

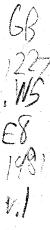
WILLOW AND DECEPTION CREEKS INSTREAM FLOW DEMONSTRATION STUDY

By

Christopher Estes
Kelly Hepler
Andrew Hoffmann

Alaska Department of Fish and Game Habitat Protection and Sport Fish Divisions

for the


USDA - Soil Conservation Service Interagency Cooperative Susitna River Basin Study (Agreement ≠ 58 04368 16)

1981

Volume One

GB 1227 .W5 E8 1981 V.1

WILLOW AND DECEPTION CREEKS INSTREAM FLOW DEMONSTRATION STUDY

Ву

Christopher Estes Kelly Hepler Andrew Hoffmann

Alaska Department of Fish and Game Habitat Protection and Sport Fish Divisions

for the

USDA - Soil Conservation Service Interagency Cooperative Susitna River Basin Study (Agreement ≠ 58 04368 16)

1981

ARLIS

Alaska Resources
Library & Information Services
Anchorage, Alaska

Volume One

Permission to reproduce any of the information contained herein is withheld pending approval of the authors

VOLUME ONE TABLE OF CONTENTS

	Page
LIST OF FIGURES	
LIST OF TABLES	. viii
INTRODUCTION	1
OBJECTIVES	. 5
Instream Flow Study	. 5
Supplemental Biological, Water Quantity and Quality Study	. 6
DESCRIPTION OF STUDY AREA	. 7
Instream Flow Study Sites	. 8
Supplemental Biological, Water Quantity and Quality Study Sites	. 32
Peters/Purches Creeks	. 32
ADF&G/USGS Sites	. 32
Fishery Resources	. 32
MATERIALS	. 40
METHODS	. 41
Instream Flow Study	. 41
Geographic Code Locations	
Training	. 42
Reach Selection	. 43
Discharge	. 43
Stage	. 44
-Substrate	. 44
Water Quality	. 45
Point Specific Spawning Habitat Data	. 47
Benthic Invertebrates	. 48

TABLE OF CONTENTS-continued

		Page
Water Quantity		81
Substrate	• • •	81
Water Quality		83
ADF&G/USGS Sites		83
Water Quantity and Quality		82
DISCUSSION		84
Instream Flow Study	.,.	84
Hydraulic Data Collection Limitations and Recommendations	•••	84
Point Specific Spawning Habitat Data Collection Limitations and Recommendations		88
Computer Analysis	• • •	89
Limitations	•••	89
Recommendations		91
Biological, Water Quantity and Quality Data	• • •	92
WUA Calculations		93
Supplemental Biological, Water Quantity and Quality Study		93
CONCLUSIONS		95
REFERENCES		97
ACKNOWLEDGEMENTS		100
APPENDIXES		101
A. Peters/Purches Creeks Stream Survey Data		101
B. ADF&G/USGS Water Quantity and Quality Data		108
C. Willow/Deception Creeks Instream Flow Study Staff Gage Data	• • •	121

LIST OF FIGURES

Figure		Page
1.	Study area	. 2
2.	Willow/Deception Creeks Instream Flow Study reaches	9
3.	Lower Willow Creek water's edge and head pin stationing map	11
4.	Cross-sectional profile of Willow Creek lower reach, Transect No. 1	12
5.	Cross-sectional profile of Willow Creek lower reach, Transect No. 2	13
6.	Cross-sectional profile of Willow Creek Tower reach, Transect No. 3-A	14
7.	Cross-sectional profile of Willow Creek lower reach, Transect No. 3-B	15
8.	Cross-sectional profile of Willow Creek lower reach, Transect No. 4	16
9.	Cross-sectional profile of Willow Creek lower reach, Transect No. 5	17
10.	Middle Willow Creek water's edge and head pin stationing map	18
11.	Cross sectional profile of Willow Creek middle reach, Transect No. 1	19
12.	Cross-sectional profile of Willow Creek middle reach, Transect No. 2	20
13.	Cross-sectional profile of Willow Creek middle reach, Transect No. 3	21
14.	Cross-sectional profile of Willow Creek middle reach, Transect No. 4	22
15.	Upper Willow Creek water's edge and head pin stationing map	23
16.	Cross-sectional profile of Willow Creek upper reach, Transect No. 1	24
17.	Cross-sectional profile of Willow Creek upper reach, Transect No. 2	25

LIST OF FIGURES-continued

Figure		<u>Page</u>
36.	Velocity suitability curve for spawning pink salmon Willow Creek, Alaska. Summer 1978	69
37.	Substrate suitability curve for spawning pink salmon in Willow Creek, Alaska. Summer 1978	70
38.	Comparison of three methods for calculating Weighted Usable Area	77
39.	Effects of applying different habitat suitability curves to the same hydraulic model	80

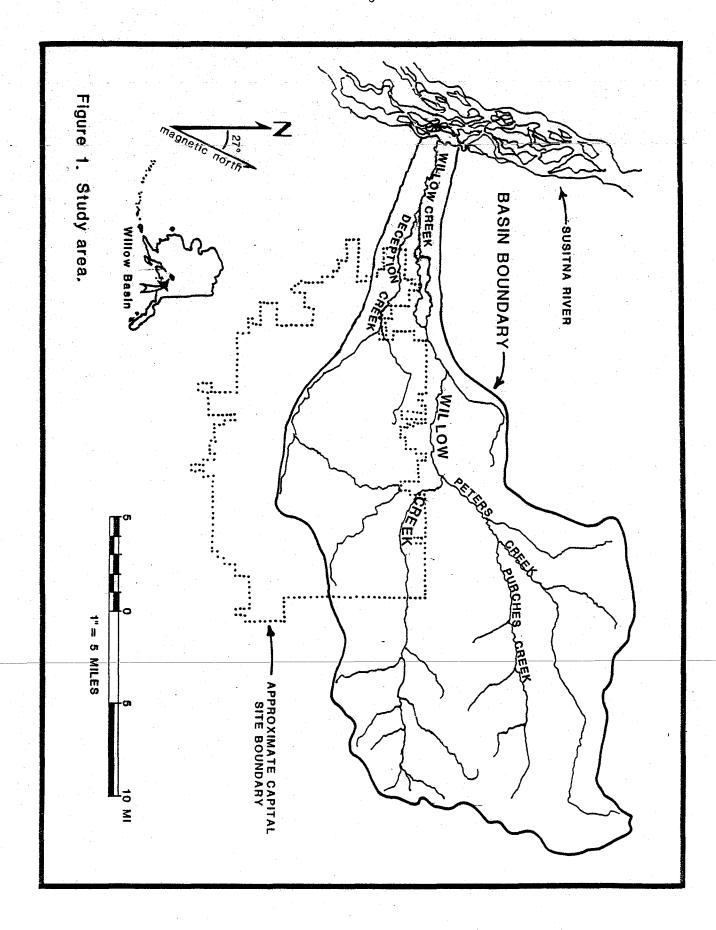
LIST OF TABLES

<u>Table</u>		Page
1.	Geographic locations of Willow/Deception Creeks Instream Flow Study reaches	8
2.	Geographic locations for Peters/Purches Creeks Supplemental Study sites	34
3.	Geographic locations of ADF&G/USGS sampling sites	36
4.	Equipment used in Instream Flow and Supplemental Studies	40
5.	Equivalence of Modified Wentworth and Willow/Deception Creeks Study substrate scales	46
6.	Flow (cfs) summary for Willow/Deception Creeks Instream Flow Study reaches, 1979	52
7.	Range of predominant substrate classes in Willow/Deception Creeks Instream Flow Study reaches, 1979	53
8.	Water quality summary for Willow/Deception Creeks Instream Flow Study reaches, 1971	54
9.	Redd measurements for chinook salmon in Willow Creek, August 1979	56
10.	Redd measurements for chinook salmon in Willow Creek, August 1978	57
11.	Redd measurements for pink salmon in Willow Creek, August 1978	59
12.	Benthic insects (no/ft ²), classified to order, collected from each of the Willow/Deception Creek Instream Flow Study reaches, 1979	. 73
13.	Discharge vs. predicted available spawning habitat area (ft ²) per 1000 feet of the Willow Creek Instream Flow Study middle reach	78
14.	Discharge vs. predicted available spawning habitat area (ft ²) as a percentage of the Willow Creek Instream Flow Study middle reach	79
15.	Fish trapping results, Peters and Purches Creeks, 1979	
16.	Discharge Measurement (Q) in cubic feet per second (cfs) Peters and Purches Creeks, 1979	82
17.	Range of predominant substrate classes observed in Peters and Purches Creeks, 1971	83

INTRODUCTION

INTRODUCTION

This study was undertaken by the Alaska Department of Fish and Game (ADF&G), as part of the ongoing Susitna River Basin Study (Estes and Lehner-Welch 1980), to:


- evaluate the feasibility of applying the Incremental Methodology* procedures of the U.S. Fish and Wildlife Service (USFWS)
 Instream Flow Group (IFG) to collect and analyze instream
 flow** data from Willow and Deception Creeks (Figure 1); and
- augment baseline fishery studies conducted on Willow and Deception Creeks by the ADF&G in 1978 (Watsjold and Engel 1978).

The 1978 studies provided preliminary information on fish species composition, areas of fish spawning and rearing, aquatic habitat characteristics, and recreational angling. They did not, however, address instream flow requirements of the fishery resources in these two systems.***

^{*&}quot;The Incremental Methodology is based on the premise that the suitability of a species' habitat can be described by measuring selected physical variables in the stream, making it possible to quantify the changes in habitat suitability by quantifying the changes in these instream variables" (IFG 1980a).

^{**}An instream flow is the quantity of flow occurring within a stream channel during a given period of time whether or not subject to flow regulation.

^{***}A discussion of the importance of instream flows to fish and wild-life resources is presented in the ADF&G publication: A synthesis and evaluation of fish and wildlife resources information for the Willow and Talkeetna Sub-basins (Estes and Lehner-Welch 1980).

The ADF&G, with the assistance of the U.S Department of Agriculture Soil Conservation Service (SCS), U.S. Geological Survey (USGS), and Alaska Department of Natural Resources (ADNR), initiated both portions of this study in the spring of 1979. The ADF&G, USGS, and ADNR continued collecting supplemental data through the fall of 1980. Computer analysis of the instream flow data collected from Willow Creek was completed in December 1980. Additional analysis, comparing computer analysis techniques and the effects of integrating spawning habitat data collected by other investigators (Watsjold and Engel 1978; AEIDC 1980) with the Willow Creek hydraulic model, was completed in February 1981. Funding for this study was provided by the SCS through the Interagency Cooperative Susitna River Basin Study, the ADF&G, and a Title III grant from the U.S. Water Resources Council administered by the Division of Land and Water Management of the ADNR.

Willow Creek is one of the major recreational waters within the Upper Cook Inlet Drainage. It is located within 2 hours driving distance from Anchorage, the major population center of Alaska, and receives extensive angling effort by sport fishermen. The high productivity and variety of fish species, and the high angler success rate make Willow Creek one of the most important sport fisheries in the lower Susitna Basin (Mills 1981). Willow Creek also serves as an access corridor to other fishing and hunting areas within the Susitna River drainage and is used extensively by boaters for this purpose.

Major land use activities (e.g., mining and residential development) are

occurring in the Willow Creek drainage. A portion of this area has been selected as the future site for the new State Capital (Figure 1). This report is an attempt to evaluate one of the tools for assessing the ability of the fishery resources to withstand these varied impacts. It is intended also to provide interested agencies, planners, managers, developers, and individuals with baseline fishery, hydraulic, and water quality information. These data, with subsequent investigations, can be used to evaluate the potential impacts of future developments proposed for this area.

OBJECTIVES

OBJECTIVES

Instream Flow Study

Six study objectives were established:

- train personnel to collect and analyze instream flow data based on the IFG Incremental Methodology;
- develop cross-sectional profiles in selected areas of Willow and Deception Creeks and characterize the types and amounts of salmon habitat available in terms of depth, velocity, and substrate characteristics.
- determine spawning habitat characteristics for pink (<u>Oncorhynchus</u> gorbuscha), and chinook (<u>O. tshawytscha</u>) salmon in selected areas of Willow and Deception Creeks;*
- determine characteristics of chinook salmon rearing habitats;
- 5. compute the availability of salmon habitat at various streamflows using the IFG computer programs; and

^{*}The selection of these species was based on their relative abundance.

