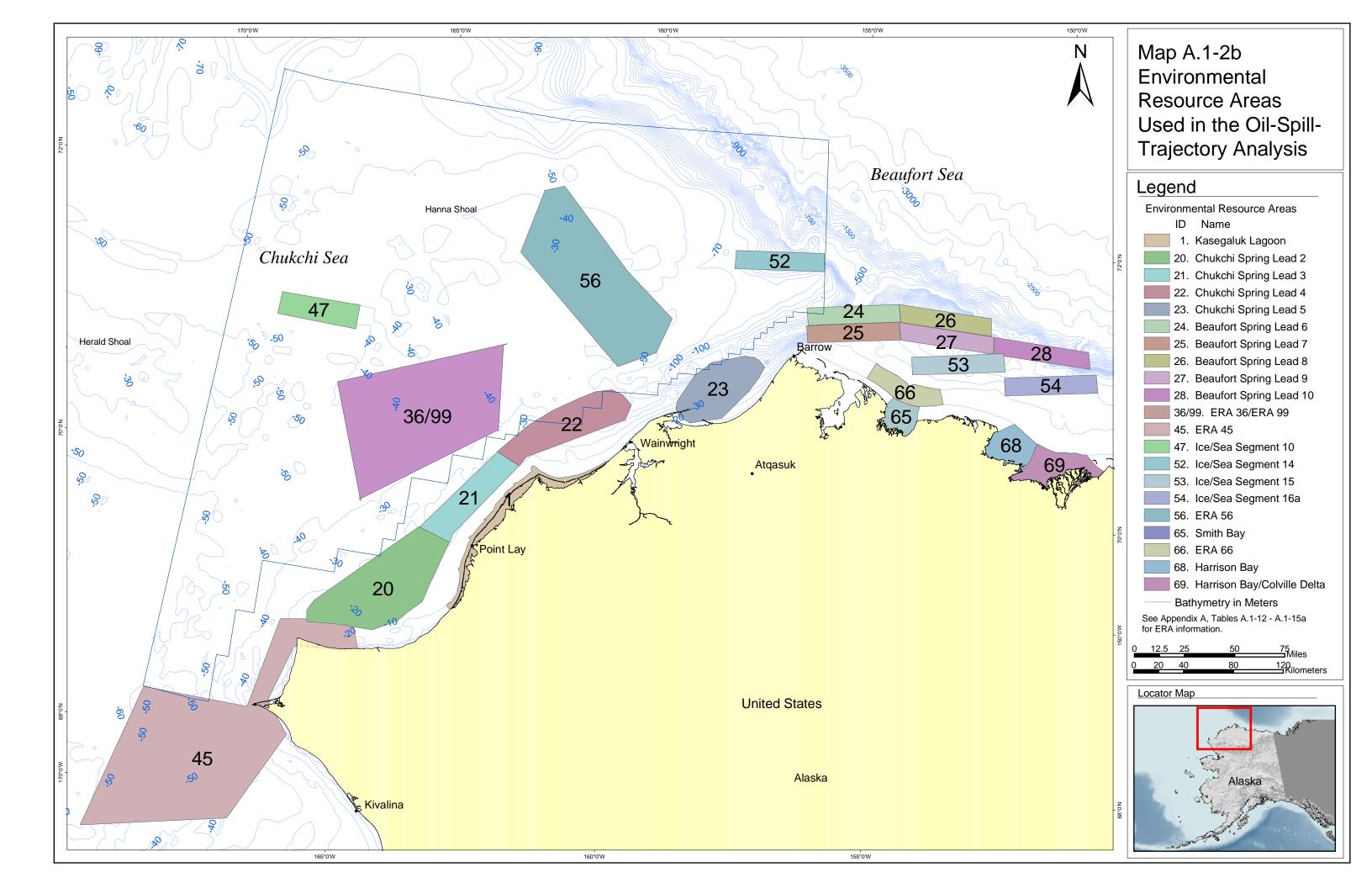
| ID | Land Segment Name                 | Alternative I<br>Proposal |      | Altern:<br>Corr | ative III<br>idor I | Alternative IV<br>Corridor II |      |  |
|----|-----------------------------------|---------------------------|------|-----------------|---------------------|-------------------------------|------|--|
|    |                                   | Percent                   | Mean | Percent         | Mean                | Percent                       | Mean |  |
| 88 | Alaska Maritime NWR               | 1                         | 0.01 | -               | 0.00                | -                             | 0.00 |  |
| 89 | National Petroleum Reserve Alaska | 3                         | 0.03 | 2               | 0.02                | 3                             | 0.03 |  |
| 95 | Russia Chukchi Coast              | 3                         | 0.03 | 1               | 0.01                | 2                             | 0.02 |  |
| 96 | United States Chukchi Coast       | 11                        | 0.11 | 6               | 0.06                | 9                             | 0.09 |  |
| 97 | United States Beaufort Sea Coast  | 1                         | 0.01 | 1               | 0.01                | 1                             | 0.01 |  |

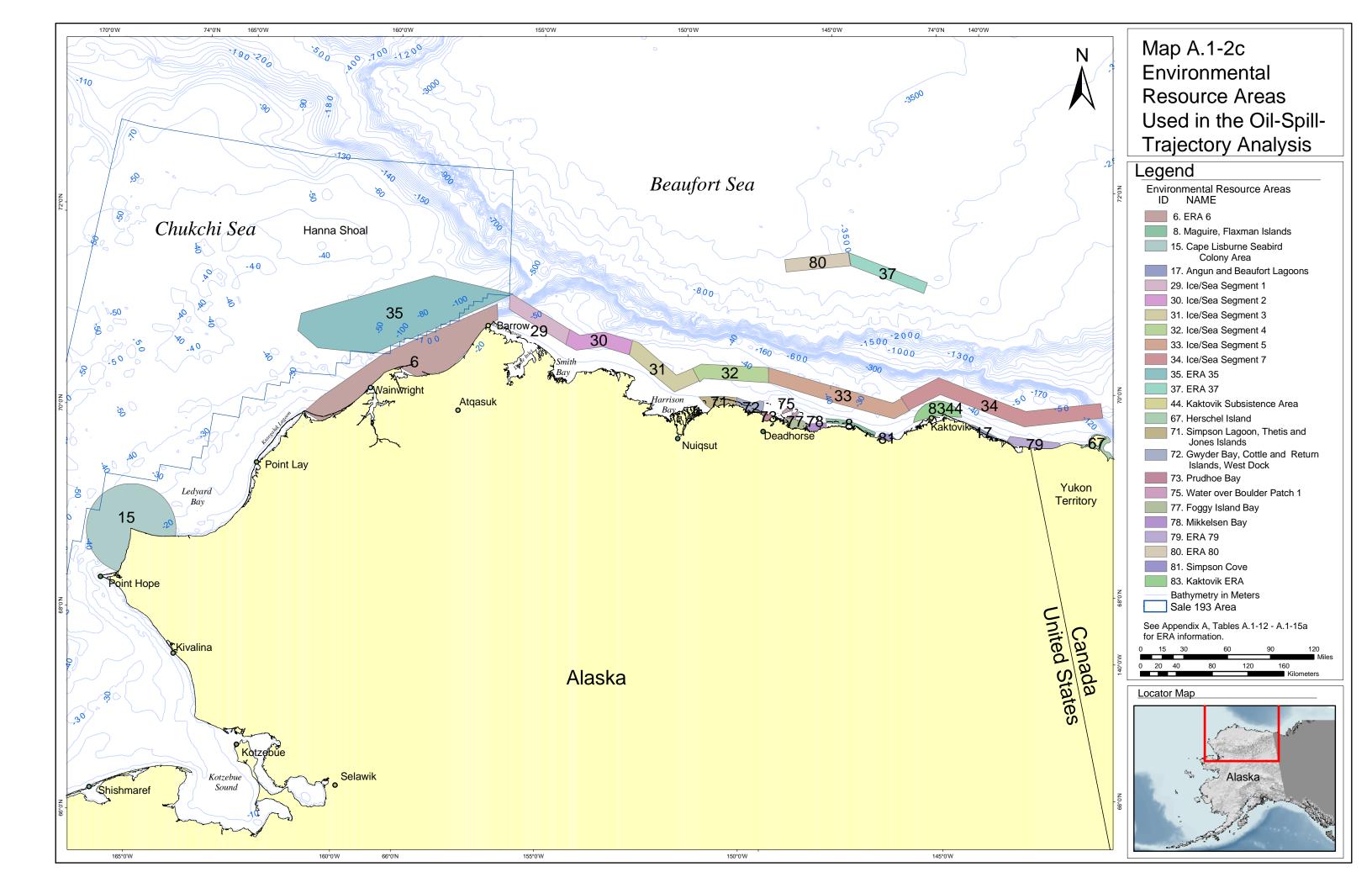
Table A.2-91Range of Annual Conditional Probabilities (Expressed as Percent Chance) that a Large Oil Spill Starting<br/>at a Particular Location Will Contact Russian Waters Within 3, 10, 30, 60, 180 and 360 Days, Chukchi Sale 193

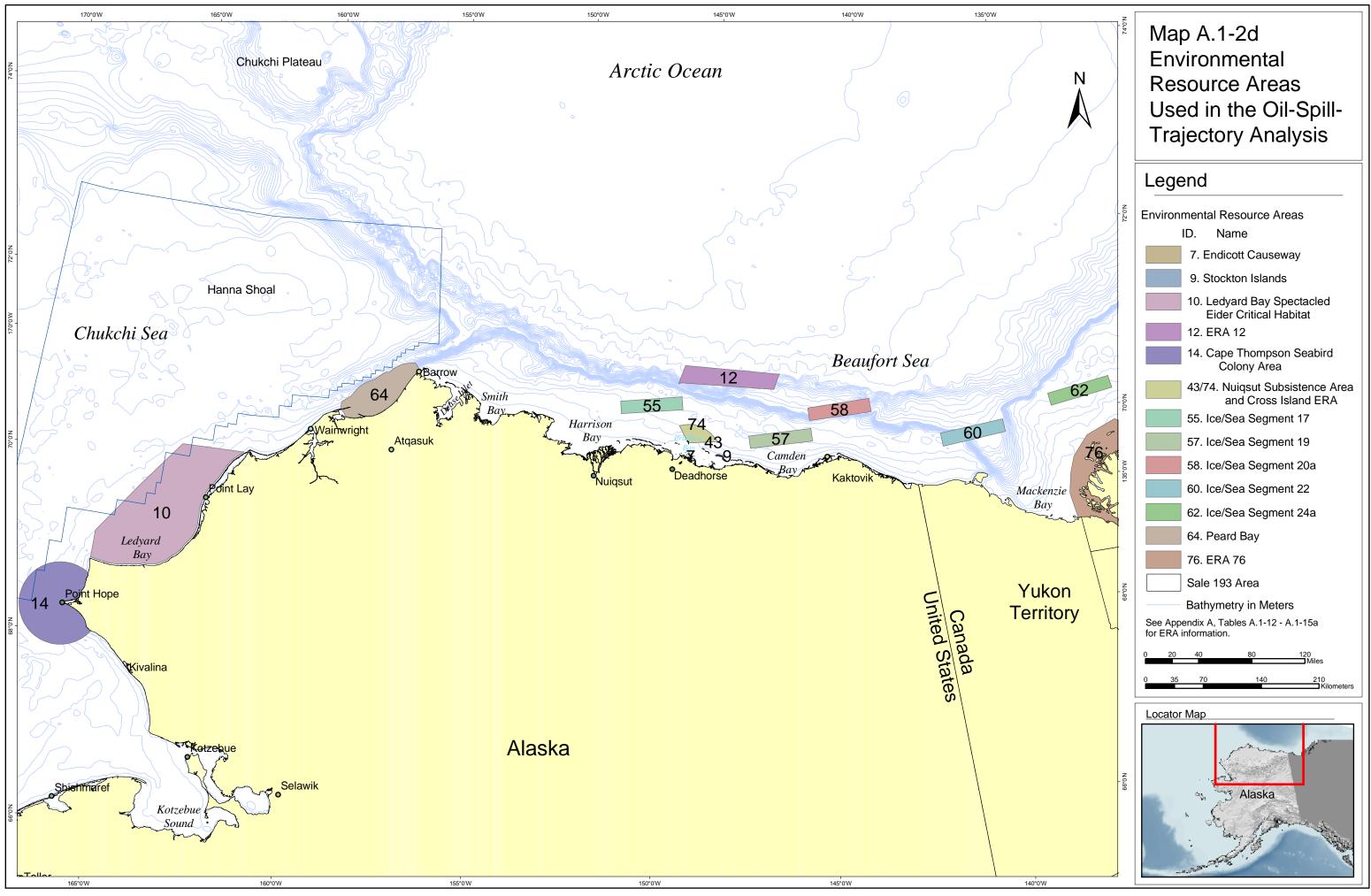
| Days | LA<br>1 | LA<br>2 | LA<br>3 | LA<br>4 | LA<br>5 | LA<br>6 | LA<br>7 | LA<br>8 | LA<br>9 | LA<br>10 | LA<br>11 | LA<br>12 | LA<br>13 |
|------|---------|---------|---------|---------|---------|---------|---------|---------|---------|----------|----------|----------|----------|
| 3    | <0.5-3  | <0.5-3  | <0.50   | <0.5-4  | <0.5-1  | <0.5    | <0.5    | <0.5    | <0.5-4  | <0.5     | <0.5     | <0.5     | <0.5-0   |
| 10   | <0.5-6  | <0.5-2  | <0.5-1  | <0.5-8  | <0.5-1  | <0.5-1  | <0.5-0  | <0.5-0  | <0.5-9  | <0.5-1   | <0.5     | <0.5     | <0.5     |
| 30   | <0.5-8  | <0.5-4  | <0.5-1  | <0.5-11 | <0.5-2  | <0.5-1  | <0.5-1  | <0.5-0  | <0.5-12 | <0.5-3   | <0.5-1   | <0.5-1   | <0.5     |
| 60   | <0.5-9  | <0.5-5  | <0.5-2  | <0.5-11 | <0.5-3  | <0.5-2  | <0.5-1  | <0.5-1  | <0.5-12 | <0.5-4   | <0.5-1   | <0.5-1   | <0.5-1   |
| 180  | <0.5-10 | <0.5-6  | <0.5-3  | <0.5-12 | <0.5-3  | <0.5-3  | <0.5-2  | <0.5-1  | <0.5-12 | <0.5-4   | <0.5-2   | <0.5-2   | <0.5-2   |
| 360  | <0.5-10 | <0.5-6  | <0.5-4  | <0.5-12 | <0.5-3  | <0.5-3  | <0.5-4  | <0.5-2  | <0.5-12 | <0.5-4   | <0.5-2   | <0.5-2   | <0.5-2   |

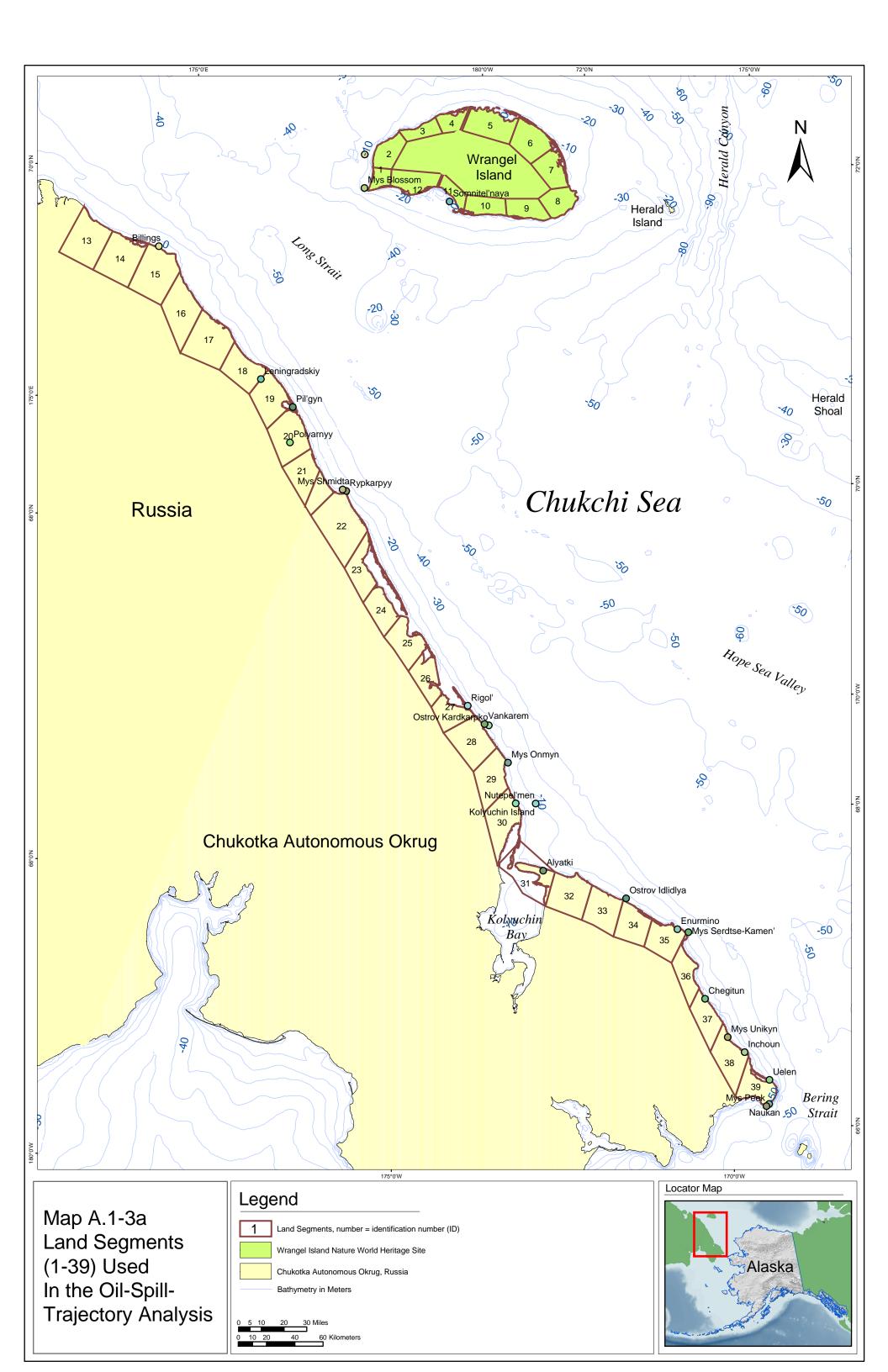


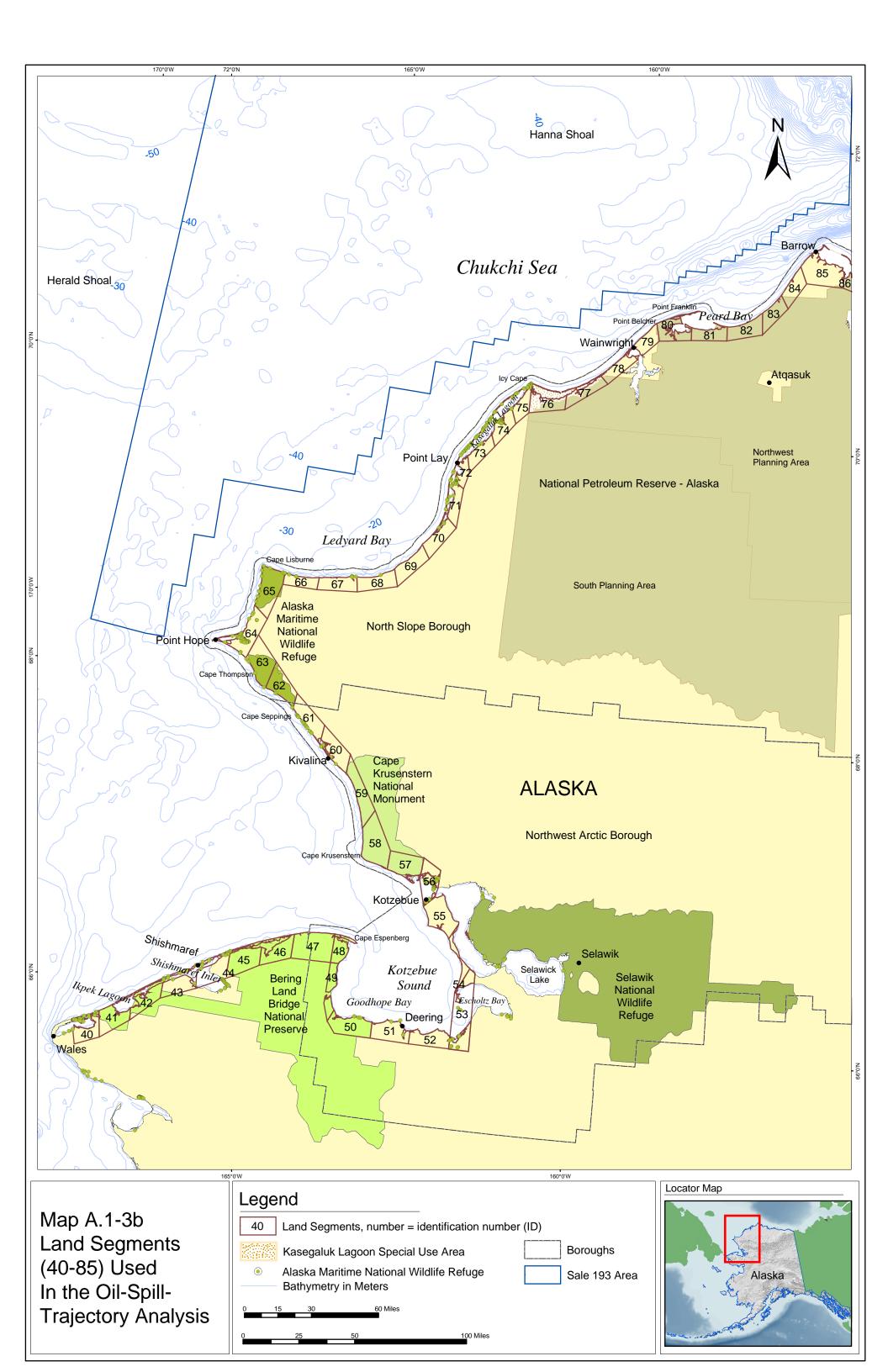


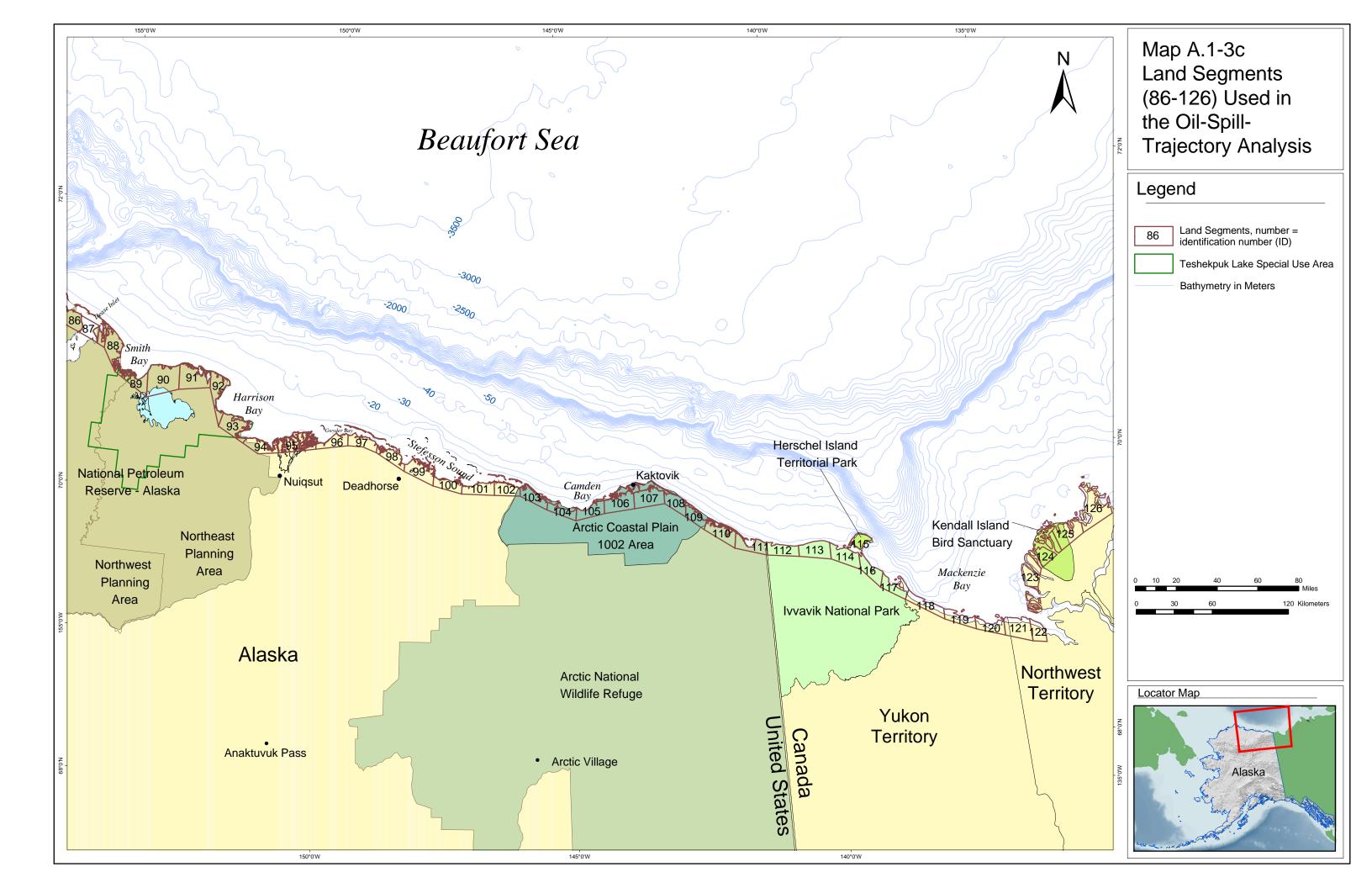


200

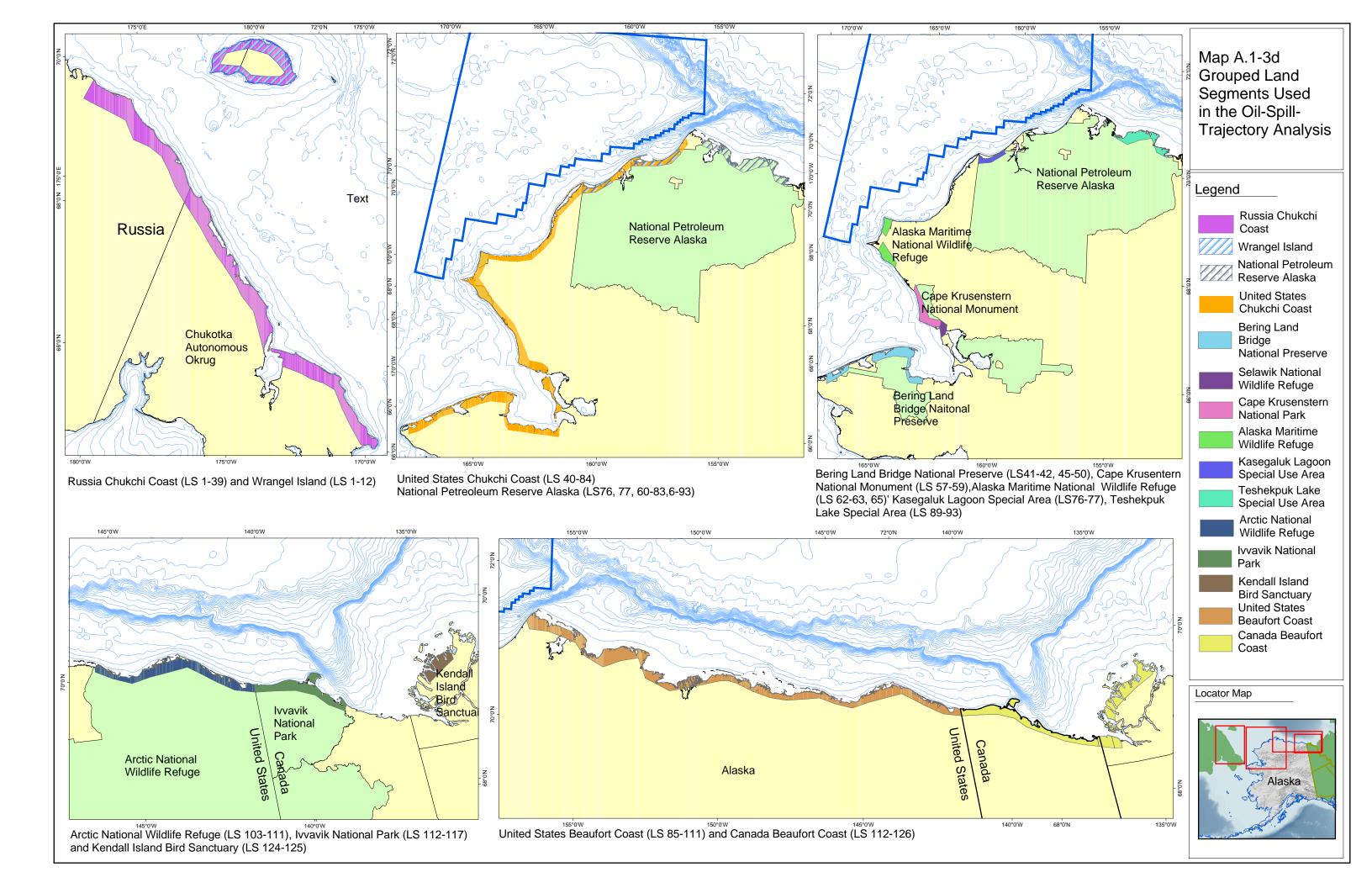

Ν

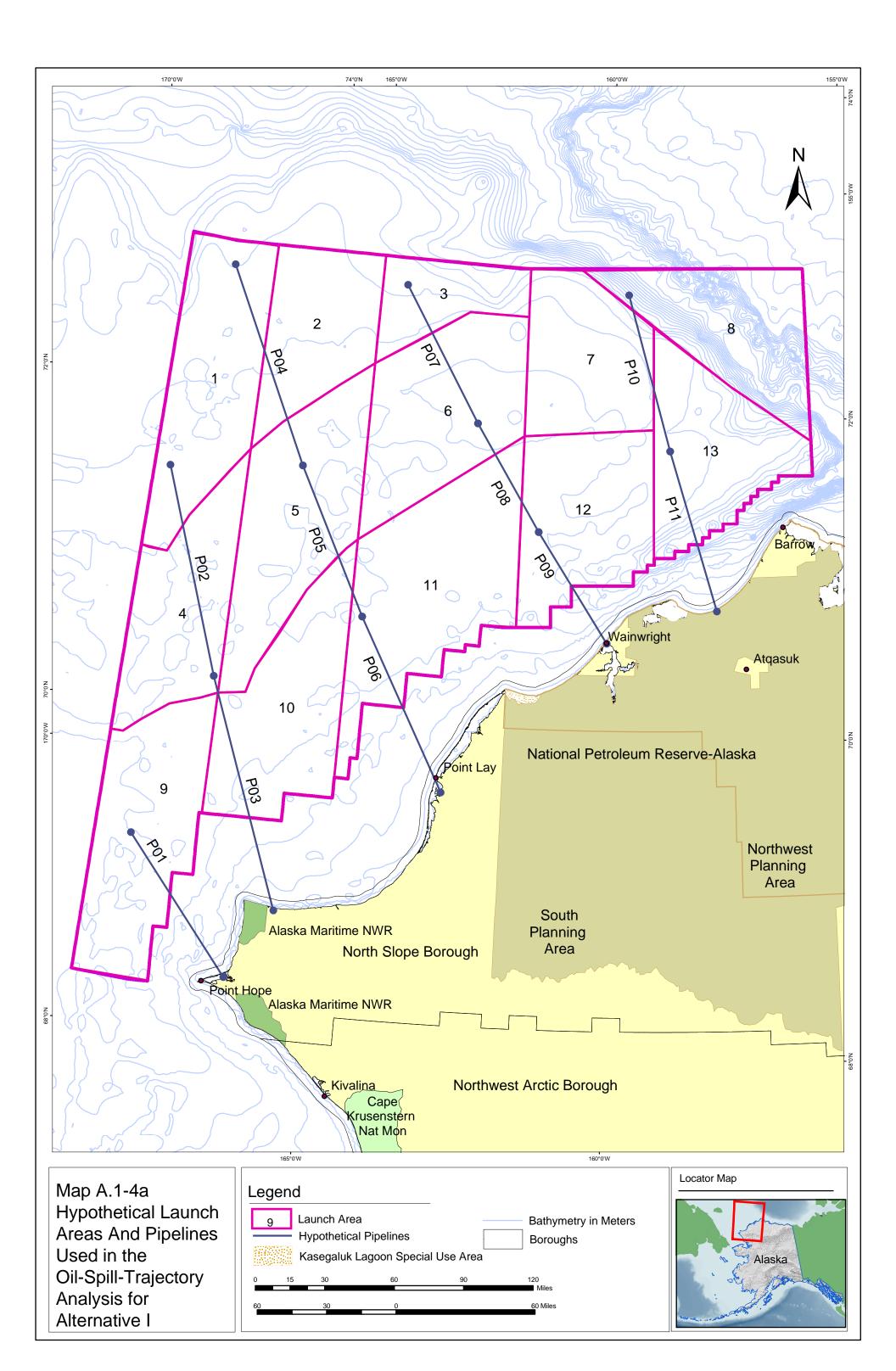

## Map A.1-2a Environmental Resource Areas Used in the Oil-Spill-Trajectory Analysis

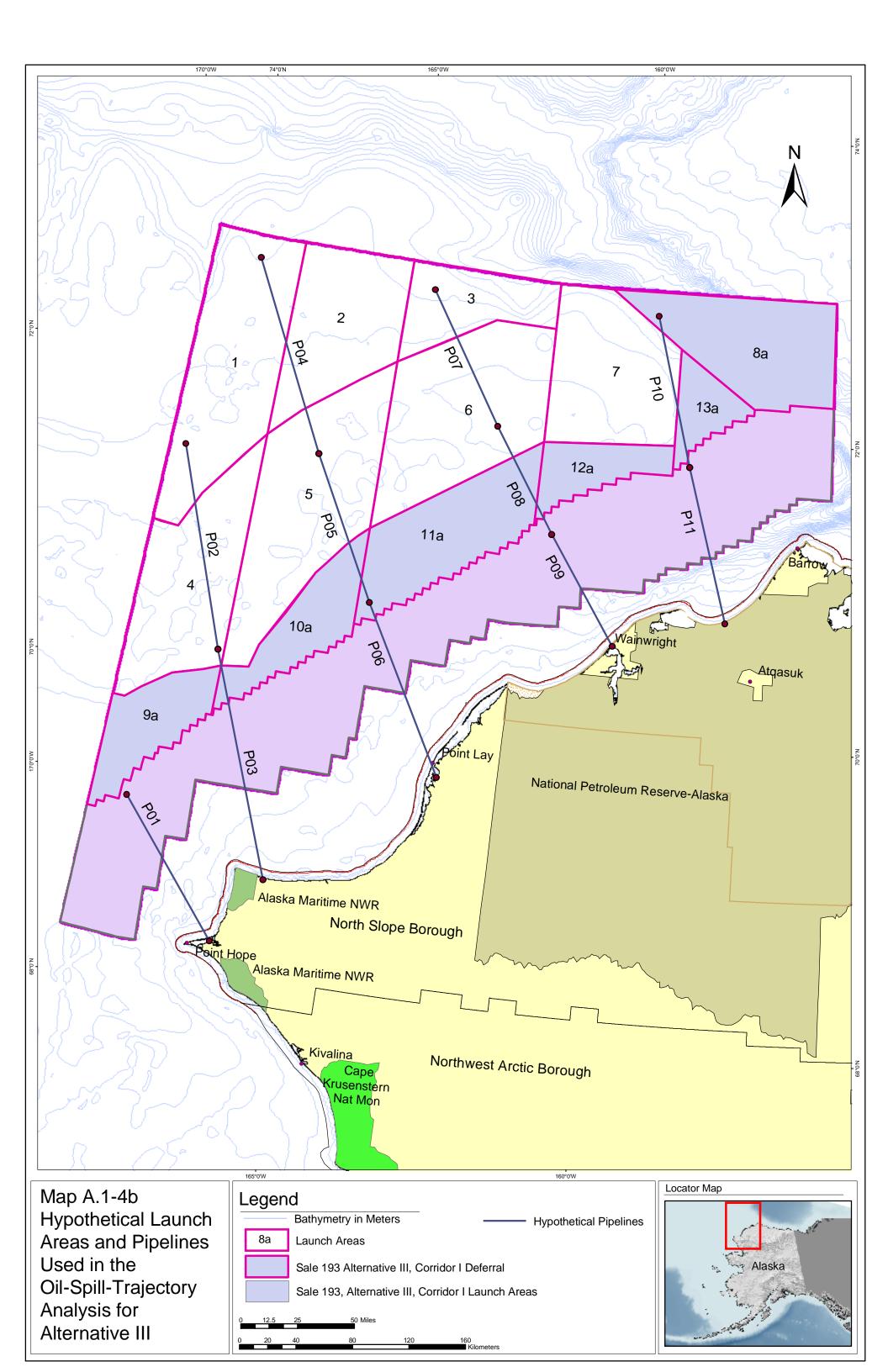


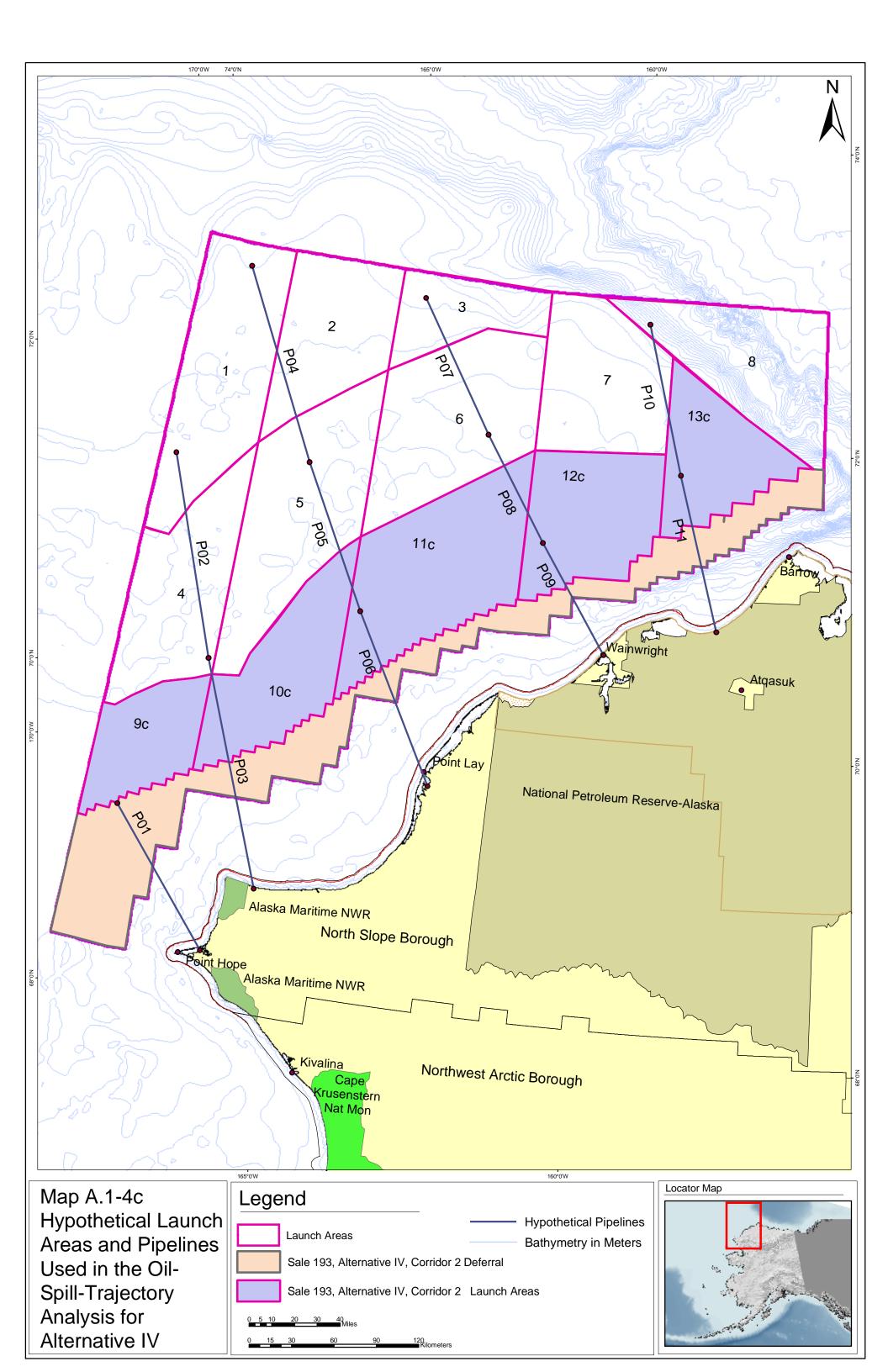


155°0'W














# **APPENDIX B**

NMFS Endangered Species Act, Section 7 Consultation And Coordination



# United States Department of the Interior

MINERALS MANAGEMENT SERVICE Alaska Outer Continental Shelf Region 3801 Centerpoint Drive, Suite 500 Anchorage, Alaska 99503-5823



AUG 12 2005

James W. Balsiger, Ph.D. Regional Administrator, Alaska Region National Marine Fisheries Service P.O. Box 21668 Juneau, Alaska 99802-1668

Dear Dr. Balsiger:

The Minerals Management Service (MMS) proposes to reinitiate consultation under Section 7 of the Endangered Species Act (ESA) on oil and gas leasing and exploration activities on two Outer Continental Shelf (OCS) Planning Areas in the arctic. Specifically, we propose to reinitiate following the Arctic Regional Biological Opinion (ARBO) approach used in the past, so that the geographic area considered in the consultation is expanded to again include potential activities that could occur within the entire Beaufort Sea Planning Area and within the Chukchi Sea OCS Program Area, as delineated in the Attachment which is reproduced from the Final EIS for our current 5-Year OCS Leasing Program. Note that the current 5-Year Leasing Program excludes the nearshore Polynya area from leasing consideration in the Chukchi Sea. Below we briefly summarize relevant background.

In November 1988, the National Marine Fisheries Service (NMFS) prepared the Arctic Regional Biological Opinion (ARBO) which concerned leasing and exploration activities in the Arctic Region (Beaufort Sea, Chukchi Sea, and Hope Basin OCS Planning Areas). Because of the removal of the gray whale from the list of threatened and endangered species, the availability of new information on the potential impacts of oil and gas-related noise on bowhead whales, the use of new seismic survey technology in the Arctic, and trends in OCS activities in the Arctic Region, MMS proposed to reinitiate consultation with NMFS on November 2, 1999. Because of lack of industry interest in the Chukchi Sea and Hope Basin Planning Areas at that time, MMS proposed, and NMFS agreed, to limit the reinitiated consultation to leasing and exploration activities only in the Beaufort Sea Planning Area. Thus, in the resultant, and most current, Biological Opinion of May 25, 2001, NMFS concluded that

"Present and foreseeable future oil and gas exploration activities on the Alaskan OCS are likely to occur only in the Beaufort Sea."

Because of this assumption, which was based on the best information available at the time, the action area for the May 2001 biological opinion was defined as the Alaskan Beaufort Sea OCS Planning Area, extending from the Canadian border to the Barrow area.



Due to industry response to our recent Beaufort Sea lease sales and call for information and nominations in the Chukchi Sea, and based on discussions with industry, the aforementioned assumption is no longer valid. Therefore, we would like to reinitiate consultation with your agency on leasing and exploration activities in areas of both the Beaufort Sea and the Chukchi Sea, as specified above.

In accordance with the Endangered Species Act Section 7 regulations governing interagency cooperation, MMS intends to prepare a biological evaluation in which we describe the actions and specific areas being considered in the consultation, describe the listed species and critical habitats that may be affected by those actions, evaluate potential effects and cumulative effects on listed species and critical habitats, and provide other relevant information necessary for NMFS to prepare their biological opinion.

By this letter, we are notifying you of the listed species and critical habitat that we, with your concurrence, expect to include in our biological evaluation. Based on previous correspondence with NMFS on this issue and based on our review of available information, MMS is aware of only one listed species, the endangered bowhead whale, that commonly occurs in these two planning areas. However, based on NMFS' November 1988 Biological Opinion, and, in some cases, other information suggesting the possible occurrence of other listed species in areas within or near these two planning areas, MMS currently intends to review and consider the following listed species in our biological evaluation:

| Common Name    | Scientific Name        | ESA Status |
|----------------|------------------------|------------|
| Bowhead whale  | Balaena mysticetus     | Endangered |
| Fin whale      | Balaenoptera physalus  | Endangered |
| Humpback whale | Megaptera novaeangliae | Endangered |
| Right whale    | Eubalaena glacialis    | Endangered |
| Sei whale      | Balaenoptera borealis  | Endangered |

We have included right and sei whales on this species list because, in your biological opinion of November 1988 (page 3), NMFS stated that these species were among "...six species of endangered whales that inhabit Arctic Region waters of Alaska." On page 4 of the 1988 ARBO, NMFS stated that "The right and sei whales are rare in Arctic waters. They are represented by isolated records in the Chukchi Sea, probably of stray individuals well outside the normal ranges of their populations." We believe that information available since that opinion supports this conclusion.

MMS is not aware of any designated or proposed critical habitat for any species that is under the jurisdiction of NMFS and that occurs within, near, or that could potentially be affected by leasing or exploration activities within, the Beaufort Sea or Chukchi Sea.

Please notify us of your concurrence with, or necessary revisions to, the above list of species and add any critical habitats which you believe need to be considered in our biological evaluation. In addition, we ask that you specify whether we should include Eastern North Pacific gray whales (*Eschrichtius robustus*) in our evaluation. While this population of gray whales was removed from the list of threatened and endangered species in 1994, NMFS's Biological Opinion on Oil

and Gas Lease Sales 191 and 199 in the Cook Inlet OCS Planning Area included a "...general assessment of the effects of the action on gray whales as part of NMFS' continuing responsibility to monitor the status of the species." Lastly, we ask that you reaffirm NMFS's conclusion in recent consultations (e.g., the consultation on the Beaufort Sea Lease Sales 186, 195, and 202) that MMS does not need to consult on species along the transportation corridor from Valdez to ports along the Pacific coast and to the Far East.

To facilitate consideration of our request for concurrence, we are sending copies of this letter to your Anchorage Field Office. Upon receipt of your reply within 30 days, we will begin preparation of our biological evaluation reviewing potential effects of Federal oil and gas leasing and exploration by MMS within the Alaskan Beaufort Sea and the Chukchi Sea.

If you have any questions on the issues raised in this letter or require additional information, please contact Dr. Lisa Rotterman, Minerals Management Service, Mail Stop 8303, 3801 Centerpoint Drive, Suite 500, Anchorage Alaska 99503-5823 (commercial and FTS telephone: 907-334-5245)

Sincerely,

Heel

/John Goll Regional Director

Enclosure

cc: (w/enclosure)

Mr. Brad Smith Anchorage Field Office National Marine Fisheries Service Federal Building 22 West 7<sup>th</sup> Avenue, Box 43 Anchorage Alaska 99513-7577

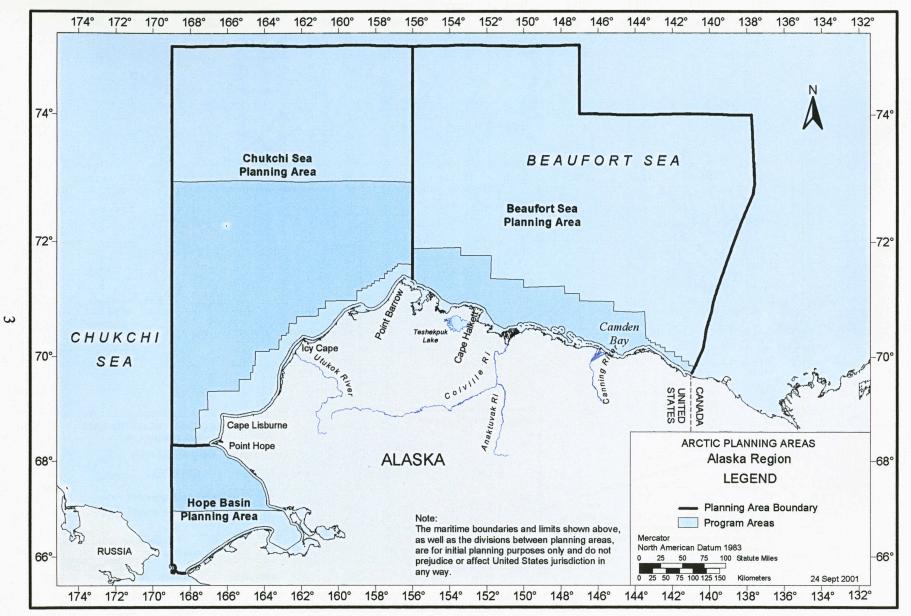



Figure 2-3. Beaufort Sea, Chukchi Sea, and Hope Basin Planning Areas - Alaska Region



UNITED STATES DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service P.O. Box 21668 Juneau, Alaska 99802-1668

September 30, 2005

John Goll Regional Director Minerals Management Service Alaska Outer Continental Shelf Region 3801 Centerpoint Drive, Suite 500 Anchorage, AK. 99503-5823

Dear Mr. Goll:

The National Marine Fisheries Service (NMFS) has received your letter requesting information on the presence of threatened or endangered species and their designated critical habitat which occur in the Alaska Beaufort Sea and Chukchi Sea planning areas.

The following species is listed under the Federal Endangered Species Act and is found in these areas:

Bowhead Whale (Balaena mysticetus).....Endangered

Critical habitat has not been designated for the bowhead whale.

Additionally, the endangered humpback (Megaptera novaeangliae) and fin whale (Balaenoptera physalus) are found in waters of the Chukchi Sea and Bering Sea outside of the subject planning areas. These animals could be impacted secondarily by OCS activities. NMFS recommends their inclusion in your evaluation. NMFS also recommends the evaluation provide a comprehensive assessment of OCS activities on threatened and endangered species, and, to accomplish this, include all deferrals within these planning areas.

We hope this information will be useful in your section 7 determinations. Please direct any questions to Brad Smith in our Anchorage office, (907) 271-3023.

Kaja Bilix Assistant Regional Administrator for Protected Resources





UNITED STATES DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service

P.O. Box 21668 Juneau, Alaska 99802-1668

June 16, 2006

John Goll Director, Alaska Outer Continental Shelf Region Minerals Management Service 3801 Centerpoint Drive, Suite 500 Anchorage, Alaska 99503-5823

Dear Mr. Goll:

This document transmits the National Marine Fisheries Service's (NMFS) Biological Opinion for Federal oil and gas leasing and exploration by the Minerals Management Service (MMS) within the Alaskan Beaufort and Chukchi Seas, and its effects on the endangered bowhead whale in accordance with section 7 of the Endangered Species Act of 1973, as amended (16 U.S.C. 1531 et seq.). Your March 3, 2006 letter to NMFS requested re-initiation of consultation in this matter. The MMS has provided a Biological Evaluation of leasing and exploration actions in the Beaufort and Chukchi Seas, which was received on March 15, 2006. We acknowledged receipt of this information in our letter dated April 5, 2006.

This Biological Opinion is based on information provided in the March 2006 Biological Evaluation and other sources of information. A complete administrative record of this consultation is on file at the NMFS offices in Anchorage.

NMFS concludes that leasing and exploration are not likely to jeopardize the continued existence of the bowhead whale. In formulating this opinion, NMFS used the best available information, including information provided by MMS, recent research on the effects of oil and gas activities on the bowhead whale, and the traditional knowledge of Native hunters and the Inupiat along Alaska's north slope. Although we conclude that foreseeable exploration activities are not likely to jeopardize the continued existence of the bowhead whale, we remain concerned about the potential additive effects of oil and gas activities associated with exploration, production, and transportation throughout the Beaufort and Chukchi Seas. Conservation recommendations are provided with the opinion which are intended to improve our understanding of the impacts of oil and gas activities on the bowhead whale, as well as to minimize or mitigate adverse effects.

Sincerely,

Robert Omen

Robert D. Mecum Acting Administrator, Alaska Region



# **APPENDIX C**

USFWS Endangered Species Act, Section 7 Consultation And Coordination



# United States Department of the Interior



MINERALS MANAGEMENT SERVICE Alaska Outer Continental Shelf Region 3801 Centerpoint Drive, Suite 500 Anchorage, Alaska 99503-5823

SEP 2 1 2006

# Memorandum

Regional Director, FWS, Region 7/ To: Regional Director Jun Hall From:

Subject: Chukchi Sea Lease Bale 193: Endangered Species Act Section 7 Consultation

The Minerals Management Service (MMS) is completing a draft Environmental Impact Statement (DEIS) for the proposed Chukchi Sea Lease Sale 193. The Steller's and spectacled eider, both threatened species, and the Kittlitz's murrelet, a candidate species, occur in the proposed lease sale area. We have worked closely with the Fairbanks Endangered Species Branch in preparing the attached biological evaluation to evaluate the potential effects this lease sale could have on threatened and candidate birds.

We sent a previous draft of this biological evaluation to the Fairbanks Fish and Wildlife Field Office on July 17, 2006. We recently received some comments on the draft biological evaluation when Fish and Wildlife Services (FWS) personnel met with us on September 7, 2006. Those comments pertained to the need to calculate the anticipated incidental take from onshore developments should production occur following the lease sale. We were requested to address the potential for the Steller's eiders to be affected if an oil spill were to occur when they were concentrated in the spring-lead system and to more fully explain the most likely development scenario in terms of the potential for locating a commercially developable field. Our explanation of the oil spill risk analysis modeling was expanded to include combined probabilities. We revised the draft biological evaluation to address the FWS' comments and concerns.

We consider the attached biological evaluation a complete document for your review. We believe the biological evaluation satisfies the information requirements specified in 50 CFR 402.12 and 402.14. If you still require additional information or analysis, please contact us quickly as we anticipate including a copy of the biological evaluation in our DEIS, which is scheduled to go to the printer on October 3, 2006.



Our biological evaluation determined that the proposed Chukchi Sea Lease Sale 193 would likely have the following level of effects on Steller's and spectacled eiders and Kittlitz's murrelets:

- Listed and Candidate Species
  - Lease Sale 193 could present new sources of disturbance, collision hazards, and oil/toxic pollution that could result in the taking of Steller's and spectacled eiders. Without comprehensive mitigation measures to avoid or minimize potential impacts, these activities are likely to adversely affect Steller's and spectacled eiders.
  - Lease Sale 193 could present new sources of disturbance and oil/toxic pollution that could result in the taking of Kittlitz's murrelet. Without comprehensive mitigation measures to avoid or minimize potential impacts, these activities may affect the Kittlitz's murrelet.
- Ledyard Bay Critical Habitat Area
  - Lease Sale 193 could present new activities that could result in the physical modification of seafloor habitats and decrease use of the Ledyard Bay Critical Habitat Area by molting spectacled eiders. Without comprehensive mitigation measures to avoid or minimize potential impacts, these activities are *likely to adversely modify* the Ledyard Bay Critical Habitat Area.

We request your opinion on these findings. If you determine a jeopardy situation may exist for all or any part of the proposed action, we ask that you respond to this memorandum in as timely a manner as possible, according to 50 CFR 402 14(g)(5), to allow the MMS and FWS staff time to jointly discuss the findings. We believe that such discussions will facilitate the consultation and ensure protection of listed species. These discussions will also ensure that any proposed alternatives are within our authority to control and implement, and are feasible, prudent, and effective. To facilitate completion of this consultation, we are sending a copy of this memorandum to the Fairbanks Fish and Wildlife Field Office in Fairbanks, Alaska.

If you have any questions on this consultation or require additional information, please contact Mr. Mark Schroeder at (907) 334-5247.

## Attachment

cc: Field Office Supervisor U.S. Fish and Wildlife Service Fairbanks Fish and Wildlife Field Office 101 12<sup>th</sup> Avenue, Room 110 Fairbanks, Alaska 99701



IN REPLY REFER TO

AFES

United States Department of the Interior

FISH AND WILDLIFE SERVICE 1011 E. Tudor Rd. Anchorage, Alaska 99503-6199

Gional Director, ALASKA C Minerals Management Servic ANCHORAGE, ALASKA

OCT 2 7 2006

Memorandum

To: Regional Director, Minerals Management Service – Alaska Outer Continental Shelf Region

From:

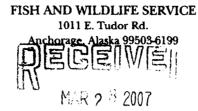
Regional Director - Region 7 Vores O. Melun

Subject: Chukchi Sea Lease Sale 193: Endangered Species Act Section 7 Consultation

We acknowledged receipt on September 25, 2006, of your Biological Evaluation and memorandum requesting initiation of Section 7 consultation under the Endangered Species Act for activities associated with Lease Sale 193 in the Chukchi Sea. The consultation concerns the possible effects of the proposed action on threatened Steller's eiders (*Polysticta stelleri*), spectacled eiders (*Somateria fischeri*), and the candidate species Kittlitz's murrelet (*Brachyramphus brevirostris*).

After reviewing the BE we have determined that the proposed action may adversely impact listed species and will therefore require formal consultation. All the information required to initiate formal consultation was either included in the BE or is otherwise accessible for our consideration and reference. However, it is likely that we will identify additional information needs, or require clarification on aspects of the proposed action as consultation progresses.

As a reminder, Section 7 allows the Fish and Wildlife Service 90 calendar days to conclude formal consultation with your agency and an additional 45 calendar days to prepare our biological opinion (unless we mutually agree upon an extension). Therefore, we will provide you with our final biological opinion on or before February 7, 2007.


This consultation will be conducted by the Endangered Species Branch of the Fairbanks Field Office. In order to expedite communication please address future documents or requests concerning this consultation to Ted Swem, Branch Chief, Fairbanks Fish and Wildlife Field Office, 101 12<sup>th</sup> Avenue, Room 110, Fairbanks, Alaska 99701.



# United States Department of the Interior

IN REPLY REFER TO:

FWS/AFES/FFWFO



MAR 2 8 2007

MEGIONAL DIRECTOR, ALASIA Minerals Managoment Servic-ANCHORAGE, ALASKA

Memorandum

To: Regional Director – Minerals Management Service

From:

Regional Director - Region 7 Chomer O. Meliu

Subject: Chukchi Sea Lease Sale 193: Endangered Species Act Section 7 Consultation

This document transmits the U.S. Fish and Wildlife Service's (Service) Biological Opinion (BO) in accordance with Section 7 of the Endangered Species Act of 1973, as amended (Act), on the effects of the Mineral Management Service's proposed Chukchi Sea Lease Sale 193 to listed and candidate species (attached). The BO evaluates effects of the action on the threatened spectacled eider (*Somateria fischeri*), threatened Steller's eider (*Polysticta stelleri*), and the Ledyard Bay Critical Habitat Unit designated for spectacled eiders. At your request, we have also evaluated potential effects on the candidate species Kittlitz's murrelet (*Brachyramphus brevirostris*) to aid in planning in the event that it is listed under the Act during this project's life, but the current document does not represent a formal BO for the Kittlitz's murrelet.

Lease Sale 193 would authorize the sale of oil and gas leases in 34 million acres of Federal waters in the Chukchi Sea, and may ultimately result in development and production of oil and gas in this area. The MMS has statutory authority to complete its OCS energy development actions as incremental step consultations under the Act. In accordance with this authority and the applicable regulations, this BO includes analyses and conclusions as to whether: 1) the incremental step of leasing and exploration (including seismic surveys and exploratory drilling) would violate Section 7(a)(2) of the Act (i.e., whether these steps would likely jeopardize listed species or cause destruction or adverse modification of critical habitat); and 2) there is a reasonable likelihood that the entire action of leasing, exploration, development, and production that may result from Lease Sale 193 would violate Section 7(a)(2) of the Act. Additionally, for the first incremental step, we have estimated and authorized incidental take, and provided reasonable and prudent measures, and associated terms and conditions intended to reduce take.

Based on the available information, it is the Service's BO that it is unlikely that leasing and exploration activities will violate Section 7(a)(2) of the Act. Incidental take of a small number of Steller's and spectacled eiders is anticipated from collisions during exploratory drilling; this incidental take and potential impacts from spills are mitigated through the reasonable and prudent measures, and terms and conditions, which are mandatory for the MMS to implement. It is also our BO that the entire action, which may also include development and production, would

not jeopardize the continued existence of the spectacled or Steller's eider, or destroy or adversely modify designated critical habitat. This conclusion is based upon the fact that population-level impacts, although possible depending upon what is proposed at a later date, are not reasonably expected to occur based on the information available at this time.

We caution, however, that consultation at future incremental steps in this phased oil and gas process is crucial in order to fully evaluate project specific information about particular development and production plans, and whether or not they are likely to jeopardize listed species or destroy or adversely modify critical habitat. We wish to provide clear notification that consultation on subsequent incremental steps may reach different conclusions depending on the scope, location, and nature of what is proposed. Based on our analyses, we believe that some potential development proposals, while not reasonably likely at this time, could ensue from Lease Sale 193 that would jeopardize listed species or cause destruction or adverse modification of critical habitat. Therefore, consultation on subsequent incremental steps will require careful consideration of all information available at that time, including up-to-date evaluations of listed species status, the environmental baseline, and project-specific considerations such as spill risk assessments and spill trajectory models to evaluate risk to listed species. To this end, we have provided guidance on ways to minimize the likelihood of conflict between listed species and proposed development, and we have identified information needs that will provide for wellinformed consultation on subsequent incremental steps.

