EPA-600/3-77-061 May 1977

see rest page for reference

TEMPERATURE CRITERIA FOR FRESHWATER FISH:

PROTOCOL AND PROCEDURES

Ъу

William A. Brungs
Bernard R. Jones
Environmental Research Laboratory-Duluth
Duluth, Minnesota 55804

UNIVERSITY OF ALASKA

ARCTIC ENVIRONMENTAL INFORMATION

AND DATA CENTER

707 A STREET

ANCHORAGE, AK 99501

Unit sugarty or the title

ENVIRONMENTAL RESEARCH LABORATORY-DULUTH
OFFICE OF RESEARCH AND DEVELOPMENT
U.S. ENVIRONMENTAL PROTECTION AGENCY
DULUTH, MINNESOTA 55804

Automal Academy of Sciences of Mational Headening of Engineering (NAS/NAL) 11973. Water Quelity Enterior 1912.

A report of the committee on water quality enterior. 11.5.

Environmental Protection Agency for No. EPA-KS-73-035,

Washingh, DC. 553P. APPENDIX A*

HEAT AND TEMPERATURE

Living organisms do not respond to the quantity of heat but to degrees of temperature or to temperature changes caused by transfer of heat. The importance of temperature to acquatic organisms is well known, and the composition of aquatic communities depends largely on the temperature characteristics of their environment. Organisms have upper and lower thermal tolerance limits, optimum temperatures for growth, preferred temperatures in thermal gradients, and temperature limitations for migration, spawning, and egg incubation. Temperature also affects the physical environment of the aquatic medium, (e.g., viscosity, degree of ice cover, and oxygen capacity. Therefore, the composition of aquatic communities depends largely on temperature characteristics of the environment. In recent years there has been an accelerated demand for cooling waters for power stations that release large quantities of heat, causing, or threatening to cause, either a warming of rivers, lakes, and coastal waters, or a rapid cooling when the artificial sources of heat are abruptly terminated. For these reasons, the environmental consequences of temperature changes must be considered in assessments of water quality requirements of aquatic organisms.

The "natural" temperatures of surface waters of the United States vary from 0 C to over 40 C as a function of latitude, altitude, season, time of day, duration of flow, depth, and many other variables. The agents that affect the natural temperature are so numerous that it is unlikely that two bodies of water, even in the same latitude, would have exactly the same thermal characteristics. Moreover, a single aquatic habitat typically does not have uniform or consistent thermal characteristics. Since all aquatic organisms (with the exception of aquatic mammals and a few large, fast-swimming fish) have body temperatures that conform to the water temperature, these natural variations create conditions that are optimum at times, but are generally above or below optima for particular physiological, behavioral, and competitive functions of the species present.

Because significant temperature changes may affect the composition of an aquatic or wildlife community, an induced change in the thermal characteristics of an ecosystem may be detrimental. On the other hand, altered thermal characteristics may be beneficial, as evidenced in most fish hatchery practices and at other aquacultural facilities. (See the discussion of Aquaculture in Section IV.)

The general difficulty in developing suitable criteria for temperature (which would limit the addition of heat) lies in determining the deviation from "natural" temperature a particular body of water can experience without suffering adverse effects on its biota. Whatever requirements are suggested, a "natural" seasonal cycle must be retained, annual spring and fall changes in temperature must be gradual, and large unnatural day-to-day fluctuations should be avoided. In view of the many variables, it seems obvious that no single temperature requirement can be applied uniformly to continental or large regional areas; the requirements must be closely related to each body of water and to its particular community of organisms, especially the important species found in it. These should include invertebrates, plankton, or other plant and animal life that may be of importance to food chains or otherwise interact with species of direct interest to man. Since thermal requirements of various species differ, the social choice of the species to be protected allows for different "levels of protection" among water bodies as suggested by Doudoroff and Shumway (1970)272 for dissolved oxygen criteria. (See Dissolved Oxygen, p. 131.) Although such decisions clearly transcend the scientific judgments needed in establishing thermal criteria for protecting selected species, biologists can aid in making them. Some measures useful in assigning levels of importance to species are: (1) high yield to commercial or sport fisheries, (2) large biomass in the existing ecosystem (if desirable), (3) important links in food chains of other species judged important for other reasons, and (4) "endangered" or unique status. If it is desirable to attempt strict preservation of an existing ecosystem, the most sensitive species or life stage may dictate the criteria selected.

Criteria for making recommendations for water temperature to protect desirable aquatic life cannot be simply a maximum allowed change from "natural temperatures." This is principally because a change of even one degree from

^{*}From: National Academy of Sciences (1973). See pp. 151-171, 205-207.

an ambient temperature has varying significance for an organism, depending upon where the ambient level lies within the tolerance range. In addition, historic temperature records or, alternatively, the existing ambient temperature prior to any thermal alterations by man are not always reliable indicators of desirable conditions for aquatic populations. Multiple developments of water resources also change water temperatures both upward (e.g., upstream power plants or shallow reservoirs) and downward (e.g., deepwater releases from large reservoirs), so that "ambient" and "natural" are exceedingly difficult to define at a given point over periods of several years.

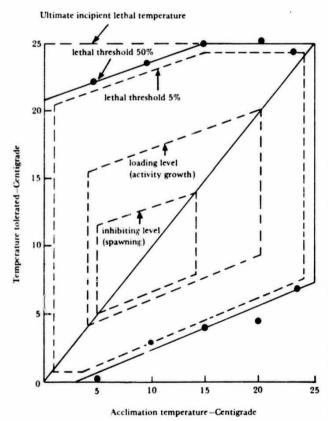
Criteria for temperature should consider both the multiple thermal requirements of aquatic species and requirements for balanced communities. The number of distance requirements and the necessary values for each require periodic reexamination as knowledge of thermal effects on aquatic species and communities increases. Currently definable requirements include:

- maximum sustained temperatures that are consistent with maintaining desirable levels of productivity;
- maximum levels of metabolic acclimation to warm temperatures that will permit return to ambient winter temperatures should artificial sources of heat cease;
- temperature limitations for survival of brief exposures to temperature extremes, both upper and lower;
- restricted temperature ranges for various stages of reproduction, including (for fish) gonad growth and gamete maturation, spawning migration, release of gametes, development of the embryo, commencement of independent feeding (and other activities) by juveniles; and temperatures required for metamorphosis, emergence, and other activities of lower forms;
- thermal limits for diverse compositions of species of aquatic communities, particularly where reduction in diversity creates nuisance growths of certain organisms, or where important food sources or chains are altered;
- thermal requirements of downstream aquatic life where upstream warming of a cold-water source will adversely affect downstream temperature requirements.

Thermal criteria must also be formulated with knowledge of how man alters temperatures, the hydrodynamics of the changes, and how the biota can reasonably be expected to interact with the thermal regimes produced. It is not sufficient, for example, to define only the thermal criteria for sustained production of a species in open waters, because large numbers of organisms may also be exposed to thermal changes by being pumped through the condensers and mixing zone of a power plant. Design engineers need

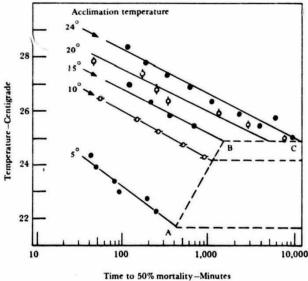
particularly to know the biological limitations to their design options in such instances. Such considerations may reveal nonthermal impacts of cooling processes that may outweigh temperature effects, such as impingement of fish upon intake screens, mechanical or chemical damage to zooplankton in condensers, or effects of altered current patterns on bottom fauna in a discharge area. The environmental situations of aquatic organisms (e.g., where they are, when they are there, in what numbers) must also be understood. Thermal criteria for migratory species should be applied to a certain area only when the species is actually there. Although thermal effects of power stations are currently of great interest, other less dramatic causes of temperature change including deforestation, stream channellization, and impoundment of flowing water must be recognized.

DEVELOPMENT OF CRITERIA


Thermal criteria necessary for the protection of species or communities are discussed separately below. The order of presentation of the different criteria does not imply priority for any one body of water. The descriptions define preferred methods and procedures for judging thermal requirements, and generally do not give numerical values (except in Appendix II-C). Specific values for all limitations would require a biological handbook that is far beyond the scope of this Section. The criteria may seem complex, but they represent an extensively developed framework of knowledge about biological responses. (A sample application of these criteria begins on page 166, Use of Temperature Criteria.)

TERMINOLOGY DEFINED

Some basic thermal responses of aquatic organisms will be referred to repeatedly and are defined and reviewed briefly here. Effects of heat on organisms and aquatic communities have been reviewed periodically (e.g., Bullock 1955,²⁵⁹ Brett 1956;²⁵³ Fry 1947,²⁷⁶ 1964,²⁷⁸ 1967;²⁷⁹ Kinne 1970²⁹⁶). Some effects have been analyzed in the context of thermal modification by power plants (Parker and Krenkel 1969;³⁰⁸ Krenkel and Parker 1969;²⁹⁸ Cairns 1968;²⁶¹ Clark 1969;²⁶³ and Coutant 1970c²⁶⁹). Bibliographic information is available from Kennedy and Mihursky (1967),²⁹⁴ Raney and Menzel (1969),³¹³ and from annual reviews published by the Water Pollution Control Federation (Coutant 1968,²⁶⁵ 1969,²⁶⁶ 1970a,²⁶⁷ 1971²⁷⁰).


Each species (and often each distinct life-stage of a species) has a characteristic tolerance range of temperature as a consequence of acclimations (internal biochemical adjustments) made while at previous holding temperature (Figure III-2; Brett 1956²⁵³). Ordinarily, the ends of this range, or the lethal thresholds, are defined by survival of 50 per cent of a sample of individuals. Lethal thresholds typically are referred to as "incipient lethal temperatures," and temperature beyond these ranges would be considered "ex-

treme." The tolerance range is adjusted upward by acclimation to warmer water and downward to cooler water, although there is a limit to such accommodation. The lower end of the range usually is at zero degrees centigrade (32 F) for species in temperate latitudes (somewhat less for saline waters), while the upper end terminates in an "ultimate incipient lethal temperature" (Fry et al. 1946²⁸¹). This ultimate threshold temperature represents the "breaking point" between the highest temperatures to which an animal can be acclimated and the lowest of the extreme temperatures that will kill the warm-acclimated organism. Any rate of temperature change over a period of minutes

After Brett 1960 254

FIGURE III-2—Upper and lower lethal temperatures for young sockeye salmon (Oncorhynchus nerka) plotted to show the zone of tolerance. Within this zone two other zones are represented to illustrate (1) an area boyond which growth would be poor to none-at-all under the influence of the loading effect of metabolic demand, and (2) an area beyond which temperature is likely to inhibit normal reproduction.

After Brett 1952 252

FIGURE III-3—Median resistance times to high temperatures among young chinook (Oncorhynchus tshawytscha) acclimated to temperatures indicated. Line A-B denotes rising lethal threshold (incipient lethal temperatures) with increasing acclimation temperature. This rise eventually ceases at the ultimate lethal threshold (ultimate upper incipient lethal temperature), line B-C.

to a few hours will not greatly affect the thermal tolerance limits, since acclimation to changing temperatures requires several days (Brett 1941).²⁵¹

At the temperatures above and below the incipient lethal temperatures, survival depends not only on the temperature but also on the duration of exposure, with mortality occurring more rapidly the farther the temperature is from the threshold (Figure III-3). (See Coutant 1970a²⁶⁷ and 1970b²⁶⁸ for further discussion based on both field and laboratory studies.) Thus, organisms respond to extreme high and low temperatures in a manner similar to the dosage-response pattern which is common to toxicants, pharmaceuticals, and radiation (Bliss 1937).²⁴⁹ Such tests seldom extend beyond one week in duration.

MAXIMUM ACCEPTABLE TEMPERATURES FOR PROLONGED EXPOSURES

Specific criteria for prolonged exposure (1 week or longer) must be defined for warm and for cold seasons. Additional criteria for gradual temperature (and life cycle) changes during reproduction and development periods are discussed on pp. 162–165.

SPRING, SUMMER, AND FALL MAXIMA FOR PROLONGED EXPOSURE

Occupancy of habitats by most aquatic organisms is often limited within the thermal tolerance range to temperatures somewhat below the ultimate upper incipient lethal temperature. This is the result of poor physiological performance at near lethal levels (e.g., growth, metabolic scope for activities, appetite, food conversion efficiency), interspecies competition, disease, predation, and other subtle ecological factors (Fry 1951;277 Brett 1971256). This complex limitation is evidenced by restricted southern and altitudinal distributions of many species. On the other hand, optimum temperatures (such as those producing fastest growth rates) are not generally necessary at all times to maintain thriving populations and are often exceeded in nature during summer months (Frv 1951;277 Cooper 1953;264 Beyerle and Cooper 1960;246 Kramer and Smith 1960297). Moderate temperature fluctuations can generally be tolerated as long as a maximum upper limit is not exceeded for long periods.

A true temperature limit for exposures long enough to reflect metabolic acclimation and optimum ecological performance must lie somewhere between the physiological optimum and the ultimate upper incipient lethal temperatures. Brett (1960)²⁵⁴ suggested that a provisional long-term exposure limit be the temperature greater than optimum that allowed 75 per cent of optimum performance. His suggestion has not been tested by definitive studies.

Examination of literature on performance, metabolic rate, temperature preference, growth, natural distribution, and tolerance of several species has yielded an apparently sound theoretical basis for estimating an upper temperature limit for long term exposure and a method for doing this with a minimum of additional research. New data will provide refinement, but this method forms a useful guide for the present time. The method is based on the general observations summarized here and in Figure III-4(a, b, c).

- 1. Performances of organisms over a range of temperatures are available in the scientific literature for a variety of functions. Figures III-4a and b show three characteristic types of responses numbered 1 through 3, of which types 1 and 2 have coinciding optimum peaks. These optimum temperatures are characteristic for a species (or life stage).
- 2. Degrees of impairment from optimum levels of various performance functions are not uniform with increasing temperature above the optimum for a single species. The most sensitive function appears to be growth rate, for which a temperature of zero growth (with abundant food) can be determined for important species and life stages. Growth rate of organisms appears to be an integrator of all factors acting on an organism. Growth rate should probably be expressed as net biomass gain or net growth (McCormick et al. 1971)^{3/2} of the population, to account for deaths.
 - 3. The maximum temperature at which several species

are consistently found in nature (Fry 1951;²⁷⁷ Narver 1970)³⁰⁶ lies near the average of the optimum temperature and the temperature of zero net growth.

4. Comparison of patterns in Figures III-4a and b among different species indicates that while the trends are similar, the optimum is closer to the lethal level in some species than it is in sockeye salmon. Invertebrates exhibit a pattern of temperature effects on growth rate that is very similar to that of fish (Figure III-4c).

The optimum temperature may be influenced by rate of feeding. Brett et al. (1969)²⁵⁷ demonstrated a shift in optimum toward cooler temperatures for sockeye salmon when ration was restricted. In a similar experiment with channel catfish, Andrews and Stickney (1972)²⁴² could see no such shift. Lack of a general shift in optimum may be due to compensating changes in activity of the fish (Fry personal observation).³²⁶

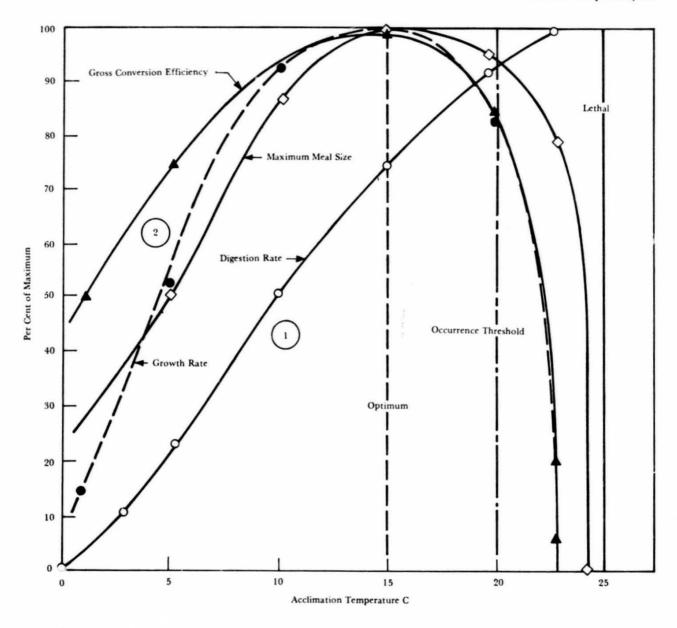
These observations suggest that an average of the optimum temperature and the temperature of zero net growth [(opt. temp. + z.n.g. temp)/2] would be a useful estimate of a limiting weekly mean temperature for resident organisms, providing the peak temperatures do not exceed values recommended for short-term exposures. Optimum growth rate would generally be reduced to no lower than 80 per cent of the maximum if the limiting temperature is as averaged above (Table III-11). This range of reduction from optimum appears acceptable, although there are no quantitative studies available that would allow the criterion to be based upon a specific level of impairment.

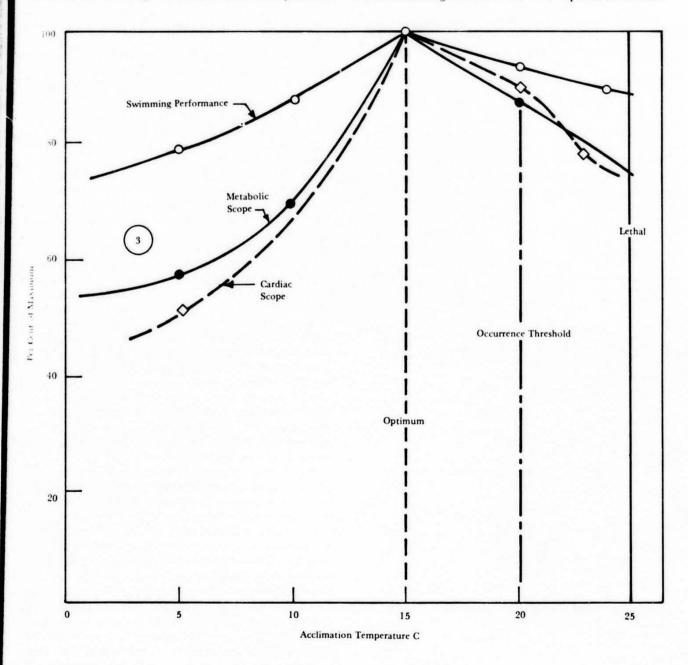
The criteria for maximum upper temperature must allow for seasonal changes, because different life stages of many species will have different thermal requirements for the average of their optimum and zero net growths. Thus a juvenile fish in May will be likely to have a lower maximum acceptable temperature than will the same fish in July, and this must be reflected in the thermal criteria for a waterbody.

TABLE III-11—Summary of Some Upper Limiting Temperatures in C, (for periods longer than one week) Based Upon Optimum Temperatures and Temperatures of Zero Net Growth.

Species	Optimum	Zero net	Reference	opt + z.n.g.	% of
	. Trement	growth		2	
Catostomus commersoni (white sucker)	27	29.6	•	28.3	86
Goregonus artedii (cisco or lake herring)	. 16	21.2	McCormick et al. 1971302	18.6	82
Ictalurus punctatus (channel catfish)	30	35.7	Strawn 1970220	32.8	94
	30	35.7	Andrews and Stickney 1972242	32.8	
Legomis macrochirus (bluegill) (year II)	22	28.5	McComish 1971301	25.3	82
Micropterus salmoides (largemouth bass)	27.5	34	Strawn 1961310	30.8	83
Hotropis atherinoides (emerald shiner)	27	33	•	30.5	83
Salvelinus fontinalis (brook trout)	. 15.4	18.8	•	17.1	80

^{*}National Water Quality Laboratory, Duluth, Minn., unpublished data.328




FIGURE III-4a-Performance of Sockeye Salmon (Oncorhynchus nerka) in Relation to Acclimation Temperature

After Brett 1971256

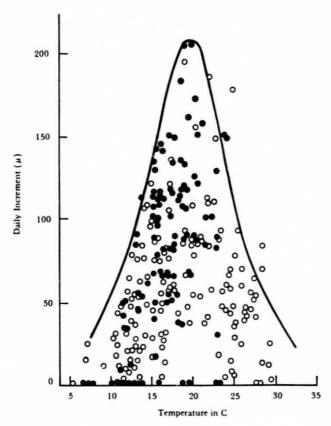
156 Section III-Freshwater Aquatic Life and Wildlife

While this approach to developing the maximum sustained temperature appears justified on the basis of available knowledge, few limits can be derived from existing data in the literature on zero growth. On the other hand, there is a

sizeable body of data on the ultimate incipient lethal temperature that could serve as a substitute for the data on temperature of zero net growth. A practical consideration in recommending criteria is the time required to conduct

After Brett 1971256

FIGURE III-4b-Performance of Sockeye Salmon (Oncorhynchus nerka) in Relation to Acclimation Temperature


research necessary to provide missing data. Techniques for determining incipient lethal temperatures are standardized (Brett 1952)²⁵² whereas those for zero growth are not.