6. evaluate the feasibility of applying the Incremental Methodology to Willow and Deception Creeks.

Supplemental Biological, Water Quantity and Quality Study

Objectives of these investigations were to:

- identify fish populations in Peters and Purches Creeks (tributaries to Willow Creek);
- identify water quantity and quality characteristics associated with fish populations observed in Peters and Purches Creeks;
 and
- collect miscellaneous water quantity and quality data in the upper Willow Creek drainage.

DESCRIPTION OF STUDY AREA

DESCRIPTION OF THE STUDY AREA

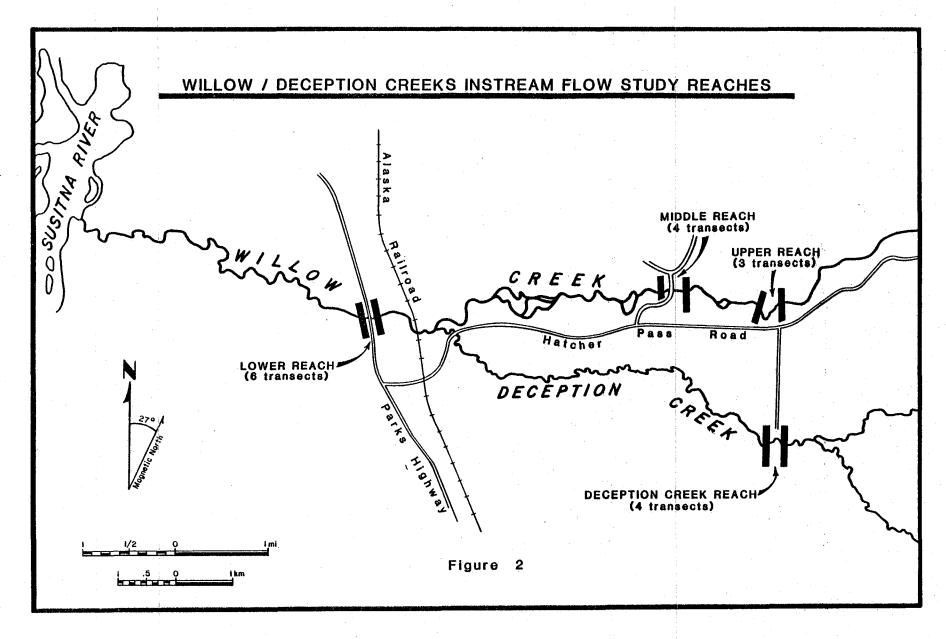
The study area is located within the 214-square-mile Willow Creek drainage (Figure 1) in the southwestern foothills of the Talkeetna Mountains. Elevations in this area range from approximately 5,500 feet mean sea level (MSL) in the upper portion of the watershed to 100 feet MSL at the confluence of Willow Creek with the Susitna River.

Approximately 25 percent of the study area is part of a 100-square mile site selected by Alaskan voters as the location for a new State Capital. The remainder of the study area adjoins Willow Creek both upstream and downstream of its confluence with Deception Creek. The portion of the study area that is contained within the proposed Capital site is owned almost entirely by the State of Alaska and is virtually undeveloped. Lands adjacent to Willow Creek, however, are in private or Borough ownership and have been developed to a limited extent. In recent years, the Willow Creek drainage has become a focal point for increasing recreational activities (e.g., fishing, hunting, boating, hiking, crosscountry skiing, and snowmobiling) primarily because of the area's aesthetic qualities and its proximity to Anchorage. This increased recreational use, along with speculation on land in the Capital Site proximity, have led to tremendous increases in the rate of development, especially of recreational lots in the Willow Creek area.

Instream Flow Study Reaches

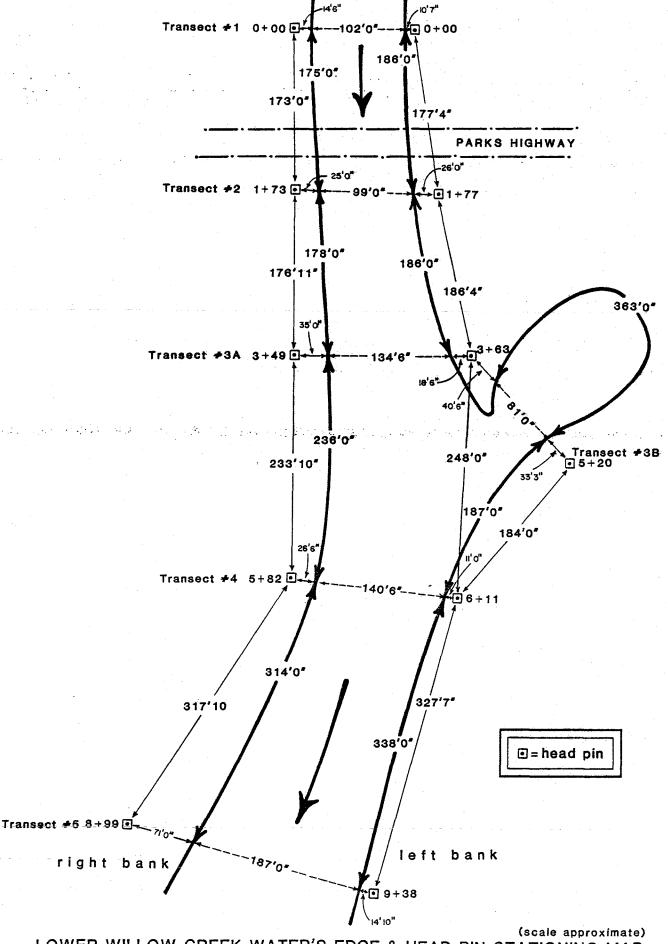
Four reaches were selected for the collection of instream flow, water quality, and supporting biological data (Figure 2; Table 1). Three of these were located on Willow Creek and the fourth on Deception Creek.

Table 1. Geographic locations of Willow/Deception Creeks Instream Flow Study reaches (Figure 2).*


Reach	ADF&G Geographic Location
Lower Willow	19N04W06ACD6
Middle Willow	19N04W02BBC4
Upper Willow	19N04W02ADC3
Deception	19NO4W11DAA4

*Refer to Methods section for a description of the ADF&G Geographic Location System.

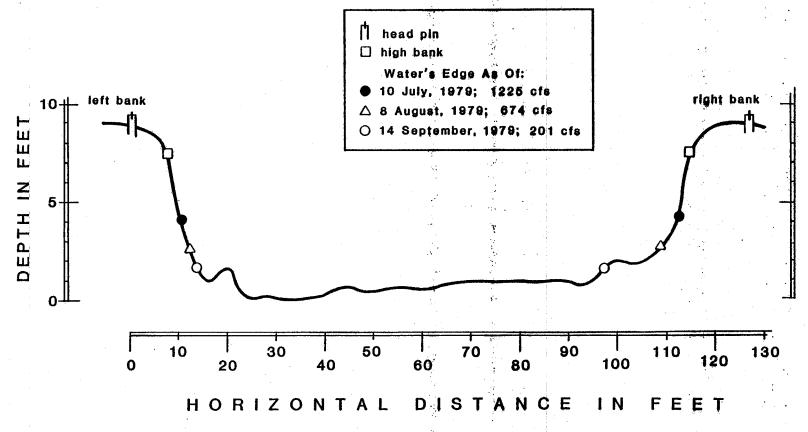
Descriptions of study reaches follow:


The lower Willow Creek reach was located at the Parks Highway
 Bridge. Six transects were established within this reach which

^{*}Refer to Methods section for a description of reach selection techniques.

was channelized in 1963 to permit construction of the Parks
Highway Bridge (Figures 3-9). Major pink salmon spawning areas
are located throughout this reach.

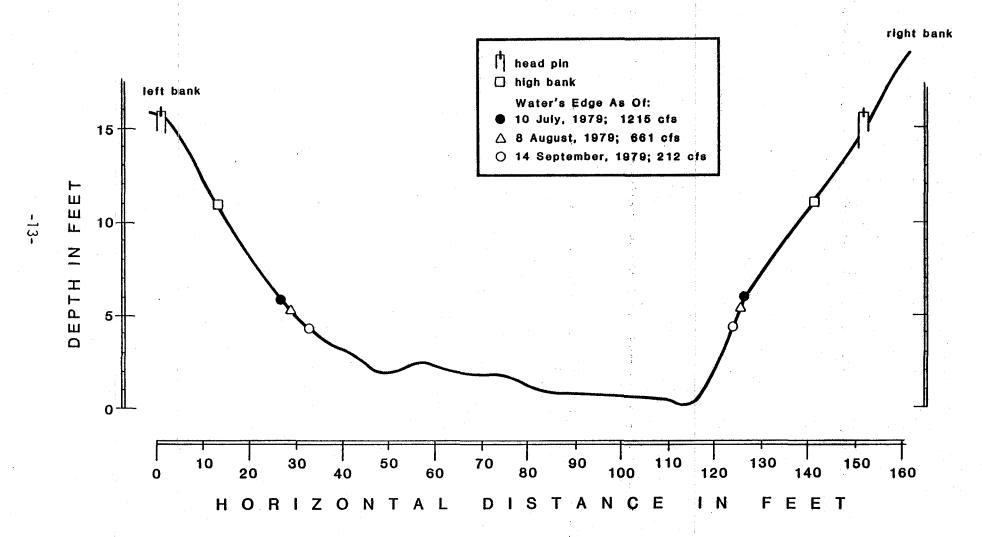
- 2. The middle reach was located 4.5 road miles upstream from the Parks Highways Bridge. Four transects were established within this reach (Figures 10-14). Both chinook and pink salmon use this area for spawning.
- 3. The upper Willow Creek reach was located 5.5 road miles upstream from the Parks Highway bridge on a large bend of a braided portion of Willow Creek. This reach was confined to the southernmost channel adjacent to the left bank (looking downstream) and thus represents only a portion of the flow for this stretch of Willow Creek. Three transects were established within this reach (Figures 15-18). A USGS gaging station (No. 152940.05) was located approximately 1 mile upstream of this braided stretch of river. Chinook salmon are the predominant species which utilize this reach for spawning.
- 4. The Deception Creek reach was located immediately downstream of a USGS gaging station (No. 152940.10). Four transects were established within this reach (Figures 19-23). Coho (Oncorhynchus kisutch), chinook, and pink salmon spawn in this area.