We commend you for taking a proactive approach to Kittlitz's murrelet conservation, and we also appreciate the considerable efforts made by your staff to provide all the information necessary for our consultation. We look forward to working with you to implement the terms and conditions of the BO, address our shared information needs, and assess future phases of the project.

As you are aware, the Service published a 12-month finding and proposed rule in the Federal Register on January 9, 2007, that found listing of the polar bear as threatened under the Endangered Species Act (Act) to be warranted. For proposed species, such as the polar bear, the Act requires action agencies to conference with the Service. Conference is a process of early interagency cooperation designed to identify potential conflicts between an action and species conservation, and to minimize or avoid adverse effects to proposed species or proposed critical habitat. Several key distinctions between the consultation and conference processes are important to identify. First, the "trigger" for consultation and conference is different. While agencies are required to consult with the Service when their actions "may affect" the continued existence of listed species or critical habitat, action agencies are only required to confer with the Service for those actions "likely to jeopardize" the continued existence of the proposed species or result in the "destruction or adverse modification" of proposed critical habitat. Based on our experience to date with agency consultations in northern Alaska, including those related to oil and gas development, and given that Alaska comprises only a small portion of the circumpolar range inhabited by the species proposed for listing, we believe that conference will technically be required in few if any instances in the coming months. As we have discussed, we look forward to working with your staff in the near future on this issue.

A complete administrative record of this consultation is on file at the Fairbanks Fish and Wildlife Field Office, 101 12<sup>th</sup> Ave., Room 110, Fairbanks, Alaska 99701. A chronology of the consultation history is provided in Appendix 1. If you have any questions, please call Ted Swem at (907) 456-0441.

Attachment

Appendix D

Summary: Analysis of Seismic Survey Mitigation Alternatives

# Appendix D. Summary: Analysis of Seismic Survey Mitigation Alternatives.

The following mitigation alternatives related to conducting seismic surveys were analyzed as part of the *"Final Programmatic Environmental Assessment (PEA), Arctic Ocean Outer Continental Shelf Seismic Surveys – 2006,"* dated June 2006 (OCS EIS/EA MMS 2006-038):

Alternative 1. No seismic-survey permits issued for geophysical exploration activities (No Action). (*Referenced in Chukchi 193 DEIS as Seismic Survey Mitigation Alternative 1*)

**Alternative 2.** Seismic surveys for geophysical-exploration activities would be permitted with existing Alaska OCS G&G exploration stipulations and guidelines. (*Referenced in Chukchi 193 DEIS as Seismic Survey Mitigation Alternative 2*)

**Alternative 3.** Seismic surveys for geophysical exploration activities would be permitted incorporating existing Alaska OCS G&G exploration stipulations and guidelines and additional protective measures for marine mammals, including a 120-decibel-(dB)-specified exclusion zone. (*Referenced in Chukchi 193 DEIS as Seismic Survey Mitigation Alternative 3*)

**Alternative 4.** Seismic surveys for geophysical-exploration activities would be permitted incorporating existing Alaska OCS G&G exploration stipulations and guidelines and additional protective measures for marine mammals, including a 160-dB-specified exclusion zone. (*Referenced in Chukchi 193 DEIS as Seismic Survey Mitigation Alternative 4*)

**Alternative 5.** Seismic surveys for geophysical-exploration activities would be permitted incorporating existing Alaska OCS G&G exploration stipulations and guidelines and additional protective measures for marine mammals, including 160-dB- and 120-dB-specified exclusion zones. (*Referenced in Chukchi 193 DEIS as Seismic Survey Mitigation Alternative 5*)

**Alternative 6.** Seismic surveys for geophysical-exploration activities would be permitted incorporating existing Alaska OCS G&G exploration stipulations and guidelines and additional protective measures for marine mammals, including a 180/190-dB-specified exclusion zone. (*Referenced in Chukchi 193 DEIS as Seismic Survey Mitigation Alternative 6*)

The sections that follow are summarizing excerpts from the PEA which described the potential impacts of Alternatives 1, 3, 4, 5, and 6. Alternative 2 was dropped from detailed analysis in the PEA because of its potential to cause unavoidable significant impacts. See the PEA for a more detailed and thorough description and discussion of the potential impacts of conducting seismic surveys and the mitigation measures proposed to protect the biological resources of the Arctic Ocean.

## Fish/Fishery Resources and Essential Fish Habitat (EFH)

Alternative 1 (No Action) poses no adverse impacts to fish/fishery resources or EFH.

Alternatives 3 through 6 would have adverse but not significant impacts on fish/fishery resources and EFH. The analysis in the final PEA notes specific issues that were afforded additional assessment given their importance to fish survival and reproduction and human uses, including impacts to migration and spawning, rare species, subsistence fishing, and operation of coincidental multiple seismic surveys. However, based on the above assessment, MMS concludes that the potential for impacts to these issues (e.g., migration, spawning, rare species, and subsistence fishing) also is adverse but not significant.

Alternatives 3 through 6 all equally employ mitigation measures to avoid or limit the potential for impacts to fish resources and EFH. As these measures apply across Alternatives 3 through 6, there remains little difference across the various alternatives as to the degree of impacts for this species group and related issues. In theory, the alternatives with the more restrictive exclusion zones for marine mammals

(Alternatives 3 and 5) would provide more protection for marine fish and invertebrate species if seismic survey shutdown were to occur, but again this would be considered only incrementally more protective for fish, invertebrates and related issues.

The following mitigation measures are specifically designed to limit potential impacts to migration, spawning, rare species, subsistence fishing, and operation of multiple seismic surveys:

- Seismic cables and airgun arrays shall not be towed in the vicinity of fragile biocenoses, unless MMS determines the proposed operations can be conducted without damage to the fragile biocenoses.
- Based on the information provided by MMS on the known locations of fragile biocenoses in the Chukchi and Beaufort seas, the applicant shall clearly explain to what distance their operations will avoid fragile biocenoses and how they will avoid damaging fragile biocenoses.
- Permittees shall report to MMS if damage to fragile biocenoses occurs as a result of their operations. Additionally, Permittees shall notify MMS if they detect any fragile biocenoses otherwise not documented in their permit application.
- Vessels shall not anchor in the vicinity of any documented fragile biocenoses (e.g., the Boulder Patch, natural gardens of coral/sponge or macroalgae [e.g., kelp beds]), unless an emergency situation involving human safety specifically exists and there are no other feasible sites to anchor at the time.

# Threatened and Endangered (T&E) Species

# T&E Marine Birds.

Alternative 1 (No Action) would mean that spectacled and Steller's eiders and Kittlitz's murrelets in the Beaufort and Chukchi seas would not be exposed to disturbance and noise from seismic vessels and associated seismic activities.

The most likely effects of Alternatives 3, 4, 5, and 6 involve disturbance and bird/vessel collisions. Eiders will either dive or fly in response to a disturbance. All the alternatives implement monitoring a marine mammal-exclusion zone. Mitigation measures for marine mammals likely necessitate the use of high-intensity lights at night and during inclement weather to search for marine mammals in the vessel path. Seismic surveys would cease when the marine mammal-exclusion zone could not be effectively monitored, but the high-intensity lights could remain on to search for marine mammals. The zone is monitored using observers that are onboard and/or in aircraft, and would need the use of high-intensity lighting to maintain vigilance for marine mammals when the surveys are being conducted during periods of darkness or poor visibility (e.g., during rain or fog). Use of high-intensity lighting would be independent of the size of the exclusion zone, as these lights would be useful only in areas closest to the seismic-survey vessel.

In the Chukchi Sea, spectacled eiders molt in Ledyard Bay, an area designated as critical habitat. Males and/or females are present in this area from early July through the middle of October or possibly later. As day-length decreases during the late summer, eiders migrating to the molting area in darkness would be more likely to encounter vessels using high-intensity lights. Spectacled eiders often migrate at night and flying at night they can become disoriented by high-intensity work lights and strike vessels. Eiders flying during low-visibility conditions of rain or fog can also strike vessels.

The risk of collisions with spectacled eiders is lowest beyond 60 km offshore, because females tend to travel within 60 km and males travel within 35 km. Within these distances from shore, the risk of collisions might increase, especially during poor visibility. The greatest risk of a vessel strike would exist if the seismic-survey vessel was using high-intensity lighting while transiting through areas of high spectacled eider density at night during fog or rain.

The most likely effects of seismic surveys to Steller's eiders in the Beaufort and Chukchi seas involve the same type of disturbances and collisions associated with spectacled eiders. Due to the extent of sea ice, it is unlikely that seismic surveys would begin in the Beaufort Sea when males are passing through, so impacts to Steller's eiders are unlikely. Males could be encountered in the Chukchi Sea in the summer and fall, and females might be encountered in both the Beaufort and Chukchi seas during the seismic-survey period. Limited data exist on breeding Kittlitz's murrelets. Breeding pairs in the Chukchi Sea are solitary and nested well inland on the tundra. They forage at sea during nesting and chick rearing, but their foraging distances during this period in the Chukchi Sea are unknown. In glaciated areas in Alaska, they typically forage within a few hundred meters of shore. An estimated 15,000 Kittlitz's murrelets have been observed in the pelagic waters of the Chukchi Sea beginning in late August, but their presence is sporadic, suggesting there are additional factors that influence their distribution and that there is large interannual variation in abundance. Accordingly, the potential for disturbance from or collision with seismic-survey vessels or aircraft is small. It is possible, during the course of normal feeding or escape behavior that a murrelet could be near enough to an airgun to be injured by a pulse. A mitigation measure to "ramp up" airgun noise when seismic surveys begin can help disperse birds before harm occurs. During ongoing surveys, murrelets also are likely to hear the advance of the slow-moving survey vessel and associated airgun operations and move away.

## **T&E Marine Mammals**

Alternative 1 (No Action) would not expose T&E marine mammals (bow head, fin, and humpback whales) in the project area to noise associated with seismic surveys and their associated support vessels (air and sea)..

Alternatives 3 through 6 are similar but have varying levels of protection for T&E marine mammals. This variation in protection primarily is in the noise level set as the shut-down criteria and monitoring that is required to effectively monitor that noise-level radii, or shut-down/exclusion zone.

While all alternatives other than the Alternative 1 (No-Action) meet the objectives of this environmental assessment, they also potentially could adversely affect bowhead whales and other marine mammals, principally through incidental harassment due to exposure to seismic survey noise. Possible harassment likely would be most pronounced if large feeding aggregations of whales, or cow/calf pairs of bowhead whales, are affected. Alternatives 3 through 6 have the potential for causing adverse but not significant impacts.

Alternatives 3 through 6 would prohibit seismic surveys around bowheads in the spring lead system and thereby reduce the potential for adverse effects of seismic surveys on bowhead calving, cow/calf pairs, and newborn calves. The effect of seismic surveys on these components of the population is very uncertain, and avoidance of their exposure is the most effective way to reduce the potential for an adverse effect on these bowheads. Even at a 120-dB isopleth shut-down zone (included in Alternatives 3 and 5), bowhead whales might still detect seismic survey airgun sounds, icebreaker sound, or vessels associated with seismic surveys.

Variability in the size and configuration of the airgun arrays, water depth, and bottom properties all can influence these noise-level radii, which is expected to vary from one location to another and between different seismic operations. Therefore, field verification is included as a mitigation measure to verify the actual noise-level radii. Shut-down or safety zones may be as large as 30 km for the 120-dB zones and as small as 100 m for the 190-dB zones, depending on the size and energy output of the airgun array and environmental conditions. It is likely that monitoring will be required using one or more of these: aerial surveys; passive acoustic monitoring; and boat-based surveys. If these methods of monitoring are not effective, then additional mitigation measures may be set in place (i.e., adaptive management schemes where specific areas of higher marine mammal concentrations are avoided on a temporal or spatial basis).

Alternatives 3 through 6 provide monitoring requirements meant for observers to visually monitor the exclusion zone, regardless of size, and be able to call for a shut down if marine mammals enter the exclusion zone. The ability of observers to effectively monitor the exclusion zone, and be able to call for a

shut down if bowheads enter the zone, is critical to the success of the protective measures described in Alternatives 3 through 6, although it is generally not possible to observe all bowheads within the exclusion zone, especially during foggy weather or at night. Additional monitoring techniques, such as aerial surveys, vessel-based systems, or passive acoustics, could enhance the ability to detect bowhead whales and other marine mammals in larger exclusion zones.

Evidence shows that bowhead whales and other cetaceans can react behaviorally in the presence of aircraft. The mitigations imposed under Alternatives 3 through 6 all would require that aircraft be flown no lower than 1,000 ft, a level that limits the potential for reactions from marine mammals. Therefore, the use of aerial over flights in monitoring would not be expected to add additional impacts to bowhead whales. The same is true for passive acoustic monitoring where observers simply "listen" for evidence of whale noise. Vessel-based monitoring may impose a degree of additional disturbance, but it would be considered less than what would occur for seismic activity should whales not be monitored but present in the exclusion zone.

Each exclusion zone in Alternatives 3 through 6 would require boat-based visual monitoring (i.e., all observers are scanning areas from the vessel as far as visually possible with appropriate equipment). The additional monitoring techniques (e.g. aerial or vessel-based surveys, acoustic monitoring) that may be necessary for Alternatives 3 and 5 could be costly to implement because the larger exclusion zone associated with the 120-dB isopleth, in theory, would provide a much larger and more difficult area to monitor then the smaller exclusion zones (160-dB isopleth and 180/190-dB isopleth). Smaller exclusion zones are less effective in limiting impacts to cetaceans than larger exclusion zones because larger exclusion zones associated with Alternatives 3 and 5 would by definition require further distance of operating seismic survey vessels from cetaceans than Alternatives 4 and 6. Additional mitigation measures would be set in place (i.e., adaptive management schemes where specific areas of higher marine mammal concentrations are avoided on a temporal or spatial basis) should monitoring measures prove ineffective. Therefore, the varying degrees of impact among the alternatives, as discussed in the paragraphs above, remains the same with the greatest to least level of protection from behavioral disturbance being Alternatives 3, 5, 4, and 6 respectively.

# Non-T&E Marine Birds.

*Murres*. The chance of murres colliding with seismic-survey vessels is relatively low, because most murres should be out of the action area during the male molt and at-sea rearing period. The primary risk of collision occurs during the brief period when murres migrate south to the Bering Sea. Based on telemetry data, most murres would not migrate through the action area.

*Puffins*. Seismic-survey vessels would remain at least 3 mi from shore, so there is little chance for disturbance of breeding colonies. Most puffins are located near Cape Lisburne in September, but this area represents only a small portion of the action area, and it is possible that this area already might be surveyed prior to September. If surveys were completed prior to September, there would be minimal risk of puffins colliding with the seismic-survey vessel.

*Black-legged Kittiwake*. Disturbance and risk of collision should be minimal to kittiwakes, as they are mobile (i.e., not molting) and wide ranging throughout the Chukchi Sea. There are no discernable areas of concentration that may increase the impact of disturbance or risk of collision. Most kittiwakes are out of the Chukchi Sea by late September.

*Northern Fulmar.* If distribution trends are similar to the 1980's, most fulmars would be south of the action area. Furthermore, most fulmars are present in the Chukchi Sea for only a few weeks at the end of summer; it is possible that all survey vessels would be working on survey areas farther north during that time to take advantage of the period of maximum ice retreat in the Beaufort Sea. Both of these factors make the chance of large scale disturbance or collision minimal.

*Short-tailed Shearwaters and Auklets.* These species are considered together, because they occur in similar numbers and both forage on patchily distributed zooplankton in pelagic waters. The chance of disturbance

is low, because their distribution is patchy and the disturbance is of short duration. A disturbance might lead to a temporary halt in feeding in one area or a switch to a new and possibly less-productive area.

The risk of collisions is a more relevant issue, as shearwaters and auklets are present in the Chukchi Sea until late September or early October. There are about 12 hours of darkness during this period, and seismic surveys could occur 24 hours a day. Large collisions involving crested auklets and lights on commercial-fishing vessels have been documented. Collisions are not documented for shearwaters, but these types of events typically are poorly documented. It appears most likely that large collisions occur when a combination of darkness, fog, rain, or snow exist and high-intensity lights are used on commercial vessels near large aggregations of certain species of seabirds. While there is no certainty that collisions would occur, the chance seems to be the greatest for auklets and, perhaps to a lesser extent, shearwaters in the Chukchi Sea during seismic surveys.

*Black Guillemot.* These birds usually are closely associated with the ice edge, and the likelihood of disturbance or collisions is limited to a small portion of the action area. Seismic-survey vessels need to follow a specific course during the survey and, therefore, minimize surveys near the ice edge due to the presence of large sections of ice that could cause the vessel to alter course or damage seismic instruments. Accordingly, operations in areas likely to be inhabited by black guillemots are limited, and the chance for disturbance and collisions is minimal.

*Gulls and Terns*. The likelihood of impacts from disturbance or collisions to Ross' gulls, ivory gulls, arctic terns, and glaucous gulls is minimal. Ross's gulls and ivory gulls are associated with ice and breed well outside the action area. They are present in the action area for a short period before migrating through the Chukchi Sea to overwintering locations. Arctic terns breed near the coast of both seas, but seismic vessels will be operating beyond 3 mi from shore; therefore, disturbance is unlikely. Terns migrate through the Chukchi Sea but are rarely observed in pelagic waters. Similarly, glaucous gulls typically are most abundant within 70 km of shore, thereby reducing the likelihood of disturbance and collisions.

*Phalaropes.* Both species of phalaropes may be encountered in the Beaufort and Chukchi seas, especially during the postnesting period in late summer and fall. Phalaropes use habitat within a few meters of shore and also pelagic areas; their distribution is generally tied to patchy concentrations of zooplankton. Because seismic-survey vessels would remain at least 3 mi offshore, disturbance to or a collision with phalaropes nearshore is unlikely. In pelagic waters, disturbances may occur but their impact is likely to be minimal, due to the patchy distribution of prey and the transient and short-term nature of seismic surveys. Disturbed phalaropes might move to another prey patch or return to the same area after the disturbance passes. Collisions may occur, especially during inclement weather, but the likelihood of collisions is unknown. Red-necked phalaropes were attracted to lights on a ship in the Gulf of Guinea and reacted most strongly at night in inclement weather. There does not appear to be any other documented cases of collisions involving phalaropes, so the incidence of collisions may either be low or unreported.

*Jaegers*. The chance of impacts to jaegers by disturbance or collision is minimal. Although they are present throughout the Chukchi Sea in the fall when there are several hours of darkness and frequent inclement weather, jaegers are not known to occur in high concentrations in any area.

*Loons.* In the Beaufort and Chukchi seas, loons typically migrate close to shore until they are south of Cape Lisburne, when they travel over pelagic waters on their migration to wintering areas. Impacts from disturbances or collisions are unlikely, because loons migrate nearshore in most of the action area, and seismic-survey vessels would remain 3 mi offshore.

*Long-Tailed Ducks*. Impacts from disturbances or collisions are unlikely, because long-tailed ducks molt in lagoons on the coast of the Beaufort Sea. Seismic-survey vessels would remain 3 mi offshore during surveys. After molting, these birds move south following the Chukchi Sea coast and typically remain 45 km offshore along the 20-m isobath. Observations farther offshore are uncommon. The chance of disturbance is small due to the small portion of the action area within 45 km from the coast. Collisions are possible, especially in inclement weather.

*Common Eider*. Impacts to common eiders likely would be similar to those described for spectacled eiders, although the implications of potential impacts probably are less significant. Common eiders molt near several locations along the Alaska Chukchi Sea coast including Point Lay, Icy Cape, and Cape Lisburne. Like spectacled eiders, their molt locations probably coincide with areas of high-density prey items. Disturbance at molt locations could impose additional stress during this energetically demanding period; the degree of stress would depend on the magnitude and frequency of disturbance. Collisions are possible, especially during nighttime when there is inclement weather. Most common eiders follow the 20-m isobath, which is ~45 km from shore in the Chukchi Sea and 13-16 km in the Beaufort Sea. Because most of the action area lies well beyond these distances form shore, eiders are at risk of collisions for a small portion of the surveys. Implementation of mitigation measures would reduce the likelihood of collisions.

*King Eider*. Impacts would be similar to common eiders in both the Beaufort and Chukchi seas, except that king eiders molt at locations in the Bering Sea. Migration distances from shore are similar, so the collision impacts are likely similar to common eiders.

## Non-T&E Marine Mammals.

The most likely effects on marine mammals from seismic activity and the proposed alternatives include disturbance reactions to seismic vessels and associated aircraft traffic, and altered prey availability. Responses, such as fright, avoidance, and changes in behavior and vocalization patterns have been observed in marine mammals at ranges of tens to hundreds of kilometers from a sound source. Sound could also affect marine mammals indirectly by changing the accessibility of their prey species. Populations could be adversely affected if feeding, orientation, hazard avoidance, migration, or social behaviors are altered. Serious long-term consequences could also result from chronic exposure. Baleen whales (bowhead, fin, humpback, gray, and minke whales) are the most sensitive marine mammal species to anthropogenic noise in the action area.

The No Action alternative (Alternative 1) would not expose marine mammals in the project area to noise associated with seismic surveys and their associated support vessels (air and sea). Other methods to collect geophysical and geological data (as yet undetermined) may disturb animals in the project area in unknown, but possibly similar ways.

Alternatives 3 through 6 are essentially the same with varying levels of protection for marine mammals depending on the size of an exclusion zone and related monitoring. They all are environmentally sound, as they all contain protective measures to mitigate possible impacts on marine mammals. Theoretically, when effectively monitored, alternatives with the lowest dB isopleth exclusion zone (e.g., Alternative 3 at 120-dB) provide a greater level of protection for marine mammals from harm and harassment than those alternatives having a higher dB isopleth exclusion zone (e.g. Alternative 6 at 180/190-dB). In addition, Alternatives 3 through 6 would prohibit seismic surveys around marine mammals in the spring lead system.

Field verification of the exclusion zone would be required under these alternatives, and the appropriate size of the exclusion zone would be based on these results. It is likely that the exclusion zone for these bigger arrays would be larger than what has been previously used, and this may result in an increased area where marine mammals may be harassed. In addition, as the safety zone increases in size (from 190/180-dB to 120 dB; Alternatives 3 through 6), the ability of vessel-based visual observers to effectively monitor the exclusion zone decreases. Therefore, additional monitoring techniques (i.e., aerial surveys and acoustic monitoring) or mitigation measures would be required for the alternatives with larger exclusion zones.

*Pinnipeds (Ringed, Spotted, Ribbon, and Bearded Seal and Pacific Walrus).* The NMFS' current Level A harassment threshold for pinnipeds (excluding the pacific walrus) is 190 dB. Pacific walrus are managed by the FWS, and they recently implemented a 180-dB exclusion zone for walrus.

Alternatives 3 through 6 all provide exclusion zones capable of providing protection for pinnipeds in the project area. The exclusion zone would be the smallest for Alternative 6 (180/190 dB) and could be monitored visually by vessel-based observers. Conversely, Alternative 3 would provide the largest exclusion zone (120 dB). Increased disturbance from vessel and aircraft activity could consequently cause

pinnipeds to leave haul-out locations and enter the water, though the response is highly variable. This could have a greater impact if flushing of haul out sites occurs when pups are present, as they can be more easily injured and separated from their mothers. Use of the 160 dB exclusion zone in Alternative 4 and in Alternative 5 would provide an intermediate-sized safety zone. Alternatives 3-5, when properly monitored, would provide exclusion zones which are sufficient for pinnipeds.

The MMS believes the potential for any injuries to pinnipeds from the proposed activity and Alternatives 3 through 6 is very limited, with Alternative 6 providing a slightly greater potential for Level A Harassment as its specified exclusion zone of 190 dB most closely approaches the lower limits of levels set by NMFS for Level A Harassment.

Alternatives 3 through 6 require trained observers to visually monitor the exclusion zone, regardless of its size, and to be able to call for a shut-down if pinnipeds enter the exclusion zone. The ability of observers to effectively monitor the exclusion zone, and be able to call for a shut-down if pinnipeds enter the zone is critical to the success of the protective measures described in Alternatives 3 through 6, though it is often difficult to observe all pinnipeds within the exclusion zone.

Pinnipeds are not likely to be exposed to sound levels which could cause injury, as they would have to swim within extremely close proximity to the seismic array in order to be vulnerable, and there is no specific evidence that exposure to pulses of airgun sound can cause direct injury to pinnipeds. The most likely potential impacts to pinnipeds from seismic surveys and associated activities would be disturbance and possible impacts to food resources.

Alternatives 3 through 6 would require overflights at or above 1,000 ft in order to minimize the potential for behavioral impacts to marine mammals. Therefore, the use of aerial surveys is not expected to significantly increase the potential for harassment of pinnipeds. Therefore, the varying degrees of impact between the alternatives remains the same with the greatest to least level of protection from behavioral disturbance and injury being Alternatives 3, 5, 4, and 6 respectively.

*Cetaceans (Beluga Whale, Killer Whale, Harbor Porpoise, Minke Whale, and Gray Whale).* NMFS' current threshold for Level A Harassment (potential to injure) of cetaceans is 180 dB. The mitigation measures outlined in Section IV, and which apply to Alternatives 3 through 6, are set to avoid any takes of marine mammals by Level A Harassment. In addition, the MMPA authorization required under Alternatives 3 through 6 would not authorize any Level A takes of marine mammals. Based on the above, the fact that no injuries to marine mammals have been documented from seismic survey activities, MMS believes the potential for any injuries to cetaceans from the proposed activity and Alternatives 3 through 6 is very limited, with Alternative 6 providing a slightly greater potential for Level A Harassment as its specified exclusion zone of 180 dB most closely approaches the lower limits of levels set by NMFS for Level A Harassment.

The NMFS' current threshold for Level B Harassment (potential to disturb) for cetaceans is 160 dB. No studies have shown that toothed whales have reacted behaviorally to seismic sound below the 160 dB received sound level. Studies on most baleen whales, except for the bowhead and gray whale, have also not demonstrated behavioral reaction at a received sound level of less than 160 dB. However, data exists showing that gray and bowhead whales may react behaviorally at received sound levels lower than 160 dB. In comparing Alternatives 3 through 6, looking purely at the size of the exclusion zone and assuming the monitoring requirements will be effective, there are differences in the level of potential behavioral impact across these alternatives. The most protective (i.e., resulting in the least potential for takes by Level B Harassment and avoidance of Level A Harassment) would be Alternative 3 as this provides the largest exclusion zone (120 dB) and would apply for all marine mammals. Given the bowhead whale is the only cetacean in the Proposed Action area to show avoidance near the 120 dB received sound levels from impulse sounds and all other cetaceans in the Proposed Action area have generally demonstrated avoidance at higher received sound levels (i.e., 160 to 180 dB), Alternative 3 would result in the least impact to cetaceans and other marine mammals in the Proposed Action area.

After Alternative 3, Alternative 5 would provide the next most protective level for cetaceans. In this alternative, the exclusion zone would be set at 160 dB unless a certain number of bowhead whales (individuals, reproductive-age females, calves) were present, as determined by MMS and NMFS, where the exclusion zone would be changed to 120 dB. The combination of the two exclusion zones under this alternative would provide all cetaceans with additional protective measures but still would provide an exclusion zone at 160 dB (the level set by NMFS beyond which Level B Harassment is more likely to occur) at all remaining times. Therefore, Alternative 5 provides the next most protective alternative for marine mammals.

Alternative 4 follows Alternatives 3 and 5, respectively, in the degree of potential impacts to cetaceans. This alternative sets the exclusion zone at 160 dB at all times, the level set by NMFS beyond which Level B Harassment is more likely to occur. Therefore, the greatest potential for Level B Harassment exists for Alternative 6 where the exclusion zone for cetaceans is set at 180 dB, which exceeds NMFS' 160 dB determination for Level B Harassment (disturbance) and most closely approaches the NMFS determination for Level A Harassment (injury).

While the additional techniques required for Alternatives 3 and 5 would be costly and a larger exclusion zone in theory would provide a much larger, and possibly more difficult, area to monitor, this does not necessarily mean these larger exclusion zones are less effective in limiting impacts to cetaceans for the following reasons: (1) each exclusion zone in Alternatives 3 through 6 would require boat-based visual monitoring (i.e., all observers are scanning areas from the vessel as far as visually possible with appropriate equipment); (2) larger exclusion zones in Alternatives 3 and 5 would by definition require further distance of operating seismic vessels from cetaceans than Alternatives 4 and 6 with smaller exclusion zones; (3) the aerial survey and acoustic monitoring required in Alternatives 3 and 5 (and not in Alternatives 4 and 6) would provide additional coverage further away from the seismic source; and (4) additional mitigation measures would be set in place (i.e., adaptive management schemes where specific areas of higher marine mammal concentrations are avoided on a temporal or spatial basis) should monitoring measures prove ineffective. Therefore, the varying degrees of impact between the alternatives, as discussed in the paragraphs above, remains the same with the greatest to least level of protection from behavioral disturbance being Alternatives 3, 5, 4, and 6 respectively.

*Marine Fissipeds (Polar Bear).* Polar bears are managed by the FWS, and they recently implemented a safety radius for polar bears of 190 dB (USDOI, FWS, 2005). Because any polar bears encountered will most likely be on the ice, air gun effects on them are expected to be minor. If polar bears are encountered in the water, received sound levels would be substantially reduced due to the pressure release effects near the water surface (Richardson et al. 1995a). The most likely impacts to polar bears from seismic surveys and associated activities would be disturbance and possible impacts to bears' food resources. Any impacts of seismic activity to polar bear food resources will probably be minor, local and brief in nature. Bearded and ringed seals are the primary prey of polar bears in the action area, and abundance and availability of these seals are not expected to be significantly altered by the proposed seismic surveys and associated activities.

Alternative 6 provides the smallest exclusion zone (180/190 dB) and could be visually monitored by vesselbased observers. As the exclusion zones grow in size, it becomes less likely that the zone can be effectively monitored by vessel-based observers and aircraft-based observers will need to be added (i.e., when 120-dB level is used in Alternatives 3 and 5). Vessel activity should cause only a brief disturbance, with bears resuming normal activities after the vessel passes. Aircraft activity may be more problematic as polar bears often run away from aircraft passing at low altitude (e.g., altitude < 200 m and lateral distance < 400 m). The inclusion of aircraft-based observers has the potential to disturb more polar bears than vesselbased observers alone if the aerial observations are flown at a sufficiently low altitude. Use of the 160-dB exclusion zone in Alternative 4 and in Alternative 5 will provide an intermediate-sized safety zone. For the Chukchi Sea, Alternatives 4 and 5 are essentially identical. The ability of observers to effectively monitor the exclusion zone, and be able to call for a shut-down if polar bears enter the safety zone is critical to the success of the protective measures described in Alternatives 3 through 6.

#### Subsistence-Harvest Patterns

Because no seismic activity would occur under Alternative 1, no impacts to subsistence resources and practices would be expected.

Alternatives 3, 4, 5, and 6 all would have similar impacts on subsistence harvests. Seismic surveys for prelease geophysical exploration activities would be permitted with existing Alaska OCS exploration stipulations and guidelines and additional specific protective measures for marine mammals, including an isopleth-specified exclusion zone. These alternatives would permit seismic surveys in the Beaufort and Chukchi seas and incorporate standard G&G-permit stipulations and additional protective measures to ensure that fish, wildlife, and subsistence-harvest resources and practices are not adversely impacted. An inability to effectively perform mitigation measures would result in the suspension of a G&G permit until such time that the protective measures can be successfully performed and demonstrated. Theoretically, the larger the exclusion zone coupled with shut-down procedures, the greater protection of marine mammals from potential harassment and injury. Therefore, the 120-dB isopleth-exclusion zone would afford more protection from harassment and injury for marine mammals than the 180/190-dB isopleth-exclusion zone.

An operator could propose to conduct seismic-survey activity in an area critical to whaling during the whaling season; however, if this condition did occur, potential conflict could be mitigated by the cessation of activities during the whale migration. Because fall ice conditions are not predictable events, user conflicts between vessels and whalers due to bad ice conditions might be more difficult to mitigate. Presently, individual companies are coordinating with the whalers through the auspices of the AEWC. Such coordination was a requirement under MMS leases for Beaufort and Chukchi Sea Sales 97,109, 144, 170, 186, and 195. The working protocol is for the company to submit a plan of cooperation as a part of their exploration plan. Seismic surveying requires submission of a letter stating that cooperation will occur.

Required mitigation similar to the lease-specific Stipulations No. 4 - Industry Site-Specific Bowhead Whale-Monitoring Program and Stipulation No. 5 - Conflict Avoidance Mechanisms to Protect Subsistence Whaling and Other Subsistence Activities and conflict avoidance measures defined in an IHA would specify any noise-monitoring program for marine mammals required for ongoing seismic operations in the Chukchi Sea and would be considered through the Peer Review Workshop meetings. Because permittees usually seek a Letter of Authorization (LOA) or IHA for incidental take from the NMFS, the monitoring program and review process required under the LOA or IHA generally will satisfy the requirements of Stipulations 4 and 5. Any potential monitoring program would be designed to: (1) assess when bowhead and beluga whales, walrus, and bearded seals are present in the vicinity of potential operations and the extent of behavioral effects on these species due to operations; (2) consider the potential scope and extent of impacts that the particular type of operation could have on these species; and (3) address local subsistence hunters' concerns and integrate Inupiat traditional knowledge.

Stipulations and required mitigation and conflict avoidance measures under MMP authorization as defined by NMFS and FWS should be followed in locations where the subsistence hunt is affected. The MMPA authorization obligates operators to demonstrate no unmitigable adverse impacts on subsistence practices. Conflict avoidance agreements between Permittees and the AEWC work toward avoiding unreasonable conflicts and disturbances to hunters and bowhead whales. Similar avoidance measures could be required for the subsistence beluga whale hunt by the Alaska Beluga Whale Committee (ABWC), for the subsistence walrus hunt by the Alaska Eskimo Walrus Commission (EWC), and for the subsistence polar bear harvest by the Nanuk Commission (NC). Such conflict avoidance agreements likely would follow protocols similar to those reached annually between Permittees and the AEWC for the subsistence bowhead hunt and address industry seismic-vessel activities under provisions of the MMPA. The AEWC prefers to negotiate a conflict avoidance agreement with industry on an annual basis using a regional rather than a project-specific approach, so as to address potential impacts from all ongoing projects. With the use of the conflict avoidance agreement methodology, Native subsistence-whale hunters generally have been successful in reaching their annual whale "take" quotas.

For MMS-permitted seismic surveys, NMFS- and FWS-sanctioned observers, usually local Alaskan Natives and biologists employed by the monitoring contractor, are onboard survey vessels. These

observers stop seismic operations when they observe marine mammals within the safety radius designated by the NMFS. Shut down of the airguns occurs if marine mammals are within this radius because of concern about possible effects on marine mammal hearing sensitivity (USDOI, MMS, 2003a).

# **Sociocultural Environment**

Because no seismic-survey activity would occur (Alternative 1), no impacts to subsistence resources and practices and consequent impacts on sociocultural systems would be expected. However, if other nonseismic field techniques are proposed to be used, they would require additional environmental analysis.

Seismic surveys for geophysical exploration activities covered in Alternatives 3, 4, 5, and 6 would be permitted with existing Alaska OCS exploration stipulations and guidelines and additional specific protective measures, including a specified isopleth-exclusion zone (either 120 dB, 160 dB, 120 dB and 160 dB, or 180/190 dB). Additional protective measures (beyond the existing Alaska OCS exploration stipulations and guidelines) would be identified and incorporated into these alternatives to ensure that fish, wildlife, and subsistence-harvest resources and practices are not adversely impacted. An inability to effectively perform mitigation measures will result in the suspension of a G&G permit until such time that the protective measures can be successfully performed and demonstrated.

Avoidance planning, stipulations and required mitigation, and conflict avoidance measures under MMPA authorization are defined by NMFS and FWS and made a part of each alternative would serve collectively to mitigate disturbance effects on Native lifestyles and subsistence practices and would likely mitigate any consequent impacts on sociocultural systems.

To ensure compliance with the MMPA, MMS also is requiring seismic-survey operators to obtain from NMFS and FWS an Incidental Take Authorization (ITA), which could be in the form of an IHA or LOA, before commencing MMS-permitted seismic-survey activities. The ITA's mitigation and monitoring requirements would further ensure that impacts to marine mammals will be negligible and that there will be no unmitigable adverse impact on subsistence uses of marine mammals.

To achieve this standard, the seismic operators usually negotiate a Conflict Avoidance Agreement (CAA) with the Alaska Eskimo Whaling Commission and the affected villages' Whaling Captains Association. The CAA likely will include a prohibition on conducting seismic surveys during the bowhead whale-hunting season in the Beaufort Sea, describe a dispute-resolution process, and provide emergency assistance to whalers at sea. Implementation of the CAA further ensures that there will not be significant social or economic impacts on the coastal inhabitants of the Beaufort and Chukchi seas by avoiding an adverse impact on subsistence marine mammal-harvest activities.

## Archaeological Resources

Alternatives 3 through 6 include potential use of ocean bottom cable (OBC) surveys to gather seismic data. The OBC surveys might occur in the Beaufort Sea but are not anticipated to occur in the Chukchi OCS because of its great water depths and the greater efficiency of streamer operations in deep water.

The OBC seismic surveys potentially could impact both prehistoric and historic archaeological resources in waters inshore of the 20-m isobath or in deeper water, if cables are laid from shallow to deep water. Assuming compliance with existing Federal, State, and local archaeological regulations and policies and the application of MMS' G&G Permit Stipulation 6 (regarding the discovery of archaeological resources) and CFR 251.6 (a)(5) regarding G&G Explorations of the Outer Continental Shelf to not "disturb archaeological resources," most impacts to archaeological resources in shallow offshore waters would be avoided.

## **Environmental Justice**

Because no seismic survey activity would occur under Alternative 1 (No Action), no environmental justice impacts would be expected.

Inupiat Natives could be disproportionately affected by any alternative that allows seismic because of their reliance on subsistence foods; and actions under these alternatives could affect subsistence resources and harvest practices. Avoidance planning, stipulations and required mitigation, and conflict avoidance measures under IHA requirements as defined by NMFS and FWS and made a part of each alternative would serve collectively to mitigate disturbance effects on environmental justice. Mitigating measures likely would incorporate traditional knowledge and the cooperative efforts between MMS, the State, the people of the North Slope, and tribal and local governments. With required mitigation and conflict avoidance measures in place, significant impacts to subsistence resources and hunts would not occur as a result of this action, thereby avoiding significant impacts on sociocultural systems and disproportionately high adverse impacts on low income and minority populations in the region.

# **BIBLIOGRAPHY**

Aagaard, K. 1984. Current, CTD, and Pressure Measurements in Possible Dispersal Regions of the Chukchi Sea. OCS Study MMS-84-0069. Anchorage, AK: USDOC, NOAA and USDOI, MMS, pp. 255-333.

Aagaard, K. 1987. Physical Oceanography of the Chukchi Sea: An Overview. Chukchi Sea Information Update. OCS Report MMS 87-0097. Anchorage, AK: USDOC, NOAA, OCSEAP and USDOI, MMS, Alaska OCS Region, pp. 3-10.

Aagaard, K. and A.T. Roach. 1990. Arctic Ocean-Shelf Exchange: Measurements in Barrow Canyon. Journal of Geophysical Research 95:18,163-18,175.

ACIA. 2004. Impacts of a Warming Arctic: Arctic Climate Impact Assessment. Cambridge: Cambridge University Press.

ACIA. 2005. Arctic Climate Impact Assessment. Cambridge: Cambridge University Press, www.acia.uaf.edu.

Acoustic Ecology Institute. 2005. Seismic Surveys at Sea: The Contributions of Airguns to Ocean Noise. Santa Fe, NM: Acoustic Energy Institute, 9 pp.

Agler, B.A., R.L. Schooley, S.E. Frohock, S.K. Katona, and L.E. Seipt. 1993. Reproduction of Photographically Identified Fin Whales, *Balaenoptera physalus*, from the Gulf of Maine. J. Mamm. 74:577-587.

Agnasagga, L. 1986. Public Hearing on Beaufort Sea Oil and Gas Lease Sale (Sale 97), Wainwright, Ak., Dec. 9, 1986. Anchorage, AK: USDOI, MMS, Alaska OCS Region.

Ahmaogak, F. 1987. Public Hearing on Chukchi Sea Sale 109, Wainwright, Ak., Apr. 15, 1987. Anchorage, AK: USDOI, MMS, Alaska OCS Region.

Ahmaogak, G., Sr. 2004. Keynote address at the Alaska Forum on the Environment, Feb. 2004. http://www.nativescience.org/assets/Documents/PDF% 20Documents/MayorAFEspeech2004.pdf on 7/26/2006.

Ahmaogak, G.N. 1989. Protecting the Habitat of the Bowhead Whale. *In:* Proceedings of the Sixth Conference of the Comite Arctique International, L. Rey and V. Alexander, eds. Netherlands: E.J. Brill, pp. 593-597.

Aiken, J. 1997. Testimony at the Public Scoping Meeting for the NE NPR-A IAP/EIS, Barrow, Mar. 17, 1997. Anchorage, AK: USDOI, BLM, 25 pp.

Ainley, D.G., D.R. Grau, T.E. Roudybush, S.H. Morrell, and J.M. Utts. 1981. Petroleum Ingestion Reduces Reproduction in Cassin's Auklets. *Marine Pollution Bulletin* 12:314-317. AITC. 2006. Alaska Inter-Tribal Council Press Release on Indigenous Peoples' and Nations' Coalition. http://www.aitc.org/site\_documents/Geneva%20Press%2 0Release.pdf.

Alaska Beluga Whale Committee. 2002. E-mail dated Jun. 6, 2002, from K. Frost to M. Burwell, MMS Alaska OCS Region; subject: harvest figures for beluga whales at Point Lay and Wainwright.

Alaska Beluga Whale Committee. 2006. Email dated March 6, 2006, to Michael Burwell, MMS Alaska OCS Region from Kathy Frost, State of Alaska, Dept. of Fish and Game; subject: updated beluga whale subsistenceharvest information for the communities of Barrow, Wainwright, Point Lay, Point Hope, and Kivalina from 1980 through 2005.

Alaska Climate Research Center. 2005. Temperature Change in Alaska: 1949-2004. <a href="http://climate.gi.alaska.edu/ClimTrends/Change/4904C">http://climate.gi.alaska.edu/ClimTrends/Change/4904C</a> hange.html>Nov. 29, 2005.

Alaska Consultants, Inc. 1981. Detailed Socio-economic Information, North Slope Borough Traditional Communities. Anchorage, AK: USDOI, BLM.

Alaska Consultants, Inc. and S.R. Braund and Associates. 1984. Subsistence Study of Alaska Eskimo Whaling Villages. Anchorage, AK: USDOI, MMS, Alaska OCS Region, Socioeconomic Studies Program, 248 pp. plus appendices.

Alaska Consultants, Inc., C.S. Courtnage, and S.R. Braund and Assocs. 1984. Barrow Arch Socioeconomic and Sociocultural Description. Technical Report 101. Anchorage, AK: USDOI, MMS, Alaska OCS Region, 641 pp.

Alaska Eskimo Whaling Commission. 1993. Fall Bowhead Harvest Report. AEWC in compliance with the NOAA/AEWC Agreement. Barrow, AK: AEWC.

Alaska Eskimo Whaling Commission. 1994. Fall Bowhead Harvest Report. Barrow, AK: AEWC.

Alaska Eskimo Whaling Commission. 1995. Fall Bowhead Harvest Record. Barrow, AK: AEWC.

Alaska Native Health Board, Inc. 1999. Alaska Pollution Issues. Anchorage, AK: Alaska Native Health Board.

Alaska Native Health Board, Inc. 2002. Alaska Pollution Issues Update. Anchorage, AK: Alaska Native Health Board.

Alaska Native Medical Center (ANMC) Diabetes Program. 2006. Diabetes Maps. Accessed online on Dec. 13, 2006, at http://www.anmc.org/services/diabetes/epidemiology/Pre valence.cfm

- Alaska Native Oil and Gas Working Group. 2003. Hit First and Hit Hardest: Global Warming, the Oil Industry and Alaska Natives. Berkeley, CA: Indigenous Mining Campaign Project, 2 pp.
- Alaska Native Tribal Health Consortium (ANTHC). 2006.
  Data accessed online on Dec. 13, 2006, at: http://www.org/cs/dehe/envhlth/ihnjprev/injurydata.cfm
  Anchorage, AK: ANTHC, Dept. of Injury Prevention.
- Alaska Natives Commission. 1994. Joint Federal-State Commission on Policies and Programs Affecting Alaska Natives. Final Report. 3 Vols. Anchorage, AK: Alaska Natives Commission.
- Alaska Report. 1997. ARCO Boosts Estimate of Alpine Field Reserves to 365 Million Barrels of Oil. Alaska Report 4319:1.
- Alaska Scientific Review Group. 2001. Minutes of the Thirteenth Meeting of the Alaska Scientific Review Group. Seattle, WA: USDOC, NOAA, NMML, Alaska Fisheries Science Center, 33 pp.
- Alaska Shorebird Group. 2000. A Conservation Plan for Alaska Shorebirds. Unpublished report. Anchorage, AK: USDOI, FWS, Migratory Bird Management, 47 pp.
- Alaska Shorebird Working Group. 2004. Alaska Shorebird Conservation Plan, 2<sup>nd</sup> ed., B.J. McCaffery and R.E. Gill, Coords. Anchorage, AK: ASWG, 68 pp.
- Albert, T.A., ed. 1981. Some Thoughts Regarding the Possible Effects of Oil Contamination on Bowhead Whales, *Balaena mysticetus. In:* Tissue Structural Studies and Other Investigations on the Biology of Endangered Whales in the Beaufort Sea. OCSEAP Final Report for the period Apr. 1, 1981-Jun. 30, 1981 Vol. 1. Anchorage, AK: USDOI, BLM, Alaska OCS Office, pp. 945-953.
- Allen, K.R. 1980. Conservation and Management of Whales. Seattle, WA: University of Washington Press, 107 pp.
- Allen, M.C. and A.J. Read. 2000. Habitat Selection of Foraging Bottlenose Dolphins in Relation to Boat Density near Clearwater, Florida. *Marine Mammal Science* 16:815-824.
- AMAP. 1997. AMAP Assessment Report Arctic Pollution Issues. Oslo, Norway: Arctic Monitoring and Assessment Program (AMAP), pp. 373-453.
- Ambrose, W., L. Clough, P. Tilney, and L. Beer. 2001. Role of Echinoderms in Benthic Remineralization in the Chukchi Sea. *Marine Biology* 139:937-949.

- American Petroleum Institute. 1997. Bioaccumulation: An Evaluation of Federal and State Regulatory Initiatives. Publication No. 4701. Washington, DC: API, Regulatory and Scientific Affairs.
- Amstrup, S.C. 1993. Human Disturbance of Denning Polar Bears in Alaska. Arctic 463:245-250.
- Amstrup, S.C. 1995. Movements, Distribution, and Population Dynamics of Polar Bears in the Beaufort Sea. Ph.D Dissertation. Fairbanks, AK: University of Alaska, 299 pp.
- Amstrup, S.C., 2000. Polar Bear. In: The Natural History of an Arctic Oil Field: Development and Biota, Chapter 7, J.C. Truett and S.R. Johnson, eds. San Diego, CA: Academic Press, pp. 133-157.
- Amstrup, S.C., 2003. Polar Bear Ursus maritimus. In: Wild Mammals of North America: Biology, Management, and Conservation, G.A. Feldhamer, B. C. Thompson, and J.A. Chapman, eds. Baltimore, MD: Johns Hopkins University Press, pp. 587-610.
- Amstrup, S.C. 2006. Email dated Aug. 31, 2006, from S. Amstrup, U.S. Geological Survey, Anchorage, to J. Wilder, Wildlife Biologist, MMS Alaska OCS Region; subject: cumulative effects on polar bears.
- Amstrup, S.C. and C. Garner. 1994. Polar Bear Maternity Denning in the Beaufort Sea. Journal Wildlife Management 581:1-10.
- Amstrup, S.C. and G.M. Durner. 1995. Survival Rates of Radio-Collared Female Polar Bears and their Dependent Young. *Canadian Journal of Zoology* 73:1312-1322.
- Amstrup, S.C. and D.P. DeMaster. 1988. Polar Bear. In: Selected Marine Mammals of Alaska: Species Accounts with Research and Management Recommendations, J.W. Lentfer, ed. Washington, DC: Marine Mammal Commission, pp. 39-56.
- Amstrup, S.C., G.M. Durner, and T.L. McDonald. 2000. Estimating Potential Effects of Hypothetical Oil Spills from the Liberty Oil Production Island on Polar Bears. Anchorage, AK: U.S. Geological Survey, Biological Resource Div., 42 pp.
- Amstrup, S.C., K.C. Myers, and F.K. Oehme. 1989. Ethylene Glycol (Antifreeze) Poisoning in a Free-Ranging Polar Bear. Veterinary and Human Toxicology 31:317-319.
- Amstrup, S.C., G.M. Durner, I. Stirling, and T.L. McDonald. 2005. Allocating Harvest among Polar Bear Stocks in the Beaufort Sea. *Arctic* 58:247-259.

Amstrup, S.C., G.M. Durner, G. York, E. Regehr, K.S. Simac, D. Douglas, T.S. Smith, S.T. Partridge, T. O'Hara, T. Bentzen, and C. Kirk. 2006. USGS Polar Bear Research in the Beaufort Sea, 2005. PBTC Meeting, St. Johns, Newfoundland, February 2006.

Anchorage Daily News. 1993. BP Highlights Warming in Alaska in its Own Advertising. Anchorage, AK: Anchorage Daily News, 1 p.

Anchorage Daily News. 1997. UAF Scientist Reports Loss of Permafrost. Anchorage, AK: Anchorage Daily News.

Anchorage Daily News. 1999. Alpine Oil Outlook Improves
– Developers Peg Field Reserves at 429 Million
Barrels. Anchorage, AK: Anchorage Daily News, Sec.
B, p. B-6 to B-7.

- Andersen, M., E. Lie, A.E. Derocher, S.E. Belikov, A. Bernhoft, A.N, Boltunov, G.W. Garner, J.U. Skaare, and O. Wiig. 2001. Geographic Variation of PCB Congeners in Polar Bears (*Ursus maritumus*) from Svalbard East to the Chukchi Sea. *Polar Biology* 244:231-238.
- Anderson, P. and G. Weller. 1995. Preparing for an Uncertain Future: Impacts of Short- and Long-Term Climate Change on Alaska. Proceedings of a workshop held during the Arctic Science Conference, Fairbanks, Ak., September 1995. Fairbanks, AK: University of Alaska, Fairbanks, Center for Global Change and Arctic System Research.
- Andres, B.A. 1994. Coastal Zone Use by Postbreeding Shorebirds in Northern Alaska. Journal of Wildlife Management 582:206-213.
- Andrew, R.K., B.M. Howe, J.A. Mercer, and M.A. Dzieciuch. 2002. Ocean Ambient Sound: Comparing the 1960's with the 1990's for a Receiver off the California Coast. Acoustics Research Letters Online, April 2002 3(2):65-70.
- Andriyashev, A.P. 1955. A Contribution to the Knowledge of the Fishes from the Bering and Chukchi Seas, L. Lanz and N.J. Wilimovsky, translators. Washington, DC: USDOI, FWS.
- Andriyashev, A.P. 1970. Cryopelagic Fishes of the Arctic and Antarctic and their Significance in Polar Ecosystems. *In: Antarctic Ecology*, M.W. Holdgate, ed. London: Academic Press, Inc.
- Angashuk, M. 1998. Public Hearing on the Northeast National Petroleum Reserve-Alaska Integrated Activity Plan/Environmental Impact Statement, Wainwright, Ak., Jan. 27, 1998. Anchorage, AK: USDOI, BLM.

Angerbjorn, A., B. Arvidson, E. Noren, and L. Stromgren. 1991. The Effect of Winter Food on Reproduction in the Arctic Fox, *Alopex Lagopus*: A Field Experiment. *Journal of Animal Ecology* 60:705-714.

- Angliss, R.P. and A.L. Lodge. 2002. Alaska Marine Mammal Stock Assessments, 2002. Final report. Seattle, WA: USDOC, NMFS, 193 pp.
- Angliss, R.P. and A.L. Lodge. 2003. Final 2003 Alaska Marine Mammal Stock Assessment. Juneau, AK: USDOC, NOAA, NMFS.
- Angliss, R.P. and A.L. Lodge. 2004. Alaska Marine Mammal Stock Assessments, 2003. NOAA Technical Memo NMFS-AFSC-144. Juneau, AK: USDOC, NMFS, Alaska Fisheries Science Center.
- Angliss, R.P. and A.L. Outlaw. 2007. Alaska Marine Mammal Stock Assessments, 2006. NOAA Technical Memo NMFS SAFSC-168. Seattle, WA: NMFS, NMML, 244 pp.
- Angliss, R.P. and R. Outlaw, eds. 2005. Draft Alaska Marine Mammal Stock Assessments 2005. Report SC-CAMLR-XXIV. Seattle, WA: National Marine Mammal Lab., Alaska Fisheries Science Center.
- Angliss, R.P., D.P. DeMaster, and A.L. Lopez. 2001. Alaska Marine Mammal Stock Assessments, 2001. Seattle, WA: USDOC, NOAA, NMFS, and AFSC, 203 pp.
- Anthony, L.L. and D.T. Blumstein. 2000. Integrating Behavior into Wildlife Conservation: The Multiple Ways that Behaviour Can Reduce Ne. *Biological Conservation* 95:303-315.
- Anthony, R.M., N.M. Barten, and P.E. Seiser. 2000. Foods of Arctic Foxes (*Alopex lagopus*) During Winter and Spring in Western Alaska. *Journal of Mammalogy* 813:820-828.
- Archibald, W.R., R. Ellis, and A.N. Hamilton. 1987. Responses of Grizzly Bears to Logging Truck Traffic in the Kimsquit River Valley, British Columbia. *In:* Seventh International Conference on Bear Research and Management, P. Zager, ed. Williamsburg, Va., Feb. 1986. Knoxville, TN: University of Tennessee, pp. 251-257.
- Arctic Circle. 2007. Global Change Implications for the North at http://arcticcircle.uconn.edo/NatResources/Globalchange /globalindex.html
- Arctic Science Journeys. 2001. Alaska Feels the Heat. Radio Script. Fairbanks, AK: University of Alaska, Fairbanks, 4 pp.

ARCUS (Arctic Research Consortium of the United States). 1997. People and the Arctic: The Human Dimensions of the Arctic System, Prospectus for Research. Fairbanks, AK: University of Alaska Fairbanks, ARCUS, pp. 1-2.

Arnold, R.D. 1978. Alaska Native Land Claims. Anchorage, AK: Alaska Native Foundation.

- Arundale, W.H. and W.S. Schneider. 1987. *Quliaqtuat Nunaninnin*: The Report of the Chipp-Ikpikpuk River and Upper Mead River Oral History Project. Barrow, AK: North Slope Borough, Commission on History, Language, and Culture.
- Assai, M., S. Siddiqi, and S. Watts. 2006. Tackling Social Determinants of Health Through Community Based Initiatives. *British Medical Journal* 333:854-856 (downloaded from BMJ.com on 1/3/2007).
- Associated Press. 2004. Village Must Show Heritage to Get Bowhead Whale Quota. Associated Press.
- Au, W.W.L. 1993. *The Sonar of Dolphins*. New York: Springer-Verlag.
- Augerot, X. 2005. *Atlas of Pacific Salmon*. Berkeley, CA: University of California Press.
- Aveoganna, J.A. 1987. Public Hearing on Chukchi Sea Sale 109, Wainwright, Ak., Apr. 15, 1987. Anchorage, AK: USDOI, MMS, Alaska OCS Region.
- Avery, M.L., P.F. Springer, and N.S. Dailey. 1980. Avian Mortality at Man-Made Structures: An Annotated Bibliography (Revised). FWS/OBS-80/54.
  Washington, DC: USDOI, FWS, Office of Biological Services, National Power Plant Team, 152 pp.
- Babaluk, J.A., J.D. Reist, J.D. Johnson, and L. Johnson. 2000. First Records of Sockeye Salmon (*Oncorhynchus nerka*) and Pink Salmon (*O. gorbuscha*) from Banks Island and Other Records of Pacific Salmon in Northwest Territories, Canada. *Arctic* 53(2):161-164.
- Bailey, A.M. 1948. Birds of Arctic Alaska. Popular Series No. 8. Denver, CO: Colorado Museum of Natural History, 317 pp.
- Bain, D.E., B. Kriete, and M.E. Dahlhiem. 1993. Hearing Abilities of Killer Whales (Orcinus orca). Journal of the Acoustical Society of America 94 pt. 2:1929.

Balcomb, J. 2006. Diabetes and Modernization of the Alaskan and Canadian Inuit. Power point presentation. Accesses online 11/13/2006, at http://www.as.ua.edu/ant/bindon/ant476/papers/Balcom b.pdf Ballard, W.B., M.A. Cronin, and H.A. Whitlaw. 2000. Caribou and Oil Fields. The Natural History of an Arctic Oil Field Development and the Biota, J.C. Truett and S.R. Johnson, eds. San Diego, CA: Academic Press, pp. 85-104.

- Ballew, C., A.R. Ross, K. Hamrick, and E.D. Nobmann. 2006. The Contribution of Subsistence Foods to the Total Diet of Alaska Natives in 13 Rural Communities. *Ecology of Food and Nutrition* 45:1-26.
- Barber, W.E., R.L. Smith, and T.J. Weingartner. 1994.
  Fisheries Oceanography of the Northeast Chukchi Sea –
  Final Report. OCS Study MMS 93-0051. Anchorage,
  AK: USDOI, MMS, Alaska OCS Region.
- Barger, J.E. and W.R. Hamblen. 1980. The Airgun Impulsive Underwater Transducer. J. Acoust. Soc. Am. 684:1038-1045.
- Barlow, J. 1995. The Abundance of Cetaceans in California Waters. Part I. Ship Surveys in Summer and Fall of 1991. Fishery Bulletin 93:1-14.
- Barlow, J., K.A. Forney, P.S. Hill, R.L.Brownell, Jr., J.V. Carretta, D.P. DeMaster, F. Julian, M. Lowry, T. Regan, and R.R. Reeves. 1997. U.S. Pacific Marine Mammal Stock Assessments: 1996. NMFS-SWFSC-219. Seattle, WA: USDOC, NOAA, NMFS.
- Barry, R. G. 1979. Study of Climatic Effects on Fast Ice Extent and its Seasonal Decay along the Beaufort-Chukchi Coasts. Environmental Assessment of the Alaskan Continental Shelf. Final Reports of Principal Investigators, Vol. 2 Physical Science Studies (Mar. 1979). Boulder, CO and Anchorage, AK: USDOC, NOAA and USDOI, BLM, pp. 272-376.
- Barry, R.G., R.E. Moritz, and J.C. Rogers. 1979. The Fast-Ice Regimes of the Beaufort and Chukchi Sea Coasts, Alaska. *Cold Regions Science and Technology* 1:129-151.
- Barry, T.W. 1968. Observations on Natural Mortality and Native Use of Eider Ducks along the Beaufort Sea Coast. *Canadian Field-Naturalist* 82:140-144.
- Barry, T.W. 1986. Eiders of the Western Canada Arctic. *In*: Eider Ducks in Canada, A. Reed, ed. CWS Report Series No. 47. Ottawa, Ont., Canada: Canadian Wildlife Series, pp. 74-80.
- Beale, C.M. and P. Monaghan. 2004a. Behavioural Responses to Human Disturbance: A Matter of Choice? *Animal Behavior* 68:1065-1069.
- Beale, C.M. and P. Monaghan. 2004b. Human Disturbance: People as Predation-Free Predators? *Journal of Applied Ecology* 41:335-343.

Beauplet, G., C. Barbraud, M. Chambellant, and C. Guinet. 2005. Interannual Variation in the Post-Weaning and Jvenile Survival of Subantarctic Fur Seals: Influence of Pup Sex, Growth Rate, and Oceanographic Conditions. J. Animal Ecology 74:1160-1172.

Bechet, A., U.J.-L. Martin, P. Meister, and C. Rabouam. 2000. A Second Breeding Site for Ross' Gull (*Rhodostethia rosea*) in Nunavut, Canada. *Arctic* 433:234-236.

Becker, P.R. 2000. Concentrations of Chlorinated Hydrocarbons and Heavy Metals in Alaska Arctic Marine Mammals. *Marine Pollution Bulletin* 4010:819-829.

Becker, P.R., ed. 1987. Proceedings of a Synthesis Meeting: The Diapir Field Environment and Possible Consequences of Planned Offshore Oil and Gas Development, Chena Hot Springs, Ak., Jan. 25-28, 1983. Anchorage, AK: USDOI, MMS, Alaska OCS Region.

Becker, P.R., E.A. Mackey, M.M. Schantz, R. Demiralp, R.R. Greenberg, B.J. Koster, S.A. Wise, and D.C.G. Muir. 1995. Concentrations of Chlorinated Hydrocarbons, Heavy Metals and Other Elements in Tissues Banked by the Alaska Marine Mammal Tissue Archival Project. OCS Study MMS 95-0036. Silver Spring, MD: USDOC, NOAA, NMFS, and USDOC, National Institute of Standards and Technology.

Beebe, R.G. and A.M. Jensen. 2006. Searching for the Wrecks of the 1871 Whaling Disaster in the Chukchi Sea: A Minimalist Approach to Remote Sensing in Remote Areas. Unpublished report. Barrow, AK: Barrow Arctic Science Consortium.

Begon, M., J.L. Harper, and C.R. Townsend. 1990. *Ecology: Individuals, Populations, and Communities.* Boston: Blackwell Scientific Publications, 945 pp.