A temperature that is one-third of the range between the optimum temperature and the ultimate incipient lethal temperature that can be calculated by the formula

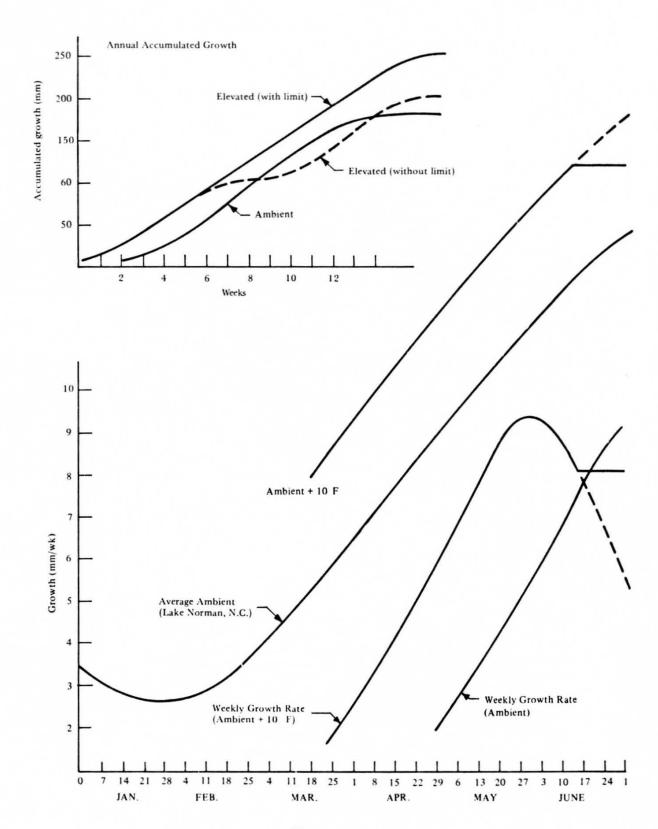
$${\it optimum\ temp.} + \frac{{\it ultimate\ incipient\ lethal\ temp.-optimum\ temp.}}{3}$$

(Equation 1)

yields values that are very close to (optimum temp. + z.n.g. temp.)/2. For example, the values are, respectively, 32.7 and 32.8 C for channel catfish and 30.6 and 30.8 for largemouth bass (data from Table III-8 and Appendix II). This formula offers a practical method for obtaining allow-

Ansell 1968 243

FIGURE III-4c—M. mercenaria: The general relationship between temperature and the rate of shell growth, based on field measurements of growth and temperature.


●: sites in Poole Harbor, England; O: North American sites.

able limits, while retaining as its scientific basis the requirements of preserving adequate rates of growth. Some limits obtained from data in the literature are given in Table III-12. A hypothetical example of the effect of this limit on growth of largemouth bass is illustrated in Figure III-5.

Figure III-5 shows a hypothetical example of the effects of the limit on maximum weekly average temperature on growth rates of juvenile largemouth bass. Growth data as a function of temperature are from Strawn 1961³¹⁹; the ambient temperature is an averaged curve for Lake Norman, N. C., adapted from data supplied by Duke Power Company. A general temperature elevation of 10 F is used to provide an extreme example. Incremental growth rates (mm/wk) are plotted on the main figure, while annual accumulated growth is plotted in the inset. Simplifying assumptions were that growth rates and the relationship of growth rate to temperature were constant throughout the year, and that there would be sufficient food to sustain maximum attainable growth rates at all times.

The criterion for a specific location would be determined by the most sensitive life stage of an important species likely to be present in that location at that time. Since many fishes have restricted habitats (e.g., specific depth zones) at many life stages, the thermal criterion must be applied to the proper zone. There is field evidence that fish avoid localized areas of unfavorably warm water. This has been demonstrated both in lakes where coldwater fish normally evacuate warm shallows in summer (Smith 1964)³¹⁸ and at power station mixing zones (Gammon 1970;²⁸² Merriman et al. 1965).³⁰⁴ In most large bodies of water there are both vertical and horizontal thermal gradients that mobile organisms can follow to avoid unfavorable high (or low) temperatures.

The summer maxima need not, therefore, apply to mixing zones that occupy a small percentage of the suitable habitat or necessarily to all zones where organisms have free egress to cooler water. The maxima must apply, however, to restricted local habitats, such as lake hypolimnia or thermoclines, that provide important summer sanctuary areas for cold-water species. Any avoidance of a warm area not part of the normal seasonal habitat of the species will mean that less area of the water body is available to support the population and that production may be reduced. Such reduction should not interfere with biological communities or populations of important species to a degree that is damaging to the ecosystem or other beneficial uses. Nonmobile organisms that must remain in the warm zone will probably be the limiting organisms for that location. Any recommendation for upper limiting temperatures must be applied carefully with understanding of the population dynamics of the species in question in order to establish both local and regional requirements.

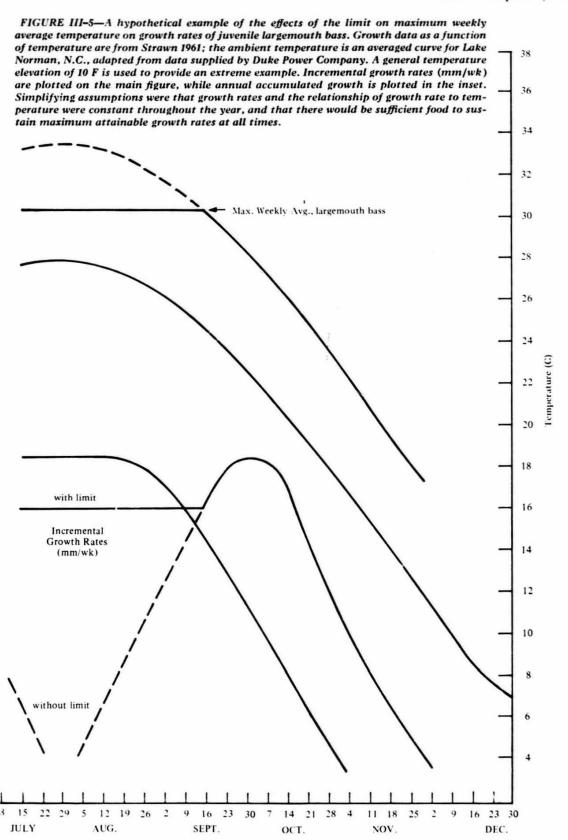


TABLE III-12—S''mmary of Some Upper Limiting Temperatures for Prolonged Exposures of Fishes Based on Optimum Temperatures and Ultimate Upper Incipient Lethal Temperatures (Equation 1).

Species -	Optimum		- Function	Reference	Ultimate up	and the same of	Reference	Maximum we temperatu	
Species	c	F	runcuon	Reliables	C	F	newana	C	F
afostomus commersoni (white sucker)	27	80.6	growth	unpubl., NWQL 325	29.3	84.7	Hart 1947285	27.8	82
regonus artedii (Cisco or iake herring)	16	60.8	growth	McCormick et al. 19713on	25.7	78.3	Edsall and Colby 1970274	19.2	66.6
roturus punctatus (channel catfish)	30	86	growth	Strawn 1970;320 Andrews and Stickney 1971242	38.0	100.4	Allen and Strawn 1968240	32.7	90.9
comis macrochirus (bluegill) (yr II)	22	71.6	growth	McComish 1971301 Anderson 1959241	33. 8	92.8	Hart 1952236	25.9	78.6
cropterus dolomieu (smallmouth bass)	26.3	83	growth	Horning and Pearson 1972221	35.0	95.0	Horning and Pearson 1972231	29.9	85.8
	28.3	83	growth	Peek 1965209					
	ave 27.3	81.1							
cropterus saimoides (largemouth bass)(fry)	27.5	81.5	growth	Strawn 1961319	36.4	97.5	Hart 1952***	30.5	86.7
otropis atherinoides (emerald shiner)	27	80.6	growth	unpubl., NWQL324	30.7	87.3	Hart 1952256	28.2	82.1
ncorhynchus nerka (sockeye salmon)	15.0	59.0	growth	Brett et al. 1969257	25.0	77.0	Brett 1952252	18.3	64.5
	15.0	59.0	other functions	Brett 1971234					
juveniles)	15.0		max. swimming						
eudopleuronectes Americanus (winter									
flounder)	18.0	64.4	growtff	Brett 1970255	29.1	84.4	Hoff and Westman 1966289	21.8	71.2
::mo trutta (brown trout)	8 to 17	54.5	growth	Brett 1970255	23.5	74.3	Bishai 1960247	16.2	61.2
	ave 12.5								
ivelinus fontinalis (brook trout)	15.4	59.7	growth	unpubl, NWQL328	25.5	77.9	Fry. Hart and Walker, 1946251	18.2	64.1
	13.0	55.4	growth	Baldwin 1957244					
	15	59	metabolic	Graham 1949284					
	ave 14.5	58.1	scope						
aivelinus namaycush (lake trout)	16	60. 8	(2 metabol-sm)	Gibson and Fry 1954>3	23.5		Gibson and Fry 195423	18.8	65.1
	17	62.6	swimming speed						
	ave 16.5	61.7							

Heat added to upper reaches of some cold rivers can be retained throughout the river's remaining length (Jaske and Synoground 1970).²⁹² This factor adds to the natural trend of warming at distances from headwaters. Thermal additions in headwaters, therefore, may contribute substantially to reduction of cold-water species in downstream areas (Mount 1970).³⁰⁵ Upstream thermal additions should be evaluated for their effects on summer maxima at downstream locations, as well as in the immediate vicinity of the heat source.

Recommendation

Growth of aquatic organisms would be maintained at levels necessary for sustaining actively growing and reproducing populations if the maximum weekly average temperature in the zone inhabited by the species at that time does not exceed one-third of the range between the optimum temperature and the ultimate upper incipient lethal temperature of the species (Equation 1, page 157), and the temperatures above the weekly average do not exceed the criterion for short-term exposures. This maximum need not apply to acceptable mixing zones (see proportional relationships of mixing zones to receiving systems, p. 114), and must be applied with adequate understanding of the normal seasonal distribution of the important species.

WINTER MAXIMA

Although artificially produced temperature elevations during winter months may actually bring the temperature closer to optimum or preferred temperature for important species and attract fish (Trembley 1965),321 metabolic acclimation to these higher levels can preclude safe return of the organism to ambient temperatures should the artificial heating suddenly cease (Pennsylvania Fish Commission 1971;310 Robinson 1970)316 or the organism be driven from the heat area. For example, sockeye salmon (Oncorhynchus nerka) acclimated to 20 C suffered 50 percent mortality in the laboratory when their temperature was dropped suddenly to 5 C (Brett 1971:256 see Figure III-3). The same population of fish withstood a drop to zero when acclimated to 5 C. The lower limit of the range of thermal tolerance of important species must, therefore, be maintained at the normal seasonal ambient temperatures throughout cold seasons, unless special provisions are made to assure that rapid temperature drop will not occur or that organisms cannot become acclimated to elevated temperatures. This can be accomplished by limitations on temperature elevations in such areas as discharge canals and mixing zones where organisms may reside, or by insuring that maximum temperatures occur only in areas not accessible to important aquatic life for lengths of time sufficient to allow metabolic acclimation. Such inaccessible area; would include the high-velocity zones of diffusers or screened discharge channels. This reduction of maximum temperatures would not preclude use of slightly warmed areas as sites for intense winter fisheries.

This consideration may be important in some regions at times other than in winter. The Great Lakes, for example, are susceptible to rapid changes in elevation of the thermocline in summer which may induce rapid decreases in shoreline temperatures. Fish acclimated to exceptionally high temperatures in discharge canals may be killed or severely stressed without changes in power plant operations (Robinson 1968).³¹⁴ Such regions should take special note of this possibility.

Some numerical values for acclimation temperatures and lower limits of tolerance ranges (lower incipient lethal temperatures) are given in Appendix II–C. Other data must be provided by further research. There are no adequate data available with which to estimate a safety factor for no stress from cold shocks. Experiments currently in progress, however, suggest that channel catfish fingerlings are more susceptible to predation after being cooled more than 5 to 6 C (Coutant, unpublished data).³²⁴

The effects of limiting ice formation in lakes and rivers should be carefully observed. This aspect of maximum winter temperatures is apparent, although there is insufficient evidence to estimate its importance.

Recommendation

Important species should be protected if the maximum weekly average temperature during winter months in any area to which they have access does not exceed the acclimation temperature (minus a 2 C safety factor) that raises the lower lethal threshold temperature of such species above the normal ambient water temperatures for that season, and the criterion for short-term exposures is not exceeded. This recommendation applies especially to locations where organisms may be attracted from the receiving water and subjected to rapid thermal drop, as in the low velocity areas of water diversions (intake or discharge), canals, and mixing zones.

SHORT-TERM EXPOSURE TO EXTREME TEMPERATURE

To protect aquatic life and yet allow other uses of the water, it is essential to know the lengths of time organisms can survive extreme temperatures (i.e., temperatures that exceed the 7-day incipient lethal temperature). Both natural environments and power plant cooling systems can briefly reach temperature extremes (both upper and lower) without apparent detrimental effect to the aquatic life (Fry 1951;²⁷⁷ Becker et al. 1971).²⁴⁵

The length of time that 50 per cent of a population will survive temperature above the incipient lethal temperature

can be calculated from a regression equation of experimental data (such as those in Figure III-3) as follows:

$$log (time) = a + b (temp.)$$
 (Equation 2)

where time is expressed in minutes, temperature in degrees centigrade and where a and b are intercept and slope, respectively, which are characteristics of each acclimation temperature for each species. In some cases the timetemperature relationship is more complex than the semilogarithmic model given above. Equation 2, however, is the most applicable, and is generally accepted by the scientific 'community' (Fry 1967).279 Caution is recommended in extrapolating beyond the data limits of the original research (Appendix II-C). The rate of temperature change does not appear to alter this equation, as long as the change occurs more rapidly than over several days (Brett 1941;251 Lemke 1970).300 Thermal resistance may be diminished by the simultaneous presence of toxicants or other debilitating factors (Ebel et al. 1970,273 and summary by Coutant 1970c).269 The most accurate predictability can be derived from data collected using water from the site under evaluation.

Because the equations based on research on thermal tolerance predict 50 per cent mortality, a safety factor is needed to assure no mortality. Several studies have indicated that a 2 C reduction of an upper stress temperature results in no mortalities within an equivalent exposure duration (Fry et al. 1942;280 Black 1953).248 The validity of a two degree safety factor was strengthened by the results of Coutant (1970a).267 He showed that about 15 to 20 per cent of the exposure time, for median mortality at a given high temperature, induced selective predation on thermally shocked salmon and trout. (This also amounted to reduction of the effective stress temperature by about 2 C.) Unpublished data from subsequent predation experiments showed that this reduction of about 2 C also applied to the incipient lethal temperature. The level at which there is no increased vulnerability to predation is the best estimate of a no-stress exposure that is currently available. No similar safety factor has been explored for tolerance of low temperatures. Further research may determine that safety factors, as well as tolerance limits, have to be decided independently for each species, life stage, and water quality situation.

Information needed for predicting survival of a number of species of fish and invertebrates under short-term conditions of heat extremes is presented in Appendix II-C. This information includes (for each acclimation temperature) upper and lower incipient lethal temperatures: coefficients a and b for the thermal resistance equation; and information on size, life stage, and geographic source of the species. It is clear that adequate data are available for only a small percentage of aquatic species, and additional research is necessary. Thermal resistance information should be obtained locally for critical areas to account for simul-

taneous presence of toxicants or other debilitating factors, a consideration not reflected in Appendix II-C data. More data are available for upper lethal temperatures than for lower.

The resistance time equation, Equation 2, can be rearranged to incorporate the 2 C margin of safety and also to define conditions for survival (right side of the equation less than or equal to 1) as follows:

$$1 \ge \frac{\text{time}}{10^{[a+b(\text{temp}.+2)]}}$$
 (Equation 3)

Low levels of mortality of some aquatic organisms are not accessarily detrimental to ecosystems, because permissible mortality levels can be established. This is how fishing or shellfishing activities are managed. Many states and international agencies have established elaborate systems for etting an allowable rate of mortality (for sport and commercial fish) in order to assure needed reproduction and survival. (This should not imply, however, that a form of pollution should be allowed to take the entire harvestable vield.) Warm discharge water from a power plant may sufficiently stimulate reproduction of some organisms (e.g., zooplankton), such that those killed during passage through the maximally heated areas are replaced within a few hours, and no impact of the mortalities can be found in the open water (Churchill and Wojtalik 1969;262 Heinle 1969),288 On the other hand, Jensen (1971)²⁹³ calculated that even five percent additional mortality of 0-age brook trout (Salvelinus fontinalis) decreased the yield of the trout fishery, and 50 per cent additional mortality would, theoretically, cause extinction of the population. Obviously, there can be no adequate generalization concerning the impact of shortterm effects on entire ecosystems, for each case will be somewhat different. Future research must be directed toward determining the effects of local temperature stresses on population dynamics. A complete discussion will not be attempted here. Criteria for complete short-term protection may not always be necessary and should be applied with an adequate understanding of local conditions.

Recommendation

Unless there is justifiable reason to believe it unnecessary for maintenance of populations of a species, the right side of Equation 3 for that species should not be allowed to increase above unity when the temperature exceeds the incipient lethal temperature minus 2 C:

$$1 \ge \frac{\mathsf{time}}{\mathsf{10}^{[a+b(\mathsf{temp}.+2)]}}$$

Values for a and b at the appropriate acclimation temperature for some species can be obtained from Appendix II-C or through additional research if necessary data are not available. This recommendation applies to all locations where organisms to be protected are exposed, including areas within mixing zones and water diversions such as power station cooling water.

REPRODUCTION AND DEVELOPMENT

The sequence of events relating to gonad growth and gamete maturation, spawning migration, release of gametes, development of the egg and embryo, and commencement of independent feeding represents one of the most complex phenomena in nature, both for fish (Brett 1970)255 and invertebrates (Kinne 1970).296 These events are generally the most thermally sensitive of all life stages. Other environmental factors, such as light and salinity, often seasonal in nature, can also profoundly affect the response to temperature (Wiebe 1968).323 The general physiological state of the organisms (e.g., energy reserves), which is an integration of previous history, has a strong effect on reproductive potential (Kinne 1970).296 The erratic sequence of failures and successes of different year classes of lake fish attests to the unreliability of natural conditions for providing optimum reproduction.

Abnormal, short-term temperature fluctuations appear to be of greatest significance in reduced production of juvenile fish and invertebrates (Kinne, 1963).²⁹⁵ Such thermal fluctuations can be a prominent consequence of water use as in hydroelectric power (rapid changes in river flow rates), thermal electric power (thermal discharges at fluctuating power levels), navigation (irregular lock releases), and irrigation (irregular water diversions and wasteway releases). Jaske and Synoground (1970)²⁹² have documented such temperature changes due to interacting thermal and hydroelectric discharges on the Columbia River.

Tolerable limits or variations of temperature change throughout development, and particularly at the most sensitive life stages, differ among species. There is no adequate summary of data on such thermal requirements for successful reproduction. The data are scattered through many years of natural history observations (however, see Breder and Rosen 1966²⁵⁰ for a recent compilation of some data; also see Table III-13). High priority must be assigned to summarizing existing information and obtaining that which is lacking.