LOWER WILLOW CREEK WATER'S EDGE & HEAD PIN STATIONING MAP

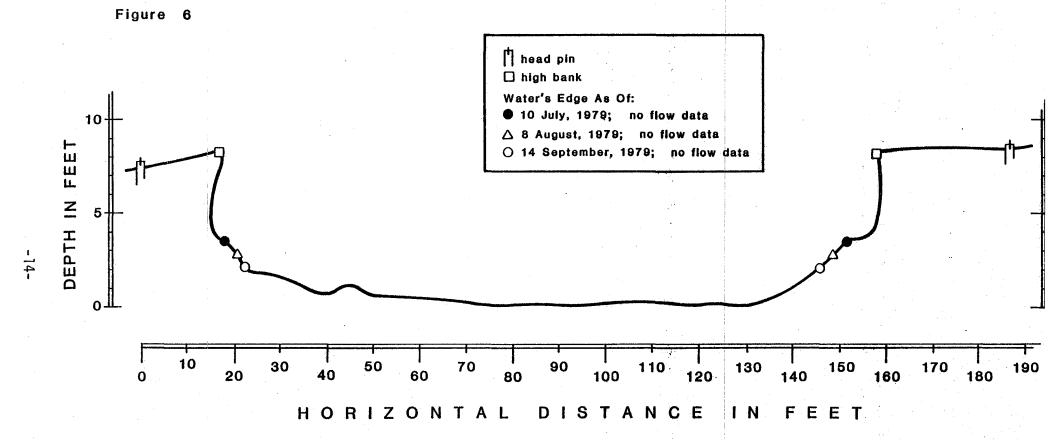
13 July, 1979

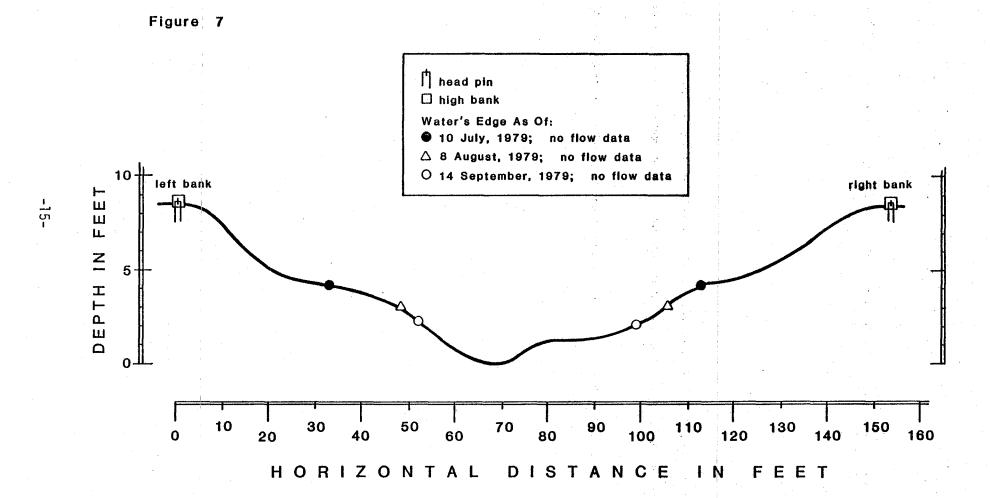
Average discharge 1163 cfs

Figure 3

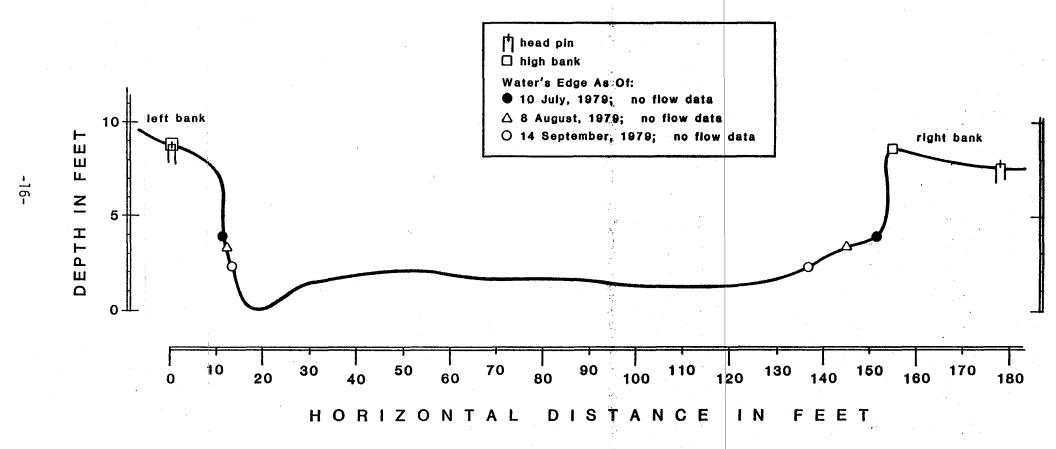

Figure 4

CROSS-SECTIONAL PROFILE OF WILLOW CREEK LOWER REACH, TRANSECT #1.


(1 vertical foot equals 4 horizontal feet)

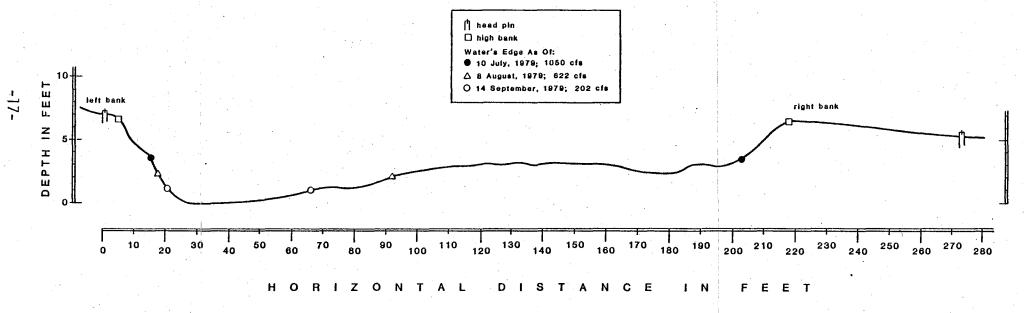

CROSS-SECTIONAL PROFILE OF WILLOW CREEK LOWER REACH, TRANSECT #2.

(1 vertical foot equals 4 horizontal feet)


CROSS-SECTIONAL PROFILE OF WILLOW CREEK LOWER REACH, TRANSECT #3A.

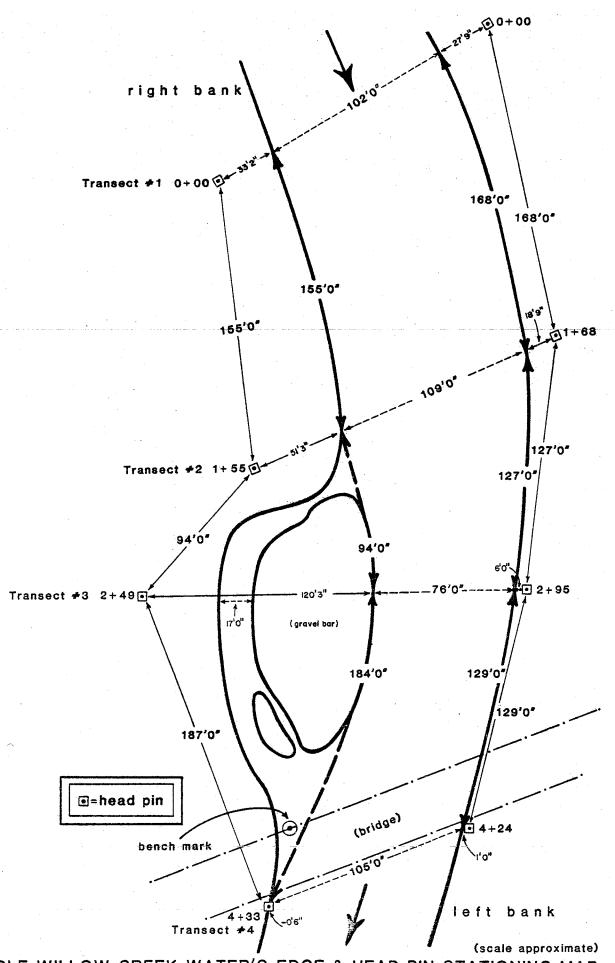
(1 vertical foot equals 4 horizontal feet)

CROSS-SECTIONAL PROFILE OF WILLOW CREEK LOWER REACH, TRANSECT #3B.

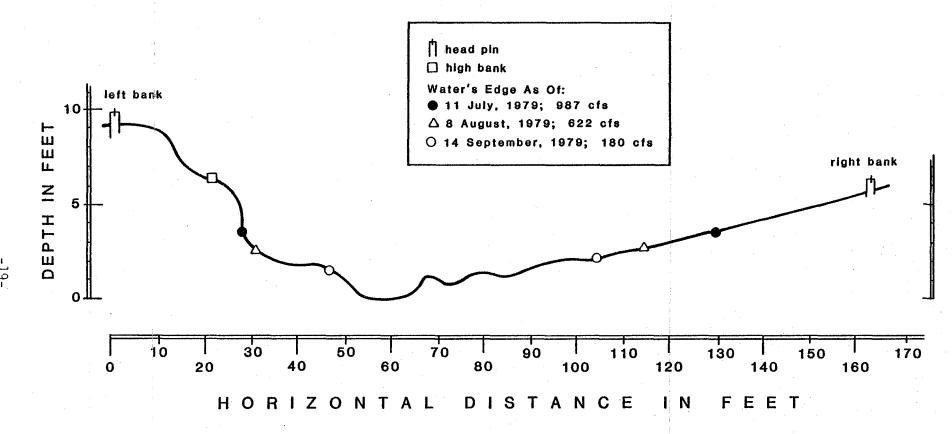

(1 vertical foot equals 4 horizontal feet)

CROSS-SECTIONAL PROFILE OF WILLOW CREEK LOWER REACH, TRANSECT #4.

(1 vertical foot equals 4 horizontal feet)

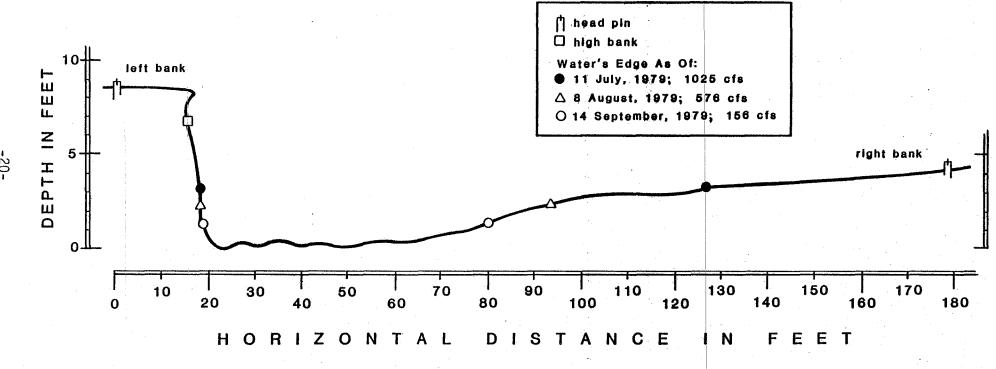

Figure 9

السيبية الأربيا الله على المربيا المربيا الأربيا الأربيا الأربيا الأربيا الأربيا الأربيا المربيط المربيط


CROSS-SECTIONAL PROFILE OF WILLOW CREEK LOWER REACH, TRANSECT ≠5.

(1 vertical foot equals 4 horizontal feet)

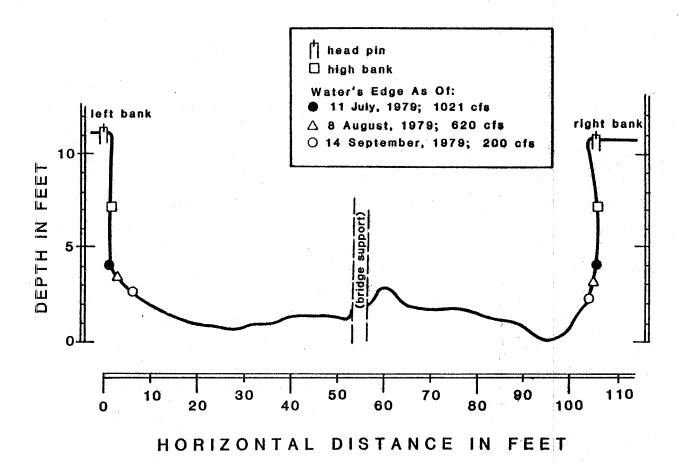
MIDDLE WILLOW CREEK WATER'S EDGE & HEAD PIN STATIONING MAP 11 July, 1979 Average discharge 990 cfs Figure 10



CROSS-SECTIONAL PROFILE OF WILLOW CREEK MIDDLE REACH, TRANSECT #1.

(1 vertical foot equals 4 horizontal feet)

Figure 12


CROSS-SECTIONAL PROFILE OF WILLOW CREEK MIDDLE REACH, TRANSECT #2.

(1 vertical foot equals 4 horizontal feet)

CROSS-SECTIONAL PROFILE OF WILLOW CREEK MIDDLE REACH, TRANSECT #3.

