PNW-64 September 1967 # DEBRIS AVALANCHING IN THIN SOILS DERIVED FROM BEDROCK Douglas N. Swanston, Associate Research Geologist Institute of Northern Forestry #### INTRODUCTION In southeast Alaska, many valley slopes that are greatly oversteepened by glacial erosion support mature forests rooted in shallow soil over bedrock. Debris avalanches on these slopes are one of the most frequent types of mass wastage in the region. They are especially common along the mainland and interior islands of the Alexander Archipelago where glacial till deposits are often thin or absent due to the resistance of local bedrock to glacial erosion. At present, the forest land manager does not consider large-scale debris avalanching of this type an important erosion hazard in existing sale areas. Because of the poorer quality of timber on these soils and the steep and difficult terrain, slopes with shallow soils are often excluded from logging. As the logging industry expands to these sites in southeast Alaska, however, an understanding of this type of debris avalanching will become important in land management. # FIELD METHODS During the summers of 1964 and 1965, reconnaissance investigations were made of debris avalanches in shallow soil. The study sites were chosen according to frequency of landslide occurrence and ease of access. The main site criterion was that glacial till be absent at the point of slide initiation. At each location, configuration of the slide trace and bedrock type and attitude were determined, and the angle of slope at the point of slide initiation was measured. Also at each locality, the soil depth was measured, and a probable cause of initial sliding was determined by reconstruction of events that apparently occurred when the slope failed. # SITE CHARACTERISTICS The location and measured characteristics of each investigated site are shown in figure ${\bf 1}$ and table ${\bf 1}$. Figure 1.--Map of southeast Alaska showing study site locations. Table 1.--Measured study site characteristics and probable causes of sliding | Location | Aspect | Slope at head
of slide | Debris
deposit area | Bedrock
type | Strike and dip | Soil
thickness | Circumstances
of slides | |---|-----------------|--|---|---|---|---|---| | A. North end of Douglas
Island | NE. | ≈40° | Very small; slide did
not reach bottom of
slope | Interbedded gray-
wacke and gray
shale | N. 38° W., 30° NE. | ≈3 feet | Slide occurred on lower
edge of Treadwell
ditch; failure of
outer ditch wall | | B. Young Bay-~in drainage
of East and West
Creeks | н. | 32*-40* | Very small; confined to
alluvial flat at mouth
of creek | Graywacke and black
slate interbedded | N. 35° W., 45° NE. | 1-3 feet | Small slides occur on
extremely steep side
slopes of both creeks
by gravity sliding | | C. Walter Island Arm | SW. | ≈45° | Very small; ≈ 10 percent
of total slide area
ponded on the beach | Schist and schistose
conglomerate | N. 60° W., 58° NE.;
in-dipping bed-
rock amoothed by
glacial scour | ≈3 feet | Extremely steep to ver-
tical bluffs over-
hanging head of slide | | D. 1/2 mile east of
Steamboat Bay near
Cape Fanshaw | W. | ≈40° | Not discernible in heavy
undergrowth at slope
base | Black argillite | N. 60° W., 78° NE.;
in-dipping bed-
rock smoothed by
glacial scour | #3 feet | Extremely steep slope
at slide head, with
many indications of
windthrow in area | | E. Blind River, 12 miles
south of Petersburg | NE. | 35*-40* | Small; less then 10 per-
cent of total slide
area; debris ponded
principally on or
directly below log-
ging road | Black argillite and
graywacke inter-
bedded. Overlain
by thin patches
of glacial till | N. 40° W., 60° NE.;
bedrock surface
smoothed by glacial
scour | ≈2 feet | Slides developed as
slip-outs in shallow
but steep-faced till
banks along narrow
stream channel in
slope | | F. Blake Channel Narrows | NE. | ≈50° | Very small; most debris
ponded at base of
slope near beach | Schist, | N. 45" W., 80" NE. | ≈2 feet | Slide developed approx-
imately half way up
small creek as result
of slip-out in thin | | | | | | | | | soil covering a very
steep pitch in slope | | G. Blake Channel | w. | 50°-60° (Slope dip controlled by jointing) | Very small; much of
debris carried into
channel | Quartz-diorite
gneiss | Bedrock rounded and
smoothed by glacial
scour. Dominant
joint set: N. 40°
W., 30° NE. and
N. 10° E., 70° NW. | 2-3 feet | Extremely steep to ver-
tical bluffs over-
hanging head of slide
apparently initiated
by rockfall | | H. Martin Creek Valley | E. | 36° (Slope dip controlled by jointing) | Very small; debris
ponded at base of
slope, some emptied
into Clay Lake | Quartz-diorite
gneiss | Bedrock rounded and
smoothed by glacial
scour. Dominant
joint set: N. 40°
W., 30° NE; N. 10°
E., 70° NW. | 2-3 feet | Principal jointing sur-
face parallel to or
slightly less than
slope angle at head o
slide; appears to hav
been an outward move-
ment of blocks of bed
rock along joint plan
coupled with windthro | | I. Burnett Inlet | w. | 40* | Very small; ponded in
creek valley | Massive inter-
bedded graywacke
and black slate | N. 80° E., 38° SE. | Variable,
but less
than 3
feet | Bluffs overhanging head
of slide, apparently
initiated by rockfall | | J. Neets Bay | N.