Uniform elevations of temperature by a few degrees during the spawning period, while maintaining short-term temperature cycles and seasonal thermal patterns, appear to have little overall effect on the reproductive cycle of resident aquatic species, other than to advance the timing for spring spawners or delay it for fall spawners. Such shifts are often seen in nature, although no quantitative measurements of reproductive success have been made in this connection. For example, thriving populations of many fishes occur in diverse streams of the Tennessee Valley in which the date of the spawning temperature may vary in a

TABLE III-13—Spawning Requirements of Some Fish, Arranged in Ascending Order of Spawning Temperatures (Adapted from Wojtalik, T. A., unpublished manuscript)*

Fishes	Temp. (C)	Spawning site	Range in spawning depth	Daily spawning time	Egg site	Incubation period days (Temp. C)
Sauger						
Stizostedion canadense	. 5.0	Shallow gravel bars	2-4 feet	Might	Bottom	25 (5.0)
S. vitreum vitreum	7.0	Gravel, rubble, boulders on bar	3-10 feet	Day, night	Bottom	
Longnose gar Lepisosteus osseus	. 10.8	Flooded shallows	Flooded shallows	•	Weeds	E (20.0)
White bass	. 10.6	Flooded Shallows	Flooded Shallows	Day	weeas	6 (20.0)
Morone chrysops	. 11.7	Sand & rock shores	2-12 feet	Day, long but esp. night	Surface	2 (15.6)
Least darter Etheostoma microperca	12.0					
Spotted sucker				r.		
Minytrema melanops	. 12.8					
White sucker Catostomus commersoni	12.0-13.0	Streams or bars	***************************************	Day, night	Bottom	
Silvery minnow		J		,,	MARKET STATE OF THE STATE OF TH	
Hybognathus nuchalls	13.0	Coves		Day	Sottom	
Banded pygmo sunfish Elassoma zonatum	13.9-16.7					
White crappie						
Pomozis annuiaris	14.0-16.0	Submerged materials in shallows	**********	Day	Bottom	1 (21.1-23.2)
Fathead minnow Pimephales promelas		Shallows	Nr. surface	Day	Underside flouing objects	
Bigmouth buffalo					•	
Ictiobus cyprinellus	15.6-18.3	Shallows	***************************************	Day	Bartom	9-10 (18.7)
Largemouth bass Micropterus salmoides	15.6	Shallows near bank	30 inches	Day :	Bottom	5 (18.9)
Common shiner						
Notropis cornutus Golden shiner	15.6-18.3	Small gravel streams		Day	Bottom	
Notemigonus crysoleucas	15.6	Bays & shoals, weeds		Day	Weeds	4 (15.6+)
Green sunfish						2/8/2005
Lepomis cyanellus	15.6	Bank, shallows	Inches to 134 feet	Day	Bottom	
Polyodon spathula	16.0	Over gravel bars	Nr. surface	Night, day	Bottom	
Blackside darter						
Percina maculata Gizzard shad	16.5					
Dorosoma cepedianum	16.7					
Smallmouth bass						
Micropterus dolomieui	18.7	Gravel rock shore	3-20 feet	Day	Bottom	7 (15.0)
Micropterus punctulatus	17.8	Small streams, bar		Day	Bottom	4-5 (20.0)
Johnny darter		3 AMERICAN SPECIAL SECTION			- TANKE	
Etheostoma nigrum Orange spotted sunfish	18.0					
Lepomis humilis	18.3					
Smallmouth buffalo						
ctiobus bubalus	18.9					
niger	18.3					
Carp						
Cyprinus carpio	19.0	Flooded shallows	Nr. surface	Day night	Bottom	4-8 (16.7)
Lepomis macrochirus	19.4	Weeds, shallows	2-6 feet	Day	Bottom	114-3 (22.2)
Redbreast sunfish			.m.	176.5		
auritis	20.0					
ctalurus punctatus		Bank cavity	<10 feet	Day, night	Bottom	9-10 (15.0)
White catfish						
. catus Pumpkinseed	20.0	Sand gravel bar	<10 feet	Day	Bottom	6-7 (23.9-29.4)
epomis gibbosus	20.0	Bank shallows	<5 feet	Day	Bottom	3 (27.8)
Black crappie						
Pomozis nigromaculatus Brook silverside	20.0					
Labidesthes sicculus	20.0	Over gravel	Surface	Day	Weeds, bottom	
Brown bullhead		DENGG				
ctalurus nebulosus	21.1	Shallows, weeds	Inches to 6 feet	.,	Weeds, bottom	5 (25.0)
Dorosoma pelenense	21.1	Shallow and open water	Surface	Day	Bottom	3 (26.7)
Warmouth			SAC PRODUCTS			200 200 200 200 200 200
Lepomis gulosus	21.0	Bank shallows	<5 feet	Day	Bottom	134 (25.0-26)7)

TABLE III-13—Spawning Requirements of Some Fish, Arranged in Ascending Order of Spawning Temperatures—Continued

Fishes	Temp. (C)	Spawning site	Range in spawning depth	Daily spawning time	Egg site	Incubation period days (Temp. C)
ue catfish			Taylor Princers			
talurus furcatus.	22.2					
yledictis ofivarie	22.2					
ogenr sunfish	23.0	Quiet, various	Inches to 10 feet	*******************	***************************************	
megalolis strwater drum	23.3					
nodinotus grunniens ver carosucker	23.0					
vicuides carpio	23.9					
falorus serracanthus	26.7					
natalis		Quiet, shallows	114 feet		Bottom	5-10 (18.9)

T. A. Wojtalik, Tennessee Valley Authority, Muscle Shoals, Alabama.

given year by 22 to 65 days. Examination of the literature shows that shifts in spawning dates by nearly one month are common in natural waters throughout the U.S. Populations of some species at the southern limits of their distribution are exceptions, e.g., the lake whitefish (Coregonus clupeaformis) in Lake Erie that require a prolonged, cold incubation period (Lawler 1965)²⁹⁹ and species such as yellow perch (Perca flavescens) that require a long chill period for egg maturation prior to spawning (Jones, unpublished data).³²⁷

This biological plasticity suggests that the annual spring rise, or fall drop, in temperature might safely be advanced (or delayed) by nearly one month in many regions, as long as the thermal requirements that are necessary for migration, spawning, and other ac ivities are not eliminated and the necessary chill periods, maturation times, or incubation periods are preserved for important species. Production of food organisms may advance in a similar way, with little disruption of food chains, although there is little evidence to support this assumption (but see Coutant 1968;²⁶⁵ Coutant and Steele 1968;²⁷¹ and Nebeker 1971).³⁰⁷ The process is similar to the latitudinal differences within the range of a given species.

Highly mobile species that depend upon temperature synchrony among widely different regions or environments for various phases of the reproductive or rearing cycle (e.g., anadromous salmonids or aquatic insects) could be faced with dangers of dis-synchrony if one area is warmed, but another is not. Poor long-term success of one year class of Fraser River (British Columbia) sockeye salmon (Oncorhynchus nerka) was attributed to early (and highly successful) fry production and emigration during an abnormally warm summer followed by unsuccessful, premature feeding activity in the cold and still unproductive estuary (Vernon 1958). 322 Anadromous species are able, in some cases, (see studies of eulachon (Thaleichthys pacificus) by Smith and

Saalfeld 1955)³¹⁷ to modify their migrations and spawning to coincide with the proper temperatures whenever and wherever they occur.

Rates of embryonic development that could lead to premature hatching are determined by temperatures of the microhabitat of the embryo. Temperatures of the microhabitat may be quite different from those of the remainder of the waterbody. For example, a thermal effluent at the temperature of maximum water density (approximately 4 C) can sink in a lake whose surface water temperature is colder (Hoglund and Spigarelli, 1972).290 Incubating eggs of such species as lake trout (Salvelinus namaycush) and various coregonids on the lake bottom may be intermittently exposed to temperatures warmer than normal. Hatching may be advanced to dates that are too early for survival of the fry in their nursery areas. Hoglund and Spigarelli 1972,290 using temperature data from a sinking plume in Lake Michigan, theorized that if lake herring (Coregonus artedii) eggs had been incubated at the location of one of their temperature sensors, the fry would have hatched seven days early. Thermal limitations must, therefore, apply at the proper location for the particular species or life stage to be protected.

Recommendations

After their specific limiting temperatures and exposure times have been determined by studies tailored to local conditions, the reproductive activity of selected species will be protected in areas where:

- periods required for gonad growth and gamete maturation are preserved;
- no temperature differentials are created that block spawning migrations, although some delay or advancement of timing based upon local conditions may be tolerated;

- temperatures are not raised to a level at which necessary spawning or incubation temperatures of winter-spawning species cannot occur;
- sharp temperature changes are not induced in spawning areas, either in mixing zones or in mixed water bodies (the thermal and geographic limits to such changes will be dependent upon local requirements of species, including the spawning microhabitat, e.g., bottom gravels, littoral zone, and surface strata);
- timing of reproductive events is not altered to the extent that synchrony is broken where reproduction or rearing of certain life stages is shown to be dependent upon cyclic food sources or other factors at remote locations.
- normal patterns of gradual temperature changes throughout the year are maintained.

These requirements should supersede all others during times when they apply.

CHANGES IN STRUCTURE OF AQUATIC COMMUNITIES

Significant change in temperature or in thermal patterns over a period of time may cause some change in the composition of aquatic communities (i.e., the species represented and the numbers of individuals in each species). This has been documented by field studies at power plants (Trembley 1956–1960)³²¹ and by laboratory investigations (McIntyre 1968).³⁰³ Allowing temperature changes to alter significantly the community structure in natural waters may be detrimental, even though species of direct importance to man are not eliminated.

The limits of allowable change in species diversity due to temperature changes should not differ from those applicable to any other pollutant. This general topic is treated in detail. in reviews by others (Brookhaven National Lab. 1969)²⁵⁸ and is discussed in Appendix II-B, Community Structure and Diversity Indices, p. 408.

NUISANCE ORGANISMS

Alteration of aquatic communities by the addition of heat may occasionally result in growths of nuisance organisms provided that other environmental conditions essential to such growths (e.g., nutrients) exist. Poltoracka (1968)³¹¹ documented the growth stimulation of plankton in an artificially heated small lake; Trembley (1965³²¹) reported dense growths of attached algae in the discharge canal and shallow discharge plume of a power station (where the algae broke loose periodically releasing decomposing organic matter to the receiving water). Other instances of algal growths in effluent channels of power stations were reviewed by Coutant (1970c).²⁶⁹

Changed thermal patterns (e.g., in stratified lakes) may greatly alter the seasonal appearances of nuisance algal growths even though the temperature changes are induced by altered circulation patterns (e.g., artificial destratification). Dense growths of plankton have been retarded in some instances and stimulated in others (Fast 1968;²⁷⁵ and unpublished data 1971).³²⁵

Data on temperature limits or thermal distributions in which nuisance growths will be produced are not presently available due in part to the complex interactions with other growth stimulants. There is not sufficient evidence to say that any temperature increase will necessarily result in increased nuisance organisms. Careful evaluation of local conditions is required for any reasonable prediction of effect.

Recommendation

Nuisance growths of organisms may develop where there are increases in temperature or alterations of the temporal or spatial distribution of heat in water. There should be careful evaluation of all factors contributing to nuisance growths at any site before establishment of thermal limits based upon this response, and temperature limits should be set in conjunction with restrictions on other factors (see the discussion of Eutrophication and Nutrients in Section I).

CONCLUSIONS

Recommendations for temperature limits to protect aquatic life consist of the following two upper limits for any time of the year (Figure III-6).

- 1. One limit consists of a maximum weekly average temperature that:
 - (a) in the warmer months (e.g., April through October in the North, and March through November in the South) is one third of the range between the optimum temperature and the ultimate upper incipient lethal temperature for the most sensitive important species (or appropriate life stage) that is normally found at that location at that time; or
 - (b) in the cooler months (e.g., mid-October to mid-April in the North, and December to February in the South) is that elevated temperature from which important species die when that elevated temperature is suddenly dropped to the normal ambient temperature, with the limit being the acclimation temperature (minus a 2 C safety factor), when the lower incipient lethal temperature equals the normal ambient water temperature (in some regions this limit may also be applicable in summer); or
 - (c) during reproduction seasons (generally April-June and September-October in the North, and March-May and October-November in the South) is that

temperature that meets specific site requirements for successful migration, spawning, egg incubation, fry rearing, and other reproductive functions of important species; or

- (d) at a specific site is found necessary to preserve normal species diversity or prevent undesirable growths of nuisance organisms.
- 2. The second limit is the time-dependent maximum temperature for short exposures as given by the speciesspecific equation:

$$1 \ge \frac{time}{10^{[a+b(temp.+2)]}}$$

Local requirements for reproduction should supersede all other requirements when they are applicable. Detailed ecological analysis of both natural and man-modified aquatic environments is necessary to ascertain when these requirements should apply.

USE OF TEMPERATURE CRITERIA

A hypothetical electric power station using lake water for cooling is illustrated as a typical example in Figure III-7. This discussion concerns the application of thermal criteria to this typical situation.

The size of the power station is 1,000 megawatts electric (MW_e) if nuclear, or 1,700 MW_e if fossil-fueled (oil, coal, gas); and it releases 6.8 billion British Thermal Units (BTU) per hour to the aquatic environment. This size is representative of power stations currently being installed. Temperature rise at the condensers would be 20 F with cooling water flowing at the rate of 1,520 cubic feet/second (ft³/sec) or 682,000 gallons/minute. Flow could be increased to reduce temperature rise.

The schematic Figure III-7 is drawn with two alternative discharge arrangements to illustrate the extent to which design features affect thermal impacts upon aquatic life



FIGURE III-6-Schematic Summary of Thermal Criteria

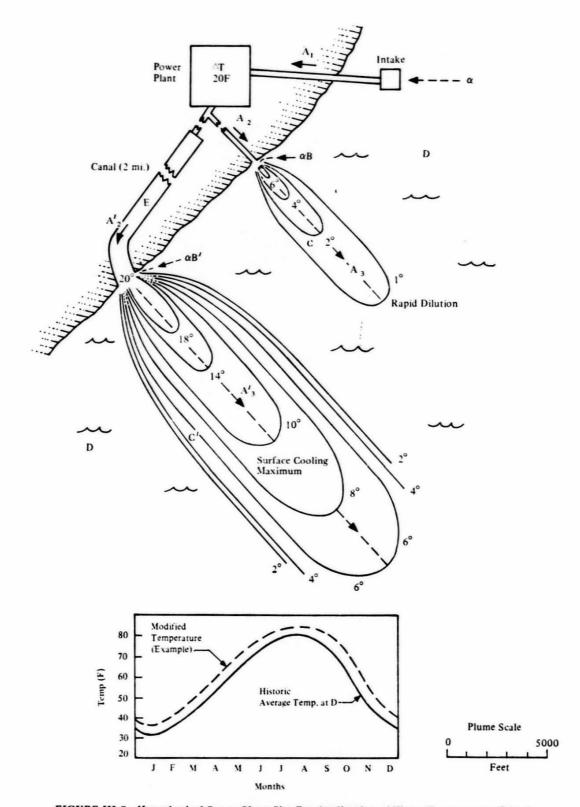


FIGURE III-7—Hypothetical Power Plant Site For Application of Water Temperature Criteria

Warm condenser water can be carried from the station to the lake by (a) a pipe carrying water at a high flow velocity or (b) a canal in which the warm water flows slowly. There is little cooling in a canal, as measurements at several existing power stations have shown. Water can be released to the lake by using any of several combinations of water velocity and volume (i.e., number of outlets) or outlet dimensions and locations. These design features largely determine the configuration of the thermal plumes illustrated in Figure III-7 resulting from either rapid dilution with lake water or from slow release as a surface layer. The isotherms were placed according to computer simulation of thermal discharges (Pritchard 1971)³¹² and represent a condition without lake currents to aid mixing.

Exact configuration of an actual plume depends upon many factors (some of which change seasonally or even hourly) such as local patterns of currents, wind, and bottom and shore topography.

Analytical Steps

Perspective of the organisms in the water body and of the pertinent non-biological considerations (chemical, hydrological, hydraulic) is an essential beginning. This perspective requires a certain amount of literature survey or on site study if the information is not well known. Two steps are particularly important:

- identification of the important species and community (primary production, species diversity, etc.) that are relevant to this site; and
- determination of life patterns of the important species (seasonal distribution, migrations, spawning areas, nursery and rearing areas, sites of commercial or sport fisheries).
 This information should include as much specific information on thermal requirements as it is possible to obtain from the literature.

Other steps relate the life patterns and environmental requirements of the biota to the sources of potential thermal damage from the power plant. These steps can be identified with specific areas in Figure III-7.

Aquatic Areas Sensitive to Temperature Change

Five principal areas offer potential for biological damage from thermal changes, labeled A-E on Figure III-7. (There are other areas associated with mechanical or chemical effects that cannot be treated here; see the index.)

Area A The cooling water as it passes through the intake, intake piping (A₁), condensers, discharge piping (A₂) or canal (A'₂), and thermal plume (A₃ or A'₃), carrying with it small organisms (such as phytoplankton, zooplankton, invertebrate larvae, and fish eggs or larvae). Organisms receive a thermal shock to the full 20 F above ambient

temperature with a duration that depends upon the rate of water flow and the temperature drop in the plume.

- Area B Water of the plume alone that entrains both small and larger organisms (including small fish) as it is diluted (B or B'). Organisms receive thermal shocks from temperatures ranging from the discharge to the ambient temperature, depending upon where they are entrained.
- Area C Benthic environment where bottom organisms (including fish eggs) can be heated chronically or periodically by the thermal plume (C or C').
- Area D The slightly warmed mixed water body (or large segment of it) where all organisms experience a slightly warmer average temperature (D).
- Area E The discharge canal in which resident or seasonal populations reside at abnormally high temperatures (E).

Cooling Water Entrainment

It is not adequate to consider only thermal criteria for water bodies alone when large numbers of aquatic organisms may be pumped through a power plant. The probability of an organism being pumped through will depend upon the ratio of the volume of cooling water in the plant to the volume in the lake (or to the volume passing the plant in a river or tidal fresh water). Tidal environments (both freshwater and saline) offer greater potential for entrainment than is apparent, since the same water mass will move back and forth past the plant many times during the lifetime of pelagic residence time of most organisms. Thermal shocks that could be experienced by organisms entrained at the hypothetical power station are shown in Figure III–8.

Detrimental effects of thermal exposures received during entrainment can be judged by using the following equation for short-term exposures to extreme temperatures:

General criterion:
$$1 \ge \frac{\text{time}}{10^{[a+b(\text{temp},+2)]}}$$

Values for a and b in the equation for the species of aquatic organisms that are likely to be pumped with cooling water may be obtained from Appendix II, or the data may be obtained using the methods of Brett (1952).²⁵² The prevailing intake temperature would determine the acclimation temperature to be selected from the table.

For example, juvenile largemouth bass may frequent the near-shore waters of this lake and be drawn into the intake. To determine whether the hypothetical thermal discharges (Figure III-7) would be detrimental for juvenile bass, the following analysis can be made (assuming, for example, that the lake is in Wisconsin where these basic data for bass are available):

Criterion for juvenile bass (Wisconsin) when intake

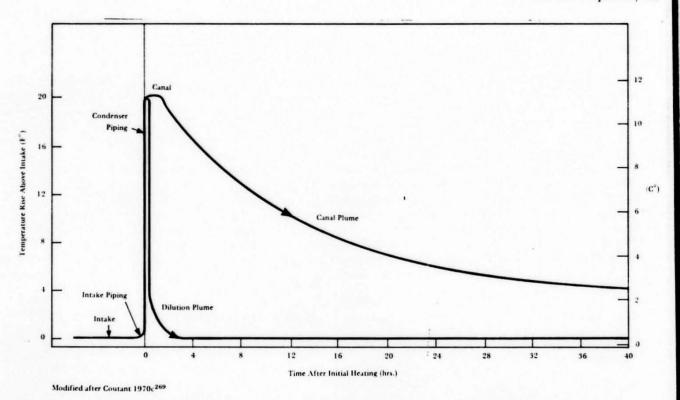


FIGURE III-8—Time Course of Temperature Change in Cooling Water Passing Through the Example Power Station with Two Alternate Discharges. The Canal Is Assumed to Flow at a Rate of 3 Ft. Per Sec.

temperature (acclimation) is 70 F (21.11 C). (Data from Appendix II-C).

$$1 \ge \frac{\text{time}}{10^{[34.3649-0.9789(\text{temp.}+2)]}}$$

Canal

Criterion applied to entrainment to end of discharge canal (discharge temperature is 70 F plus the 20 degree rise in the condensers or 90 F (32.22 C). The thermal plume would provide additional exposure above the lethal threshold, minus 2 C (29.5 C or 85.1 F) of more than four hours.

$$1 \ge \frac{60}{10^{(34.3649-0.9789(32.22+2)]}}$$
$$1 \ge 8.15$$

Conclusion:

Juvenile bass would not survive to the end of the discharge canal.

Dilution

Criterion applied to entrainment in the system em-

ploying rapid dilution.

$$1 \ge \frac{1.2}{10^{[34.3649-0.9789(32.22+2.0)]}}$$
$$1 \ge \frac{1.2}{7.36}$$

Travel time in piping to discharge is assumed to be 1 min., and temperature drop to below the lethal threshold minus 2 C (29.5 C or 85.1 F) is about 10 sec. (Pritchard, 1971). 312

Conclusion

Juvenile bass would survive this thermal exposure:

$$1 \ge 0.1630$$

By using the equation in the following form,

$$\log \text{ (time)} = a + b \text{ (temp.} + 2)$$

the length of time that bass could barely survive the expected temperature rise could be calculated, thus allowing selection of an appropriate discharge system. For example:

This would be about 1,325 feet of canal flowing at 3 $\rm ft/sec.$

It is apparent that a long discharge canal, a nonrecirculating cooling pond, a very long offshore pipe, or delayed dilution in a mixing zone (such as the one promoting surface cooling) could prolong the duration of exposure of pumped organisms and thereby increase the likelihood of damage to them. Precise information on the travel times of the cooling water in the discharge system is needed to conduct this analysis.

The calculations have ignored changing temperatures in the thermal plume, because the canal alone was lethal, and cooling in the plume with rapid dilution was so rapid that the additional exposure was only for 10 seconds (assumed to be at the discharge temperature the whole time). There may be other circumstances under which the effect of decreasing exposure temperature in the plume may be of interest.

Effects of changing temperatures in the plume can be estimated by summing the effects of incremental exposures for short time periods (Fry et al. 1946²⁸¹). For example, the surface cooling plume of Figures III-7 and III-8 could be considered to be composed of several short time spans, each with an average temperature, until the temperature had dropped to the upper lethal threshold minus 2 C for the juvenile bass. Each time period would be calculated as if it were a single exposure, and the calculated values for all time periods would be summed and compared with unity, as follows:

$$\frac{\text{time}_1}{10^{[a+b(\text{temp},1+2)]}} + \frac{\text{time}_2}{10^{[a+b(\text{temp},2+2)]}} + \cdots + \frac{\text{time}_n}{10^{[a+b(\text{temp},n+2)]}}$$

The surface cooling plume of Figure III-6 (exclusive of the canal) could be considered to consist of 15 min at 89.7 F (32.06 C), 15 min at 89.2 F (31.78 C), 15 min at 88.7 F (31.4 C), 15 min at 88.2 F (31.22 C), 15 min at 87.8 F (31.00 C), until the lethal threshold for 70 F acclimation minus 2 C (85.1 F) was reached. The calculation would proceed as follows:

$$1 \ge \frac{15}{10^{[34.3649-0.9789(32.06+2)]}} + \frac{15}{10^{[34.3649-0.9789(31.78+2)]}} + \cdots$$

In this case, the bass would not survive through the first 15-minute period. In other such calculations, several steps would have to be summed before unity was reached (if not reached, the plume would not be detrimental).

Entrainment in the Plume

Organisms mixed with the thermal plume during dilution will also receive thermal shocks, although the maximum temperatures will generally be less than the discharge temperature. The number of organisms affected to some degree may be significantly greater than the numbers actually pumped through the plant. The route of maximum thermal exposure for each plume is indicated in Figure III-7 by a dashed line. This route should be analyzed to determine the maximum reproducible effect.

Detrimental effects of these exposures can also be judged by using the criterion for short-term exposures to extreme temperatures. The analytical steps were outlined above for estimating the effects on organisms that pass through the thermal plume portions of the entrainment thermal pattern. There would have been no mortalities of the largemouth bass from entrainment in the plume with rapid dilution, due to the short duration of exposure (about 10 seconds). Any bass that were entrained in the near-shore portions of the larger plume, and remained in it, would have died in less than 15 minutes.