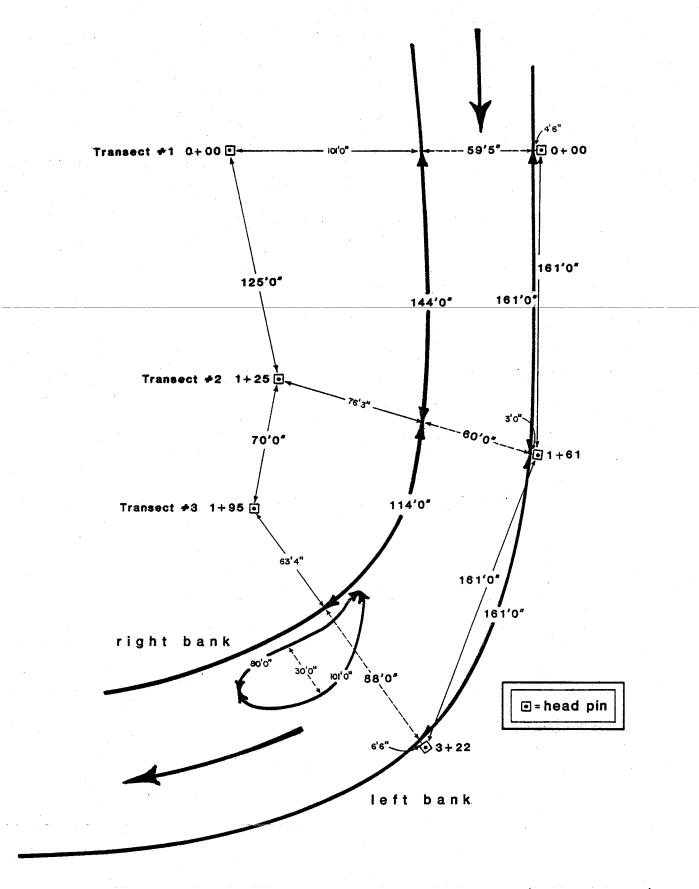
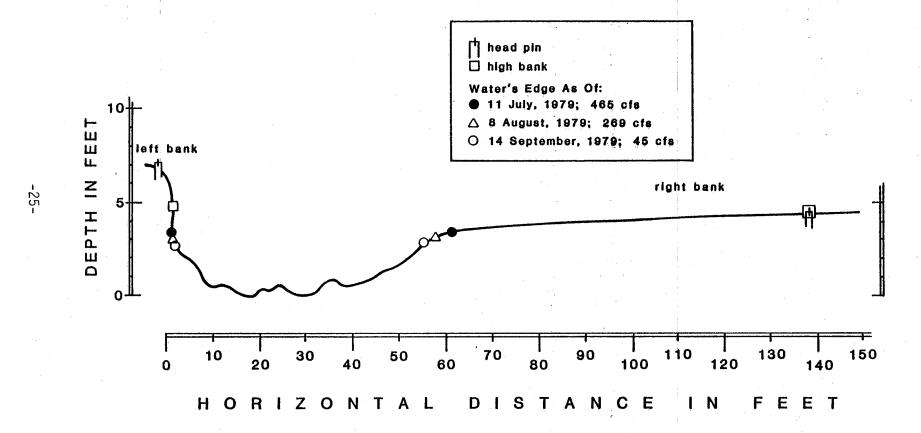

(1 vertical foot equals 4 horizontal feet)

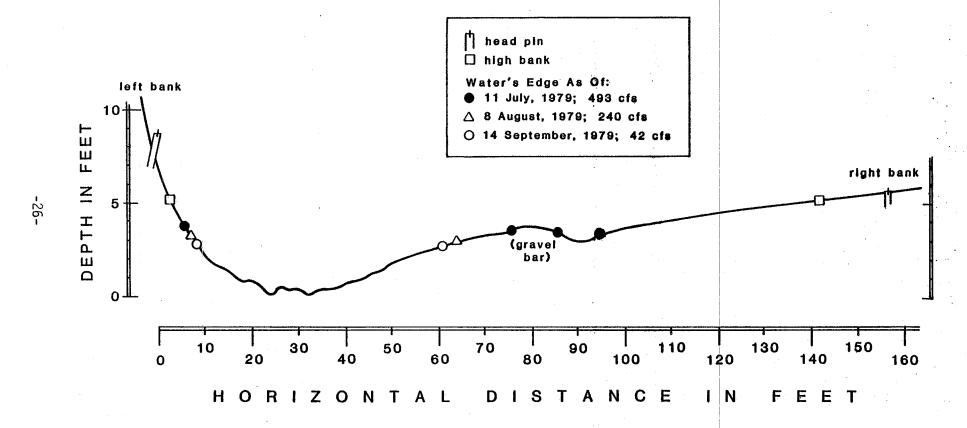
Figure 14

CROSS-SECTIONAL PROFILE OF WILLOW CREEK MIDDLE REACH, TRANSECT #4.


(1 vertical foot equals 4 horizontal feet)

(scale approximate)
UPPER WILLOW CREEK WATER'S EDGE & HEAD PIN STATIONING MAP
11 July 1979
Average discharge 476 cfs

Figure 15


CROSS-SECTIONAL PROFILE OF WILLOW CREEK UPPER REACH, TRANSECT # 1. (1 vertical foot equals 4 horizontal feet)

CROSS-SECTIONAL PROFILE OF WILLOW CREEK UPPER REACH, TRANSECT #2.

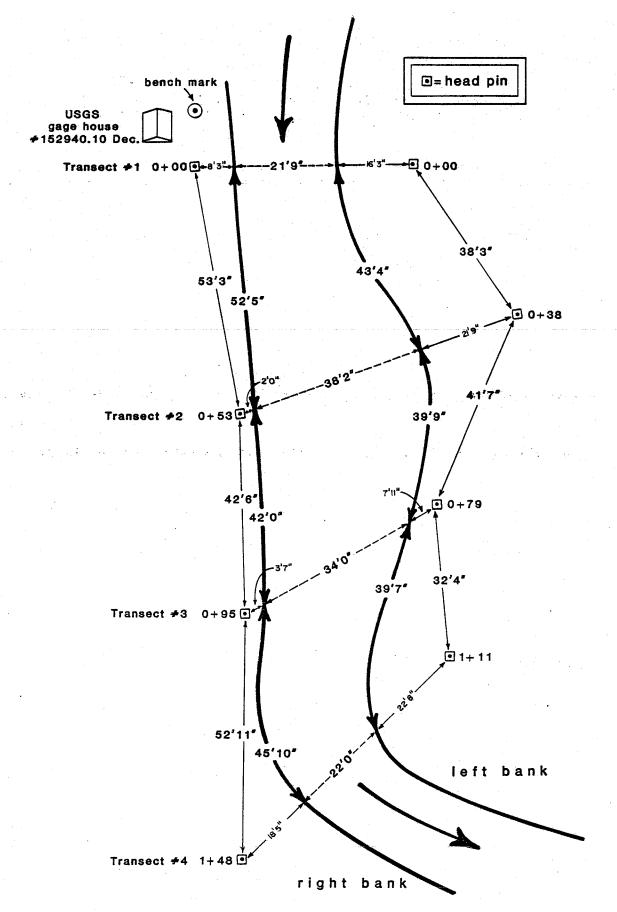
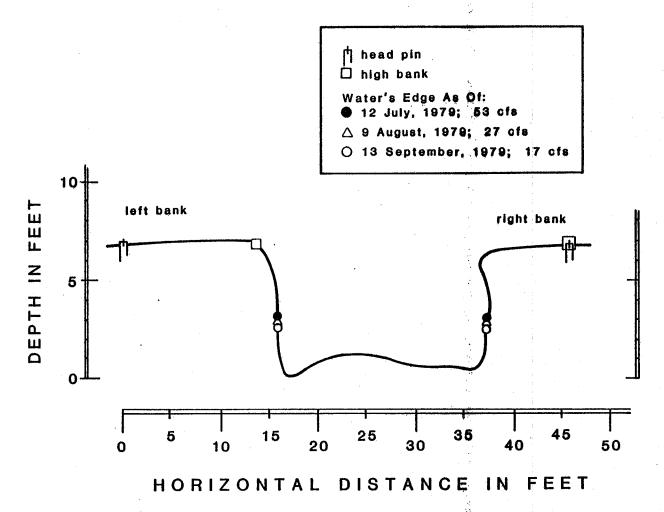

(1 vertical foot equals 4 horizontal feet)

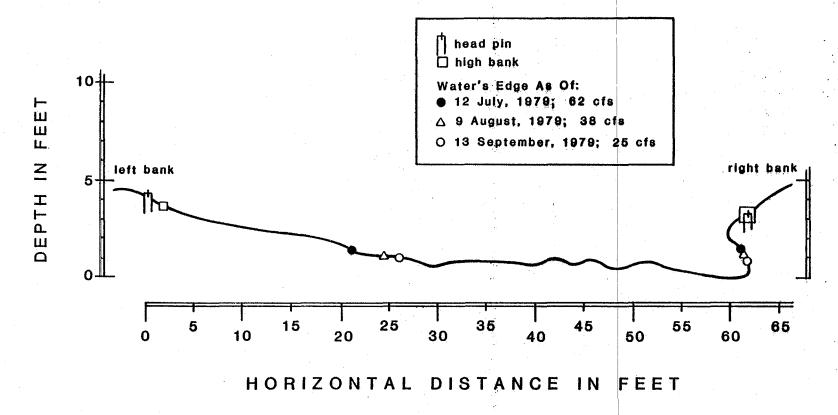
Figure 18

CROSS-SECTIONAL PROFILE OF WILLOW CREEK UPPER REACH, TRANSECT #3.


(1 vertical foot equals 4 horizontal feet)

(scale approximate)
DECEPTION CREEK WATER'S EDGE & HEAD PIN STATIONING MAP
12 July, 1979
Average discharge 57 cfs

Figure 19

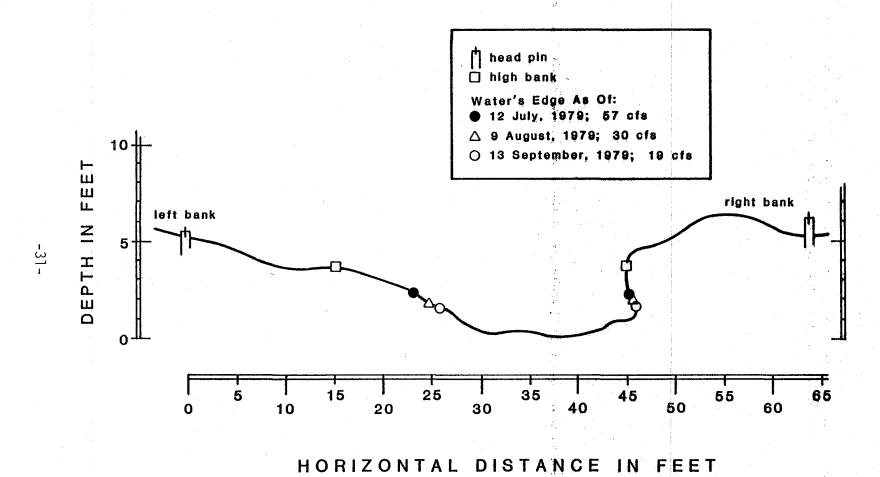

Figure 20

CROSS-SECTIONAL PROFILE OF DECEPTION CREEK REACH, TRANSECT #1.

(1 vertical foot equals 2 horizontal feet)

Figure 21

CROSS-SECTIONAL PROFILE OF DECEPTION CREEK REACH, TRANSECT #2.


(1 vertical foot equals 2 horizontal feet)

-30-

CROSS-SECTIONAL PROFILE OF DECEPTION CREEK REACH, TRANSECT #3.

(1 vertical foot equals 2 horizontal feet)

Figure 23

CROSS-SECTIONAL PROFILE OF DECEPTION CREEK REACH, TRANSECT #4.

(1 vertical foot equals 2 horizontal feet)

Supplemental Biological, Water Quantity and Quality Study Sites

Peters/Purches Creeks

Three index study areas were established to collect biological and physiochemical data in the upper Willow Creek drainage on Purches Creek and four on Peters Creek (Figure 24; Table 2).* Site descriptions were recorded on stream survey forms (Appendix A). Within these index areas, ten discharge sites (Q) and two water quality sites (W) were established (Figure 24; Table 2).

ADF&G/USGS Sites

Miscellaneous water quantity and quality measurements were collected at seven sites on Willow and Deception Creeks (Figure 25; Table 3).* Site descriptions are summarized in the USGS (1980) publication: <u>Water</u> resources data for Alaska, water year 1979.

Fishery Resources**

Four of the five species of Pacific salmon (chinook, pink, coho, and chum, <u>Oncorhynchus keta</u>) are known to occur in Willow and Deception

^{*}Refer to Methods section for a description of site selection techniques.

^{**}Additional Willow Creek fishery data are presented in the ADF&G publication: New capital city environmental assessment program - phase I (Watsjold and Engel 1978).