Bejder, L., A. Samuels, H. Whitehead, N. Gales, J. Mann, R. Connor, M. Heithaus, J. Watson-Capps, C. Flaherty, and M. Krutzen. 2006. Decline in Relative Abundance of Bottlenose Dolphins Exposed to Long-Term Disturbance. *Conservation Biology* 1791-1798.

Belchansky, G.I., and D.C. Douglas. 2002. Seasonal Comparison Of Sea Ice Concentration Estimates Derived From SSM/I, OKEAN, And RADARSAT Data. Journal of Remote Sensing of the Environnment 81: 67-81.

Belchansky, G.I., D.C. Douglas, and N.G. Platonov. 2004. Duration of the Arctic Sea Ice Melt Season: Regional and Interannual Variability, 1979-2001. *Journal of Climate* 17:67-80. Belchansky, G.I., D.C. Douglas, and N.G. Platonov. 2005. Spatial and Temporal Variations in the Age Structure of Arctic Sea Ice. *Geophysical Research Letters* 32:L18504.

Bengston, J. and M. Cameron. 2003. Marine Mammal Surveys in the Chukchi and Beaufort Seas. *In*: AFSC Quarterly Research Reports July-September 2003. Juneau, AK: USDOC, NOAA, NMFS, Alaska Fisheries Science Center, 2 pp.

Bengtson, J.L., L.M. Hiruki-Raring, M.A. Simpkins, and P.L. Boveng. 2005. Ringed and Bearded Seal Densities in the Eastern Chukchi Sea, 1999-2000. *Polar Biology* 28:833-845.

Bente, P. 2000. Western Alaska Caribou Management, M.V. Hicks, ed. Federal Aid in Wildlife Restoration, Annual Report 1 July to 30 June 2000, Grant W-27-3 Study 3.0. Juneau, AK: State of Alaska, Dept. of Fish and Game, Div. of Wildlife Conservation.

Berger, T.R. 1985. Village Journey - The Report of the Alaska Native Review Commission. New York: Hill and Wang.

Bergerud, A.T. 1974. The Role of the Environment in the Aggregation, Movement and Disturbance Behavior of Caribou. In: The Behaviour of Ungulates and its Relation to Management: The Papers of a Symposium, Nov. 2-5, 1971. Sacramento, CA: Sacramento State University.

Bergerud, A.T. 1984. The Role of the Environment in the Aggregation, Movement, and Disturbance Behavior of Caribou. In: The Behaviour of Ungulates and its Relation to Management, V. Geist and F. Walter, eds. Vol. 2. New Series, No. 2. Gland, Switzerland: International Union for the Conservation of Nature, pp. 552-584.

Bergerud, A.T. 1987. An Assessment of Petroleum on the Status of the Porcupine Caribou Herd. *In*: Arctic National Wildlife Refuge, Alaska Coastal Plain Resource Assessment. Report and Recommendation to the Congress of the U.S. and Final Legislative Environmental Impact Statement Vol. 2 Appendix, Public Comments and Responses. Washington, DC: USDOI, FWS, pp 4-19.

Bergerud A.T. and J.P. Elliot. 1986. Dynamics of Caribou and Wolves in Northern British Columbia. *Canadian Journal Zoology* 64:1515-1529.

Bergerud, A.T., R.D. Jakimchuk, and D.R. Carruthers. 1984. The Buffalo of the North: Caribou (*Rangifer tarandus*) and Human Developments. *Arctic* 37(1):7-22.

Berner, J. 2002. What's Hot and What's Not. Overhead presentation at the Alaska Tribal Conference on Environmental Management. Anchorage, AK: Alaska Native Health Board.

- BESIS Project Office. 1997. The Impacts of Global Climate Change in the Bering Sea Region. An Assessment Conducted by the Arctic Science Committee under its Bering Sea Impact Study (BESIS), Results of a Workshop, Girdwood, Ak., Sept. 18-21, 1996.
  Fairbanks, AK: University of Alaska, Fairbanks, BESIS Project Office.
- Besse, R.W. 1983. Environment, Subsistence Patterns, and Socioeconomic Alternatives among the NANA Inupiaq of Northwest Alaska. Ph.D. Dissertation. Urbana-Champaign, IL: University of Illinois.
- Best, R.C. 1982. Thermoregulation in Nesting and Active Polar Bears. *Journal of Comparative Physiology* 146:63-73.
- Betts, M. 1997. Subsistence Harvest and Use Patterns for Rampart, Tanana, Stevens Village, Manley Hot Springs-Eureka, and Minto, Alaska. Northern land Use Research Report 59. Fairbanks, AK: Northern land Use.
- Betts, R.C., C.B. Wooley, C.M. Mobley, J.D. Haggarty, and A. Crowell. 1991. Site Protection and Oil Spill Treatment at SEL-188, an Archaeological Site in Kenai Fjords National Park, Alaska. Anchorage, AK: Exxon Company U.S.A., 79 pp. plus bibliography.
- Bielawski, E. 1997. Aboriginal Participation in Global Change Research in Northwest Territories of Canada. *In: Global Change and Arctic Terrestrial Ecosystems*, W.C. Oechel, T. Callaghan, T. Gilmanov, J.I. Holten, B. Maxwell, U. Molau, and B. Sveinbjörnsson, eds. New York: Springer-Verlag.
- Bigg, M.A., 1981. Harbour Seal (*Phoca vitulina* Linnaeus), 1758, and (*Phoca largha* Pallas), 1811. *In: Handbook* of Marine Mammals, S.H. Ridgway and R.J. Harrison, eds. Vol. 2 Seals. New York, NY: Academic Press, 359 pp.
- Biggs, E.D. and T.T. Baker. 1993. Summary of Known Effects of the *Exxon Valdez* Oil Spill on Herring in Prince William Sound, and Recommendations for Future Inquiries. *In: Exxon Valdez* Oil Spill Symposium, Abstract Book, B. Spies, L.J. Evans, B. Wright, M. Leonard, and C. Holba, eds. and comps. Anchorage, Ak., Feb. 2-5, 1992. Anchorage, AK: *Exxon Valdez* Oil Spill Trustee Council; University of Alaska Sea Grant College Program; and American Fisheries Society, Alaska Chapter, pp. 264-267.
- Bingham, C. 1998. Researchers Find Whaling Ships that Sank in 1871. *Arctic Sounder* 1:9.
- Birkhead, T.R. 1976. Breeding Biology and Survival of Guillemots (*Uria aalge*). Ph.D. Dissertation. Oxford, UK: Oxford University, 204 pp.

- Bittner, J.E. 1993. Cultural Resources and the Exxon Valdez Oil Spill. In: Exxon Valdez Oil Spill Symposium, Abstract Book, B. Spies, L.J. Evans, B. Wright, M. Leonard, and C. Holba, eds. and comps. Anchorage, Ak., Feb. 2-5, 1992. Anchorage, AK: Exxon Valdez Oil Spill Trustee Council; University of Alaska Sea Grant College Program; and American Fisheries Society, Alaska Chapter, pp. 13-15.
- Bjerregaard, P. 2001. Rapid Socio-Cultural Change and Health in the Arctic. International Journal of Circumpolar Health 60(2):102-111.
- Bjerregaard, P., M. Jorgensen et al. 2004a. Serum Lipids of Greenland Inuit in Relation to Inuit Genetic Heritage, Westernization, and Migration. *Atherosclerosis* 174:391-398.
- Bjerregaard, P., T. Young et al. 2004b. Indigenous Health in the Arctic: An Overview of the Circumpolar Inuit Population. Scandinavian Journal of Public Health 32:390-395.
- Black, A. 2005. Light Induced Seabird Mortality on Vessels Operating in the Southern Ocean: Incidents and Mitigation Measures. *Antarctic Science* 171:67-68.
- Blackwell, S.B. 2003. Sound Measurements, 2002 Open-Water Season. Chapter 6. *In*: Monitoring of Industrial Sounds, Seals, and Bowhead Whales near BP's Northstar Oil Development, Alaskan Beaufort Sea, 1999-2002, W.J. Richardson and M.T. Williams, eds. LGL Report TA2705-2. Anchorage, AK and Silver Spring, MD: BPXA and NMFS.
- Blackwell, S.B. and C.R. Greene, Jr. 2002. Acoustic Measurements in Cook Inlet, Alaska during August 2001. Greenridge Report 271-1. Anchorage, AK: USDOC, NMFS, Protected Resources Div.
- Blackwell, S.B. and C.R. Greene, Jr. 2004. Sounds from Northstar in the Open-Water Season: Characteristics and Contribution of Vessels. *In:* Monitoring of Industrial Sounds, Seals, and Bowhead Whales near BP's Northstar Oil Development, Alaskan Beaufort Sea, 1999-2003, W.J. Richardson and M.T. Williams, eds. LGL Report TA4002-4. Anchorage, AK: BPXA, Dept. of Health, Safety, and Environment.
- Blackwell, S.B., C.R. Greene, Jr., and W.J. Richardson. 2004. Drilling and Operational Sounds from an Oil Production Island in the Ice-Covered Beaufort Sea. *Journal of the Acoustical Society of America* 116:3199-3219.
- Blazey, B., A. Mahoney, and H. Eicken. 2005. Landfast Ice Breakouts on the Northern Alaskan Coast. *In*: AGU Fall Meeting 2005, San Francisco, Calif., Dec.5-9, 2005. Washington, D.C.: American Geophysical Union.

Boehlert, G.W. and A. Genin. 1987. A Review of the Effects of Seamounts on Biological Processes. *In*: Seamounts, Islands, and Atolls, B.H. Keating, P. Fryer, R. Bariza, and G.W. Boehlert, eds. Geophysical Monographs 43. Washington, DC: American Geophysical Union, pp. 319-334.

Boehm, P.D., M.S. Steinhauer, E.A. Crecelius, J. Neff, and C. Tuckfield. 1987. Analysis of Trace Metals and Hydrocarbons from Outer Continental Shelf (OCS) Activities. OCS Study MMS 1987-0072. Anchorage, AK: USDOI, MMS, Alaska OCS Region.

Bond, W.A. 1987. A Background Paper on the Anadromous Coregonic Fishes of the Lower Mackenzie River and Southern Beaufort Sea. *In:* Report of the Canada-United States-Alaska Arctic Fisheries Workshop, Banff, Alb., Canada, Dec. 1-4, 1986. Ottawa, Ont., Canada: Regulatory and Native Affairs, Dept of Fisheries and Oceans, Central and Arctic Region.

Borenstein, S. 2003. Heat is On in Alaska. Rising Temperatures in Arctic May Preview the Future of Climate in Southern Zones. *The Mercury News*. www.bayarea.com/mid/mercurynews/living/health/656 401.html

Born, E.W., F.F. Riget, R. Dietz, and D. Andriashek. 1999. Escape Responses of Hauled Out Ringed Seals (*Phoca hispida*) to Aircraft Disturbance. *Polar Biology* 21:171-178.

Boyd, T., M. Steele, C. Muench, and J.T. Gunn. 2002. Partial Recovery of the Arctic Ocean Halocline. *Geophysical Research Letters* 29(14):1657.

- BP Exploration (Alaska), Inc. 1998. Letter dated Sept. 11, 1998, from P. Hanley, Supervisor, HSE-Alaska, BPXA, to J. Walker, Regional Supervisor, Field Operations, MMS, Alaska OCS Region; subject: Liberty Development (OCS-Y-1650) additional information requests by MMS analysts.
- BP Exploration (Alaska), Inc. 2005. Oil Discharge Prevention and Contingency Plan, Northstar Operations, North Slope, Alaska. Revision 11. Anchorage, AK: BPXA.
- Brackney, A.W. and R.M. Platte. 1986. Habitat Use and Behavior of Molting Oldsquaw on the Coast of the Arctic National Wildlife Refuge, 1985. *In*: 1985 Update Report Baseline Study of the Fish, Wildlife, and their Habitats. Anchorage, AK: USDOI, FWS.

Bradford, A.L., P.R. Wade, D.W. Weller, A.M. Burdin, Y.V. Ivashchenko, G.A. Tsidulko, G.R. vanBlaricom, and L. Brownell, Jr. 2006. Survival Estimates of Western Gray Whales *Eschrichtius robustus* Incorporating Individual Heterogeneity and Temporary Emigration. *Marine Ecology Progress Series* 315:293-307. Bradley, C. 2002. Traveling with Fred George: The Changing Ways of Yup'ik Star Navigation in Akiachak, Western Alaska. In: The Earth is Faster Now. Indigenous Observations of Arctic Environmental Change, I. Krupnik and D. Jolly, eds. Fairbanks, AK: Arctic Research Consortium of the United States.

Bradstreet, M.S.W. 1982. Occurrence, Habitat Use and Behavior of Seabirds, Marine Mammals and Arctic Cod at the Pond Inlet Ice Edge. *Arctic* 34:28-40.

Braham, H.W. 1984. Distribution and Migration of Gray Whales in Alaska. In: The Gray Whale Eschrichtius robustus, M.L. Jones, S.L. Swartz, and S. Leatherwood, eds. Orlando, FL: Academic Press, 600 pp.

Braham, H.W. and M.E. Dahlhiem. 1982. Killer Whales in Alaska Documented in the Platforms of Opportunity Program. Reports of the International Whaling Commission No. 32. Cambridge, UK: IWC, pp. 643-645.

Braham, H.W., J.J. Burns, G.A. Fedoseev, and B. Krogman. 1984. Habitat Partitioning by Ice-Associated Pinnipeds: Distribution and Density of Seals and Walruses in the Bering Sea, April 1976. *In:* Soviet-American Cooperative Research on Marine Mammals. Vol. I -Pinnipeds, F.M. Fay and G.A. Fedoseev, eds. NOAA Technical Report NMFS 12. Seattle, WA: USDOC, NOAA, NMFS, pp. 25-47.

Braithwaite, L.F. 1983. The Effects of Oil on the Feeding Mechanism of the Bowhead Whale. Anchorage, AK: USDOI, BLM and MMS, Alaska OCS Region, 45 pp.

Brand, A.R. and U.A.W. Wilson. 1996. Seismic Surveys and Scallop Fisheries: A Report on the Impact of a Seismic Survey on the 1994 Isle of Man Queen Scallop Fishery. Port Erin, Isle of Man, UK: Port Erin Marine Laboratory.

Brandon, J. and P.R. Wade. 2004. Assessment of the Bering-Chukchi-Beaufort Seas Stock of Bowhead Whales. Unpubl. report submitted to International Whaling Commission (SC/56/BRG20), 32 pp.

Brannon, E.L. and A.W. Maki. 1996. The Exxon Valdez Oil Spill: Analysis of Impacts on the Prince William Sound Pink Salmon. Reviews in Fisheries Science 4:289-337.

Brannon, E.L., L.L. Moulton, L.G. Gilbertson, A.W. Maki, and J.R. Skalski. 1993. An Assessment of Oil Spill Effects on Pink Salmon Populations following the *Exxon* Valdez Oil Spill-Part 1: Early Life History. In: Exxon Valdez Oil Spill: Fate and Effects in Alaskan Waters, Third Symposium on Environmental Toxicology and Risk Assessment: Aquatic, Plant, and Terrestrial, Atlanta, Ga., Apr. 25-28, 1993. Philadelphia, PA: American Society for Testing and Materials, pp. 548-584. Brannon, E.L., L.L. Moulton, L.G. Gilbertson, A.W. Maki, and J.R. Skalski. 1995. An Assessment of Oil Spill Effects on Pink Salmon Populations following the *Exxon Valdez* Oil Spill - Part I: Early Life Hisotry. *In: Exxon Valdez* Oil Spill: Fate and Effects in Alaskan Waters, STP 1219. Philadelphia, PA: American Society for Testing and Materials, pp. 548-584.

Bratton, G.R., C.B. Spainhour, W. Flory, M. Reed, and K. Jayko., 1993. Presence and Potential Effects of Contaminants. *In: The Bowhead Whale*, J.J. Burns, J.J. Montague, and C.J. Cowles, eds. Special Publication of The Society for Marine Mammalogy, 2. Lawrence, KS: The Society for Marine Mammalogy, pp. 701-744.

Bratton, G.R., W. Flory, C.B. Spainhour, and E.M. Haubold. 1997. Assessment of Selected Heavy Metals in Liver, Kidney, Muscle, Blubber, and Visceral Fat of Eskimo Harvested Bowhead Whales *Balaena mysticetus* from Alaska's North Coast. College Station, TX: Texas A&M University, p. 233.

Braund, S.R. 1999. Summary of Subsistence and Traditional Knowledge Interviews, Kivalina, Alaska. Draft report. Anchorage, AK: NANA Regional Corporation and Cominco Alaska, Inc.

Braund, S.R. 2000. Delong Mountain Terminal Resource Use Areas. Preliminary Report DACW85-00-P-0074. Anchorage, AK: U.S. Army Corps of Engineers.

Braund, S.R. 2002. Email dated Apr. 26, 2002, to Michael Burwell, MMS, Alaska OCS Region, from S.R. Braund; subject: updated bowhead whale subsistence harvest information for the communities of Barrow, Nuiqsdut, and Kaktovik from 1996 through 2001.

Braund, S.R. and D.C. Burnham. 1983. Red Dog Mining Project: Kivalina and Noatak Subsistence Use Patterns. Anchorage, AK: Cominco Alaska.

Braund, S.R. and D.C. Burnham. 1984. Subsistence Economics and Marine Resource Use Patterns. *In:* The Barrow Arch Environment and Possible Consequences of Planned Offshore Oil and Gas Development. Proceedings of a Synthesis Meeting, J.C. Truett, ed. Girdwood, Ak., Oct. 30-Nov. 1, 1984. Anchorage, AK: USDOI, MMS, Alaska OCS Region and USDOC, NOAA, OCSEAP.

Brewer, K.D., M.L. Gallagher, P.R. Regos, P.E. Isert, and J.D. Hall. 1993. ARCO Alaska, Inc. Kuvlum #1 Exploration Prospect Site Specific Monitoring Program Final Report. Anchorage, AK: ARCO Alaska, Inc., pp. 1-80.

Brigham, L. and B. Ellis, eds. 2004. Arctic Marine Transport Workshop, Scott Polar Research Institute, Cambridge University, Sept. 29-30, 2004. Anchorage, AK: Circumpolar Infrastructure Task Force, Secretariat at the Institute of the North; United States Arctic Research Commission; International Arctic Science Commission. Brigham-Grette, J. and D.M. Hopkins. 1995. Last Interglacial Sea Level Record and Paleoclimate along the Beringian Gateway of Northwest Alaska. *Quaternary Research* 43:159-173.

Broje, V. and A. Keller. 2006. Optimization of Oleophilic Skimmer Recovery Surfaces: Field Testing at the Ohmsett Facility. Santa Barbara, CA: University of California, Bren School of Environmental Science and Management, 36 pp. http://www.mms.gov/tarprojects/528.htm.

Brower C.D., A. Carpenter, M.L. Branigan, W. Calvert, T. Evans, A.S. Fischbach, J.A. Nagy, S. Schliebe, and I. Stirling. 2002. The Polar Bear Management Agreement for the Southern Beaufort Sea: An Evaluation of the First Ten Years of a Unique Conservation Agreement. *Arctic* 55(4):362-372.

Brower, G. 2005. Testimony of Gordon Brower, Barrow, Alaska, in comments on MMS' 2007-2012 Proposed 5-Year OCS Oil and Gas Leasing Program.

Brower, H. 2002. Testimony at the Subsistence Advisory Panel Meeting, Nuiqsut, Ak., June 6, 2002. Anchorage, AK: USDOI, BLM.

Brower, H. and T. Hepa. 1998. Letter dated Jan. 20, 1998, to Thomas Napageak; subject: a point he raised at the Nuiqsut Public Hearing for the Northeast NPR-A Draft IAP/EIS.

Brower, H., Jr. and R.T. Opie. 1997. North Slope Borough Subsistence Harvest Documentation Project: Data for Nuiqsut, Alaska for the Period July 1, 1994 to June 30, 1995. Barrow, AK: North Slope Borough, Dept. of Wildlife Management.

Brower, H.K., T.P. Olemaun, and R.T. Hepa. 2000. North Slope Borough Subsistence Harvest Documentation Project: Data for Kaktovik, Alaska, for the Period December 1, 1994 to November 30, 1994. Barrow, AK: North Slope Borough, Dept. of Wildlife Management.

Brower, T.P. 1980. *Qiniqtuagaksrat Utuqqanaat Inuuniagninisiqun*: The Traditional Land Use Inventory for the Mid-Beaufort Sea. Vol. I. Barrow, AK: North Slope Borough, Commission on History and Culture.

Brower, W.A., Jr., R.G. Baldwin, Jr., C.N. Williams, J.L. Wise, and L.D. Leslie. 1988. Climatic Atlas of the Outer Continental Shelf Waters and Coastal Regions of Alaska, Vol. I, Gulf of Alaska. Document ID: NAVAIR 50-1C-551; MMS 87-0011. Asheville, NC and Anchorage, AK: USDOD, NOCD; USDOI, MMS, Alaska OCS Region; and USDOC, NOAA, NOS, 530 pp.

Brown, D.L. 2003. Beaufort Sea Relentlessly Eating Away Hamlet in Canada's North. Anchorage, AK: Anchorage Daily News Sec. A, p. A-1. Brown, D.W., D.G. Burrows, C.A. Sloan, R.W. Pearce, S.M. Pierce, J.L. Boulton, K.L. Tilbury, K.L. Dana, S.-L. Chan, and U. Varanasi. 1996. Survey of Alaskan Subsistence Invertebrate Seafoods Collected in 1989-1991 to Determine Exposure to Oil Spilled from the *Exxon Valdez. American Fisheries Society Symposium* 18:844-855.

Brown, S., C. Hickey, B. Harrington, and R. Gill, eds. 2001. The U.S. Shorebird Conservation Plan, 2<sup>nd</sup> ed. Manomet Center for Conservation Sciences.

Brown, W. 1993. Avian Collisions with Utility Structures, Biological Perspectives. *In*: EPRI, Proceedings: Avian Interactions with Utility Structures, International Workshop, pp. 12-13.

Brueggeman, J.J., D.P. Volsen, R.A. Grotefendt, G.A. Green, J.J. Burns, and D.K. Ljungblad. 1991. 1990 Walrus Monitoring Program/The Popcorn, Burger and Crackerjack Prospects in the Chukchi Sea. Houston, TX: Shell Western E&P, Inc.

Brueggeman, J.J., R.A. Grotefendt, M.A. Smultea , G.A.
Green, R.A. Rowlett, C.C. Swanson, D.P. Volsen, C.E.
Bowlby, C.I. Malme, R. Mlawski, and J.J. Burns.
1992. Final Report, Chukchi Sea 1991, Marine
Mammal Monitoring Program (Walrus and Polar Bear)
Crackerjack and Diamond Prospects. Anchorage, AK:
Shell Western E&P Inc. and Chevron U.S.A., Inc.

Brunner, R.D., A.H. Lynch, J.C. Pardikes, E. N. Cassano, L.R. Lestak, and J.M. Vogel. 2004. An Arctic Disaster and its Policy Implications. *Arctic* 57(4):336-346.

Bryce, P., P. Jax, and J. Fang. 2002. Special Report: Leak Detection System Designed to Catch Slow Leaks in Offshore Alaska. *Oil and Gas Journal* 100(50):53-59.

Bryner, W.M. 1995. Toward a Group Rights Theory for Remedying Harm to the Subsistence Culture of Alaska Natives. *Alaska Law Review* 122:293-294.

Bue, B.G., S. Sharr, and J.E. Seeb. 1998. Evidence of Damage to Pink Salmon Populations Inhabiting Prince William Sound, Alaska, Two Generations After the *Exxon Valdez* Oil Spill. *Trans. Am. Fish. Soc.* 1271:35-43.

Bunnell, F.L. and D.E.N. Tait. 1981. Population Dynamics of Bears - Implications. In: Dynamics of Large Mammal Populations, C.W. Fowler and T.D. Smith, eds. New York: Wiley and Sons, pp. 75-98.

Burch, E.S., Jr. 1981. The Traditional Eskimo Hunters of Point Hope, Alaska: 1800-1875. Barrow, AK: North Slope Borough, 89 pp.

Burch, E.S., Jr. 1985. Subsistence Production in Kivalina, Alaska: A Twenty-Year Perspective. Technical Report 28. Juneau, AK: State of Alaska, Dept. of Fish and Game, Subsistence Div. Burch, E.S., Jr. 1998. The Inupiaq Eskimo Nations of Northwest Alaska. Fairbanks, AK: University of Alaska Press.

Burch, E.S., Jr. 1999. Caribou Management in Northwestern Alaska: An Historical Perspective. Unpublished manuscript.

Burger, A.E. and D.M. Fry. 1993. Effects of Oil Pollution on Seabirds in the Northeast Pacific. *In:* The Status, Ecology and Conservation of Marine Birds of the North Pacific, K. Vermeer, K.T. Briggs, K.H. Morgan, and D. Siegel-Causey, eds. CW66-124-1993E. Ottawa, Ont., Canada: Canadian Wildlife Service, pp. 254-263.

Burger, J., L.Niles, and K.E. Clark. 1997. Importance of Beach, Mudflat and Marsh Habitats to Migrant Shorebirds on Delaware Bay. *Biological Conservation* 79:283-292.

Burgess, R.M. 2000. Arctic Fox. Chapter 8. In: The Natural History of an Arctic Oil Field Development and the Biota, J.C. Truett and S.R. Johnson, eds. San Diego, CA: Academic Press, Harcourt Science and Technology, pp. 159-178.

Burgess, R.M. and P.W. Banyas. 1993. Inventory of Arctic Fox Dens in the Prudhoe Bay Region, 1992. Northern Alaska Research Studies. Anchorage, AK: BPXA, p. 89.

Burgess R.M., R. Rose, P.W. Banyas, and B.E. Lawhead. 1993. Arctic Fox Studies in the Prudhoe Bay Unit and Adjacent Undeveloped Areas, 1992. Northern Alaska Research Studies. Anchorage, AK: BPXA, 16 pp.

Burgess, W.C. and C.R. Greene, Jr. 1999. Physical Acoustic Measurements. *In*: Marine Mammal and Acoustical Monitoring of Western Geophysical's Open-Water Seismic Program in the Alaskan Beaufort Sea, 1998, W.J. Richardson, ed. LGL Report TA2230-3. Houston, TX; Anchorage, AK; and Silver Spring, MD: Western Geophysical and USDOC, NMFS, 390 pp.

Burke, C.J. and J.A. Veil. 1995. Potential Environmental Benefits from Regulatory Consideration of Synthetic Drilling Muds. Washington, DC: U.S. Dept. of Energy, Office of Policy.

Burns, J.J. 1981. Ribbon Seal-Phoca fasciata. In: Handbook of Marine Mammals, S.H. Ridgway and R.J. Harrison, eds. Vol. 2 Seals. New York: Academic Press, pp. 89-109.

Burns, J.J. and K.J. Frost. 1979. The Natural History and Ecology of the Bearded Seal (*Erignathus barbatus*). Environmental Assessment of the Alaskan Continental Shelf. Final Reports of Principal Investigators, Vol. 19 (Dec. 1983). Juneau, AK: USDOC, NOAA and USDOI, MMS, pp. 311-392.

- Burns, J.J. and B.P. Kelly. 1982. Studies of Ringed Seals in the Alaskan Beaufort Sea during Winter: Impacts of Seismic Exploration. Annual Report. Juneau, AK: USDOC, NOAA, OCSEAP.
- Burns, J.J. and G.A. Seaman. 1986. Investigations of Belukha Whales in Coastal Waters of Western and Northern Alaska. Final Report 56, Vol. II - Biology and Ecology. Juneau, AK: USDOC, NOAA, OCSEAP, pp. 221-357.
- Burns, J.J., L.H. Shapiro, and F.H. Fay. 1981. Ice as Marine Mammal Habitat in the Bering Sea. *In:* The Eastern Bering Sea Shelf: Oceanography and Resources, D.W. Hood and J.A. Calder, eds. Vol. II. Juneau, AK: USDOC, NOAA, OMPA, and USDOI, BLM, pp. 781-797.
- Burns, W.C.G. 2000. From the Harpoon to the Heat: Climate Change and the International Whaling Commission in the 21<sup>st</sup> Century. Occasional Paper. Oakland, CA: Pacific Institute for Studies in Development, Environment, and Security, 26 pp.
- Burwell, M. 1999. Liberty Project Information Update Meetings, Meeting Notes, Nov. 1-6, 1999, Barrow. Anchorage, AK: USDOI, MMS, Alaska OCS Region.
- Cahill, C. and E. Weatherhead. 2001. Ozone Losses Increase Possible UV Impacts in the Arctic. *Witness the ARCTIC* 8(2):1-2.
- Calambokidis, J., G.H. Steiger, J.M. Straley, T. Quinn, M. Herman, S. Cerchio, D.R. Salden, M. Yamaguchi, F. Sato, J.R. Urban, J. Jacobson, O. von Zeigesar, K.C. Balcomb, C.M. Gabriele, M.E. Dahlheim, N. Higashi, S. Uchida, J.K.B. Ford, Y. Miyamura, P. Ladron de Guevara, S.A. Michroch, L. Schlender, and K. Rasmussen. 1997. Abundance and Population Structure of Humpback Whales in the North Pacific Basin. La Jolla, CA: Southwest Fisheries Science Center, 72 pp.
- Calef, G., E. DeBock, and G. Lortie. 1976. The Reaction of Barren-Ground Caribou to Aircraft. *Arctic* 29:201-212.
- Callaway, D. 1995. Resource Use in Rural Alaskan Communities. In: Human Ecology and Climate Change. People and Resources in the Far North, D.L. Peterson and D.R. Johnson, eds. Washington, DC: Taylor & Francis.
- Callaway, D. 1999. Assessing the Consequences of Climate Change for Alaska and the Bering Sea Region. *In:* Proceedings of a Workshop, Oct. 29-30, 1998, G.
  Weller and P.A. Anderson, eds. Fairbanks, AK: University of Alaska, Fairbanks Center for Global Change and Arctic System Research.
- Callaway, D. 2007. A Changing Climate: Consequences for Subsistence Communities. *Alaska Park Science*, Spring 2007. Anchorage, AK: USDOI, National Park Service.

- Callaway, D., J. Earner, E. Edwardsen, C. Jack, S. Marcy, A. Olrun, M. Patkotak, D. Rexford, and A Whiting. 1999.
  Effects of Climate Change on Subsistence Communities in Alaska. *In:* Assessing the Consequences of Climate Change for Alaska and the Bering Sea Region, G. Weller and P.A. Anderson, eds. Fairbanks, Ak., Oct. 29-30, 1998. Washington, DC: U.S. Global Change Research Program, National Science Foundation, USDOI, and International Arctic Science Committee, pp. 59-74.
- Cameron, R.D. and K.R. Whitten. 1979. Seasonal Movements and Sexual Segregation of Caribou Determined by Aerial Survey. *Journal of Wildlife Management* 43(3):626-633.
- Cameron, R.D., K.R. Whitten, and W.T. Smith. 1981.
  Distribution and Movement of Caribou in Relation to the Kuparuk Development Area. Preliminary Report and Second and Third Interim Reports, 1980-1981. Juneau, AK: State of Alaska, Dept. of Fish and Game.
- Cameron, R.D., K.R. Whitten, and W.T. Smith. 1983.
  Responses of Caribou to Petroleum-Related
  Development on Alaska's Arctic Slope. Federal Aid in
  Wildlife Restoration Research Program Progress Report,
  Vol. VII, Project W-21-2 and W-22-1, Job 3, 18R.
  Juneau, AK: State of Alaska, Dept. of Fish and Game,
  Div. of Game, 75 pp.
- Cameron, R.D., D.J. Reed, J.R. Dau, and W.T. Smith. 1992. Redistribution of Calving Caribou in Response to Oil Field Development on the Arctic Slope of Alaska. *Arctic* 45(4):338-342.
- Cameron R.D., E.A. Lenart, D.J. Reed, K.R. Whitten, and W.T. Smith. 1995. Abundance and Movements of Caribou in the Oilfield Complex near Prudhoe Bay, Alaska. *Rangifer* 15(1):3-8.
- Cameron, R.D., W.T. Smith, R.G. White, and B. Griffith. 2005. Central Arctic Caribou and Petroleum Development: Distributional, Nutritional, and Reproductive Implications. *Arctic* 58:1-9.
- Canadian Department of Fisheries and Oceans (CDFO). 2004c. Potential Impacts of Seismic Energy on Snow Crab. DFO Can. Sci. Advis. Sec. Habitat Status Report 2004/003. Moncton, NB, Canada: Fisheries and Oceans Canada.
- Canadian Department of Fisheries and Oceans (CDFO). 2004d. Review of Scientific Information on Impacts of Seismic Sound on Fish, Invertebrates, Marine Turtles and Marine Mammals. DFO Can. Sci. Advis. Sec. Habitat Status Report 2004/002.
- Cannon, T.C. and L. Hachmeister, eds. 1987. Endicott Environmental Monitoring Program. Integration and Assessment Chapter. Draft report. Anchorage, AK: US Army Corps of Engineers, Alaska District.

- Carder, D.A. and S.H. Ridgway. 1990. Auditory Brainstem Response in a Neonatal Sperm Whale. J. Acoust. Soc. Amer. 88(Suppl.1):S4.
- Carls, M.G., G.D. Marty, and J.E. Hose. 2002. Synthesis of the Toxicological Impacts of the *Exxon Valdez* Oil Spill on Pacific Herring (*Clupea pallasi*) in Prince William Sound, Alaska, U.S.A. *Can. J. Fish. Aquat. Sci.* 59:153-172.
- Carls, M.G., R.A. Heintz, G.D. Marty, and S.D. Rice. 2005. Cytochrome P4501A Indunction in Oil-Exposed Pink Salmon Oncorhynchus gorbuscha Embryos Predicts Reduced Survival Potential. Marine Ecology Progress Series 30(1):253-265.
- Carmack, E., and D.C. Chapman. 2003. Wind-Driven Shelf/Basin Exchange on an Arctic Shelf: The Joint Roles Of Ice Cover Extent And Shelf-Break Bathymetry, *Geophysical Research Letters*, 30(14), 1778, doi:10.1029/2003GL017526.
- Carmack, E.C., R.W. MacDonald, R.G. Perkin, F.A. McLaughlin, and R.J. Pearson. 1995. Evidence for Warming of Atlantic Waters in the Southern Canadian Basin of the Arctic Ocean: Results from the Larsen-93 Expedition. *Geophysical Research Letters* 22:1061-1064.
- Caron, L.M.J. and T.G. Smith. 1990. Philopatry and Site Tenacity of Belugas, *Delphinapterus leucas*, Hunted by the Inuit at the Nastapoka Estuary, Eastern Hudson Bay. *Can. Bull. Fish. Aquat. Sci.* 22(4):69-79.
- Carretta, J.V., J. Barlow, K.A. Forney, M.M. Muto, and J. Baker. 2001. U.S. Pacific Marine Mammal Stock Assessments, 2001. NMFS-SWFSC-300. Seattle, WA: USDOC, NMFS, 276 pp.
- Carroll, G. 1991. Game Management Unit 26A Western North Slope. *In:* Brown Bear, S.M. Abbott, ed.
  Federal Aid Wildlife Restoration Annual Performance Report of Survey-Inventory Activities 1 July 1990- 30 June 1991 XXII, Part V Project W-23-4, Study 4.0.
  Juneau, AK: State of Alaska, Dept. of Fish and Game, Div. of Wildlife Conservation, 271 pp.
- Carrroll, G. 1992. Teshekpuk Lake Caribou Herd, Game Management Unit 26A. *In:* Caribou Surveys-Inventory Management Report, 1 July 1989-30 June 1991, S.M. Abbott, ed. Federal Aid in Wildlife Restoration Project W-23-1 and W-23-4 Study 3.0. Juneau, AK: State of Alaska, Dept. of Fish and Game.
- Carroll, G. 2005. Unit 26A Brown Bear Management Report. In: Brown Bear Management Report of Survey and Inventory A 1 July 2002-30 June 2004, C. Brown, ed. Juneau, AK: State of Alaska, Dept. of Fish and Game, pp. 310-325.

- Carroll, G.M., J.C. George, L.F. Lowry, and K.O. Coyle. 1987. Bowhead Whale (*Balaeana mysticetus*) Feeding near Point Barrow, Alaska during the 1985 Spring Migration. Arctic 40:105-110.
- Carroll, G., L.S. Parrett, J.C. George, and D.A. Yokel. 2005. Calving Distribution of the Teshekpuk Lake Caribou Herd, 1994-2003. *Rangifer* Special Issue 16:27-35.
- Case, D. 1984. *Alaska Natives and American Laws.* Fairbanks, AK: University of Alaska Press.
- Case, D. 1989. Subsistence and Self-Determination: Can Alaska Natives Have a More "Effective Voice"? University of Colorado Law Review 60(4):24.
- Casey, P.J. 1997. Summary memorandum of meeting dated Jan. 10, 1997, between T. Napageak and MMS Alaska OCS Region, Anchorage; subject: possible State 170 Nuiqsut deferral.
- Cashman, K. 2006. Pioneer OKs Project Work Begins at Oooguruk, First Independent Operated North Slope Field. *Petroleum News* 117:1.
- Caulfield, R.A. 2000. Food Security in Arctic Alaska: A Preliminary Assessment. http://www.chaireconditionautochtone.fss.ulaval.ca/extra net/doc/100.pdf. Quebec, Canada: Chaire de recherche du Canada sur la condition autochtone comparee, Centre interuniversitaire d'etudes et de rechereches autochtones, Universite Laval.
- Caulfield, R.A. and T. Brelsford. 1991. Alaska: Subsistence Policy History. Vol. 1999. NativeNet.
- Cavalieri, D.J. and S. Martin. 1994. The Contribution of Alaskan, Siberian, and Canadian Coastal Polynyas to the Cold Halocline Layer of the Arctic Ocean. *Journal of Geophysical Research* 99(C9):18343-18362.
- Cavalieri, D.J., P. Gloersen, C.L. Parkinson, J.C. Cosimo, and H.J. Zwally. 1997. Observed Hemispheric Assymetry in Global Sea Ice Changes. *Science* 278:1104-1106.
- Center for Biological Diversity. 2001. Petition to List Kittlitz's Murrelet (*Brachyramphus brevirostris*) as Endangered under the Endangered Species Act. Sitka, AK: CBD.
- Center for Biological Diversity. 2005. Petition to List the Polar Bear (*Ursus maritimus*) as a Threatened Species Under the Endangered Species Act. Sitka, AK: CBD.
- Center for Global Change. 2003. A Campus-Wide Framework for Linking Knowledge and People. http://www/cgc.uaf.edu Fairbanks, AK: University of Alaska, Fairbanks.

Chang, E.F. and M.M. Merzenich. 2003. Environmental Noise Retards Auditory Cortical Development. *Science* 300(5618):498-502.

Cherniawsky, J.Y., W.R. Crawford, O.P. Nikitin, and E.C. Carmack. 2005. Bering Strait Transports from Satellite Altimetry. *Journal of Marine Research* 63:887-900.

Chesemore, D.L. 1967. Ecology of the Arctic Fox in Northern and Western Alaska. Fairbanks, AK: University of Alaska, 148 pp.

- Childs, J. Discussion on or about Mar. 7, 2006, between J. Childs, Wildlife Biologist and J. Wilder, Wildlife Biolgist, MMS Alaska OCS Region; subject: potential seismic-survey impacts to seal prey species (i.e., fish).
- Cimato, J. 1980. Hydrocarbons and Drilling Fluids in the Marine Environment. *In:* Proposed Five-Year OCS Oil and Gas Lease Sale Schedule, March 1980-February 1985, Final Environmental Impact Statement, Appendix 8. Washington, DC: USDOI, BLM.
- Circumpolar Arctic Vegetation Mapping Team. 2003. Map No. 1. Conservation of Arctic Flora and Fauna. Anchorage, AK: USDOI, FWS.
- City of Nuiqsut. 1995. Nuiqsut Paisanich: A Cultural Plan. Nuiqsut, AK: City of Nuiqsut, Native Village of Nuiqsut, and the Kuukpik Corp.
- Clapham, P.J. and I.E. Seipt. 1991. Resightings of Independent Fin Whales, *Balaenoptera physalus*, on Maternal Summer Ranges. J. Mammalogy 72:788-790.
- Clapham, P.J. and R.L. Brownell, Jr. 1999. Vulnerability of Migratory Baleen Whales to Ecosystem Degradation. Convention on Migratory Species, Technical Publication No. 2. Lawrence, KS: Society for Marine Mammalogy, pp. 97-106.
- Clark, C.W., W.T. Ellison, and K. Beeman. 1986. A Preliminary Account of the Acoustic Study Conducted during the 1985 Spring Bowhead Whale, *Balaena mysticetus*, Migration Off Point Barrow, Alaska. Reports of the International Whaling Commission 36. Cambridge, UK: IWC, pp. 311-317.
- Clark, D. 2003. Polar Bear-Human Interactions in Canadian National Parks, 1986-2000. Ursus 14:65-71.

Clark, P.U. and A.C. Mix. 2002. Ice Sheets and Sea Level of the Last Glacial Maximum. *Quaternary Science Reviews* 21:1-7.

Clarke, J., S. Moore, and D. Ljungblad. 1989. Observations on the Gray Whale (*Eschrichtius robustus*) Utilization and Patterns in the Northeast Chukchi Sea, July-October 1982-1987. *Canadian Journal of Zoology* 67:2646-2653.

- Clarke, J.T., S.E. Moore, and M.M. Johnson. 1993.
  Observations on Beluga Fall Migration in the Alaskan Beaufort Sea, 1982-1987, and Northeastern Chukchi Sea, 1982-1991. Report of the International Whaling Commission 43. Cambridge, UK: IWC, pp. 387-396.
- Clarkson, P.L. and D. Irish. 1991. Den Collapse Kills Female Polar Bear and Two Newborn Cubs. *Arctic* 44:83-84.
- Coachman, L.K. and K. Aagaard. 1981. Reevaluation of Water Transports in the Vicinity of Bering Strait. *In:* The Eastern Bering Sea Shelf: Oceanography and Resources, D.W. Hood and J.A. Calder, eds. Vol. I. Juneau and Anchorage, AK: USDOC, NOAA, OMPA and USDOI, BLM, pp. 95-110.
- Coachman, L.K. and K. Aagaard. 1988. Transports Through Bering Strait: Annual and Interannual Variability. *Journal of Geophysical Research* 93(C12):15,525-15,539.
- Cohen, M.J. 1993. The Economic Impacts of the *Exxon* Valdez Oil Spill on Southcentral Alaska's Commercial Fishing Industry. In: Exxon Valdez Oil Spill Symposium Abstract Book, B. Spies, L.J. Evans, B. Wright. M. Leonard, and C. Holba, eds. and comps. Anchorage, Ak., Feb. 2-5, 1993. Anchorage, AK: Exxon Valdez Oil Spill Trustee Council; University of Alaska Sea Grant College Program; and American Fisheries Society, Alaska Chapter, pp. 227-230.
- Collins, J., J.T.E. Gilbert, Jr., R. King, J.E. Moore, and S.L. Zwicker. 1983. Oil and Gas Activity: Interaction with the Physical Environment. In: Technical Environmental Guidelines for Offshore Oil and Gas Development, J.T.E. Gilbert, ed. Tulsa, OK: PennWell Books, pp. 49-104.
- Colony, R. 1979. Dynamics of Nearshore Ice. Environmental Assessment of the Alaskan Continental Shelf. Annual Reports of Principal Investigators, Vol. 2 Physical Science Studies (Mar. 1979). Boulder, CO and Anchorage, AK: USDOC, NOAA, OCSEAP and USDOI, BLM, pp. 156-180.
- Comiso, J.C. 2002a. Correlation and Trend Studies of the Sea-Ice Cover and Surface Temperatures in the Arctic. *Ann. Glaciol.* 34:420-428.
- Comiso, J.C. 2002b. A Rapidly Declining Perennial Sea Ice Cover in the Arctic. *Geophysical Research Letters*. 29(20):1956.
- Comiso, J.C. 2003. Warming Trends in the Arctic from Clear Sky Satellite Observations. *Journal of Climate* 16(21):3498-3510.
- Comiso, J.C. 2005. Overview Satellite Observed Variability of the Arctic Ice Cover. *In*: MMS Chukchi Sea Science Update, Anchorage, Ak., Oct. 31, 2005. Anchorage, AK: USDOI, MMS, Alaska OCS Region.

Comiso, J.C. 2006a. Arctic Warming Signals from Satellite Observations. *Weather* 51(3:)70-76.

Comiso, J.C. 2006b. Abrupt Decline in the Arctic Winter Sea Ice Cover. *Geophysical Research Letters* 33: L18504

Committee on Environmental Health. 1997. Noise: A Hazard for the Fetus and Newborn. *Pediatricts* 1004:724-727.

Conlan, K. and R.G. Kvitek. 2005. Recolonization of Soft-Sediment Ice Scours on an Exposed Arctic Coast. *Marine Ecology Progress Series* 286:21-42.

Cook Inlet Regional Citizens' Advisory Council. 2001. CIRCAC Calls for Pipeline Risk Assessment. Council Briefs, August 30, 2001. Kenai, AK: CIRCAC, 2 pp.

- Cooke, W.W. 1906. Distribution and Migration of North American Ducks, Geese, and Swans. Biological Survey Bulletin No. 26. Washington, DC: U.S. Dept. of Agriculture.
- Coombs, S. and C.B. Braun. 2003. Information Processing by the Lateral Line System. *In: Sensory Processing in Aquatic Environments,* S.P. Collins and N.J. Marshall, eds. New York: Springer-Verlag.
- Cooper, L.W., I.L. Larsen, T.M. O'Hara, S. Dolvin, V. Woshner, and G.F. Cota. 2000. Radionuclide Contaminant Burdens in Arctic Marine Mammals Harvested During Subsistence Hunting. *Arctic* 53(2):174-182.
- Cooper, L.W., C.J. Ashjian, S.L. Smith, L.A. Codispoti, J.M. Grebmeir, R.G. Campbell, and E.B. Sherr. 2006. Rapid Seasonal Sea-Ice Retreat in the Arctic could be Affecting Pacific Walrus (*Odobenu rosmarus divergens*) Recruitment. *Aquatic Mammals* 32:98-102.

Corkeron, P.J. 2004. Whale Watching, Iconography, and Marine Conservation. *Conservation Biology* 18:847-849/

Cosens, S.E. and L.P. Dueck. 1988. Responses of Migrating Narwhal and Beluga to Icebreaker Traffic at the Admiralty Inlet Ice-Edge, N.W.T. in 1986. *In*: Port and Ocean Engineering under Arctic Conditions, W.M. Sackinger and M.O. Jeffries, eds. Vol. II. Fairbanks, AK: University of Alaska, Fairbanks, pp. 39-54.

Costello, M., M. Elliott, and R. Thiel., 2002. In: Fishes in Estuaries, M. Elliott and K. Hemingway, eds. Oxford, UK: Blackwell Science.

Couillard, C.M. and F.A. Leighton. 1989. Comparative Pathology of Prudhoe Bay Crude Oil and Inert Shell Sealants in Chicken Embryos. *Fundamental and Applied Toxicology* 13:165-173.

- Council on Environmental Quality. 1997. Draft Guidance Regarding Consideration of Global Climate Change in Environmental Documents Prepared Pursuant to the National Environmental Policy Act. Washington, DC: Executive Office of the President, CEQ.
- Cowardin, L., V. Carter, F. Golet, and E. LaRoe. 1979. Classification of Wetlands and Deepwater Habitats of the United States. Washington, DC: USDOI, FWS, Office of Biological Services.

Craig J.D., K.W. Sherwood, and P.P. Johnson. 1985.
Geologic Report for the Beaufort Sea Planning Area, Alaska: Regional Geology, Petroleum Geology, Environmental Geology. OCS Report MMS 85-0111.
Anchorage, AK: USDOI, MMS, Alaska OCS Region, 192 pp.

- Craig, P.C. 1984. Fish Use of Coastal Waters of the Alaskan Beaufort Sea: A Review. *Transactions of the American Fisheries Society* 113:265-282.
- Craig, P.C. 1987. Subsistence Fisheries at Coastal Villages in the Alaskan Arctic, 1970-1986. Technical Report 129. Anchorage, AK: USDOI, MMS Alaska OCS Region.
- Craig, P.C. 1989. An Introduction to Anadromous Fishes in the Alaskan Arctic. *In*: Research Advances on Anadromous Fish in Arctic Alaska and Canada, nine papers contributing to an ecological synthesis, D.W. Norton, ed. Biology Papers of the University of Alaska No. 24. Fairbanks, AK: Institute of Arctic Biology, pp. 27-54.
- Craig, P.C. and L. Halderson. 1981. Beaufort Sea Barrier Island-Lagoon Ecological Processes Studies: Final Report, Simpson Lagoon, Part 4, Fish. Environmental Assessment of the Alaskan Continental Shelf. Final Reports of Principal Investigators, Vol. 7 Biological Studies (Feb. 1981). Boulder, CO and Anchorage, AK: USDOC, NOAA, OCSEAP and USDOI, BLM, pp. 384-678.
- Craig, P.C. and P. Skvorc 1982. Fish Resources of the Chukchi Sea, Status of Existing Information and Field Program Design. OCS Study MMS 82-0071. Anchorage, AK: USDOC, NOAA, OCSEAP, and USDOI, MMS, Alaska OCS Region.
- Craig, P.C. and L. Halderson. 1986. Pacific Salmon in the North American Arctic. *Arctic* 391:2-7.
- Craig, P.C., W.B. Griffiths, L. Halderson, and H. McElderry. 1982. Ecological Studies of Arctic Cod (*Boreogadus* saida) in Beaufort Sea Coastal Waters, Alaska. Can. J. Fish. Aquat. Sci. 39:395-406.
- Cramer, D. 1996. Fax dated Jan. 30, 1996, to M. Burwell, MMS Alaska OCS Region, from D. Cramer; subject: latest Barrow walrus-harvest figures.

Crary, D. 2002. Warming No Friend to Canada. Toronto, Ont., Canada: The Associated Press http://abcnews.go.com/sections/science/Daily News/warming\_Canada981214

Craver, A. 2001. Alaska Subsistence Lifestyles Face Changing Climate. Seattle, WA: University of Washington, School of Public Health and Community Medicine, 3 pp.

Crawford, R. and J. Jorgenson. 1990. Density Distribution of Fish in the Presence of Whales at the Admiralty Inlet Landfast ice Edge. *Arctic* 43:215-222.

Cronin M.A., H.A. Whitlaw, and W.B. Ballard. 2000. Northern Alaska Oil Fields and Caribou. *Wildlife Society Bulletin* 284:919-922.

Cronin, M.A., S.C. Amstrup, and K.T. Scribner. 2006. Microsatellite DNA and Mitochondrial DNA Variation in Polar Bears (*Ursus maritimus*) from the Beaufort and Chukchi Seas, Alaska. *Canadian Journal Zoology* 84:655-660.

Cummings, W.C., D.V. Holliday, W.T. Ellison, and B.J. Graham. 1983. Technical Feasibility of Passive Acoustic Location of Bowhead Whales in Population Studies Off Point Barrow, Alaska. T-83-06-002. Barrow, AK: North Slope Borough.

Currie, A.R., C.C. Bird, A.M. Crawford, and P. Sims. 1970. Embryopathic Effects of 7,12dimehylbenz(a)anthracene and its Hydroxymethyl Derivatives in the Sprague-Dawley Rat. *Nature* 226:911-914.

Curry, B.E. 1999. Stress in Mammals: The Potential Influece on Fishery-Induced Stress in Dolphins in the Eastern Tropical Pacific Ocean. NOAA Technical Memorandum NOAA-TM-NMFS-SWFSC-260. La Jolla, CA: USDOC, NOAA,NMFS, Southwest Fisheries Science Center.

Curtis, J., G. Wendler, and E. Dutton. 1998. Precipitation Decreases in the Western Arctic with Special Emphasis on Barrow and Barter Island Alaska. *International Journal of Climatology* 1815:1687-1707.

Curtis, T., S. Kvernmo et al. 2005. Changing Living Conditions, Lifestyle, and Health. *International Journal of Circumpolar Health* 64(95):442-450.

Dahlhiem, M.E. 1987. Bio-Acoustics of the Gray Whale (*Eschrichtius robustus*). Ph.D. Dissertation. University of British Columbia: Unpublished.

Dahlhiem, M.E. and T.R. Loughlin. 1990. Effects of the *Exxon Valdez* Oil Spill on the Distribution and Abundance of Humpback Whales in Prince William Sound, Southeast Alaska, and the Kodiak Archipelago. *In: Exxon Valdez* Oil Spill Natural Resource Damage Assessment. Unpublished report. NRDA Marine

Mammals Study No. 1. Seattle WA: USDOC, NOAA.

- Dahlhiem, M.E. and C.O. Matkin, 1994. Assessment of Injuries to Prince William Sound Killer Whales. *In: Exxon Valdez* Oil Spill Symposium Abstract Book, B.
  Spies, L.G. Evans, M. Leonard, B. Wright, and C. Holba, eds. and comps. Anchorage, Ak., Feb. 2-5, 1993. Anchorage, AK: *Exxon Valdez* Oil Spill Trustee Council; University of Alaska Sea Grant College Program; and American Fisheries Society, Alaska Chapter, pp. 308-310.
- Dalen, J. and G.M. Knutsen. 1987. Scaring Effects in Fish and Harmful Effects on Eggs, Larvae and Fry by Offshore Seismic Explorations. *Progress in Underwater Acoustics* :93-102.

Dames and Moore. 1996a. Northstar Project Commuity Meeting, Nuiqsut, Ak., Aug. 13-16, 1996. Anchorage, AK: Dames and Moore.

Dames and Moore. 1996b. Northstar Project Whalers' Meeting, Nuiqsut, Ak., Aug. 1-2, 1996. Anchorage, AK: Dames and Moore.

Dames and Moore. 1996c. Northstar Project Community Meeting, Nuiqsut, Ak., Mar. 27, 1996. Anchorage, AK: Dames and Moore.

Darigo, N., O.K. Mason, and P.M. Bowers. 2007. Review of Geological/Geophysical Data and Core Analysis to Determine Archaeological Potential of Buried Landforms, Beaufort Sea Shelf, Alaska. OCS Study MMS 2007-004. Anchorage, AK: USDOI, MMS, Alaska OCS Region, 139 pp.

Dau, C.P. and W.W. Larned. 2004. Aerial Population Survey of Common Eiders and Other Waterbirds in Nearshore Waters and Along Barrier Islands of the Arctic Coastal Plain of Alaska, 24-27 June 2004. Anchorage, AK: USDOI, FWS.

Dau, C.P. and W.W. Larned. 2005. Aerial Population Survey of Common Eiders and Other Waterbirds in Nearshore Waters and Along Barrier Islands of the Arctic Coastal Plain of Alaska, 24-27 June 2005. Anchorage, AK: USDOI, FWS, Migratory Bird Management.

Dau, C.P. and E.J. Mallek. 2005. Aerial Survey of Emperor Geese and Other Waterbirds in Southwestern Alaska, Spring 2005. Anchorage, AK: USDOI, FWS, Migratory Bird Management, 18 pp.

Dau, J. 2005. Units 21D, 22A, 22B, 22C, 22D, 22E, 23, 24, and 26A Caribou Management Report. *In*: Caribou Management Report of Survey and Inventory Activities 1 July 2002-30 June 2004, C. Brown, ed. Project 3.0. Juneau, AK: State of Alaska, Dept. of Fish and Game, pp. 177-218.

- Dau, J.R. and R.D. Cameron. 1986. Effects of a Road System on Caribou Distribution During Calving. *Rangifer* 1(Special Issue):95-101.
- Davidson, A. 1974. Does One Way of Life Have to Die So Another Can Live? A Report on Subsistence and the Conservation of the Yupik Lifestyle. Yupiktak Bista.
- Davies, J.R. 1997. The Impact of an Offshore Drilling Platform on the Fall Migration Path of Bowhead Whales: A GIS-Based Assessment. M.S. Thesis. Seattle, WA: Western Washington University.
- Davis, A., L.J. Schafer, and Z.G. Bell. 1960. The Effects on Human Volunteers of Exposure to Air Containing Gasolene Vaports. Archives of Environmental Health 1:584-554.
- Davis, J.L., P. Valkenburg, and H.V. Reynolds. 1980. Population Dynamics of Alaska's Western Arctic Caribou Herd. *In:* Proceedings of the Second International Reindeer/Caribou Symposium, E. Reimers, E. Gaare, and S. Skennsberg, eds. Roros, Norway, Trondheim, Norway: Direktorat for vilt og ferskvannsfisk.
- Davis, J.L., P. Valkenburg, and R.D. Boertje. 1982. Home Range Use, Social Structure, and Habitat Selection of the Western Arctic Caribou Herd. Anchorage, AK: USDOI, National Park Service, 70 pp.
- Davis, R.A. 1987. Integration and Summary Report. In: Responses of Bowhead Whales to an Offshore Drilling Operation in the Alaskan Beaufort Sea, Autumn 1986. Anchorage, AK: Shell Western E&P, Inc., pp. 1-51.
- Davis, R.A., K.J. Finley, and W.J. Richardson. 1980. The Present Status and Future Management of Arctic Marine Mammals in Canada. Science Advisory Board of NWT Vol. 3. Yellowknife, NWT, Canada: Government of the Northwest Territories, Dept. of Information, 93 pp.
- Day, G., E. Provost, and A. Lanier. 2006. Alaska Native Mortality Update 1999-2003. Anchorage, AK: ANTHC, Alaska Native Epidemiology Center.
- Day, R.H., K.J. Kuletz, and D.A. Nigro., 1999. Kittlitz's Murrlet Brachyramphus brevirostris. In: The Birds of North America. No. 435. Ithaca, NY: American Ornithologists' Union, 28 pp.
- Day, R.H., A.K. Prichard, and J.R. Rose. 2005. Migration and Collision Avoidance of Eiders and ther Birds at Northstar Island, Alaska, 2001-2004: Final Report. Anchorage, AK: BPXA.
- Day, R.H., A.K. Prichard, J.R. Rose, and A.A. Stickney. 2003. Migration and Collision Avoidance of Eiders and Other Birds at Northstar Island, 2001 and 2002. Anchorage, AK: BPXA.

- Day, R.H., J.R. Rose, A.K. Prichard, R.J. Blaha, and B.A. Cooper. 2004. Environmental Effects on the Fall Migration of Eiders at Barrow, Alaska. *Marine* Ornithology 32:13-24.
- De Boer, A.M. and D. Nof. 2004. The Bering Strait's Grip on the Northern Hemisphere Climate. *Deep Sea Research I* 51:1347-1366.
- Dekin, A.A., Jr. 1993. The Impact of the *Exxon Valdez* Oil Spill on Cultural Impacts. Unpublished paper presented at the *Exxon Valdez* Oil Spill Symposium, Anchorage, Ak., Feb. 3-9, 1993. Binghamton, NY: State University of New York at Binghamton, Dept. of Anthropology.
- Derksen, D.V., T.C. Rothe, and W.D. Eldridge. 1981. Use of Wetland Habitats by Birds in the National Petroleum Reserve-Alaska. FWS Resource Publication 141.
  Washington, DC: USDOI, FWS, 25 pp.
- Derocher A.E. and I. Stirling. 1991. Oil Contamination of Polar Bears. *Polar Record* 27160:56-57.
- Derocher A.E., O. Wiig, and G. Bangjord. 2000. Predation of Svalbard Reindeer by Polar Bears. *Polar Biology* 23:675-678.
- Derocher, A.E., N.J. Lunn, and I. Stirling. 2004. Polar Bears in a Warming Climate. *Integrative and Comparative Biology* 44:163-176.
- Devon Canada Corp. 2004. Devon Beaufort Sea Exploration Drilling Program. Calgary, Alb., Canada: Devon Canada Corp.
- Dick, M. H. and W. Donaldson. 1978. Fishing Vessel Endangered by Crested Auklet Landings. Condor 80:235-236.
- Dickson, D.L., R.S. Suydam, and G. Balogh. 2000. Tracking the Movement of King Eiders from Nesting Grounds at Prudhoe Bay, Alaska to their Molting and Wintering Areas Using Satellite Telemetry. 1999/2000 Progress Report. Edmonton, Alb., Canada: Canadian Wildlife Service, 37 pp.
- Dickson, D.L., G. Balogh, and S. Hanlan. 2001. Tracking the Movement of King Eiders from Nesting Grounds on Banks Island, Northwest Territories to their Molting and Wintering Areas Using Satellite Telemetry. 2000/2001 Progress Report. Edmonton, Alb., Canada: Canadian Wildlife Service, 39 pp.
- Divoky, G.J. 1983. The Pelagic and Nearshore Birds of the Alaskan Beaufort Sea. OCSEAP Final Reports of Principal Investigators, Vol. 23 (Oct. 1984). Anchorage, AK: USDOC, NOAA, and USDOI, MMS, pp. 397-513.
- Divoky, G.J. 1987. The Distribution and Abundance of Birds in the Eastern Chukchi Sea in Late Summer and Early Fall. Unpublished final report. Anchorage, AK: USDOC, NOAA, and USDOI, MMS, 96 pp.

Divoky, G.J., G.A. Sanger, S.A. Hatch, and C.J. Haney. 1988. Fall Migration of Ross' Gull (*Rhodostethia rosea*) in Alaskan Chukchi and Beaufort Seas. *In*: Monitoring Seabird Populations in Areas of Oil and Gas Development on the Alaskan Continental Shelf. OCS Report MMS 88-0023. Anchorage, AK: USDOI, MMS, Alaska OCS Region, 30 pp.