Bottom Organisms Impacted by the Plume

Bottom communities of invertebrates, algae, rooted aquatic plants, and many incubating fish eggs can be exposed to warm plume water, particularly in shallow environments. In some circumstances the warming can be continuous, in others it can be intermittent due to changes in plume configuration with changes in currents, winds, or other factors. Clearly a thermal plume that stratifies and occupies only the upper part of the water column will have least effect on bottom biota.

Several approaches are useful in evaluating effects on the community. Some have predictive capability, while others are suitable largely for identifying effects after they have occurred. The criterion for short-term exposures identified relatively brief periods of detrimental high temperatures. Instead of the organism passing through zones of elevated temperatures, as in the previous examples, the organism is sedentary, and the thermal pulse passes over it. Developing fish eggs may be very sensitive to such changes. A brief pulse of high temperature that kills large numbers of organisms may affect a bottom area for time periods far longer than the immediate exposure time. Repeated sublethal exposures may also be detrimental, although the process is more complex than straight-forward summation. Analysis of single exposures proceeds exactly as described for plume entrainment.

The criterion for prolonged exposures is more generally applicable. The maximum tolerable weekly average temperature may be determined by the organisms present and the phase of their life cycle. In May, for example, the maximum heat tolerance temperature for the community may be determined by incubating fish eggs or fish fry on the bottom. In July it may be determined by the important resident invertebrate species. A well-designed thermal discharge should not require an extensive mixing zone where these criteria are exempted. Special criteria for reproductive processes may have to be applied, although thermal dis-

charges should be located so that zones important for reproduction—migration, spawning, incubation—are not used.

Criteria for species diversity provide a useful tool for identifying effects of thermal changes after they have occurred, particularly the effects of subtle changes that are a result of community interactions rather than physiological responses by one or more major species. Further research may identify critical temperatures or sequences of temperature changes that cannot be exceeded and may thereby provide a predictive capability as well. (See Appendix II-B.)

Mixed Water Body (or major region thereof)

This is the region most commonly considered in establishing water quality standards, for it generally includes the major area of the water body. Here the results of thermal additions are observed as small temperature increases over a large area (instead of high temperatures locally at the discharge point), and all heat sources become integrated into the normal annual temperature cycle (Figure III-6 and Figure III-7 insert).

Detrimental high temperatures in this area (or parts of it) are defined by the criteria for maximum temperatures for prolonged exposure (warm and cool months) for the most sensitive species or life stage occurring there, at each time of year, and by the criteria for reproduction.

For example, in the lake with the hypothetical power station, there may be 40 principal fish species, of which half are considered important. These species have spawning temperatures ranging from 5 to 6 C for the sauger (Stizostedion canadense) to 26.7 C for the spotted bullhead (Ictalurus serracanthus). They also have a similar range of temperatures required for egg incubation, and a range of maximum temperatures for prolonged exposures of juveniles and adults. The requirements, however, may be met any time within normal time spans, such as January 1 to 24 for sauger spawning, and March 25 to April 29 for smallmouth bass spawning. Maximum temperatures for prolonged exposures

may increase steadily throughout a spring period. To predict effects of thermal discharges the pertinent temperatures for reproductive activities and maximum temperatures for each life stage can be plotted over a 12-month period such as shown in Fig. III-6. A maximum annual temperature curve can become apparent when sufficient biological data are available. Mount (1970)³⁰⁵ gives an example of this type of analysis.

Discharge Canal

Canals or embayments that carry nearly undiluted condenser cooling water can develop biological communities that are atypical of normal seasonal communities. Interest in these areas does not generally derive from concern for a balanced ecosystem, but rather from effects that the altered communities can have on the entire aquatic ecosystem.

The general criteria for nuisance organisms may be applicable. In the discharge canals of some existing power stations, extensive mats of temperature-tolerant blue-green algae grow and periodically break away, adding a decomposing organic matter to the nearby shorelines.

The winter criterion for maximum temperatures for prolonged exposures identifies the potential for fish kills due to rapid decreases in temperature. During cold seasons particularly, fish are attracted to warmer water of an enclosed area, such as a discharge canal. Large numbers may reside there for sufficiently long periods to become metabolically acclimated to the warm water. For any acclimation temperature there is a minimum temperature to which the species can be cooled rapidly and still survive (lower incipient lethal temperature). These numerical combinations, where data are available, are found in Appendix II-C. There would be 50 per cent mortality, for example, if largemouth bass acclimated in a discharge canal to 20 C, were cooled to 5.5 C or below. If normal winter ambient temperature is less than 5.5 C, then the winter maximum should be below 20 C, perhaps nearer 15 C. If it is difficult to maintain the lower temperatures, fish should be excluded from the area.

HEAT AND TEMPERATURE

- ²⁴⁰ Allen, K. O. and K. Strawn (1968), Heat tolerance of channel catfish Ictalurus punetatus, in Proceedings of the 21st annual conference of the Southeastern Association of Game and Fish Commissioners (The Association, Columbia, South Carolina), pp. 399-411.
- ²⁴¹ Anderson, R. O. (1959), The influence of season and temperature on the growth of the bluegill (*Lepomis macrochirus*). Ph.D. thesis, University of Michigan, Horace H. Rackham School of Graduate Studies. 133 p.
- ²⁴² Andrews, J. W. and R. R. Stickney (1972). Interaction of feeding rates and environmental temperature of growth, food conversion, and body composition of channel catfish. *Trans. Amer. Fish. Soc.* 101(1):94-99.
- ²⁴² Ansell, A. D., 1968. The Rate of Growth of the hard clam Mercenaria mercenaria (L) throughout the geographical range. Conseil permanent international pour l'exploration de la mer. 31:(3) 364-409.
- ²⁴⁴ Baldwin, N. S. (1957), Food consumption and growth of brook trout at different temperatures. *Trans. Amer. Fish. Soc.* 86:323– 328.

- ²⁴⁵ Becker, C. D., C. C. Coutant, and E. F. Prentice (1971), Experimental drifts of juvenile salmonids through effluent discharges at Hanford. Part II. 1969 drifts and conclusions [USAEC BNWL-1527] (Battelle-Northwest, Richland, Washington), 61 p.
- ²⁴⁶ Beyerle, G. B. and Cooper, E. L. (1960), Growth of brown trout in selected Pennsylvania streams, *Trans. American Fisheries Society* 89(3): 255–262.
- ²⁴⁷ Bishai, H. M. (1960), Upper lethal temperatures for larval salmonids. J. Cons. Perma. Int. Explor. Mer 25(2):129-133.
- ²⁴⁵ Black, E. C. (1953), Upper lethal temperatures of some British Columbia freshwater fishes. J. Fish. Res. Bd. Canada 10(4):196–210.
- ²⁴⁹ Bliss, C. I. (1937), Calculation of the time-mortality curve. Ann. Appl. Biol. 24:815-852.
- ²⁴⁰ Breder, C. M. and D. E. Rosen (1966), Modes of reproduction in fishes (The Natural History Press, New York), 941 p.
- ²⁶¹ Brett, J. R. (1941), Tempering versus acclimation in the planting of speckled trout. Trans. Amer. Fish. Soc. 70:397-403.
- Brett, J. R. (1952), Temperature tolerance in young Pacific salmon, genus Oncorhynchus. J. Fish. Res. Bd. Canada 9:265-323.
 Brett, J. R. (1956), Some principles in the thermal requirements

of fishes. Quart. Rev. Biol. 31(2):75-87.

- ²⁵⁴ Brett, J. R. (1960), Thermal requirements of fish—three decades of study, in *Biological problems of water pollution*, C. M. Tarzwell, ed. (U.S. Department of Health, Education and Welfare, Robert A. Taft Sanitary Engineering Center, Cincinnati, Ohio), pp. 110–117.
- ²⁵⁵ Brett, J. R. (1970), Temperature-animals-fishes, in *Marine ecology*, O. Kinne, ed. (John Wiley & Sons, New York), vol. 1, pp. 515–560.
- ²²⁶ Brett, J. R. (1971), Energetic responses of salmon to temperature. A study of some thermal relations in the physiology and fresh water ecology of sockeye salmon (Oncorhynchus nerka). Amer. Zool. 11(1): 99-113.
- Brett, J. R., J. E. Shelbourn, and C. T. Shoop (1969), Growth rate and body composition of fingerling sockeye salmon, Oncorhynchus nerka, in relation to temperature and ration size. J. Fish. Res. Bd. Canada 26(9):2363-2394.
- Brookhaven National Laboratory (1969), Diversity and stability in ecological systems. Brookhaven Symposia in Biology 22:264 pp.
- ²³ Bullock, T. H. (1955), Compensation for temperature in the metabolism and activity of poikilotherms. *Biol. Rev.* (Cambridge) 30(3): 311–342.
- ²⁶⁹ Burdick, G. E., H. J. Dean, E. J. Harris, J. Skea, C. Frisa and C. Sweeney (1968), Methoxychlor as a blackfly larvicide: persistence of its residues in fish and its effect on stream arthropods. N.Y. Fish. Game 7, 15(2):121-142.
- ²⁴ Cairns, J., Jr. (1968), We're in hot water. Scientist and Citizen 10(8) 187–198.
- ²⁸² Churchill, M. A. and T. A. Wojtalik (1969), Effects of heated discharges on the aquatic environment: the TVA experience, in *Proceedings American Power Conference* (Tennessee Valley Authority, Chattanooga), vol. 31, pp. 360–368.
- ²⁶³ Clark, J. R. (1969), Thermal pollution and aquatic life. Sci. Amer. 220(3):18-27.
- ²⁶⁴ Cooper, E. L. (1953), Periodicity of growth and change of condition of brook trout (*Salvelinus fontinalis*) in three Michigan trout streams. Copeia 1953(2):107–114.
- ²⁶⁵ Coutant, C. C. (1968), Thermal pollution—biological effects: a review of the literature of 1967. J. Water Pollut. Contr. Fed. 40(6): 1047–1052.
- ²⁶⁶ Coutant, C. C. (1969), Thermal pollution-biological effects: a review of the literature of 1968. J. Water Pollut. Contr. Fed. 41(6): 1036–1053.
- ²⁶⁷ Coutant, C. C. (1970a), Thermal pollution—biological effects: a review of the literature of 1969. J. Water Pollut. Contr. Fed. 42(6): 1025–1057.
- ²⁶⁸ Coutant, C. C. (1970b), Thermal resistance of adult coho (Oncorhynchus kisutch) and jack chinook (O. tshawytscha) salmon, and the adult steelhead trout (Salmo gairdnerii) from the Columbia River [SEC BNWL-1508] Battelle-Northwest, Richland, Washington, 24 p.
- ²⁶⁰ Coutant, C. C. (1970c), Biological aspects of thermal pollution. I. Entrainment and discharge canal effects. CRC Critical Rev. Environ. Contr., 1(3):341-381.
- ²⁷⁰ Coutant, C. C. (1971), Thermal pollution-biological effects. J. Water Pollut. Contr. Fed. 43(6):1292–1334.
- ²⁷¹ Coutant, C. C. and R. M. Steele (1968), Effect of temperature on the development rate of bottom organisms, in Pacific Northwest Laboratory Annual Report for 1967 to USAEC Division of Biology and Medicine, vol. I, Biological Sciences, Thompson, R. C., P. Teal and E. G. Swezes, eds. [BNWL-714] Battelle-Northwest, Richland, Washington.
- ²⁷² Doudoroff, P. and D. L. Shumway (1970), Dissolved oxygen requirements of freshwater fishes [Food and Agricultural Organization fisheries technical paper 86] (FAO, Rome), 291 p.
- ²⁷³ Ebel, W. J., E. M. Dawley, and B. Monk (1970), Thermal tolerance of juvenile Pacific salmon in relation to supersaturation of nitrogen gas. Fish. Bull. 69 (4):833-843.

- ²⁷⁴ Edsall, T. A. and P. J. Colby (1970), Temperature tolerance cf young-of-the-year Cisco, Coregonus artedii. Transactions of American Fisheries Society 99:(3)526-531.
- ²⁷⁵ Fast, A. W. (1968), Artificial destratification of El Capitan reservoir by aeration. I. Effects on chemical and physical parameters. *Calif. Dep. Fish Game Fish Bull.* no. 141, 97 p.
- ²⁷⁶ Fry, F. E. J. (1947), Effects of the environment on animal activity. Univ. of Toronto Stud. Biol. Ser. No. 55 Publ. Ont. Fish. Resh. Leb. No. 68:1-62.
- ²⁷⁷ Fry, F. E. J. (1951), Some environmental relations of the speckled trout (Salvelinas fontinalis). Proc. Northeast. Atlantic Fisheries Conf. May, 1951.
- ²⁷⁸ Fry, F. E. J. (1964), Animals in aquatic environments: fishes temperature effects (Chapter 44) Handbook of Physiology, Section 4: Adaptation to the Environment. Amer. Physiol. Soc., Washington, D. C.
- 279 Fry, F. E. J. (1967), Responses of vertebrate poikilotherms to temperature [review], in *Thermobiology*, A. H. Rose, ed. (2 cademic Press, New York), pp. 375-409.
- ²⁸⁰ Fry, F. E. J., J. R. Brett, and G. H. Clawson (1942), Lethal limits of temperature for young goldfish. *Rev. Can. Biol.* 1(1):50–56
- 281 Fry, F. E. J., J. S. Hart, and K. F. Walker (1946), Lethal temperature relations for a sample of young speckled trout, Savelinus fontinalis [University of Toronto biology series no. 54] (The University of Toronto Press, Toronto), pp. 9-35.
- ²⁸⁰ Gammon, J. R. (1970), Aquatic life survey of the Wabash River, with special reference to the effects of thermal effluents on populations of vicroinvertebrates and fish, 1967-1969 (DePauw University, Zoology Department, Greencastle, Indiana), 65 p.
- ²⁸³ Gibson, E. S. and F. E. J. Fry (1954), The performance of the lake trout, Salvelinus namayeush, at various levels of temperature and oxygen pressure. Can. J. Zool. 32(3):252-260.
- 284 Graham, J. M. (1949), Some effects of temperature and oxygen pressure on the metabolism and activity of the speckled rout Salvelinus fontinalis. Can. J. Res (D) 27:270-288.
- ²⁸⁵ Hart, J. S. (1947), Lethal temperature relations of certain fish in the Toronto region. Trans. Roy. Soc. Can. (Sec. 5) 41:57-71.
- ²⁵⁶ Hart, J. S. (1952), Geographical variations of some physiological and morphological characters in certain freshwater fish. (University of Toronto biology series no. 60) (The University of Toronto Press, Toronto), 79 p.
- ²⁸⁷ Hawkes, A. L. (1961), A review of the nature and extent of damage caused by oil pollution at sea. *Trans. N. Am. Wildl. and Nat. Re*sources Conf., 26:343-355.
- 288 Heinle, D. R. (1969), Temperature and zooplankton. Chesapeske Sci. 10(3-4):186-209.
- 259 Hoff, J. G. and J. R. Westman (1966), The temperature tolerances of three species of marine fishes. J. Mar. Res. 24(2):131-140.
- 290 Hoglund, B. and S. A. Spigarelli (1972), Studies of the sinking plume phenomenon. Argonne National Lab., Center for Env.r. Stud., Argonne, Ill.
- 291 Horning, W. B. II and R. E. Pearson (1972), Growth, temperature requirements and lower lethal temperature for juveni e smallmouth bass (Micropterus dolomieu Lacepede). Draft manuscript, U.S. National Water Quality Laboratory, Duluth, Minn.
- Jaske, R. T. and M. O. Synoground (1970), Effect of Hanford Plant operations on the temperature of the Columbia River 1964 to the present [BNWL-1345] (Battelle-Northwest, Richland, Washington) various paging.
- ²⁹⁸ Jensen, A. L. (1971), The effect of increased mortality on the young in a population of brook trout: a theoretical analysis. *Trans. Amer. Fish. Soc.* 100(3):456-459.
- ²⁹⁴ Kennedy, V. S. and J. A. Mihursky (1967), Bibliography on the effects of temperature in the aquatic environment [Contribution 326] (University of Maryland, Natural Resources Institute, College Park) 89 p.

- 25 Kinne, O. (1963), The effects of temperature and salinity on marine and brackish water animals. I. temperature. Oceanogr. Mar. Biol. Annul Rev. 1:301-340.
- ²⁹⁶ Kinne, O. (1970), Temperature—animals—invertebrates, in Marine ecology, O. Kinne, ed. (John Wiley & Sons, New York), vol. 1, pp. 407-514.
- ²⁹⁷ Kramer, R. H. and L. L. Smith Jr. (1960). First year growth of the largemouth bass, Micropterns salmoides (I acepde) and some related ecological factors. Transactions American Fisheries Society 89(2):222-233.
- ²⁹⁶ Krenkel, P. A. and F. L. Parker, eds. (1969), Biological aspects of thermal pollution (Vanderbilt University Press, Nashville, Tennessee), 407 p.
- ²⁹⁹ Lawler, G. H. (1965), Fluctuations in the success of year-classes of white-fish populations with special reference to Lake Erie. J. Fish. Res. Bd. Canada 22(5):1197–1227.
- ³⁶⁰ Lemke, A. L. (1970), Lethal effects of various rates of temperature increase on Gammarus pseudolimnaeus and Hydropsyche betteni with notes on other species. U.S. National Water Quality Laboratory, Duluth, Minnesota.
- ³⁰¹ McComish, T. S. (1971), Laboratory experiments on growth and food conversion by the bluegill. Ph.D. dissertation, Univ. of Missouri, Columbia, Mo.
- ³⁰² McCormick, J. H. et. al. (1971), Temperature requirements for growth and survival for Larvae Ciscos (Coregonus artedii). Jour. Fish. Res. Bd. Canada 28:924.
- ²⁰³ McIntire, C. D. (1968), Physiological-ecological studies of benthic algae in laboratory streams. J. Water Pollut. Contr. Fed. 40(11 part 1):1940–1952.
- ³⁰⁴ Merriman, D., et al. (1965), The Connecticut River investigation, 1965–1972. (A series of semi-annual progress reports). Connecticut Yankee Atomic Power Company, Haddar, Connecticut.
- ³⁰⁵ Mount, D. I. (1970), Statement before hearing before the Joint Committee on Atomic Energy, Congress of the United States, Ninety-First Congress, first session [on environmental effects of producing electric power.] part 1, pp. 356-373.
- ³⁰⁶ Narver, D. W. (1970), Diel vertical movements and feeding of underyearling sockeye salmon and the limnetic zooplankton in Babine Lake, British Columbia. J. Fish. Res. Bd. Canada 27(2): 281–316.
- ²⁰⁷ Nebeker, A. V. (1971), Effect of temperature at different altitudes on the emergence of aquatic insects from a single stream. J. Kans. Entomol. Soc. 44(1):26-35.
- ³⁰⁸ Parker, F.F.L. and P. A. Krenkel, eds. (1969), Engineering aspects of thermal pollution (Vanderbilt University Press, Nashville, Tennessee), 351 p.
- Peek, F. W. (1965). Growth studies of laboratory and wild population samples of smallmouth bass (*Micropterus dolomieu* Lacepede) with applications to mass marking of fishes. M.S. Thesis, Univ. of Arkansas, Fayetteville.
- ³¹⁰ Pennsylvania Fish Commission (1971), Water pollution report no. 4170.
- ³¹¹ Poltoracka, J. (1968), [Specific composition of phytoplankton in a lake warmed by waste water from a thermoelectric plant and lakes with normal temperature.] Acta. Soc. Bot. Pol. 37(2):297– 325.
- ³¹² Pritchard, D. W. (1971), Design and siting criteria for oncethrough cooling systems. Presented at the American Institute of Chemical Engineers 68th annual meeting, 2 March 1971. Houston, Texas.
- ³¹³ Raney, E. C. and B. W. Menzel (1969), Heated effluents and effects on aquatic life with emphasis on fishes: a bibliography, 38th ed. (U.S. Department of the Interior, Water Resources Information Center, Washington, D.C.), 469 p.
- 314 Robinson, J. G. (1968), Fish mortality report, Lake Michigan, Port

- Sheldon, August 29, 1968 (Michigan Water Resources Commission, Lansing), 2 p.
- ³¹⁵ Robinson, J. G. (1970), Fish mortality report, Lake Michigan, Port Sheldon. Michigan Water Resources Commission, Lansing, Michigan.
- ²¹⁶ Robinson, J. G. (1970), Fish mortality report, Lake Michigan, Port Sheldon. Michigan Water Resources Commission Lansing, Michigan.
- 317 Smith, W. E. and R. W. Saalfeld (1955), Studies on Columbia River smelt Thaleichthys pacificus (Richardson). Wash. Dep. Fish. Fish. Res. Pap. 1(3):1-24.
- ²¹⁸ Smith, S. H. (1964), Status of the deepwater cisco population of Lake Michigan. Trans. Amer. Fish. Soc. 93(2):155-163.
- ³¹⁹ Strawn, K. (1961), Growth of largemouth bass fry at various temperatures. Trans. Amer. Fish. Soc. 90:334-335.
- Strawn, K. (1970), Beneficial uses of warm water discharges in surface waters. In: Electric power and thermal discharges: thermal considerations in the production of electric power, M. Eisenbud and G. Gleason (eds.) pp. 143-156.
- ²²¹ Trembley, F. J. (1965), Effects of cooling water from steam-electric power plants on stream biota, in *Biological problems in water pollution*. Third seminar, C. M. Tarzwell, ed. (U.S. Department of Health, Education and Welfare, Public Health Service, Division of Water Supply and Pollution Control, Cincinnati, Ohio), pp. 334-345.
- ²²² Vernon, E. H. (1958), An examination of factors affecting the abundance of pink salmon in the Fraser River [Progress report no. 5] (International Pacific Salmon Fisheries Commission, New Westminster, British Columbia).
- ³²³ Wiebe, J. P. (1968), The effects of temperature and day length on the reproductive physiology of the viviparous seaperch, Cymatogaster aggregata Gibbons. Can. 7. Zool. 46(6):1207-1219.