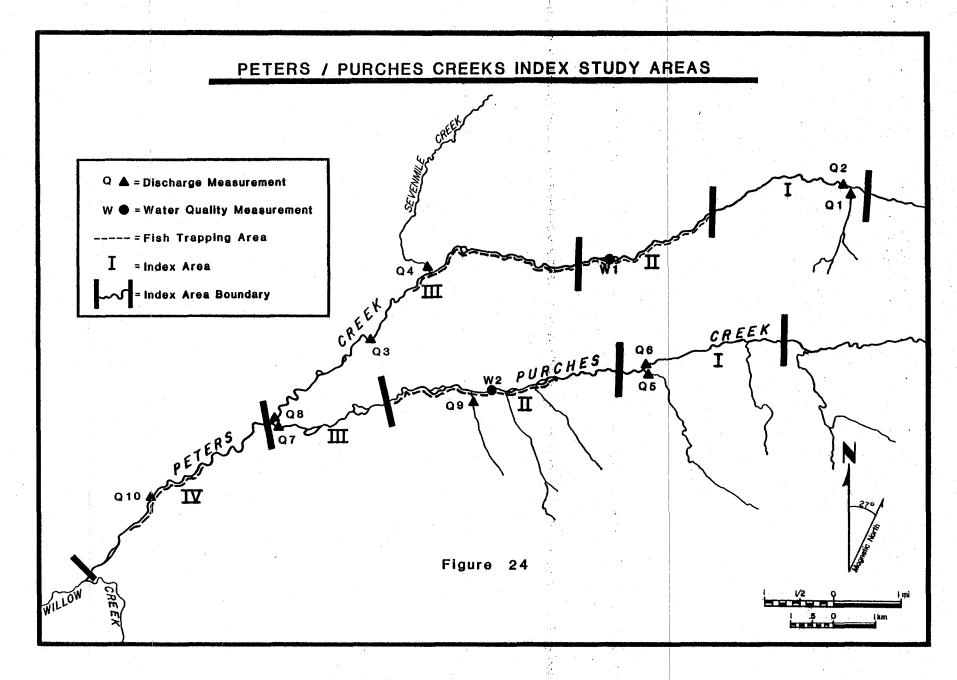


Table 2. Geographic locations for Peters/Purches Creeks Supplemental Study sites (Figure 24).*

PURCHES CREEK INDEX AREA BOUNDARIES

Index Area	ADF&G Geographic Location					
	UPSTREAM		DOWNSTREAM			
1	20N01W11CBD	to	20N01W17AAB			
II	20N01W17AAB	to	20N02W14BDD			
III	20N02W14BDD	to	20N02W16DCD*			

PETERS CREEK INDEX AREA BOUNDARIES

Index Area	ADF&G Geograph	ADF&G Geographic Location					
	UPSTREAM	DOWNSTREAM					
I		21N01W34CAC					
II		20N01W05CBB					
III	20N01W05CBB to	20N02W16DCD**					
IV	20N02W16DCD**to	20N03W36AAD***					

PETERS/PURCHES CREEKS DISCHARGE MEASUREMENTS SITES

Site	ADF&G Geographic Location	<u>Site</u>	ADF&G Geographic Location
Q1	21N01W36BDC	Q6	20N01W09CCD
Q2	21N01W36BCA	Q7	20N02W16DCD
Q3	20N02W11CBB	Q8	20N02W16DCA
Q4	20N02W02DAA	Q9	20N02W13DBB
Q5	20N01W16BBA	Q10	20N02W19DDD

PETERS/PURCHES CREEKS WATER QUALITY MEASUREMENT SITES

<u>Site</u>	ADF&G Geographic Location	Site	ADF&G Geographic Location
W1	20N01W05ADD	W2	20N02W13ADA

^{*} Refer to Methods section for a description of the ADF&G Geographic Location system.

^{**} Confluence of Peters Creek and Purches Creek.

^{***} Confluence of Peters Creek and Willow Creek.

-35-

Table 3. Geographic locations of ADF&G/USGS sampling sites (Figure 25).*

<u>Site</u>	<u>Description</u>	USGS Geographic Location	ADF&G Geographic Location
A :	Willow Creek near Willow Gage USGS# 152940.05	NE 1/4 SE 1/4 Sec 31 T 20N R 03W	20N03W31DAA
В	Willow Creek at Parks Hwy, Bridge USGS #152940.12	NE 1/4 SW 1/4 Sec 06 T 19N R 04W	19N04W06ACD
C	Deception Creek near Willow USGS #152940.10	NE 1/4 SW 1/4 Sec 11 T 19N R 04W	19N04W11CA
D	Deception Creek ab.trib.nr. Houston USGS #152940.07	SE 1/4 NW 1/4 Sec 35 T 19N R 03W	19N03W35BDB
E	Deception Creek Trib. nr. Houston USGS #152940.08	SE 1/4 NW 1/4 Sec 35 T 19N R 03W	19N03W35BDC
F	Unnamed Decep. Cr. Trib. nr. Willow USGS misc. site	NE 1/4 SW 1/4 Sec 12 T 19N R 04W	19N04W12CAD
G	Peters Cr. below Purch. Cr. nr. Willow USGS misc. site	SE 1/4 SW 1/4 Sec 16 T 20N R 03W	20N03W16DCB

^{*} Refer to Methods section for a description of the ADF&G Geographic Location system.

Creeks (Figure 26). In addition, adult sockeye salmon (<u>0</u>. <u>nerka</u>) are known to mill at the mouth of Willow Creek. Resident fish species include Dolly Varden (<u>Salvelinus malma</u>), rainbow trout (<u>Salmo gairdneri</u>), Arctic grayling (<u>Thymallus arcticus</u>) (Figure 27), and burbot (<u>Lota lota</u>).

Pink salmon are the most abundant salmon found in Willow and Deception Creeks, with the largest runs occurring during even years. In 1978, Willow Creek had the highest pink salmon sport fishing harvest (19,000) in Alaska (Mills 1980), and a pink salmon escapement estimated at 220,000 (Watsjold and Engel 1978). With the opening of a limited chinook sport fishery in 1979 (chinook fishing had been prohibited since 1972), Willow Creek now provides one of the four roadside fisheries for this species in the Susitna Basin.

SPECIES PERIODICITY CHART FOR WILLOW / DECEPTION CREEKS

SPECIES BY LIFE STAGE	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC
CHINOOK SALMON												
Adult Immigration												
Spawning Incubation *						**	1					·
Juvenile Rearing												
PINK SALMON												
Adult Immigration							giona s					
Spawning						į,						
Incubation *		-						-			-	
Juvenile Rearing				-	* ***							
CHUM SALMON				· 			, '					
Adult Immigration							i					
Spawning				:							: : :	
Incubation * Juvenile Rearing					-		•					
COHO SALMON												
Adult Immigration				r 		i i						
Spawning									-			
Incubation* Juvenile Rearing	-											
ouveille nearing												

*Includes period from egg deposition to fry emergence

Figure 26. Anadromous fish species.

SPECIES PERIODICITY CHART FOR WILLOW / DECEPTION CREEKS

SPECIES BY LIFE STAGE	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC
RAINBOW TROUT												
Spawning Incubation *												
DOLLY VARDEN												
Spawning Incubation*												
ARCTIC GRAYLING												
Spawning Incubation*									·			

Figure 27. Resident fish species**

*Includes period from egg deposition to fry emergence

**Burbot data unavallable

MATERIALS

MATERIALS

Project equipment is listed below (Table 4).

Table 4. Equipment used in Instream Flow and Supplemental Studies.

Surveying Equipment

Leitz B2-A level

Philadelphia rod

K&E AL-3 level

rod level

100 ft fiberglass tape

rebar

Flow Metering Equipment

Price AA meter

stopwatch

Pygmy meter

tagline

top setting wading rod

18' Monarch boat with 25 hp

motor and jet foot

headphones

beeper box*

cantilevered boom and rail flow suspension system on

bridge.

Water Quality Equipment

YSI** dissolved oxygen meter

thermometer

YSI conductivity meter

Ryan thermograph

Beckman RB-III conductivity

Cole-Parmer pH meter

meter

Biological Sampling Equipment

1/8-inch mesh minnow traps

salmon roe

dip nets

Surber sampler

MS-222

*Substituted for flow meter headphones.

**Yellow Springs Instrument Company.

METHODS

Instream Flow Study*

Geographic Code Locations

In this report, locations of features such as reaches, sampling sites, etc., were specified by a code containing up to fourteen characters (Figure 28). The first three characters identify the Township of the sampling point; the next three, the Range; and, the next two, the section number within the Township. Following these eight characters, one to four letters are used to indicate the location of the sampling point within the 640-acre section. Each letter progressively subdivides the section into fourths, designating them A, B, C, and D in a counterclockwise direction. The first letter following the section number therefore represents the location of the site within the quarter section (160-acre tract); the next, the quarter-quarter section (40-acre tract); the next, the quarter-quarter-quarter section (10-acre tract); etc. When more than one site is sampled within the same subsection, the number of sites is added at the end of the code. For example, if two samples were collected in Section 21, Township 9 North, Range 20 West, the geographic code would be 09N2OW21DAA2. The letters DAA indicate that the samples were collected in the 10-acre NE quarter-quarter-quarter section of the 40-acre NE quarter-quarter section of the 160-acre SE quarter

^{*}Analysis techniques are discussed in the Results section.

section of Section 21. The number 2 following the letters DAA indicates there were two sampling locations in this 10-acre tract.

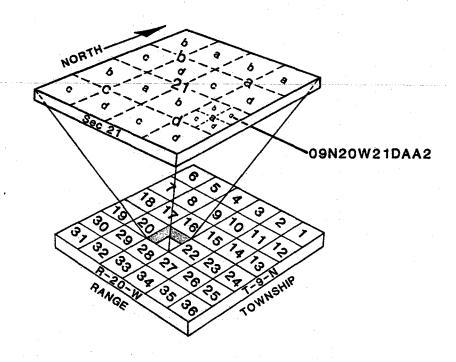


Figure 28. ADF&G geographic location system.

Training

Personnel involved with the field data collection completed the 1-week IFG course: <u>Instream Flow Data Collection Techniques</u> prior to initiating this study. Personnel involved in the computer analysis attended the 1-week IFG course: <u>Instream Flow Computer Analysis Techniques</u> in August 1980.

Reach Selection

Study reaches were selected with the assistance of Larry Engel and Dave Watsjold, ADF&G Palmer Area Sport Fish Biologists. A number of factors were considered in choosing these reaches, including: presence of spawning activity, accessibility, permission from landowners, physical difficulties that could be encountered when surveying and/or obtaining acceptable flow measurements (based on the hydraulic characteristics at the site), the proximity of USGS gaging stations, and the availability of personnel, equipment, and time. As a result, reaches which were selected during this study do not exactly match the IFG's definitions (Bovee and Milhous 1978) for "critical or representative reaches". Thus, they should not be used to represent other reaches within Willow and Deception Creeks without additional investigation.

Transects were selected within each reach according to the procedures outlined in the Montana Department of Fish, Wildlife, and Parks publication: Guidelines for using the Water Surface Profile program to determine instream flow needs for aquatic life (Spence 1975) and the IFG publication: Hydraulic simulation in instream flow studies: theory and techniques (Bovee and Milhous 1978).

Discharge

Three seasonal discharges were measured at transects within each study reach by ADF&G Sport Fish Division Biologists with assistance from USGS,

ADF&G Habitat Division, and ADNR personnel. Measurements were timed to correspond to seasonal high, medium, and low flow periods because measurements of these discharges are required for analysis by the IFG-4 computer model (Bovee and Milhous 1978; Bovee 1980a).

Procedures for discharge measurements outlined by Spence (1975), the IFG (Bovee and Milhous 1978), and the USGS (Buchanan and Somer 1973; Smoot and Novak 1977) were followed. When depths and velocities were too large to allow study personnel to wade the stream, measurements were collected from a boat.

Stage

Staff gages were installed at each study reach to monitor stage/discharge relationships. Gages were placed to accommodate both low and high stream flows. Stage readings were recorded on a daily basis unless other study activities prevented an observation. Additional stage readings were recorded immediately before and after discharge measurements to determine if and how much the discharge had fluctuated.

Substrate

Substrate data were collected along discharge measurement transects, each time discharges were measured, to characterize hydraulic roughness. Additional substrate data were collected at point velocity redd sites to identify the physical characteristics of substrate types associated with spawning sites (see Point Specific Spawning Habitat section below).

Substrate was assessed by observing the stream bottom and recording the percentages of predominant substrate groups. The sizes and types of substrate recorded were adapted from the Modified Wentworth Scale and grouped into seven classes (Table 5).