Dobbyn, P. 2003. Native Group Wants to Stop New Searches for Gas, Oil. Anchorage, AK: Anchorage, Daily News, Feb. 13, 2003.

Donovan, G.P. 1991. Review of IWC Stock Boundaries. Report of the International Whaling Commission Special Issue 13. Cambridge, UK: IWC, pp. 39-68.

D'Oro, R. 2006. Spill Estimate Largest Ever on Alaska's North Slope. Kodiak, AK: *Kodiak Daily Mirror*, March 10, 2006, p. A1.

Doroff, A.M. and J.L. Bodkin. 1994. Sea Otter Foraging Behavior and Hydrocarbon Levels in Prey. *In*: Marine Mammals and the *Exxon Valdez*, T.R. Loughlin, ed. San Diego, CA: Academic Press, pp. 193-208.

Dorsey, E.M., S.J. Sterm, A.R. Hoelzel, and J. Jacobsen. 1990. Minke Whale (*Balaenoptera acutorostrata*) from the West Coast of North America: Individual Recognition and Small Scale Site Fidelity. Report of the International Whaling Commission Special Issue 12. Cambridge, UK: IWC, pp. 357-368.

Dower, J., H. Freeland, and K. Juniper. 1992. A Strong Biological Response to Oceanic Flow Past Cobb Seamount. *Deep-Sea Research* 39:1139-1145.

Dragoo, D.E., G.V. Byrd, and D.B. Irons. 2004. Breeding Status, Population Trends and Diets of Seabirds in Alaska, 2002. Report AMNWR 04/15. Anchorage, AK: USDOI, FWS.

Duesterloh, S., J.W. Short, and M.G. Barron. 2002. Photoenhanced Toxicity of Weathered Alaska North Slope. *Environmental Science and Technology* 36(18):3953-3959.

Dumas, J., E. Carmack, and H. Melling. 2005. Climate Change Impacts on the Beaufort shelf Landfast Ice. Cold Regions Science and Technology 421:41-51.

Dunton, K.H., J.L. Goodall, S.V. Schonberg, and J.M. Grebmeier. In press. Multi-Decadal Synthesis of Benthic-Pelagic Coupling in the Western Arctic: Role of Cross-Shelf Advective Processes. *Deep Sea Research.* 

Durner, G.M. and S.C. Amstrup. 2000. Estimating the Impacts of Oil Spills on Polar Bears. Arctic Research 14:33-37. Durner, G.M., S.C. Amstrup, and T.L. McDonald. 2001. Estimating the Impacts of Oil Spills on Polar Bears. Arctic Research of the United States 14(Fall/Winter):33-37.

Durner, G.M., S.C. Amstrup, and K.J. Ambrosius. 2006. Polar Bear Maternal Den Habitat in the Arctic National Wildlife Refuge, Alaska. Arctic 59:31-36.

Durner, G.M., S.C. Amstrup, R. Neilson, and T. McDonald. 2004. The Use of Sea Ice Habitat by Female Polar Bears in the Beaufort Sea. OCS Study MMS 2004-014. Anchorage, AK: USDOI, MMS, Alaska OCS Region.

Durrell, G., T.R. Utvik, S. Johnsen, T. Frost, and J. Neff. 2006. Oil Well Produced Water Discharges in the North Sea. Part 1: Comparison of Deployed Mussels (*Mytilus* edulis), Semi-Permeable Membrane Devices, and the DREAM Model Predictions to Estimate the Dispersion of Polycyclic Aromatic Hydrocarbons. *Marine* Environmental Research 62:194-223.

Dyke, A.S., J. England, E. Reimnitz, and H. Jette. 1997. Changes in Driftwood Delivery to the Canadian Arctic Archipelago: The Hypothesis of Postglacial Oscillations of the Transpolar Drift. *Arctic* 50:1-16.

Earnst, S.L., R.A. Stehn, R.M. Platte, W.W. Larned, and E.J. Mallek. 2005. Population Size and Trend of Yellow-Billed Loons in Northern Alaska. *The Condor* 107:289-304.

Eastland, W.G., R.T. Bowyer, and S.G. Fancy. 1989. Effects of Snow Cover on Selection of Calving Sites by Caribou. *Journal of Mammalogy* 70:824-828.

Ebbesson, S.O., J. Kennish et al. 1999. Diabetes is Related to Fatty Acid Impalance in Eskimos. *International Journal* of Circumpolar Health 58:108-119.

Eberhardt, L.E., W.C. Hanson, J.L. Bengtson, R.A. Garrott, and E.E. Hanson. 1982. Arctic Fox Home Range Characteristics in an Oil-Development Area. *Journal Wildlife Management* 461:183-190.

Eberhardt, L.L. and D.B. Siniff. 1977. Population Dynamics and Marine Mammal Management Policies. *Journal of Fisheries Research Board of Canada* 34:183-190.

Efroymson, R.A. and G.W. Suter, II. 2001. Ecological Risk Assessment Framework for Low-Altitude Aircraft Overflights: II. Estimating Effects on Wildlife. *Risk Analysis* 21(2):263-274.

Egelund, G.M., L.A. Feyk, and J.P. Middaugh. 1998. The Use of Traditional Foods in a Healthy Diet in Alaska: Risks in Perspective. *State of Alaska Epidemiology Bulletin* 2(1).

Eggersson, O. 1994. Mackenzie River Driftwood – A Dendrochronological Study. Arctic 47:128-136. Ehrlich, P.R., D.S. Dobkin, and D. Wheye. 1988. *The Birder's Handbook: A Field Guide to the Natural History of North American Birds.* New York, NY: Simon and Schuster/Fireside Books.

Eicken, H., L.H. Shapiro, A.G. Gaylord, A. Mahoney, and P.W. Cotter. 2006. Mapping and Characterization of Recurring Spring Leads and Landfast ice in the Beaufort and Chukchi Seas. OCS Study MMS 2005-068. Anchorage, AK: USDOI, MMS, Alaska OCS Region, 141 pp. plus appendices.

Eicken, H., L.H., Shapiro, A.G. Gaylord, A. Mahoney, and P.W. Cotter. 2007. Alaska Landfast Sea Ice: Links with Bathymetry and Atmospheric Circulation. *Journal of Geophysical Research* 112:C02001. doi:10.1029/2006JC003559.

Eicken, H.R., R. Gradinger, A. Graves, A. Mahoney, I. Rigor, and H. Melling. 2005. Sediment Transport by Sea Ice in the Chukchi and Beaufort Seas: Increasing Importance Due to Changing Ice Conditions? *Deep Sea Research* 52:3281-3302.

Ellanna, L.J. and G.K. Sherrod. 1984. The Role of Kinship Links in Subsistence Production: Some Implications for Community Organization. Juneau, AK: State of Alaska, Dept. of Fish and Game, Div. of Subsistence.

Elliott, A.J. 1986. Shear Diffusion and the Spread of Oil in the Surface Layers of the North Sea. *Deutsch Hydrography Zvenya* 39:113-137.

Elliott, M. 2002. Introduction. In: Fishes in Estuaries, M. Elliott and K. Hemingway, eds. Oxford: Blackwell Science, pp. 1-9.

Ely, C.R., C.P. Dau, and C.A. Babcock. 1994. Decline in a Population of Spectacled Eiders Nesting on the Yukon-Kuskokwim Delta, Alaska. *Northwestern Naturalist* 75:81-87.

Engås, A., S. Lokkeborg, E. Ona, and A.V. Soldal. 1993. Effects of Seismic Shooting on Catch and Catch-Availability of Cod and Haddock. *Fisken Og Havet* 9:117.

Engås, A., S. Lokkeborg, E. Ona, and A.V. Soldal. 1996. Effects of Seismic Shooting on Local Abundance and Catch Rates of Cod (*Gadus morhua*) and Haddock (*Melanogrammus aeglefinus*). Can. J. Fish. Aquat. Sci. 53:2238-2249.

Engelhardt, F.R. 1985. Environmental Issues in the Arctic. *In*: POAC 85: The 8<sup>th</sup> International Conference on Port and Ocean Engineering under Arctic Conditions. Horsholm, Denmark: Danish Hydraulic Institute, pp. 60-69. Engelhardt, F.R. 1987. Assessment of the Vulnerability of Marine Mammals to Oil Pollution. *In:* Fate and Effects of Oil in Marine Ecosystems. Proceedings of the Conference on Oil Pollution Organized under the auspices of the International Association on Water Pollution Research and Control (IAWPRC) by the Netherlands Organization for Applied Scientific Research TNO Amsterdam, The Netherlands, J. Kuiper and W.J. Van Den Brink, eds. The Netherlands, Feb. 23-27, 1987. Boston: Martinus Nijhoff Publishers, pp. 101-115.

Environment Canada. 1997. The Canada Country Study: Responding to Global Climate Change in the Arctic. Ottawa, Ont., Canada: Environment Canada. http://www.ec.gc.ca/climate/arc\_summ.htm.

Environment Canada. 2007. Southern Species Head North. *In*: yourYukon at http://www.taiga.net/yourYukon/coll29.html

Environmental Science and Engineering, Inc. 1987. Kuparuk Aerometric Monitoring Program - Annual Data Summary. Anchorage, AK: ARCO Alaska, Inc., 20 pp.

Epstein, L.N. 2002. Lurking Below: Oil and Gas Pipeline Problems in the Cook Inlet Watershed. Homer, AK: Cook Inlet Keeper, 28+ pp.

Erbe, C., A.R. King, M. Yedlin, and D.M. Farmer. 1999. Computer Models for Masked Hearing Experiments with Beluga Whales (*Delphinapterus leucas*). Journal of the Acoustical Society of America 105:2967-2978.

Erbe, D. and D.M. Farmer. 1998. Masked Hearing Thresholds of a Beluga Whale (*Delphinapterus leucas*) in Icebreaker Noise. *Deep-Sea Research Part II* -*Tropical Studies in Oceanography* 45:1373-1388.

Ernerk, P. 1994. Insights of a Hunter on Recent Climatic Variations in Nunavut. *In*: Biological Implications of Global Change: Northern Perspectives, R. Riewe and J. Oakes, eds. Ottawa, Ont., Canada:: The Canadian Circumpolar Institute, Royal Society of Canada, Canadian Global Change Program, Assoc. of Canadian Universities for Northern Studies, 2 pp.

ERT Company. 1987. Prudhoe Bay Air Quality Monitoring Program Quarterly and Annual Data Report. Report No. D816. Anchorage, AK: Standard Alaska Production Company, 68 pp.

Etkin, D. 2006. Trends in Oil Spills from Large Vessels in the U.S. and California with Implications for Anticipated Oil Spill Prevention and Mitigation Based on the Washington Oil Transfer Rule. Lacey, WA: Washington Department of Ecology, 72 pp. http://www.environmentalresearch.com/erc\_reports/ERC\_report\_1.pdf Evans, D.D. 1988. Combustion of Oil Spills on Water. In: Technology Assessment and Research Program for Offshore Minerals Operations. OCS Study MMS 86-0057. Washington, DC: USDOI, MMS, pp. 169-177.

- Evans, D.D., G. Mulholland, D. Gross, H. Baum, and K. Saito. 1987. Environmental Effects of Oil Spill Combustion. *In:* Proceedings of the Tenth Arctic Marine Oil Spill Program Technical Seminar, Edmonton, Alb., Canada, Jun. 9-11, 1987. Ottawa, Ont., Canada: Environment Canada, pp. 95-130.
- Fadely, B.S., J.F. Piatt, S.A. Hatch, and D.G. Roseneau. 1989. Populations, Productivity, and Feeding Habits of Seabirds at Cape Thompson, Alaska. OCS Study MMS 89-0014. Anchorage, AK: USDOI, MMS, Alaska OCS Region, 429 pp.
- Fair, P.A. and P.R. Becker. 2000. Review of Stress to Marine Mammals. *Journal of Aquatic Ecosystem Stress and Recovery* 7(4):335-354.
- Fairweather. 2000. Historical Blowout Study North Slope, Alaska. Anchorage, AK: BP-Amoco Exploration, Alaska.
- Fall, J.A. and C.J. Utermohle. 1999. Subsistence Harvests and Uses in Eight Communities Ten Years After the *Exxon Valdez* Oil Spill. Technical Paper No. 252. Juneau, AK: State of Alaska, Dept. of Fish and Game, Div. of Subsistence.
- Fall, J.A. and C.J. Utermohle, eds. 1995. An Investigation of the Sociocultural Consequences of Outer Continental Shelf Development in Alaska. Vol. VI. Anchorage, AK: State of Alaska, Dept. of Fish and Game, Div. of Subsistence.
- Fall, J A., L.J. Field, T.S. Nighswander, N. Peacock, and U. Varansi., eds. 1999. Overview of Lessons Learned from the *Exxon Valdez* Oil Spill: A 10-Year Retrospective. *In:* Evaluating and Communicating Subsistence Seafood Safety in a Cross-Cultural Context. Pensacola, FL: SETAC Press, 338 pp.
- Fauchild et al. 2002. Seabirds and Marine Oil Incidents: Is it Possible to Predict the Spatial Distribution of Pelagic Seabirds? J. Applied Ecol. 39:349-360.
- Fay, F.H. 1974. The Role of Ice in the Ecology of Marine Mammals of the Bering Sea. *In*: Oceanography of the Bering Sea, D.W. Hood and E.J. Kelley, eds. Occasional Publication 2. Fairbanks, AK: Institute of Marine Science, pp. 383-389.
- Fay, F.H. 1981. Walrus Odobenus rosmarus (Linnaeus, 1758). In: Handbook of Marine Mammals, S.H. Ridgway and R.J. Harrison, eds. Vol. 1: The Walrus, Sea Lions, Fur Seals and Sea Otter. London: Academic Press, 235 pp.

- Fay, F.H. 1982. Ecology and Biology of the Pacific Walrus, Odobenus rosmarus divergens Illiger. North American Fauna 74:279.
- Fay, FH. and E.H. Follman. 1982. The Arctic Fox (Alopex lagopus) Species Account. No. 3917. Juneau, AK: USDOC, NOAA, OCSEAP, 27 pp.
- Fay, F.H. and J.J. Burns. 1988. Maximal Feeding Depths of Walruses. *Arctic* 413:239-240.
- Fechhelm, R.G. and W.B. Griffiths. 2001. Status of Pacific Salmon in the Beaufort Sea, 2001. Anchorage, AK: LGL Alaska Research Assocs., Inc., 13 pp.
- Fechhelm, R.G., P.C. Craig, J.S. Baker, and B.J. Gallaway. 1984. Fish Distribution and Use of Nearshore Waters in the Northeastern Chukchi Sea. OCSEAP Final Reports of Principal Investigators, Vol. 32 (Jun. 1985). Anchorage, AK: USDOC, NOAA, OCSEAP and USDOI, MMS, Alaska OCS Region, pp. 121-297.
- Fechhelm, R.G., M. Millard, W.B. Griffiths, and T. Underwood. 1996. Change in the Abundance Patterns of Arctic Flounder (*Pleuronectes glacialis* Pallas, 1776) in the Coastal Waters of the Alaskan Beaufort Sea, 1982-1995. *In*: The 1996 Endicott Fish Monitoring Program Synthesis Supplement. Vol. III Published Literature for Synthesis. Anchorage, AK: BPXA and North Slope Borough.
- Feder, H.M., A.S. Naidu, J.M. Hameedi, S.C. Jewett, and W.R. Johnson. 1989. The Chukchi Sea Continental Shelf: Benthos-Environmental Interactions. Final Report. Anchorage, AK: USDOC, NOAA, and USDOI, MMS, 294 pp.
- Feder, H.M., M. Baskaran, R.T. Cooney, K.J. Frost, T.A. Gosink, S.C. Jewett, W.R. Johnson, L. Lowry, A.S. Naidu, J. Raymond, and D.M. Schell. 1990. Kotzebue Sound/Southeast Hope Basin Habitat Utilization and Ecological Characterization. Anchorage, AK: USDOC, NOAA and USDOI, MMS.
- Feder, H.M., N.R. Foster, S.C. Jewett, T.J. Weingartner, and R. Baxter. 1994. Mollusks in the Northeastern Chukchi Sea. Arctic 47:145-163.
- Federal Register. 1989. National Priorities List for Uncontrolled Hazardous Waste Sites – Final Update No.
  5. Federal Register 54(61):13296-13305.
- *Federal Register.* 2000. Marine Mammals; Incidental Take During Specified Activities. *Federal Register* 65(62):16828-16843.
- Federal Register. 2001. Rules and Regulations. Federal Register 66(25):9153. http://alaska.fws.gov/media/pdf/spectacledeiderfinal.pdf.

- *Federal Register*. 2001. Final Determination of Critical Habitat for the Alaska-Breeding Population of Steller's Eider. *Federal Register* 66(23):8850-8884.
- Federal Register. 2001. Regulations Governing the Approach to Humpback Whales in Alaska. Federal Register 66(105):29502.
- *Federal Register.* 2002. Notice of Determination -Endangered and Threatened Species, Final Determination of a Petition to Designate Critical Habitat for the Bering Sea Stock of Bowhead Whales. *Federal Register* 67:55767.
- Federal Register. 2003. Call for Information and Nominations (Call). Outer Continental Shelf (OCS), Alaska Region, Chukchi Sea/Hope Basin. Federal Register 68(57):14425.
- Federal Register. 2004. Call for Information and Nominations. Outer Continental Shelf (OCS), Alaska Region, Chukchi Sea/Hope Basin. Federal Register 69(29):4532.
- Federal Register. 2005. Call for Information and Nominations. Outer Continental Shelf (OCS), Alaska Region, Chukchi Sea/Hope Basin and Norton Basin Planning Areas. Federal Register 70(26):6903.
- Federal Register. 2005. Outer Continental Shelf, Alaska Region, Chukchi Sea Oil and Gas Lease Sale 193 for Year 2007: Notice of Intent to Prepare an Environmental Impact Statement. Federal Register 70(177):5406-5409.
- *Federal Register*. 2005. Small Takes of Marine Mammals Incidental to Specified Activities; Marine Seismic Survey off the Aleutian Islands in the North Pacific Ocean. *Federal Register* 70(53):13466-3479.
- *Federal Register*. 2006 . Taking of Marine Mammals Incidental to Specified Activities; On-ice Seismic Operations in the Beaufort Sea. *Federal Register* 71(38): 9782-9786.
- *Federal Register*. 2006. Marine Mammals, Incidental Take during Specified Activities. *Federal Register* 71(55)14,446-14,467.
- *Federal Register*. 2006. Chukchi Sea Planning Area Oil and Gas Lease Sale 193 and Seismic Surveying Activities in the Chukchi Sea. Federal Register 71(199):60751-60753.
- *Federal Register*. 2006. Environmental Impact Statements: Notice of Availability. Federal Register 71(203):61967-61968
- Federal Register. 2007. Outer Continental Shelf (OCS) Beaufort Sea Alaska, Oil and Gas Lease Sale 202. Federal Register 72(52)12,817-12,821

- Fejes, C. 1996. *People of the Noatak*. Volcano, CA: Volcano Press.
- Ferguson, S.H., I. Stirling, and P. McLoughlin. 2005. Climate Change and Ringed Seal (*Phoca hispida*) Recruitment in Western Hudson Bay. *Marine Mammal Science* 21:121-135.
- Field, L.J., J.A. Fall, T.J. Nighswander, N. Peacock, and U. Varanasi, eds. 1999. Evaluating and Communicating Subsistence Seafood Safety in a Cross-Cultural Context. Pensacola, FL: SETAC Press, 338 pp.
- Fingas, M.F., F. Ackerman, P. Lambert, K. Li, and Z. Wang. 1995. The Newfoundland Offshore Burn Experiment: Further Results of Emissions Measurement. *In:* Proceedings of the Eighteenth Arctic and Marine Oil Spill Technical Seminar, Jun. 14-16, 1995. Edmonton, Alb., Canada.
- Finley, K.J. 1982. The Estuarine Habitat of the Beluga or White Whale, *Delphinapterus leucas*. *Cetus* 4:4-5.
- Finley, K.J., G.W. Miller, R.A. Davis, and C.R. Greene. 1990. Reactions of Belugas, *Delphinapterus leucas*, and Narwhals, *Monodon nonoceros*, to Ice-Breaking Ships in the Canadian High Arctic. *Can. Bull. Fish. Aquat. Sci.* 224:97-117.
- Finn, R.W., A.W. Trites, E.J. Gregr, and R.I. Perry. 2002. Diets of Fin, Sei, and Sperm Whales in British Columbia: An Analysis of Commercial Whaling Records 1963-1967. *Marine Mammal Science* 18(3):663-679.
- Finneran, J.J., C.E. Schlundt, R. Dear, D.A. Carder, and S.H. Ridgway. 2002. Temporary Shift in Masked Hearing Thresholds in Odontocetes after Exposure to Single Underwater Impulses from a Seismic Watergun. J. Acoustical Society of America 10(81):2929-2940.
- Fischbach, A. 2007. Landward Shift in Polar Bear Denning Determined from Satellite Telemetry in Alaska. Presentation at the 2007 Alaska Marine Science Symposium, Anchorage, Ak., Jan. 22, 2007.
- Fischer, J.B. and W.W. Larned. 2004. Summer Distribution of Marine Birds in the Western Beaufort Sea. Arctic 57(2):143-159.
- Flinn, R.W., A.W. Trites, E.J. Gregr, and R.I. Perry. 2002. Diets of Fin, Sei, and Sperm Whales in British Columbia: An Analysis of Commercial Whaling Records, 1963-1967. *Marine Mammal Science* 18(3):663-679.
- Flint, P. and M. Herzog. 1999. Breeding of Steller's Eiders Polysticta stelleri, on the Yukon-Kuskokwim Delta, Alaska. Canadian Field-Naturalist 113:306-308.

Flint, P.L., J.A. Reed, J.C. Franson, T.E. Hollmen, J.B. Grand, M.D. Howell, R.B. Lanctot, D.L. Lacroix, and C.P. Dau. 2003. Monitoring Beaufort Sea Waterfowl and Marine Birds. OCS Study MMS 2003-037. Anchorage, AK: USDOI, MMS, Alaska OCS Region, 125 pp.

Fontana, P.M. 2003. Email dated Sept. 16, 2003, to Carol Roden, Protected Species Biologist, MMS Gulf of Mexico Region, from P.M. Fontana, Veritas Marine Acquisition; subject: seismic operations.

Foote, D. 1959. The Economic Base and Seasonal Activities of Some Northwest Alaskan Villages: A Preliminary Study. Washington, DC: U.S. Atomic Energy Commission.

Foote, D., C. Cooke, and A. Cooke. 1960. The Eskimo Hunter at Noatak, Alaska. Washington, DC: Atomic Energy Commission.

- Ford, R.G. 1985. Oil Slick Sizes and Length of Coastline Affected: A Literature Survey and Statistical Analysis. Los Angeles, CA: USDOI, MMS, Pacific OCS Region, 34 pp.
- Forney, K.A., J. Barlow, and J.V. Carretta. 1995. The Abundance of Cetaceans in California Waters Part II: Winter and Spring of 1991 and 1992. *Fisheries Bulletin* 93:15-56.
- Fox, A. and J. Madsen. 1997. Behavioural and Distributional Effects of Hunting Disturbance on Waterbirds in Europe: Implications of Refuge Design. *Journal of Applied Ecology* 34:1-13.
- Fraker, M.A. 1984. Balaena mysticetus: Whales, Oil, and Whaling in the Arctic. Anchorage, AK: Sohio-Alaska Petroleum Company and BP Alaska Exploration, Inc.
- Fraker, M.A., W.J. Richardson, and B. Wursig. 1995.
  Disturbance Responses of Bowheads. *In*: Behavior,
  Disturbance Responses and Feeding of Bowhead
  Whales, *Balaena mysticetus*, in the Beaufort Sea, 1980-1981. Unpublished report. Washington, DC: USDOI,
  BLM, pp. 145-248.
- Fraker, M.A., D.K. Ljungblad, W.J. Richardson, and D.R. Van Schoik. 1985. Bowhead Whale Behavior in Relation to Seismic Exploration, Alaskan Beaufort Sea, Autumn 1981. OCS Study MMS 85-0077. Anchorage, AK: USDOI, MMS, Alaska OCS Region, 40 pp.
- Francis, J.A., E. Hunter, J.R. Key, and X. Wang. 2005. Clues to Variability in Arctic Minimum Sea Ice Extent. *Journal of Geophysical Research* 32:L21501.
- Freeman, M.A. 1994. Angry Spirits in the Landscape. In: Biological Implications of Global Change: Northern Perspectives, R. Riewe and J. Oakes, eds. Ottawa, Ont., Canada: The Canadian Circumpolar Institute, Royal Society of Canada, Canadian Global Change Program, Assoc. of Canadian Universities for Northern Studies, pp. 3-4.

Freeman, M.A. 1998. *Inuit Whaling and Sustainability*. Walnut Creek, CA: Altamira Press.

- Frey, K., H. Eicken, D.K. Perovich, T.C. Grenfelt, B. Light, L.H. Shapiro, and A.P. Stierle. 2001. Heat Budget and Decay of Clean and Sediment Laden Sea Ice Off the Northern Coast of Alaska. *In*: Port and Ocean Engineering in the Arctic Conference (POAC), Ottawa, Ont., Canada, Aug. 12-17, 2001. Ottawa, Canada: Canadian Hydraulics Centre, National Research Council of Canada, pp. 1405-1412.
- Frid, A. and L. Dill. 2002. Human-Caused Disturbance Stimuli as a Form of Predation Risk. *Conservation Ecology* 6:http://www.consecol.org/vol6/iss1/art11.
- Friends of Cooper Island. 2005. Seattle, WA: www.cooperisland.org/index.htm.
- Froese, R. and D. Pauly., eds. 2004. FishBase. www.fishbase.org. version 04/2004.
- Frost, K.J. and L.F. Lowry. 1981. Ringed Baikal and Caspian Seals. Chapter 2. *In: Handbook of Marine Mammals*, S.H. Ridgeway and R.J. Harrison, eds. Vol. II, Seals. New York: Academic Press.
- Frost, K.J. and L.F. Lowry. 1983. Demersal Fishes and Invertebrates Trawled in the Northeastern Chukchi and Western Beaufort Seas, 1976-1977. NOAA Technical Report NMFS SSRF-764. Seattle, WA: USDOC, NOAA, NMFS, 22 pp.
- Frost, K.J. and L.F. Lowry. 1990. Distribution, Abundance, and Movements of Beluga Whales, *Delphinapterus leucas*, in Coastal Waters of Western Alaska. *Can. Bull. Fish. and Aquat. Sci.* 224:39-57.
- Frost, K.J., L.F. Lowry, and R.R. Nelson. 1983. Investigations of Belukha Whales in Coastal Waters of Western and Northern Alaska, 1982-1983: Marking and Tracking of Whales in Bristol Bay. OCS Study MMS 86-0057. Anchorage, AK: USDOC, NOAA and USDOI, MMS, pp. 461-585.
- Frost, K.J., L.F. Lowry, and G. Carroll. 1993. Beluga Whale and Spotted Seal Use of a Coastal Lagoon System in the Northeastern Chukchi Sea. *Arctic* 461:8-16.
- Frost, K.J., L.F. Lowry, J.R. Gilbert, and J.J. Burns. 1988. Ringed Seal Monitoring: Relationships of Distribution and Abundance to Habitat Attributes and Industrial Activities. OCS Study MMS 89-0026. Anchorage, AK: USDOC, NOAA, and USDOI, MMS, pp. 345-445.
- Frost, K.J., L.F. Lowry, G. Pendleton, and H.R. Nute. 2002. Monitoring Distribution and Abundance of Ringed Seals in Northern Alaska. OCS Study MMS 2002-043. Anchorage, AK: USDOI, MMS, Alaska OCS Region, 66 pp.

- Frost, K.J., L.F. Lowry, G. Pendleton, and H.R. Nute. 2004. Factors Affecting the Observed Densities of Ringed Seals, *Phoca hispida*, in the Alaskan Beaufort Sea, 1996-99. Arctic 57:115-128.
- Fry, D.M. and L.J. Lowenstine. 1985. Pathology of Common Murres and Cassin's Auklets Exposed to Oil. Arch. Environ. Contam. Toxicol. 14:725-737.
- Fugro-McClelland. 1989. Geological and Geophysical Site Survey Report for the Shell Oil Popcorn Well, Chukchi Sea, Alaska. Anchorage, AK: USDOI, MMS, Alaska OCS Region.
- Fujino, K. 1960. Immunogenic and Marking Approaches to Identifying Sub-Populations of the North Pacific Whales. Scientific Report 15. Tokyo: Whales Research Institute, pp. 84-142.
- Fuller, A. S. and J.C. George. 1997. Evaluation of Subsistence Harvest Data from the North Slope Borough 1993 Census for Eight North Slope Villages: for the Calendar Year 1992. Barrow, AK: North Slope Borough, Dept. of Wildlife Management.
- Furgal, C.M., S. Innes, and K. M. Kovacs. 1996. Characteristics of Ringed Seal, *Phoca hispida*, Subnivean Structures and Breeding Habitat and their Effects on Predation. *Canadian Journal of Zoology* 74:858-874.
- Galginaitis, M. 2005. Annual Assessment of Subsistence Bowhead Whaling Near Cross Island, 2003: ANIMIDA Task 4 Annual Report. OCS Study MMS 2005-025. Anchorage, AK: USDOI, MMS, Alaska OCS Region.
- Galginaitis, M. and D.W. Funk. 2004. Annual Assessment of Subsistence Bowhead Whaling near Cross Island, 2001 and 2002: ANIMIDA Task 4 Report. Anchorage, AK: USDOI, MMS, Alaska OCS Region.
- Galginaitis, M. and D.W. Funk. 2005. Annual Assessment of Subsistence Bowhead Whaling near Cross Island. ANIMIDA Task 4 Annual Report. Anchorage, AK: USDOI, MMS, Alaska OCS Region.
- Galginaitis, M. and D.W. Funk. 2006a. Annual Assessment of Subsistence Bowhead Whaling near Cross Island, 2004: AMIMIDA Task 7, Annual Report. Anchorage, AK: USDOI, MMS, Alaska OCS Region.
- Galginaitis, M. and D.W. Funk. 200b. Annual Assessment of Subsistence Bowhead Whaling near Cross Island, 2005: ANIMIDA Task 7 Preliminary Report. Anchorage, AK: USDOI, MMS, Alaska OCS Region.
- Galginaitis, M., C. Chang, K.M. MacQueen, A.A. Dekin, Jr., and D. Zipkin. 1984. Ethnographic Study and Monitoring Methodology of Contemporary Economic Growth, Socio-Cultural Change, and Community Development in Nuiqsut, Alaska. Technical Report No. 96. Anchorage, AK: USDOI, MMS, Alaska OCS Region, 439 pp.

- Galicia, E. and G.A. Baldassarre. 1997. Effects of Motorized Tourboats on the Behavior of Nonbreeding American Flamingos in Yucatan, Mexico. *Conservation Biology* 11:1159-1165.
- Gallaway, B.J. and R.G. Fechhelm. 2000. Anadromous and Amphidromous Fishes. In: The Natural History of an Arctic Oil Field: Development and the Biota, J.C. Truett and S.R. Johnson, eds. San Francisco, CA: Academic Press, pp. 349-369.
- Galster, W. and J.J. Burns. 1972. Accumulation of Pesticides in Alaskan Marine Mammals. *In*: Proceedings of the 23<sup>rd</sup>Alaska Science Conference, 23 50. Fairbanks, Ak., 1972. Fairbanks, AK: University of Alaska, Fairbanks.
- Gambell, R. 1976. World Whale Stocks. Marine Mammal Review 6(1):41-53.
- Garbarino, J.R., E. Snyder-Conn, T.J. Leiker, and G.L. Hoffman. 2002. Contaminants in Arctic Snow Collected Over Northwest Alaska Sea Ice. *Water, Air, and Soil Pollution* 139:183-214.
- Garlich-Miller, J. 2006. Email dated Mar. 1, 2006, from Joel Garlich-Miller, FWS, Anchorage, to M. Burwell, MMS Alaska OCS Region; subject: Walrus harvest numbers.
- Garlich-Miller, J. 2006. Description of Habitat, Marine Mammals Affected by the Activity, and the Impact on Affected Marine Mammals.
- Garner, G.W. and P.E. Reynolds. 1987. Mammals. *In*: Arctic National Wildlife Refuge Coastal Plain Resource Assessment, Base Line Study of the Fish, Wildlife and their Habitats. Vol. I. Anchorage, AK: USDOI, FWS, 392 pp.
- Garner, G.W. and P.E. Reynolds, eds. 1986. Arctic National Wildlife Refuge Coastal Plain Resource Assessment: Final Report: Baseline Study of the Fish, Wildlife and Their Habitats. Anchorage, AK: USDOI, FWS, Region 7, 695 pp.
- Gaskin, D.E. 1984. The Harbor Porpoise *Phocoena phocoena* (L.): Regional Populations, Status, and Information on Direct and Indirect Catches. Reports of the International Whaling Commission No. 34. Cambridge, UK: IWC, pp. 569-586.
- Gaston, A.J. and J.M. Hipfner. 2000. Thick-Billed Murre (Uria lomvia), A. Poole and F.Gill, eds. No. 497. The Birds of North America. Philadelphia, PA: Cornell Laboratory of Ornithology, Academy of Natural Sciences of Philadelphia, 32 pp.
- Gaston, K.J. 1994. *Rarity*. New York: Chapman and Hall Publ.

Gaston, K.J., K. Woo, and M. Hipfner. 2003. Trends in Forage Fish Populations in Northern Hudson Bay Since 1981, as Determined from the Diet of Nesting Thick-Billed Murres *Uria lomvia. Arctic* 56:227-233.

Gausland, I. 1998. Physics of Sound in Water. *In:*Proceedings of the Seismic and Marine Mammals
Workshop, Chapter 3, M.L. Tasker and C. Weir, eds.
London, Jun. 23-25, 1998. Published on the web.

General Accountability Office. 2003. Alaska Native Villages: Most are Affected by Flooding and Erosion, but Few Quality for Federal Assistance. Report to Congressional Committees GAO-040142. Washington, DC: GAO.

George, C. 1996. Beaufort Sea Oil and Gas Development/Northstar Environmental Impact Statement Project, Public Scoping Meeting in Barrow. Barrow, AK: North Slope Borough, Dept. of Wildlife Management.

George, C. 2005. Email dated Dec. 17, 2005, from Craig George, Wildlife Biologist, North Slope Borough, Dept. of Wildlife Management, to Jeff Childs, Wildlife Biologist, MMS Alaska OCS Region; subject: squid in the Beaufort and Chukchi Seas.

George, J.C. and R. Kovalsky. 1986. Observations on the Kupigruak Channel (Colville River) Subsistence Fishery, October 1985. Barrow, AK: North Slope Borough, 60 pp.

George, J.C. and B.P. Nageak. 1986. Observations on the Colville River Subsistence Fishery at Nuiqsut, Alaska for the period July 4-November 1, 1984. Barrow, AK: North Slope Borough, 25 pp.

George, J.C., C. Clark, G.M. Carroll, and W.T. Ellison. 1989. Observations on the Ice-Breaking and Ice Navigation Behavior of Migrating Bowhead Whales (Balaena mysticetus) near Point Barrow, Alaska, Spring 1985. Arctic 42(1):24-30.

George, J.C., L.M. Philo, K. Hazard, D. Withrow, G.M. Carroll, and R. Suydam. 1994. Frequency of Killer Whale (*Orcinus orca*) Attacks and Ship Collisions Based on Scarring on Bowhead Whales (*Balaena mysticetus*) of the Bering-Chukchi-Beaufort Sea Stock. *Arctic* 47(3):247-255.

George, J.C., R.S. Suydam, L.M. Philo, T.F. Albert, J.E. Zeh, and G.M. Carroll. 1995. Report of the Spring 1995 Census of Bowhead Whales, *Balaena mysticetus*, off Point Barrow, Alaska, with Observations on the 1993 Subsistence Hunt of Bowhead Whales by Alaska Eskimos. Reports of the International Whaling Commission 45. Cambridge, UK: IWC, pp. 371-384. George, J.C., J. Bada, J.E. Zeh, L. Scott, S.E. Brown, T. O'Hara, and R.S. Suydam. 1999. Age and Growth Estimates of Bowhead Whales (*Balaena mysticetus*) via Aspartic Acid Racemization. *Canadian Journal of Zoology* 77(4):571-580.

George, J.C., H. Hunington, K. Brewster, H. Eicken, D.W. Norton, and R. Glenn. 2003. Observations on Shorefast Ice Dynamics in Arctic Alaska and the Responses of the Inupiat Hunting Community. Arctic 574:363-374.

George, J.C., J. Zeh, R. Suydam, and C. Clark. 2004. Abundance and Population Trend (1978-2001) of Western Arctic Bowhead Whales Surveyed near Barrow, Alaska. *Marine Mammal Science* 20(4):755-773.

Georgette, S. and H. Loon. 1993. Subsistence Use of Fish and Wildlife in Kotzebue, A Northwest Alaska Regional Center. Technical Paper No. 167. Juneau, AK: State of Alaska, Dept. of Fish and Wildlife, Div. of Subsistence.

Geraci, J.R. 1988. Physiological and Toxic Effects on Cetaceans. *In*: Synthesis of Effects of Oil on Marine Mammals, J.R. Geraci and D.J. St. Aubin, eds. Washington, DC: USDOI, MMS.

Geraci, J.R., 1990. Physiologic and Toxic Effects on Cetaceans. In: Sea Mammals and Oil: Confronting the Risks, J.R. Geraci and D.J. St. Aubin, eds. San Diego, CA: Academic Press, Inc., and Harcourt Brace Jovanovich, pp. 167-197.

Geraci, J.R. and D.J. St. Aubin. 1985. Expanded Studies for the Effects of Oil on Cetaceans. Part 1. Washington, DC: USDOI, MMS, 144 pp.

Geraci, J.R. and D.J. St. Aubin. 1990. *Sea Mammals and Oil: Confronting the Risks*. San Diego, CA: Academic Press Inc., and Harcourt Brace Jovanovich, 282 pp.

Geraci, J.R. and D.J. St. Aubin, eds. 1982. Study of the Effects of Oil on Cetaceans. Final report. Washington, DC: USDOI, BLM, 274 pp.

Geraci, J.R. and T.G. Smith. 1976. Direct and Indirect Effects of Oil on Ringed Seals (*Phoca hispida*) of the Beaufort Sea. Journal of the Fisheries Resource Board of Canada 33:1976-1984.

Geraci, J.R., D.J. St. Aubin, and R.J. Reisman. 1983. Bottlenose Dolphins, *Tursiops truncatus*, Can Detect Oil. *Can. J. Fish. Aquat. Sci.* 409:1515-1522.

Gerrodette, T. and W.G. Gilmartin. 1990. Demographic Consequences of Changed Pupping and Hauling Sites of the Hawaiian Monk Seal. *Conservation Biology* 4:423-430.

- GESAMP. 1993. Impact of Oil and Related Chemical and Wastes on the Marine Environment. GESAMP Reports and Studies No. 50. United Nations: Joint Group of Experts on the Scientific Aspects of Marine Pollution.
- Gibson, M.A. and S.B. Schullinger. 1998. Answers from the Ice Edge. The Consequence of Climate Change on Life in the Bering and Chukchi Seas Anchorage, AK: Arctic Network and Greenpeace USA, various pagings.
- Gilbert, J., G. Fedoseev, D. Seagars, E. Razlivalov, and A. Lachugin. 1992. Aerial Census of Pacific Walrus, 1990. Anchorage, AK: USDOI, FWS, Marine Mammal Management, 33 pp.
- Gill, J.A., K. Norris, and W.J. Sutherland. 2001. Why Behavioural Responses May Not Reflect the Population Consequences of Human Disturbance. *Biological Conservation* 97:265-368.
- Gislason, A. 2003. Life-Cycle Strategies and Seasonal Migrations of Oceanic Copepods in the Irminger Sea. *Hydrobiologia* 503:195-209.
- Global Programme of Action (United Nations Environmental Programme). 2003. Effects of Oil Pollution on Marine Wildlife. Global Marine Oil Pollution Information Gateway http://oils.gpa.unep.org/facts/wildlife.htm
- Glockner-Ferrari, D.A. and M.J. Ferrari. 1990.
  Reproduction in the Humpback Whale (*Megaptera* novaeangliae) in Hawaiian Waters, 1975-1988: The Life History, Reproductive Rates and Behaviour of Known Individuals Identified through Surface and Underwater Photography. Reports of the International Whaling Commission 12. Cambridge, UK: IWC, pp. 161-169.
- Gloersen, P. and W.J. Campbell. 1991. Recent Variations in Arctic and Antarctic Sea-Ice Covers. *Nature* 352:33-36.
- Goldsmith et al. 2004. The Status of Alaska Natives Report 2004. Anchorage, AK: University of Alaska, Anchorage, ISER. Accessed online Aug. 9, 2006, at http://www.iser.uaa.alaska.edu/Home/Research/Areas/s tatusaknatives.htm.
- Golovkin, A. 1984. Seabirds Nesting in the USSR: The Status and Protection of Populations. In: Status and Conservation of the World's Seabirds. ICBP Technical Publication Number 2, pp. 473-486.
- Goold, J.C. and P.J. Fish. 1998. Broadband Spectra of Seismic Survey Airgun Emissions, with Reference to Dolphin Auditory Thresholds. *Journal of the Acoust. Soc. of Amer.* 103:2177-2184.

- Gordon, J.C., D.D. Gillespie, J. Potter, A. Franzis, M.P. Simmonds, and R. Swift. 1998. The Effects of Seismic Surveys on Marine Mammals, Chapter 6. *In*: Proceedings of the Seismic and Marine Mammals Workshop, L. Tasker and C. Weir, eds. London, Jun. 23-25, 1998, published on the web.
- Gordon, J.C., D. Gillespie, J. Potter, a. Frantzis, M.P. Simmonds, R. Swift, and D. Thompson. 2004. A Review of the Effects of Seismic Surveys on Marine Mammals. *Marine Technology Society Journal* 374:16.
- Goudie, R. and C. Ankney. 1986. Body Size, Activity Budgets, and Diets of Sea Ducks Wintering in Newfoundland. *Ecology* 67:1475-1482.
- Gough W.A. 1998. Projections of Sea-Level Change in Hudson and James Bays, Canada, Due to Global Warming. Arctic and Alpine Research 301:84-88.
- Gould, P.J. 1983. Seabirds between Alaska and Hawaii. Condor 853:286-291.
- Gradinger, R. and B. Bluhm. 2005. Susceptibility of Sea Ice Biota to Disturbances in the Shallow Beaufort Sea: Phase I: Biological Coupling of Sea Ice with the Pelagic and Benthic Realms. OCS Study MMS 2005-055.
  Anchorage, AK: USDOI, MMS, Alaska OCS Region, pp. 50-59.
- Gradinger, R., K. Meiners, G. Plumley, Q. Zhang, and B. Bluhm. 2005. Abundance and Composition of the sea-Ice Meiofauna in Off-Shore Pack Ice of the Beaufort Gyre in Summer 2002 and 2003. *Polar Biology* 28:171-181.
- Grahl-Nielsen, O. 1978. The Ekofisk Bravo Blowout: Petroleum Hydrocarbons in the Sea. *In:* The Proceedings of the Conference on Assessment of Ecological Impacts of Oil Spills, C.C. Bates, ed. Keystone, Colo., Jun. 14-17, 2005. Washington, DC: American Institute of Biological Sciences, pp. 476-487.
- Grantz, A., D.A. Dinter, E.R. Hill, R.E. Hunter, S.D. May, R.H. McMullin, and R.L. Phillips. 1982. Geological Framework, Hydrocarbon Potential and Environmental Conditions for Exploration and Development of Proposed Oil and Gas Lease Sale 87 in the Beaufort and Northeast Chukchi Seas. Open-File Report 82-48. Menlo Park, CA: U.S. Geological Survey, 73 pp.
- Gray, P.A. 2006. The Chukotka Autonomous Okrug, Some Basic Facts. Patty A. Gray website: http://www.faculty.uaf.edu/ffpag/chukfac.html.
- Grebmeier, J. and K. Dunton. 2000. Benthic Processes in the Northern Bering/Chukchi Seas: Status and Global Change. *In*: Impacts of Change in Sea Ice and Other Environmental Parameters in the Arctic. Marine Mammal Workshop, Girdwood, Ak., Feb. 15-17, 2000. Bethesda, MD: Marine Mammal Commission, pp. 61-71.

Grebmeier, J.M., J.E. Overland, S.E. Moore, E.V. Farley, E.C. Carmack, L.W. Cooper, K.E. Frey, J.H. Helle, F.A. McLaughlin, and S.L. McNutt. 2006. A Major Ecosystem Shift in the Northern Bering Sea. *Science* 311:1461-1464.

Greely, J. 2007. Conversation dated Apr. 13, 2007, between J. Greely, Petroleum Assessor, State of Alaska, Dept. of Revenue, Tax Div., Petroleum Property Tax Group, and T. Holder, Economist, MMS Gulf of Mexico Region; subject: property taxes.

Green, D.R., B. Humphrey, and B. Fowler. 1982.
Chemistry: 1. Field Sampling and Measurements - 1981 Study Results. Baffin Island Oil Spill (BIOS) Project Working Report 81-1. Edmonton, Alb., Canada: Baffin Island Oil Spill Project, 111 pp.

Greene, C.R. 1981. Underwater Acoustic Transmission Loss and Ambient Noise in Arctic Regions. *In:* The Question of Sound from Icebreaker Operations, Proceedings of a Workshop, N.M. Peterson, ed. Toronto, Ont., Canada. Calgary, Alb., Canada: Arctic Pilot Project, Petro-Canada, pp. 234-258.

Greene, C.R. 1997. Underice Drillrig Sound, Sound Transmission Loss, and Ambient Noise near Tern Island, Foggy Island Bay, Alaska, February 1997.
Greeneridge Report 187-1. Santa Barbara, CA: Greeneridge Sciences, Inc., 22 pp.

Greene, C.R. Jr. 2003. An Assessment of the Sounds Likely to be Received from a Tug-and-Barge Operating in the Shallow Alaskan Beaufort Sea. Anchorage, AK: ConocoPhillips, Alaska, Inc.

Greene, C.R., Jr. and W.J. Richardson. 1988. Characteristics of Marine Seismic Survey Sounds in the Beaufort Sea. J. Acoust. Soc. Am. 836:2246-2254.

Greene, C.R. and S.E. Moore. 1995. Man-made Noise. In: Marine Mammals and Noise, W.J. Richardson, C.R. Greene, Jr., C.I. Malme, and D.H. Thomson, eds. London: Academic Press, pp. 101-158.

Greene, C.R. and M.W. McLennan. 2001. Acoustic Monitoring of Bowhead Whale Migration, Autumn, 2000. *In*: Monitoring of Industrial Sounds, Seals, and Whale Calls during Construction of BP's Northstar Oil Development, Alaskan Beaufort Sea, Summer and Autumn 2000: 90-Day Report, LGL and Greeneridge, eds. LGL Report TA 2431-1. King City, Ont., Canada: LGL Ecological Research Assocs., Inc., 37 pp.

Greene, C.R., Jr., N.S. Altman, W.J. Richardson, and R.W.
Blaylock. 1999. Bowhead Whale Calls. *In:* Marine Mammal and Acoustical Monitoring of Western
Geophysical's Open-Water Seismic Program in the Alaskan Beaufort Sea, 1998, LGL and Greeneridge, ed.
LGL Report TA 2230-3. King City, Ont., Canada:
LGL Ecological Research Assocs., Inc., 23 pp.

Gregor, D. J. and W.D. Gummer. 1989. Evidence of Atmospheric Transport and Deposition of Organochlorine Pesticides and Polychlorinated Biphenyls in Canadian Arctic Snow. *Environmental Science and Technology* 235:561-565.

Griffith, B., D.C. Douglas, N.E. Walsh, D.D. Young, R.R. McCabe, D.E. Russell, R.G. White, R.D. Cameron, and K.R. Whitten. 2002. The Porcupine Caribou Herd. *In*: Arctic Refuge Coastal Plain Terrestrial Wildlife Research Summaries, D.C. Douglas, P.E. Reynolds, and E.B. Rhodes, eds. Biological Science Report USGS/BRD/BSR-2002-0001. Anchorage, AK: U.S. Geological Survey, Biological Resources Div., pp. 8-37.

Griffiths, W.B., R.G. Fechhelm, B.J. Gallaway, L.R. Martin, and W.J. Wilson. 1998. Abundance of Selected Fish Species in Relation to Temperature and Salinity Patterns in the Sagavanirktok Delta, Alaska, following the Construction of the Endicott Causeway. *Arctic* 52:94-104.

Griffiths, W.D., D.H. Thomson, and M.S. Bradstreet. 2002.
Zooplankton and Water Masses at Bowhead Whale
Feeding Locations in the Eastern Beaufort Sea. *In*:
Bowhead Whale Feeding in the Eastern Alaskan
Beaufort Sea: Update of Scientific and Traditional
Information, W.J. Richardson and D.H. Thomson, eds.
LGL Report TA2196-7. King City, Ont., Canada: LGL
Limited, environmental research associates, pp. 1-44.

Groat, C.C. 2001. Statement of Charles C. Groat, Director, U.S. Geological Survey, Department of the Interior, Before the Committee on Appropriations, United States Senate on Climate Change and its Impact on the Arctic Region and Alaska, May 29, 2001.

Grotefendt, K., K. Logermann, D. Quadfasel, and S. Ronski. 1998. Is the Arctic Ocean Warming? *Journal of Geophysical Research* 103(C12):27,679-27,687.

Gumbel, A. 2007. One Woman Fighting to Save Her People from Extinction. In: *The Independent*, Feb. 24, 2007. http://www.independent.co.uk/

Gunn, J.R. and R.D. Muench. 2001. Observed Changes in Arctic Ocean Temperature Structure over the Past Half Decade. *Geophysical Research Letters* 286:1,035-1,038.

Gutt, J. 2001. On the Direct Impact of Ice on Marine Benthic Communities, A Review. *Polar Biology* 24:553-564.

Hachmeister, L.E. and J.B. Vinelli. 1985. Nearshore and Coastal Circulation in the Northeastern Chukchi Sea. OCS Study MMS 88-0069. Anchorage, AK: USDOC, NOAA and USDOI, MMS, pp. 1-104.

- Hadland, J. 2002. Table received Aug. 9, 2002, from J. Hadland, State of Alaska, Dept. of Labor and Workforce Dev.; subject: State database for Alaska 2000 resident/nonresident workers and wages by reported place of work, oil industry workers, standard industrial code 13, North Slope Borough, 32.2% nonresident workers.
- Hadland, J. and G. Landry. 2002. Nonresidents Working in Alaska 2000. www.lab or.state.ak.us/research/research.thm and http://146.63.75.50/research/reshire/nonres.pdf. Juneau, AK: State of Alaska, Dept. of Labor and Workforce Dev.
- Haggarty, J.C., C.B. Wooley, J.M. Erlandson, and A. Crowell. 1991. The 1990 Exxon Valdez Cultural Resource Program: Site Protection and Maritime Cultural Ecology in Prince William Sound and the Gulf of Alaska. Anchorage, AK: Exxon Co. U.S.A.
- Haldiman, J., W. Henk, R. Henry, T.F. Albert, Y. Abdelbaki, and D.W. Duffield. 1985. Epidermal and Papillary Dermal Characteristics of the Bowhead Whale (*Balaena mysticetus*). *The Anatomical Record* 211:391-402.
- Haley, S. 2004. Institutional Assets for Negotiating the Terms of Development: Indigenous Collective Action and Oil in Ecuador and alaska. *Economic Development and Cultural Change* 53(1).
- Hall, A.J., B.J. McConnell, and R.J. Barker. 2001. Factors Affecting First-Year Survival in Grey Seals and their Implications for Life History Strategy. *Journal of Animal Ecology* 70:138-149.
- Hall, E.S. 1983. A Subsistence Study of Seven Lease Tracts in the National Petroleum Reserve in Alaska with Special Reference to the Proposed Brontosaurus Exploratory Well Site Area. 1 Vol. Anchorage, AK: ARCO Alaska, Inc., various pagings.
- Hall, J.D., M.L. Gallagher, K.D. Brewer, P.R. Regos, and P.E. Isert. 1994. ARCO Alaska, Inc. 1993 Kuvlum Exploration Area Site Specific Monitoring Program. Final Report. Anchorage, AK: ARCO Alaska, Inc.
- Hamilton, C.I., S.J. Starr, and L.L. Trasky. 1979. Recommendations for Minimizing the Impacts of Hydrocarbon Development on the Fish, Wildlife, and Aquatic Plant Resources of Lower Cook Inlet. Vols. I and II. Anchorage, AK: State of Alaska, Dept. of Fish and Game, Marine and Coastal Habitat Management, 420 pp.
- Hammill, M.O. and T.G. Smith. 1991. The Role of Predation in the Ecology of the Ringed Seal in Barrow Strait, Northwest Terrritories, Canada. *Marine Mammal Science* 7:123-135.

- Hammill, M.O., C. Lydersen, M. Ryg, and T.G. Smith. 1991. Lactation in the Ringed Seal (*Phoca hispida*). *Canadian Journal of Fisheries and Aquatic Science*. 48:2471-2476.
- Hampson, G.R. and H.L. Sanders. 1969. Local Oil Spill. Oceanus 15:8-11.
- Hanna, S.R. and P.J. Drivas. 1993. Modeling VOC Emissions and Air Concentrations from the *Exxon Valdez* Oil Spill. *Journal of the Air & Waste Management Association* 43:298-309.
- Hansbrough, J.F., R. Zapata-Sirvent, W. Dominic , J. Sullivan, J. Boswick, and X.W. Wang. 1985. Hydrocarbon Contact Injuries. *The Journal of Trauma* 253:250-252.
- Hansen, D.J. 1985. The Potential Effects of Oil Spills and Other Chemical Pollutants on Marine Mammals Occurring in Alaskan Waters. OCS Report MMS 85-0031. Anchorage, AK: USDOI, MMS, Alaska OCS Region, 22 pp.
- Hansen, D.J. 1992. Potential Effects of Oil Spills on Marine Mammals that Occur in Alaskan Waters. OCS Report MMS 92-0012. Anchorage, AK: USDOI, MMS Alaska OCS Region, 25 pp.
- Harcharek, R.C. 1995. North Slope Borough 1993/94 Economic Profile and Census Report. Vol. VII. Barrow, AK: North Slope Borough, Dept. of Planning and Community Services.
- Harding L. and J.A. Nagy. 1980. Responses of Grizzly Bears to Hydrocarbon Exploration on Richards Island, Northwest Territories, Canada. *In:* Bears-Their Biology and Management. Fourth International Conference Bears Resource and Management, Kalispell, Mont., Tonto Basin, AZ: Bear Biology Assoc., pp. 277-280.
- Harding, L.E. 1976. Den-Site Characteristics of Arctic Coastal Grizzly Bears (*Ursus arctos*) on Richards Island, Northwest Territories, Canada. *Canadian Journal Zoology* 54:1357-1363.
- Harington, C.R. 1968. Denning Habits of the Polar Bear (Ursus maritimus) Phipps. WS Report, Series 5. Ottawa, Ont., Canada: Canadian Wildlife Service, 33 pp.
- Harris, G., B. Binkowitz, and B. Wartenberg. 2001. Does Distributional Shape Matter in Monte Carlo Analysis? Risk Analysis in an Interconnected World, Society for Risk Analysis.
- Harris, M. and T.R. Birkhead., 1985. Breeding Ecology of the Atlantic Alcidae. *In: The Atlantic Alcidae*, D.N.Nettleship and T.R. Birkhead, eds. London, UK: Academic Press, pp. 155-204.
- Harris R.E., G.W. Miller, and W.J. Richardson. 2001. Seal Responses to Airgun Sounds during Summer Seismic Surveys in the Alaskan Beaufort Sea. *Marine Mammal Science* 174:795-812.

Harritt, R.K., comp. 2001. In Pursuit of Agviq. Some Results of the Western Whaling Societies Regional Integration Project. Part II, Workshop Followup. Anchorage, AK: University of Alaska, Anchorage, ENRI.

Hartwell, A.D. 1973. Classification and Characteristics of Northern Alaska's Coastal Zone. Arctic 26:244-252.

Harvey, J.T. and M.E. Dahlhiem. 1994. Cetaceans in Oil. *In: Marine Mammals and the Exxon Valdez*, T.R. Loughlin, ed. San Diego, CA: Academic Press, pp. 257-264.

Harwood, J. and B. Wilson. 2001. The Implications of Developments on the Atlantic Frontier for Marine Mammals. *Cont. Shelf Res.* 218-10:1073-1093.

Harwood, L.A. 2005. Reproduction and Body Condition of the Ringed Seal (*Phoca hispida*) in the eastern Beaufort Sea, NT, Canada, as Assessed Through a Harvest-based Sampling Program at Sachs Harbour, NT in 2005. Yellowknife, NT, Canada: Canadian Dept. of Fisheries and Oceans, 12 pp.

Harwood, L.A. and I. Stirling. 1992. Distribution of Ringed Seals in the Southeastern Beaufort Sea during Late Summer. *Can. J. Zool.* 705:891-900.

Harwood, L.A., T.G. Smith, and H. Melling. 2000. Variation in Reproduction and Body Condition of the Ringed Seal (*Phoca hispida*) in Western Prince Albert Sound, NWT, Canada, as Assessed through a Harvest-Based Sampling Program. Arctic 53:422-431.

Harwood, L.A., F. McLaughlin, R.M. Allen, J. Illasiak, Jr., and J. Alikamik. 2005. First-Ever Marine Mammal and Bird Observation in the Deep Canada Basin and Beaufort/Chukchi Seas: Expeditions during 2002. *Polar Biology* 283:250-253.

Haskell, S.P. and W.B. Ballard. 2004. Factors Limiting Productivity of the Central Arctic Caribou Herd of Alaska. *Rangifer* 24:71-78.

Haskell, S.P., R.M. Nielson, W.B. Ballard, A. Cronin, and L. McDonald. 2006. Dynamic Responses of Calving Caribou to Oilfields in Northern Alaska. *Arctic* 59:179-190.

Hastings, M.C., A.N. Popper, J.J. Finneran, and P.J. Lanford. 1996. Effects of Low-Frequency Underwater Sound on Hair Cells of the Inner Ear and Lateral Line of the Teleost Fish Astronotus ocellatus. J. Acoust. Soc. Am. 993:1759-1766.

Hatch, S.A., P.M. Meyers, D.M. Mulcahy, and D.C. Douglas. 2000. Seasonal Movements and Pelagic Habitat Use of Murres and Puffins Determined by Satellite Telemetry. *Condor* 102:145-154. Hawkins, A.D. 1981. The Hearing Abilities of Fish. *In*: Hearing and Sound Communication in Fish, W.N. Tavolga, A.N. Popper, and R.R. Fay, eds. New York: Springer-Verlag.

Haynes, T. and S. Pedersen. 1989. Development and Subsistence: Life After Oil. Alaska Fish and Game 21(6):24-27.

Hazard, K. 1988. Beluga Whale, *Delphinapterus leucas. In:* Selected Marine Mammals of Alaska: Species Accounts with Research and Management Recommendations, J.W. Lentfer, ed. Washington, DC: Marine Mammal Commission, 275 pp.

Health Canada. 2002. The Social Determinants of Health: An Overview of the Implications for Policy and the Role of the Health Sector. Accessed online at http://www.phac-aspc.gc.ca/phsp/phdd/pdf/overview\_implications/01\_overview\_e.pdf

Healy, M.C. 1991. Life History of Chinook Salmon (Oncorhynchus tshawytscha). In: Pacific Salmon Life Histories, C. Groot and L. Margolis, eds. Vancouver, BC, Canada: University of British Columbia Press, pp. 311-393.

Heard, D.C. and T.M. Williams. 1991. Wolf Den Distribution on Migratory Barren-Ground Caribou Ranges in the Northwest Territories (Abstract). *In*: Proceedings of the Fourth North American Caribou Workshop, C. Butler and S.P. Mahoney, eds. St John's, Newfoundland, pp. 249-250.

Heintz, R.A., J.W. Short, and S.D. Rice. 1999. Sensitivity of Fish Embryos to Weathered Crude Oil: Part II. Incubating Downstream from Weathered *Exxon Valdez* Crude Oil Caused Increased Mortality of Pink Salmon (*Oncorhynchus gorbuscha*) Embryos. *Environ. Tox. Chem.* 18:494-503.

Heintz, R.A., S.D. Rice, A.C. Wertheimer, R.F. Bradshaw, F.P. Thrower, J.E. Joyce, and J.W. Short. 2000. Delayed Effects on Growth and Marine Survival of Pink Salmon Oncorhynchus gorbuscha After Exposure to Crude Oil during Embryonic Development. Mar. Ecol. Prog. Ser. 208:205-216.

Hemming, J.E. 1971. The Distribution and Movement Patterns of Caribou in Alaska. Federal Aid in Wildlife Restoration Project W-17-R. Wildlife Technical Bulletin No. 1. Juneau, AK: State of Alaska, Dept. of Fish and Game, 60 pp.

Henk, W.G. and D.L. Mullan. 1997. Common Epidermal Lesions of the Bowhead Whale (*Balaena mysticetus*). *Scanning Microscopy Intl.* 103:905-916.

Henley, C.M. and L.P. Rybak. 1995. Ototoxicity in Developing Mammals. *Brain Res. Rev.* 204:68-90.