References Cited

- ²²⁴ Coutant, C. C.. unpublished data, (1971) Oak Ridge Laboratory, Oak Ridge, Tennessee.
- Fast, A. W. (1971), Effects of artificial aeration on lake ecology. Ph.D. dissertation, Michigan State Univ., E. Lansing.
- ²²⁶ Fry, F. E. J., personal observation, (1971) University of Toronto, Ontario, Canada, Dept. of Zoology.
- ²²⁷ Jones, B., unpublished data, (1971) National Water Quality Laboratory, Duluth, Minnesota.
- 328 National Water Quality Laboratory (1971) unpublished data, Duluth, Minnesota.
- wojtalik, T. A., unpublished data, (1971) Tennessee Valley Authority.

APPENDIX B*

THERMAL TABLES

THERMAL TABLES-Time-temperature relationships and lethal threshold temperatures for resistance of aquatic organisms (principally fish) to extreme temperatures (from Coutant, in press 1972). Column headings, where not selfexplanatory, are identified in footnotes. LD50 data obtained for single times only were included only when they amplified temperature-time information.

Scopes	Stage/age	Length	Weight	Sex	Location	Reference	Extreme	Acci	imation	lo	g time=a-	-b (tem	b)		hmits C)	LD50	Lethal thresholds
		San - 201	, DANCE - 01.7					Tempa	Time	•	•	Hs	Le	upper	lower		(°C)
Abudeldut saxa- blis /Sargent major)	Adult	**********	*39******	Leonera	Northern Gulf of California		Upper	32	10000000	42.9005	-0.0934	3	-0.9945	37.0	36.0	811 111	
kdinia xenica (diamond Killi- fish)	Adult ,	*********	10000000	Anneses.	Jefferson Co., Texas	Strawn and Dunn (1967)**	Upper	35 35 35	(0 °/00)* (5 °/00)* (10 °/00)*	21.9337 27.7919 26.8121		6	-0.9930 -0.9841 -0.9829	43.5	40.5 41.0 41.0		******
								35	(20 º/oo)•	28.3930	−0.6290	6	-0.9734	43.5	41.0		
Itherinops affinis (topsmeit)	Juvenile	6.0-6.2 cm	E-(*(*)(*)(*)(*)	3	LaJolla, Calif.	Doudoroff (1945**)	Upper	18.0 20		42.2531	-1.2215	9	-0.9836	33.5	31.5	30.5(24)	31.0
							Lower	14.5 18.0 20		-0.4667	0.3926	1	0.9765	11.0	5.0	7.6(24) 8.8(24)	10.5
								25.5		-0.4067	0.3320		0.3163			13.5(24)	10.3
revoorba tyran- nus (Atlantic	Larval	17-34 mm	1000	Mixed	Beaufort Har- bor, North	Lewis (1965)**	Lower	7.0 10.0	1400000000	0.9611/	0.2564 0.2526	9	0.9607 0.9452	4.0 5.0	-1.0		
menhaden)					Carolina (36°N)		"	12.5 15.0 20.0		0.6602 0.5675 0.2620	0.2786 0.2321 0.1817	12 14 3	0.9852 0.9306 0.9612	5.5 7.0 4.0			
revoortia ty:an-	Young-of-the-		*		Beaufort;	Lewis and Het-	Upper	21	(5 º/∞)				7112444	35.0	34.0		
rus (Atlantic manhaden)	year				N.C.	tier (1968)92	Lower	27 16	(5 °/00) (26-30 °/00)	85.1837	-2.3521	2		35.0 7.0	34.5		6.5
mennagen)							LOWER	18	(10 °/on)		*******			7.0	3.0		
evoortia tyran- nus (Atlantic menhaden)	Yearling		*********	**********	Beaufort, N.C.	Lewis and Het- tier (1968) ⁹²	Upper	21 22-23	(5 °/ 00) (4-6 °/ 00)		-1.0468 -0.6342	3 10	-0.9174 -0.9216		33 31	********	32.5
rassius auratus (goldfish)	Juvenile		Zg ave.	Mized	Commercial dealer	Fry, Brett, & Clawson	Upper	1-2 10								28 (14) 31 (14)	
					(Toronto)	(1942) ⁸¹ (and Fry, Hart, &		17 24								34 (14) 36 (14)	
						Walker, 1946)**		32 38			-0.4523 -0.4773	2			39.0 41.0	39. 2(14) 41. 0(14)	41.0
						,	Lower	19 24								1.0(14) 5.0(14)	
								38								15.5(14)	
lostomus com-			10-19.9	Mixed	Don River,	Hart (1947*²)	Upper	5		777	-1.1797 -0.6410	2	-0.6857	27.5 29	27.0 28		26.3 27.7
mersonni (white sucker)			(mode)		Thornhill, Ontario			10 15			-1.0034	2		30	29.5		29.3
								20 25	*******		-0.8068 -0.6277	4	0.9606 0.9888	1000	30 29.5		
							Lower	20		21.209	-0.0211						2.5
								25			* 1.000 = *	***	0.44-0.0) 0.0	1,0,0,0	****		6.0

[&]quot; It is assumed in this table that the acclimation temperature reported is a true acclimation in the context of Brett

Number of median resistance times used for calculating regression equation.
 Correlation coefficient (perfect fit of all data points to the regression line—1.0).

^{4 =} Incipient lethal temperature of Fry, et al., (1946).43

[/] Log time in hours to 50% mortality. Includes 2-3 hr. required for test bath to reach the test temperature.

^{*}From: National Academy of Sciences (1973). See pp. 410-419, 444-445, Appendix II-C.

Species	Stage/age	Length	Weight	Sex	Location	Reference	Extreme	Acc	limation	to	og time=a-	-b (tem	IP.)	Data limits — (°C)		LD50	Lethal threshold
- pools	sale, ele	congui	weight		Cocation	Research	CAUCING	Temp	Time	1	b	No	t _c	_	lower		(°C)
		-			-												
oregonus astedii	Juvenile	200	*********	Mixed	Pickerel	Edsall and	Upper	2	8 wks	16.5135		4	-0.9789		19.0		19.7
(cisco)					Lake,	Colby.		5	4 wks	10.2799		3	-0.9264		20.0		21.7
					Washtenaw	1970102		10	>2 wks	12.4993		6	-0.9734	-	24.0		24.2
					Co., Mich.			20	2 wks		-0.5333	,	-0.9487 -0.9764		26.0 25.5	1000	26.2 25.7(
							Lower	25 2	3 wks 8 wks	13. 1204	-0.4493	,	-0.3/64	30.0 1.5	0.3		< 0.3
							LUMEI	5	4 wks					1.0	0.5		<0.5
								10	>2 wks	2.7355	0.3381	5	0.9021	3.0	0.5		3.0
								20	2 wks	2.5090	0.2685	6	0.9637	4.5	0.5		4.7
								25	3 wks	1.7154	0.1652	9	0.9175	9.5	0.5		9.7
oregonus hoyi	Juvenile	60.0 mm		Mized	Lake Michi-	Edsall, Rottiers	Hanne	5	11 da-	15.8243	-0.5831	5	-0.9095	26.0	22.0		22.2
(bloater)	(age 1)	5.0. 5.8		MITER	gan at/	& Brown,	Upper	10	5 da	9.0700		6	-0.9516	3900	23.0		23.6
(Dioeter)	(age 1)	3.0. 3.0			Kenosha.	1970×0		15	5 da		-0.2030	,	0. 9960		24.5		24.8
					Wisc.			20	5 da		-0.9458	4	-0.9692		25.5		26.2
								25	5 da		-0.6594	5	-0.9958		26.5		26.7
yprinodon varie-	44.0				1					27 2021	0.0017		-0.9783	43.0	40.5		
gatus (sheeps-	Addit	Period 124	3-1-28000		Jefferson	Strawn and Dunn	Upper	35	(0 ° on)	35.3415	-0.6217 -0.7858	6	-0.9787		41.0		40.5
head minnow)					County, Texas	(1967**)		35 35	(5°/ce) (10°/ce)	30.0910			-0.9950	101111	41.5		₩.3
nead miniow)					Leras	(1307**)		35	(20 0 00)		-0.6594	4	-0.9982	55.00	41.5		
												7	0.3302	10.0	10000000		
Cyprinodon varie- gatus variegatus (sheepshead				¥3,000 F (F.F.)	Galveston Island, Gal- veston, Texa	70.77	Upper	30	700 hrs. ⁴ (from 21.3 C)		-0. 8025	2		41.4	40.8		********
	Underyearling	*********		******	Put-in-Bay,	Hart (1952)**	Upper	25	field &	47.1163	-1.3010	3	-0.9975	35.5	34.5		34.0
anum (gizzard					Ohio			No. at 1	3-4 da								
shad)								30			-0.9694	•	-0.9921		36.5		36.0
								35		31.5434	-0.7710	5	-9.9642	39.6	37.0	11 11 11 11 11 11 11 11 11 11 11 11 11	36.5(0
							Lower	25 30	110			4-1-6		1000	++++		10.8 14.5
								35	nanona a		December 5			****		********	20.0
														** *	25.0		24.5
	Underyearling				Knozville,	Hart (1952)**	Upper	25		32.1348		2	0.0001	35.5	35.0	* > * * * *	34.5 36.0
anum (gizzard shad)					Tenn.			30 35		41.1030	-0.0547 -0.8176	•	-0.9991 -0.9896	38.0	36.5 36.5		36.5
sileu)	*							33	30107010100	33.2040	-0.0170	•	-0.3430	33	34.3		
sox lucius	Juvenile	Minimum			Maple, On-	Scott (1964)≫	Upper	25.0		17.3066	-0.4523	5	-0.9999	34.5	32.5		32.25
(Northern Pike)		5.0 cm			tario, Canada	•		27.5		17.4439		5	-0.9985		33.0	$(a,b,b,q) = (a,b,q) \in \mathbb{R}$	32.75
								30.0		17.0961	-0.4319	5	-0.9971	35.5	33.5		33.25(u
sox masquinongy	Juvenile	Minimum			Deerlake	Scott (1964)≥	Upper	25.0		18.8879	-0.5035	5	-0.9742	34.5	32.5		32.25
(Muskellunge)	THE STATE OF THE S	5.0 cm			Hatchery			27.5	3-1717.330	20.0817	-0.5283	5	-0.9911	35.0	33.0		32.75
					Ontario.			30.0		18.9506	-0.4851	5	-0.9972	35.5	33.5		33.25
					Canada												(u)
sox hybrid	Juvenile	5.0 cm			Maple, On-	Scott (1964)96	Henry	25.0		10 6522	-0.4926	4	-0.9941	24 5	33.0		32.5
(luciusx masqui-	Juvenine	minimum			tario, Canada	The second second second	Upper	27.5	P. 100 X	20.7834		5	-0.9995		33.0		32.75
nongy)					tario, Canada	•		30.0	41 111112		-0.5032	5	-0.9951	35.5	33.5		33.25
									10.000.00								(u)
												•	0 0000	43.0	39.0		38.5
undulus chryso-	Adult	100 mm 100	(x,y) = (y,y) = (y,y) = (y,y) = (y,y)	40.00	Jefferson	Strawn & Dunn	Upper	35 35	(0°/m)- (5°/m)-	21. 2575	-0.5219 -0.4601	7	-0.9968 -0.9969	43.5	40.0	*******	
tus (golden top- minnow					County, Texas	(1967)**		35	(20°/∞)—		-0.4759	í	-0.9905	1000	40.0		
					16443					21.0000	0.1100	•	0.000				-
undulus diapha-	Adult			Samuel Committee	Halifax Co.	Garside and	Upper	15	(0 ° 00)*					$V_{i}(t) \geq 0$			27.5
nus (banded killifish)					and Annapo- lis Co., Nova Scotia			15 15	(14 °/∞) (32 °/≈0)		and the se						33.5 27.5
undulus grandis	Adult	anno a status i com-			Jefferson	Strawn &	Upper	35	(0 a /ea)	22, 9809	-0.5179		-0.9782	42.0	38.5	*	4313444
(gulf killifish)					County.	Dunn	- ppe	35	(5 ' 10)		-0.6220	i	-0.9967			********	
					Teras	(1967)**		35	(10°/m)	(-0.5535	9	-0.9926	000000		******	
						455576		35	(20 a/oa)		-0.5169		-0.9970		100012		*****
undulus batasa	£ dust				Herre -	Courts 4	line		19020 - 170								28.0
undulus hetero- clitus (mummic-	Adult				Halifax Co.	Garside and	Upper	15 15	(14 ° 00)		(1.00)		********		A	********	34.0
hog)					and Annapo			15	(32 0/00)							*******	31.5
					lis Co., Nova Scotia	(1306)		13	(92 -/ 00)		2017/1337	77575		2000			

^{*} It is assumed in this table that the acclimation temperature reported is a true acclimation in the context of Brett (1952).74

 $[\]begin{array}{ll} (392)^{1/2} \\ \text{Number of median resistance times used for calculating regression equation.} \\ \text{Correlation coefficient (perfect fit of all data points to the regression line = 1.0).} \\ d \mapsto \text{Incipient lethal temperature of Fry, et al., (1946).}^{1/2} \\ \text{Experimental fish were hatched from eggs obtained from adults from this location.} \\ \end{array}$

[/] Experimental fish were reared from eggs taken from adults from this location.
~ These times after holding at 8 C for > 1 mo.
^ Acclimated and tested at 10 $^{\circ}/_{\circ 0}$ salimity.
~ Tested in three salimities.
~ Tested at 3 levels of salimity.

THERMAL TABLES-Continued

Species	Stage/age	Length	Weight	Sex	Location	Reference	Extreme	Acci	imation	lo	g time=a+	o (ten	ip.)		limits C)	LD50	Lethal
				-				Tempa	Time	•	b	No	r.	_	lower		(°C)
redulus par- reginnis (Cali-	Adult	6-7 cm	***	Mized	Mission Bay, Calif. (sea-	(1945)?*	Upper	14		23.3781 50.6021	-0.6439 -1.3457	11	-0.9845 -0.9236	34.0	32.0		32.3 34.4
forma killifish)					water)	(1343)		28		24.5427	-0.5801	7	-0.9960	40.0	36.0	*********	36.5
tested in seawat	ter						Lower	14	43	2.1908	1.0751	3	0.9449	1.6	0.4		1.2
eccept as noted)								20	*********	2.7381	0.2169	6	0.9469	7.0	2.0		5.6
								20		2.5635	0.3481	4	0.8291	4.0	2.0	21000000	3.6
								20	(into 45°c	2.6552	0.4014		0.7348	4.0	2.0	*******	3.8
								sea water 1 testing)	day before								
ndulus pul-	Adult				Jefferson	Strawn and	Upper	35	(0 º/aa)	28, 1418	-0.6304		-0.9741	43.0	39.0		38.5
rereus (bayou					County.	Dunn		35	(50/00)	29.3774		7	-0.9931	43.5	40.0		
mifish)					Texas	(1967)**		35	(10 9/00)		-0.5477	5	-0.9956		41.5	Accounts	
								35	(20 º/oo)	30.4702	-0.6745	8	-0.9849	43.5	40.0	30.000.000	
dulus similis	Adult				Jefferson	Strawn and	Upper	35	(0 °/00)*	22.9485	-0.5113	6	-0.9892	43.0	40.5		
engnose killi-					County.	Dunn	-,,	35	(5 ° (ou)	25, 6165		6	-0.9984		41.0		
sh)					Texas	(1967)**		35	(10 º /oc)		-0.5863	6	-0.9925		41.0		*****
						- Microsoft		35	(20 º/∞)	26.5612	-0.5879	6	-0.9953	43.0	40.5		
mbusia affinis	Adult			Mized	Knozville,	Hart (1952) ^{ss}	Upper	25		39.0004	-0.9771	2		39	38		37.0
minis (mosquite-					Tenn.		-	30			-0.7143	6	-0.9928	40	37.5		37.0
(h)								35			-0.5408	6	-0.9978		39		37.0(
mbusia affinis	44.00				Jefferson Co.,	Strawn &	Hanne	35	(0°/m)*	22 4424	-0.5108		0 0000	42.0	40.0		
mosquitofish)	Adult	************			Texas	Dunn	Upper	35	(5 9/00)	23.1338	-0.5214	5	-0.9600 -0.9825	42.0	40.5	*******	*******
ireshwater)					16742	(1967)**		35	(10 0/00)		-0.5304	í	-0.9852		40.0		1,500,000,000
						(1301)		35	(20 9/00)		-0.5001	6	-0.9881		40.0		******
mbusis selfate					I-# 0-	Strawn and		25	(0 0/00)	17 ****	-0.3909		0.0000				
mbusia affinis mosquitofish)	Adult				Jefferson Co., Texas	Dunn Dunn	Upper	35 35	(5 9/00)		-0.4182	5	-0.9822 -0.9990		40.5	*****	
saltwater)					16797	(1967)**		35	(10 0/00)		-0.5165	i	-0.9982		39.5	****	******
-annator)						(1301)		35	(20 º/oa)		-0.5124	6	-0.9957		40.0		******
mbusia affinis	Adult			Mized	Welaka.	Hart (1952)**	llaner	15		32, 4692	-0.8507	3	-0.9813	37	36		35.5
cibrooki	Aguit	*******	*****	WITES	Florida	mart (1302)**	Upper	20	******	25-33 / Pilebook	0.9673	3	-0.9843		37.5		37.0
mosquitofish)								30			-0.7477	5	-0.9995		38		37.0
								35			-0.6564	5	-0.9909		38.5		37.0(
							Lower	15	100 100 PAGE 1						2-1-0.0	********	1.5
								20					******	1000			5.5
								35		****				100	****		14.5
rmannia chiquita (goby)	Adult			********	Northern Gulf of California Coast	Heath (1967)**	Upper	32	*****	21.7179	-0.5166	3	-0.9905	37.0	36.0	**********	
sterosteus acu- eatus (three- caine stickle- back)	Adult	37 mm ave.	0.50 g ave.	Mixed	Columbia River near Prescott, Oregon	Blahm and Parente (1970) ¹⁰¹ un- published data	Upper	19		19.3491	-9.5940	3	-0.9998	32	26	******	25.8
rella nigricans	Juvenile	7.1-8.0 cm		Mixed	LaJolla, Cali-	Doudoroff	Upper	12		21.1277	-0.6339	6	-0.9338	31.0	27.0		28.7
opaleye)					fornia (33°N)	(1942)78		20		19.2641	-0.5080	7	-0.9930	35.0	31.0	10011000	31.4
								28		24.7273	-0.6740	4	-0.9822	33.0	31.0		31.4
							Lower	12		1.4851	0.4886	8	0.955€	5.0	1.0		5.5
								20		-1.3878	0.6248	6	0.9895	8.0	5.0		8.5
								28		−0.1238	0.2614	6	0.9720	13.0	6.0		13.5
alurus			110010010000	NOTE THAT IN	Florida to On-	Hart (1952)**	Upper	5	1111111111	14.6802	-0.4539	4	-0.9782	29.5	28.0		27.8
Amicurus) neb-					tario (4 lo-			10		2010/03/2017	-0.4842		-0.9526		29.5		29.0
					cations) com	•		15			-0.8239	3	-0.9881		32.5		31.0
ulosus (brown					bined			20	100000		-0.6473	11	-0.9712		32.5		32.5
ulosus (brown bullhead)								25	11000000		-0.5732	12	-0.9794		34.0	(x,y,y,y,y,y,y,y,y,y,y,y,y,y,y,y,y,y,y,y	33.8
ulosus (brown								30 34	0.0000000000000000000000000000000000000		-0.5917	19	-0.9938	38.5	35.5		34.8
ulosus (brown													0 0010	22 .	30 0		24.0
ulosus (brown							1	-	*******	19.3194	-0.4500	5	-0.9912	37.5	36.0		34.8
ulosus (brown							Lower	20			****			37.5			0.5
ulosus (brown							Lower	20 25		19.3194	-0.4500	5		37.5	36.0		0.5 4.0
ulosus (brown bullhead)								20 25 30		********	*******		A11A1111				0.5 4.0 6.8
ulosus (brown	Juvenila (44-5) da			Mized	Centerton, Ark.	Allen & Strawn	Lower	20 25		34.7119	****			39.0			0.5 4.0

It is assumed in this table that the acclimation temperature reported is a true acclimation in the context of Brett (1952).⁷⁴
 Number of median resistance times used for calculating regression equation.

c Correlation coefficient (perfect fit of all data points to the regression line = 1.0), d = Incipient lethal temperature of Fry, et al., (1946).*3

[•] Salinity.