Water Quality

Each time discharges were measured, data on dissolved oxygen (DO), specific conductance, pH, and temperature were collected to determine whether water quality variations corresponded to changes in discharge. Data were collected from each reach with the instruments listed in Table 4 following the procedures established by the respective manufacturers and the USGS (1979).

Surface water temperatures of each reach were continuously monitored by thermographs which were enclosed within minnow traps to protect them from damage. The traps were weighted with stones and attached to staff gages with wire. The thermographs were inspected and calibrated on a weekly basis. Calibration data (time, date, and temperature) were recorded on thermograph charts. Charts were changed every 30 days. New charts were rewound prior to installation to prevent jamming. The "O" ring seal of the thermograph casing was cleaned and greased with a thin layer of silicone grease before resealing to prevent leakage.

Table 5. Equivalence of Modified Wentworth and Willow/Deception Creeks Study substrate scales.

MODIFIED	WENTWORTH SCALE	WILLOW/DECEPTION CREEKS SCALE			
Class	Description*	<u>Class</u>	Description*		
·					
1	plant detritus		not considered		
2	0.0001 - 0.0016	I	mud		
3	0.0016 - 0.0024	II	sand		
4	0.0024 - 0.079				
5	0.079 - 2.5	III	0.25 - 1.00		
5	0.079 - 2.5	IV	1.00 - 3.00		
<i></i>	2.5 - 9.8	V	3.00 - 5.00		
6	2.5 - 9.6	VI	5.00 - 10.00		
7	greater than 9.8	VII	greater than 10		

^{*}Description numbers represent inches.

Point Specific Spawning Habitat Data*

Water velocity, depth, and substrate characteristics, associated with chinook salmon redds, were recorded to characterize spawning habitat conditions in the study area. Visual observation of females actively fanning redd sites proved to be the most reliable means of identifying locations of redds. Because females were occasionally observed fanning false redds, it was necessary to observe females fanning the same site a number of times to verify active redd locations. Redds were located also by noting the presence of Classes III and/or IV substrate, overturned stones, and a characteristic mound deposited downstream of the redds during their construction.

After redd sites were located, point specific data were collected in the vertical plane at the upstream portion of the redds. When water was less than 3 feet deep, an average point velocity was measured at the data collection site by placing the velocity meter at 0.6 of the total depth measured from the surface of the water. When water depth was 3 feet or greater, two velocity readings were obtained, at positions 0.2 and 0.8 of the total depth, and later averaged to calculate the mean velocity. Substrate characteristics were classified and recorded, according to substrate procedures outlined above.

^{*}Point specific data characterize the range of streamflow-dependent characteristics which appear to be influencing the suitability of various habitat types for the species and life stages of interest.

Benthic Invertebrates

Aquatic larval insects were collected from the stream bottom substrate using a Surber sampler to characterize the presence of benthic invertebrates. One square-foot of stream bottom was sampled at each study reach on the first two discharge measurement dates. The insects were preserved in isopropyl alcohol and returned to the laboratory where they were enumerated and identified to taxonomic orders.

Supplemental Biological, Water Quantity and Quality Study

Peters/Purches Creeks

Site Selection

Streams were subdivided into reaches (index areas) according to gradient, channel geometry, pool-riffle ratio, substrate, and surrounding terrain characteristics (Watsjold and Engel 1978).

Biological Data

One-eighth-inch mesh minnow traps were baited with one inch diameter pieces of salmon roe which had been autoclaved for 45 minutes at 121°C according to procedures outlined by Wadman (1979). Set traps were checked after 24 ±4 hours. Trap locations were noted, and number and species of fish captured were recorded for each trap. Substrate characteristics were also recorded at trap sites according to substrate procedures discussed above.

Water Quantity and Quality

Discharge, dissolved oxygen, pH, water and air temperature, and specific conductance data were collected with the instruments listed in Table 4 according to procedures discussed above.

ADF&G/USGS Study

Site Selection

Sampling sites were established on major tributaries of Willow and Deception Creeks. Site selections were based on availability of historical data for particular sites (Scully 1978; McCoy 1978), accessibility of sites by helicopter, and practicability of sampling all sites in one day.

Water Quantity

Discharge data were collected with the instruments listed in Table 4 according to procedures discussed above. Flows were not measured when the velocity of the water was too swift and/or the depth of the water was too deep to permit wading. Measurements were timed to correspond with seasonal high, medium, and low flow periods in an attempt to monitor seasonal variability.

Water Quality

Water samples, dissolved oxygen, pH, temperature, and specific conduc-

tance data were collected, each time flows were measured, with the instruments listed in Table 4 following procedures discussed above. Water samples were processed for shipping to the USGS laboratory in Denver, Colorado for analysis. Procedures outlined by the USGS (1977) were followed when collecting water samples. The parameters analyzed are listed in Appendix B.

RESULTS-

Instream Flow Study

Discharge

Willow Creek flows ranged from 1163 cubic feet per second (cfs) on July 10, 1979 to 205 cfs on September 14, 1979 in the lower reach, from 991 cfs on July 11, 1979 to 175 cfs on September 14, 1979 in the middle reach, and from 917 cfs on July 11, 1979 to 174 cfs on September 14, 1979 in the upper reach (Table 6). Flows were 5 percent higher in the middle reach than in the upper reach and 10 percent higher in the lower reach than in the middle reach. The difference in flow between the middle and lower Willow Creek reaches is higher than that between the upper and middle reaches because of the flow contribution of Deception Creek. Deception Creek flows ranged from 57 cfs on July 12, 1979 to 20 cfs on September 13, 1979. Discharge information recorded at nearby USGS gaging stations is listed in Appendix B.

Stage

Daily stage data collected in Willow Creek indicate that the stage had peaked at all Willow Creek sites in mid-July after which it gradually declined until it increased abruptly in mid-September before falling again (Appendix C, Figures 1-6). Deception Creek stage began to decline in late July and peaked in mid-September before dropping again (Appendix C, Figure 7).

Table 6. Flow (cfs) summary for Willow/Deception Creeks Instream Flow Study reaches, 1979.

SITE	FLOW #1	FLOW #2	FLOW #3	
LOWER WILLOW	(07/10/79)	(08/08/79)	(09/14/79)	Г
Transect No. 1	1225	674	201	
Transect No. 2	1215	661	212	
Transect No. 5	1050	<u>662</u>	202	<u> </u>
AVERAGE FLOW	1163	652	205	
MIDDLE WILLOW	(07/11/79)	(08/08/79)	(09/14/79)	. [
Transect No. 1	987	623	180	٠ (.
Transect No. 2	1025	620	155	. {
Transect No. 3	929	571	165	
Transect No. 4	1021	620	200	{
AVERAGE: FLOW	991	598	175	
UPPER WILLOW*	(07/11/79)	(08/08/79)	(09/14/79)	r
Transect No. 1	493	240	42	
Transect No. 2	470	262	45	(
Transect No. 3	<u>466</u>	234	<u>50</u>	٦.
AVERAGE FLOW	476	245	46	· [
Above Forks	918	569	174	ſ
DECEPTION CREEK	(07/12/79)	(08/09/79)	(09/13/79)	l
Transect No. 1	53	27	16	
Transect No. 2	62	38	24	
Transect No. 3	<u>57</u>	<u>30</u>	19	
AVERAGE FLOW	57	32	20	1
				4

^{*}Upper Willow reach flows represent the south fork of the mainstem of Willow Creek. Therefore, the total discharge for this portion of Willow Creek was measured on the mainstem upstream of the braided section of the creek (Above Forks).

Substrate

Predominant substrate classes ranged from Classes II to VII in Willow Creek and from Classes II to IV in Deception Creek (Table 7).

Table 7. Range of predominant substrate classes observed in the Willow/ Deception Creeks Study reaches, 1979.

STUDY REACH	SUBSTRATE	CLASS	RANGE
Lower Willow Creek	II	- V	'I
Middle Willow Creek	II	I - V	ΊΙ
Upper Willow Creek	ı. II	- V	'I
Deception Creek	II	- I	٧

Water Quality

Willow and Deception Creek water temperatures, measured on an instaneous basis, ranged from 9.0° to 12.0° C, D0 from 8.3 parts per million (ppm) to 11.5 ppm, pH from 7.0 to 7.6, and specific conductance from 30 to 90 µmhos/cm (Table 8). Continuously monitored water temperatures ranged from 2.8° to 15.6° C in Willow Creek and from 3.3° to 14.8° C in Deception Creek (Appendix D).

Point Specific Spawning Habitat Data

The most frequently measured water depth, at 33 chinook salmon redds,

Table 8. Water Quality Summary for Willow/Deception Creeks Instream Flow Study reaches, 1979.

Site	<u>Date</u>	Temp. 1	$0.0.^{2}$	рН	Cond.3
LOWER WILLOW	07/10/79	09.0	10.3	7.4	37
	08/08/79	11.1	08.3	7.1	31
	09/14/79	10.0	10.9	7.1	70
MIDDLE WILLOW	07/11/79	10.0	11.1	7.6	30
	08/08/79	4		••	
	09/14/79	10.5	11.3	7.3	60
UPPER WILLOW	07/11/79	12.0	10.5	7.6	31
Burton Carlo Sagarage	08/08/79			•• ₂ , .	*
	09/14/79	10.0	11.5	7.1	60
DECEPTION	07/12/79	12.0	10.2	7.5	68
	08/09/79	11.5	10.7	7.0	78
	09/13/79	10.0	11.2	7.2	95

¹ 2

Temp. = temperature in °C
D.O. = dissolved oxygen in mg/l
Cond. = specific conductance in µmhos/cm
-- = equipment malfunction

was 1.6 feet, with a range of 0.95 to 3.00 feet; most frequently measured average water column velocity was 2.25 feet per second (ft/sec), with a range from 0.28 to 4.75 ft/sec; and most frequently measured substrate was Class III, with a range of II to IV (Table 9).

Because of insufficient resources to collect additional point specific spawning habitat data, point specific chinook and pink salmon spawning habitat data collected in Willow Creek during 1978 by Watsjold and Engel (1978) are included in this report (Tables 10 and 11). The most frequently measured chinook salmon spawning depth measured in Willow Creek in 1978 was 1.65 feet, with a range of 1.0 to 2.2 feet; most frequently measured average water column velocity was 3.16 ft/sec, with a range of 1.51 to 4.75 ft/sec; and most frequently measured substrate was Class IV with a range of III to VI. Pink salmon spawning depth most frequently measured was 1.35 feet, with a range of 0.6 to 2.4 feet; average water column velocity most frequently measured was 2.4 ft/sec, with a range of 1.01 to 4.01 ft/sec; and substrate most frequently measured was Class III, with a range of II to IV.

Suitability Curves

Point specific spawning habitat data outlined above are presented as suitability curves (Figures 29-37).* The curves were derived using

^{*}Habitat suitability curves are developed to represent the ranges of depth, velocity, and substrate types commonly occupied by a particular species and life stage. The chinook and pink salmon curves presented in this report are provided as illustrations and are not to be used to develop specific flow regimes for Willow and Deception Creeks. The curves were developed from a small number of observations, and ADF&G biologists should be consulted for further interpretation of these curves.

Table 9. Redd measurements for Chinook Salmon in Willow Creek, August 1979 (not recommended for application to other watersheds).