- Henshaw, J. 1968. The Activities of the Wintering Caribou in Northwestern Alaska in Relation to Weather and Snow Conditions. *International Journal of Biometeorology* 12:18-24.
- Hepa, T. 1997. Testimony of T. Hepa at the Public Scoping Meeting for the NE NPR-A IAP/EIS., Barrow and Nuiqsut, Ak., Mar. 17 and Apr. 10, 1997. Fairbanks, AK: USDOI, BLM.
- Hicks, J. and P. Bjerregaard. 2006. The Transition from the Historical Inuit Suicide Pattern to the Present Inuit Suicide Pattern. Accessed online on Nov. 13, 2006, at http://www.inchr.org/Doc/April2006/Hicks-suicide.pdf
- Highsmith, R.C. and K.O. Coyle. 1992. Productivity of Arctic Amphipods Relative to Gray Whale Energy Requirements. *Marine Ecology Progress Series* 83:141-150.
- Hilborn, R. 1996. Detecting Population Impacts from Oil Spills: A Comparison of Methodologies. *American Fisheries Society Symposium* 18:639-644.
- Hillman, S.O. and R.V. Shafer. 1983. ABSORB: A Three Year Update in Arctic Spill Response. Proceedings of the 1983 Oil Spill Conference. Washington, DC: American Petroleum Institute.
- Hoekstra, K.A., L.A. Dehn, J.C. George, K.R. Solomon, D.C.G. Muir, and T.M. O'Hara. 2002. Trophic Ecology of Bowhead Whales (*Balaena mysticetus*) Compared with that of Other Arctic Marine Biota as Interpreted from Carbon-, Nitrogen-, and Sulphur-Isotope Signatures. *Canadian Journal of Zoology* 80(2):223-231.
- Hoffman, A.G., K. Hepler, and P. Hansen. 1993.
  Assessment of Damage to Demersal Rockfish in Prince William Sound Following the *Exxon Valdez* Oil Spill. *In: Exxon Valdez* Oil Spill Symposium, Abstract Book, B. Spies, L.J. Evans, B. Wright, M. Leonard and C. Holba, eds. and comps. Anchorage, Ak., Feb. 2-5, 1992. Anchorage, AK: *Exxon Valdez* Oil Spill Trustee Council; University of Alaska, Sea Grant College Program; and American Fisheries Society, Alaska Chapter, pp. 241-242.
- Hoffman, B. 2002. Testimony to PEW Oceans Commission Feb.-Mar. 2002.
- Hoffman, D., D. Libby, and G. Spearman. 1988. Nuiqsut: A Study of Land Use Values Through Time. Occasional Paper No. 12. Barrow, AK: North Slope Borough.
- Holliday, D.V., R.E. Pieper, M.E. Clarke, and C.F. Greenlaw. 1986. The Effects of Airgun Energy Releases on the Eggs, Larvae, and Adults of the Northern Anchovy (*Engraulis mordax*). Tracor Document No. T-86-06-7001-U. Washington, DC: American Petroleum Institute, 98 pp.

- Holst, M., G.W. Mille, V.D. Moulton, and R.E. Elliott. 2002. Aerial Monitoring, 2001. *In:* Marine Mammal and Acoustical Monitoring of Anderson Exploration Limited's Open-Water Seismic Program in the Southeastern Beaufort Sea, 2001, LGL and JASCO Research Ltd., eds. LGL Report TA 2618-1. King City, Ont., Canada: LGL Ecological Research Associates, Inc., 207 pp.
- Hom, J.L. 1995. Climate and Ecological Relationships in Northern Latitudes, D.L. Peterson and D.R. Johnson, eds.. *In*: Human Ecology and Climate Change: People and Resources in the Far North pp. 75-88..
- Hom, W. et al. 1999. Measuring the Exposure of Subsistence Fish and Marine Mammal Species to Aromatic Compounds following the *Exxon Valdez* Oil Spill. *In:* Evaluating and Communicating Subsistence Seafood Safety in a Cross-Cultural Context, L.J. Field, N. Peacock, U. Varanasi, J.A. Fall, and T.S. Nighswander, eds. Pensacola, FL: SETAC Press.
- Hopkins, D.M., ed. 1967. A Cenozoic History of Beringia A Synthesis. In: The Bering Land Bridge. Stanford, CA: Stanford University Press, pp. 451-484.
- Hopkins, K. 2003. DNR Project Could Aid Oil Project. Fairbanks, AK: Fairbanks Daily News-Miner. http://www.newsminer.com/Stories/0,1413~7244~158592,00html
- Hopson, E. 1976. Mayor Eben Hopson's Warning to the People of the Canadian Arctic. Testimony to the Berger Commission.
- Hopson, E. 1978. Mayor Eben Hopson's Testimony, Public Hearing on Proposed Pt. Thompson Lease Sale, Anchorage, Ak., July 25, 1978. Anchorage, AK: State of Alaska, DNR, Div. of Oil and Gas.
- Horejsi, B. 1981. Behavioral Response of Barren-Ground Caribou to a Moving Vehicle. Arctic 342:180-185.
- Hufford, G.L., B.D. Thompson, and L.D. Farmer. 1977. Surface Currents of the Northeast Chukchi Sea. Environmental Assessment of the Alaskan Continental Shelf. Annual Reports of Principal Investigators for the Year Ending March 1977, Vol. XIV Transport. Boulder, CO and Anchorage, AK: USDOC, NOAA, OCSEAP and USDOI, BLM, pp. 10-38.
- Hulen, D. 1996a. State Loses Subsistence Fight. Anchorage, AK: Anchorage Daily News, p. 1A.
- Hulen, D. 1996b. State Vows Subsistence Fight not Over; Lawyers Plan Return to Court to Resist Federal Takeover Plan. Anchorage, AK: Anchorage Daily News, p. 1B.
- Hult, J. 2006. BP Gas-to-Liquids Nikisk Plant Going Strong -For Now. *Peninsula Clarion*. hrrp://www.peninsulaclarion.com/stories/021706/econom y\_0217eco022.shtml

- Human Relations Area Files, Inc. 1992. Social Indicators Study of Alaskan Coastal Villages, I. Key Informant Summaries, Vol. 1: Schedule A Regions (North Slope, NANA, Calista, Aleutian-Pribilof), J.G. Jorgensen, Principal Investigator. OCS Study MMS 92-0031. Anchorage, AK: USDOI, MMS, Alaska OCS Region.
- Human Relations Area Files, Inc. 1994a. Social Indicators Study of Alaskan Coastal Villages, III. Analysis, J.G. Jorgensen, Principal Investigator. OCS Study MMS 93-0070. Anchorage, AK: USDOI, MMS, Alaska OCS Region, 520 pp.
- Human Relations Area Files, Inc. 1994b. Social Indicators Study of Alaskan Coastal Villages V. Research Methodology for the *Exxon Valdez* Spill Area 1988-1992. OCS Study MMS 93-0071. Anchorage, AK: USDOI, MMS, Alaska OCS Region.
- Human Relations Area Files, Inc. 1994c. Social Indicators Study of Alaskan Coastal Villages VI. Analysis of the *Exxon Valdez* Spill Area. OCS Study MMS 94-0064. Anchorage, AK: USDOI, MMS, Alaska OCS Region.
- Hunt, G. Jr., P. Gould, D. Forsell, and H. Petersen, Jr. 1981. Pelagic Distribution of Marine Birds in the Eastern Bering Sea. *In*: The Eastern Bering Sea Shelf: Oceanography and Resources, D.W. Wood and J.A. Calder, eds. Juneau, AK: USDOC, NOAA, OMPA, pp. 689-718.
- Hunter, M.L. 1996. *Fundamentals of Conservation Biology*. Cambridge, MA: Blackwell Science, 482 pp.
- Huntington, H., H. Brower, and D. Norton. 2001. The Barrow Symposium on Sea Ice, 2000. Evaluation of One Means of Exchanging Information between Subsistence Whalers and Scientists. *Arctic* 54(2):201-203.
- Huntington, H.P. 2000. Traditional Knowledge of the Eecology of Belugas, *Delphinapterus leucas*, in Cook Inlet, Alaska. *Marine Fisheries Review* 623:134-140.
- Huntington, H.P. and N.I. Mymrin. 1996. Traditional Ecological Knowledge of Beluga Whales. An Indigenous Knowledge Pilot Project in the Chukchi and Northern Bering Seas. Final Report. Anchorage, AK: Inuit Circumpolar Conference.
- Hurley, G. and J. Ellis. 2004. Environmental Effects of Exploratory Drilling Offshore Canada: Environmental Effects of Monitoring Data and Literature Review -Final Report. Canadian Environmental Assessment Agency, Regulatory Advisory Committee, available online.
- Impact Assessment, Inc. 1988. Village Economics in Rural Alaska. OCS Study MMS 88-0079. Anchorage, AK: USDOI, MMS, Alaska OCS Region, 326 pp.

- Impact Assessment, Inc. 1989. Point Lay Case Study. OCS Study MMS 89-0093. Anchorage, AK: USDOI, MMS, Alaska OCS Region, 532 pp.
- Impact Assessment, Inc. 1990a. Northern Institutional Profile Analysis: Beaufort Sea. OCS Study MMS 90-0023. Anchorage, AK: USDOI, MMS, Alaska OCS Region, 670 pp.
- Impact Assessment, Inc. 1990b. Northern Institutional Profile Analysis: Chukchi Sea. OCS Study, MMS 90-0022. Anchorage, AK: USDOI, MMS, Alaska OCS Region, 750 pp.
- Inglis, G.J. and N. Gust. 2003. Potential Indirect Effects of Shellfish Culture on the Reproductive Success of Benthic Predators. *Journal of Applied Ecology* 40:1077-1089.
- International Whaling Commission. 1987. Annex G: Report of the Subcommittee on Protected Species and Aboriginal Subsistence Whaling. Reports of the International Whaling Commission 37. Cambridge, UK: IWC, pp. 113-120.
- International Whaling Commission. 1992. Report of the Scientific Committee, Annex I. Report of the International Whaling Commission 42. Cambridge, UK: IWC, pp. 121-138.
- International Whaling Commission. 1997. Chairman's Report of the 48th Annual Meeting. Report of the International Whaling Commission 47. Cambridge, UK: IWC, pp. 17-55.
- International Whaling Commission. 2001. Annex F. 2001 Report of the Subcommittee on Bowhead, Right, and Gray Whales. Cambridge, UK: IWC.
- International Whaling Commission. 2003. Annex F. Report of the Sub-Committee on Bowhead, Right and Gray Whales. Cambridge, UK: IWC.
- International Whaling Commission. 2004a. Annex K. Report of the Standing Working Group on Environmental Concerns. Cambridge, UK: IWC.
- International Whaling Commission. 2004b. Report of the Scientific Committee. Cambridge, UK: IWC.
- International Whaling Commission. 2005a. Report of the Scientific Committee. Cambridge, UK: IWC.
- International Whaling Commission. 2005b. Annex F. Report of the Sub-Committee on Bowhead, Right and Gray Whales. Report 13:23. Cambridge, UK: IWC, 12 pp.
- International Whaling Commission. 2006. Report of the Standing Working Group on Environmental Concerns. Report of the Scientific Committee IWC/58/Rep. 1. Cambridge, UK: IWC, 87 pp.

- Interorganizational Committee on Principles and Guidelines for Social Impact Assessment. 2003. Principles and Guidelines for Social Impact Assessment in the USA. September 2003. Impact Assessment and Project Appraisal :231-243.
- IPCC. 2001a. Summary for Policymakers. In: Notes from the UN Climate Change 2001 Report. http://www.cbc.ca/news/indepth/background/global\_wa rming\_report2.html.
- IPCC. 2001b. Notes from the Climate Change 2001 Report. http://www.cbc.ca/news/indepth/background/global\_wa rming\_report2.html
- IPCC. 2007. Fourth Assessment Report. Geneva: IPCC.
- IUCN. 2003. Dolphins, Whales, and Porpoises. 2002-2010 Conservation Action Plan for the World's Cetaceans, R.R. Reeves, B.D. Smith, E.A. Crespo, and G.N. diSciara, comps. Gland, Switzerland: IUCN - The World Conservation Union.
- IUCN/SSC Polar Bear Specialist Group. 2005. Press Release: 14<sup>th</sup> Meeting of the IUCN/SSC Polar Bear Specialist Group.
- IUCN/SSC Polar Bear Specialist Group. 2006. Draft 14<sup>th</sup> Meeting of the IUCN Polar Bear Specialist Group: Chukchi Sea Polar Bear Status.
- Jack Faucett Associates, Inc. 2002. Arctic Impact Model for Petroleum Activities in Alaska (Arctic IMPAK). OCS Study MMS 2002-066. Anchorage, AK: USDOI, MMS, Alaska OCS Region.
- Jacobs Engineering Group, Inc. 1989. Air Quality Impact of Proposed OCS Lease Sale 95, Final Report. Camarillo, CA: USDOI, MMS, Pacific OCS Region.
- Jacobson, M.J. and C. Wentworth. 1982. Kaktovik Subsistence Land Use Values Through Time in the Arctic National Wildlife Refuge Area. Fairbanks, AK: USDOI, FWS, 142 pp.
- Jaimet, K. 2000. Inuit Woman Travels to The Hague to Warn World of Climate Crisis: Global Warming "Changing Way of Life." Ottawa, Ont., Canada: The Ottawa Citizen. http://nbenrenb.elements.nb.ca/environews
- Jangaard, P.M. 1974. The Capelin (*Thallotus villosus*): Biology, Distribution, Exploitation, Utilization, and Composition. Bulletin of the Fisheries Research Board of Canada 186:70.
- Jansen, J.K., J.L. Bengtson, P.L. Boveng, S.P. Dahle, and J. Ver Hoef. 2006. Disturbance of Harbor Seals by Cruise Ships in Disenchantment Bay, Alaska: An investigation at Three Spatial and Temporal Scales. AFSC 2006-02. Seattle, WA: National Marine Mammal Laboratory, Alaska Fisheries Science Center, 75 pp.

- Jarvela, L E. and L.K. Thorsteinson. 1999. The Epipelagic Fish Community of Beaufort Sea Coastal Waters, Alaska. Arctic 521:80-94.
- Jarvela, L.E., L.K. Thorsteinson, and M.J. Pelto. 1984. Oil and Gas Development and Related Issues. *In:* The Navarin Basin Environment and Possible Consequences of Offshore Oil and Gas Development, L.E. Jarvela, ed. Chapter 9. Juneau and Anchorage, AK: USDOC, NOAA, OCSEAP and USDOI, MMS, pp. 103-141.
- Jay, C.V. and S. Hills. 2005. Movements of Walruses Radiotagged in Bristol Bay, Alaska. *Arctic* 58:192-202.
- Jay, C.V. and J. Garlich-Miller. 2007. Telephone conversations dated Mar. 15, 2007, between Mary Cody, Wildlife Biologist, MMS Alaska OCS Region and C.V. Jay, Wildife Biologist, USGS Alaska Science Center, and J. Garlich-Miller, Wildlife Biologist, FWS, Anchorage; subject: confirmation that based on current information, walruses may use much of the central lease area during some years in fall.
- Jay, C.V., B.E. Ballachey, G.W. Garner, D.M. Mulcahy, and M. Arthur. 1996. Preliminary Research on Pacific Walrus to Evaluation Potential Effects by Disturbance of OCS-Related Oil and Gas Activities in the Chukchi Sea. Anchorage, AK: USGS, National Biological Service, 9 pp.
- Jefferson, T.A., S. Leatherwood, and M.A. Webber. 1993. FAO Species Identification Guide. Marine Mammals of the World. Rome: UNEP/FAO.
- Jehl, J.R. Jr. 1993. Observations on the Fall Migration of Eared Grebes, Based on Evidence from a Mass Drowning in Utah. *Condor* 95470-473
- Jingfors, K.T. 1982. Seasonal Activity Budgets and Movements of a Reintroduced Alaskan Muskox Herd. *Journal Wildlife Management* 462:344-350.
- Jingfors, K.T. and P. Lassen. 1984. Muskox Responses to a Seismic Test Operation: Preliminary Observations. *In:* First International Muskox Symposium, D.R. Klein, R. G. White and S. Keller, eds., 1984, Fairbanks, Ak. Biological Papers of UAF Special Report No. 4. Fairbanks, AK: University of Alaska, p. 127.
- Johannessen, G.M., M. Miles, and E. Bjorgo. 1995. The Arctic's Shrinking Ice. *Nature* 376:1260-127.
- Johannessen, K.I. 1976. Effects of Seawater Extract of Ekofisk Oil on Hatching Success of Barents Sea Capelin. International Council for the Exploration of the Sea Publication CM E:29.
- Johannessen, O.M., L. Bengsston, M.W. Miles, S.I. Kuzmina, V.A. Semenov, G.V. Alekseev, A.P. Nagumyi, L. Bobylev, L.H. Pettersson, K. Hasselmann, and H.P. Cattle. 2002. Arctic Climate Change – Observed and Modeled Temperature and Sea Ice Variability. Technical

Report 218. Bergen, Norway: Nansen Environmental and Remote Sensing Center, 22 pp.

- Johnson, C. 2006. Presentation dated June 5, 2006, by Charlie Johnson, Alaska Nanuuq Commission, at the 16<sup>th</sup> Annual Meeting of Joint Commissioners and Technical Advisors of the Inuvialuit-Inupiat Polar Bear Management Agreement in the Southern Beaufort Sea; subject: polar bear agreement with the Russians.
- Johnson, C.B., M.T. Jorgenson, R.M. Burgess, B.E.
  Lawhead, J.R. Rose, and A.A. Stickney. 1996.
  Wildlife Studies on the Colville River Delta, 1995.
  Fourth Annual Report. Anchorage, AK: ARCO
  Alaska, Inc. and the Kuparuk Unit Owners, 154 pp.
- Johnson, D.R. and M.C. Todd. 1977. Summer Use of a Highway Crossing by Mountain Caribou. *The Canadian Field-Naturalist* 91(3):312-314.
- Johnson, J.H. and A.A. Wolman. 1984. The Humpback Whale, *Megaptera Novaeangliae*. *Marine Fisheries Review* 46(4):300-337.
- Johnson, S., D. Wiggins, and P. Wainwright. 1992. Use of Kasegaluk Lagoon, Chukchi Sea, Alaska, by Marine Birds and Mammals. Part II: Marine Birds. Herndon, VA: USDOI, MMS, 627 pp.
- Johnson, S., K. Frost, and L. Lowry. 1996. Use of Kasegaluk Lagoon, Chukchi Sea, Alaska, by Marine Birds and Mammals, Part I: An Overview. Herndon, VA: USDOI, MMS, 627 pp.
- Johnson, S.R. 2002. Marine Mammal Mitigation and Monitoring Program for the 2001 Odoptu 3-D Seismic Survey, Sakhalin Island, Russia. Paper WC/02/WGW10 presented to the IWC Scientific Committee. Cambridge, UK: IWC, 49 pp.
- Johnson, S.R. and W.J. Richardson. 1982. Waterbird Migration near the Yukon and Alaskan Coast of the Beaufort Sea: II. Moult Migration of Seaducks in Summer. Arctic 352:291-301.
- Johnson, S.R. and D.R. Herter. 1989. The Birds of the Beaufort Sea. Anchorage, AK: BPXA.
- Johnson, S.R., K.J. Frost, and L.F. Lowry. 1992. Use of Kasegaluk Lagoon, Chukchi Sea, Alaska, by Marine Birds and Mammals, Volume I: An Overview. OCS Study MMS 92-0028. Anchorage, AK: USDOI, MMS, Alaska OCS Region, pp. 4-56.
- Johnson, S.R., J.J. Burns, C.I. Malme, and R.A. Davies. 1988. Synthesis of Information on the Effects of Noise and Disturbance on Major Haulout Concentrations of Bering Sea Pinnipeds. OCS Study MMS 88-0092. Anchorage, AK: USDOI, MMS, Alaska OCS Region, 267 pp.

- Johnson, S.R., K.J. Frost, L.F. Lowry, D.A. Wiggins, P.F. Wainwright, and G. Carroll. 1992. Use of Kasegaluk Lagoon, Chukchi Sea, Alaska, by Marine Birds and Mammals. OCS Study MMS 92-0027. Anchorage, AK: USDOI, MMS, Alaska OCS Region, 627 pp.
- Johnson, W.R. 1989. Current Response to Wind in the Chukchi Sea: A Regional Coastal Upwelling Event. *Journal of Geophysical Research* 94:2057-2064.
- Johnson, W.R., C. Marshall, and E. Lear. 2007. Oil Spill Risk Analysis: Chukchi Sea Sale 193. Herndon, VA: USDOI, MMS,
- Johnston, R.C. and B. Cain. 1981. Marine Seismic Energy Sources: Acoustic Performance Comparison. Manuscript presented at the 102nd Meeting of the Acoustical Society of America, Miami, Fla., December 1981, 35 pp.
- Jolly, D., F. Berkes, J. Castleen, T. Nichols, and The Community of Sachs Harbor. 2002. We Can't Predict the Weather Like We Used To: Inuvialiut Observations of Climate Change, Sachs Harbor, Western Canadian Arctic. In: The Earth is Faster Now: Indigenous Observations of Arctic Environmental Change, I. Krupnik and D. Jolly, eds. Fairbanks, AK: Arctic Research Consortium of the United States.
- Joly, K., C. Nellemann, and I. Vistness. 2006. A Reevaluation of Caribou Distribution near an Oilfield Road on Alaska's North Slope. *Wildlife Society Bulletin* 34:866-869.
- Jones, M.L. and S.L. Swartz. 1984. Demography and Phenology of Gray Whales and Evaluation of Whale-Watching Activities in Laguna San Ignacio, Baja California Sur, Mexico. *In: The Gray Whale*, M.L. Jones, S.L. Swartz, and S. Leatherwood, eds. New York: Academic Press, pp. 309-372.
- Jordan, R.E. and J. R. Payne. 1980. Fate and Weathering of Petroleum Spills in the Marine Environment: A Literature Review and Synopsis. Ann Arbor, MI: Ann Arbor Science Publishers, Inc., 174 pp.
- Jorgenson, M.T. and M.R. Joyce. 1994. Six Strategies for Rehabilitating Land Disturbed by Oil Development in Arctic Alaska. Arctic 474:374-391.
- Kagak, L. 1987. Public Hearing on Chukchi Sea Sale 109, Wainwright, Ak., Apr. 15, 1987. Anchorage, AK: USDOI, MMS, Alaska OCS Region.
- Kaktovik Impact Project. 2003. In This Place. A Guide for Those who Work in the Country of The Kaktovikmiut. An unfinished and OnGoing Work of the People of Kaktovik, Alaska. Kaktovik, AK: Kaktovik Impact Project.

Kaltenbach, B., C. Walsh, C. Foerster, T. Walsh, J. MacDonald, P. Stokes, C. Livsey and W. Nebesky. 2004. North Slope of Alaska Facility Sharing Study. Anchorage, AK: State of Alaska, Dept. of Natural Resourcs, Div. of Oil and Gas.

Kalxdorff, S.B. 1997. Collection of Local Knowledge Regarding Polar Bear Habitat Use in Alaska. FWS Technical Report MMM 97-2. Anchorage, AK: USDOI, FWS and MMS, 55 pp.

Karcher, M.J., R. Gerdes, F. Kauker, and C. Koberle, C. 2003. Arctic Warming: Evolution and Spreading of the 1990s Warm Event in the Nordic Seas and the Arctic Ocean. *Journal of Geophysical Research* 108(C2):3034.

Kassam, K-A.S. and Wainwright Traditional Council. 2001. Passing on the Knowledge. Mapping Human Ecology in Wainwright, Alaska. Calgary, Alb., Canada: University of Calgary, The Arctic Institute of North America.

Kassi, N. 1993. Native Perspective on Climate Change. In: Impacts of Climate Change on Resource Management in the North, G. Wall, ed. Waterloo, Ont., Canada: Occasional Paper No. 16. University of Waterloo, Dept. of Geography, pp. 43-49.

Kastak, D., R.J. Schusterman, B.L. Southall, and C.J. Reichmuth. 1999. Underwater Temporary Threshold Shift Induced by Octave-Band Noise in Three Species of Pinniped. J. Acoustical Society of America 1062:1142-1148.

Kastak, D., B.L. Southall, R.J. Schusterman, and C.R. Kastak. 2005. Underwater Temporary Threshold Shift in Pinnipeds: Effects of Noise Level and Duration. J. Acoustical Society of America 1185:3154-3163.

Kato, H. 1982. Food Habits of Largha Seal Pups in the Pack Ice Area. Scientific Report No. 34. Tokyo, Japan: Whales Research Institute, pp. 123-136.

Kelly, B.P. 1988. Ringed Seal. *In:* Selected Marine Mammals of Alaska: Species Accounts with Research and Management Recommendations, J.W. Lentfer, ed. Washington, DC: Marine Mammal Commission, pp. 57-77.

Kelly, B.P. 2005. Correction Factor for Ringed Seal Surveys in Alaska. OCS Study MMS 2005-006. Anchorage, AK: USDOI, MMS, Alaska OCS Region, 32 pp.

Kelly, B.P., L.T. Quakenbush, and B. Taras. 1999.Monitoring Age and Sex Composition of Pacific Walruses: 12-30 July 1999 Cruise Report, 10 pp.

Kelso, D. 1981. Technical Overview of the State's Subsistence Program. Technical Paper Series. Juneau, AK: ADF&G, Div. of Subsistence. Kelso, D. 1982. Subsistence Use of Fish and Game Resources in Alaska: Considerations in Forming Effective Management Policies. Technical Paper Series. Juneau, AK: State of Alaska, Dept. of Fish and Game, Div. of Subsistence.

Kennicutt, M.C., II, J.M. Brooks, R.R. Bidigare, R.R. Fay, T.L. Wade, and T.J. Mcdonald. 1985. Vent-Type Taxa in a Hydrocarbon Seep Region on the Louisiana Slope. *Nature* 317:351-353.

Kerley, L.L., J.M. Goodrich, D.G. Miquelle, E.M. Smirnov, H.B. Quigley, and M.G. Hornocker. 2002. Effect of Roads and Human Disturbance on Amur Tigers. *Conservation Biology* 16:97-108.

Kerr, R.A. 2001. It's Official: Humans are Behind Most of Global Warming. *Science* 291:566.

Ketten, D.R., 1995. Estimates of Blast Injury and Acoustic Trauma Zones for Marine Mammals from Underwater Explosions. In: Sensory Systems of Aquatic Mammals, R.A. Kastelein, J.A. Thomas, and P.E. Natchigall, eds. Woerden, the Netherlands: De Spil Publ., pp. 391-407.

Ketten, D.R. 1998. Marine Mammal Auditory Systems: A Summary of Audiometric and Anatomical Data and its Implications for Underwater Acoustic Impacts. NOAA-TM-NMFS-SWFSC-256. LaJolla, CA: USDOC, NOAA, NMFS, Southwest Fisheries Science Center, 74 pp.

Ketten, D.R., J. Lien, and S. Todd. 1993. Blast Injury in Humpack Whale Ears: Evidence and Implications. J. Acoustic Soc. America 943(Pt. 2):1849-1850.

Kevin Waring Associates. 1989. A Demographic and Employment Analysis of Selected Alaska Rural Communities, Volume II (Northern Communities). OCS Study MMS 89-0083. Anchorage, AK: USDOI, MMS, Alaska OCS Region, 133 pp.

Khan, R.A. and J. Thulin. 1991. Influence of Pollution on Parasites of Aquatic Animals. *Adv. Parasitol.* 30:201-238.

Khan, S., M. Martin, J.F. Payne, and A.D. Rahimtula. 1987. Embryonic Evaluation of a Prudhoe Bay Crude Oil in Rats. *Toxicology Letters* 38:109-114.

Kikuchi, T., J. Inoue, and J.H. Morrison. 2005. Temperature Difference across the Lomonosov Ridge: Implications for the Atlantic Water Circulation in the Arctic Ocean. *Geophysical Research Letters* 32:C12030.

King, J.E. 1983. *Seals of the World*, 2<sup>nd</sup> ed. London: British Museum of Natural History, 240 pp.

King, J.G. 1970. The Swans and Heese of Alaska's Arctic Slope. Wildfowl Trust 21:11-17.

- Kinney, P.J., ed. 1985. Environmental Characterization and Biological Utilization of Peard Bay. OCS Study MMS 85-0102. Anchorage, AK: USDOI, MMS, Alaska OCS Region, pp. 97-440.
- Kinney, P.J., D.K. Button, and D.M. Schell. 1969. Kinetics of Dissipation and Biodegradation of Crude Oil in Alaska's Cook Inlet. *In:* Proceedings of the 1969 Joint Conferences on Prevention and Control of Oil Spills, New York, 1969. Washington, DC: American Petroleum Institute, pp. 333-340.
- Knight, D. 2000. ENVIRONMENT: Inuits Tell Negotiators of Climate Change Impact. Washington, DC: Inter Press Service. http://www/oneworld.org/ips2/nov00/01\_44\_005.
- Kocan, R.M., J.E. Hose, E.D. Brown, and T.T. Baker. 1996. Pacific Herring (*Clupea pallasi*) Embryo Sensitivity to Prudhoe Bay Petroleum Hydrocarbons: Laboratory Evaluation and In situ Exposure at Oiled and Unoiled Sites in Prince William Sound. *Can. J. Fish. Aquat. Sci.* 53:2366-2375.
- Kochnev, A.A. 2002. Autumn Aggregations of Polar Bears on Wrangel Island and Their Importance for the Population. *In*: Marine Mammals of the Holarctic. Moscow: Marine Mammal Council, pp. 137-138.
- Kochnev, A.A. 2004. Warming of the Eastern Arctic and Present Status of the Pacific Walrus (*Odobenus rosmarus* divergens) Population. *In: Marine Mammals of the Holarctic*, V.M. Belkovich, ed. Moscow: KMK Scientific Press, 609 pp.
- Kochnev, A.A. In prep. Research on Polar Bear Autumn Aggregations on Chukotka, 1989-2004. *In*: Polar Bears: Proceedings of the 14<sup>th</sup> Working Meeting of the IUCN/SSC Polar Bear Specialist Group, Seattle, Wash., Jun. 20-24, 2005.
- Kochnev, A.A., V.M. Etylin, I. Kavry, E.B. Siv-Siv, and V. Tanko. 2003. Traditional Knowledge of Chukotka Native Peoples Regarding Polar Bear Habitat Use. Final Report. Anchorage, AK: USDOI, National Park Service, 165 pp.
- Kohut, R.J., J.A. Lawrence, P. King, and R. Raba. 1994. Assessment of the Effects of Air Quality on Arctic Tundra Vegetation at Prudhoe Bay, Alaska, Final Report. Ithaca, NY: Cornell University, Boyce Thompson Institute for Plant Research.
- Komenda-Zender, S., M. Cevallos, and B. Bruderer. 2003.
   Effects of Disturbance by Aircraft Overflight on Waterbirds – An Experimental Approach. Presentation at the 26<sup>th</sup> Annual Bird Strike Committee Meeting, Warsaw, May 5-9, 2003. International Bird Strike Committee.

- Konar, B. 2007. Recolonization of a High Latitude Hard-Bottom Nearshore Community. *Polar Biology* 30(5):663-667..
- Koons, D.N., R.F. Rockwell, and J.B. Grand. 2006. Population Momentum: Implications for Wildlife Management. J. Wildlife Management 701:19-26.
- Koski, W.R. and S.R. Johnson. 1987. Behavioral Studies and Aerial Photogrammetry. *In:* Responses of Bowhead Whales to an Offshore Drilling Operation in the Alaskan Beaufort Sea, Autumn 1986. Anchorage, AK: Shell Western E&P, Inc.
- Koski, W.R., R.A. Davis, G.W. Miller, and D.E. Withrow.
  1993. Reproduction. *In: The Bowhead Whale*, J.J.
  Burns, J.J. Montague, and C.J. Cowles, eds. Lawrence, KS: The Society for Marine Mammalogy, pp. 239-294.
- Koski, W.R., G.W. Miller, W.J. Richardson, and B. Wursig. 2004. Bowhead Whale (*Balaenoptera mysticetus*) Mothers and Calves during Spring Migration in the Alaskan Beaufort Sea: Movements, Behavior, and Life History Data. International Whaling Commission Scientific Commission, Sorrento, Italy. Cambridge, UK: IWC, 75 pp.
- Kostyuchenko, L.P. 1973. Effect of Elastic Waves Generated in Marine Seismic Prospecting on Fish Eggs in the Black Sea. *Hydrobiological Journal* 9:45-48.
- Kovalsky, M. 1984. Testimony of M. Kovalsky at the Public Hearing on the Endicott Development Project, Nuiqsut, Ak., Feb. 29, 1984. Anchorage, AK: U.S. Army Corps of Engineers.
- Kramme, A.D. 1985. Highway Maintenance Impacts to Water Quality. Executive Summary, Vol. I. Final Report September 1982 to March 1985. Cleveland, OH: Dalton, Dalton, and Newport, 14 pp.
- Kraus, R.F. and P.A. Buffler. 1979. Sociocultural Stresses and the American Native in Alaska: An Analysis of Changing Patterns of Psychiatric Illnesses and Alcohol Abuse Among Alaska Natives. *Culture, Medicine, and Psychiatry* 3(2):111-151.
- Kraus, S., A. Read, E. Anderson, K. Baldwin, A. Solow, T. Spradlin, and J. Williamson. 1997. A Field Test of the Use of Acoustic Alarms to Reduce Incidental Mortality of Harbor Porpoise in Gill Nets. *Nature* 388:341.
- Kristof, N.D. 2003. It's Getting Awfully Warm Up Here in Alaska. htt://www.iht.com/articles. *International Herald Tribune*.
- Kruse, J.A. 1982. Subsistence and the North Slope Inupiat: The Effects of Energy Development. Monograph No. 4. Anchorage, AK: University of Alaska, Anchorage, Institute of Social and Economic Research.

Kruse, J.A. 1984. Socioeconomic Issues. The Norton Basin Environment and Possible Consequences of Planned Offshore Development. Anchorage, AK: USDOI, MMS, Alaska OCS Region.

Kruse, J.A. 1991. Alaska Inupiat Subsistence and Wage Employment Patterns: Understanding Individual Choice. *Human Organization* 504.

Kruse, J.A., J. Kleinfeld, and R. Travis. 1981. Energy Development and the North Slope Inupiat: Quantitative Analysis of Social and Economic Change. Man in the Arctic Program, Monograph No. 1 Anchorage, AK: University of Alaska, ISER.

Kruse, J.A., M. Baring-Gould, W. Schneider, J. Gross, G. Knapp, and G. Sherrod. 1983a. A Description of the Socioeconomics of the North Slope Borough. Technical Report No. 85. Anchorage, AK: USDOI, MMS, Alaska OCS Region.

Kruse, J.A., M. Baring-Gould, W. Schneider, J. Gross, G. Knapp, and G. Sherrod. 1983b. A Description of the Socioeconomics of the North Slope Borough, Appendix: Transcripts of Selected Inupiat Interviews. Technical Report 85A. Anchorage, AK: USDOI, MMS, Alaska OCS Region, Various pagings.

Kruse, S. 1997. Behavioral Changes of Pacific Walrus (*Odobenus rosmarus divergens*) in Response to Human Activities. Technical Report MMM 97-4. Anchorage, AK: USDOI, FWS.

Kuropat, P. and J. Bryant. 1980. Foraging Behavior of Cow Caribou on the Utukok Calving Grounds in Northwestern Alaska. *In:* Proceedings of the Second Reindeer/Caribou Symposium, E. Reimers, E. Gaare and S. Skjennsberg, eds. Roros, Norway, Sept. 17-21,1979. Trondheim, Norway: Direktorater for vilt og ferskvannsfisk.

Kutz, S.J., E.P. Hoberg, J. Nagy, L. Polley, and B. Elkin. 2004. "Emerging" Parasitic Infections in Arctic Ungulates. *Integretive and Comparative Biology* 44:109-118.

Kwok, R. 2004. Annual cycles of Multiyear Sea Ice Coverage of the Arctic Ocean: 1999–2003 . Journal of Gephysical Research 109:C11004, doi:10.1029/2003JC002238.

Kwok, R. 2007. Near Zero Replenishment of the Arctic Multiyear Sea Ice Cover at the end of 2005 Summer. *Geophysical Research Letters* 34:L05501, doi 10.1029/2006GL028737

Kwok, R., W. Maslowski, W. and S.W. Laxon. 2005. On Large Outflows of Arctic Sea Ice into the Barents Sea. *Geophysical Research Letters* 32:L22503, doi 10.1029/2005GL024485. Lacroix, D.I., R.B. Lanctot, J.A. Reed, and T.L. McDonald. 2003. Effect of Underwater Seismic Surveys on Molting Male Long-Tailed Ducks in the Beaufort Sea, Alaska. *Can. J. Zool.* 81:1862-1875.

Lambert, K. 1988. Nocturnal Migration Activity of Seabirds in the Gulf of Guinea. *Beitraege zur Vogelkunde* 34:29-35.

Lambertsen, R.H. 1992. Crassicaudosis: A Parasitic Disease Threatening the Health and Population Recovery of Large Baleen Whales. *Rev. Sci. Technol. Off. Int. Epizoot.* 11(4):1131-1141.

Lambertsen, R.H., K.J. Rasmussen, W.C. Lancaster, and R.J. Hintz. 2005. Functional Morphology of the Mouth of the Bowhead Whale and its Implications for Conservation. *Journal of Mammalogy* 862342-352

Lampe, L. 1997. Testimony of L. Lampe at the Public Scoping for the NPR-A Integrated Activity Plan/Environmental Impact Statement, Nuiqsut, Ak., Apr. 10, 19976. Fairbanks, AK: USDOI, BLM, 28 pp.

Langdon, S. 1995. An Overview of North Slope Society: Past and Future. *In:* Proceedings of the 1995 Synthesis Meeting, Anchorage, Ak., Oct. 23-25, 1995. Anchorage, AK: USDOI, MMS, Alaska OCS Region.

Langdon, S. and R. Worl. 1981. Distribution and Exchange of Subsistence Resources in Alaska. Anchorage, AK: USDOI, FWS.

Lanier, A., G. Ehrsam, and J. Sandidge. 2002. Alaska Native Mortality 1979-2002. Anchorage, AK: ANTHC, Alaska Native Epidemiology Center.

Lanier, A., J. Kelly et al. 2003. Cancer in Alaska Natives 1969-2003: A 35 Year Report. Anchorage, AK: Alaska Native Tribal Health Consortium.

Larned, W.W., R. Stehn, and R. Platte. 2005. Eider Breeding Population Survey Arctic Coastal Plain, Alaska 2005. Anchorage, AK: USDOI, FWS, Migratory Bird Management.

Larned, W.W., R. Stehn, and R. Platte. 2006. Eider Breeding Population Survey Arctic Coastal Plain, Alaska 2006. Unpublished report. Anchorage, AK: USDOI, FWS, Migratory Bird Management, 53 pp.

Larsen, T. 1985. Polar Bear Denning and Cub Production in Svalbard, Norway. J. Wildlife Management 492:320-326.

Lavrakas, D. 1996. Meeting Yields Northstar Questions. Barrow, AK: *The Arctic Sounder*, 1, 5, Aug. 1, 1996.

- Lawhead, B.E. 1997. Caribou and Oil Development in Northern Alaska: Lessons from the Central Arctic Herd. *In:* NPR-A Symposium Proceedings, Science, Traditional Knowledge, and the Resources of the Northeast Planning Area of the National Petroleum Reserve-Alaska, D. Yokel, comp. Anchorage, Ak., Apr. 15-18, 1997. Anchorage, AK: USDOI, MMS and BLM, pp. 7-5 to 7-7.
- Lawless, J. 2000. Northern Habitats Feel Effects of Global Warming. Anchorage Daily News, Sec. A, p. A-7.
- Leatherwood, S., R.R. Reeves, W.F. Perrin, and W.E. Evans. 1982. Whales, Dolphins and Porpoises of the Eastern North Pacific and Adjacent Arctic Waters: Guide to Their Identification. NOAA Technical Report NMFS Circular 444. Juneau, AK: USDOC, NOAA, NMFS, 245 pp.
- Leavitt, J. 1980. Leavitt vs. Unites States: NSB Residents Sue for Native Allotments Inside NPR-A. Arctic Coastal Zone Management Newsletter.
- Lee, S.H. and D.M. Schell. 2002. Regional and Seasonal Feeding by Bowhead Whales as Indicated by Stable Isotope Ratios. *In*: Bowhead Whale Feeding in the Eastern Alaskan Beaufort Sea: Update of Scientific and Traditional Information, W.J. Richardson and D.H. Thomson, eds. LGL Report TA 2196-7. King City, Ont., Canada: LGL Limited, environmental research associates, pp. 1-28.
- Lee, S.H., D.M. Schell, T.L. McDonald, and W.J. Richardson. 2005. Regional and Seasonal Feeding by Bowhead Whales *Balaena mysticetus* as Indicated by Stable Isotope Rations. *Mar. Ecol. Prog. Ser.* (2005) 285:271-287.
- Leighton, F.A., D.B. Peakall, and R.G. Butler. 1983. Heinz-Body Hemolytic Anemia from the Ingestion of Crude Oil: A Primary Toxic Effect in Marine Birds. *Science* 220:871-873.
- Lenart, E.A. 2003. Unit 26A and B Caribou Management Report. In: Caribou Management Report of Survey and Inventory Activities 1 July 2000-30 June 2002, C. Healy, ed. Juneau, AK: State of Alaska, Dept. of Fish and Game.
- Lenart, E.A. 2005a. Units 26B and 26C Caribou Management Report. *In*: Caribou Management Report of Survey and Inventory Activities 1 July 2002 to 30 June 2004, C. Brown, ed. Juneau, AK: State of Alaska, Dept. of Fish and Game, pp. 269-292.
- Lenart, E.A. 2006b. Units 26B and 26C Muskoxen Management Report. *In*: Muskoxen Management Report of Survey and Inventory Activities 1 July 2002 to 30 June 2004, C. Brown, ed. Project 16.0. Juneau, AK: State of Alaska, Dept. of Fish and Game, pp. 49-68.

- Lent, P.C. 1966. The Caribou of Northwestern Alaska. *In:* Environment of the Cape Thompson Region, Alaska, Chapter 19, N.J. Wilimovsky and J. Wolfe, eds. Oak Ridge, TN: USDOC, Atomic Energy Commission, Div. of Technical Information, pp. 481-516.
- Lent P.C. 1970. Muskox Maternal Behavior: a Preliminary Description. *American Zoologist* 104:35.
- Lent, P.C. 1980. Synoptic Snowmelt Patterns in Arctic Alaska in Relation to Caribou Habitat Use. *In:* Proceedings of the Second International Reindeer/Caribou Symposium, E. Reimers, E. Gaare and S. Skennsberg, eds. Roros, Norway, Sept.17-21, 1979. Trondheim, Norway: Direktoratet for vilt og ferskvannsfisk.
- Lentfer, J. 1975. Polar Bear Denning on Drifting Sea Ice. Journal of Mammalogy 563:716-718.
- Lentfer, J.W. and R.J. Hensel. 1980. Alaskan Polar Bear Denning. *In:* Bears - Their Biology and Management: A Selection of Papers and Discussion from the Fourth Conference on Bear Research, C.J. Martinka and K.J. McArthur, eds. Kalispell, Mont., Feb. 1977. Tonto Basin, AZ: Bear Biology Association.
- Lentfer, J.W., R.J. Hensel, J.R. Gilbert, and F.E. Sorensen. 1980. Population Characteristics of Alaskan Polar Bears. *International Conference on Bear Research and Management* 4:109-115.
- Lewbel, G.S. 1984. Environmental Hazards to Petroleum Industry Development. *In:* Proceedings of a Synthesis Meeting: The Barrow Arch Environment and Possible Consequences of Planned Offshore Oil and Gas Development (Sale 85), J.C. Truett, ed. Girdwood, Ak., Oct. 30-Nov. 1, 1983. Anchorage, AK: USDOC, NOAA, OCSEAP, and USDOI, MMS, pp. 31-46.
- Lewis, C.E. 1978. The Subsistence Lifestyle in Alaska. Seminar Series, Special Publication 1. Fairbanks, AK: University of Alaska, School of Agriculture and Land Resources Management.
- LGL Alaska Esearch Assocs., Inc. and LGL Ltd. 2005. Request by the University of Alaska to Allow the Incidental Take of Marine Mammals During a Marine Geophysical Survey Across the Arctic Ocean, August-September 2005. LGL Report TA4122-2. Anchorage, AK and King City, Ont., Canada: LGL Alaska Research Assocs., Inc. and LGL Ltd.
- LGL Ltd. 2001. Request by WesternGeco, LLC, for an Incidental Harassment Authorization to Allow the Incidental Take of Whales and Seals During an Open-Water Seismic Program in the Alaskan Beaufort Sea, Summer-Autumn 2001. King City, Ont., Canada: LGL.
- LGL Ltd. 2005. Environmental Assessment of a Marine Geophysical Survey by the Coast Guard Cutter *Healy* across the Atlantic Ocean. LGL Report 4122-1. King City, Ont., Canada: LGL..

Liberty-Young, T.K., C.D. Schraer et al. 1992. Prevalence of Diagnosed Diabetes in Circumpolar Indigenous Populations. *International Journal of Epidemiology* 21:730-736.

- Lien, J., S. Todd, P. Stevick, F. Marques, and D. Ketten. 1993. The Reaction of Humpback Whales to Underwater Explosions: Orientation, Movements, and Behavior. J. Acoust. Soc. Am. 943, Pt. 2:1849.
- Lillie, H. 1954. Comments in Discussion. *In*: Proceedings of the International Conference on Oil Pollution, London, pp. 31-33.
- Lindsay, R.W. and J. Zhang. 2005. The Thinning of Arctic Sea Ice 1998-2003: Have We Passed a Tipping Point. *Journal of Climate* 18:4879-4894.
- Link M.R., T.L. Olson, and M.T. Williams. 1999. Ringed Seal Distribution and Abundance Near Potential Oil Development Sites in the Central Alaskan Beaufort Sea, Spring 1998. LGL Report P-430. Anchorage, AK: BPXA, 48 pp.
- Lipkin, R. and D.F. Murray. 1997. Alaska Rare Plant Field Guide. http://aknhp.uaa.alaska.edu: USDOI, FWS, NPS, BLM; Alaska Natural Heritage Program; USDA, Forest Service.
- Ljungblad, D.K., S.E. Moore, D.R. Van Schoik, and C.S. Winchell. 1982. Aerial Surveys of Endangered Whales in the Beaufort, Chukchi, and Northern Bering Seas. NOSC Technical Report 486. Washington, DC: USDOI, BLM, 374 pp.
- Ljungblad, D.K., S.E. Moore, and D.R. Van Schoik. 1984. Aerial Surveys of Endangered Whales in the Northern Bering, Eastern Chukchi and Alaskan Beaufort Seas, 1983: With a Five Year Review, 1979-1983. NOSC Technical Report 955. Anchorage, AK: USDOI, MMS, Alaska OCS Region, 357 pp.
- Ljungblad, D.K., S.E. Moore, J.T. Clarke, D.R. Van Schoik, and J.C. Bennett. 1985. Aerial Surveys of Endangered Whales in the Northern Bering, Eastern Chukchi, and Alaska Beaufort Seas, 1984: With a Six Year Review, 1979-1984. OCS Study MMS 85-0018. Anchorage, AK: USDOI, MMS, Alaska OCS Region, 312 pp.
- Ljungblad, D.K., S.E. Moore, J.T. Clarke, and J.C. Bennett. 1986. Aerial Surveys of Endangered Whales in the Northern Bering, Eastern Chukchi, and Alaskan Beaufort Seas, 1985: With a Seven Year Review, 1979-85. OCS Study MMS 86-0002. Anchorage, AK: USDOI, MMS, Alaska OCS Region, 142 pp.
- Ljungblad, D.K., S.E. Moore, J.T. Clarke, and J.C. Bennett. 1987. Distribution, Abundance, Behavior, and Bioacoustics of Endangered Whales in the Western Beaufort and Northeastern Chukchi Seas, 1979-86. OCS Study MMS 87-0039. Anchorage, AK: USDOI, MMS, 187 pp.

- Ljungblad, D.K., S.E. Moore, J.T. Clarke, and J.C. Bennett. 1988. Distribution, Abundance, Behavior, and Bioacoustics of Endangered Whales in the Western Beaufort and Northeastern Chukchi Seas, 1979-87. OCS Study MMS 87-0122. Anchorage, AK: USDOI, MMS, 213 pp.
- Loeng, H. 2005. Marine Systems. In: Arctic Climate Impact Assessment: Scientific Report, ACIA. Cambridge University Press, pp. 454-538.
- Loescher, R. 1999. Native Subsistence Rights Where We Stand Now in State and National Politics. Vol. 1999. Sealaska Corporation.
- Long, E.R., L.J. Field, and D.D. Macdonald. 1998. Predicting Toxicity in Marine Sediments with Numerical Sediment Quality Guidelines. *Environ. Toxicol. Chem.* 17:714-727.
- Long, E.R., D.D. MacDonald, S.L. Smith, and F.D. Calder. 1995. Incidence of Adverse Biological Effects within the Ranges of Chemical Concentrations in Marine and Estuarine Sediments. *Environmental Management* 19:81-97.
- Long, F., Jr. 1995. Testimony of F. Long at the Public Hearing on the Beaufort Sea Sale 144 Draft EIS, Nuiqsut, Ak., Nov. 6, 1995. Anchorage, AK: USDOI, MMS, Alaska OCS Region, 36 pp.
- Lonner, T.D. 1980. Subsistence and Economic System in Alaska: Theoretical and Policy Implications. Technical Paper Series. Anchorage, AK: State of Alaska, Dept. of Fish and Game, Div. of Subsistence.
- Loughlin, T.R. 1994. *Marine Mammals and the Exxon* Valdez. San Diego, CA: Academic Press, Inc.
- Lovvorn, J.R., S.E. Richman, J.M. Grebmeier, and L.W. Cooper. 2003. Diet and Body Condition of Spectacled Eiders Wintering in Pack Ice of the Bering Sea. Polar Biology 26:259-267.
- Lowenstein, T. 1981. Some Aspects of Sea Ice Subsistence Hunting in Point Hope, Alaska. Barrow, AK: North Slope Borough, Coastal Zone Management Plan, 83 pp.
- Lowenstein, T. 1994. Ancient Land, Sacred Whale: The Inuit Hunt and its Rituals. New York: Farrar, Straus, and Giroux.
- Lowry, L.F. 1984. The Spotted Seal (*Phoca jargha*). In: Marine Mammals, Species Accounts, J. Burns, ed. Wildlife Technical Bulletin No. 7. Fairbanks, AK: State of Alaska, Dept. of Fish and Game.

- Lowry, L.F. 2000. Marine Mammal-Sea Ice Relationships. *In*: Impacts of Changes in Sea Ice and Other Environmental Parameters in the Arctic, Girdwood, Ak., Feb. 15-17, 2000. Report of the Marine Mammal Commission Workshop, H.P. Huntington, ed. Bethesda, MD: Marine Mammal Commission.
- Lowry, L.F. and K.J. Frost. 1984. Foods and Feeding of Bowhead Whales in Western and Northern Alaska. Scientific Reports of the Whales Research Institute 35. Tokyo: Whales Research Institute, pp. 1-16.
- Lowry, L.F., J.J. Burns, and K.J. Frost. 1989. Recent Harvests of Beluga Whales, Delphinapterus leucas, in Western and Northern Alaska and their Potential Impact on Provisional Management Stocks. Report of the International Whaling Commission 39. Cambridge, UK: IWC, pp. 335-339.
- Lowry, L.F., G. Sheffield, and J.C. George. 2004. Bowhead Whale Feeding in the Alaskan Beaufort Sea, Based on Stomach Contents Analyses. *J. Cetacean Res. Manage*. 63:223.
- Lowry, L.F., K.J. Frost, R. Davis, D.P. DeMaster, and R.S. Suydam. 1998. Movements and Behavior of Satellite-Tagged Spotted Seals (*Phoca larga*) in the Bering and Chukchi Sea. *Polar Biology* 9(4):221-230.
- LSU Coastal Clips. 2006. LSU Research Looks at Mercury Concentrations in the Gulf of Mexico. Baton Rouge, LA: Louisiana State University.
- Lunn, N.J.; S.L. Schliebe, L. Scott, and E.W. Born. 2002. Polar Bears: Proceedings of the 13<sup>th</sup> Working Meeting of the IUCN/SSC Polar Bear Specialist Group, Nuuk, Greenland, Jun. 23-28, 2001. Occasional Paper of the IUCN Species Survival Commission No. 26. Gland, Switzerland: IUCN, the World Conservation Union, 153 pp.
- Lusseau, D. 2003. Male and Female Bottlenose Dolphins *Tursiops spp*. Have Different Strategies to Avoid Interaction with Tour Boats in Doubtful Sound, New Zealand. *Marine Ecology Progress Series* 257:267-274.
- Lusseau, D. 2004. The Hidden Cost of Tourism: Detecting Long-Term Effects of Tourism using Behavioral Information. Ecology and Society 9. <u>http://www.ecologyandsociety.org/vol9/iss1/art2</u>.
- Lusseau, D. 2005. Residency Pattern of Bottlenose Dolphins Tursiops spp. in Milford Sound, New Zealand as Related to Boat Traffic. Marine Ecology Progress Series 295:265-272.
- Luton, H.H. 1985. Effects of Renewable Resource Harvest Disruptions on Socioeconomic and Sociocultural Systems: Wainwright, Alaska. Technical Report 91. Anchorage, AK: USDOI, MMS, Alaska OCS Region, 603 pp.

- Lydersen, C. and M.O. Hammill. 1993. Diving in Ringed Seal (*Phoca hispida*) Pups during the Nursing Period. *Canadian Journal Zoology* 71:991-996.
- Lynch, A.H., E.N. Cassano, J.J. Cassano, and L.R. Lestak. 2003. Case Studies of High Wind Events in Barrow, Alaska: Climatological Context and Development Processes. *Monthly Weather Review* 1314:719–732.
- Lynch, S., M. Roghstein, L. Cassanto M. Koslow, and J.A. Maslanik. 2001. Climate Change in Barrow: Average Conditions and Big Storms. *In*: Seminar, Barrow, Ak., Aug. 1, 2001. Boulder, Colorado: University of Colorado, 1 pp.
- Lysne, L.A., E.J. Mallek, and C.P. Dau. 2004. Near Shore Surveys of Alaska's Arctic Coast, 1999-2003. Fairbanks, AK: USDOI, FWS, 60 pp.
- MacDonald, I.R., B. Bluhm, K. Iken, S. Gagaev, and S. Robinson. 2005. Benthic Community Composition and Seabed Characteristics of a Chukchi Sea Pockmark. Eos. Trans. AGU, 86 (52 Fall Meeting Supplement OS51B-0564. Washington, DC: American Geophysical Union.
- MacDonald, J.R., ed. 2002. Stability and Change in Gulf of Mexico Chemosynthetic Communities. Vol. II: Technical Report. OCS Study MMS 2002-036. New Orleans, LA: USDOI, MMS, Gulf of Mexico Region, 456 pp.
- MacDonald, J.R., W.W. Sager, and M.B. Peccini. 2003. Gas Hydrate and Chemosynthetic Biota in Mounded Bathymetry at Mid-Slope Hydrocarbon Seeps, Northern Gulf of Mexico. *Marine Geology* 198:133-158.
- Mackay, D. and P.G. Wells. 1983. Effectiveness, Behavior, and Toxicity of Dispersants. *In:* Proceedings of the 1983 Oil Spill Conference (Prevention, Behavior, Control, Cleanup), San Antonio, Tex., Feb. 28-Mar. 3, 1983. Washington, DC: American Petroleum Institute, pp. 65-71.
- MacKenzie, K., H.H. Williams, B. Williams, A.H. McVicar, and R. Siddall. 1995. Parasites as Indicators of Water Quality and the Potential Use of Helminth Transmission in Marine Pollution Studies. *Adv. Parasitol.* 35:85-144.
- Mackintosh, N.A. 1965. *The Stocks of Whales*. London: Fish News (Books) Ltd., 232 pp.
- Madsen, P.T. 2005. Marine Mammals and Noise: Problems with Root Mean Square Sound Pressure Levels for Transients. J. Acoust. Soc. Amer. 117:3952-3957.
- Madsen, J. 1985. Impact of Disturbance on Field Utilization of Pink-Footed Geese in West Jutland, Denmark. *Biological Conservation* 33:53-63.

- Mahoney, A., H. Eicken, and L. Shapiro. 2007. How Fast is Landfast Sea Ice? A Study of Attachment and Detachment of Nearshore Ice at Barrow, Alaska. *Cold Regions Science and Technology* 47:233-255.
- Mahoney, A., H. Eicken, L. Shapiro, and T.C. Grenfell. 2004. Ice Motion and Driving Forces during a Spring Ice Shove on the Alaskan Chukchi Coast. *Journal of Glaciology* 50(169):195-207.
- Majors, M. 2004. Email dated Feb.24, 2004, from M. Majors, ConocoPhillips Alaska, Inc. to F. King, MMS Alaska OCS Region; subject: ConocoPhillips barge traffic presentation Puviaq Barging Presentation.
- Maki, A. W., E.J. Brannon, L.G. Gillbertson, L.L. Moulton, and J.R. Skalski, 1995. An Assessment of Oil Spill Effects on Pink Salmon Populations following the *Exxon Valdez* Oil Spill Part 2: Adults and Escapement. *In: Exxon Valdez Oil Spill: Fate and Effects in Alaskan Waters*. ASTM STP-1219. Philadelphia, PA: American Society for Testing and Materials, 585-625.
- Malins, D.C. 1977. Biotransformation of Petroleum Hydrocarbons in Marine Organisms Indigenous to the Arctic and Subarctic. *In:* Fate and Effects of Petroleum Hydrocarbons, in Marine Ecosystems and Organisms, Proceedings of a Symposium, D.A. Wolfe, ed., Seattle, Wash., Nov. 10-12, 1976. New York: Pergamon Press.
- Mallory, C.R. 1998. A Review of Alaska North Slope Blowouts, 1974-1997. Document II-9. *In*: Preliminary Analysis of Oil Spill Response Capability in Broken Ice to Support Request for Additional Information for Northstar Oil Spill Contingency Plan, Vol. II. Anchorage, AK: BPXA and ARCO Alaska, multipaginated.
- Malme, C.I. and P.R. Miles. 1985. Behavioural Responses of Marine Mammals (Gray Whales) to Seismic Discharges. *In*: Proceedings of a Workshop on Effects of Explosives Use in the Marine Environment, G.D. Greene, F. R. Engelhardt and R. J. Paterson, eds. Halifax, NS, Canada, Jan. 1985. Ottawa, Ont., Canada: Canadian Oil and Gas Lands Administration, Environmental Protection Branch, pp. 253-2809.
- Malme, C.I., P.R. Miles, C.W. Clark, P. Tyack, J. Tyack, and J.E. Bird. 1984. Investigations of the Potential Effects of Underwater Noise from Petroleum Industry Activities on Migrating Gray Whale Behavior, Phase II: January 1984 Migration. Report No. 5586. Anchorage, AK: USDOI, MMS, Alaska OCS Region.
- Malme, C.I., B. Wursig, C. Clark, J.E. Bird, and P. Tyack. 1986. Behavioral Responses of Gray Whales to Industrial Noise: Feeding Observations and Predictive Modeling. OCS Study MMS 88-0048. Anchorage, AK: USDOC, NOAA and USDOI, MMS, pp. 393-600.

- Manen, C.A. and M.J. Pelto. 1984. Transport and Fate of Spilled Oil. *In:* Proceedings of a Synthesis Meeting: The North Aleutian Shelf Environment and Possible Consequences of Offshore Oil and Gas Development (Sale 75), L.K. Thorsteinson, ed. Anchorage, Ak., Mar. 9-11, 1982. Anchorage, AK: USDOC, NOAA, OCSEAP and USDOI, MMS, Alaska OCS Region, pp. 11-34.
- Marouf, A. and H. Boyd. 1997. Influences of Climatic Conditions in the Mackenzie Basin on the Success of Northern-Nesting Geese. *In*: Mackenzie Basin Impact Study (MBIS) Final Report, S.J. Cohen, ed. Toronto, Ont., Canada: Environment Canada, pp. 211-216.
- Martin, D. 1992. Response of Migrating Adult Pink Salmon to a Simulated Oil Spill. *In:* MMS, Alaska OCS Region, Fourth Information Transfer Meeting, Anchorage, Ak, Jan. 28-30, 1992. Anchorage, AK: USDOI, MMS, Alaska Region, pp. 131-138.
- Martin, S., R. Drucker, R. Kwok, and B. Holt. 2004. Estimation of the Thin Ice Thickness and Heat Flux for the Chukchi Sea Alaskan Coast Polynya from Special Sensor Microwave/Imager Data 1990-2001. Journal of Geophysical Research 106C10012doi:10.1029/2004JC002428.
- Martin, S.L. 2005. Determinants of Well-Being in Inupiat and Yupiit Eskimos: Do Communities Matter? Ph.D. Dissertation. Dallas, TX: University of Texas at Dallas.
- Marty, G.D., R.A. Heintz, and D.E. Hinton. 1997. Histology and Teratology of Pink Salmon Larvae near the Time of Emergence from gravel Substrate in the Laboratory. *Can. J. Zoology* 75:978-988.
- Maslanik, J.A., M.C. Serreze, and R.G. Barry. 1996. Recent Decreases in Arctic Summer Ice Cover and Linkages to Atmospheric Circulation Anomalies. *Geophysical Research Letters* 2313:1677-1680.
- Mason, B. 2003. Arctic Ice Shelf Fractures. Climate Change Fingered as Unique Lake Disappears. Nature News Service http://www.nature.com/nsu
- Mate, B.R. and J. Urban-Ramirez. 2006. The Spring Northward Migration and Summer Feeding of Mother Gray Whales in the Eastern North Pacific Ocean, Bering Sea and Chukchi Sea. Presentation at the 2006 IWC meetings.
- Mate, B.R., G.K. Krutzikowski, and M.H. Winsor. 2000. Satellite-Monitored Movements of Radio-Tagged Bowhead Whales in the Beaufort and Chukchi Seas during the Late-Summer Feeding Season and Fall Migration. *Canadian Journal of Zoology* 78:1168-1181.
- Matkin, C.O., G.M. Ellis, M.E. Dahlhiem, and J. Zeh. 1994. Status of Killer Whales in Prince William Sound, 1985-1992. *Marine Mammals and the Exxon Valdez*, T.R. Loughlin, ed. San Diego, CA: Academic Press, pp. 141-162.