and
S. | 40°~60° | Many individual
slides; generally
small; amjority of
slides ending in
bay | Interbedded schist,
black srgillite,
and graywacke | Veriable, but predominantly NW. with dip SW. | Variable,
but less
than 3
feet | Extremely steep slope a
slide head, some
bluffs and rock cliff
indicating initiation
by rockfall or slip-
out of bedrock units;
windthrow common; per
haps some destruction
of root stabilization
by logging | | K. Gedney Pass | N. | 40°-50° | Numerous slides; small;
generally ending in
the water | Biotite, schist,
granite, diorite,
gneiss | N. 70° W., 25° NE. | Variable,
but less
than 3
feet | Extremely steep slope a
head of slides with
overhanging bluffs | | L. Walker Cove | ĸ. | 35 ° | Small; alide ending
at water line | Granite, gneiss | (T/) | Less then
2 feet | Extremely steep side walls of stream chan-
nel; slide apparently caused by slip-out of
lithosols from these
side walls | | M. Rudyerd Bay | N. | 35* | Small; ending at water line | Granite, gneiss | (1/) | (1/) | Extremely steep slope
with overhanging
cliffs | | N. Hollis, Prince of
Wales Island | s. | 40° (Begins above zone of till deposition) | Small; ponding in
valley bottom be-
fore reaching
creek | Interbedded black argillite and graywacke | N. 35° W., 36° SW. | (1/) | Extremely steep slope
near head of slide
with evidence of
windthrow | | O. Thorms River Valley,
Prince of Wales
Island | SW. | 38° (Occurs in zone of no till deposition) | Small; ponded on
logging road | Granite, gneiss | <u>(I</u> /) | ≠3 feet | Very steep slope in
logged area | | P. Luck Lake, Prince of
Wales Island | v. | 40° (Occurs in area of no till deposition) | Small; ponded on
creek bottom | Granodiorite | <u>(T</u> /) | ≈2 feet | Steep slope with over-
hanging bluffs | ^{1/} Data not available. In every case, the slopes on which these slides occurred are extremely steep, lying between 35° and 40° or more, and support an old-growth forest of Sitka spruce and western hemlock rooted in a thin, rocky soil (figs. 2 and 3). Figure 2.--View of a debris avalanche path. The timber is growing on a thin soil overlying metamorphosed graywacke. Note the broken nature of the bedrock surface indicative of frost wedging and the prying action of growing roots. Figure 3.--A debris avalanche path in a thin soil. The bedrock is a glacially rounded, metamorphosed granite jointed parallel and perpendicular to the slope. The soils are coarse and permeable with a high proportion of angular rock fragments and overlain by a thin organic mat consisting of intertwining roots and forest litter. The soils appear to drain very rapidly since overland flow was never observed, even during intense rainfall. Bedrock slopes on which these soils have developed are smoothed off and dip into the valley at angles that approach or exceed the angle of internal friction for these soil materials (fig. 3). This angle has been arbitrarily set, based on practical engineering experience, between 34° and 46° depending on density of the soils and weight of the overlying materials. When the slope approaches or exceeds the angle of internal friction, the soil and slope conditions are such that downslope movement under the force of gravity is imminent. # DISCUSSION Since these soils remain in position on the slopes and support extensive forest cover, a considerable resistance to downslope movement or "shearing" along the bedrock surface must exist. This shear resistance is additional to any internal friction between the individual soil particles and between the particles and the bedrock surface. The additional shear resistance is believed to be produced by the anchoring effect of root growth through the thin soil and into joints and fractures in the bedrock and, to a limited extent, by adhesion between individual particles due to soil water films. Saturation and subsequent free water movement through the soil effectively reduce shear resistance due to adhesion and internal friction. The increased weight of the water-saturated soil and overlying organic mat increases the effective gravitational force acting to pull the soil downslope. Simultaneously, the buoyancy of the vertical component of free water movement tends to reduce the frictional resistance and adhesion between particles and along the bedrock surface. Rapid rise in piezometric level in glacial till soils during heavy rainfall periods The angle of internal friction is defined as the angle at which the driving forces due to gravity in a soil mass are equal and opposite to the resisting forces due to friction. Z/ Terzaghi, Karl, and Peck, R. B. Soil mechanics in engineering practice. 