Depth (ft.)	Velocity (ft./sec.)	Substrate Classification	
1.10 1.70 0.95 1.30 2.00	1.920 2.390 0.279 4.750 5.200	IV III-IV III-IV	
1.50 1.60 1.40 3.00 2.70	3.210 1.290 2.340 4.280 2.500	III IV III III	
2.10 2.20 1.60 1.10 2.00	2.800 0.993 0.993 0.837 2.100	III III III III III	
2.40 2.00 1.50 2.20 1.70	2.990 4.750 2.440 3.130 3.060	IV IV III III	
1.40 2.00 2.50 2.60 1.80	3.280 2.690 3.210 3.280 2.990	III-IV III III III	
2.10 2.00 1.60 1.10 1.60	1.160 2.200 2.290 2.100 2.100	III-IV III III III	
1.50 1.50 1.70	2.740 1.880 3.800	III-IV III III	

Table 10. Redd measurements for Chinook Salmon in Willow Creek, August 1978. (adapted from Watsjold and Engel 1978).*

Depth (ft.) 1.7 1.3 1.0 1.3 1.9	Velocity (ft./sec.) 3.72 3.06 2.39 3.28 1.54	Substrate (in.) 2.0-6.0 2.0-6.0 1.5-6.0 2.0-7.0 2.0-6.0	Substrate Classification** IV-V IV-V IV-V IV-V IV-V
1.8 1.5 1.7 1.4 1.3	1.76 1.76 2.44 4.46 3.57	1.5-7.0 2.0-7.0 1.5-7.0 1.5-7.0	IV IV-V IV IV
2.2 1.8 2.0 1.4 2.1	3.21 2.61 3.50 3.80 3.43	2.0-7.0 2.0-6.0 2.0-5.0 2.0-6.0 3.0-6.0	IV-V IV-V IV-V
1.4 1.4 1.0 1.3 1.4	3.28 3.21 3.89 2.92 2.50	1.0-5.0 3.0-6.0 3.0-6.0 2.0-5.0 2.0-4.0	III-IV V IV IV
1.2 1.6 1.2 2.0 1.6	1.51 3.43 3.80 3.37 2.29	1.0-4.0 1.0-6.0 2.0-6.0 3.0-7.0 1.5-4.0	III-IV III-IV IV-V V III-IV
1.3 1.8 1.8 1.8 1.6	2.55 2.99 3.80 3.28 3.98	1.5-4.0 2.0-5.0 1.5-4.0 2.0-6.0 1.5-6.0	III-IV IV III-IV IV-V IV
1.7 1.3 1.9 2.1 2.0	2.55 1.58 2.74 2.50 1.65	3.0-6.0 1.5-3.0 2.0-6.0 3.0-6.0	III-IV IV-V
1.9 1.7 2.1 2.0 2.2	3.43 3.50 4.75 4.16 3.56	3.0-5.0 2.0-6.0 2.0-6.0 	V IV-V IV-V

^{*} Not recommended for application to other watersheds.

^{**} Substrate data collected in 1978 and classified using the method described in this report.

Table 10. Continued.

Depth (ft.)	Velocity (ft./sec.)	Substrate (in.)	Substrate Classification*
2.2	3.28		
1.8	4.37	1.5-4.0	III-IV
1.7	4.55	1.5-4.0	IV
1.7	3.80	2.0-6.0	IV-V
1.5	2.29	1.5-3.0	III-IV
1.9	2.92	1.5-4.0	III-IV
14	2.99	1.5-3.0	III-IV
1.4	4.16	4.0-6.0	V-VI
1.7	4.07	3.0-5.0	ν
1.5	3.89	2.0-5.0	V

^{*} Substrate data collected in 1978 and classified using the method described in this report.

Table 11. Redd measurements for Pink Salmon in Willow Creek, August 1978 (adapted from Watsjold and Engel 1978).*

	1 TOIN	watsjoid and Engel 1370).		Substrate
	Depth (ft.)	<pre>Velocity (ft./sec.)</pre>	Substrate (in.)	Classification**
	1.8 1.8 2.1 1.4 2.1	2.10 2.29 2.10 1.01 1.17	1.0-1.5 1.0-2.0 1.0-2.0 1.0-2.0 1.0-2.0	III-IV III-IV III-IV III-IV
	2.4 1.9 2.1 2.0 0.9	2.20 1.51 3.28 2.55 1.92	1.0-2.0 1.0-1.5 0.5-2.0 1.0-2.0 1.5-2.0	III-IV III-IV III-IV
· · ·	1.7 1.8 1.4 2.3 1.6	3.28 3.50 1.76 2.74 2.00	2.0-3.0 2.0-5.0 1.0-1.5 1.5-2.0 1.0-2.0	IV IV III-IV III-IV
	1.1 0.9 0.6 2.1 0.8	2.20 1.33 1.25 2.74 2.02	0.5-1.5 1.0-1.5 0.5-1.0 0.5-1.5 1.0-1.5	III-IV III III III
	0.9 1.1 1.0 0.8 1.5	3.72 1.58 2.00 3.11 2.74	1.5-2.0 0.5-1.5 0.5-1.5 0.5-1.0 0.5-1.5	III-IV III III III
	0.5 0.8 1.5 1.7 0.6	1.84 2.44 3.28 3.65 1.25	1.0-1.5 1.0-1.5 1.5-3.0 1.0-2.0 1.0-1.5	III-IV III-IV III-IV III-IV
	0.7 0.7 0.8 1.4 1.4	1.96 2.34 1.58 2.20 2.50	0.5-1.5 1.0-1.5 0.5-1.0 1.0-2.0	III-IV III-IV
	0.7 1.7 1.5 0.7 1.5	2.50 2.50 2.38 1.96 2.55	1.0-2.0 1.0-2.0 1.0-2.0 0.5-1.5 1.0-1.5	III-IV III-IV III III-IV

Not recommended for application to other watersheds. Substrate data collected in 1978 and classified using the method described in this report.

Table 11. Continued

Depth (ft.) 1.5 1.7 1.1 1.7 1.8	Velocity (ft./sec.) 2.10 2.29 1.47 1.92 2.29	Substrate (in.) 0.50-1.50 1.00-1.50 0.50-0.75 0.50-1.00 0.50-1.50	Substrate Classification* III III-IV II-III III III
2.0 1.8 0.6 0.9	2.74 2.55 1.35 1.88 2.20	1.00-2.00 0.50-1.00 0.50-1.00 0.50-1.00 1.00-1.50	III-IV III III III-IV
0.7 1.3 1.5 1.0	1.63 1.96 2.99 1.28 2.20	f**-0.75 1.00-2.00 1.00-2.00 f**-2.00 1.00-2.00	II - I V III - I V III - I I III - I V
1.3 0.8 1.3 1.1	2.39 1.65 2.44 3.50 2.34	1.00-2.00 0.50-1.50 1.00-3.00 1.00-2.00 1.00-1.50	III-IV III-IV III-IV
1.4 1.2 1.7 1.5	3.13 2.44 2.74 2.55 2.74	1.00-2.00 0.50-1.50 0.75-2.00 0.50-1.50 1.50-2.00	III-IV III III-IV
1.4 1.1 1.1 1.3	2.99 2.61 2.29 3.37 3.37	1.50-2.00 0.50-1.50 1.00-2.00 1.00-1.50 1.00-2.00	III-IV III-IV III-IV III-IV
0.9 1.7 1.1 1.2 1.6	2.05 2.10 1.88 2.74 2.50	1.00-1.50 f**-1.00 0.25-6.00 1.00-6.00 0.50-5.00	III-IV III-III III-IV III-IV
1.0 1.1 1.6 2.0 1.2	2.55 2.74 2.99 4.01 2.20	0.50-5.00 0.50-5.00 1.00-6.00 1.00-6.00 0.50-4.00	III III-IV III-IV III

^{*} Substrate data collected in 1978 and classified using the method described in this report.

Table 11. Continued.

Depth (ft.) Ve	locity (ft./sec.)	Substrate (in.)	Substrate Classification*
1.9 1.6 2.1 1.0 1.2	2.74 3.80 2.39 3.21 2.72	0.50-5.0 1.00-4.0 1.00-4.0 0.75-5.0 0.50-3.0	III III-IV III III
1.5 1.9 0.9 1.1 1.6	2.98 3.89 2.05 2.05 3.13	1.00-6.0 1.00-6.0 f**-1.0 0.50-3.0 1.00-6.0	III-IV III-III III III-IV
1.5 1.3 1.5 1.6 2.4	1.84 2.29 3.07 1.65 2.00	f**-3.0 0.50-5.0 1.00-5.0 0.50-3.0 0.50-4.0	II-III III-IV III III
1.7 0.9 1.5 2.3	3.80 2.50 2.55 2.61 1.88	0.75-4.0 0.50-2.5 0.50-4.0 0.50-4.0 0.50-2.5	III III III III
1.8 1.0 1.6 1.0	2.98 2.68 3.24 1.62 2.10	0.50-7.0 0.75-3.0 0.50-3.0 0.50-2.5 0.50-3.0	III III III III
0.6 1.3 1.4 0.9 1.5	1.84 1.65 2.15 1.92 2.44	0.50-4.0 0.50-3.0 0.50-2.5 0.50-3.0 0.75-4.0	III III III III
1.7 1.5 1.0 1.0	2.61 3.65 3.43 2.61	1.00-5.0 0.75-5.0 0.75-4.0 0.50-2.5	III-IV III III III

f** = fines

^{*} Substrate data collected in 1978 and classified using the method described in this report.

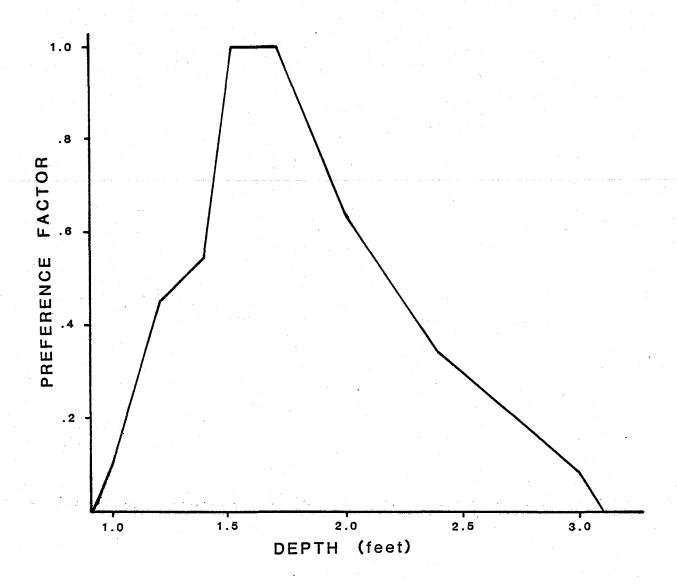


Figure 29. Depth suitability curve for spawning chinook salmon in Willow Creek, Alaska, Summer 1979. Not recommended for application to other watersheds. Consult ADF&G for further interpretation.

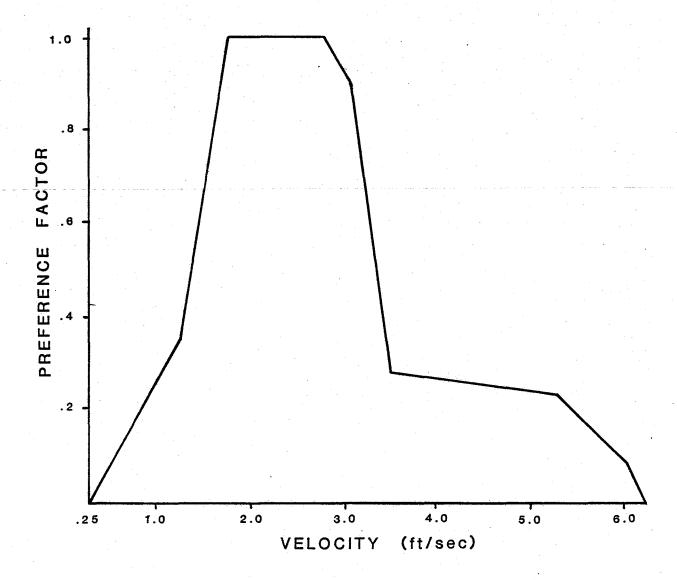


Figure 30. Velocity suitability curve for spawning chinook salmon in Willow Creek, Alaska, Summer 1979, Not recommended for application to other watersheds. Consult ADF&G for further intrepretation.

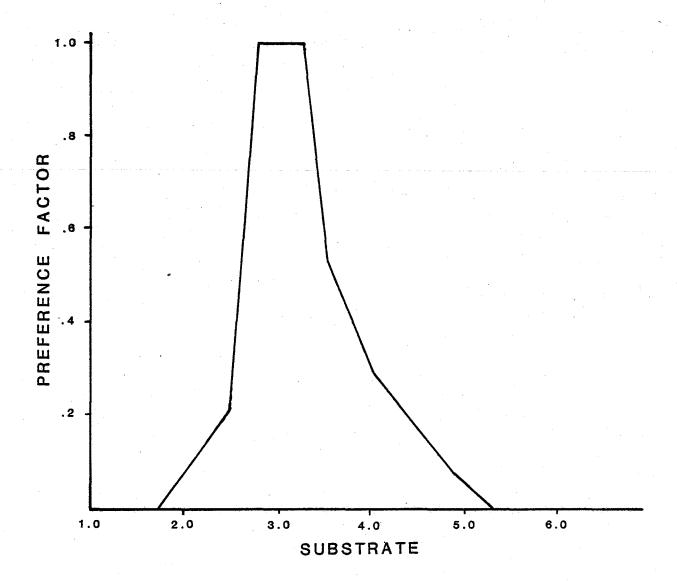


Figure 31. Substrate suitability curve for spawning chinook salmon in Willow Creek, Alaska, Summer 1979. Not recommended for application to other watersheds. Consult ADF&G for further interpretation.

