Susitna Hydro Evaluation Project

Seminar on the Development of Large Hydroelectric Projects with a Focus on the Susitna Project

presented to

Alaska Energy Authority

November 2008

Susitna Project Civil Works Considerations

Susitna Project - Civil Works

- Dams and related facilities
 - Spillways
 - Powerhouses
 - Tunnels
 - Intakes & outlets
 - Construction camps and villages
- Infrastructure
 - Roads and bridges
 - Rail
 - Airports
- Stage options

Watana and Devil Canyon Dams and Reservoirs

Watana Dam

- Rock-fill, gravity dam
- 885 feet tall
- 4,100-foot crest length

Watana Project Characteristics

- Underground power facilities with 600-foot rockfill dam
- Dam structure: Height 885 feet
 Crest length 4,100 feet
- Diversion of flow during construction by two 30foot tunnels
- Underground power facilities with six 200-MW generators
- Spillway capacity: 115,000 cfs + fuse plug 140,000 cfs

Rock-fill Embankment Dams

 Considerably more massive than arch or buttress dams but constructed with lower unit-cost materials

 Rely on weight of dam for stability and structural mass to impound water

Mohle Dam, Lesotho

Oroville Dam, California

Project Layout: Watana

Watana Details

Devil Canyon Dam

- Arch concrete dam
 - 646 feet tall above foundation
 - 1,260-foot crest length
- Earth and rockfill saddle dam
 - 245 feet tall
 - 950-foot crest length

- Located in a V-shaped canyon
- Acceptable abutment and foundation geology
- Borrow site G to provide granular material for filters and concrete aggregate.

Devil Canyon Hydropower Plan

Devil Canyon General Arrangement

Arch Concrete Dams

- Reduced material volume to construct
- Loads transferred to abutments
- Structurally efficient, visually appealing structures

Mauvoisin Dam, Switzerland

Gordon Dam, Australia

Project Layout: Devil Canyon

Devil Canyon Dams Plan and Profile

Devil Canyon Details

Upper Susitna Basin Geology

Regional Geology

Seismicity

Roads

- 21 miles of road improvements along Denali Highway
- 81 miles of new permanent roadway were planned
- Additional temporary local area construction access roads necessary

Susitna River Bridge

Substantial, new long-span suspension bridge required for project

HIGH LEVEL SUSITNA RIVER BRIDGE
SCALE C

Rail

- 12-mile spur from Gold Creek to Devil Canyon
- Railhead facilities at Cantwell and Devil Canyon

Airports

Permanent airstrip Temporary airstrip Temporary Airstrip Watana Dam Permanent Airstrip

Staged Development Plan

Stage 1

•Install "base" 700-foot rock fill dam at Watana. Total capacity of 440 MW

Stage 2

- •Install 646-foot thin arch concrete dam at Devil Canyon with 680 MW capacity.
- •Total capacity: 1,120 MW

Stage 3

- •Raise Watana Dam and additional 185 feet and increase capacity by 670 MW.
- •Total Project Capacity: 1,790 MW

Options Considered for Staged Development

- Option 1 Full-scale Watana only
- Option 2 Full-scale Watana and full Devil Canyon in stages
 - Dam, powerhouse and other features built to full-scale plans
 - Stage 1 Install two 150-MW units, penstocks and tailraces Install foundations for two future 150-MW units
 - Stage 2 Install two 150-MW units, penstocks and tailraces
- Option 3 Watana Stage 1 only
 - Initial dam 200 feet lower than final stage
 - Powerhouse excavated to final size
 - Three150- MW units installed initially with a foundation for one more unit
- Option 4 Full-scale Devil Canyon only

Conclusions

- Remote location and large dam configurations require extensive civil works
- Large scale project, but all of these elements have been successfully done elsewhere
- Project is suited to staged construction
- Site access is particularly challenging
 - 81 miles of new road
 - 12 miles of new railroad
 - 1,200' span suspension bridge
- Technical challenges are all manageable
- Logistics and local material suitability and availability are important constructability factors