Species	Stage/age	Length	Weight	Sex	Location	Reference	Extreme -	Accli	mation	lo	g time=a+	b (tea	(P.)		limits C)	LD50	Letha
								Temp*	Time		•	No	r	upper	lower		(°C)
talurus puncta-	Juvenile				Joe Hogan	Allen &	Upper	25		34.5554	0.8854	5	-0.9746	17.5	35.5		35.5
tus (channel	(11.5 mo)	**********			State Fish	Strawn	Оррег	30		17.7125	-0.4058	4	-0.9134		37.5		37.0
catfish)	,				Hatchery, Lonoke, Arkansas	(1958)**2		35			-0.6554	•	-0.9906		38.0		38
talurus puncta-	Adult	**********		Mixed	Welaka, Fla.	Hart (1952)**	Upper	15		34.7829		3	-0.9999	2000	30.5		30.4
tus (I. lacustris)					and Put-in-			20		1977	-1.1234	4	-0.99 8 0		33.0		32.8
(channel catfish)					Bay, Ohio		•	25	0.014-0.014	46.2155	-1.2899	5	-0.9925	35.0	34.0		33.
				-			Lower	15 20								+	0.
								25				100	******	0.3-1-4	A 0 (A 6)		0.
														1	1000		٠.
omis macro-	Adult		**********	Mixed	Welaka,	Hart (1952)**	Upper	15		25.2708	-0.7348	5	-0.9946	33.0	31.0		30.
hirus purpures-					Florida			20		28.0663	-0.7826	6	-0.9978	34.5	32.5		32.
ens (bluegill)								25		23.8733	-0.6320	10	-0.9750	36.0	33.0		33.
								30		25.7732	-0.6581	5	-0.9965	38	34.5		33.
							Lower	15	y = 1 = 1 = 1 = 1					0.00			2
								20			1000		******	1000			5
								22	$((a_1,\ldots,a_{n-1}),(a_1,a_2,\ldots,a_n))$	400000	((A,b,a),(A,b,a))			1100	w - 1.0 W		7
								30	$(A_{i,j+1},A_{$				(+) (+) (+) (+ (+) (+) (+)	1000	0.07 ± 0.0	****	11
mis macro-	Adult			Mixed	Lake Mendota	Hart (1952)**	Upper	20-23		19 6247	-1.0581	4	-0.8892	35.5	34.0		
irus (bluegill)					Wisconsin		-,,,	30		30. 1809	-0.7657	4	-0.9401	38.0	36.0		-
COLUMN SERVE					- States China			-			#1/AL	-	797/390	-			
mis megalotis		>12 mm		Mixed		Neill, Strawn &	Upper	25			-0.9331	14	-0.9827		35.4	10000	25
ingear sunfish)	VI				White River,			30	41110000	20.5981	-0.4978	22	- 0.9625		36.5		31
					Arkansas	(1966)95		35	3.0 () ()	30.7245	-9.7257	43	-0.9664	41.5	37.3		37
mis sym-	Adult			CONTRACTOR OF THE PARTY OF THE	Jefferson Co	Strawn &	Upper	35	(0 0/00)·	20.7487	-0.4686	7	-0.9747	42.0	39.4		
etricus (ban-					Texas	Dunn		35	(5 0 /co)		-0.5354	6	-0.9975		39.0		
m sunfish)						(1967)**		35	(20 ° co)	10.4421	-0.2243	5	-0.9873	41.5	39.5		
					Inflation Co.			••	(0.0)								
ania parva ainwater killi-	Adult		********		Jefferson Co., Texas	Dunn Strawn and	Upper	35	(0 0/40)		-0.4762 -0.5460	9	-0.9844 -0.9846				***
sh)					16192	(1967)**		35 35	(5 °/ee) (10 ° ee)	24.3076	-0.5467		-0.9904 -0.9904		1.00	******	4.4.
,						(1307)		35	(20 0 00)		-0.4697	7	-0.9940			1801111000	
idia menidia		8.3-9.2 cm	4.3-5.2 gm	Mized	Nam tarran	Hoff & West-		,		10 0001	-0.7391	5	-0.9398	24 0	20		
ommon silver-		(average	(average	WITEG	New Jersey (40°N)	man (1966)90	Upper	14		18.7499		6	-0.9516	-	17.75		- 2
de)		for test	for test		(40 14)	man (1300)		21		65.7350	1000	6	-0.9626		28.0		
••,		groups)	groups)					23		37, 6032	4,44	5	-0.8872				_
			,				Lower	7		-9.8144	8.9079	5	0.8274		1		
								14		-1.2884	2.5597	6	0.8594		1		
								21	*******	-1.4801	1.1484	6	0.9531	1	2	******	
								28	******	-8.2366	1.3586	5	0.9830	15	7		
					Welaka.	Mark Clarette		**		** ****					32		
opterus sal- oides flori-	9-11 mo. age	p	470000000000000	11.00	Florida	Hart (1952)**	Upper	20 25		35.5107 19.9918		5	-0.9787 -0.9972	-			
nus (large-					rioriua			30			-0.3123	:	-0.9920		34.5		
outh bass)							Lower	20		17.3043	-0.4200	•	-0.3320	30	34.3		
							Comer	25	201129330	100000	********	*****	*******	2200	177.53		
								30	********			122210	********		*****		
opterus sal-					Put-in-Bay,	Hart (1952)**	Upper	20	***	50.8091		2		34	33		
ides (large-					Ohio			25	11111111		-0.6846	3	-0.9973				3
outh bass)								30			-0.7150	4	-0.9959				-
							Lower	20 30				Charle of the Control	*******		*****		
								30	*******		********		******				
opterus sal-	Under yearling				Knoxville,	Hart (1952)**	Upper	30		36.0620	-0.9055	4	-0.9788	38.5	37		3
oides (large- outh bass)					Tenn.			35		23.9185	-0.5632	6	-0.9958	40	37.5		3
							200				2000	320		72.2			
ropterus sal-					Lake Men-	Hart (1952)**	Upper	22	11.1111/11.0111		-0.9789	4	-0.9789				3
oides (large- outh bass)					dota, Wis- consin			30		35.2111	-0.9084	4	-0.9845	37.5	35.5		
						Smith (1970)**		7.5C	>1 wk	E 1202	-0.1170	3	0.9245	•	16		. 1
is relicta	Adult			Mixed	Frout Lake	Zwith (14)01sz		1.36						7.5			
is relicta Opposum	Adult			Mized	Trout Lake, Cook	2mith (1970)**	Upper	7.36	>1 WA	0.1302	-0.1470	3	0.3243	26	10		
	Adult			Mized		Smith (1970)**	Оррег	7.30	>1 WK	0.1302	-0.1470	3	0.3243	26	10		

alt is assumed in this table that the acclimation temperature reported is a true acclimation in the context of Brett (1952).74

⁶ Number of median resistance times used for calculating regression equation.

 $[^]c$ Correlation coefficient (perfect fit of all data points to the regression line = 1.0). d = Incipient lethal temperature of Fry, et al., (1946), $^{\rm t2}$ c Salinity.

old	ď
)	
-	

1	ai
į	old
)
	_
į	

af	
9	

2	۱		
	u		
9	•	•	١
r			
-			

ŧ					
•					
ů	ı	į	ı	ı	
_	_				

- (1952).74

Species	Stage/age	Length	Weight	Sex	Location	Reference	Extreme -	Accli	mation	le	og time = a-	-b (tem	p.)		limits C)	LD50	Lethal thresholde
3,646								Temp*	Time	,	b	Nb	Le		lower		(°C)
		I THE REST OF			• *************************************		-			-					_		
section await-	Adult	>7 mm		Mized	Sacramento-	Hair (1971)**	Upper	10.3	100000000	1170000						73 (48)	1-1-1-1
Energis (opos- Emishrima)					San Joaquin delta, Cali-			11.0 15.1	191 0.0		A 10.500		4 101 4			72.5(48)	
F - Pitting)					fornia			18.3				12000		EU i	11111	73.8(48) 76.1(48)	
								19.0	101.07070				*******	110.00		74.0(48)	
								19.0		8.4694	-0.2150	2				14.0(10)	24.2-25.4
								21.7		********						77.0(48)	
								22.0		******	******					77.5(48)	1000000
								22.4		9.65 () ()	***		0.000		1000	76.0(48)	
energeus.	Adult				Composite	Hart (1952)**	Upper	10		42.7095	-1.3507	3	-0.9998	30.5	29.5	4.0-1-1-1	29.5
physoleunas					of 1. Welaka			15		30.2861		4	-0.9844	32.5	31.0		30.5
(: den shiner)					Fla. 2. Put-			20		31.0275		15	-0.9869		32.0		32.0
					in-Bay, Ohio			25		34. 2505		9	-0.9665		34		33.5
					3. Algonquin Park, On-			30 15	X 4 4 5 7 7 7 8 4	26.3829	-0.6615	10	-0.9940	37.5	35	10000	34.5
					tario		Lower	20							417-4	20110111	1.5
								25	*******		24141141		100000				7.0
								30									11.2
								_									
tropis athen-	Juvenile		0-1.9 g.mode	Mixed	Chippewa Creek, Wel-	Hart (1947)87	Upper	5	****		-0.7959	3	-0.9519		23.5	1000000	23.3
modes remerald	(< 1 yr)				land, Ontario			10 15	A 5-7 T - 5 - 7 4		-1.2736 -1.5441	2	0.0002	27.5	27.0 29.5		26.7 28.9
P. 10 - 11 - 1					lang, Untario	,		20	Vicini	33.4714		3	-0.9803 -0.9805		31.5		30.7
								25		26.7096		6	-0.9753		31.5		
							Lower	15	********								1.6
								20							2-200		5.2
	7.							25									8.0
atropis cornutus	Adult				Toronto, On-	Hart (1952)**	Upper	10				1		29.0	29.0		29.0
common shiner					tario		-,,	15		45, 4331	-1.3979	2		31.5	31.0		
								20	Victoria de la	34.5324	-1.0116	4	-0.9560		31.5	********	31.0
								25(win-		24.9620	-0.6878	5	-0.9915	34.0	32.0	442504	31.0
								ter)									
								25	11-12-13-13		-0.7741		-0.9973		32.0		31.0
								30	44414-14	28. 1261	-0.7316	6	-0.9946	36.5	34.0		31.0(u)
atrepis cornutus	Adult	THE CONTRACTOR	4.0-5.9 g	Mixed	Don River.	Hart (1947)*7	Upper	5				10000			1000	******	26.7
(common	(mostly 2 yr)		(mode)		Thornhill,			10		40.7738		3	-0.9729	30.0	29.0		28.6
Thiner)					Ontario			15			-1.3874	3	-0.9999		31.0		30.3
								20			-1.0116	4	-0.9560		31.5		31.0
								25		24.9620	-0.6878	5	-0.9915	34.0	32.0		
							Lower	20 25				0.000		279.4	4.000		3.7 7.8

otropis cornutus			******		Knoxville,	Hart (1952)**	Upper	25			-0.6794	6	-0.9938		33.0		
common shiner)				Tenn.			30		24.9660	-0.6297	10	-0.9978	38.0	34.5		33.5(u)
nerrhynchus	Juvenile fresh-	3.81±0.29	0.30±0.15g	Mixed	Dungeness,	Brett (1952) ⁷⁴	Upper	5		11.1827	-0.4215	4	-0.9573	24.0	22.0		21.3±0.3
zorbuscha (pink		cm			Wash.		-,,	10			-0.3865		-0.9840		23.0		
saimon)	(3.8 ma.)				(hatchery)			15	*1	12.8937	-0.4074		-0.9884	27.0	23.5		23.1±0.3
								20	******	16.2444	-0.4074	7	-0.9681		24.0		23.9±0.6
								24		14.7111	-0.4459	6	-0.9690	27.5	24.5		23.9
corhynchus	Juvenile fresh-	5.44±0.89	1.62±1.03g	Mized	Nile Creek.	Brett (1952)?4	Upper	5	**********	14, 3829	-0.5320	4	-0.9839	24.0	22.0		21.8
keta (chum	water fry	cm			B.C.			10	THE STREET		-0.4766	9	-0.8665		22.5		200
salmon)	(4.9 mo.)				(hatchery)			15	10/10/10/10	15.8911	-0.5252	8	-0.9070	27.0	23.0		23.1±0.4
								20			-0.5168	9	-0.9750		23.5		
								23	1000000	15.3825	-0.4721	4	-0.9652	27.0	24.0		23.8±0.4
							Lower	5		$(A_i, a_i) \in \{a_i, a_i\} \times \{a_i\}$				-	10.00		
								10 15	******	******			*******	1	0.00	****	0.5 4.7
								20				*****		_			6.5
								23									7.3
	format.													••			
corhynchus keta (chum	Juvenile				Big Creek	Blahm and	Upper	9	10%		-0.5995	6	-0.9927		17		22.0
					Hatchery, Hoodsport,	Parente (1976) ¹⁰¹			50% 90%		-0.5575 -0.5881	1	-0.9972 -0.9995		17 17	NAME OF TAXABLE PARTY.	23.2
(anmon)					moodsport,	(13/0)			30.0	10.0103	U. J001	•	- v. 3333	43		10 00000	40.0
salmon)					Wash. ^A	unpublished											

^{*} It is assumed in this table that the acclimation temperature reported is a true acclimation in the context of Brett

^{**}Number of median resistance times used for calculating regression equation.

**Correlation coefficient (perfect fit of all data points to the regression line=1.0).

d=Incipient ethial temperature of Fry, et al., (1946).3

**All temperatures estimated from a graph.

[/] For maximum of 48 hr exposure. The lower temperature is uncorrected for heavy mortality of control animals at

[&]quot;acclimation" temperatures above about 21.6.

The author concluded that there were no geographic differences. The Welaka, Florida subspecies was N.c. bosii, the others N.c. auratus, based on morphology.
A Tested in Columbia River Water at Prescott, Oregon.
Mortality Value.

Species	Stage age	Length	Weight	Sex	Location	Reference	Extreme	Acclim	nation .	le le	og time = a +	u (ten	**		limits C)	LD50	Lethal
								Temp*	Time	٠	•	No	ľ	upper			(°C)
							-							-			
Incorhynchus Kisutch (coho	Juvenile fresh-		1.37±0.62g	Mixed	Nile Creek,	Brett (1952)74	Upper	5			-0.7970	2		24.0	23.0		22.9±0
Kisutch (coho	water try	cm			B.C.			10	1100000	19.5721		•	-0.9847		24.5		
salmon)	(5.2 ma.)				(hatchery)			15		20 4066		6	-0.9681 -0.9985	-	24.5		
								20	10 10 11 11	20.4022		4	-0.9985 -0.9956	1	25.5 25.0		1200000
								23		18.9736	-0.6013	5	-0.9956	27.5	25.0		
							Lower	5									0.3
								10						1			
								15				100		3	100		3.
								20 23 1				(0.00 to 0.00 W)		7	1.0		6.
														•	1.0	-0.000	0.
ncorhynchus	Juvenile				Kalama Falls,		Upper	10	(10°%)/		- 0.5522		-0.8533 -0.9205		1.7		
kisutch (coho					Wash.	McConnell (1920)198			(50°,)	18.4136		6	-0.9705		17.0		
salmon)					(hatchery)*	(1970)100 Unnublished			(90°2)		-0.5423 -0.2969	10	-0.9720	100000	17.0		273.17
						unpublished		140	(10%) (50%)		-0.2969 -0.2433	10	-0.9063 -0.8483		14.0	remente.	14.
						data			(50%) (90%)	a. 5195	-0.2433	10	-0.8483	a	0.14		17. 22.
									(30 (1)					-116	*****		u.
Incorhynchus	Adult	a 570 mm	a 2500 g ave.	Mixed	Columbia	Coutant	Upper	17*		5.9668	-0.1630	5	-0.9767	30	26		?
kisutch (coho salmon)		ave.			River at Priest Rap-	(1970)**											
					ids Dam				,								
11-712-1-1			12.3		(3.6	22000		44	į	100					0-1		
ncorhynchus			$\textbf{0.87} {\pm} \textbf{0.45g}$	Mized	Issaquah.	Brett (1952)**	Upper	5			-0.6623	4	-0.9383		22.5		
nerka (sockeye	water fry	cm	and and		Wash.			10	and in	14.7319	-0.4988		-C. 9833		23.5		
salmon)	(4.7 mo)				(hatchery)			15			−C. 5210	7	1000 1000 1000		24.5	$(x,y) \in \mathcal{X}_{\mathcal{A}}(X,Y)$	- 50113
								20			-0.6378	5	-0.9602	\$5825TH	24.5		Sec. 15.7
							104	23		20.0020	−0.6496	4	-C. 9981	-520	115,23,573		37711127T
							Lower	5						0	0		0
								10		******		-	*****	4	0		
								15				*1748	A # 5 9 = 5 1 A	5	0		
								20 23		100001	100 (100 (100) 140 (104 -		*******	5 7	0 1.0		6.1
	lu-																
ncorhynchus	Juvenile	67 mm ave.		Mixed	National Fish	McConneil &	Upper	10	1000		-0.6458	6	-0.9671		17	*****	-
nerka (sockeye	(under				Hatchery ¹	Blahm			50%	18.5833	-0.6437	6	-0.9750		17		
salmon)	yearling)				Leaven-	(1970): 03			90%		-0.7166	6	-0.9553		17	,,,,,,,,,,	1 (500)
					worth,	unpublished		20	1000		-0.5861	6	-0.9739		21		
					Wash.	data			50°	16.7328 15.7823	-0.5473 -0.5061	6	-0.9552 -0.9539		21	********	
25.50		2201000		2	-			9802									
ncorhynchus	Juvenile	100-105 mm		Mized	National Fish	McConnell &	Upper	10 1°C	(10%)	6.4771	-0.2118	4	-0.9887	32	14		
nerka (sockeye	(yearling)	are for test			Hatchery	Blahm		per day rise									
salmon)		groups			Leaven-	(1970):03		to acci. temp.									-
					worth.	unpublished			(50%)		-0.2922	•	-0.9392	3.7	14		-
					Wash.	data			(90%)		-0.2859	4	-0.9534		14	*******	1 444 144
								12"	(10%)		-0.4475	:	-0.9955 0.9598		17	*	
									(50%)		-0.6178 -0.5900	:	-0.9598 -0.9533		17		
								10.00	(90%)		-0.5900 -0.4004	4	-0.9533		17		
								15.5"	(10";)		-0.4004	5	-0.9443 -0.9720		17		22
									(50%)		-0.4432 -0.4057	5	-0.9720 -0.9748		17		
								17."	(90%)	C2777, 1789.1	-0.4057 -0.6114	4	120222	100	17	*******	
								17"	(10%)		-0.6114 -0.5885	4	-0.9549 -0.9450		20 20	41.010.000	
									(50°%) (90°%)		-0.5885 -0.5769	:	-0.9450 -0.9364		20	*******	
et parser					_		1,000	27-1			1000000						
corhynchus			1.03±0.27g	Mixed		Brett (1952)*1	Upper	5			-0.3107	6	-0.9847				
shawytscha	water fry	cm			Wash.						-0.5575	5	-0.9996		24.5		
and the same of	(3.6 mg.)				(hatchery)					** ****	-0.5364	4	-0.9906				
										1000	-0.7611	7	-0.9850				
Chinook salmon)								24		18.9940	-0.5992	9	-0.9923	21.5	25.0		4.1±
																	-
							Lower				******		*********	1.0			
							Lower	15				1.00		3.0	0.5		2.5
							Lower	15 20		******		10114		3.0 5.0	0.5 0.5		4.5

alt is assumed in this table that the acclimation temperature reported is a true acclimation in the context of Brett

b Number of median resistance times used for calculating regression equation.

Correlation coefficient (perfect fit of all data points to the regression line = 1.0).

d = Incipient lethal temperature of Fry, et al., (1946).*1

¹⁰ C—acclimated fish came directly from the hatchery.
Data were presented allowing calculation of 10% and 90% mortality.

^{3.14} C—acclimated fish were collected from the Columbia River 4-5 wks following release from the hatchery (and may have included a few fish from other upstream sources). River water was supersaturated with Mitrogen. and 14-C fish showed signs of gas-bubble disease during tests.

A River temp. during fall migration.
Tested in Columbia River water at Prescott, Oregon.
Per cent mortalities.

Species	Stage age	Length	Weight	Sex	Location	Reference	Extreme			log time = a + b (temp.)					(D)	LD50	Lethal threshold
		Lengin	work		Location	noisience	2	Temp*	Time		b	Nº	ř.	-	lower	2030	(°C)
	t	39-124 mm		Mized	Columbia	Snyder &	Upper	10-		15 \$100	-0.5787	3					
numerisona	Juvenile	averages	4.4	WITED	River at	Blahm .	Оррег	10-	(1077)	18.9770		5	-0.9998 -0.9918		25 23		24.5
- 100k		for various			Prescott.	(1970)102			(90'7)		-0.5845	3	- 0.9997		25		24.5
14 (MCR)		test groups			Oregon	unpublished		10-			-0.5403		-0.9255		20		23.5
-		0.5.			0000	data			(10',)	15.1583	-0.5312	84	-0.9439	29	20		22.2
									(90'.)	15.2525	-0.5130	8	-0.9360	29	20	Year and	23.5
								12			-0.6149	54	-0.9821	29	23		20.5
								13	11000		-0.3974	6	-0.9608	1,77	17	-	
									(10 .)	1933 1931	-0.3218	1	-0.9496		17		19.5
									(90 ;)		-0.4040	6	-0.9753		17		
								18-	418043	13.3175	-0.4240	11	-0.9550	11.	20		20.5
									(90 7)		-0.3745 -0.4434	12	-0.9413 -0.9620		20		20.0
									(30 .)	14. 2430	-0.4434	10	-0.3020	30	20		23.3
consynchus	Juvenile	84 mm ave.	6.3g ave.	Mized	Little White	Blahm &	Upper	11	2-3-wks								
- revischa					Salmon.	McConnell			100%		-0.4691	4	-0.9504	277	17		23.0
C - x saimon					River	(1970): ***			50 0		-0.5066	4	-0.9843		17		23.5
(CB) \$1 (C)					Hatchery.	unpublished			90 :	19, 2211	- 0.6679	4	-0.9295	29	17	() > < 0 4	23.8
					Cook. Washington	data		20	from 10C								
					wasinington				10	22 6664	-0.7797	4	-0.9747	29	21		23.8
									50		-0.7253	3	-0.9579		21	And Control	24.7
									90		-0.7024	3	-0.9463	-	21		24.8
	luvenile	40 mm. ave.		Mized		Snyder &	Upper	4			-0.4874	4	-0.9845	3 0 000	8		
Transticha					Seattle.	Blahm			(10' ;)		-0.3198	6	-0.9618		8		13.5
Tion salmon					Wash. raised from yolk-sac stage in Columbia River water	(1970)105 unpublished data			(90 °;);	10.6491	-0.3771	6	-0.9997	29	•		?
orhynchus "Swytscha " nook salmon	Juvenile	90.6 mm ave.	7.8 g ave.	Mized	at Prescott, Oregon Little White Salmon Riverhatch- ery, Cook,	Blahm & McConnell (1970): 300 unpublished	Upper	11	2-3 wks 10 - 50 - 90 - 50	20.5471	-0.6569 -0.7147 -0.7231	5 4	-0.9618 -0.9283 -0.9249	29	17 17 17		23.5 24.2 24.5
					Washington	data	Upper	20	1C day rise	20.0300	0.7221	•	0.3243				24.0
							-,,		from 10C								
									107	21.6756	-0.7438	4	-0.9550	29	21	1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	24.5
									50%	22.2124	-0.7526	4	-0.9738	29	21		24.5
									900	20.5162	-0.6860	3	-0.9475	29	21		24.5
orhynchus	'lacks''	2500 mm ave.	2000 e ave	Males	Columbia	Coutant	Upper	17:		13 2502	-0.4121	4	-0.8206	30	26		?
Taytscha	1-2 yrs old	1000 111111 61111			River at	(1970)76	-,,,	19/	and Detector		-0.2504	4	-0.9952		1.1.00	10001000	22
Clinnok Illmon)					Grand Rapids Dam	•											
					•••												
ta flavescens reliew perch)	Juvenile	49 mm ave.	1.2 g ave.	Mixed	River near Prescott, Ore.	Blahm and Parente (1970) ¹⁰¹ unpublished data	Upper	19	field plus 4 da.	15.3601	-0.4126	2	m (mankoa)	38	32	*********	7
ta flavescens	Adult (4 vr		8.0-9.9 #	Mixed	Black Creek.	Hart (1947)87	Upper	5	market.	7.0095	-0.2214	9	-0.9904	26.5	22.0		21.3
reliaw perch)	mode)		mode		Lake Sim-	ALVES CONTRACTOR		11	11111001	17.6536		2				********	25.0
The state of the s	- wareness				coe, Ontario			15	*******	12.4149		5	-0.9994				27.7
								25		21.2718	-0.5909	6	-0.9698				29.7
							Lower	25		******				2400			3.7
omyzon Srinus (sea	Prolarvae				Great Lakes	McCauley (1963)**	Upper	15 and 20-		17.5642	-0.4680	18	-0.9683	34	29		28.5

^{*} It is assumed in this table that the acclimation temperature reported is a true acclimation in the context of Brett 19521.14

Number of median resistance times used for calculating regression equation.