McAllister, D.E. 1975. Ecology of the Marine Fishes of Arctic Canada. *In*: Proceedings of the Circumpolar Conference on Northern Ecology, Ottawa, Sept. 15-18, 1975. Ottawa, Ont., Canada: National Research Council of Canada.

McCaffrey, B.J., R.E. Gill, D.R. Ruthrauff, and C.M. Handel. 2006. Bar-tailed Godwits Staging in Western Alaska: Evidence of Steep Population Decline (Abstract). *In*: Proceedings of the Shorebird Science in the Western Hemisphere, Boulder, Colo., Feb. 27-Mar. 2, 2006. Boulder, CO: University of Colorado.

McCarthy, T.M. and R.J. Seavoy. 1994. Reducing Nonsport Losses Attributable to Food Conditioning: Human and Bear Modification in an Urban Environment. *In:* Ninth International Conference on Bear Research and Management Bears-Their Biology and Management, J.J. Claar and P. Schullery, eds. Missoula, Mont., Feb. 1992. Vancouver, BC, Canada: International Association for Bear Research and Management, pp. 75-84.

McCartney, A.P., ed. 1995. Hunting the Largest Animals: Native Whaling in the Western Arctic and Subarctic. Studies in Whaling No. 3, Occasional Paper No. 36. Edmonton, Alb., Canada: University of Alberta, The Canadian Circumpolar Institute.

McCauly, R.D. 1994. Seismic Surveys. *In*: Environmental Implications of Offshore Oil and Gas Development in Australia - The Finding of an Independent Review, J.M. Swan, I.M. Neff, and P.C. Young, eds. Sydney, AU: Australian Petroleum Exploration Assoc., pp. 19-122.

McCauley, R.D., J. Fewtrell, and A.N. Popper. 2003. High Intensity Anthropogenic Sound Damages Fish Ears. J. Acoust. Soc. Am. 113:638-642.

McCauley, R.D., M.N. Jenner, C. Jenner, K.A.McCabe, and J. Murdoch. 1998. The Response of Humpback Whales (*Megaptera novaengliae*) to Offshore Seismic Survey Noise: Preliminary Results of Observations about a Working Seismic Vessel and Experimental Exposures. APPEA Journal 1998:692-707.

McCauley, R.D., J. Fewtrell, A.J. Duncan, C. Jenner, M.-N. Jenner, J.D. Penrose, R.I.T. Prince, A. Adhitya, J. Murdoch, and K. McCabe. 2000. Marine Seismic Surveys: Analysis and Propagation of Air-Gun Signals; and Effects of Air-Gun Exposure on Humpback Whales, Sea Turtles, Fishes and Squid. Report R99-15, Project CMST 163. Curtin, Western Australia: Australian Petroleum Production Exploration Assoc.

McDonald, M.A. and C.G. Fox. 1999. Passive Acoustic Methods Applied to Fin Whale Population Density Estimation. J. Acoust. Soc. Am. 105(5):2643-2651. McDonald, M.A., J.A. Hildebrand, and S.C. Webb. 1995. Blue and Fin Whales Observed on a Seafloor Array in the Northeast Pacific. *J. Acoust. Soc. Am.* 982, Pt. 1:712-721.

McDonald, M.A., J.A. Hildebrand and S.M. Wiggins. 2006. Increases in Deep Ocean Ambient Noise in the Northstar Pacific West of San Nicolas Island, California. *Journal* of the Acoustical Society of America 120(2):711-718.

McDonald, T.L., W.J. Richardson, C.R. Greene, Jr., and S.B. Blackwell. 2006. Evidence of Subtle Bowhead Whale Deflection near Northstar at High-Noise Times based on Acoustic Localization Data, 2001-2004, W.J. Richardson, ed. LGL Report TA4256A-9. King City, Ont., Canada: LGL, pp. 9-1 to 9-38.

McDowell Group, Inc. 1999. Economic and Social Effects of the Oil Industry in Alaska 1975 to 1995. OCS Study MMS 99-0014. Anchorage, AK: USDOI, MMS, Alaska OCS Region.

McFarling, U.L. 2002. Way of Life Melting Away: Existence of Arctic Natives Threatened as Temperatures Rise. Journalstar.com

McGinty, K.A. 1997. Memorandum to Heads of Agencies on the Application of the National Environmental Policy Act to Proposed Federal Actions in the United States with Transboundary Effects, from Kathleen A. McGinty, Chair, CEQ, July 1, 1997.

McGrattan, K.B., W.D. Walton, A.D. Putorti, W.H. Twilley, J. McElroy, and D.D. Evans. 1995. Smoke Plume Trajectory from In Situ Burning of Crude Oil in Alaska -Field Experiments. *In:* Proceedings of the Eighteenth Arctic and Marine Oilspill Program Technical Seminar, Edmonton, Alb., Canada, Jun. 14-16, 1995. Gaithersburg, MD: National Institute of Standards and Technology, pp. 901-913.

McGurk, M.D. and E.D. Brown. 1996. Egg-Larval Mortality of Pacific Herring in Prince William Sound, Alaska, after the *Exxon Valdez* Oil Spill. *Can. J. Fish. Aquat. Sci.* 53:2343-2354.

McLaughlin, F.A., E.C. Carmack, R.W. MacDonald, and J.K.B. Bishop. 1996. Physical and Geotechnical Properties Across the Atlantic/Pacific Water Mass Boundary in the Southern Canadian Basin. *Journal of Geophysical Research* 101:1183-1197.

McLaughlin, F.A., E.C. Carmack, R.W. Macdonald, H. Melling, J.H. Swift, P.A. Wheeler, B.F. Sherr, and E.B. Sherr. 2004. The Joint Roles of Pacific and Atlantic-Origin Waters in the Canada Basin 1997-1998. *Deep Sea Research* 51:107-128.

McLaughlin F.A., K. Shimada, E. Carmack, M. Itoh, and S. Nishino. 2005. The Hydrography of the Southern Canada Basin. *Polar Biology* 28:192-182.

- McLellan, B.N. 1990. Relationships Between Human Industrial Activity and Grizzly Bears. *In:* Eighth International Conference on Bear Research and Management. Bears-Their Biology and Mangement, L.M. Darling and W.R. Archibald, eds. Victoria, B.C. Vancouver, BC, Canada: International Association for Bear Research and Management, pp. 57-64.
- McLellan, B.N. and D.M. Shackleton. 1989. Immediate Reactions of Grizzly Bears to Human Activities. *Wildlife Society Bulletin* 17:269-274.
- McLeod, C.D. et al. 2005. Climate Change and the Cetacean Community of North-West Scotland. *Biological Conservation* 124:271-482.
- McLoughlin P.D., H.D. Cluff, and F. Messsier. 2002. Denning Ecology of Barren-Ground Grizzly Bears in the Central Arctic. Journal *Mammalogy* 831:188-198.
- McManus, D.A., J.C. Kelly, and J.S. Creager. 1969. Continental Shelf Sedimentation in an Arctic Environment. *Geological Society of America Bulletin* 80:1961-1984.
- Mecklenburg, C.W., D.L. Stein, B.A. Sheiko, N.V. Chernova, and T.A. Mecklenburg. 2005. RUSALCA 2004: Fishes of the Northern Bering Sea and Chukchi Sea: Summary. Kotor, Serbia and Montenegro.
- Mecklenburg, C. W., T.A. Mecklenburg, and L.K. Thorsteinson. 2002. *Fishes of Alaska*. Bethesda, MD: American Fisheries Society.
- Mel'nikov, V.V. 2000. Humpback Whales Megaptera novaeangliae off Chukchi Peninsula. Oceonology 406:844-849.
- Mel'nikov, V.V., M.A. Zelensky, and L.I. Ainana. 1998.
  Observations on Distribution and Migration of Bowhead Whales (*Balaena mysticetus*) in the Bering and Chukchi Seas. Scientific Report of the International Whaling Commission 50. Cambridge, UK: IWC., 23 pp.
- Mel'nikov, V.V., D.I. Litovka, I.A. Zagrebin, G.M. Zelensky, and L.I. Ainana. 2004. Shore-Based Counts of Bowhead Whales along the Chukotka Peninsula in May and June 1999-2001. Arctic 57(3):290-209.
- Merculieff, L. 2002. Alaska Native Fish, Wildlife, Habitat and Environment: Statewide Summit Report. Anchorage, AK: Rural Alaska Community Action Program.
- Miles, P.R., C.I. Malme, and W.J. Richardson. 1987. Prediction of Drilling Site-Specific Interaction of Industrial Acoustic Stimuli and Endangered Whales in the Alaskan Beaufort Sea. OCS Study, MMS 87-0084. Anchorage, AK: USDOI, MMS, Alaska OCS Region, 341 pp.

- Millennium Ecosystems Assessment. 2005. Ecosystems and Human Well-Being Synthesis. Washington, DC: Center for Resource Economics, Island Press.
- Miller, F.L. and A. Gunn. 1979. Responses of Peary Caribou and Muskoxen to Turbo-Helicopter Harassment, Prince of Wales Island, Northwest Territories, 1976-1977. Occasional Paper No 40. Edmonton, Alb., Canada: Canadian Wildlife Service, 90 pp.
- Miller, F.L. and A. Gunn. 1984. Muskox Defense Formation in Response to Helicopters in the Canadian High Arctic. *In:* First International Muskox Symposium, R.G. White, S. Keller and D. R. Klein, eds. UAF Special Report 4. Fairbanks, AK: University of Alaska, pp. 123-126.
- Miller, F.L., A. Gunn, and E. Broughton. 1985. Surplus Killing as Exemplified by Wolf Predation on Newborn Caribou. *Canadian Journal Zoology* 632:295-300.
- Miller, G.W. 2002. Seismic Program Described, 2001. In: Marine Mammal and Acoustical Monitoring of Anderson Exploration Limited's Open-Water Seismic Program in the Southeastern Beaufort Sea, 2001, LGL and JASCO Research Ltd, eds. LGL Report TA 2618-1. King City, Ont., Canada: LGL Ecological Research Associates, Inc., 207 pp.
- Miller, G.W. and R.A. Davis. 2002. Marine Mammal and Acoustical Monitoring of Anderson Exploration Limited's Open-Water Seismic Program in the Southeastern Beaufort Sea, 2001. LGL Report TA 2618-1. King City, Ont. Canada: LGL Ecological Research Associates, Inc., 199 pp.
- Miller, G.W., R.E. Elliott, and W.J. Richardson. 1996.
  Marine mammal Distribution, Numbers and Movements. *In*: Northstar Marine Mammal Monitoring Program, 1995: Baseline Surveys and Retrospective Analyses of Marine Mammal and Ambient Noise Data from the Central Alaskan Beaufort Sea. LGL Report TA 2101-2.
  King City, Ont., Canada: LGL Ecological Research Associates, Inc., pp. 3-72.
- Miller, G.W., R.E. Elliott, and W.J. Richardson. 1998. Whales. *In*: Marine Mammal and Acoustical Monitoring of BP Exploration (Alaska)'s Open-Water Seismic Program in the Alaskan Beaufort Sea, 1997, LGL and Greeneridge, eds. LGL Report TA 2150-3. King City, Ont., Canada: LGL Ecological Research Associates, Inc., 124 pp.
- Miller, G.W., R.E. Elliott, W.R. Koski, and W.J. Richardson. 1997. Whales. *In:* Northstar Marine Mammal Monitoring Program, 1996: Marine Mammal and Acoustical Monitoring of a Seismic Program in the Alaskan Beaufort Sea, LGL and Greeneridge, eds. LGL Report TA 2121-2. King City, Ont., Canada: LGL Ecological Research Associates, Inc., 115 pp.

- Miller, G.W., R.E. Elliott, W.R. Koski, V.D. Moulton, and W.J. Richardson. 1999. Whales. *In:* Marine Mammal and Acoustical Monitoring of Western Geophysical's Open-Water Seismic Program in the Alaskan Beaufort Sea, 1998, LGL and Greeneridge, eds. LGL Report TA 2230-3. King City, Ont., Canada: LGL Ecological Research Associates, Inc., 109 pp.
- Miller, G.W., R.A. Davis, V.D. Moulton, A. Serrano, and M. Holst. 2002. Integration of Monitoring Results, 2001. *In*: Marine Mammal and Acoustical Monitoring of Anderson Exploration Limited's Open-Water Seismic Program in the Southeastern Beaufort Sea, 2001. LGL Report TA 2618-1. King City, Ont., Canada: LGL Ecological Research Associates, Inc., 207 pp.
- Miller, S., S. Schliebe, and K. Proffitt. 2006. Demographics and Behavior of Polar Bears Feeding on Bowhead Whale Carcasses at Barter and Cross Islands, Alaska. OCS Study MMS 2006-14. Anchorage, AK: USDOI, MMS, Alaska OCS Region, 29 pp.
- Miller S.D. and M.A. Chihuly. 1987. Characteristics of Nonsport Brown Bear Deaths in Alaska. *In:* Seventh International Conference on Bear Research and Management-Bears - their Biology and Management, P. Zager, J. Beecham ,G. Matula, and H. Reynolds III, eds. Williamsburg, Va., Feb.-Mar. 1986. Washington, DC: Port City Press, Inc, pp. 51-58.
- Milne, A.R. and J.H. Ganton. 1964. Ambient Noise Under Arctic-Sea Ice. J. Acoust. Soc. Am. 365:855-863.
- Minn, B.P. 1982. Report on Subsistence Harvest of Migratory Birds in Sisualik, Deering, and Kivalina, 1982. Technical Report 91. Anchorage, AK: USDOI, MMS, Alaska OCS Region.
- Mitchell, E.D. 1975. Report on the Meeting on Small Cetaceans, Montreal, April 1-11, 1974. J. Fish. Res. Board Can. 32:914-91.
- Mitson, R.B. and H.P. Knudsen. 2003. Causes and Effects of Underwater Noise on Fish Abundance Estimation. Aquatic Living Resources 16:255-263.
- Mizroch, S.A., D.W. Rice, and J.M. Breiwick. 1984. The Fin Whale, *Balaenoptera physalis*. *Marine Fish Rev.* 46(4):20-24.
- Mizroch, S.A., L.M. Herman, J.M. Straley, D. Glockner-Ferrari, C. Jurasz, J. Darling, S. Cerchio, C. Gabriele, D. Salden, and O. von Ziegesar. 2004. Estimating the Adult Survival Rate of Central North Pacific Humpback Whales. J. Mammalogy 85(5).
- Mizroch, S.A., D.W. Rice, D. Zwiefelhofer, J. Waite, and W.L. Perryman. In prep. Distribution and Movements of Fin Whales in the North Pacific Ocean. Draft manuscript, 35 pp.

- Mobley, C.M., J.C. Haggarty, C.J. Utermohle, M. Eldridge, R.E. Reanier, A. Crowell, B.A. Ream, D.R. Yeaner, J.M. Erlandson, P.E. Buck, W.B. Workman, and K.W. Workman. 1990. The 1989 *Exxon Valdez* Cultural Resource Program. Anchorage, AK: Exxon Shipping Co. and Exxon Company USA, 300 pp.
- Mobley, J.M., S. Spitz, R. Grotefendt, P. Forestell, A. Frankel, and G. Bauer. 2001. Abundance of Humpback Whales in Hawaiian Waters: Results of 1993-2000 Aerial Surveys. Hawaiian Islands Humpback National Marine Sanctuary, 16 pp.
- Moles, A. and B.L. Norcross. 1998. Effects of Oil-Laden Sediments on Growth and Health of Juvenile Flatfishes. *Can. J. Fish. Aquat. Sci.* 55:605-610.
- Moles, A. and T.L. Wade. 2001. Parasitism and Phagocytic Function among Sand Lance Ammodytes hexapterus Pallas Exposed to Crude Oil-Laden Sediments. Bull. Environ. Contam. Toxicol. 66:528-535.
- Moles, A., S.D. Rice, and B.L. Norcross. 1994. Non-Avoidance of Hydrocarbon Laden Sediments by Juvenile Flatfishes. *Netherlands J. Sea Research* 323/4:361-367.
- Monnett, C. and L.M. Rotterman. 1989. Movement Patterns of Western Alaska Peninsula Sea Otters. *In*: Proceedings of the Gulf of Alaska, Cook Inlet, and North Aleutian Basin Information Update Meeting, L.E. Jarvela and L.K. Thorsteinson, eds. Anchorage, Ak., Feb. 7-8, 1989. Anchorage, AK: USDOI, MMS, Alaska OCS Region, pp. 121-128.
- Monnett, C. and S.D. Treacy. 2005. Aerial Surveys of Endangered Whales in the Beaufort Sea Fall 2002-2004. OCS Study MMS 2005-037. Anchorage, AK: USDOI, MMS, Alaska OCS Region.
- Monnett, C. and J.S. Gleason. 2006. Observations of Mortality with Extended Open-Water Swimming by Polar Bears in the Alaskan Beaufort Sea. *Polar Biology*.
- Montevecchi, W.A., F.K. Wiese, G. Davoren, A.W. Diamond, F. Huettmann, and J. Linke. 1999. Seabird Attraction to Offshore Platforms and Seabird Monitoring from Offshore Support Vessels and Other Ships: Literature Review and Monitoring Designs. Environmental Studies Research Funds Report No. 138. Calgary, Alb., Canada: Canadian Assoc. of Petroleum Producers, 56 pp.
- Moore, R.M. 1981. Oceanographic Distribution of Zinc, Cadmium, Copper, and Aluminum in Waters of the Central Arctic. *Geochimica et Cosmochimica Acta* 45:2475-2482.
- Moore, S.E. 1992. Summer Records of Bowhead Whales in the Northeastern Chukchi Sea. *Arctic* 45(4):398-400.
- Moore, S.E. 2000. Variability of Cetacean Distribution and Habitat Selection in the Alaskan Arctic, Autumn 1982-91. Arctic 534:448-460.

Moore, S.E. and J.T. Clarke. 1990. Distribution, Abundance and Behavior of Endangered Whales in the Alaskan Chukchi and Western Beaufort Seas, 1989. Anchorage, AK: USDOI, MMS, Alaska OCS Region.

Moore, S.E. and R.R. Reeves. 1993. Distribution and Movement. *In: The Bowhead Whale Book*, J.J. Burns, J.J. Montague, and C.J. Cowles, eds. Special Publication of The Society for Marine Mammalogy, 2. Lawrence, KS: The Society for Marine Mammalogy, 313-386.

Moore S.E. and D.P. DeMaster. 1997. Cetacean Habitats in the Alaskan Arctic. *Journal of Northwest Atlantic Fishery Science* 22:55-69.

Moore, S.E. and J.T. Clarke. 2002. Potential Impact of Offshore Human Activities on Gray Whales (*Eschrichtius robustus*). Cetacean Research and Management 4(1):19-25.

Moore, S.E., D.P. DeMaster, and P.K. Dayton. 2000. Cetacean Habitat Selection in the Alaskan Arctic During Summer and Autumn. *Arctic* 53(4):432-447.

Moore S.E., J.M. Grebmeier, and J.R. Davies. 2003. Gray Whale Distribution Relative to Forage Habitat in the Northern Bering Sea: Current Conditons and Retrospective Summary. *Canadian Journal Zoology* 81:734-742.

Moore, S.E., J.C. George, K.O. Coyle, and T.J. Weingartner. 1995. Bowhead Whales Along the Chukotka Coast in Autumn. Arctic 48(2):155-160.

Moore, S.E., K.M. Stafford, M.E. Dahlheim, C.G. Fox, H.W. Braham, J.J. Polovina, and D.E. Bain. 1998. Seasonal Variation in Fin Whale Calls at Five Geographic Areas in the North Pacific. *Marine Mammal Science* 14(3):617-627.

Moore, S.E., K.E.W. Shelden, L.K. Litzky, B.A. Mohoney, and D.J. Rugh. 2000. Beluga, *Delphinapterus leucas*, Habitat Associations in Cook Inlet, Alaska. *Marine Fisheries Review* 623:60-80.

Moore, S.E., J.M. Waite, N.A. Friday, and T. Honkalehto. 2002. Cetacean Distribution and Relative Abundance in the Central-Eastern and the Southeastern Bering Sea Shelf with Reference to Oceanographic Domains. *Progress in Oceanography* 55:249-261.

Moore, S.E., K.M. Stafford, D.K. Mellinger, and J.A. Hildebrand. 2006. Listening for Large Whales in the Offshore Waters of Alaska. *BioScience* 56:49-55.

Morrison, J., M. Steel, and R. Andersen. 1998. Hydrography of the Upper Arctic Ocean Measured from the Nuclear Submarine USS Pargo. Deep-Sea Research I 451:15-38. Morrow, J.E. 1980. *The Freshwater Fishes of Alaska*. Anchorage, AK: Alaska Northwest Publishing Co., 248 pp.

Morseth, C.M. 1997. Twentieth-Century Changes in Beluga Whale Hunting and Butchering by the Kanigmiut of Buckland, Alaska. *Arctic* 50(3):241-255.

Morton, A.B. and H.K. Symonds. 2002. Displacement or Orcinus orca (L.) by High Amplitude Sound in British Columbia, Canada. ICES Journal of Marine Science 59:71-80.

Moulton, L.L. 1997. The 1996 Colville River Fishery. *In*: The 1997 Endicott Development Fish Monitoring Program, Vol. II. Anchorage, AK: BPXA.

Moulton, L.L. and J.C. George. 2000. Freshwater Fishes in the Arctic Oil-Field Region and Coastal Plain of Alaska. *In: The Natural History of an Arctic Oil Field: Development and the Biota.*, J.C. Truett and S.R. Johnson, eds. New York: Academic Press, pp. 327-348.

Moulton, L.L., M.H. Fawcett, and T.A. Carpenter. 1985.
Fish. *In:* Lisburne Development Environmental Studies: 1984. Final Report. Anchorage, AK: ARCO Alaska, Inc.

Moulton, V.D., G.W. Miller, and A. Serrano. 2002. Vessel-Based Monitoring, 2001. *In:* Marine Mammal and Aoustical Monitoring of Anderson Exploration Limited's Open-Water Seismic Program in the Southeastern Beaufort Sea, 2001, LGL and JASCO Research Ltd., eds. LGL Report TA 2618-1. King City, Ont., Canada: LGL Ecological Research Associates, Inc.

Moulton, V.D., W.J. Richardson, R.E. Elliott, L. McDonald, C. Nations, and M.T. Williams. 2005. Effects of an Onshore Oil Development on Local Abundance and Distribution of Ringed Seals (*Phoca hispida*) of the Alaskan Beaufort Sea. *Marine Mammal Science* 21:217-242.

Mufson, S. 2006. Pipeline Closure Sends Oil Higher. Washington Post, Aug. 8, 2006. Washington, DC: Washington Post, Sec. A, p. A01..

Muir D.C.G., E.W. Born, K. Koczansky, and G.A. Stern. 2000. Temporal and Spatial Trends of Persistent Organochlorines in Greenland Walrus (*Odobenus* rosmarus rosmarus). The Science of the Total Environment 245:73-86.

Mulherin, N., D. Sodhi, and E. Smallidge. 1994. Northern Sea Route and Icebreaking Technology: An Overview of Current Conditions. New Hampshire: U.S. Army Corps of Engineers, Cold Regions Research and Engineering Lab, 162 pp. Munchow, A., T.J. Weingartner, and L.W. Cooper. 1999. The Summer Hydrography and Surface Circulation of the East Siberian Shelf Sea. *Journal of Physical Oceanography* 29:2167-2182.

Murphy, M.L., R.A. Heintz, J.W. Short, M.L. Larsen, and S.D. Rice. 1999. Recovery of Pink Salmon Spawning Areas after the *Exxon Valdez* Oil Spill. *Transactions of the American Fisheries Society* 128:909-919.

Murphy, N.J., C. Schraer et al. 1997. Hypertension in Alaska Natives: Association with Overweight, Glucose Intolerance, and Mechanized Activity. *Ethnicity and Health* 1997:267-275.

Mössner, S. and K. Ballschmiter. 1997. Marine Mammals as Global Pollution Indicators for Organochlorines. *Chemosphere* 345-7:1285-1296.

Nachtigall, P.E., A.Y. Supin, J. Pawloski, and W.W.L. Au. 2004. Temporary Threshold Shifts after Noise Exposure in the Bottlenose Dolphin (*Tursiops truncatus*) Measured using Evoked Auditory Potentials. *Marine Mammal Science* 204:673-687.

Nageak, B.P. 1998. Letter dated Mar. 12, 1998, from B.P. Nageak, Mayor, North Slope Borough, to B. Babbitt, Secretary of the Interior; subject: comments on the NPR-A IAP/EIS.

Naidu, S. 2005. Trace Metals in Sediments, Northeastern Chukchi Sea. Presentation at the MMS Chukchi Sea Science Update, Anchorage, Ak. Anchorage, AK: USDOI, MMS, Alaska OCS Region.

Naiman, J. 1996. ANILCA Section 810: An Undervalued Protection for Alaskan Villagers' Subsistence. Fordham Environmental Law Journal 7:211-350.

Napageak, T. 1996. Nuiqsut Whaling Captains' Meeting, Traditional Environmental Knowledge for BP's Northstar EIS, Nuiqsut, Ak., Aug. 14, 1996. Anchorage, AK: BPXA.

NASA. 2005. Arctic Sea Ice Continues to Decline, Arctic Temperatures Continue to Rise In 2005.

National Assessment Synthesis Team. 2000. Climate Change Impacts on the United States: The Potential Consequences of Climate Variability and Change. Washington, DC: U.S. Global Change Research Program, 6 pp.

National Research Council. 1983. Drilling Discharges in the Marine Environment. Panel on Assessment of Fates and Effects of Drilling Fluids and Cuttings in the Marine Environment, September 26, 1982.
Washington, DC: National Academy Press for Marine Board, Commission on Engineering and Technical Systems, NRC, 180 pp. National Research Council. 1985. Oil in the Sea: Inputs, Fates, and Effects. Washington, DC: National Academy Press, 601 pp.

National Research Council. 2001. Climate Change Science: An Analysis of Some Key Questions. Washington, DC: National Academy Press.

National Research Council. 2003a. *Ocean Noise and Marine Mammals*. Washington, DC: The National Academy Press.

National Research Council. 2003b. Cumulative Environmental Effects of Oil and Gas Activities on Alaska's North Slope.
www.nap.edu/openbook/0309087376/html/1.html.
Washington, DC: The National Academies Press, 465 pp.

National Research Council. 2005. Marine Mammal Populations and Ocean Noise. Determining When Noise Causes Biologically Significant Effects. Washington, DC: The National Academies Press.

National Resources Defense Council. 1999. Sounding the Depths. Supertankers, Sonar, and the Rise of Undersea Noise. Washington, DC: NRDC.

National Resources Defense Council. 2005. Sounding the Depths II: The Rising Toll of Sonar, Shipping and Industrial Ocean Noise on Marine Life. New York: NRDC.

Naylor, J.L., C.D. Schraer et al. 2003. Diabetes Among Alaska Natives: A Review. International Journal of Circumpolar Health 64(4):363-386.

Neff, J.M., 1990. Composition and Fate of Petroleum and Spill-Treating Agents in the Marine Environment. *In: Sea Mammals and Oil: Confronting the Risks*, J.R. Geraci and D.J. St. Aubin, eds. San Diego, CA: Academic Press, Inc., and Harcourt Brace Jovanovich, pp. 1-33.

Neff, J.M. 1990. Effects of Oil on Marine Mammal Populations: Model Simulations. *In: Sea Mammals and Oil: Confronting the Risks*, J.R. Geraci and D.J. St. Aubin, eds. San Diego, CA: Academic Press, Inc. and Harcourt, Brace Jovanovich, pp. 35-54.

Nelson, K. 2003. Building Resource Roads. Petroleum News Alaska 817:1.

Nelson, O. 2003. Climate Change Erodes Inuit Knowledge, Researchers Say. http://www.nunatsiaq.com/news/nunavik/30124\_01. Nunatsiaq News Nelson, R. 1982. Status of Marine Mammal Populations in the Norton Sound Basin. *In*: The Norton Sound Environment and Possible Consequences of Planned Oil and Gas Development, S.T. Zimmerman, ed. Boulder, CO and Anchorage, AK: USDOC, NOAA, OCSEAP and USDOI, BLM.

Nelson, R.K. 1969. Hunters of the Northern Ice. Chicago and London: University of Chicago Press.

Nelson, R.K. 1979. Cultural Values of the Land. *In:* Native Livelihood and Dependence: A Study of Land Use Values Through Time. Field Study/United States National Petroleum Reserve in Alaska 105(C) Land Use Study No. 1. Anchorage, AK: USDOI, BLM, NPR-A Task Force, pp. 27-36.

Nemoto, T. 1957. Foods of Baleen Whales in the North Pacific. Scientific Report 12. Tokyo, Japan: Whales Research Institute, pp. 33-89.

- Nemoto, T. and T. Kasuya. 1965. Foods of Baleen Whales in the Gulf of Alaska of the North Pacific. Science Report of the Whales Research Institute 19. Tokyo, Japan: Whales Research Institute, pp. 45-51.
- Nerini, M.K. 1984. A Review of Gray Whale Feeding Ecology. In: The Gray Whale, M.L. Jones, S. Leatherwood, and S.L. Swartz, eds. New York: Academic Press, Inc., pp. 423-450.
- Newell, J. 2004. The Russian Far East: A Reference Guide for Conservation and Development. McKinleyville, CA: Daniel & Daniel Publishers, Inc. in association with Friends of the Earth, Japan.

NewScientist.com. 2001. Climate Change: Poor Nationals Demand Climate Compensation. http://www.newscientist.com/climate/climate.jsp?id=ns 99992998.

- NewScientist.com. 2002. Climate Change. Poor Nations Demand Climate Compensation. http://www.newscientist.com/hottopics/climate.
- Nieukirk, S.L., K.M. Stafford, D.K. Mellinger, R.P. Dziak, and C.G. Fox. 2004. Low-Frequency Whale and Seismic Airgun Sounds Recorded in the Mid-Atlantic Ocean. J. Acoust. Soc. Am. 1154:1832-1843.

Nighswander, T.S. and N. Peacock. 1999. The Communication of Health Risk from Subsistence Food in a Cross Cultural Setting: Lessons Learned from the Exxon Valdez Oil Spill. In: Evaluating and Communicating Subsistence Seafood Safety in a Cross-Cultural Context L.J. Field, J.A. Fall, T.S. Nighswander, N. Peacock, and U. Varanasi, eds. Pensacola, FL: SETAC Press, 338 pp.

NMFS. 1991. Final Recovery Plan for the Humpback Whale (*Megaptera novaeangliae*). Silver Spring, MD: USDOC, National Marine Fisheries Service, 105 pp.

- NMFS. 1993. Public Testimony of Burton Rexford, Chairman, Alaska Eskimo Whaling Commission, concerning a Letter of Authorization for bowhead whale monitoring in the Kuvlum Prospect. Anchorage, AK: National Marine Fisheries Service.
- NMFS. 1999. Endangered Species At Section 7 Consultation (Biological Opinion) for the Proposed Construction and Operation of the Northstar Oil and Gas Project in the Alaskan Beaufort Sea. Anchorage, AK: NMFS, 75 pp.
- NMFS. 2001. Endangered Species Act Section 7 Consultation (Biological Opinion) for the Arctic Region for Federal Oil and Gas Leasing and Exploration in the Alaskan Beaufort Sea. Anchorage, AK: USDOC, NMFS.
- NMFS. 2003a. Biological Opinion on Issuance of Annual Quotas Authorizing the Harvest of Bowhead Whales to the Alaska Eskimo Whaling Commission for the Period 2003 through 2007. Anchorage, AK: USDOC, NMFS.
- NMFS. 2003b. Environmental Assessment for Issuing Annual Quotas to the Alaska Eskimo Whaling Commission for a Subsistence Hunt on Bowhead whales for the Years 2003 through 2007. Anchorage, AK: USDOC, NMFS, 67 pp. plus appendices.
- NMFS. 2004. Bearded Seal (Eriganthus barbatus): Alaska Stock. USDOC, NMFS http://www.nmfs//noaa.gov/pr/pdfs/sars/AK97beardedsea l\_Alaska.pdf
- NMFS. 2005. Final Environmental Impact Statement for Essential Fish Habitat Identification and Conservation in Alaska. Juneau, AK: National Marine Fisheries Service.
- NMFS. 2006. Biological Opinion for Proposed Beaufort Sea Lease Sale 202. Anchorage, AK: NMFS.
- Nobmann, E.D. 1997. Nutritional Benefits of Subsistence Foods. Anchorage, AK: University of Alaska, Anchorage, ISER.
- Noel, L.E., K.R. Parker, and M.A. Cronin. 2004. Caribou Distribution near an Oilfield Road on Alaska's North Slope, 1978-2001. Wildlife Society Bulletin 32(3):757-771.
- Norcross, B.L., J.E. Hose, M. Frandsen, and E.D. Brown. 1996. Distribution, Abundance, Morphological Condition, and Cytogenetic Abnormalities of Larval Herring in Prince William Sound, Alaska, following the *Exxon Valdez* Oil Spill. *Can. J. Fish. Aquat. Sci.* 53:2376-2387.
- Norstrom R.J., M. Simon, D.G.C. Muir, and R.E. Schweinsburg. 1988. Organochlorine Contaminants in Arctic Marine Food Chains: Identification, Geographical Distribution and Temproal Trends in Poalr Bears. Environmental Science and Technology 22:1063-1071.

 North Slope Borough. 1995. North Slope Borough 1993/1994 Economic Profile and Census Report, Vol.
 VII. Barrow, AK: NSB, Dept. of Planning and Community Services.

North Slope Borough. 1997. Subsistence Harvest Documentation Project Data for Nuiqsut, Alaska. Barrow, AK: North Slope Borough.

North Slope Borough. 1998. Economic Profile and Census Report. Barrow, AK: North Slope Borough.

North Slope Borough. 1999. North Slope Borough 1998/99 Economic Profile and Census Report. Vol. VIII. Barrow, AK: North Slope Borough, Dept. of Planning and Community Services.

North Slope Borough. 2003. Letter dated Apr. 2, 2003, from the North Slope Borough to H. Bisson, State Director, BLM; subject: draft IAP/EIS for the Northwest NPR-A.

North Slope Borough, Commission on History and Culture. 1980. *Qiniqtuagaksrat Utuqqanaat Inuuniagninisiqun: The Traditional Land Use Inventory for the Mid-Beaufort Sea*, Vol. IX. Barrow, AK: NSB, Commission on History and Culture, 209 pp.

North Slope Borough Contract Staff. 1979. Native Livelihood and Dependence: A Study of Land Values Through Time. Field Study (National Petroleum Reserve in Alaska 105(c) Land Use Study (US) 1. Anchorage, AK: USDOI, BLM, NPR-A, Work Group 1, 166 pp.

North Slope Borough, Dept. of Planning and Community Services. 1989. North Slope Borough Census, Preliminary Report on Population and Economy. Draft report. Barrow, AK: NSB, Dept of Planning and Community Services, Warren Matumeak, Director.

North Slope Borough and USDOI, National Park Service. 1999. Preservation and Development of the Subsistence Lifestyle and Traditional Use of Natural Resources by Native People (Eskimo and Chukchi) in Selected Coastal Communities (Inchoun, Uelen, Lorino, Lavrentiya, Novoye Chaplino, Sireniki, Nunligran, Enmelen) of Chukotka in the Russian Far East during 1998. Anchorage and Barrow, AK: USDOI, NPS, Shared Beringian Heritage Program and North Slope Borough, Dept. of Wildlife Management.

Northern Climate Exchange. 2005. Weathering Change Winter/Spring 2005. Newsletter of the Northern Climate Exchange at http://www.taige.net/nce/resources/newsletters/

Northern Economics, Inc. 2006. The North Slope Economy, 1965-2006. OCS Study MMS 2006-020. Anchorage, AK: USDOI, MMS, Alaska OCS Region. Norton, D.W. and A.G. Gaylord. 2004. Drift Volocities of Ice Floes in Alaska's Northern Chukchi Sea Flaw Zone: Determinants of Success by Spring Subsistence Whalers in 2000 and 2001. Arctic 574:347-362.

Nukapigak, I. 1995. Testimony of I. Nukapigak at the Beaufort Sea Sale 144 EIS Workshop. Nuiqsut, Ak from M. Burwell's trip report. Anchorage, AK: USDOI, MMS, Alaska OCS Region, 4 pp.

Nutall, M. 2005. *Encyclopedia of the Arctic*. New York: Routledge.

O'Corry-Crowe, G. M., R.S. Suydam, A. Rosenberg, K.J.Frost, and A.E. Dizon. 1997. Phylogeography, Population Structure and Dispersal Patterns of the Beluga Whale *Delphinapterus leucas* in the Western Nearctic Revealed by Mitochondrial DNA. *Molecular Ecology* 6:955-970.

O'Hara, K., N. Atkins, and S. Ludicello. 1986. *Marine Wildlife Entanglement in North America*. Washington, DC: Center for Marine Conservation, 219 pp.

O'Hara, T., P. Hoekstra et al. 2005. Concentrations of Selected Persistent Organochlorine Contaminants in Store-Bought Foods from Northern Alaska. *International Journal of Circumpolar Healt*h 64(94):303-313.

O'Hara, T.M., L. Duffy, E. Follman, K. Kassam, D. Muir, D. Norton, L. Dehn, and P. Hoeskstra. 2002. Human and Chemical Ecology of Arctic Pathways by Marine Pollutants. http://www/cifar.uaf.edu/ari00/o'hara\_pathways.html:

Oechel, W.C. and K. Van Cleve. 1986. The Role of Bryophytes in Nutrient Cycling in the Taiga. *In*: Forest Ecosystems in the Alaskan Taiga, K. Van Cleve, F.S. Chapin, III, P.W. Flanagan, L.A.Viereck, and C.T. Dryness, eds. New York: Springer-Verlag, pp. 121-137.

Ohsumi, S. and S. Wada. 1974. Status of Whale Stocks in the North Pacific, 1972. Reports of the International Whaling Commission 27. Cambridge, UK: IWC, pp. 167-175.

Okal, E.A. and J. Talandier. 1986. T-Wave Duration, Magnitudes and Seismic Moment of an Earthquake--Application to Tsunami Warning. J. Phys. Earth 34:19-42.

Oktullik, E. 1996. Barrow Public Teleconference on the Outer Continental Shelf Oil and Gas Leasing Program 1997-2002 (5-Year Program) to Point Lay, Point Hope, Wainwright, Kaktovik, and Nuiqsut. Herndon, VA: USDOI, MMS.

- Olesiuk, P.E., L.M. Nichol, M.J. Sowden, and J.K.B. Ford. 1995. Effect of Sounds Generated by Acoustic Deterrent Device on the Abundance and Disribution of Harbor Porpoise (*Phocoena phocoena*) in Retreat Passage, British Columbia. Nanaimo, BC, Canada: Fisheries and Oceans Canada, Pacific Biological Station, 47 pp.
- Oliver, J.S., P.N. Slattery, E.P. O'Connor, and L.T. Lowery. 1983. Walrus Odobenus rosmarus Feeding in the Bering Sea: A Benthic Perspective. Fishery Bulletin 81(3):501-512.
- Olson, J.E. 1982. Acid Pollution and Acid Rain: Report 8, The Effects of Air Pollution and Acid Rain on Fish, Wildlife, and Their Habitats - Arctic Tundra and Alpine Meadows. FWS/OBS- 80/40- 8. Washington, DC: USDOI, Fish and Wildlife Service, Biological Services Program, Eastern Energy and Land Use Team, 27 pp.
- Olson, T.L. and B.K. Gilbert. 1994. Variable Impacts of People on Brown Bear Use of an Alaskan River. *In:* Ninth International Conference on Bear Research and Management, J.J. Claar and P. Schullery, eds. Missoula, Mont. Victoria, BC, Canada: International Assoc. for Bear Research and Management, 500 pp.
- Olsson, P., L. Hinzman, and M. Sturm. 2000. A Five Year Thermal and Wind Climatology of the Kuparuk Basin. Abstract. *In*: AGU Fall 2000 Meeting. Washington, DC: American Geophysical Union.
- Oppel, S. 2007. Personnal communication dated Feb. 24, 2007, from Steffen Oppel, University of Alaska, Fairbanks to Ted Swem, USDOI, FWS, Fairbanks; subject: preliminary satellite tracking data for king eiders staging along the Chukchi Sea coast during the spring season, 2002-2006.
- Oritsland, N.A., F.R. Engelhardt, R.A. Juck, R.J. Hurst, and P.D. Watts. 1981. Effect of Crude Oil on Polar Bears. Northern Affairs Program, Eastern Arctic Marine Environmental Studies Program Environmental Study No. 24. Ottawa, Ont., Canada: Indian and Northern and Affairs Canada, 268 pp.
- Osterkamp, T.E. and W.D. Harrison. 1982. Temperature Measurements In Subsea Permafrost Off the Coast of Alaska. *In:* Proceedings of the Fourth Canadian Permafrost Congress, H.M. French, ed. Calgary, Alb., Mar. 2-6, 1981. Ottawa, Ont., Canada: NRC, pp. 238-248.
- Ott, R., C. Peterson, and S. Rice. 2001. *Exxon Valdez* Oil Spill (EVOS) Legacy: Shifting Paradigms in Oil Ecotoxicology. http://www.alaskaforum.org.
- Overland, J.E. 2006. Arctic Change: Multiple Observations Recent Understanding. *Weather* 613:78-83.

- Overland, J.E. and M. Wang. 2005. The Arctic Climate Paradox: The Recent Decrease of the Arctic Oscillation. *Geophysical Research Letters* 32:L06701, doi:10.1029/2004GL021752.
- Ovsyanikov, N. 2003. Polar Bears in Chukotka. WWF Arctic Bulletin 2:13-14.
- Owens, E.H.. 1977. Coastal Environments of Canada: The Impact and Cleanup of Oil Spills. EPS-3-EC-77-13. Ottawa, Ontairo, Canada: Environmental Impact Control Directorate. 413 pp.
- Pacyna, J.M. 1995. The Origin of Arctic Air Pollutants: Lessons Learned and Future Research. *The Science of the Total Environment* 160/161:39-53.
- Paine, R.T. and S.A. Levin. 1981. Inter-Tidal Landscapes: Disturbance and the Dynamics of pattern. *Ecol. Monogr.* 51:145-178.
- Parkinson, C.L. and D.J. Cavalieri. 2002. A 21 Year Record of Arctic Sea-Ice Extents and Their Regional, Seasonal, and Monthly Variability and Trends. *Annals of Glaciology* 34:441-446.
- Parkinson, C.L., D.J. Cavalieri, P. Gloersen, H.J. Zwally, and J.C. Cosimo. 1999. Arctic Sea Ice Extents, Areas, and Trends, 1978-1996. *Journal of Geophysical Research* 104(C9):20,837-20,856.
- Parmesan, C. and H. Galbraith. 2004. Observed Impacts of Global Climate Change in the U.S. Arlington, VA: Pew Center for Global Climate Change.
- Parson, E.A., L. Carter, P. Anderson, B. Wang, and G. Weller. 2001. Potential Consequences of Climate Variability and Change for Alaska. *In*: The Potential Consequences of Climate Variability and Change: Foundation Report. Cambridge, UK: Cambridge University Press, pp. 283-313.
- Patenaude, N.J., M.A. Smultea, W.R. Koski, W.J. Richardson, and C.R. Greene. 1997. Aircraft Sound and Aircraft Disturbance to Bowhead and Beluga Whales During the Spring Migration in the Alaskan Beaufort Sea. King City, Ont., Canada: LGL Ltd. Environmental Research Associates, 37 pp.
- Patin, S. 1999. Environmental Impact of the Offshore Oil and Gas Industry. East Northport, NY: EcoMonitor Publ., 425 pp.
- Paul, J.M., A.J. Paul, and W.E. Barber. 1997. Reproductive Biology and Distribution of the Snow Crab from the Northeastern Chukchi Sea. *American Fisheries Society Symposium* 19:287-294.

- Pauli, C.K., W. Ussler, III, S.R. Dallimore, S.M. Blasco, T.D. Lorenson, H. Melling, B.E. Medioli, F.M. Nixon, and F.A. McLaughlin. 2007. Origin of Pingo-like Features on the Beaufort Sea Shelf and their Possible Relationship to Decomposing Methane Gas Hydrates. *Geophysical Research Letters* 34(L)603, doi:10.1029/2006GL027977.
- Pavlova, V., O. Pavlova, and R. Korsnes. 2004. Sea Ice Fluxes and Drift Trajectories from Potential Pollution Sources, Computed with a Statistical Sea Ice Model of the Arctic Ocean. *Journal of Marine Systems* 48:133-157.
- Payne, J.R. 1982. The Chemistry and Formation of Waterin-Oil Emulsions and Tar Balls from the Release of Petroleum in the Marine Environment. Working Paper. Washington, DC: National Academy of Sciences, 142 pp.
- Payne, J.R. 1985. Oil in the Sea: Inputs, Fates, and Effects. In: Commission on Physical Sciences, Mathematics, and Applications. Washington, DC: The National Academy press.
- Payne, J.R. and S. Jordan. Petroleum Spills in the Marine Environment: The Chemistry and Formation of Water in Oil Emulsions and Tar Balls. Chelsea, MI: Lewis Publishers.
- Payne, J.R., B.E. Kirstein, G.D. McNab, J.L. Lambech, L. de Oliveira, R.E.D. Jordan, and W. Hom. 1983.
  Multivariate Analysis of Petroleum Hydrocarbon Weathering in the Subarctic Marine Environment. *In*: Proceedings of the 1983 Oil Spill Conference.
  Washington, DC: API, pp. 423-434.
- Payne, J.R., B.E. Kirstein, G.D. McNabb, Jr., J.L. Lambech, R. Redding, R.E. Jordan, W. Hom, C. de Oliveira, G.S. Smith, D, M. Baxter, and R. Gaegel. 1984a.
  Multivariate Analysis of Petroleum Weathering in the Marine Environment -Sub Arctic. Vol. I - Technical Results. Environmental Assessment of the Alaskan Continental Shelf. Final Reports of Principal Investigators, Vol. 21 (Feb. 1984). Juneau, AK: USDOC, NOAA, and USDOI, MMS, 686 pp.
- Payne, J.R., B.E. Kirstein, G.D. McNabb, Jr., J.L. Lambech, R. Redding, R.E. Jordan, W. Hom, C. de Oliveira, G.S. Smith, D.M. Baxter, and R. Gaegel. 1984b.
  Multivariate Analysis of Petroleum Weathering in the Marine Environment - Sub Arctic. Vol. II -Appendices. Environmental Assessment of the Alaskan Continental Shelf. Final Reports of Principal Investigators, Vol. 22 (Feb. 1984). Juneau and Anchorage, AK: USDOC, NOAA and USDOI, MMS, pp. 1-56.
- Peacock, E., R.K. Nelson, A.R. Solow, J.D. Warren, J.L. Baker, and C.M. Reddy. 2005. The West Falmouth Oil Spill – 100 Kg of Oil Found to Persist Decades Later. Environmental Forensics 6:273-281.

- Peacock, N. and L.J. Field. 1999. The March 1989 Exxon Valdez Oil Spill: A Case Study in Responding to Subsistence Food Safety Issues. In: Evaluating and Communicating Subsistence Seafood Safety in a Cross-Cultural Context, L.J. Field, J.A. Fall, T.S. Nighswander, N. Peacock, and U. Varanasi, eds. Pensacola, FL: SETAC Press, 338 pp.
- Pearson, W.H., J.R. Skalski, and C.I. Malme. 1992. Effects of Sounds from a Geophysical Survey Device on Behavior of Captive Rrockfish (*Sebastes* spp.). Can. J.Fish. Aquatic Sci. 49:1343-1356.
- Pedersen, S. 1996. Nuiqsut: Wild Resource Harvests and Uses in 1993. Fairbanks, AK: State of Alaska, Dept. of Fish and Game, Div. of Subsistence.
- Pedersen, S. 1997. Point Hope: A Natural Resource and Marine/Terrestrial Land-Use Overview. Initial Report to the NPR-A Planning Team. Anchorage, AK: USDOI, BLM.
- Pedersen, S. 1998. Paper presented to MMS, Alaska OCS Region staff; subject: subsistence economics and oil development: case studies from Nuiqsut and Kaktovik, Alaska.
- Pedersen, S. and J. Taalak. 2001. 1999-2000 Subsistence Harvest of Caribou and Other Big Game Resources in Nuiqsut, Alaska. Technical Paper. Open-File Report April 2001. Juneau, AK: State of Alaska, Dept. of Fish and Game, Div. of Subsistence.
- Pedersen, S., R.J. Wolfe, C. Scott, and R.A. Caulfield. 2000. Subsistence Economics and Oil Development: Case Studies from Nuiqsut and Kaktovik, Alaska. Fairbanks, AK: University of Alaska, Fairbanks, Coastal Marine Institute.
- Perham, C.J. 2005. Proceedings of the Beaufort Sea Polar Bear Monitoring Workshop. Anchorage, AK: USDOI, FWS.
- Perry, S.L., D.P. Demaster, and G.K. Silber. 1999a. The Fin Whale. *Marine Fisheries Review* 611:44-51.
- Perry, S.L., D.P. Demaster, and G.K. Silber. 1999b. The Humpback Whale. *Marine Fisheries Review* 611:24-37.
- Pessah, E. 1982. Dredging Activities of Dome Petroleum in the Arctic and its Environmental Impact. Calgary, Alb., Canada: Dome Petroleum Ltd.
- Petersen, M.R. and P.L. Flint. 2002. Population Structure of Pacific Common Eiders Breeding in Alaska. *Condor* 104:780-787.
- Peterson, C.H., S.D. Rice, J.W. Short, D. Esler, J.L. Bodkin, B.E. Ballachey, and D.B. Irons. 2003. Long-Term Ecosystem Responses to the *Exxon Valdez* Oil Spill. *Science* 302:2082-2086.

Peterson, D.L. and D.R. Johnson, eds. 1995. *Human Ecology and Climate Change: People and Resources in the Far North.* Washington, DC: Taylor & Francis, p. 12.

Petook, R. 1998. Public Hearing on the Northeast NPR-A Integrated Activity Plan/Environmental Impact Statement, Wainwright, Ak., Jan. 27, 1988. Anchorage, AK: USDOI, BLM.

Petroleum News. 2006. Members of Science Technical Group Named. Petroleum News Feb. 19, 1006.

Pfirman, S.L., H. Eicken, D. Bauch, and W.F. Weeks. 1995. The Potential Transport of Pollutants by Arctic Sea Ice. *The Science of the Total Environment* 159:129-146.

Pfirman, S.L., R. Colony, D. Nürnberg, H. Eicken, and I. Rigor. 1997. Reconstructing the Origin and Trajectory of Drifting Arctic Sea Ice. *Journal of Geophysical Research* 102(C6):12575-12586.

- Phillips, L. 2005. Migration Ecology and Distribution of King Eiders. M.S. Thesis. Fairbanks, AK: University of Alaska, Fairbanks.
- Phillips, R.L. 1986a. Sedimentology and Stratigraphy in the Chukchi Sea. Open-File Report 86-202. Anchorage, AK: U.S. Geological Survey, pp. 52-56.

Phillips, R.L. 1986b. Summary of Geology, Processes, and Potential Geohazards in the Northeastern Chukchi Sea, D.A. Hale, ed. *In*: Chukchi Sea Information Update. OCS Study MMS 86-0097. Anchorage, AK: USDOI, MMS, Alaska OCS Region, pp. 21-31.

Phillips, R.L. and T.E. Reiss. 1984. Nearshore Marine Geologic Investigations, Icy Cape to Wainwright, Northeast Chukchi Sea, Alaska. Open-File Report 84-828. U.S. Geological Survey, 27 pp.

Phillips, R.L., R.E. Reiss, E. Kempena, and E. Reimnitz. 1982. Nearshore Marine Geologic Investigations -Northeast Chukchi Sea, Wainwright to Skull Cliff. In: Geologic Processes and Hazards of the Beaufort Sea Shelf and Coastal Region, P.W. Barnes and E. Reimnitz, eds. Annual Report, Atch. C. Juneau, AK: USOC, NOAA, OCSEAP, 32 pp.

- Philo, L.M., G.M. Carroll, and D.A. Yokel. 1993. Movements of Caribou in the Teshekpuk Lake Herd as Determined by Satellite Tracking. Barrow, AK: North Slope Borough, 60 pp.
- Philo, L.M., E.B. Shotts, and J.C. George. 1993. Morbidity and Mortality. In: The Bowhead Whale, J.J. Burns, J.J. Montague, and C.J. Cowles, eds. Special Publication No. 2. Lawrence, KS: The Society for Marine Mammalogy, pp. 275-312.

- Philo, L.M., J.C. George, R. Suydam, T.F. Albert, and D. Ramey. 1994. Report of Filed Activities of the Spring 1992 Census of Bowhead Whales, *Balaena mysticetus*, off Point Barrow, Alaska with Observations on the Subsistence Hunt of Bowhead Whales 1991 and 1992. Report of the International Whaling Commission 44/SC/45/AS2. Cambridge, UK: IWC, pp. 335-342
- Piatt, J.F. and D.A. Methven. 1992. Threshold Foraging Behavior of Baleen Whales. *Marine Ecology Progress* Series 84:205-210.
- Piatt, J.F. and P.J. Anderson. 1996. Response of Common Murres to the *Exxon Valdez* Oil Spill and Long-Term Changes in the Gulf of Alaska Marine Ecosystem. *In: Exxon Valdez* Oil Spill Symposium Proceedings, S.D. Rice, R.B. Spies, D.A. Wolfe, and B.A. Wright, eds. Bethesda, MD: American Fisheries Society Symposium 18, pp. 720-737.
- Piatt, J.F., D.A. Methven, A.E. Burger, R.L. McLagan, V. Mercer, and E. Creelman. 1989. Baleen Whales and their Primary Prey in a Coastal Environment. *Canadian Journal of Zoology* 67:1523-1530.
- Pickart, R.S. 2004. Shelfbreak Circulation in the Alaskan Beaufort Sea: Mean Structure and Variability. *Journal* of Geophysical Research 109:C04024.
- Pickart, R.S., T.J. Weingartner, L.J. Pratt, S.Z. Zimmermann, and D.J. Torres. 2005. Flow of Winter-Transformed Pacific Water into the Western Arctic. *Deep Sea Research* Publishing in Dec 2005.
- Picou, J.S. and D.A. Gill. 1996. The Exxon Valdez Oil Spill and Chronic Psychological Stress. In: Proceedings of the Exxon Valdez Oil Spill Symposium, Anchorage, Ak. Bethesda, MD: American Fisheries Society, pp. 879-893.
- Pinto, J.M., W.H. Pearson, and J.W. Anderson. 1984. Sediment Preferences and Oil contamination in the Pacifi Sand Lance Ammodytes hexapterus. Marine Biology 83:193-204.
- Platt, C. and A.N. Popper. 1981. Fine Structure and Function of the Ear. In: Hearing and Sound Communication in Fishes, W.N. Tavolga, A.N. Popper, and R.R. Fay, eds. New York: Springer, pp. 3-38.
- Pollard, R.H. and W.B. Ballard. 1993. Caribou Distribution in the Prudhoe Bay Oil Field, Summer 1992. Northern Alaska Research Studies. Anchorage, AK: BPXA.
- Polyakov, I.V., G.V. Alekseev, R.V. Bekryaev, U.S. Bhatt, R. Colony, M.A. Johnson, V.P. Karklin, D. Walsh, and A.V. Yulin. 2003. Long-Term Ice Variability in Arctic Marginal Seas. *Journal of Climate* 1612:2078–2085.

Polyakov, I.V., G.V. Alekseev, L.A. Timokhov, U.S. Bhatt, R.L. Colony, H.L. Simmons, D. Walsh, J.E. Walsh, and V.F. Zakharov. 2004. Variability of the Intermediate Atlantic Water of the Arctic Ocean over the Last 100 Years. Journal of Climate 1723:4485–4497.

Polyakov, I.V., A. Beszczynska, E.C. Carmack, I.A. Dmitenko, E. Fahrbach, I.E. Frolov, R. Gerdes, E. Hansen, J. Holfort, V.V. Ivanov, M.A. Johnson, M. Karcher, F. Kauker, M. Morrison, K.S. Orvik, U. Schauer, H.L. Simmons, O. Skageth, V.T. sokolov, M. Steele, L.A. Timokhov, D. Walsh, and J.E. Walsh. 2005. One More Step Toward a Warmer Arctic. *Geophysical Research letters* 32:L17605.

Ponce, R.A., G.M. Egelund, J.P. Middaugh, and P.R. Becker. 1997. Twenty Years of Trace Metal Analyses of Marine Mammals: Evaluation and Summation of Data from Alaska and Other Arctic Regions. *State of Alaska Epidemiology Bulletin* 1(3).

Popper, A.N. 2003. Effects of Anthropogenic Sound on Fishes. *Fisheries* 28:24-31.

Popper, A.N., R.R. Fay, C. Platt, and O. Sand. 2003. Sound Detection Mechanisms and Capabilities of Teleost Fishes. *In*: Sensory Processing in Aquatic Environments, S.P. Collin and N.J. Marxhall, eds. New York: Springer-Verlag, pp. 3-38.

Powell, A.N., A.R. Taylor, and R.B. Lanctot. 2004. Pre-Migratory Movements and Physiology of Shorebirds Staging on Alaska's North Slope. *In*: Annual Report No. 11, Fiscal Year 2004. OCS Study MMS 2005-055. Anchorage, AK: USDOI, MMS, Alaska OCS Region, pp. 138-149.

Powell, A.N., A.R. Taylor, and R.B. Lanctot. 2005. Pre-Migratory Movements and Physiology of Shorebirds Staging on Alaska's North Slope. Annual Report No. 11. OCS Study MMS 2005-055. Fairbanks, AK: University of Alaska, Coastal Marine Institute, pp. 138-146.

Powell, A.N., L. Phillips, E.A. Rexstad, and E.J. Taylor. 2005. Importance of the Alaskan Beaufort Sea to King eiders (*Somateria spectabilis*). OCS Study MMS 2005-057. Fairbanks, AK: University of Alaska, Coastal Marine Institute.

Pritchard, R.S. 1978. Dynamics of Nearshore Ice. Environmental Assessment of the Alaskan Continental Shelf. Annual Reports of Principal Investigators, Vol. XI Hazards (Oct. 1978). Boulder, CO and Anchorage, AK: USDOC, NOAA, OCSEAP and USDOI, BLM, pp. 39-50.

Pritchard, R.S., R.W. Reimer, and M.D. Coon. 1979. Ice Flow Through Straits. *In*: Vol. III, Proceedings of the Fifth International Conference on Port and Ocean Engineering Under Arctic Conditions, Trondheim, Norway, Aug. 13-18, 1979. Trondheim: Norwegian Institute of Technology, pp. 61-74. Proshutinsky, A.Y. and M.A. Johnson. 1997. Two Circulation Regimes of the Wind-Driven Arctic Ocean. *Journal of Geophysical Research* 102(C6):12493-12514.

Proshutinsky, A.Y., T. Proshutinsky, and T. Weingartner. 1998. Natural Conditions and Ice Navigation: Environmental Conditions Affecting Commercial Shipping. INSROP Phase 2 Projects: I-35.

Proshutinsky, A.Y., M.A. Johnson, J.A. Maslanki, and T.O. Proshutinsky. 2000. Beaufort and Chukchi Sea Seasonal Variability for Two Arctic Climate States. OCS Study MMS 2000-070. Annual Report No. 7. Fairbanks and Anchorage, AK: UA Fairbanks, Coastal Marine Institute and USDOI, MMS, Alaska OCS Region.

Pungowiyi, C. 2005. How Have Changes in Arctic Environment Over the Past 50 Years Affected the Alaska Native Community? <a href="http://www/arctic.noaa.gov/essay\_pungowiyi.html">http://www/arctic.noaa.gov/essay\_pungowiyi.html</a> Nov. 29, 2005: USDOC, NOAA.

Quakenbush, L.T. 1988. Spotted Seal. In: Selected Marine Mammals of Alaska, J.W. Lentfer, ed. Washington, DC: Marine Mammal Commission, pp. 107-124.

Quakenbush, L.T. and G. Sheffield. 2006. Ice Seal Bio-Monitoring in the Bering-Chukchi Sea Region. North Pacific Research Board Final Report, Project 312. Fairbanks, AK: State of Alaska, Dept. of Fish and Game, 13 pp.

Quinlan S.E. and W.A. Lehnhausen. 1982. Arctic Fox, Alopex lagopus, Predation on Nesting Common Eiders, Somateria mollissma, at Icy Cape, Alaska. Canadian Field Naturalist 964:462-466.

Quinn, T.P. 2005. The Behavior and Ecology of Pacific Salmon and Trout. Bethesda, MD: American Fisheries Society.

Raftery, A., J. Zeh, and G. Givens. 1995. Revived Estimates of Bowhead Rate of Increase. Reports of the International Whaling Commission 45. Cambridge, UK: IWC, 158 pp.

Rahn, K.A. 1982. On the Causes, Characteristics and Potential Environmental Effects of Aerosol in the Arctic Atmosphere. *In*: The Arctic Ocean: The Hydrographic Environment and the Fate of Pollutants, L. Ray, ed. New York: John Wiley and Sons, pp. 163-195.