566 pp. New York: John Wiley and Sons, Inc. 1948. is known to occur and is believed to be a principal force in a debris avalanche on till-covered slopes. 3/4/ In shallow-to-bedrock soils, such rapid piezometric level rise has not yet been observed; however, it is probable that similar relationships also hold true, although the total effect may be somewhat less because of the coarse nature of the soil and resultant extremely rapid drainage of infiltrating water. The decrease in shearing resistance of shallow soils is thought to be substantially aided by a decrease in root anchoring as the forest cover matures and the rate of root growth diminishes. The growing roots, which initially serve to anchor the soils on the slope, may actually counteract their early stabilizing effect by wedging out pieces and blocks of bedrock and loosening the underlying bedrock surface. The prying action of freezing water in the resultant root cracks probably adds considerably to this effect. Soil development adds to the proportion of greasy colloidal organic and iron compounds in the soil material over time, also adding to instability. Slopes thus prepared are primed for sliding. During periods of maximum rainfall, only a small triggering force is necessary to cause the rapid downslope movement of a soil mass. Such a force may be produced by a sharp increase in soil water content or by a rapid increase in the weight of the soil mass. Field evidence suggests that the latter, due to tree blowdowns or the addition of rock masses resulting from gravity fall, is the principal initiating cause of these sliding phenomena. The majority of debris avalanches investigated occurred on timbered slopes and originated in areas of windthrown trees or extensive overhanging rock bluffs. A few showed indications that large blocks of bedrock had moved outward along zones of weakness at the upper slide margins with no indications of windthrow or rock fall. The triggering force here probably was excess hydrostatic pressure produced in joint cracks underlying the blocks. In Neets Bay and Gedney Pass, where slopes of the type considered above have been logged, the initiating mechanisms are the same as those described earlier. The marked increase in sliding within the clearcut areas, first reported by Bishop and Stevens, 5 may be the result of progressive deterioration, after logging, of the root systems anchoring the shallow soil on the slopes. ^{3/} Bishop, D., and Stevens, M. E. Landslides on logged areas in southeast Alaska. U.S. Forest Serv. Res. Pap. NOR-1, 18 pp. 1964. ^{4/} Swanston, Douglas N. Soil-water piezometry in a southeast Alaska landslide area. (In preparation for publication, Pacific Northwest Forest & Range Exp. Sta., U.S. Forest Serv., Portland, Oreg.) $[\]frac{5}{}$ See footnote 3. #### CONCLUSIONS On slopes steeper than the internal angle of friction and in the absence of a well-developed, cohesive soil, landslides must be considered a natural erosion process responding to the basic laws of physics. They are an inevitable result of any occurrence which tends to reduce the resistance of a slope to sliding. Many of these slopes remain stable for years despite the action of external forces tending to reduce their resistance to sliding. The slope soils, therefore, must possess a slide resistance which is not directly related to the physical properties of the soil. Present indications are that this force is produced by tree rooting through the soil and into cracks in the underlying bedrock. Destruction of this rooting system would greatly increase susceptibility of the slope soil to slides. * * *