^{*} Correlation coefficient (perfect fit of all data points to the regression line = 1.0).

^{4 -} Incigient lethal temperature or Fry, et al., (1946).53

^{*} Fish tested shortly after capture by beach seine. Data were also available for calculation of 10% and 90% mortality of June test groups.

These were likely synergistic effects of high N2 supersaturation in these tests.

Excluding apparent long-term secondary mortality.

Data were available for 10% and 90% mortality as well as 50%.

Data also available on 10% and 90% mortality.

^{*} Data available for 10% and 90% mortality as well as 50%.

⁴ River temperatures during fall migrations two different years.

[&]quot; No difference was shown so data are lumped.

Species	Stage/age	Length	Weight	Sex	Location	Reference	Extreme		mation	le	g time=a-	-b (tem	ik)		fimits C)	LD50	Lethal threshold
•								Temp*	Time	•	b	No	r.	_	lower		(°C)
imephales	Adult (mostly		mostly 0-2 g	Mined	Etabianta Cr	Hart (1947)*7	Upper	5		24 6417	-0.8602	2		27.0	26.5		26.0
(Hyborhynchus)			mostry 0-2 g	MIXEU	Ontario	Hall (1341)	opper	10	10010000	55. 8357	-1.8588	2		29.5	29.0		28.3
notatus (blunt-	. 1.,				Ciliano			15		28.0377		3	-0.9974		31.0		30.6
nose minnow)								20		34.3240	-0.9682	i	-0.9329		32.5		31.7
								25		50.8212		3	-0.9490		34.0		33.3
							Lower	15									10
							7000000	20	0474444	William Chil	*********		4414	70.00	10000		4.2
								25	*******		1430000000000	-		46.63			7.5
imephales	Adult (1 yr)		2.0-3.9 g	Mixed	Don River,	Hart (1947)87	Upper	10		60.7782	-2.0000	2		30.0	29.5		28.2
promeias (fat-			mode		Thornhill,		.,,,	20	10000000	6.9970	-0.1560	i	-0.7448		28.5		31.7
head minnow)					Ontario			30		41.3696	-1.1317	5	-0.9670		34.0		33.2
718-5-7110000000000000000000000000000000000							Lower	20	111111111111							With the same	1.5
							37000	30	10000000	*******	*******				*1560		10.5
						2.0		92			2.002						
oecilia latipinna	Adult	$0 \leq t \leq $			Jefferson Co.,		Upper	35	(0 º/co)•	27.4296	-0.6279	6	-0.9902		38.5	1111-111	A-100 (A-100)
(Sailfin molly)					Texas	Dunn		35	(5 0/00)	25.6936		6	-0.9 8 35	7 123 133	39.0		
						(1967)**		35	(10 0/00)	28.8808		7	-0.9949		39.0		11-11-04
								35	(20 °/∞)	27.1988	-0.6146	3	-0.9791	42.5	39.5		
ontoporeia affinis	Adult			Mized	Lake Superior	Smith (1971)114	Upper	6	700.00	9.1790	-0.5017	2	******	12	10.8	********	10.5
				100	near Two	unpublished	2.5	9	1111111111				2000			10.4	
					Harbors.	data			-							(30 da)	
					Minn.				2								
seudopleuro-		6.0-7.1 cm	3.4-4.2 2	Mixed	New Jersey	Hoff & West-	Upper	7	i i	28.2986	-1.1405	4	-0.9852	24.0	20.0		22.0
nectes ameri-		(averages	(averages	MILLEU	(40°N)	man (1966)90	Opper	14		24, 3020	-0.8762	6	-0.9507	26.0	23.0		23.7
canus (winter		for test	for test		(40 14)	man (1300)**		21	*******		-1.6915	5	-0.9237		26.0		27.0
flounder)		groups)	groups)					28		60.8070	-1.9610	4	-0.9237	30.0	29.0		29.1
nouncer)		groups/	groups)				Lower	7	0.000	60. 6070	-1.3010	•	0.3101	1.0	1.0	*(1.1.) * * * * * *	1.0
							LUMBI	14	117777774	10.00			****	2.0	1.0		1.0
								21		2.4924	0.8165	3	0.7816		1.0		14
								28		2.2145	0.8165	3	0.7816	7.0	4.0		6.0
								-50									
	Adult	***			Knozville.	Hart (1952)**	Upper	20	30000000	21.2115		7	-0.9935		30		29.3
atratulus					Tenn.			25	1777	19.6451		10	-0.9979		30.5	1111111111	29.3
(blacknose dace)								28	3.00.00	21.3360	-0.5651	7	0. 9946	35.5	32.5		29.3
thinichthys	Adult (?)				Toronto.	Hart (1952)**	Upper	5	Terrorera					27	27	27(1 hr)	
atratulus (black-					Ontario			15	UST-ATIONS	19.8158	-0.5771	4	-0.9632		30.0		29.3
nose dace)								20		24, 5749		7	-0.9926		30.0		29.3
								25		20.1840			-0.9968		32.0		29.3
and the second second	and the second		2.2.2.2				142-550			_							
	Adult		2.0-3.9	Mized	Don River,	Hart (1947) ⁶⁷	Upper	5			-2.7959	2		27.5	27.0		26.5
atratulus (Black-			(mode)		Thornhill,			10	P112221115	49.1469	-1.6021	3	-0.8521		29.5	4 7 4 4 4 4	28.8
nose dace)					Ontario			15	$(p,+1,1,+\cdots,0,+N)$	19.6975	-0.5734	4	-0.9571		30.0		29.6
								20	$(1,1)^{n}(x)=(1,1)^{n}(x)$	26.5952	-0.7719		-0.9897		29.5	4 - 4 - 5 - 6 - 6 - 6 - 6	29.3
							20000	25		23.5765	-0.6629	9	-0.9937	34.0	30.0	*****	29.3
							Lower	20			****		0.000				2.2
								25				111-0		4 (1-4-4)	* 1.1 - *		5.0
almo gairdnerii	Juvenile	4.5±0.4 cm		Mized	Britain	Alabaster &	Upper	18/	1000000	18.4654	-0.5801	5	-0.9787	29.6	26.3		26.5
(Rainbow trout)						Welcomme (1962) ⁷⁰		180	12-22-23-24	13.6531	-0.4264	5	-0.9742	29.1	26.3	10-14-14	26.5
ilmo gairdnerii	Yearling	10 T1 0 T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		*******	East end of	Craigie, D.E.		Raised in so	oft water								
(rainbow trout)					Lake	(1963)77	Upper		ed in soft								
					Superior			wa	ter)	14.6405	-0.4470	3	-0.9787	29	27	A - A A	****
									ed in hard								
									ter)	15.0392	-0.4561	3	-0.9917	29	27	$h(x) = (x,y) \cdot x = 0$	1.00
								Raised in ha									
								1750 95000	d in soft	-2-2-1-1-1-1	7230000	1 1997	200000	- 1	-		
								wat		15.1473	-0.4683	3	-0.9781	29	27		*****
									d in hard					**			
								wat	(er)	12.8718	-0.3 8 37	3	-0.9841	29	27	$\Phi(-1,++h) = 0.$	
almo gairdnerii	Juvenile	9.4±6.0 cm		Mized	London.	Alabaster &	Upper	15		15.6500	-0.500	24				E)() = () = () =	
(rainbow trout)		and 15.5±			England	Downing	15.5	20			-0.6250	2					
		1.8 cm															

⁴ It is assumed in this table that the acclimation temperature reported is a true acclimation in the context of Brett (1952).14

^{(1932).**}Number of median resistance times used for calculating regression equation.

Correlation coefficient (perfect fit of all data points to the regression line = 1.0).

Incipient lethal temperature of Fry, et al., (1946).*3

Salinity.
 Dissolved oxygen Conc. 7.4 mg/l.
 Dissolved oxygen Conc. 3.8 mg/l.
 See note (under Salmo salar) about Alabaster 1967.46

Species	Stage/age	Longth	Weight	Sez	Location	Reference	Extreme		imation	- la	g time = a+	b (ter	np.)		limits C)	LD50	Lethal
396068	July/ala				Luain			Temp*	Time	•	•	Иэ	t.		lower		(°C)
simo gairdnerii anadromous) (Steelhead trout)	Adult	2650 mm ave.	4000 g ave.	Mixed	Columbia River at Priest Rapids Dam	Coutant (1970) ⁷⁴	Upper	19-		10.9677	-0.3329	7	-0.9910	29	21		21
imo salar Allantic salmon)	Smotts (1-2 yrs)	About 16 cm ave.		Mized	River Aze, Devon, England	Alabaster (1967) ^{es}	Upper	9.2 (fi 9.3" 10.9" Tested in 9.2 (fi	30% saawata	23.7273 126.5000	-1.6667 -0.9091 -5.000	2/2		*****			
								Tested in water 9.2 (fi Acclimated	100% sea-		-0.5263	2					******
								water 9. 2 (fi		36.9999	-1.428S	2			*****		******
mo salar Atlantic salmon)	Newly halched larvae	economies economies		Mized	Cullercoats North Shields. England (hatchery)	Bishai (1960) ⁷²	Upper	te	ught up to st temp. in hours)	13.59	-0.4287	6	-0.9678	28.0	29.0		22.0
on salar Allantic salmon)	30 da after hatching			Mixed	Cullercoats. North Shields. England (hatchery)	Bishai (1960) ⁷³	Upper	5 10 20		15.7280	-0.2877 -0.5396 -0.3406	3	-0.9791 -0.9689 -0.9143	26.0	22 22 22	********	22.2 23.3 23.5
no salar Atlantic salmon	Parr (1 yr)	10 cm ave.	**********	Mixed	River Aze, Devon, England	Aiabaster (1967)**	Upper	9.3 (fi 10.9 (fi	2025		-1.2500 -1.0000	20					******
mo salar Atlantic salmon	Smolts (1-2) yrs)	11.7±1.5 cm	**********	Mized	River North Esk, Scotlan	Alabaster 6 (1967)**	Upper	11.7	********	25.9091	-0.9091	20				********	******
mo salar Atlantic salmon)	Smolts (1-2 yrs)	14.6±1.3 cm	*****	Mixed	River Severn Gloucester, England	Alabaster (1967)es	Upper	16.7		14.5999	-0.4545	20	*******			********	
mo trutta brown trout)	Newly hatched fry	*********	**********	Mized	Cullercoats, North Shields, England (hatchery)	Bishai (1990)73	Upper	ter	ed to test mp. over 6 hr riod)	12.7756	-0.4010	•	-0.9747	28.0	20.0		22.0
mo trutta Brown trout, earun)	30 da after hatching			Mixed	Cullercoats, North Shields, England (hatchery)	Bishai (1960) ²³	Upper	5 10 20	********	23.5131	-0.5299 -0.8406 -0.4665	3	-0.8783 -0.9702 -0.9797	26.0	22.0 22.0 22.0	••••••	22.2 23.4 23.5
mo trutta brown trout, sarun)	Juvenile	10.1±0.8 cm 7.4±4.5 cm	***********	Mixed	London, England (hatchery)	Alabaster & Downing (1966)49	Upper	6 15 20		21.5714	-1.4286 -0.7143 -0.5556	2° 2 2	******** ********		*****		
mo trutta brown trout, earun)	Smolts (2 yr.)	About 21 cm ave.	************	Mized	River Aze, Devon, England	Alabaster (1967)**	Uppe	9.3 (fi 10.9"	eld)		-0.6667 -1.2500	20				********	
Ivelinus fonti- nalis (Brook irout)	Javenile		***************************************	*********	Pleasant Mount Hatchery, Wayne Co., Penna. and Chatsworth Hatchery,	McCauley (1958) ⁵³	Upper	10 20	***************************************		-0.6033 -0.6671	7				********	

[&]quot; It is assumed in this table that the acclimation temperature reported is a true acclimation in the context of Brett (1952).74

^{(1924).**}Number of median resistance times used for calculating regression equation.

* Correlation coefficient (perfect fit of all data points to the regression line = 1.0).

* — Incipient lethal temperature of Fry, et al., (1946).**

[·] River temp. during fall migration

[/] Alabaster fitted by eye, a straight line to median death times plotted on semilog paper (log time), then reported only the 100 and 1000 min intercepts. These intercepts are the basis for the equation presented bers.

" See note for Alabaster 1987."

A Results did not differ so data were combined.

Species	Stage/age	Length	Weight	Sex	Location	Reference	Extreme -	Accli	mation	lo	g time=a+	-b (tem	p.)		limits C)	LD50	Lethal
Species	2016/3fe	Length	wagnt	261	Location	Kererence	Extreme -	Tempa	Time	•	b	Ne	l _c	upper		LUSV	(°C)
	.						•										
alvelinus fonti- nalis (brook	Yearling		X = 7.88 g range 2-	Mized	Codrington, Ont. (hatch-	Fry, Hart & Walker	Upper	3 11			-0.4556 -0.4728	3	-0.9997	26.0 28.0	23.5 25.0		23.5 24.6
trout)			25 g		ery	(1946)*3		15				9		28.5	25.5		25.0
			-			4,4,4,4		20			-0.4661	7		29.0	25.5		25.3
								22	*******		-0.5367	6	400000	29.0	26.5		
								24 25			-0.5567 -0.5567	10		30.0 29.0	25.5 26.0		25.5 25.5
									V = 1 X = 4 X X							444,000	
Salvelinus fonti- nalis (namayous)	Juvenile	$(t-1) = (t-1) \in \mathcal{A} \cap \mathcal{A} \cap \mathcal{A}$			Ontario, Canada	Fry and Gib-	Upper	10 15	44000		-0.4381 -0.5540	8	-0.9852 -0.9652		24.0	100000	23.5-24.
hybrid)					Canada	son (1953)*2		20			-0.5340	9	-0.9652		24.5		24.0-24.
				•••		•		(400)									1/2/00/20/20
Salvelinus namaycush	1-2 yr. old			Mixed	Hatcheries in Ontario	Gibson and	Upper ,	8 15	1 wk		-0.5142 -0.4866	5	-0.9936 -0.9989		23 24		22.7 23.5
(Lake trout)			(1 yr) 82.8 gm ave.		Untario	Fry (1954)*5		20	,,		-0.4866 -0.5818	5	-0.9951		24		23.5
(2200 0001)			(2 yr)					20		17.3004	0.3010	•	0.3331	.,			25.5
Scardinius erythrophthala- mus (rudd)	Adult	10 cm	**********	Mixed	Britain (field)	Alabaster & Downing (1966)**	Upper	20		26.9999	-0.7692	2*					
Semotilus atro-	Adult		2.0-3.9 gm	Mized	Don River.	Hart (1947)\$7	Upper	5		42.1859	-1.6021	3	-0.9408	26.0	25.0		24.7
maculatus	-7550		mode		Thornhill,			10	211			3	-0.8628	200	28.0	Service Contract	27.3
(Creek chub)					Ontario			15	STEEL STATE	20.8055	-0.6226	3	-0.9969	31.0	30.0		29.3
								20	********	21.0274	-0.5933	7	-0.9844	33.5	30.5	(a) + (a) (a) (b) (b) (b) (b)	30.3
							1217-004	25		16.8951	-0.4499	9	-0.9911	35.0	31.0		30.3
							Lower	20			$\mathcal{S} = \{1, \dots, n\}$						0.7
								25	*****			*****		11 A.B.		*******	4.5
Semotilus atro-	Adult	1			Toronto.	Hart (1952)**	Upper		nto only)	******				29	28		27.5
maculatus (Creek chub)					Ontario Knoxville.				onto only) onto only)		-0.6226 -0.5328	3	-0.9969 -0.9856	177	30 30.5	10-41-53-64	29 30.5
(Creek Cilub)					Tenn.			25	mto only)		-0.4717	18	-0.9921	200	32		31.5
					13,			30			-0.5844	19	-0.9961		33		31.5
phaeroides annu- latus (Puffer)	Adult			********	Northern Gulf of Calif. Coast	Heath (1967)**	Upper	32.0		25.4649	-0.6088	3	-0.9716	37.0	36.0		
Sphaeroides macu-		13 &-15 9 cm	62.3-79.3 gm	Mired	New Jersey	Hoff and West-	Upper	10		11 3999	-0.2821	3	-0.9988	30 0	25.0		27.5
latus (Northern		(average)	(average)	MILLER	(40 N)	man (1966)90	Оррег	14		35.5191		3	-0.9449		27.0	********	
puffer)		(,		()			21		21.5353		3	-0.9914		30.0		31.2
								28		23.7582	-0.6183	3	-0.9239	33.5	31.1		32.5
							Lower	14	******	-1.7104	0.6141	4	0.9760	10.0	6.0		8.8
								21		-3.9939	0.7300	6	0.9310		8.0		10.7
								28		-7.4513	0.8498	5	0.9738	16.0	10.0		13.0
Thaleichthys pacificus (Eulachon or Columbia River Smelt)	Sexually Mature	161 mm ave.	31 gm ave.	Mixed	Cowlitz River, Wash.	Blahm & McConnell (1970):00 unpublished data	Upper	5	river temp.	7.7440	-0.2740	1	-0.9142	29.0	8.0	********	10.5
Tilapia mossam-	4 months	8.0-12.0 cm	10.0-17.0 gm		Transvaal	Allanson &	Upper	22		313.3830	-8.3878	4	-0.8898	37.1	0 36.5		36.94
bica (Mozam-					Africa	Noble	-,,	26	********		-0.2800		-0.2140				
bique mouth-						(1964)71		28	*****		-0.9950		-0.3107				37.85
breeder)								29		94.8243	-2.4125	5	-0.7781	38.1	0 27.0		37.91
								30			-1.0018					14111144	
								32			-0.8123					1400000000	
								34 36			-3.1223 -1.7094					*******	
-									*******								
Tinca tinca	Juvenile	4.6±0.4 cm		Mized	England	Alabaster &	Upper	15	0.001.000.000	33.2000							
(tench)						Downing ⁶ 9		20		29.6667						******	
						(1966)		25		27.1429	0.7143	2					

alt is assumed in this table that the acclimation temperature reported is a true acclimation in the context of Brett (1952).74

b Number of median resistance times used for calculating regression equation.