Ramsay, M. . and I. Stirling. 1988. Reproductive Biology and Ecology of Female Polar Bears (*Ursus maritimus*). *Journal of Zoology (London)* 214:601-634.

Rasmussen, D. 1985. Oil Spill Modeling - A Tool for Cleanup Operations. *In*: 1985 Oil Spill Conference. Washington, DC: American Petroleum Institute, pp. 242-249.

- Raveling, D.G. 1989. Nest-Predation Rates in Relation to Colony Size of Black Brant. *Journal of Wildlife Management* 531:87-90.
- Ray, G.C. and B.P. Hayden. 1993. Marine Biogeographic Provinces of the Bering, Chukchi, and Beaufort Seas. *In:* Large Marine Ecosystems - Stress, Mitigation, and Sustainability, K. Sherman, L M. Alexander, and B.D. Gold, eds. AAAS Press, pp. 175-184.
- Ray, G.C., J. McCormick-Ray, P. Berg, and H.E. Epstein. 2006. Pacific Walrus: Benthic Bioturbator of Beringia. *Journal of Experimental Marine Biology and Ecology* 330:403-419.
- Raygorodetsky, G., P. Clarkson et al. 1997. Nanh'Kak Geenjit Gwich'in Ginjit: Gwich'in Words About the Land. Inuvik, NT, Canada: Gwich'in Renewable Resources Board.
- Raymond, J.A. 1987. Fish Resources. *In*: The Environment and Resources of the Southeastern Chukchi Sea: A Review of Scientific Literature, M.J. Hameedi and A.S. Naidu, eds. OCS Study MMS 87-0113. Anchorage, AK: USDOI, MMS, Alaska OCS Region, pp. 63-68.
- Read, A.J. 1999. Harbor Porpoise *Phocoena phocoena* (Linneaus, 1758). *In: Handbook of Marine Mammals*, S.H. Ridgway and R.Harrison, eds. Vol. 6. The Second Book of Dolphins and the Porpoises. New York: Academic Press, 486 pp.
- Reed, C.E. 1985. The Role of Wild Resource Use in Communities of the Central Kenai Peninsula and Kachemak Bay, Alaska. Technical Paper No. 106. Anchorage, AK: State of Alaska, Dept. of Fish and Game, Div. of Subsistence, 210 pp.
- Reese, C.S., J.A. Calvin, J.C. George, and R.J. Tarpley. 2001. Estimation of Fetal Growth and Gestation in Bowhead Whales. *Journal of the American Statistical Association* 96(455)915-923.
- Reeves, R.R. and M.F. Barto. 1985. Whaling in the Bay of Fundy. *Whalewatcher* 194:14-18.
- Reeves, R.R., D.K. Ljungblad, and J.T. Clarke. 1983. Report on Studies to Monitor the Interaction Between Offshore Geophysical Exploration Activities and Bowhead Whales in the Alaskan Beaufort Sea, Fall 1982. Anchorage, AK: USDOI, MMS, Alaska OCS Region, various pagings.
- Reeves R.R., B.S. Stewart, and S. Leatherwood. 1992. *The Sierra Club Handbook of Seals and Sirenians*. Hong Kong: Dai Nippon Printing Co. Ltd.
- Reeves, R.R., G.K. Silber, and P.M. Payne. 1998. Draft Recovery Plan for the Fin Whale *Balaenoptera physalus* and Sei Whale *Balaenoptera borealis*. Silver Spring, MD: USDOC, NOAA, NMFS, Office of Protected Resources, 65 pp.

- Reeves, R.R., S. Leatherwood, S.A. Karl, and E.R. Yohe. 1999. Whaling Results at Akutan (1912-39) and Port Hebron (1926-37), Alaska. Report of the International Whaling Commission 35. Cambridge, UK: IWC.
- Regehr, E.V., S.C. Amstrup, and I. Stirling. 2006. Polar Bear Population Status in the Southern Beaufort Sea. Open-File Report 2006-1337. Anchorage, AK: U.S. Geological Survey, 20 pp.
- Reimers, E. 1980. Activity Pattern: The Major Determinant for Growth and Fattening in Rangifer. *In:* Proceedings of the Second International Reindeer/Caribou Symposium, E. Reimers, E. Gaare and S. Skjennsberg, eds. Roros, Norway. Trondheim, Norway: Direktoratet for vilt og ferskvannsfisk.
- Research Planning, Inc. 2003. Environmental Sensitivity Index Shoreline Classification of the Alaskan Beaufort Sea and Chukchi Sea. OCS Study MMS 2003-006. Anchorage, AK: USDOI, MMS, Alaska OCS Region.
- Rexford, H. 1982. Testimony of H. Rexford at the Public Hearing on the Beaufort Sea Sale 71 Draft EIS, Kaktovik, Ak., Feb. 4, 1982. Anchorage, AK: USDOI, MMS, Alaska OCS Region, 37 pp.
- Reynolds, P.E. 1986. Responses of Muskoxen Groups to Aircraft Overflights in the Arctic National Wildlife Refuge, 1982-1985. *In:* Arctic National Wildlife Refuge Coastal Plain Resource Assessment 1985 Update Report. Baseline Study of the Fish, Wildlife, and Their Habitats, G.W. Garner and P.E. Reynolds, eds. Volume 3, Appendix V Impacts. ANWR Progress Report No. FY86- 5-Impacts. Anchorage, AK: USDOI, FWS, 1,281 pp.
- Reynolds, P.E. 1992. Seasonal Differences in the Distribution and Movements of Muskoxen (*Ovibos moschatus*) in Northeastern Alaska. *Rangifer* 123:171-172.
- Reynolds, P.E. 1998. Ecology of a Reestablished Population of Muskoxen in Northeastern Alaska. Ph.D Dissertation. Fairbanks, AK: University of Alaska.
- Reynolds, P.E. and D.J. LaPlant. 1985. Effects of Winter Seismic Exploration Activities on Muskoxen in the Arctic National Wildlife Refuge. *In:* Arctic National Wildlife Refuge Coastal Plain Resource Assessment. Baseline Study of the Fish, Wildlife, and Their Habitats, Vol. I, G.W. Garner and P.E. Reynolds, eds. 1984 Update Report. ANWR Progress Report No. FY85-2. Anchorage, AK: USDOI, FWS, 777 pp.
- Reynolds, P.E. and D.J. LaPlant. 1986. Effects of Winter Seismic Exploration Activities on Muskoxen in the Arctic National Wildlife Refuge January-May 1984-1985. *In:* Arctic National Wildlife Refuge Coastal Plain Resource Assessment, G.W. Garner and P.E. Reynolds, eds. 1985 Update Report Baseline Study of the Fish, Wildlife, and Their Habitats, Vol. 3, Impacts, ANWR Progress Report No. FY86-4. Appendix V. Anchorage, AK: USDOI, FWS, 1,281 pp.

- Reynolds, P.E., H.V. Reynolds, III, and E.H. Follmann. 1986. Responses of Grizzly Bears to Seismic Surveys in Northern Alaska. *In:* International Conference on Bear Research and Management, pp. 169-175.
- Rice, D.W. 1967. Cetaceans. In: Recent Mammals of the World, S. Anderson and J.K. Jones, eds. New York: Ronald Press, pp. 291-234.
- Rice, D.W. 1974. Whales and Whale Research in the Eastern North Pacific. *In: The Whale Problem: A Status Report*, W.E. Schevill, ed. Cambridge, MA: Harvard University Press.
- Rice, D.W. 1978. Humpback Whales in the North Pacific: Distribution, Exploitation, and Numbers. *In:* Report on a Workshop on Problems Related to Humpback Whales (*Megaptera novaengliae*) in Hawaii, Appendix 4, K.S. Norris, and R. R. Reeves, eds. Marine Mammal Commission Report MMC-77/03. Waimanalo, HI: Sea Life, Inc., pp. 29-44.
- Rice, D.W. and A.A. Wolman. 1971. *In*: The Life History and Ecology of the Gray Whale (*Eschrichtius robustus*). Special Publication No. 3. Seattle, WA: The American Society of Mammalogists, 142 pp.
- Rice, S.D., S. Korn, and J.F. Karinen. 1981. Lethal and Sublethal Effects on Selected Alaskan Marine Species After Acute and Long-Term Exposure to Oil and Oil Components. Environmental Assessment of the Alaskan Continental Shelf. Annual Reports of Principal Investigators for the year ending March 1981, Vol. IV: Effects of Contaminants. Boulder, CO and Anchorage, AK: USDOC, NOAA and USDOI, BLM, pp. 61-78.
- Rice, S.D., J.W. Short, R.A. Heintz, M.G. Carls, and A. Moles., 2000. Life History Consequences of Oil Pollution in Fish Natal Habitat. *In: Energy 2000: The Beginning of a New Millennium*, P. Catania, ed. Lancaster, UK: Technomic Publishing Co., pp. 1210-1215.
- Rice, S.D., R.E. Thomas, M.G. Carls, R.A. Heintz, A.C. Wertheimer, M.L.Murphy, J.W. Short, and A. Moles. 2001. Impacts to Pink Salmon following the *Exxon Valdez* Oil Spill: Persistence, Toxicity, Sensitivity, and Controversy. *Reviews in Fisheries Science* 9(3):165-211.
- Richard, P.R., A.R. Martin, and R. Orr. 1997. Study of Summer and Fall Movements and Dive Behaviour of Beaufort Sea Belugas, using Satellite Telemetry: 1992-1995. Environmental Studies Research Funds Report No. 134, 26 pp.
- Richard, P.R., A.R. Martin, and R. Orr. 2001. Summer and Autumn Movements of Belugas of the Eastern Beaufort Sea Stock. *Arctic* 54(3):223-236.

- Richard, P.R., J.R. Orr, R. Dietz, and L. Dueck. 1998. Sightings of Belugas and Other Marine Mammals in the North Water, Late March 1993. Arctic 51(1):1-4.
- Richardson, W.J., ed. 1999. Marine Mammal and Acoustical Monitoring of Western Geophysical's Open-Water Seismic Program in the Alaskan Beaufort Sea, 1998. LGL Report TA- 2230- 3. King City, Ont., Canada: LGL Ltd., environmental research associates, 390 pp.
- Richardson, W.J., ed. 2000. Marine Mammal and Acoustical Monitoring of Western Geophysical's Open-Water Seismic Program in the Alaskan Beaufort Sea, 1999. LGL Report TA-2313-4. King City, Ont.N, Canada: LGL Ltd., Environmental Research Associates, 155 pp.
- Richardson, W.R. 2006. Monitoring of Industrial Sounds, Seals, and Bowhead Whales near BP's Northstar Oil Development, Alaskan Beaufort Sea, 1999-2004. LGL Report TA4256A. Anchorage, AK: BPXA, 79 pp.
- Richardson, W.J and C.I. Malme. 1993. Man-Made Noise and Behavioral Responses. *In: The Bowhead Whale*, J.J. Burns, J.J. Montague, and C.J. Cowles, eds. Special Publication of The Society for Marine Mammalogy, 2. Lawrence, KS: The Society for Marine Mammalogy, pp. 631-700.
- Richardson, W.J. and D.H. Thomson. 2002. Email dated Apr. 25, 2002, to S. Treacy, USDOI, MMS, Alaska OCS Region; subject: bowhead whale feeding study.
- Richardson, W.J. and M.T. Williams, eds. 2003. Monitoring of Industrial Sounds, Seals, and Bowhead Whales near BP's Northstar Oil Development, Alaskan Beaufort Sea, 1999-2002. Anchorage, AK: BPXA and USDOC, NMFS.
- Richardson, W.J. and M.T. Williams, eds. 2004. Monitoring of Industrial Sounds, Seals, and Bowhead Whales near BP's Northstar Oil Development, Alaskan Beaufort Sea, 1999-2003. Annual and Comprehensive Report. LGL Report TA 4001. Anchorage, AK: BPXA.
- Richardson, W.J., R.S. Wells, and B. Wursig. 1985.
  Disturbance Responses of Bowheads, 1980-1984. *In:* Behavior, Disturbance Responses, and Distribution of Bowhead Whales, *Balaena mysticetus*, in the Eastern Beaufort Sea, 1980-84, W.J. Richardson, ed. OCS Study, MMS 85-0034. Anchorage, AK: USDOI, MMS, Alaska OCS Region, pp. 255-306.
- Richardson, W.J., M.A. Fraker, B. Wursig, and R.S. Wells. 1985. Behavior of Bowhead Whales, *Balaena mysticetus*, Summering in the Beaufort Sea: Reactions to Industrial Activities. *Biological Conservation* 32(3):195-230.
- Richardson, W.J., B. Wursig, and C.R. Greene, Jr. 1986. Reactions of Bowhead Whales, *Balaena mysticetes*, to Seismic Exploration in the Canadian Beaufort Sea. *Journal of Acoustical Society of America* :1117-1128.

Richardson, W.J., C.R. Greene, C.I. Malme, D.H. Thomson, S.E. Moore, and B. Wursig. 1991. Effects of Noise on Marine Mammals. OCS Study MMS 90-0093. Herndon, VA: USDOI, MMS, Atlantic OCS Region, 462 pp.

Richardson, W.J., C.R. Greene, Jr., C.I. Malme, and D.H. Thomson. 1995a. *Marine Mammals and Noise*. San Diego, CA: Academic Press, Inc.

Richardson, W.J., C.R. Greene, J.S. Hanna, W.R. Koski,
G.W. Miller, N.J. Patenaude, and M.A. Smultea.
1995b. Acoustic Effects of Oil Production Activities on Bowhead and White Whales Visible During Spring Migration Near Point Barrow. OCS Study MMS 95-0051. Anchorage, AK: USDOI, MMS, Alaska OCS Region, 452 pp.

Richardson, W.J., T.L. McDonald, C.R. Greene, and S.B.
Blackwell. 2004. Acoustic Localization of Bowhead
Whales near Northstar, 2001-2003: Evidence of
Deflection at High-Noise Times? Chapter 8. *In*:
Monitoring of Industrial Sounds, Seals, and Bowhead
Whales near BP's Northstar Oil Development, Alaskan
Beaufort Sea, 1999-2003, W.J. Richardson and M.T.
Williams, eds. Anchorage, AK: BPXA.

Ricketts, T.H. et al. 1991. *Terrestrial Ecoregions of North America: A Conservation Assessment*. Washington, DC: Island Press.

Riedlinger, D. 1999. Climate Change and the Inuvialuit of Banks Island: Using Traditional Environmental Knowledge to Complement Western Science. *Arctic* 52(4):430-432.

Rigor, I.G. and J.M. Wallace. 2004. Variation in the Age of Arctic Sea-Ice and Summer Sea-Ice Extent. *Geophysical Research Letters* 31:L09401, doi:10 1029/2004GL019492.

Ritchie, R.J. 1991. Effects of Oil Development on Providing Nesting Opportunities for Gyrfalcons and Rough-Legged Hawks in Northern Alaska. *Condor* 93:180-184.

Ritchie, R.J., J.E. Shook, R.M. Burgess, and A.A. Stickney. 2006. Surveys for Nesting and Brood-Rearing Brant and Lesser Snow Geese, Barrow to Fish Creek Delta, and Lesser Snow Goose Banding near the Ikpikpuk River Delta, Alaska, 2005. Annual Report. Barrow, AK: North Slope Borough, 36 pp.

Roach, A.T., K. Aagaard, C.H. Pease, S.A. Salo, T.
Weingartner, V. Pavlov, and M. Kulakov. 1995.
Direct Measurements of Transport and Water
Properties Through the Bering Strait. *Journal of Geophysical Research* 100:18,443-18,457.

Roby, D.D. 1978. Behavioral Patterns of Barren-Ground Caribou of the Central Arctic Herd Adjacent to the Trans-Alaska Pipeline. M.S. Thesis. Unpublished. Fairbanks, AK: University of Alaska, 500 pp.

Roby, D.D. 1980. Winter Activity of Caribou on Two Arctic Ranges. *In*: Proceedings of the Second International Reindeer/Caribou Symposium, R. Reimers, E. Gaare, and S. Skjensberg, eds. Roros, Norway. Norsk Direktorat for Wilt og Freskvannsfisk, pp. 537-543.

Rodrigues R., R.H. Pollard, and R.O. Skoog. 1994. Inventory of Arctic Fox Dens in the Prudhoe Bay Oil Field. Abstract. *In:* Proceedings of the North Slope Environmental Studies Conference, Anchorage, Ak., Feb. 14-15, 1994. Anchorage, AK: ARCO Alaska, Inc, p. 33.

Rogers, J.C. and J.L. Morack. 1982. Beaufort and Chukchi Seacoast Permafrost Studies. OCSEAP Final Reports of Principal Investigators, Vol. 34 (Aug. 1985). Anchorage, AK: USDOC, NOAA, and USDOI, MMS, pp. 323-355.

Romano, T.A., M.J. Keogh, C. Kelly, P. Feng, L. Berk, C.E. Schlundt, D.A. Carder, and J.J. Finneran. 2004.
Anthropogenic Sound and Marine Mammal Health: Measures of the Nervous and Immune Systems Before and After Intense Sound Exposure. *Can. j. Fish Aquat. Sci.* 61:1124-1134.

Ronconi, R.A. and C.C. St. Clair. 2002. Management Options to Reduce Boat Disturbance on Foraging Black Guillemots (*Cepphus grylle*) in the Bay of Fundy. *Biological Conservation* 108:265-271.

Rosa, C.; T.M. O'Hara; P.F. Hoekstra; K.R. Refsal; and J.E. Blake. 2004. Serum Thyroid Hormone Concentrations and Thyroid Histomorphology as Biomarkers in Bowhead Whales (*Balaena mysticetus*). Accepted in the *Canadian Journal Zoology*.

Roseneau, D. 1996. Population Studies of Murres and Kittiwakes at Cape Lisburne and Cape Thompson. *In*: Proceedings of the 1995 Arctic Synthesis Meeting, T. Newbury, ed. Anchorage, AK: USDOI, MMS, Alaska OCS Region.

Roseneau, D. 2007. Population Studies of Murres and Kittiwakes at Cape Lisburne, Alaska 1976-2006. Presentation at the 2007 Marine Science Symposium, Anchorage, Ak., January 2007.

Roseneau, D.G. and D.R. Herter. 1984. Marine and Coastal Birds. *In*: Proceedings of a Synthesis Meeting: The Barrow Arch Environment and Possible Consequences of Planned Offshore Oil and Gas Development (Sale 85), Girdwood, Ak., Oct. 30-Nov. 1, 1983. Anchorage, AK: USDOC, NOAA, OCSEAP, pp. 81-115.

Rosing-Asvid, A. 2006. The Influence of Climate Variability on Polar Bear (Ursus maritimus) and Ringed Seal (Pusa hispida) Population Dynamics. Canadian Journal of Zoology 84:357-364. Rothrock, D.A. and J. Zhang. 2005. Arctic Ocean Sea Ice Volume: What Explains its Recent Delpletion? *Journal of Geophysical Research* 110:C01002.

Rothrock, D.A., Y. Yu, and G.A. Maykut. 1999. Thinning of the Arctic Sea-Ice Cover. *Geophysical Research Letters* 2623:3469-3472.

Rotterman, L.M. and C.M. Monnett. 2002. Length-Mass and Ttotal Body Length of Adult Female Sea Otters in Prince William Sound Before and After the *Exxon* Valdez Oil Spill. Marine Mammal Science 184:977-993.

Rowe, L., J. Dollahite, and B. Camp. 1973. Toxicity of Two Crude Oils and of Kerosene to Cattle. *Journal of American Veterinary Medicine Association* 16:60-66.

Rugh, D.J., K.W. Shelden, and D.E. Withrow. 1997. Spotted Seals, *Phoca largha*, in Alaska. *Marine Fisheries Review* 591:1-18.

Rugh, D.J., K.E.W. Shelden, D.E. Withrow, H.W. Braham, and R.P. Angliss. 1993. Spotted Seal (*Phoca largha*) Distribution and Abundance in Alaska, 1992. Annual Report to the MMPA Assessment Program. Seattle, WA: NMFS, 18 pp.

Rugh, D.J., M.M. Muto, S.E. Moore, and D.P. DeMaster. 1999. Status Review of the Eastern North Pacific Stock of Gray Whales. Seattle, WA: USDOC, NOAA, NMFS, Marine Mammal Lab, 96 pp.

- Rugh, D.J., D. DeMaster, A. Rooney, J. Breiwick, K. Shelden, and S.E. Moore. 2003. A Review of Bowhead Whale (*Balaena mysticetus*) Stock Identity. *J. Cetacean Res. Manage*. 5(3):267-279.
- Rugh, D.J., K.E.W. Shelden, C.L. Sims, B.A. Mahoney, B.K. Smith, L.K. Litzky, and R.C. Hobbs. 2005. Aerial Surveys of Belugas in Cook Inlet, Alaska, June 2001, 2002, 2003, and 2004. NOAA Technical Memorandum NMFS-AFSC-149. Juneau, AK: USDOC, NOAA, NMFS, Alaska Fisheries Science Center.
- Runyan, J. 2001. Palmer Sagoonik in Shaktoolik. An Account of Sled Dog Conditioning with Seal Meat. http://www.cabelasiditarod.com/2002/prerace\_article02 10.html Oct. 17, 2001.
- Russell, D.E., A.M. Martell, and W.A.C. Nixon. 1993. Range Ecology of the Porcupine Caribou Herd in Canada. *Rangifer* Special Issue 8:1-168.
- S.R. Braund and Assocs. 1984. Subsistence Study of Alaska Eskimo Whaling Villages. Anchorage, AK: USDOI, MMS, Alaska OCS Region.
- S.R. Braund and Assocs. 1989a. North Slope Subsistence Study, Barrow, 1988. OCS Study MMS 89-0077. Anchorage, AK: USDOI, MMS, Alaska OCS Region.

- S.R. Braund and Assocs. 1989b. North Slope Subsistence Study, Wainwright 1988. OCS Study MMS 89-0078. Anchorage, AK: USDOI, MMS, Alaska OCS Region.
- S.R. Braund and Assocs. 1996. Subsistence Overview and Impacts. *In:* Beaufort Sea Oil and Gas Development/Northstar Project. Anchorage, AK: U.S. Army Corps of Engineers.
- S.R. Braund and Assocs. In prep. Subsistence Overview prepared for Dames & Moore for the Beaufort Sea Oil and Gas Development/Northstart Project EIS, 1998. Anchorage, AK: U.S. Army Corps of Engineers.
- S.R. Braund and Assocs. and University of Alaska, Anchorage, ISER. 1991a. North Slope Subsistence Study: Wainwright 1988 and 1989. OCS Study MMS 91-0073. Anchorage, AK: USDOI, MMS, Alaska OCS Region, 383 pp.
- S.R. Braund and Assocs. and University of Alaska, Anchorage ISER. 1991b. Importance of Marine Mammal Species-Bearded Seal and Walrus for Subsistence. *In*: North Slope Subsistence Study Barrow, 1987, 1988, and 1989. OCS Study MMS 91-0086. Anchorage, AK: USDOI, MMS, Alaska OCS Region, 234 pp.
- Sackinger, W.M., H.D. Shoemaker, H. Serson, M.O. Jefferies, and M. Yan. 1985. Ice Islands as Hazards to Arctic Offshore Production Structures. *In*: Proceedings of the 1985 Offshore Technology Conference, Houston, Tex., May 6-9, 1985. Houston, TX: OTC, pp. 399-408.
- Samuels, A. and L. Bejder. 2004. Chronic Interaction between Humans and Free-Ranging Bottlenose Dolphins near Panama City Beach, Florida, USA. *Journal of Cetacean Research and Management* 6:69-77.
- Samuels, W.B., N.E. Huang, and D.E. Amstutz. 1982. An Oilspill Trajectory Analysis Model with a Variable Wind Deflection Angle. *Ocean Engineering* 9(4):347-360.
- Scammon, C.M. 1874. The Marine Mammals of the Northwestern Coast of North America. San Francisco, CA: John H. Carmany and Co., 320 pp.
- Schallenberger, A. 1980. Review of Oil and Gas Exploitation Impacts on Grizzly Bears. *In*: Bears-Their Biology and Management, Fourth International Conference on Bear Research and Management, C.J. Martinka and K.J. McArthur, eds. Kalispell, Mont. Tonto Basin, AZ: Bear Biology Association, pp. 271-277.
- Schell, D.M. 1999a. North Pacific and Bering Sea Carrying Capacity: A Hindcast and a Look at Changes Ahead. In: Alaska OCS Region Seventh Information Transfer Meeting Proceedings, Anchorage, Ak., Jan. 19-21, 1999. OCS Study MMS 1999-0022. Anchorage, AK: USDOI, MMS, Alaska OCS Region, 22 pp.

- Schell, D.M. 1999b. Habitat Usage as Indicated by Stable Isotope Ratios. *In*: Bowhead Whale Feeding in the Eastern Alaskan Beaufort Sea: Update of Scientific and Traditional Information, W.J. Richardson and D.H. Thomson, eds. LGL Report TA 2196-2. Herndon, VA: USDOI, MMS, pp. 179-192.
- Schell, D.M. and S.M. Saupe. 1993. Feeding and Growth as Indicated by Stable Isotopes. *In: The Bowhead Whale*, J.J. Burns, J.J. Montague, and C.J. Cowles, eds. Lawrence, KS: The Society for Marine Mammalogy, pp. 491-509.
- Schell, D.M., S.M. Saupe, and N. Haubenstock. 1987.
  Bowhead Whale Feeding: Allocation of Regional Habitat Importance Based on Stable Isotope Abundances. *In*: Importance of the Eastern Alaskan Beaufort Sea to Feeding Bowhead Whales, 1985-86, W.J. Richardson, ed. OCS Study MMS 1987-0037. Reston, VA: USDOI, MMS, pp. 369-415.
- Schick, R.S. and D.L. Urban. 2000. Spatial Components of Bowhead Whales (*Balaena mysticetus*) Distribution in the Alaskan Beaufort Sea. *Canadian Journal of Fisheries Aquatic Science* 57:2193-2200.
- Schliebe, S. 2002. Email dated June 3, 2002, to M. Burwell, MMS Alaska OCS Region from S. Schliebe, USDOI, FWS; subject: updated walrus subsistence-harvest information for the communities of Barrow, Wainwright, and Point Lay, Point Hope from 1988 through 2000.
- Schliebe, S. 2006. Email dated Feb. 28, 2006, from S. Schliebe, FWS, Anchorage, to M. Burwell, MMS, Alaska OCS Region; subject: polar bear harvest numbers.
- Schliebe, S.L., S.C. Amstrup, and G.W. Garner. 1995. The Status of Polar Bear in Alaska, 1993. *In*: Proceedings of the Eleventh Working Meeting of the IUCN/SSC Polar Bear Specialist Group, O. Wiig and G.W. Garner, eds. Gland, Switzerland and Cambridge, UK: IUCN, v + 192 pp.
- Schliebe, S.L., T.J. Evans, S. Miller, C.J. Perham, J.M. Wilder, and L.J. Lierheimer. 2005. Polar Bear Management in Alaska, 2000-2004. Anchorage, AK: USDOI, FWS, 25 pp.
- Schlundt, C.E., J.J. Finneran, D.A. Carder, and S.H. Ridgway. 2000. Temporary Shift in Masked Hearing Thresholds of Bottlenose Dolphins, *Tusiops truncatus*, and White Whale, *Delphinapterus leucas*, after Exposure to Intense Tones. J. Acoustical Society of America 10(76):3496-3508.
- Schmidt, D.R., R.O. McMillan, and B.J. Gallaway. 1983. Nearshore Fish Surveys in the Western Beaufort Sea: Harrison Bay to Elson Lagoon. OCS Study MMS 89-0071. Anchorage, AK: USDOI, MMS, Alaska OCS Region, pp. 491-552.

- Schmitt, F.P., C. de Jong, and F.W. Winter. 1980. Thomas Welcome Roys. America's Pioneer of Modern Whaling. Charlottesville, VA: University of Virginia, University Press, 253 pp.
- Schneider, D. 2001. Alaska Feels the Heat of Climate Warming. *Alaska Magazine* Oct. 2001, pp. 41-45.
- Schneider, W., S. Pedersen, and D. Libbey. 1980. The Barrow-Atqasuk Report: A Study of Land Use Through Time. Occasional Paper No. 24. Fairbanks, AK: University of Alaska, Fairbanks, Anthropology and Historic Preservation Cooperative Park Studies Unit, and the North Slope Borough.
- Schoen, J.W. and S.E. Senner. 2003. Alaska's Western Arctic: A Resource Synthesis and Conservation Strategy. http://www.audubonalaska.org/images/Synthesis\_Report. pdf, 17 pp.
- Schorger, A.W. 1952. Ducks Killed During a Storm at Hot Springs, South Dakota. Wildon Bulletin 64:113-114.
- Schroeder, R., D. Andersen, and G. Hildreth. 1987a. Subsistence Use Area Map Atlas for Ten Kotzebue Sound Communities. Juneau, AK: State of Aalska, Dept. of Fish and Game, Div. of Subsistence, and Maniilaq Assoc.
- Schroeder, R., D. Andersen, and G. Hildreth. 1987b. Subsistence Use Area Mapping in Ten Kotzebue Sound Communities. Technical Publication No. 130. Juneau, AK: State of Alaska, Dept. of Fish and Game, Div. of Subsistence, and Maniilaq Assoc.
- Schroeder, R.F., D.B. Anderson, R. Bosworth, J.M. Morris, and J.M. Wright. 1987. Subsistence in Alaska: Arctic, Interior, Southcentral, Southwest, and Western Regional Summaries. Technical Paper No. 150. Juneau, AK: State of Alaska, Dept. of Fish and Game, Div. of Subsistence, 690 pp.
- Schweitzer, P. 2005. Email dated Nov. 1, 2005, to T. Newbury and M. Burwell, MMS Alaska OCS Region, from P. Schweitzer; subject: the state of subsistence on the Russian side of the Chukchi Sea.
- Scott, J.M. 1973. Resource Allocation in Four Sytopic Species of Marine Diving Birds. Ph.D. Dissertation. Corvallis, OR: Oregon State University, 97 pp.
- Scott, J.M. 1990. Offshore Distributional Patterns, Feeding Habits, and Adult-Chick Interactions of the Common Murre in Oregon. *In:* Auks at Sea, S.G. Sealy, ed. Studies in Avian Biology 14, pp. 103-108.
- Sea Duck Joint Venture. 2003. Species Status Reports: Common Eider. Accessed February 22, 2007at www.seaduckjv.org/meetseaduck/species\_status\_summar y.pdf

Seagars, D.J. and J. Garlich-Miller. 2001. Organochlorine Compounds and Aliphatic Hydrocarbons in Pacific Walrus Blubber. *Marine Pollution Bulletin* 43:122-131.

SEARCH SSC. 2001. SEARCH: Study of Environmental Arctic Change, Science Plan 2001. Seattle, WA: Polar Science Center, Applied Physics Lab, University of Washington, 89 pp.

Sellman, P.V. and D.M. Hopkins. 1984. Subsea Permafrost Distribution on the Alaskan Shelf. *In:* Proceedings of the Fourth International Conference on Permafrost, Fairbanks, Ak., July 1983. Washington, DC: National Academy Press, pp. 75-82.

Sergeant, D.E. and W. Hoek. 1987. An Update of the Status of White Whales *Delphinapterus leucas* in the St. Lawrence Estuary, Canada. *Biological Conservation* 45:287-302.

Serreze, M. and J.A. Francis. 2006. The Arctic on the Fast Track of Change. *Weather* 613:65-69.

Serreze, M.C., J.A. Maslanki, T.A. Scambos, F. Fetterer, J. Stroeve, K. Knowles, C. Fowler, S. Drobot, R. G. Barry, and T. M. Haran. 2003. A Record Minimum Arctic Sea Ice Extent and Area in 2002. *Geophysical Research Letters* 303:10-1. doi:10.1029/2002GL016406.

Shapiro, L.H. 1975. A Preliminary Study of the Formation of Landfast Ice at Barrow, Alaska, Winter 1973-1974.
Report No. UAG R-235. Alaska Sea Grant Report 75-7. Fairbanks, AK: University of Alaska, Fairbanks, Geophysical Institute, 44 leaves.

Shapiro, L.H., R.C. Metzner, and K. Toovak. 1979. Historical References to Ice Conditions Along the Beaufort Sea Coast of Alaska. UAG-R-268. Fairbanks, AK: University of Alaska, Geophysical Institute, 65 pp.

Shaughnessy, P.D. and F.H. Fay. 1977. A Review of the Taxonomy and Nomenclature of North Pacific Harbor Seals. J. Zool. (London) 182:385-419.

Shelden, K.E.W. and D.J. Rugh. 1995. The Bowhead Whale, *Balaena mysticetus*, Its Historic and Current Status. *Marine Fisheries Review* 57(3-4):20 pp.

Shelden, K.E.W. and D.J. Rugh. 2002. The Bowhead Whale, *Balaena mysticetus*, Its Historic and Current Status. NOAA Web Site http://nmml.afs.noaa.gov/CetaceanAssessment/bowhea d//bmsos.htm

Shelden, K.E.W., D.P. DeMaster, D.J. Rugh, and A.M. Olson. 2001. Developing Classification Criteria under the U.S. Endangered Species Act: Bowhead Whales as a Case Study. *Conservation Biology* 155:1300-1307. Shelden, K.E.W., D.J. Rugh, D.P. DeMaster, and L.R. Gerber. 2003. Evaluation of Bowhead Whale Status: Reply to Taylor. *Conservation Biology* 1273:918-920.

Shepard, R. and A. Rode. 1996. The Health Consequences of Modernization: Evidence from Circumpolar Peoples. Cambridge, UK: Cambridge University Press.

Sheppard, E.P. and P.E. Georghiou. 1981. The Mutagenicity of Prudhoe Bay Crude Oil and its Burn Residues. *In:* Proceedings of the Fourth Arctic Marine Oilspill Program Technical Seminar, Edmonton, Alb., Canada. Ottawa, Ont., Canada: Environmental Emergency Branch, Environmental Protection Service, pp. 195-213.

Shepro, C.E. and D.C.Maas. 1999. North Slope Borough 1998/1999 Economic Profile and Census Report: Vol. III. Barrow, AK: NSB Dept. of Planning and Community Services.

Shepro, C.E., D. Maas, and D. Callaway. 2003. North Slope Borough 2003 Economic Profile and Census Report. Barrow, AK: NSB.

Sherwood, K.W. and J.D. Craig. 2001. Prospects for Development of Alaska Natural Gas: A Review. Available on CD. Anchorage, AK: USDOI, MMS, Alaska OCS Region.

Shideler, R. 2006a. Email dated July 6, 2006, from R.Shideler, State of Alaska, Dept. of Fish and Game, to J.Wilder, Wildlife Biologist, MMS Alaska OCS Region; subject: muskoxen on the North Slope.

Shideler, R. 2006b. Email dated July 7, 2006, from R. Shideler, State of Alaska, Dept. of Fish and Game, to J. Wilder, Wildlife Biologist, MMS Alaska OCS Region; subject: grizzly bears on the North Slope.

Shideler R. and J. Hechtel. 2000. Grizzly Bear. In: The Natural History of an Arctic Oil Field Development and the Biota, J.C. Truett and S.R. Johnson, eds. San Diego, CA: Academic Press, 105-132 pp.

Shimada, K, E.C. Carmack, K. Hatakeyama, and T. Takizawa. 2001. Varieties of Shallow Temperature Maximum Waters in the Western Canadian Basin of the Arctic Ocean. *Geophysical Research Letters* 28:3441-34444.

Shimida, K., F. McLaughlin, E. Carmack, A. Proshutinsky, S. Nishino, and M. Itoh. 2004. Penetration of the 1990's Warm Temperature Anomaly of Atlantic Water in the Canada Basin. *Geophysical Research Letters* 31:L20301.

Shimada, K., M. Itoh, S. Nishino, F. McLaughlin, E. Carmack, and A. Proshutinsky. 2005. Halocline structure in the Canada Basin of the Arctic Ocean . *Geophysical Research Letters* 32:L03605, doi:10.1029/2004GL021358. Shimada, K., T. Kamoshida, M. Itoh, S. Nishino, E. Carmack, F. McLaughlin, S. Zimmerman, and A. Proshutinsky. 2006. Pacific Ocean Inflow: Influence of Catastrophic Reduction of Sea Ice Cover in the Arctic Ocean. *Geophysical Research Letters* 33:L08605.

- Short, J.W., S.D. Rice, R. Heintz, M.G. Carls, and A. Moles. 2003. Long-Term Effects of Crude Oil on Developing Fish: Lessons from the *Exxon Valdez* Oil Spill. *Energy Sources* 256:7750-1-9.
- Shotts, E.B., T.F. Albert, R.E. Wooley, and J. Brown. 1990. Microflora Associated with the Skin of the Bowhead Whale (*Balaena Mysticetus*). Journal of Wildlife Diseases 263:351-359.
- Shuntov, V.P. 1999. Seabirds of the Western Bering Sea. In: Dynamics of the Bering Sea, T.R. Loughlin and K. Ohtani, eds. Fairbanks, AK: Univ. of Alaska, Fairbanks, College Sea Grant Program, pp. 651-682.
- Simpkins, M.A., L.M. Hiruki-Raring, G. Sheffield, J.M. Grebmeier, and J.L. Bengtson. 2003. Habitat Selection by Ice-Associated Pinnipeds near St. Lawrence Island, Alaska in March 2001. *Polar Biology* 26:577-586.
- Slotte, A., K. Hansen, J. Dalen, and E. Ona. 2004. Acoustic Mapping of Pelagic Fish Distribution and Abundance in Relation to a Seismic Shooting Area off the Norwegian West Coast. *Fisheries Research* 67:143-150.
- Slovic, P. 1987. Perception of Risk. Science 236:280-285.
- Smirnov, G., M. Litovka, A. Pereverzev, V. Tneskin, Y. Klimenko, and N. Rultyntegreu. 2004. Conservation and Environmental Monitoring of Coastal Walrus Haulouts in the Gulf of Anadyr in 2003. Chukotka, Russia, 57 pp.
- Smith, A.E. and M.R.J. Hill. 1996. Polar Bear, Ursus maritimus, Depredation of Canada Goose, Branta canadensis, Nests. The Canadian Field-Naturalist 110:339-340.
- Smith, O., moderator. 2000. Session IV: Oil, Gas and Mining Infrastructure. *In*: The Warming World: Effects on the Alaska Infrastructure. Synthesis of Workshop Proceedings, Anchorage, Ak., Jan. 5-6, 2000. Anchorage, AK: University of Alaska, Anchorage.
- Smith, O.P., ed. 2006. Coastal Erosion Responses for Alaska: Workshop Proceedings, Anchorage, Ak., Jan. 4, 2006. AK-SG-06-03. Fairbanks, AK: University of Alaska Fairbanks, Alaska Sea Grant College Program.

- Smith, T., M.O. Hammill, and G. Taugbol. 1991. A Review of the Development Behavioural and Physiological Adaptations of the Ringed Seal, *Phoca hispida*, to Life in the Arctic Winter. *Arctic* 442:124-131.
- Smith, T.E. 1989. The Status of Muskoxen in Alaska. *In*: Proceedings of the Second International Muskoxen Symposium, P.F. Flood, ed. Saskatoon, Sask., Oct. 1-4, 1987. Ottawa, Ont., Canada: National Research Council of Canada, 350 pp.
- Smith, T.G. 1973. Population Dynamics of the Ringed Seal in the Canadian Eastern Arctic. Bulletin No. 81. Ottawa, Ont., Canada: Fisheries Research Board of Canada.
- Smith, T.G. 1980. Polar Bear Predation of Ringed and Bearded Seals in the Landfast Sea Ice Habitat. *Canadian Journal of Zoology* 58:2201-2209.
- Smith, T.G. 1985. Polar Bears, Ursus maritimus, as Predators of Belugas, Delphinapterus leucas. The Canadian Field-Naturalist 99:71-75.
- Smith, T.G. 1987. The Ringed Seal, *Phoca hispida*, of the Canadian Western Arctic. *Can. Bull. Fish Aquat. Sci.* 216:81 pp.
- Smith, T.G. and J. Stirling. 1975. The Breeding Habitat of the Ringed Seal (*Phoca hispida*): The Birth Lair and Associated Structures. *Canadian Journal of Zoology* 53:1297-1305.
- Smith, T.G. and L.A. Harwood. 2001. Observations of Neonate Ringed seals, *Phoca hispida*, After Early Break-Up of the Sea Ice in Prince Albert Sound, Northwest Territories, Canada, Spring 1998. *Polar Biology* 24:215-219.
- Sobelman, S.S. 1985. The Economics of Wild Resource Use in Shishmaref, Alaska. Technical Paper No. 112. Juneau, AK: State of Alaska, Dept. of Fish and Game, Div. of Subsistence.
- Somerville, H.J., D. Benneth, J.N. Davenport, M.S. Holt, A. Lynes, A. Mahieu, B. McCourt, J.G. Parker, R.R.. Stephenson, R.J. Watkinson, and T.G. Wilkinson. 1987. Environmental Effects of Produced Water from North Sea Oil Operations. *Mar. Poll. Bull.* 18(10):549-558.
- Souders. 1998. Oil and Gas Well Drilling and Servicing eTool: Drilling Fluid. http://.osha.gov/etools/oilandgas/drilling/drillingfluid.ht ml: Occupational Safety and Health Administration.
- Sowls, A.L., S.A. Hatch, and C.J. Lensink. 1978. Catalog of Alaskan Seabird Colonies. FWS/OBS-78/78. Washington, DC: USDOI, FWS, Office of Biological Services.

Spellerberg, I.F. 1998. Ecological Effects of Roads and Traffic: A Literature Review. *Global Ecology and Biogeography Letters* 7(5):317-333.

Spiess, B. 2000. BP Says It's Big Oil's Green Giant. Anchorage, AK: Anchorage Daily News, Sec. D, pp. D-1 to D-2.

St. Aubin, D.J. 1988. Physiologic and Toxicologic Effects on Pinnipeds. Chapter 3. *In:* Synthesis of Effects of Oil on Marine Mammals, J.R. Geraci and J.D. St. Aubin, eds. OCS Study MMS 88-0049. Vienna, VA: USDOI, MMS, Atlantic OCS Region, 292 leaves.

St. Aubin, D.J. 1990a. Physiologic and Toxic Effects on Pinnipeds. Chapter 4. In: Sea Mammals and Oil: Confronting the Risks, J.R. Geraci and D.J. St Aubin, eds. San Diego, CA: Academic Press, Inc., and Harcourt Brace Jovanovich, 282 pp.

- St. Aubin, D.J. 1990b. Physiologic and Toxic Effects on Polar Bears. Chapter 10. *In: Sea Mammals and Oil: Confronting the Risks*, J.R. Geraci and D.J. St Aubin, eds. San Diego, CA: Academic Press, Inc., and Harcourt Brace Jovanovich, 282 pp.
- St. Aubin, D.J., R.H. Stinson, and J.R. Geraci. 1984. Aspects of the Structure and Composition of Baleen and Some Effects of Exposure to Petroleum Hydrocarbons. *Canadian Journal of Zoology* 622:193-198.
- Stalker, F. 1998. Alaska Traditional Knowledge and Native Foods Database. www.nativeknowledge.org/login.asp. Anchorage, AK: University of Alaska Anchorage, ISER.
- Stang, P.J. and J.C. George. 2003. Letter dated Aug. 27, 2003, from P.R. Stang, Regional Supervisor, Leasing and Environment, MMS Alaska OCS Region, and J.G. George, Wildlife Biologist, North Slope Borough, Dept. of Wildlife Management, to NSB Mayor Ahmaogak; subject: response to Mayor's letter on coordination and cooperation with the North Slope Borough.

Starr, S.J., M.N. Kuwada, and L.L. Trasky. 1981. Recommendations for Minimizing the Impacts of Hydrocarbon Development on the Fish, Wildlife, and Aquatic Plant Resources of the Northern Bering Sea and Norton Sound. Anchorage, AK: State of Alaska, Dept. of Fish and Game, Habitat Div., 525 pp.

State of Alaska, Alaska Oil and Gas Conservation Commission. 2006. December 2005 Production and Projects. Anchorage, AK: State of Alaska, AOGCC.

State of Alaska, Dept. of Commerce, Community and Economic Development (ADCED). 2005. Community Database Online. www.dced.state.ak.us/dca/commdb/CF\_COMDB.htm: ADCED. State of Alaska, Dept. of Commerce, Community and Economic Development (ADCED). 2006. Community Database Online. http://www.commerce.state.ak.us/dca/commdb/CIS.cfm:

State of Alaska, Dept. of Environmental Conservation (ADEC). Summary of Scientific Knowledge and its Implications for Alaska's State Implementation Plan. Juneau, AK: ADEC, 53 pp.

State of Alaska, Dept. of Environmental Conservation. 1979. State of Alaska Water Quality Standards. Juneau, AK: ADEC.

State of Alaska, Dept. of Environmental Conservation. 1998. Quarterly Report of Oil and Hazardous Substance Response. Vol. 4. Juneau, AK: ADEC, 1 p.

State of Alaska, Dept. of Environmental Conservation. 2001. Database of Alaska North Slope Crude Oil Spills 1985-2001. Juneau, AK: ADEC.

State of Alaska, Depart. of Environmental Conservation. 2002. Summary of Scientific Knowledge and its Implications for Alaska's State Implementation Plan. Juneau, AK: ADEC, 53 pp.

State of Alaska, Dept. of Environmental Conservation. 2004. Alaska's Final 2002/2003 Integrated Water Quality Monitoring and Assessment Report. Juneau, AK: ADEC.

State of Alaska, Dept. of Environmental Conservation. 2005. Memorandum of Understanding between State of Alaska Dept. of Environmental Conservation and Teck Cominco Alaska Incorporated Relating to Fugitive Dust at the Red Dog Mine.

State of Alaska, Dept. of Environmental Conservation. 2006. ACMP Handbook of Statutes and Regulations. Juneau, AK: ADEC, Alaska Coastal Management Program, Office of Project Management and Permitting. http://alasdacoast.state.ak.us/Clawhome/handbook/panels /A.htm

State of Alaska, Dept. of Fish and Game. 1995a. An Investigation of the Sociocultural Consequences of Outer Continental Development in Alaska. OCS Study MMS 95-0014. Vol. V, Alaska Peninsula and Arctic. Anchorage, AK: USDOI, MMS, Alaska OCS Region.

State of Alaska, Dept. of Fish and Game. 1995b. Community Profile Database. Update to Vol. 5, Arctic Region. Juneau, AK: ADF&G, Div. of Subsistence.

State of Alaska, Dept. of Fish and Game. 2004. Community Profile Database. Juneau, AK: ADF&G, Subsistence Div.

State of Alaska, Dept. of Fish and Game. 2006. Community Profile Data Base. Juneau, AK: ADF&G. State of Alaska, Dept. of Fish and Game. 2007. Community Profile Database at http://www.subsistence.adfg.state.ak.us/geninfo/publctn s/cpdb.cfm.

- State of Alaska, Dept. of Natural Resources (ADNR). 1997. Oil and Gas Lease Sale 86, Central Beaufort Sea: Final Finding of the Director. Anchorage, AK: ADNR.
- State of Alaska, Department of Natural Resources. 2006. Alaska Heritage Resources Survey File. Anchorage, AK: ADNR.
- State of Alaska, Department of Natural Resources. 2006a. Alaska Oil & Gas Report May 2006. Anchorage, AK: ADNR, Div. of Oil and Gas.
- State of Alaska, Department of Natural Resources. 2006b. Five Year Oil and Gas Leasing Program. Anchorage, AK: ADNR, Div. of Oil and Gas.
- State of Alaska, Dept. of Public Health. 2004a. Use of Traditional Foods in a Healthy Diet in Alaska: The Risks of Perspective. Vol. 1, 2<sup>nd</sup> ed.: Polychlorinated Biphenyls (PCB's) and Related Compounds. *Epidemiology Bulletins* 8(8)1068.
- State of Alaska, Dept. of Public Health. 2004b. Use of Traditional Foods in a Healthy Diet in Alaska: The Risks in Perspective. Vol. 2, 2<sup>nd</sup> ed.: Mercury. *Epidemiology Bulletins* 8(11)1-54.
- State of Alaska, Dept. of Public Health. 2005. Outbreak of Infectious Syphillis: Update. Epidemiology Bulletin No. 14. State of Alaska, Dept. of Public Health, Epidemiology Section.
- State of Alaska, Dept. of Public Health. 2006. Chlamydis trachomatis – 2006. *Epidemiology Bulletin* No. 10, Apr. 24, 2006. State of Alaska, Dept. of Public Health, Epidemiology Section.
- State of Alaska, Oil and Gas Conservation Commission. 2005. Summary by Pool: Oil Production. Anchorage, AK: AOGCC. http://www.state.ak.us/admin/ogc/production/ProdArch ives/Dec05prod.pdf.
- Steele, J.H. 1974. *The Structure of Marine Ecosystems*. Cambridge, MA: Harvard University Press.
- Steele, M., J. Morison, W. Ermold, I. Rigor, M. Ortmeyer, and K. Shimada. 2004. Circulation of Summer Pacific Halocline Water in the Arctic Ocean. *Journal of Geophysical Research* 109:C02027. DOI 10.1029/2003JC002009.

- Stemp, R. 1985. Observations on the Effects of Seismic Exploration on Seabirds. *In*: Proceedings of the Workshop on Effects of Explosives Use in the Marine Environment, G.D. Greene, F.R. Engelhardt, and R.J. Paterson, eds. Halifax, NS, Canada: Energy, Mines and Resources, Canada and Indian and Northern Affairs, pp. 217-233.
- Stenhouse, G.B., L.J. Lee, and K.G. Poole. 1988. Some Characteristics of Polar Bears Killed During Conflicts with Humans in the Northwest Territories, 1976-86. *Arctic* 414:275-278.
- Stephensen, S.A. 2006. A Review of the Occurrence of Pacific Salmon (*Oncorhynchus* spp.) in the Canadian Western Arctic. *Arctic* 59(1):37-46.
- Stephensen, W.M., D.W. Cramer, and D.M. Burn. 1994. Review of the Marine Mammal Marking, Tagging, and Reporting Program 1988-1992. FWS Technical Report MMM 94-1. Anchorage, AK: USDOI, FWS, Region 7.
- Stern, G.A. and R.W. Macdonald. 2005. Biogeographic Provinces of Total and Methyl Mercury in Zooplankton and Fish from the Beaufort and Chukchi Seas: Results from the SHEBA Drift. *Environ. Sci. Technol.* 39:4707-4713.
- Stevenson, D.E., J.W. Orr, G.R. Hoff, and J.D. McEachran. 2004. Bathyraja mariposa: A New Species of Skate (Rajidea: Arhynchobatinae) from the Aleutian Islands. Copeia 2004(2):305-314.
- Stirling, I. 1997. The Importance of Polynyas, Ice Edges, and Leads to Marine Mammals and Birds. *Journal of Marine Systems* 10:9-21.
- Stirling, I. 2002. Polar Bear and Seals in the Eastern Beaufort Sea and Amundsen Gulf: A Synthesis of Population Trends and Ecological Relationships over Three Decades. Arctic 55(Suppl. 1):59-76.
- Stirling, I. and E.H. McEwan. 1975. The Caloric Value of Whole Ringed Seals (*Phoca hispida*) in Relation to Polar Bear (*Ursus maritimus*) Ecology and Hunting Behavior. *Can. J. Fish. Aquat. Sci.* 538:1021-1027.
- Stirling I. and N.A. Oritsland. 1995. Relationships Between Estimates of Ringed Seal (*Phoca hispida*) and Polar Bear (*Ursus maritimus*) Populations in the Canadian Arctic. *Canadian Journal of Fisheries and Aquatic Sciences* 52:2594-2612.
- Stirling, I. and N.J. Lunn. 1997. Environmental Fluctuations in Arctic Marine Ecosystems. In: Ecology of Arctic Environments, S. Woodin and M. Marquiss, eds. Oxford: Blackwell Scientific Publications Ltd., pp. 161-181.

Stirling, I. and T. Smith. 2004. Implications of Warm Temperatures and Unusual Rain Event for Survival of Ringed Seals on the Coast of Southeastern Baffin Island. Arctic 57(1):59-67.

Stirling, I., D. Andriashek, and P. Latour. 1975. Distribution and Abundance of Polar Bears in the Eastern Beaufort Sea. Beaufort Sea Technical Report No. 2. Edmonton, Alb., Canada: Canadian Wildlife Service, 59 pp.

Stirling,, I., W.R. Archibald, and D. DeMaster. 1977. Distribution and Abundance of Seals in the Eastern Beaufort Sea. *Journal of the Fisheries Resource Board* of Canada 34:976-988.

Stirling, I., M.C.S. Kingsley, and W. Calvert. 1981. The Distribution and Abundance of Ringed and Bearded Seals in the Eastern Beaufort Sea, 1974-1979. Edmonton, Alb., Canada: Dome Petroleum Limited, ESSO Resources Canada Limited and the Department of Indian and Northern Affairs, 70 pp.

- Stirling, I., N.J. Lunn, and J. Iacozza. 1999. Long-Term Trends in the Population Ecology of Polar Bears in Western Hudson Bay in Relation to Climate Change. *Arctic* 523:294-306.
- Stirling, I., N.J. Lunn, J. Iacozza, C. Elliot, and M. Obbard. 2004. Polar Bear Distribution and Abundance on the Southwestern Hudson Bay Coast during Open Water Season, in Relation to Population Trends and Annual Ice Patterns. Arctic 57:15-26.

Stocker, M. 2002. Fish, Mollusks and other Sea Animals, and the Impact of Anthropogenic Noise in the Marine Acoustical Environment. www.msadesign.com/FishEars.html: Earth Island Institute, 30.

- Stoker, S.W. and I.I. Krupnik. 1993. Subsistence Whaling. *In: The Bowhead Whale*, J.J. Burns, J.J. Montague, and C.J. Cowles, eds. Special Publications of the Society for Marine Mammalogy Publications, No. 2. Lawrence, KS: Society for Marine Mammalogy, pp. 579-629.
- Stone, C.J. 1997. Cetacean Observations during Seismic Surveys in 1996. JNCC Report 228. Aberdeen, UK: Joint Nature Conservation Committee.

Stone, C.J. 1998. Cetacean Observations during Seismic Surveys in 1997. JNCC Report 278. Aberdeen, UK: Joint Nature Conservation Committee.

Stone, C.J. 2000. Cetacean Observations during Seismic Surveys in 1998. JNCC Report 301. Aberdeen, UK: Joint Nature Conservation Committee.

Stone, C. J. 2001. Marine Mammal Observations during Seismic Surveys in 1999. JNCC Report . 316. Aberdeen, UK: Joint Nature Conservation Committee, 69 pp. Stone, G.S., S.K. Katona, A. Mainwaring, J.M. Allen, and H.C. Corbett. 1992. Respiration and Surfacing Rates of Fin Whales (*Balaenoptera physalus*) Observed from a Lighthouse Tower. Report of the International Whaling Commission 42. Cambridge, UK: IWC, pp. 739-745.

Stone, R.S., E.G. Dutton, J.M. Harris, and D. Longenecker. 2002. Earlier Spring Snowmelt in Northern Alaska as an Indicator of Climate Change (DOI 10.1029/2000JD000286). Journal of Geophysical Research 107D10.

Straley, J.M. 1994. Seasonal Characteristics of Humpback Whales (*Metaptera novaeangliae*) in Southeastern Alaska. MS Thesis. Fairbanks, AK: University of Alaska, Fairbanks.

Straley, J.M., T.J. Quinn, II, and C. Gabriele. 2002. Estimate of the Abundance of Humpback Whales in Southeastern Alaska 1994-2000. Unpublished final report. Seattle, WA: NOAA Fisheries, 19 pp.

Stratton, L. 1989. Resource Uses in Cordova, A Coastal Community of Southcentral Alaska. Technical Paper No. 153. Anchorage, AK: State of Alaska, Dept. of Fish and Game, Div. of Subsistence.

Stratton, L. 1990. Resource Use in Cordova, A Coastal Community of Southcentral Alaska. Technical Paper No. 153. Juneau, AK: State of Alaska, Dept. of Fish and Game, Div. of Subsistence.

Stratton, L. 1992. Cordova: A 1988 Update on Resource Harvests and Uses. Technical Paper No. 204. Juneau, AK: State of Alaska, Dept. of Fish and Game, Div. of Subsistence.

Stringer, W.J., S.A. Barrett, and L.K. Schreurs. 1980. Nearshore Ice Conditions and Hazards in the Beaufort, Chukchi and Bering Seas. UAGR 274. Fairbanks, Alaska: University of Alaska, Geophysical Research Institute, 164 pp.

Stringer, W.J. and J.E. Groves. 1985. Statistical Description of the Summertime Ice Edge in the Chukchi Sea (Revised Draft). Washington, DC: U.S. Department of Energy.

Stringer, W.J. and J.E. Groves. 1991. Location and Areal Extent of Polynyas in the Bering and Chukchi Seas. *Arctic* 44(Suppl. 1):164-171.

Stroeve, J.C., M.C. Serreze, F. Fetterer, T. Arbetter, W. Meier, J. Maslanik, and K. Knowles. 2005. Tracking the Arctic's Shrinking Ice Cover: Another Extreme September Minimum in 2004. *Geophysical Research Letters* 32:L04501. doi:10.1029/2004GL021810.

Sutherland, R. 2005. Harvest Estimates of the Western Arctic Caribou Herd, Alaska. *Rangifer* Special Issue 16:177-184. Suydam, R.S., L.F. Lowry, and K.J. Frost. 2005. Distribution and Movements of Beluga Whales fromt the Eastern Chukchi Sea Stock during Summer and Early Autumn. Final Report. Anchorage, AK: USDOI, MMS, Alaska OCS Region, 48 pp.

Suydam, R.S., J.C. George, P.B. Nader, and T.F. Albert. 1994. IWC Scientific Committee Meeting, Puerto Vallarta, Mexico. Cambridge, UK: IWC.

Suydam, R.S., R.P. Angliss, J.C. George, S.R. Braund, and D.P. DeMaster. 1995. Revised Data on the Subsistence Harvest of Bowhead Whales (*Balaena mysticetus*) by Alaska Eskimos, 1973-1993. Report of the International Whaling Commission 45 SC/46/AS10. Cambridge, UK: IWC.

Suydam, R.S., D.L. Dickson, J.B. Fadely, and L.T. Quakenbush. 2000. Population Declines of King and Common Eiders of the Beaufort Sea. *The Condor* 102: 219-222.

Suydam R.S., L.F. Lowry, K.J. Frost, G.M. O'Corry-Crowe, and D. Pikok, Jr. 2001. Satellite Tracking of Eastern Chukchi Sea Beluga Whales into the Arctic Ocean. *Arctic* 543:237-243.

Suydam, R.S., J.C. George, C. Hanns, and G. Sheffield. 2005. Subsistence Harvest of Bowhead Whales (*Balaena mysticetus*) by Alaskan Eskimos during 2004. Scientific Report of the International Whaling Commission 57. Cambridge, UK: IWC.

Swartz, S.L. and M.L. Jones. 1981. Demographic Studies and Habitat Assessment of Gray Whales, Eschrichtius robustus, in laguna San Ignacio, Baha California, Mexico. MMC Report MMC - 78/03. Washington, DC: Marine Mammal Commission, 34 pp.

Swift, J.H., E.P. Jones, K. Aagaard, E.C. Carmack, M. Hingston, F.A. MacDonald, F.A. McLaughlin, and R.B. Perkin. 1998. Waters of the Makarov and Canadian Basin. *Deep Sea Research* 44:1502-1529.

Swingle, W.M., S.G. Barcho, and T.D. Pichford. 1993. Appearance of Juvenile Humpback Whales Feeding in the Nearshore Waters of Virginia. *Marine Mammal Science* 9:309-315.

Szymanski, M.D., D.E. Bain, K. Kiehl, S. Pennington, S. Wong, and K.R. Henry. 1999. Killer Whale (Orcinus orca) Hearing: Auditory Brainstem Response and Behavioral Audiograms. Journal of the Acoustical Society of America 106:1134-1141.

Tagarook, D. 1998. Public Hearing on the Northeast NPR-A Integrated Activity Plan/Environmental Impact Statement, Wainwright, Ak., Jan. 27, 2998. Anchorage, AK: USDOI, BLM.

Talbott, C. 2000. Melting Ice Caps a Concern. Anchorage, AK: Anchorage Daily News, Sec. B, p. B-1. Talbott, C. 2006. Ice Ashore. Fairbanks Daily News-Miner.

- Tarpley, R.J., R.F. Sis, T.F. Albert, L.M. Dalton, and J.C. George. 1987. Observations on the Anatomy of the Stomach and Duodenum of the Bowhead Whale, *Balaena Mysticetus. The American Journal of Anatomy* 180:295-322.
- Tasker, M.L., J. Karwatowski, P.G.H. Evans, and D. Thompson. 1998. Introduction to Seismic Exploration and Marine Mammals in the North-East Atlantic. *In*: Proceedings of the Seismic and Marine Mammal Workshop, June 23-25, 1998, London, UK

Taylor, A., R. Lanctot, A. Powell, and T. Williams. 2006. Should I Stay or Should I Go Now: The Importance of Staging Sites to Shorebirds on Alaska's North Slope (Abstract). Shorebird Science in the Western Hemisphere, Boulder, Colo., Feb. 27-Mar. 2, 2006. Boulder, CO: University of Colorado.

Taylor, D.L., S.S. Schliebe, and H. Metsker. 1989. Contaminants in Blubber, Liver, and Kidney Tissue of Pacific Walruses. *Marine Pollution Bulletin* 20(9):465-468.