 $[^]c$ Correlation coefficient (perfect fit of all data points to the regression line = 1.0), 4 = Incipient lethal temperature of Fry, et al., (1946), $^{\rm 52}$ $^{\rm 6}$ See previous note for Alabaster 1967. $^{\rm 6}$

-24.0

-24.5

- 6 Alabaster, J. S. (1967), The survival of salmon (Salmo salar L.) and sea trout (S. trutta L.) in fresh and saline water at high temperatures. Water Res. 1(10):717-730.
- 49 Alabaster, J. S. and A. L. Downing (1966), A field and laboratory investigation of the effect of heated effluents on fish. Fish. Min. Agr. Fish Food (Great Britain) Ser. I Sea Fish 6(4):1-42.
- Alabaster, J. S. and R. L. Welcomme (1962), Effect of concentration of dissolved oxygen on survival of trout and roach in lethal temperatures. Nature 194:107.
- 23 Allanson, B. R. and R. G. Noble (1964), The high temperature tolerance of Tilapia mossambica (Peters). Trans. Amer. Fish. Soc. 93(4):323-332.
- Allen, K. O. and K. Strawn (1968), Heat tolerance of channel catfish Ictalurus punctatus, in Proceedings of the 21st annual conference of the Southeastern Association of Game and Fish Commissioners (The Association, Columbia, South Carolina), pp. 399-411.
- Bishai, H. M. (1960), Upper lethal temperatures for larval salmonids. J. Cons. Cons. Perma. Int. Explor. Mer 25(2):129-133.
- ¹⁴ Brett, J. R. (1952), Temperature tolerance of young Pacific salmon, genus Oncorhynchus. J. Fish. Res. Board of Can., 9(6): 265-323.
- 75 Coutant, C. C. (1972), Time-temperature relationships for thermal resistances of aquatic organisms, principally fish [ORNL-EIS 72-27] Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- ²⁶ Coutant, C. C. (1970), Thermal resistance of adult coho salmon (Oncorhynchus kisutch) and jack chinook (O. tshawytscha) salmon and adult steelhead trout Salmo gairdneri from the Columbia River. AEC Rept. No. BNWL-1580, Batelle Northwest, Richland, Wash.
- 77 Craigie, D. E. (1963), An effect of water hardness in the thermal resistance of the rainbow trout, Salmo Gairdnerii, Can. J. Zool. 41(5):825-830.
- ⁷⁸ Doudoroff, P. (1942), The resistance and acclimatization of marine fishes to temperature changes. I. Experiments with Girella nigricans (Ayres). Biol. Bull. 83(2):219-244.
- 79 Doudoroff, P. (1945), The resistance and acclimatization of marine fishes to temperature changes. II. Experiments with Fundulus and Atherinops. Biol. Bull. 88(2):194-206.
- 80 Edsall, T. A., D. V. Rottiers, and E. H. Brown (1970), Temperature tolerance of bloater (Coregonus hoyi). J. Fish. Res. Board Can. 27(11):2047-2052.
- 81 Fry, F. E. J., J. R. Brett and G. H. Clawson (1942) Lethal limits of temperature for young goldfish. Rev. Can. Biol. 1:50-56.
- 82 Fry, F. E. J., and M. B. Gibson (1953), Lethal temperature experiments with speckled trout x lake trout hybrids. J. Hered. 44(2):56-57.
- 83 Fry, F. E. J., J. S. Hart and K. F. Walker (1946), Lethal temperatures relations for a sample young speckled trout, Salvelinus fontinalis. Pbl. Ont. Fish. Res. Lab. No. 66; Univ. of Toronto Stud., Biol. Ser. No. 54, Univ. of Toronto press.
- 84 Garside, E. T. and C. M. Jordan (1968), Upper lethal temperatures at various levels of salinity in the euryhaline Cyprinodontids Fundulus heteroclitus and F. diaphanus after isosomotic acclimation. 7. Fish. Res. Board Can. 25(12):2717-2720.
- 85 Gibson, E. S. and F. E. J. Fry (1954), The performance of the lake trout, Salvelinus namayeush, at various levels of temperature and oxygen pressure. Can. J. Zool. 32(3):252-260.
- 86 Hair, J. R. (1971), Upper lethal temperature and thermal shock tolerances of the opossum shrimp, Neomysis awatschensis, from the Sacramento-San Joaquin estuary, California. Calif. Fish Game 57(1):17-27.
- 87 Hart, J. S. (1947), Lethal temperature relations of certain fish of the Toronto region. Trans. Roy. Soc. Can. Sec. 5(41):57-71.
- 88 Hart, J. S. (1952), Geographic variations of some physiological and morphological characters in certain freshwater fish [University of Toronto biology series no. 60] (The University of Toronto Press, Toronto), 79 p.

- ⁸⁹ Heath, W. G. (1967), Ecological significance of temperature tolerance in Gulf of California shore fishes. J. Ariz. Acad. Sci.
- * Hoff, J. G. and J. R. Westman (1966), The temperature to erances of three species of marine fishes. J. Mar. Res. 24(2):131-140.
- ⁸¹ Lewis, R. M. (1965), The effect of minimum temperature on the survival of larval Atlantic menhaden Brevoortia tyrannu:. Trans. Amer. Fish. Soc. 94(4):409-412.
- * Lewis, R. M. and W. F. Hettler, Jr. (1968), Effect of temperature and salinity on the survival of young Atlantic menhacen, Brevoortia tyrannus. Trans. Amer. Fish. Soc. 97(4):344-349.
- 93 McCauley, R. W. (1958), Thermal relations of geographic races of Salvelinus. Can. J. Zool. 36(5):655-662.
- ⁹⁴ McCauley, R. W. (1963), Lethal temperatures of the developmental stages of the sea lamprey, Petromyzon marinus L J. Fish. Res. Board Can. 20(2):483-490.
- 95 Neill, W. H., Jr., K. Strawn, and J. E. Dunn (1966), Heat resistance experiments with the longear sunfish, Lepomis miegalotis (Rafinesque). Arkansas Acad. Sci. Proc. 20:39-49.
- 96 Scott, D. P. (1964), Thermal resistance of pike (Esox lucius L.) muskellunge (E. masquinongy) Mitchill, and their F hybrids. J. Fish. Res. Board Can. 21(5):1043-1049.
- 97 Simmons, H. B. (1971), Thermal resistance and acclination at various salinities in the sheepshead minnow (Cyprinodon variegatus Lacepede). Texas A&M Univ. Soc. No. TAMU-SG-71-205.
- 98 Smith, W. E. (1970), Tolerance of Mysis relicta to thermal shock and light. Trans. Amer. Fish. Soc. 99(2):418-422.
- Strawn, K. and J. E. Dunn (1967), Resistance of Texas salt- and freshwater marsh fishes to heat death at various salinities, Texas-T. Series, 1967:57-76.

References Cited

- 100 Blahm, T. H. and R. J. McConnell, unpublished data (1970), Mortality of adult eulachon Thaleichthys pacificus chinook slamon and coho salmon subjected to sudden increases in water temperature. (draft). Seattle Biological Laporatory, U.S. Bureau of Commercial Fisheries, Seattle.
- 101 Blahm, T. H. and W. D. Parente, unpublished data (1970), Effects of temperature on chum salmon, threespine stickelback and yellow perch in the Columbia river, Seattle Biological Laboratory, U.S. Bureau of Commercial Fisheries, Seattle.
- 102 Edsall, T. A. and P. A. Colby (1970), Temperature tolerance of young-of-the-year cisco, Coregonus artedii. Trans. Amer. Fish. Soc. 99(3):526-531.
- 103 McConnell, R. J. and T. H. Blahm, unpublished data (1970), Resistance of juvenile sockeye salmon O. nerka to elevated water temperatures. (draft) Seattle Biological Laboratory, U.S. Bureau of Commercial Fisheries, Seattle.
- 104 Smith, W. E. unpublished data (1971), Culture reproduction and temperature tolerance of Pontoporeia affinis in the labo atory. (draft) National Water Quality Laboratory, Duluth, Minnesota.
- 108 Snyder, G. R. and T. H. Blahm, unpublished data (1970), Mortality of juvenile chinook salmon subjected to elevated water temperatures. (draft Man.) Seattle Biological Laboratory. U.S. Bureau of Commercial Fisheries, Seattle.

Species: _Coho salmon, Oncorhynchus kisutch

l.	Lethal threshold: Upper Lower	5 10 15 20 23 5 10 15 20 23	larvae	juvenile 23 24(1) 24 25 25 *Ac 0.2 2 3 5	<u>adult</u> 21*(3)	reference 1 -1,3 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
	Growth: Optimum and [range] Reproduction:	<u>larvae</u>)** ted food ing upon se	adult adult asson month(s)	_2 _6
	Migration Spawning Incubation and hatch	8(2)		5 3	Fall	5 3
IV.	Preferred:	acclimation temperature Winter	larvae	įuvenile 	<u>adult</u> 13 	

References on following page.

Coho salmon

- Brett, J. R. 1952. Temperature tolerance in young Pacific salmon, genus Oncorhynchus. J. Fish. Res. Bd. Canada. 9:265-323.
- 2. Great Lakes Research Laboratory. 1973. Growth of lake trout in the laboratory. Progress in Sport Fishery Research. 1971. USDI, Fish and Wildlife Service, Bureau of Sport Fisheries and Wildlife. p. 100 and 107.
- 3. U. S. Environmental Protection Agency. 1971. Columbia River thermal effects study, Vol. 1. Biological Effects Studies. 95 p.
- 4. Edsall, T. 1970. U. S. Dept. of Int., Great Lakes Fishery Laboratory, Ann Arbor, Michigan. Personal communication.
- 5. Burrows, R. E. 1963. Water temperature requirements for maximum productivity of salmon. Proc. 12th Pacific N. W. Symposium on Water Poll. Res., Nov. 7, 1963, Corvallis, Oregon. p. 29-38.
- 6. Averett, R. C. 1968. Influence of temperature on energy and material utilization by juvenile coho salmon. Ph.D. Thesis, Oregon State Univ., Corvallis, Oregon.
- 7. Shapovalov, L. and A. C. Taft. 1954. Cited in: Schuytema, G. 1969. Literature review, effects of temperature on Pacific salmon, Appendix A. In: Thermal Pollution: Status of the Art, Parker, F. L. and R. A. Krenkel, ed. Vanderbilt Univ., Nashville, Tennessee. Rept. No. 3. 317 p.

Species: Lake trou	t, Salvelinus n	amaycush		
I. Lethal threshold: Upper	acclimation temperature	larvae juvenile	adult	reference
Lower				
II. Growth: Optimum and [range]	larvae	<u>juvenile</u>	adult	
III. Reproduction: Migration Spawning Incubation and hatch	<u>optimum</u> 8(1)	<u>range</u> 3-14(3) 0.3-10(3)	month(s) Aug-Dec(2)	2,3
V. Preferred:	acclimation temperature	larvae juvenile 12* 8-15** *yearling **age unknown	adult 	_5

References on following page.

Lake trout

- Edsall, T. A., and W. E. Berlin. 1973. In: Progress in Fishery Research 1973, Eschmeyer, P. H., and J. Kutkuhn, eds. U. S. Fish and Wildlife Service, Great Lakes Fishery Laboratory. Ann Arbor, Michigan.
- Carlander, K. D. 1969. Handbook of Freshwater Fishery Biology, Vol. 1. Life History Data on Freshwater Fishes of the United States and Canada, Exclusive of the Perciformes. Iowa State Univ. Press, Ames, Iowa. 752 p.
- Royce, W. F. 1951. Breeding habits of lake trout in New York. Fishery Bull. 52:59-76.
- McCauley, R. W., and J. S. Tait. 1970. Preferred temperature of yearling lake trout, Salvelinus namayeush. J. Fish. Res. Bd. Canada. 27:1729-1733.
- Ferguson, R. G. 1958. The preferred temperature of fish and their midsummer distribution in temperate lakes and streams. J. Fish. Res. Bd. Canada. 15:607-624.

Sp	ecies: Lake whit	efish, Coregonus	s clupeafor	mis		
l. l	Lethal threshold:	acclimation temperature	<u>larvae</u>	juvenile	adult	reference 1
	Upper					
	Lower					
						,
11.	Growth:	<u>larvae</u>	juve	<u>enile</u>	<u>adult</u>	
	Optimum and [range]					
III.	Reproduction:	optimum	<u>ra</u>	nge	month(s)	
	Migration Spawning		0.5-	10	Sept-Dec	2
	Incubation and hatch	3-8	-			_1
IV.	Preferred:	acclimation temperature	larvae	<u>juvenile</u>	<u>adult</u>	
		:(13*	_3
				*2	year old	

¹References on following page.

Lake whitefish

- Brooke, L. T. 1975. Effect of different constant incubation temperatures on egg survival and embryonic development in lake whitefish (Coregonus clupeaformis). Trans. Amer. Fish. Soc. 3:555-559.
- Carlander, K. D. 1969. Handbook of Freshwater Fishery Biology, Vol. 1. Life History Data on Freshwater Fishes of the United States and Canada, Exclusive of the Perciformes. Iowa State Univ. Press, Ames, Iowa. 752 p.
- Ferguson, R. G. 1958. The preferred temperature of fish and their midsummer distribution in temperate lakes and streams. J. Fish. Res. Bd. Canada. 15:607-624.

Species: Northern	pike, Esox luc	ius			
I. Lethal threshold:	acclimation temperature	larvae	juvenile	<u>adult</u>	reference
Upper	18	25,28*			2
	25		32		1
	27		33		1
	30		33**		1
Lower	**	At hatch and Ultimate in	d free swim cipient leve	ming, respect	tively
	18	3*			2
	*	At hatch and	d free swimm	ning	
II. Growth:	<u>larvae</u>	juve	nile	adult	
Optimum and	21	26	5		2
[range]	(18-26)				2
		-			
III. Reproduction:	<u>optimum</u>	rar	nge	month(s)	
Migration					
Spawning		4(4)-18	3(3)	eb-June(5)	3,4,5
Incubation		-			
and hatch	12	7-1	19		2
	acclimation				
V. Preferred:	temperature	larvae	<u>juvenile</u>	adult	
			24,26*		6
		Grass picker		у,	
		respectively			

References on following page.

Northern Pike

- 1. Scott, D. P. 1964. Thermal resistance of pike ($Esox\ lucius\ L$.), muskellunge ($E.\ masquinongy$, Mitchell), and their F_1 hybrid. J. Fish. Res. Bd. Canada. 21:1043-1049.
- 2. Hokanson, K. E. F., J. H. McCormick, and B. R. Jones. 1973. Temperature requirements for embryos and larvae of the northern pike, Esox lucius (Linnaeus). Trans. Amer. Fish. Soc. 102:89-100.
- Fabricus, E., and K. J. Gustafson. 1958. Some new observations on the spawning behavior of the pike, Esox lucius L. Rep. Inst. Freshwater Res., Drottningholm, Sweden. 39:23-54.
- 4. Threinen, C. W., C. Wistrom, B. Apelgren, and H. Snow. 1966. The northern pike, its life history, ecology, and management. Wis. Con. Dept., Madison, Publ. No. 235. 16 p.
- 5. Toner, E. D., and G. H. Lawler. 1969. Synopsis of biological data on the pike *Esox lucius* (Linnaeus 1758). Food and Ag. Org. Fisheries synopsis No. 30, Rev. 1. Rome. 37 p.
- Ferguson, R. G. 1958. The preferred temperature of fish and their midsummer distribution in temperate lakes and streams. J. Fish. Res. Bd. Canada. 15:607-624.

Species: Rainbow	trout, Salmo gar	irdneri		
I. Lethal threshold: Upper	acclimation temperature	larvae juvenile	adult 21	reference
Lower				
II. Growth: Optimum and [range]	[3(<u>8)-20(</u> 11)]	<u>juvenile</u> 	adult 	_5
III. Reproduction: Migration Spawning Incubation and hatch	9(10) 5-7(9)	<u>range</u> 5-13(6) 5-13(4)	Mov-Feb (7) Feb-June (7)	6,7,10 4,9
IV. Preferred:	acclimation temperature Not given	invenile 14 13-20 18&22, resp	<u>adult</u>	3

References on following page.

Rainbow trout

- Alabaster, J. S., and R. L. Welcomme. 1962. Effect of concentration of dissolved oxygen on survival of trout and roach in lethal temperatures. Nature (London). 194(4823):107.
- 2. Coutant, C. C. 1970. Thermal resistance of adult coho (*Oncorhynchus kisutch*) and jack chinook (*O. tshawytscha*) salmon, and the adult steelhead trout (*Salmo gairdnerii*) from the Columbia River. Atomic Energy Commission, Battelle Northwest Laboratory, Richland, Washington, publication No. 1508, 24 p.
- Ferguson, R. G. 1958. The preferred temperature of fish and their midsummer distribution in temperate lakes and streams. J. Fish. Res. Bd. Canada. 15:607-624.
- McAfee, W. R. 1966. Rainbow trout. In: Inland Fisheries Management, A. Calhoun, ed. Calif. Dept. Fish and Game. pp. 192-215.
- Hokanson, K. E. F., C. F. Kleiner, and T. W. Thorslund. 1976. Effects of constant temperature and diel fluctuation on specific growth, mortality, and yield of juvenile rainbow trout, Salmo gairdneri (Richardson). MS submitted to J. Fish. Res. Bd. Canada.
- 6. Rayner, H. J. 1942. The spawning migration of rainbow trout at Skaneateles Lake, New York. Trans. Amer. Fish. Soc. 71:180-83.
- Carlander, K. D. 1969. Handbook of Freshwater Fishery Biology, Vol. 1. Life History Data on Freshwater Fishes of the United States and Canada, Exclusive of the Perciformes. Iowa State Univ. Press, Ames, Iowa. 752 p.
- Vojno, T. 1972. The effect of starvation and various doses of fodder on the changes of body weight and chemical composition and the survival rate in rainbow trout fry (Salmo gairdneri, Richardson) during the winter. Roczniki Nauk Rolniczych Series H - Fisheries 94, 125. In: Coutant, C. C., and H. A. Pfuderer. 1973. Thermal effects. J. Water Poll. Fed. 46:1476-1540.
- 9. Timoshina, L. A. 1972. Embryonic development of the rainbow trout (Salmo gairdneri irideus, Gibb.) at different temperatures. Icthyol. (USSR). 12:425.
- Johnson, Charles E. 1971. Factors affecting fish spawning. Wisconsin Cons. Bull. July-Aug.
- Mantelman, I. I. 1958. Cited in: Brown, H. W. 1974. Handbook of the Effects of Temperature on Some North American Fishes. American Elect. Power Service Corp., Canton, Ohio.
- Cherry, D. S., K. L. Dickson, and J. Cairns, Jr. 1975. Temperatures selected and avoided by fish at various acclimation temperatures. J. Fish. Res. Bd. Canada. 32:485-491.

Species:	Sockeye	salmon,	Oncorhynchus	nerka
----------	---------	---------	--------------	-------

I. Lethal threshold: Upper Lower	5 10 15 20 5 10 15 20 20 23	arvae juvenile	adult	reference
II. Growth: Optimum and [range]	15(5)	<u>iuvenile</u>	adult s food	2,5 4 7
III. Reproduction:	<u>optimum</u>	range	month(s)	
Migration Spawning Incubation and hatch		7-16 	Fall	6
IV. Preferred:	acclimation temperature Summer	larvae juvenile	<u>adult</u>	<u>3</u>

¹References on following page.

Sockeye salmon

- Brett, J. R. 1952. Temperature tolerance in young Pacific salmon, genus, Oncorhynchus. J. Fish. Res. Bd. Canada. 9:265-323.
- Griffiths, J. S., and D. F. Alderdice. 1972. Effects of acclimation and acute temperature experience on the swimming speed of juvenile coho salmon. J. Fish. Res. Bd. Canada. 29:251-264.
- Ferguson, R. G. 1958. The preferred temperature of fish and their midsummer distribution in temperate lakes and streams. J. Fish. Res. Bd. Canada. 15:607-624.
- Burrows, R. E. 1963. Water temperature requirements for maximum productivity of salmon. Proc. 12th Pacific N.W. Symposium on Water Poll. Res., Nov. 7, 1963, Corvallis, Oregon. pp. 29-32.
- 5. Shelbourn, J. E., J. R. Brett, and S. Shirahata. 1973. Effect of temperature and feeding regime on the specific growth rate of sockeye salmon fry (*Oncorhynchus nerka*) with a consideration of size effect. J. Fish. Res. Bd. Canada. 30:1191-1194.
- 6. U. S. Environmental Protection Agency. 1971. Columbia River thermal effects study, Vol. 1. Biological Effects Studies. 95 p.
- Donaldson, L. R., and F. J. Foster. 1941. Experimental study of the effects of various water temperatures on growth, food utilization and mortality of fingerling sockeye salmon. Trans. Amer. Fish. Soc. 70:339-346.

TECHNICAL REPORT DATA (Please read Instructions on the reverse before completing)					
1. REPORT NO. EPA-600/3-77-061	2.	3. RECIPIENT'S AC LESSION NO.			
4. TITLE AND SUBTITLE TEMPERATURE CRITERIA FOR F	RESHWATER FISH:	5. REPORT DATE May 1977 issuing date			
PROTOCOL AND PROCEDURES		6. PERFORMING C RGANIZATION CODE			
7.AUTHOR(S) William A. Brungs and Bern	ard R. Jones	8. PERFORMING CRGANIZATION REPORT NO.			
PERFORMING ORGANIZATION NAME A Environmental Research Labo Office of <u>Rese</u> arch and Deve	oratory-Duluth, MN	10. PROGRAM ELEMENT NO. 1BA608 11. CONTRACT/C BANT NO.			
U.S. Environmental Protect Duluth, Minnesota 55804		In-house			
12. SPONSORING AGENCY NAME AND ADDRESS		13. TYPE OF REPORT AND PERIOD COVERED In-house			
Same as above		EPA/60()/03			

15. SUPPLEMENTARY NOTES

16. ABSTRACT

The evolution of freshwater temperature criteria is discussed as it relates to standards development by regulatory agencies. The present, generally accepted philosophical approach to criteria development is explained in detail and its use to protect various life stages of fish is demonstrated by selected examples. Numerical criteria for survival, spawning, embryo development, growth, and gamete maturation of fish species were calculated and tabulated.

17. KEY WORDS AND DOCUMENT ANALYSIS					
a. DESCRIPTORS	b.IDENTIFIERS/OPEN ENDED TERMS	c. COSATI Field/Group			
Temperature Fresh Water Fishes Growth Peproduction (biology) Mortality Water Pollution	Water Quality Criteria Water Quality Standards Temperature Requirements Thermal Pollution	06 S 06 F 06 C			
3. DISTRIBUTION STATEMENT	19. SECURITY CLASS (This Report) UNCLASSIFIED	21. NO. OF PAGES			
RELEASE TO PUBLIC	20. SECURITY CLASS (This page) UNCLASSIFIED	22. PRICE			