Taylor, M. 2003. Why the Bering-Chukchi-Beaufort Seas Bowhead Whale is Endangered: Response to Shelden et al. *Conservation Biology* 173:915-917.

Taylor, M.K., D.P. DeMaster, F.L. Bunnell, and R.E. Schweinsburg. 1987. Modeling the Sustainable Harvest of Female Polar Bears. *Journal of Wildlife Management* 51:811-820.

Teal, J.M. and R.W. Howarth. 1984. Oil Spill Studies: A Review of Ecological Effects. Environmental Management 81:27-44.

Teck Cominco Alaska Inc. 2005. Summary of Mine Related Fugitive Dust Studies. Red Dog Mine Site. Anchorage, AK: Teck Cominco Alaska Incorporated.

The Royal Society. 2005. Joint Academies' Statement: Global Response to Climate Change, June 7, 2005. http://www.royalsoc.ac.uk/document.asp?latest=1&id=3 222.

The Wildlife Society. 2004. Global Climate Change and Wildlife in north America. Technical Review Committee on Global Climate Change, Technical Review 04-2. Bethesda, MD: The Wildlife Society.

Thomas, C.P., T.C. Doughty, J.H. Hackworth, W.G. North, and E.P. Robertson. 1996. Economics of Alaska North Slope Gas Utilization Options. INEL 96/ 0322.
Washington, DC: U.S. Dept. of Energy, Office of Fossil Energy, pp. 3-4. Thompson, C.W., K. Ryan, J.K. Parrish, S. Zador, and K. Warheit. 2003. Restoration of Common Murre Colonies in the Copalis National Wildlife Refuge, Washington - Phase 1. Final Report to the *Tenyo Maru* Trustee Council.

Thompson, D.C. and K.J. McCourt. 1981. Seasonal Diets of the Porcupine Caribou Herd. American Midland Naturalist 1051:70-76.

Thompson, D.W. and J.M. Wallace. 1998. The Arctic Oscillation Signature in the Wintertime Geopotential Height and Temperature Fields. *Geophysical Research Letters* 25:1297-1300.

Thompson, P.B. and W. Dean. 1996. Competing Conceptions of Risk. *Risk: Health Safety and Environment* 7:361-375.

- Thomson, D.H. and W.J. Richardson. 1987. Integration. *In*: Importance of the Eastern Alaskan Beaufort Sea to Feeding Bowhead Whales, 1985-85, W.J. Richardson, ed. OCS Study MMS 1987-0037. Reston, VA: USDOI, MMS, pp. 449-511.
- Thomson, D.H., W.R. Koski, and W.J. Richardson. 2002. Integration and Conclusions. *In*: Bowhead Whale Feeding in the Eastern Alaskan Beaufort Sea: Update of Scientific and Traditional Information, W.J. Richardson and D.H. Thomson, eds. LGL Report TA 2196-7. King City, Ont., Canada: LGL Limited, environmental research associates, pp. 1-35.
- Thurston, D.K. 2007. Review of unpublished interpretations of 10 geologic site surveys for planned wells in the Chukchi Sea sale 109 and 126 areas collected between 1988 and 1990. USDOI, MMS, Alaska OCS Region.
- Thurston, D.K. and L.A. Theiss. 1987. Geologic Report for the Chukchi Sea Planning Area, Alaska. OCS Report MMS087-0004. Anchorage, AK: USDOI, MMS, Alaska OCS Region.
- Todd, S., S. Stevick, J. Lien, F. Marques, and D. Ketten. 1996. Behavioural Effects of Exposure to Underwater Explosions in Humpback Whales (*Megaptera* novaeangliae). Canadian Journal of Zoology 74:1661-1672.
- Toimil, L. 1978. Ice-Gouged Microrelief on the Floor of the Eastern Chukchi Sea, Alaska: A Reconnaissance Survey. Open-File Report 78- 693. Menlo Park, CA: U.S. Geological Survey.

Toimil, L. 1979. Ice-Gouge Characteristics in the Alaskan Chukchi Sea. *In*: Proceedings of the Specialty Conference Civil Engineering in the Oceans, IV. Vol. II. New York: American Society of Civil Engineers, pp. 863-876. Toimil, L.J. and A. Grantz. 1976. Origin of a Bergfield in the Northeastern Chukchi Sea and Its Influence on the Sedimentary Environment. *AIDJEX Bulletin* 34:1-42.

- Tolstoy, M., J.B. Diebold, S.C. Webb, D.R. Bohnenstiehl, E. Chapp, R.C. Holmes, and M. Rawson. 2004. Broadband Calibration of R/V *Ewing* Seismic Sources. *Geophysical Research Letters* 31:L14310-L1314.
- Tomilin, A.G. 1957. Mammals of the USSR and Adjacent Countries., Israel Program for Scientific Translation, Translator. Cetacea (in Russian), Vol. 9. Moscow: Isdatel'stvo Akademii Nauk SSR, 717 pp.
- Tornfelt, E. 1982. Cultural Resources of the Chukchi and Beaufort Seas, Shelf and Shore. Technical Paper No. 6. Anchorage, AK: USDOI, BLM, Alaska OCS Office.
- Tornfelt, E. and M. Burwell. 1992. Shipwrecks of the Alaskan Shelf and Shore. Anchorage, AK: USDOI, MMS, Alaska OCS Region.
- Townsend, C.H. 1935. The Distribution of Certain Whales as Shown by Logbook Records of American Whaleships. *Zoological* 19:1-50.
- Travis, R. 1984. Suicide and Economic Development among the Inupiat Eskimo. *White Cloud Journal* 3:14-20.
- Treacy, S.D. 1994. Aerial Surveys of Endangered Whales in the Beaufort Sea, Fall 1993. OCS Study MMS 94-0032. Anchorage, AK: USDOI, MMS, Alaska OCS Region, 78 pp.
- Treacy, S.D. 1997. Aerial Surveys of Endangered Whales in the Beaufort Sea, Fall 1996. OCS Study MMS 97-0016. Anchorage, AK: USDOI, MMS, Alaska OCS Region, 115 pp.
- Treacy, S.D. 1998. Aerial Surveys of Endangered Whales in the Beaufort Sea, Fall 1997. OCS Study MMS 98-0059 Anchorage, AK: USDOI, MMS, Alaska OCS Region, 143 pp.
- Treacy, S.D. 2000. Aerial Surveys of Endangered Whales in the Beaufort Sea, Fall 1998, 1999. OCS Study MMS 2000-006. Anchorage, AK: USDOI, MMS, Alaska OCS Region, 135 pp.
- Treacy, S.D. 2002. Aerial Surveys of Endangered Whales in the Beaufort Sea, Fall 2001. OCS Study MMS 2002-061. Anchorage, AK: USDOI, MMS, Alaska OCS Region, 117 pp.
- Trefry, J.H., R.P. Trocine, M.L. McElvaine, R.D. Rember, and L.T. Hawkins. 2006. Total Mercury and Methylmercury in Sediments near Offshore Drilling Sites in the Gulf of Mexico. *Environmental Geology*.

Tucker, J. 1996. Barrow Public Teleconference on the Outer Continental Shelf Oil and Gas Leasing Program 1997-2002 (5-Year Program) to Point Lay, Point Hope, Wainwright, Kaktovik, and Nuiqsut. Herndon, VA: USDOI, MMS.

Tucker, J. 1998. Public Hearing on the Northeast NPR-A Integrated Activity Plan/Environmental Impact Statement, Point Lay, Ak., Jan. 1998. Anchorage, AK: USDOI, BLM.

Tuckle, F., Sr. 2001. Public Hearing on Liberty Development and Production Plan Environmental Impact Statement, Barrow, Ak., March 21, 2001. Anchorage, AK: USDOI, MMS, Alaska OCS Region.

Tukrook, W. 1987. Public Hearing on Chukchi Sea Sale 109, Point Lay, Ak., Apr. 14, 1987. Anchorage, AK: USDOI, MMS, Alaska OCS Region.

Turnpenny, A.W.H. and J.R. Nedwell. 1994. The Effects on Marine Fish, Diving Mammals and Birds of Underwater Sound Generated by Seismic Surveys. Consultancy Report, FCR 089/94. Fawley Aquatic Research Laboratories Ltd.

Tynan C.T. and D.P. DeMaster. 1997. Observations and Predictions of Arctic Climate Change Potential Effects on Marine Mammals. *Arctic* 504:308-322.

U.S. Army Corps of Engineers. 1984. Public Hearing for the Endicott Development Project EIS, Feb. 29, 1984. Anchorage, AK: U.S. Army Corps of Engineers, 23 pp.

U.S. Army Corps Of Engineers. 1996. Transcript of Proceedings, Public Scoping Meeting, Northstar EIS Project, Northstar Beaufort Sea Oil and Gas Development, Kaktovik, Ak., Mar. 26, 1996. Anchorage, AK: U.S. Army Corps of Engineers.

U.S. Army Corps of Engineers. 1999. Final Environmental Impact Statement. Beaufort Sea Oil and Gas Development/Northstar Project. Anchorage, AK: U.S. Army Corps of Engineers, 7 Vols.

U.S. Army Corps of Engineers. 2005. Draft Environmental Impact Statement. Navigational Improvements, Delong Mountain Terminal. 2 Vols. Anchorage, AK: U.S. Army Corps of Engineers.

U.S. Dept. of Commerce. 2002. Western Arctic Bowhead Whale Populations Continue to Increase. NMFS 02-AKR. Washington, DC: U.S. Dept. of Commerce News.

U.S. Dept. of Energy. 1997. Sale of Naval Petroleum Reserve No. 1 (Elk Hills) Kern County, California. Draft Supplemental EIS for the Sale of NPR-1. DOE/SEIS/PEIR-0158S. Washington, DC: U.S. Department of Energy. U.S. Dept. of Health and Human Services, Office on Women's Health. 2006. *Quick Health Data Online*. North Slope regional data accessed online Dec. 18, 2006, at http://www.healthstatus2010.com/owh/index.html

U.S. Geological Survey. 2002. Pacific Walrus Research: Walrus and Man. Anchorage, AK: USGS, BRD, Biological Science Office, Alaska Science Center. http://www.absc.usgs.goc/research/walrus/textonly/man\_ text.html

Uhl, W.R. and C.K. Uhl. 1977. *Tagiumsinaaqmiit*: Ocean Dwellers of the Cape Krusenstern Area, Subsistence Patterns. Anthropology and Historic Preservation. Occasional Paper 14. Fairbanks, AK: University of Alaska Fairbanks, Cooperative Parks Studies Unit.

United Nations Environment Programme, Global Programme of Action. 2003. Effects of oil pollution on marine wildlife. Global Marine Oil Pollution Information Gateway (http://oils.gpa.unep.org/facts/wildlife.htm).

United Nations Environment Programme. 2005. GEO Yearbook 2004/4: An Overview of Our Changing Environment. Nairobi, Kenya: United Nations Environment Programme.

United Nations Environment Programme (UNEP). 2006. Vital Arctic Graphics: People and Global Heritage on Our Last Wild Shores. http://www/vitalgraphics.net/arctic.cfm:

University of Alaska, Anchorage, ISER. No date. Alaska Traditional Knowledge and Native Foods Database. www.nativeknowledge.org/login.asp. Anchorage, AK: UAA, ISER.

Urban, M. 2006. Road Facilitation of Trematode Infections in Snails of Northern Alaska. *Conservation Biology* 20:1143-1149.

URS Corporation. 2005. North Slope Borough Comprehensive Plan. Barrow, AK: North Slope Borough, 11pp. http://www.co.northslope.ak.us/information/comp\_plan/MasterTOC\_%20Ma yors%20Forward06.pdf

USDOC, Bureau of the Census. 1971. 1970 Census of Population and Housing, Alaska Final Population and Housing Unit Counts. Washington, DC: U.S. Government Printing Office.

USDOC, Bureau of the Census. 1991. 1990 Census of Population, Vol. 1: Pacific Division. 1990 Census of Population and Housing, Summary Tape File 1A. Issued September 1991. CD90-1A-9-1. Washington, DC: USDOC, Bureau of the Census, Data User Div.

USDOC, Bureau of the Census. 2000. htpp://quickfacts.census.gov/qfd/index.html. Washington, DC: USDOC, Bureau of the Census. USDOC, Bureau of the Census. 2001. http://quickfacts.census.gov/qfd/index.html. Washington, DC: USDOC, Bureau of the Census.

USDOC, Bureau of the Census. 2002. Area Boroughs, Cities and U.S. Census Places. Washington, DC: USDOC, Bureau of the Census.

USDOC, NOAA. 2003. Western Alaska ESI: ESI (Environmental Sensitivity Index Shoreline Types -Polygons and Lines). *In*: Western Alaska Environmental Sensitivity Index. Seattle, WA: USDOC, NOAA, Response and Restoration.

USDOC, NOAA. 2005. North Slope, Alaska ESI: ESI (Environmental Sensitivity Index Shoreline Types -Lines and Polygons). *In*: North Slope Environmental Sensitivity Index. Seattle, WA: USDOC, NOAA, Response and Restoration.

USDOC, NOAA, and North Slope Borough. 2005. Workshop on Bowhead Whale Stock Structure Studies in the Bering-Chukchi-Beaufort Seas: 2005-2006, Seattle, Wash., Feb. 23-24, 2005. Seattle, WA and Barrow, AK: USDOC, NOAA and NSB, Dept. of Wildlife Management.

USDOC, NOAA, National Ice Center. 1997-2006. Geographic Information System (GIS) ARC/INFO coverages. www.natice.noaa.gov -/pub/arcgis/arctic/arctic hemi/

USDOI, BLM. 1978a. NPR-A 105(c) Values and Resource Analysis. Study Report 2. Anchorage, AK: USDOI, BLM, NPR-A Task Force, 224 pp.

USDOI, BLM. 1978b. NPR-A 105(c) Ecological Profile. Study Report 4. Anchorage, AK: USDOI, BLM, NPR-A Task Force, 118 pp.

USDOI, BLM. 1978c. National Petroleum Reserve in Alaska 105(C) Land Use Study, Socioeconomic Profile. NPR-A Task Force Study Report 3. Includes an oversize map and summary information sheet for each community and the region. Anchorage, AK: USDOI, BLM, NPR-A Task Force.

USDOI, BLM. 1979a. Public Hearing, Official Transcript of Proceedings, Beaufort Sea BF Oil and Gas Lease Sale, Kaktovik, Ak., May 15, 1979. Anchorage, AK: USDOI, BLM, p. 16.

USDOI, BLM. 1979b. NPR-A 105(c) Policy Analysis Reports. Anchorage, AK: USDOI, BLM.

USDOI, BLM. 1979c. Beaufort Sea (Sale BF) Final Environmental Impact Statement. Anchorage, AK: USDOI, BLM, Alaska OCS Office. USDOI, BLM. 1979d. Public Hearing on Beaufort Sea Lease Sale BF, Nuiqsut, Ak., May 16, 1979. Anchorage, AK: USDOI, BLM.

USDOI, BLM. 1982a. Norton Sound Sale 57 Final Environmental Impact Statement. Anchorage, AK: USDOI, BLM, Alska OCS Office.

USDOI, BLM. 1982b. St. George Basin Sale 70 Final Environmental Impact Statement. Anchorage, AK: USDOI, BLM, Alaska OCS Office.

USDOI, BLM. 1982c. Kaktovik Public Hearing on the Beaufort Sea Sale 71 DEIS., Kaktovik, Ak., Feb. 4, 1982. Anchorage, AK: USDOI, BLM, 37 pp.

USDOI, BLM. 1983a. Oil and Gas Leasing in the National Petroleum Reserve-Alaska Final Environmental Impact Statement. Anchorage, AK: USDOI, BLM, 340 pp.

USDOI, BLM. 1983b. 810 Analysis. Anchorage, AK: USDOI, BLM.

USDOI, BLM. 1998a. Nuiqsut Scoping Meeting for the Northeast National Petroleum Reserve-Alaska Integrated Activity Plan/EIS. Anchorage, AK: USDOI, BLM.

USDOI, BLM. 1998b. Symposium on National Petroleum Reserve-Alaska. Anchorage, AK: USDOI, BLM.

USDOI, BLM. 1998c. Barrow Scoping Meeting for the Northeast National Petroleum Reserve-Alaska Integrated Activity Plan/EIS. Anchorage, AK: USDOI, BLM.

USDOI, BLM. 2002. Final Environmental Impact Statement Renewal of the Federal Grant for the Trans-Alaska Pipeline System Right-of-Way. BLM/AK/PT-03/005+2880+990. Anchorage, AK: USDOI, BLM, Vols. 1-6.

USDOI, BLM. 2004a. Alpine Satellite Development Plan Draft Environmental Impact Statement. BLM/AK/PL-04/007+3130+931. Anchorage, AK: USDOI, BLM, 2 Vols.

USDOI, BLM. 2004b. Alpine Satellite Development Plan Final Environmental Impact Statement. Anchorage, AK: USDOI, BLM.

USDOI, BLM. 2005. Northeast NPR-A final Amended Integrated Activity Plan/EIS. Anchorage, AK: USDOI, BLM.

USDOI, BLM. 2006. Kobuk-Seward Peninsula Planning Environmental Impact Statement. Anchorage, AK: USDOI, BLM.

USDOI, BLM, and MMS. 1997. Northeast National Petroleum Reserve-Alaska Integrated Activity Plan Draft Environmental Impact Statement. Anchorage, AK: USDOI, BLM, and MMS.

- USDOI, BLM and MMS. 1998. Northeast National Petroleum Reserve-Alaska Final Integrated Activity Plan/ Final Environmental Impact Statement. BLM/AK/PL-98/016+3130+930. Section IV.C.6. Vegetation b. Development (2) Effects of Spills. AnchorageAK: USDOI, BLM and MMS.
- USDOI, BLM and MMS. 2003. Northwest National Petroleum Reserve-Alaska Final Integrated Activity Plan/Environmental Impact Statement. BLM/AK/PL-04/002+3130+930. Anchorage, AK: USDOI, BLM and MMS, 3 Vols.
- USDOI, FWS. 1987. Comparison of Actual and Predicted Impacts of the Trans-Alaska Pipeline system and Prudhoe Bay Oilfields on the North Slope of Alaska. Fairbanks, AK: USDOI, FWS, Fish and Wildlife Enhancement Office.
- USDOI, FWS. 1989-2005. Email dated Mar. 6, 2006, to Michael Burwell, MMS Alaska OCS Region, from J. Garlich-Miller, FWS; subject: information from USDOI, FWS, Marking, Tagging, and Reporting Program (MTRP) Database Coordinator Dean Cramer updating walrus subsistence harvest information for the communities of Barrow, Wainwright, Point Lay, Point Hope, and Kivalina from 1989 through 2005.

USDOI, FWS. 1992. Subsistence Management for Federal Public Lands in Alaska. Final EIS. Anchorage, AK: USDOI, FWS, Region 7, Subsistence Branch, 375 pp.

- USDOI, FWS. 1995. Habitat Conservation Strategy for Polar Bears in Alaska. Anchorage, AK: USDOI, FWS.
- USDOI, FWS. 1999a. Oil Spill Response Plan for Polar Bears in Alaska. Anchorage, AK: USDOI, FWS.
- USDOI, FWS. 1999b. Guide to Management of Alaska's Land Mammals. Anchorage, AK: USDOI, FWS, Office of Subsistence Management.
- USDOI, FWS. 2001. Stock Assessment Reports, Polar Bear (*Ursus maritimus*): Chukchi/Bering Sea Stock. Revised Mar. 143, 2001. http://www.r7.fws.gov/mmm/sar/.
- USDOI, FWS. 2002. Polar Bear (Ursus maritimus) Southern Beaufort Sea Stock. Juneau, AK: USDOI, FWS, pp. 1-5.
- USDOI, FWS. 2003. Chukchi Sea Polar Bears: A Population Concern. Anchorage, AK: USDOI, FWS, 25 pp.
- USDOI, FWS. 2004. Letter dated Aug. 23, 2004, from S. Lewis, Field Supervisor, Fish and Wildlife Field Office, Fairbanks, to S. Childs, Project Leader, USDOI, BLM; subject: draft Amended Integrated Activity Plan/Environmental Impact Statement for the Northeast Planning Area of the National Petroleum Reserve-Alaska.

- USDOI, FWS. 2004a. Shorebird Conservation Plan: High Priority Shorebirds - 2004. Arlington, VA: USDOI, FWS, MBSP 4107.
- USDOI, FWS. 2004b. Beringian Seabird Colony Catalog: Computer Database. Anchorage, AK: USDOI, FWS, Migratory Bird Management.
- USDOI, FWS. 2005a. Field Report: 2005 Spring Walrus Harvest at Gambell, Alaska. Anchorage, AK: USDOI, FWS.
- USDOI, FWS. 2005b. Status of Polar Bears. Anchorage, AK: USDOI, FWS.
- USDOI, FWS. 2005c. Final Biological Opinion to Bureau of Land Management for the Proposed Amendment to the Integrated Activity Plan/Environmental Impact Statement for the Northeast National Petroleum Reserve-Alaska, dated January 12, 2005. Fairbanks, AK: USDOI, FWS.
- USDOI, FWS. 2006. Draft Study Plan for Estimating the Size of the Pacific Walrus Population. USDOI, FWS, Marine Mammals Management, Alaska Science Center; U. S. Geological Survey; GiproRybFlot, Research and Engineering Institute for the Development and Operation of Fisheries; ChukotTINRO, Pacific Research Institute of Fisheries and Oceanography, 43 pp.
- USDOI, MMS. 1983a. Public Teleconference for the Proposed Arctic Sand and Gravel Lease Sale, Anchorage, Ak., Jan. 4, 1983. Anchorage, AK: USDOI, MMS, Alaska OCS Region, 22 pp.
- USDOI, MMS. 1983b. Proposed Arctic Sand and Gravel Lease Sale: Final Environmental Impact Statement. Anchorage, AK: USDOI, MMS, Alaska OCS Region, various pagings.
- USDOI, MMS 1986a. Nuiqsut Public Hearings, Official Transcript of Proceedings, Oil and Gas Lease Sale 97, Dec. 11, 1986. Anchorage, AK: USDOI, MMS, Alaska OCS Region.
- USDOI, MMS. 1986b. Public Hearings, Official Transcript of Proceedings, Oil and Gas Lease Sale 97, Kaktovik, Dec. 10, 1986. Anchorage, AK: USDOI, MMS, Alaska OCS Region.
- USDOI, MMS. 1986c. Barrow Public Hearing on Oil and Gas Lease Sale 97, Dec. 8, 1986. Anchorage, AK: USDOI, MMS, Alaska OCS Region, 57 pp.
- USDOI, MMS. 1987a. Beaufort Sea Sale 97 Final Environmental Impact Statement. OCS EIS/EA MMS 87-069. Anchorage, AK: USDOI, MMS, Alaska OCS Region.
- USDOI, MMS. 1987b. Chukchi Sea Sale 109 Final Environmental Impact Statement. OCS EIS/EA MMS 87-011. Anchorage, AK: USDOI, MMS, Alaska OCS Region.

USDOI, MMS. 1987c. Wainwright Public Hearing on the Draft Chukchi Sea Lease Sale 109. Anchorage, AK: USDOI, MMS, Alaska OCS Region.

USDOI, MMS, Alaska OCS Region. 1990a. Chukchi Sea Oil and Gas Lease Sale 126 Draft Environmental Impact Statement. OCS EIS/EA MMS 90-0035. Anchorage, AK: USDOI, MMS, Alaska OCS Region.

USDOI, MMS. 1990b. Beaufort Sea Planning Area Oil and Gas Lease Sale 124, Final Environmental Impact Statement. OCS EIS/EA MMS 90-0063. Anchorage, AK: USDOI, MMS, Alaska OCS Region.

USDOI, MMS. 1990c. Barrow Public Hearing on the Beaufort Sea Sale 124 Draft EIS. Anchorage, AK: USDOI, MMS, Alaska OCS Region, 108 pp.

USDOI, MMS. 1990d. Nuiqsut Public Hearing on the Beaufort Sea Sale 124 Draft EIS., Nuiqsut, Ak, Anchorage, AK: USDOI, MMS, Alaska OCS Region, 46 pp.

USDOI, MMS, Alaska OCS Region. 1990e. Archaeological Shipwreck Information System Database: Alaska OCS Region National Shipwreck Database. Computer File. Anchorage, AK: USDOI, MMS, Alaska OCS Region.

USDOI, MMS. 1994. Scoping Report, Beaufort Sea Sale 144. Anchorage, AK: USDOI, MMS, Alaska OCS Region.

USDOI, MMS 1995a. Barrow Public Hearing, Official Transcript of Proceedings, Beaufort Sea Sale 144 Draft EIS, Nov. 8, 1995. Anchorage, AK : USDOI, MMS, Alaska OCS Region.

USDOI, MMS. 1995b. Nuiqsut Public Hearing on the Beaufort Sea Sale 144 Draft EIS, Nov. 6, 1995. Anchorage, AK: USDOI, MMS, Alaska OCS Region, 36 pp.

USDOI, MMS. 1995c. Kaktovik Public Hearing on the Beaufort Sea Sale 144 Draft EIS, Nov. 7, 1995. Anchorage, AK: USDOI, MMS, Alaska OCS Region, 24 pp.

USDOI, MMS. 1996a. Beaufort Sea Planning Area Oil and Gas Lease Sale 144 Final Environmental Impact Statement. OCS EIS/EA MMS 96-0012. 2 Volumes. Anchorage, AK: USDOI, MMS, Alaska OCS Region.

USDOI, MMS. 1996b. Outer Continental Shelf Oil and Gas Leasing Program: 1997-2002 Final Environmental Impact Statement. OCS EIS/EA MMS 96-0043. Herndon, VA: USDOI, MMS.

USDOI, MMS. 1996c. Public Teleconference in Barrow for the MMS Draft 5-Year Proposed OCS Oil and Gas Leasing Program 1997-2002, Mar. 21, 1996. Anchorage, AK: USDOI, MMS, 80 pp. USDOI, MMS. 1997a. Arctic Seismic Synthesis and Mitigating Measures Workshop, Barrow, Ak., Mar. 5-6, 1997. Whalers' signed Statement. Anchorage, AK: USDOI, MMS, Alaska OCS Region.

USDOI, MMS. 1997b. Nuiqsut Public Hearing on the Beaufort Sea Sale 170 Draft EIS, Jun. 24, 1997. Anchorage, AK: USDOI, MMS, Alaska OCS Region.

USDOI, MMS. 1998a. Beaufort Sea Planning Area Oil and Gas Leas Sale 170 Final EIS. OCS EIS/EA MMS 98-0007. Anchorage, AK: USDOI, MMS, Alaska OCS Region.

USDOI, MMS. 1998b. Liberty Scoping Meeting in Nuiqsut, Mar. 18, 1998. Anchorage, AK: USDOI, MMS, Alaska OCS Region.

USDOI, MMS. 1999. Public Meeting Notes, Liberty Project Information Update Meeting, Nuiqsut, Nov. 2, 1999. Anchorage, AK: USDOI, MMS, Alaska OCS Region.

USDOI, MMS. 2000a. Monitoring and Mitigating Socioeconomic Impacts of Offshore Related Oil and Gas Development: 1985-1995, A Case Study. OCS Study MMS 2000-0019. Camarillo, CA: USDOI, MMS, Pacific OCS Region.

USDOI, MMS. 2000b. Meeting Minutes, Alaska OCS Regional Offshore Advisory Committee Meeting, Anchorage, Ak., Jan. 6, 2000. Anchorage, AK: USDOI, MMS, Alaska OCS Region.

USDOI, MMS. 2001a. Energy Alternatives and the Environment. OCS Report, MMS 2001-096. Herndon, VA: USDOI, MMS.

USDOI, MMS. 2001b Liberty Development and Production Plan Draft Environmental Impact Statement. OCS EIS/EA MMS 2001-001. 4 Vols. Anchorage, AK: USDOI, MMS, Alaska OCS Region.

USDOI, MMS. 2002. Liberty Development and Production Plan, Final Environmental Impact Statement. OCS EIS/EA, MMS 2002-019. Anchorage, AK: USDOI, MMS, Alaska OCS Region, 3 Vols.

USDOI, MMS. 2003a. Beaufort Sea Planning Area Sales 186, 195, and 202 Oil and Gas Lease Sale Final EIS. OCS EIS/EA MMS 2003-001. Anchorage, AK: USDOI, MMS, Alaska OCS Region.

USDOI, MMS. 2003b. Cook Inlet Planning Area Oil and Gas Lease Sales 191 and 199 Final EIS. OCS EIS/EA MMS 2003-001. Anchorage, AK: USDOI, MMS, Alaska OCS Region.

USDOI, MMS. 2004a. Proposed Oil and Gas Lease Sale 195 Beaufort Sea Planning Area. Environmental Assessment. OCS EIS/EA MMS 2004-028. Anchorage, AK: USDOI, MMS, Alaska OCS Region.

- USDOI, MMS. 2004b. Proceedings of a Workshop on the Variability of Arctic Cisco (*Qaaktaq*) in the Colville River, Kisik Community Center, Nuiqsut, Ak., Nov. 18-20, 2003. OCS Study MMS 2004-033. Anchorage, AK: USDOI, MMS, Alaska OCS Region.
- USDOI, MMS. 2005a. Tenth Information Transfer Meeting, Barrow Information Update Meeting, Anchorage, Ak., Mar. 14-16, 2005. Anchorage, AK: USDOI, MMS, Alaska OCS Region.
- USDOI, MMS. 2005b. MMS Chukchi Sea Science Update, Anchorage, Ak., Oct. 31, 2005. Anchorage, AK: USDOI, MMS, Alaska OCS Region.
- USDOI, MMS. 2005c. Inspecting Offshore Facilities and Enforcing Federal Regulations. Herndon, VA: USDOI, MMS http://www.mms.gov/regcompliance/inspect.htm.
- USDOI, MMS. 2006a. Programmatic Environmental Assessment Arctic Ocean Outer Continental Shelf Seismic Surveys - 2006. OCS EIS/EA MMS 2006-038. Anchorage, AK: USDOI, MMS, Alaska OCS Region.
- USDOI, MMS. 2006b. Biological Evaluation of the Potential Effects of Oil and Gas Leasing and Exploration in the Alaska OCS Beaufort Sea and Chukchi Sea Planning Areas on Endangered Bowhead Whales (*Balaena mysticetus*), Fin Whales (*Balaenoptera physalus*), and Humpback Whales (*Megaptera novaeangliae*). L.M. Rotterman, Prep. Anchorage, AK: USDOI, MMS, Alaska OCS Region.
- USDOI, MMS. 2006c. Draft Environmental Impact Statement for the Outer Continental Shelf Oil and Gas Leasing Program 2007-2012. Herndon, VA: USDOI, MMS.
- USDOI, MMS. 2006d. MMS Alaska Shipwreck Database. Anchorage, AK: USDOI, MMS, Alaska OCS Region.
- USDOI, MMS. 2006e. Proposed OCS Lease Sale 202 Beaufort Sea Planning Area Environmental Assessment. OCS EIS/EA, MMS 2006-001. Anchorage, AK: USDOI, MMS, Alaska OCS Region.
- USDOI, MMS. 2007. Environmental Assessment, Shell Offshore, Inc., Beaufort Sea Exploration Plan. OCS EIS/EA 2007-009. Anchorage, AK: USDOI, MMS, Alaska OCS Region.
- USDOI, MMS, Herndon Office. 2002. Final Environmental Impact State for the Outer Continental Shelf Oil and Gas Leasing Program: 2002 to 2007. Herndon, VA: USDOI, MMS.
- USDOI, MMS, Herndon Office. 2007. Final Environmental Impact Statement for the Outer Continental Shelf Oil and Gas Leasing Program 2007-20012.

- USDOI, MMS, Pacific OCS Region. 2001. Delineation Drilling Activities in Federal Waters Offshore Santa Barbara County, California. Draft EIS. OCS EIS/EA, MMS 2001-046. 7. Camarillo, CA: USDOI, MMS, Pacific OCS Region.
- USDOI, MMS and USDOC, NOAA, NMFS. 2007. Seismic Surveys in the Beaufort and Chukchi Seas, Alaska. Draft Programmatic Environmental Impact Statement. OCS EIS/EA MMS 2007-001. Anchorage, AK: USDOI, MMS, Alaska OCS Region and USDOC, NOAA, NMFS.
- USDOI, National Park Service. 1986a. Cape Krusenstern National Monument, General Management Plan, Land Protection Plan, and General Wilderness Suitability Review. Anchorage, AK: USDOI, NPS, Alaska Regional Office, various pagings.
- USDOI, National Park Service. 1986b. Bering Land Bridge National Preserve, General Management Plan, Land Protection Plan, and Wilderness Suitability Review. Anchorage, AK: USDOI, NPS, Alaska Regional Office, 222 pp.
- USEPA, USDOI, and U.S. Army Corps of Engineers. 1984. Final Environmental Impact Statement Red Dog Mine Project Northwestern Alaska. Seattle, WA: USEPA.
- USEPA. 1986. Quality Criteria for Water. EPA 440/5-86-001. Washington, DC: USEPA, Office of Water and Standards.
- USEPA. 1987. Management of Wastes from Oil and Gas Exploration, Development, and Production. Report to Congress. Washington, DC: USEPA, Office of Solid Waste.
- USEPA. 1993a. Final Development Document for Effluent Limitations Guidelines and New Source Performance Standards for the Offshore Subcategory of the Oil and Gas Extraction Point Source Category. (PA 821-R-93-003.) Washington, DC: U.S. Environmental Protection Agency.
- USEPA. 1993b. Supplemental Information for Effluent Limitation Guidelines and New Source Performance Standards for the Offshore Subcategory of the Oil and Gas Extraction Point Source Category. 40 CFR 435. Washington, DC: U.S. Environmental Protection Agency.
- USEPA. 1998. Final Guidance for Incorporating Environmental Justice Concerns in USEPA's NEPA Compliance Analyses, April 1998. http://es.epa.gov/oeca/ofa/ejepa.html.
- USEPA. 1986. Quality Criteria for Water. EPA 440/5-86 001 (incl. Update No. 1). Washington, DC: USEPA.

- USEPA. 1999. Authorization to Discharge under the National Pollutant Discharge Elimination System for Oil and Gas Exploration, Development, and Production Facilities. Permit No. AKG285000 Cook Inlet. Permit No. AKG285000. Seattle, WA: USEPA, Region 10, 45pp + accompanying response to comments.
- USEPA. 2005. Final Ocean Discharge Criteria Evaluation of the Arctic NPDES General Permit for Oil and Gas Exploration (Permit No. AKG280000). Seattle, WA: USEPA, Region 10, Office of Water and Watersheds.
- USEPA. 2006. Particulate Matter: Health and the Environment. Webpage accessed online Nov. 24, 2006, at http://www.epa.gov/air/particlepollution/health.html.
- USEPA. 2006. Environmental Justice. http://www.epa.gov/compliance/environmentaljustice/.
- Valkenburg, P. and J.L. Davis. 1985. The Reaction of Caribou to Aircraft: A Comparison of Two Herds. *In:* Caribou and Human Activity. Proceedings of the First North American Workshop, A.M. Martell and D.E. Russell, eds. Whitehorse, Y.T., Canada, Ottawa, Ont., Canada: Canadian Wildlife Service, pp. 7-9.
- Van Parijs, S.M. and P. Corkeron. 2001. Boat Traffic Affects the Acoustic Behaviour of Pacific Humpback Dolphins, Sousa chinensis. Journal of the Marine Biological Assoc. of the United Kingdom 81:533-538.
- Varanasi, U. and D.C. Malins., 1977. Metabolism of Petroleum Hydrocarbons: Accumulation and Biotransformation in Marine Organisms. *In: Effects of Petroleum on Arctic and Subarctic Marine Environments and Organisms*, D.C. Malins, ed. Vol. II. New York: Academic Press, Inc., 175-270.
- Vinnikov, K.Y., A. Robock, R.J. Stouffer, J.E. Walsh, C.L. Parkinson, D.J. Cavalieri, J.F.B. Mitchell, D. Garrett, and V.F. Zakharov. 1999. Global Warming and Northern Hemisphere Sea Ice Extent. *Science* 2895468:1934-1937.
- Visser, R.J. 2002. Offshore Pipeline Design Review. Presentation at Offshore and Onshore Oil Pipelines in Cook Inlet, Soldotna, Ak. Anchorage, AK: ADEC.
- von Ziegesar, O., E. Miller, and M.E. Dahlhiem., 1994. Impacts on Humpback Whales in Prince William Sound. In: Marine Mammals and the Exxon Valdez, T.R. Loughlin, ed. San Diego, CA: Academic Press, Inc., pp. 173-191.
- Vorosmarty, C., L. Hinzman, B. Peterson, D. Bromwich, L. Hamilton, J. Morrison, V. Romanovsky, M. Sturn, and R. Webb. 2001. The Hydrologic Cycle and its Role in Arctic and Global Environmental Change: A Rationale and Strategy for Synthesis Study. Fairbanks, AK: Arctic Research Consortium of the U.S., 84 pp.

- Wade, P.R. and W. Perryman. An Assessment of the Eastern Gray Whale Population in 2002. Paper SC/54 BRG-7. Cambridge, UK: IWC, 16 pp.
- Wainwright, P. 2002. GIS Geospatial Database of Oil-Industry and Other Human Activity (1979-1999) in the Alaskan Beaufort Sea. OCS Study MMS 2002-071. Anchorage, AK: USDOI, MMS, Alaska OCS Region.
- Waite, J.M., M.E. Dahlheim, R.C. Hobbs, S.A. Mizroch, O. von Zeigesar-Matkin, J.M. Straley, L.M. Herman, and J. Jacobsen. 1999. Evidence of a Feeding Aggregation of Humpback Whales (*Megaptera novaeangliae*) around Kodiak Island, Alaska. *Marine Mammal Science* 15(1):210-220.
- Wakefield, E.D. 2001. The Vocal Behaviour and Distribution of Short-Beaked Common Dolphin *Delphinus delphis* L (1758) in the Celtic Sea and Adjacent Waters, with Particular Reference to the Effects of Seismic Surveying. MS Thesis. Bangor, UK: University of Wales.
- Walker, D. A., D. Cate, J. Brown, and C. Racine. 1987.
  Disturbance and Recovery of Arctic Alaskan Tundra Terrain: A Review of recent Investigations. CRREL 87-11. Hanover, NH: U.A. Army Corps of Engineers Cold Regions Research and Engineering Laboratory, 63 pp.
- Walker, D.A., P.J. Webber, E. Binnian, K.R. Everett, N.D. Lederer, E. Norstrand, and M.D Walker. 1997. Cumulative Impacts of Oil Fields on Northern Alaskan Landscapes. *Science* 238(4828):757-761.
- Walsh, J.J.; C.P. McRoy; L.K. Coachman; J.J. Goering; J.C.J. Nihoul; T.E. Whitledge; A.M. Springer; R.D. Tripp;
  D.A. Hansell; S. Djenidi; E. Deleersnijder; K. Henriksen;
  B. Lund; P. Amdersen; F.E. Muller-Karger; and K. Dean. 1989. Carbon and Nitrogen Cycling within the Bering/Chukchi Seas: Source Regions for Organic Matter Affecting AOU Demands of the Arctic Ocean. *Prog. Oceanogr.* 22:277-359.
- Walsh, W.A., F.J. Scarpa, R.S. Brown, K.W. Ashcraft, V.A. Green, T.M. Holder, and R.A. Amoury. 1974. Gasoline Immersion Burn. *New England Journal of Medicine* 291:830.
- Walter, V. 1955. Fishes of Western Arctic America and Eastern Arctic Siberia: Taxonomy and Zoogeography. Bulletin of the American Museum of Natural History 106(Article 5):255-368.
- Wang, J. and M. Ikeda. 2000a. A 3-D Coupled Ice-Ocean Model in the Bering and Chukchi Seas (Abstract). *In*: American Geophysical Union 2000 Ocean Sciences Meeting, San Antonio, Tex. Washington, DC: AGU.
- Wang, J. and Ikeda, M. 2000b. Arctic Sea Ice Oscillation: Regional and Seasonal Perspectives [abstract]. AGU Fall 2000 Meeting, San Francisco, CA, Washington, DC: American Geophysical Union.

Wang, J. and M. Ikeda. 2000c. Arctic Oscillation (AO) and Arctic Sea-Ice Oscillation (ASIO) (Abstract). In: American Geophysical Union Fall 2000 Ocean Sciences Meeting, San Francisco, Calif. Washington, DC: AGU.

Wang, J. and M. Ikeda. In press. Arctic Oscillation and Arctic Sea-Ice Oscillation. *Geophysical Research Letters*, 10 pp.

Wang, J. and M. Jin. 2000. A Nowcast/Forecast Model for the Beaufort Sea Ice-Ocean-Oil Spill System (NFM-BSIOS) (Abstract). OCS Study MMS 2000-070. Anchorage, AK: USDOI, MMS, Alaska OCS Region, p. 22.

Wang, J. and M. Jin. 2001. A Nowcast/Forecast Model for the Beaufort Sea Ice-Ocean Spill System (NFM-BSIOS). *In*: Alaska OCS Region Eighth Information Transfer Meeting Proceedings. Anchorage, AK: USDOI, MMS, Alaska OCS Region, p. 22.

Wang, J. and M. Jin. 2004. A Nowcast/Forecast Model for the Beaufort Sea Ice-Ocean-Oil Spill System (NFM-BSIOS). OCS Study MMS 2004-002. Anchorage, AK: USDOI, MMS, Alaska OCS Region, p. 22

Wang, J. and M. Jin. 2005a. A Nowcast/Forecast Model for the Beaufort Sea Ice-Ocean-Oil Spill System (NFM-BSIOS) (Abstract). OCS Study MMS 2005-055. Anchorage, AK: USDOI, MMS, Alaska OCS Region, p. 6.

Wang, J. and M. Jin. 2005b. Sea-Ice-Ocean-Oil-Spill Modeling System (SIOMS) for the Nearshore Beaufort and Chukchi Seas: Improvement and Parameterization (Phase II) (Abstract). OCS Study MMS 2005-055. Anchorage, AK: USDOI, MMS, Alaska OCS Region, p. 147.

Wang, J. and M. Jin. 2005c. Workshop on Hydrological Modeling for Freshwater Discharge from the Alaska Arctic coast (Abstract). OCS Study MMS 2005-055. Anchorage, AK: USDOI, MMS, Alaska OCS Region, p. 137.

Wang, J., Q. Liu, and M. Jin. 2002. A Nowcast/Forecast Model for the Beaufort Sea Ice-Ocean-Oil Spill System (NFM-BSIOS). OCS Study MMS 2002-001. Anchorage, AK: USDOI, MMS, Alaska OCS Region, pp. 11-30.

Wang, J., G.F. Cota, and J.C. Comiso. 2004. Phytoplankton in the Beaufort and Chukchi Seas: Distribution, Dynamics; and Environmental Forcing. *Deep Sea Research* 

Wang, J., M. Jin, M. Ikeda, K. Shimada, and J. Takahashi. 2003. A Nowcast/Forecast Model for the Beaufort Sea Ice-Ocean-Oil Spill System (NFM-BSIOS). OCS Study MMS 2003-003. Anchorage, AK: USDOI, MMS, Alaska OCS Region, pp. 19-32. Wang, J., B. Wu, C.C.L. Tang, J.E. Walsh, and M. Ikeda. 2004. Seesaw Structure of Subsurface Temperature Anomalies between the Barents Sea and the Labrador Sea. *Geophysical Research letters* 3119(L119301):4 pp.

Wang, J., Q. Liu, M. Jin, M. Ikeda, and F.J. Saucier. 2005. A Coupled Ice-Ocean Model in the Pan-Arctic and North Atlantic Ocean: Simulation of Seasonal Cycles. *Journal* of Oceanography 61:213-233.

Wang, J., M. Ikeda, S. Zhang, and R. Gerdes. 2005. Linking the Northern Hemisphere Sea-Ice Reduction Trend and the Quasi-Decadal Arctic Sea-Ice Oscillation. *Climate Dynamics* 24:115-130.

Warburton, J. and D.J. Seagars. 1993. Heavy Metal Concentrations in Liver and Kidney Tissues of Pacific Walrus: Continuation of a Base Line Study. Technical Report MMM 94-1. Anchorage, AK: USDOI, FWS, Region 7, Marine Mammals Management, 23 pp.

Ward, J.G. and G.E. Pessah. 1988. Industry Observations of Bowhead Whales in the Canadian Beaufort Sea, 1976-1985. *In:* Port and Ocean Engineering Under Arctic Conditions: Symposium on Noise and Marine Mammals, J.L. Imm and S.D. Treacy, eds. Fairbanks, AK: UAA Fairbanks, The Geophysical Institute, pp. 75-88.

Wartzog, D., W.A. Watkins, B. Wursig, R. Maiefski, F. Fristrup, and B. Kelley. 1990. Radio Tracking Studies of the Behavior and Movements of Bowhead Whales in the Beaufort Sea, Fall 1988-1989. *In:* Fifth Conference on the Biology of the Bowhead Whale *Balaena mysticetus*. Anchorage, AK: AMOCO Production Co.

Watanabe, E., J. Wang, A. Sumi, and H. Hasumi. 2006. Arctic Dipole Anomaly and its Contribution to Sea Ice Export from the Arctic Ocean in the 20th Century. *Geophysical Research Letters* 33:L23703.

Watkins, W.A. 1986. Whale Reactions to Human Activities in Cape Cod Waters. *Marine Mammal Science* 24:251-262.

Weber, D.D., D.J. Maynard, W.D. Gronlund, and V. Konchin. 1981. Avoidance Reactions of Migrating Adult Salmon to Petroleum Hydrocarbons. *Can. J. Fish. Aquat. Sci.* 38:779-781.

Weingartner, T.J., D.J. Cavalieri, K. Aagaard, and S. Yasunori. 1998. Circulation, Dense Water Formation and Outflow on the Northeast Chukchi Shelf. *Journal of Geophysical Research* 103C4:7647-7661.

Weingartner, T.J. and S.R. Okkonen. 2001. Beaufort Sea Nearshore Under-Ice Currents: Science, Analysis and Logistics. *In*: University of Alaska Coastal Marine Institute Final Report. OCS Study MMS 2001-068. Fairbanks, AK: University of Alaska, Fairbanks; USDOI, MMS; and State of Alaska, 17 pp. Weingartner, T.J, S. Danielson, Y. Sasaki, V. Pavlov, and M. Kulakov. 1999. The Siberian Coastal Current: A Wind- and Buoyancy-Forced Arctic Coastal Current. *Journal of Geophysical Research* 104C12:29,697-29,713.

Weir, R. 1976. Annotated Bibliography of Bird Kills at Man-Made Obstacles: A Review of the State of the Art and Solutions. Unpublished report. Ottawa, Ont., Canada: Canadian Wildlife Service, Fisheries and Environment.

Weller, D.W., A.M. Burdin, B. Wursig, B.L. Taylor, and L. Brownell, Jr. 2002a. The Western Gray Whale: A Review of Past Exploitation, Current Status, and Potential Threats. *Journal of Cetacean Research and Management* 4:7-12.

Weller, D.W., Y.V. Ivaschenko, G.A. Tsidulko, A.M. Burdin, and R.L. Brownell, Jr. 2002b. Influence of Seismic Surveys on Western Gray Whales off Sakhalin Island, Russia in 2001. Paper SC/54/BRG 14. Cambridge, UK: IWC.

Weller, D.W., A.M. Burdin, A.L. Bradford, Y.V. Ivaschenko, G.A. Tsidulko, A.R. Lang, and R.L.
Brownell, Jr. 2004. Western Gray Whales off Sakhalin Island, Russia: A Joint Russia/U.S. Scientific Investigation July-September 2003. La Jolla, CA, Kamchatka, Russia, and Seward, AK: NMFS, Southwest Fisheries Science Center; Russia Academy of Sciences, Far East Div., Pacific Institute of Geography; and Alaska Sealife Center, 41 pp.

Weller, G., P. Anderson, and G. Nelson. 1998. Alaska and the Bering Sea Regional Workshop on Climate Change Impacts. http://www.gcrio.org/ASPEN/science/EOC97/eoc97ses sion2/Weller.html. Aspen, CO: Aspen Global Change Institute.

Wells, R. 2004. Statewide Health Profile for Alaska Natives. Anchorage, AK: Alaska Native Health Board, Alaska Native Epidemiology Center, p. 46.

Welty, J.C. 1975. *The Life of Birds*. Philadelphia, Pennsylvania: W.B. Saunders Company.

Wexler, L. 2006. Inupiat Youth Suicide and Culture Loss: Changing Community Conversations for Prevention. Social Science and Medicine 63(11)2938-2948.

White, D., Jr., K.C. Kendall, and H.D. Picton. 1999. Potential Energetic Effects of Mountain Climbers on Foraging Grizzly Bears. *Wildlife Society Bulletin* 27:146-151.

Whitehead, H. 1987. Updated Status of the Humpback Whale, *Megaptera novaeangliae*, in Canada. *Canadian Field-Naturalist* 101(2):284-294. Whitten, K.R. 1990. Movement Patterns of the Porcupine Caribou Herd in Relation to Oil Development. Federal Aid In Wildlife Restoration Progress Report, Project W-232 Study 3.34. Juneau, AK: ADF&G, Div. of Wildlife Conservation.

Whitten, K.R. 1997. Conversation in 1997 between K. Whitten, State of Alaska, Dept. of Fish and Game, and D. Hansen, Biologist, USDOI, MMS, Alaska OCS Region; subject: population status of the Central Arctic caribou herd.

Whitten, K.R. and R.D. Cameron. 1980. Nutrient Dynamics of Caribou Forage on Alaska's Arctic Slope. *In:* Proceedings of the Second International Reindeer/Caribou Symposium, E. Reimers, E. Gaare, and G. Skjensberg, eds. Roros, Norway, pp. 159-166.

Wiedmer, M., M.J. Fink, J.J. Stegeman, R. Smolowitz, G.D. Marty, and D.E. Hinton. 1996. Cytochrome P-450 Induction and Histopathology in Preemergent Pink Salmon from Oiled Locations of Western Prince William Sound after the Exxon Valdez Oil Spill. Am. Fish. Soc. Symp. 18:509-517.

Wiig, O., V. Berg, I. Gjertz, D.J. Seagars, and J.U. Skaare. 2000. Use of Skin Biopsies for Assessing Levels of Organochlorines in Walruses (*Odobenus rosmarus*). *Polar Biology* 23:272-278.

Wilcox, W.J., II. and C.F. Cahill. 2003. Regional Haze Trends in Alaska: Implications for Protected Class I Visibility Areas. *EM* Dec. 2003:34-39.

Wilkinson, R. and M. Marmot. 2003. Social Determinants of Health: The Solid Facts. Copenhagen: World Health Organzation. Accessed online on Nov. 25, 2006, at http://www.eruo.who.int/document/e81384.pdf.

Williams, M.T. and R. Rodrigues. 2003. B P's Activities at Northstar, 1999-2002. Chapter 2. *In*: Monitoring of Industrial Sounds, Seals and Bowhead Whales near BP's Northstar Oil Development, Alaskan Beaufort Sea, 1999-2002., W.J. Richardson and M.T. Williams, eds. LGL Report TA2707-5. Anchorage, AK: BPXA, Dept. of Health, Safety & Environment.

Williams, R., A.W. Trites, and D.E. Bain. 2002. Behavioural Responses of Killer Whales (Orcinus orca) to Whale-Watching Boats: Opportunistic Observations and Experimental Approaches. *Journal of Zoology* 256:255-270.

Williams, R., D. Lusseau, and P.S. Hammond. 2006. Estimating Relative Energetic Costs of Human Disturbance to Killer Whales (Orcinus orca). *Biological Conservation* 133:301-311.

Wilson, D., S. Pace, P. Carpenter, H. Teas, T. Goddard, P. Wilde, and P. Kinney. 1982. Nearshore Coastal Currents of the Chukchi Sea, Summer 1981. OCS Study MMS 86-0055. Anchorage, AK: USDOC, NOAA, and USDOI, MMS, pp. 209-519. Wilson, K.C., C.R. McCormick, T.D. Williams, and P.A. Tuomi. 1990. Clinical Treatment and Rehabilitation of Sea Otters. *In*: Sea Otter Symposium: Proceedings of a Symposium to Evaluate the Response Effort on Behalf of Sea Otters after the T/V *Exxon Valdez* Oil Spill into Prince William Sound, K. Bayha and J. Kormendy, Tech. Coords. Anchorage, Ak., Apr. 17-19, 1990. Anchorage, AK: USDOI, FWS, 485 pp.

Winsor, P. and G. Bjork. 2000. Polyna Activity in the Arctic Ocean from 1958 to 1997. *Journal of Geophysical Research* 105C4:8789-8803.

Wisnor, P. and D.C. Chapman. 2002. Distribution and Interannual Variability of Dense Water Production from Coastal Polynyas on the Chukchi Self. *Journal of Geophysical Research* 107C7:3079. doi:10.1029/2001JC000984.

Winters, J.F. and R.T. Shideler. 1990. An Annotated Bibliography of Selected References of Muskoxen Relevant to the National Petroleum Reserve-Alaska. Fairbanks, AK: ADF&G, 82 pp.

Wiseman, W.J., Jr. and L.J. Rouse, Jr. 1980. A Coastal Jet in the Chukchi Sea. *Arctic* 331:21-29.

Witteveen, B., K.M. Wynne, and T.J. Quinn, II. 2005. An Apparent Feeding Aggregation of Humpback Whales (*Megaptera novaeangliae*) near Kodiak Island, Alaska: Historical and Current Abundance Estimation. *In*: Gulf-Apex Predator-Prey Study Final Report FY2000-2003. Fairbanks and Kodiak, AK: University of Alaska, Fairbanks, School of Fisheries and Ocean Sciences, Marine Advisory Program, and Fishery Industrial Technology Center, pp. 141-155.

Wolfe, R.J. 1996. Subsistence Food Harvests in Rural Alaska, and Food Safety Issues. Paper presented at Institute of Medicine, National Academy of Sciences Committee on Environmental Justice, Spokane, Wash. Washington, DC: National Academy of Sciences.

Wolfe, R.J. 2004. Local Traditions and Subsistence: A Synopsis from Twenty-Five Years of Research by the State of Alaska. Technical Paper No. 284. Juneau, AK: State of Alaska, Dept. of Fish and Game, Div. of Subsistence.

Wolfe, R.J., J.J. Gross, S.J. Langdon, J.M. Wright, G.K. Sherrod, and L.J. Ellanna. 1983. Subsistence-Based Economies in Coastal Communities of Southwest Alaska. Technical Paper No. 89. Juneau and Anchorage, AK: ADF&G, Subsistence Div. and USDOI, MMS, Alaska OCS Region, 562 pp.

Wolfe, R.J., J.J. Gross, S.J. Langdon, J.M. Wright, G.K. Sherrod, L.J. Ellanna, V. Sumida, and P.J. Usher. 1984. Subsistence-Based Economies in Coastal Communities of Southwest Alaska. Technical Report 95. Anchorage, AK: USDOI, MMS, Alaska OCS Region. Woodby, D.A. and G.J. Divoky. 1982. Spring Migration of Eiders and Other Waterbirds at Point Barrow, Alaska. *Arctic* 353:403-410.

Woodgate, R.A. and Aagaard, K. 2005. Revising the Bering Strait Freshwater Flux into the Arctic Ocean. *Geophysical Research Letters* 32:L02062. doi:10.1029/2004GL021747.

 Woodgate, R.A., K. Aagaard, and T.J.O. Weingartner. 2005.
 A Year in the Physical Oceanography of the Chukchi Sea: Moored Measurements from Autumn 1990-1991.
 Deep Sea Research Publishing in Dec 2005.

Woodgate R.A., K. Aagaard, R.D. Muench, J. Gunn, G. Bjork, B. Rudels, A.T. Roach, and U. Schauer. 2001. The Arctic Ocean Boundary Current along the Eurasian Slope and the adjacent Lomonosov Ridge: Water Mass Properties, Transports and Transformations from Moored Instruments. *Deep Sea Research Part I: Oceanographic Research Papers* 488:1757-1792.

Woody, D.A and D.B. Botkin., 1993. Stock Sizes Prior to Commercial Whaling. *In: The Bowhead Whale Book*, J.J. Burns, J.J. Montague, and C.J. Cowles, eds. Special Publication of The Society for Marine Mammalogy, 2.. Lawrence, KS: The Society for Marine Mammalogy, pp. 387-407.

Woody, T. 2003. Point Hope. Anchorage, AK: Alaska Magazine.

Woolley, J.T. and J.T. Lima. 2003. Mitigating the Impact of Offshore Oil Development. Final Technical Summary, Final Study Report. Camarillo, CA: USDOI, MMS, Pacific OCS Region.

Worl, R. 1979. Sociocultural Assessment of the Impact of the 1978 International Whaling Commission Quota on the Eskimo Communities. Anchorage, AK: University of Alaska, AEIDC.

World Health Organization. 1946. Constitution of the World Health Organization. Accessed online July 18, 2006, at http://policy.who.int/cgibin/om\_isapi.dll?hitsperheading=on&infobase=basicdoc &jump=Constitution&softpage=Document42#JUMPDE ST\_Constitution.

Woshner, V.M., T.M. O''Hara, J.A. Eurell, M.A. Wallig, G.R. Bratton, R.S. Suydam, and V.R. Beasley. 2002.
Distribution of Inorganic Mercury in Liver and Kidney of Beluga and Bowhead Whales through Autometallographic Development of Light Microscopic Tissue Sections. *Toxicological Pathology* 302:209-217.

Wursig, B. 1990. Cetaceans and Oil: Ecological Perspectives. In: Sea Mammals and Oil: Confronting the Risks, J.R. Geraci and D.J. St. Aubin, eds. San Diego, CA: Academic Press.

- Wursig, B., E.M. Dorsey, M.A. Fraker, R.S. Payne, and W.J. Richardson. 1985. Behavior of Bowhead Whales (*Balaena mysticetus*) Summering in the Beaufort Sea: A Description. *Fisheries Bulletin* 83(3):357-337.
- Wursig, B., E.M. Dorsey, W.J. Richardson, and R.W. Wells. 1989. Feeding, Aerial, and Play Behavior of the Bowhead Whale, *Balaena mysticetus*, Summering in the Beaufort Sea. *Aquatic Mammals* 15(1):27-37.
- Yablokov, A.V. 1994. Validity of Whaling Data. *Nature* 367:108.
- Yeats, P.A. 1988. Manganese, Nickel, Zinc, and Cadmium Distributions at the Fram 3 and Cesar Ice Camps in the Arctic Ocean. *Oceanologica Acta* 11:383-388.
- York, A.E. 1995. The Relationship of Several Environmental Indices to the Survival of Juvenile Male Northern Fur Seals (*Callorhinus uarsinus*) from the Pribilof Islands. *In*: Climate Change and Northern Fish Populations, R.J. Beamish, ed. Can. Spec. Publ. Fish Aquat. Sci. No. 121. National Research Council Canada.
- Yu, Y., G.A. Maykut, and D.A. Rothrock. 2004. Changes in the Thickness Distribution of Arctic Sea Ice between 1958–1970 and 1993–1997. *Journal of Geophysical Research* 109:C08004. doi:10.1029/2003JC001982.
- Zeh, J.E. and A.E. Punt. 2004. Updated 1978-2001 Abundance Estimates and their Correlation for the Bering-Chukchi-Beaufort Sea Stock of Bowhead Whales. Unpublished Report SC/56/BRG1. Cambridge, UK: IWC, 10 pp.
- Zeh, J.E., A.E. Raftery, and A.A. Schaffner. 1995. Revised Estimates of Bowhead Population Size and Rate of Increase. Reports of the International Whaling Commission 46, SC/47/AS10. Cambridge, UK: IWC, pp. 670-696.
- Zeh, J.E., C.W. Clark, J.C. George, D. Withrow, G.M. Carroll, and W.R. Koski. 1993. Current Population Size and Dynamics. *In: The Bowhead Whale*, J.J. Burns, J.J. Montague, and C.J. Cowles, eds. Lawrence, KS: The Society for Marine Mammalogy, pp. 409-489.
- Zeh, J.E., D. Poole, G. Miller, R.W. Koski, L. Baraff, and D. Rugh. 2002 Survival of Bowhead Whales, *Balaena mysticetus*, Estimated from 1981-1998 Photoidentification Data. *Biometrics* 58(4):832-840.
- Zhang, J., D.A. Rothrock, and M. Steele. 1998. Warming of the Arctic Ocean by a Strengthened Atlantic Inflow: Model Results. *Geophysical Research Letters* 25:1745-1748.
- Zhao, J., G. Gao, and Y. Jiao. 2005. Warming in the Arctic Intermediate and Deep Waters around Chukchi Plateau and its Adjacent Regions in 1999. *Science in China Series D Earth Sciences* 48(8):1312-1320.

Zinman, B. 2006. Diabetes in Indigenous Populations: Genetic Susceptibility and Environmental Change. Accessed online June 22, 2006, at www.d4pro.com/idm/site/diabetes\_in\_indigenous\_popul ations\_.htm. As the Nation's principal conservation agency, the Department of the Interior has responsibility for most of our nationally-owned public lands and natural resources. This includes fostering the wisest use of our land and water resources, protecting our fish and wildlife, preserving the environmental and cultural values of our national parks and historical places, and providing for the enjoyment of life through outdoor recreation. The Department assesses our energy and mineral resources and works to assure that their development is in the best interest of all our people. The Department also has a major responsibility for American Indian reservation communities and for people who live in Island Territories under U.S. Administration.





## Chukchi Sea Planning Area

OCS EIS/EA MMS 2007-026 Oil and Gas Lease Sale 193 and Seismic Surveying Activities Final Environmental Impact Statement VOLUME III U.S. Department of the Interior Minerals Management Service Alaska OCS Region