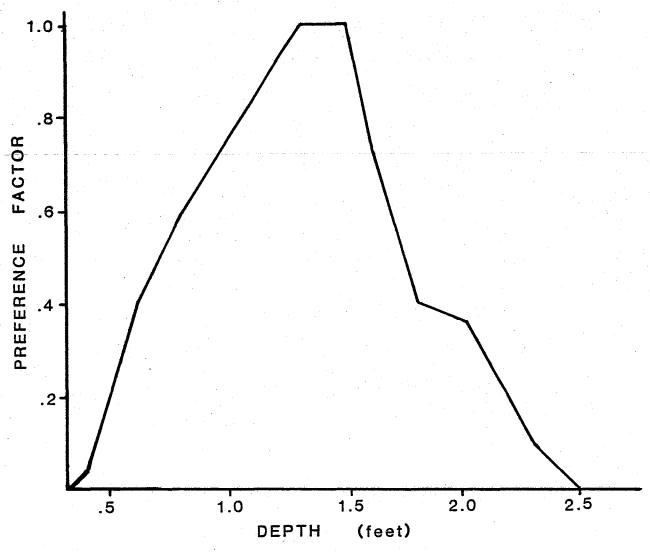


Figure 32. Depth suitability curve for spawning chinook salmon in Willow Creek, Alaska, Summer 1978 (adapted from Watsjold and Engel 1978). Not recommended for application to other watersheds. Consult ADF&G for further interpretation.

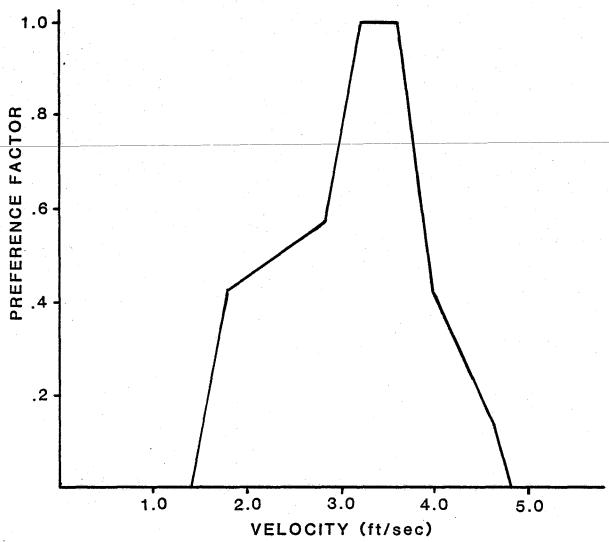


Figure 33. Velocity suitability curve for spawning chinook salmon in Willow Creek, Alaska, Summer 1978 (adapted from Watsjold and Engel 1978). Not recommended for application to other watersheds. Consult ADF&G for further intrepretation.

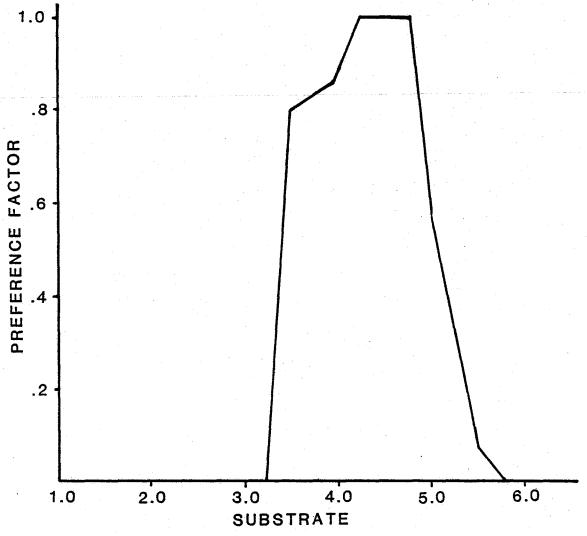


Figure 34. Substrate suitability curve for spawning chinook salmon in Willow Creek, Alaska, Summer 1978 (adapted from Watsjold and Engel 1978). Not recommended for application to other wastersheds. Consult ADF&G for further intrepretation.

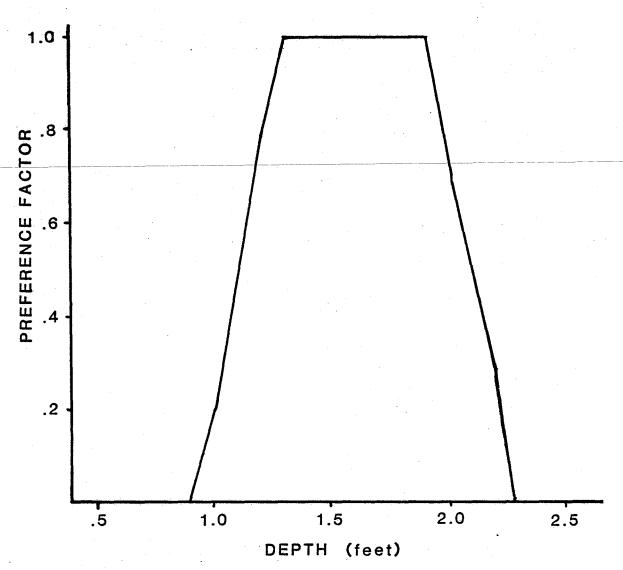


Figure 35. Depth suitability curve for spawning pink salmon in Willow Creek, Alaska, Summer 1978 (adapted from Watsjold and Engel 1978). Not recommended for application to other watersheds. Consult ADF&G for further interpretation.

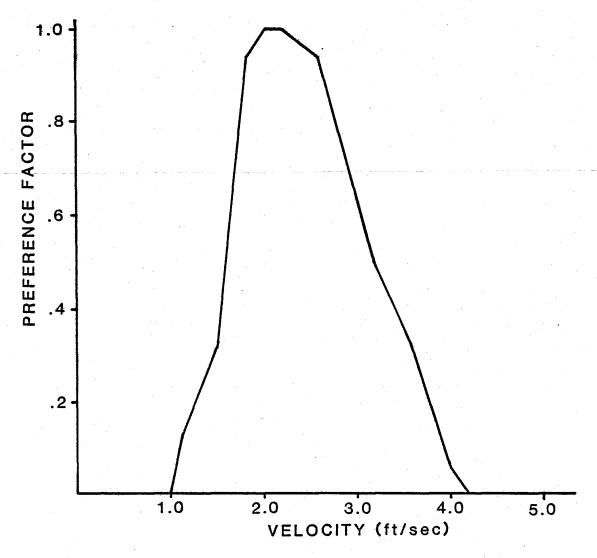


Figure 36. Velocity suitability curve for spawning pink salmon in Willow Creek, Alaska, Summer 1978 (adapted from Watsjold and Engel 1978). Not recommended for application to other watersheds. Consult ADF&G for further intrepretation.

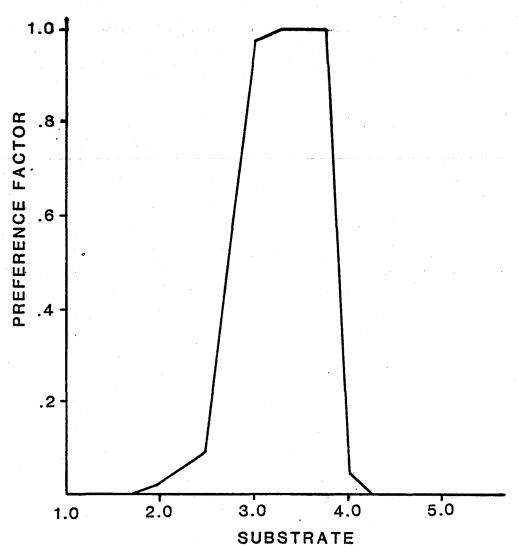


Figure 37. Substrate suitability curve for spawning pink salmon in Willow Creek, Alaska, Summer 1978 (adapted from Watsjold and Engel 1978). Consult ADF&G for further interpretation. Not recommended for application to other watersheds.

frequency analysis. This was accomplished by dividing the range of values obtained for each parameter (i.e., depth, velocity, or substrate), into appropriate equal increments, assigning each data point to the proper increment, and clustering adjacent increments to reduce the variance. The cluster pattern giving the least variance was plotted and the increment containing the greatest number of observations was designated as the optimum condition, receiving a preference value of 1.0. The remaining clustered increments were assigned preference factors by dividing the frequency of each increment by the frequency of the optimum. Detailed instructions for developing these curves are outlined by Bovee and Cochnauer (1977).

Velocity and depth curves were developed without data modifications.

Development of substrate curves, however, required some data conversions.

Substrate data, were aggregated for use in developing suitability curves.

The data collection method used resulted in potentially unlimited combinations of categories for substrate classification (i.e., categories could be based on any percentage of any or all of the seven substrate classes). As a result, one site might include 50 subtrate categories while another might contain 10. By limiting substrate categories which could be used at a particular site to three dominant particle size classes, each of which had to comprise at least 10 percent of the substrate particle sizes present, the number of categories was reduced to 275.

The 275 categories were then grouped into 10 categories according to predominant substrate size. After data were organized according to this system, frequency analysis of substrate categories was performed to develop substrate curves. Substrate data, thus grouped, were easily

converted to the modified Wentworth classification (Table 5).

Benthic Invertebrates

One-hundred-six individual benthic invertebrates collected from the Willow/Deception Creeks Study reaches were classified to taxonomic order (Table 12). Eleven percent were identified as Trichoptera, 25 percent as Plecoptera, 56 percent as Diptera, 7 percent as Ephemeroptera, and 1 percent as representative of other orders.

Computer Analysis

Financial and time limitations restricted computer analysis of hydraulic data to one reach. The middle Willow Creek reach was selected because it contained both pink and chinook salmon spawning habitat.

Discharge and substrate data were coded and computer analyzed with the IFG-2 and IFG-4 programs* stored on the Boeing Computer Services System. Using the IFG-2 model, encoded data were calibrated to the highest

^{*}The IFG-2 program is a modified version of the Water Surface Profile (WSP) computer program designed by the IFG which uses one set of observed stream flow data (depth, velocity, and substrate) to predict hydraulic parameters for a range of desired flow regimes. The hydraulic model is calibrated to reproduce water surface elevations and velocity distributions observed at selected stream flow conditions. Once properly calibrated, the computer program will predict the water surface elevations and respective horizontal velocity distributions at each transect for a range of desired discharges. The IFG-4 hydraulic model, unlike the IFG-2 model, requires at least two and preferably three sets of observed stream flows at each transect to correlate flow versus velocity and stage versus flow. Once calibrated, depths and velocities for flows of interest can be predicted from the established correlations (IFG 1980b).

Table 12. Benthic insects (no/ft.²), classified to order, collected from each of the Willow/Deception Creek Instream Flow Study reaches, 1979.

SITE	TRICHOPTERA	<u>PLECOPTERA</u>	DIPTERA	EPHEMEROPTERA	<u>OTHER</u>
Lower Willow					
07/12 08/08	1	02 01	01 25	0	0 0
Middle Willow					
07/11 08/08	0	01 00	01 02	0	0
Middle Willow	Slough				
07/11	0	01	26	1	0
Upper Willow					
07/11 08/08	0 2	06 00	03 00	0 2	0 2
Deception Cree	k				
07/12 08/09	2 5	13 02	02 00	4	0 0

discharge (991 cfs) following the procedures outlined by the IFG (1980b) and Trihey (1980).* IFG-2 computer output data for the middle reach of Willow Creek are presented in Appendix E. Unstable channel geometry and inability to obtain assistance of a hydraulic engineer prevented analysis by the IFG-4 program which would have required further hydraulic analysis (Newcome 1980).

Once calibrated, the hydraulic model was integrated with six different sets of point specific habitat suitability criteria for chinook and pink salmon to calculate predicted hypothetical Weighted Usable Area (WUA).**
WUA values were predicted at six different discharges by each of the following IFG (1980b) methods:

- 1. Standard Calculation "This is the calculation of the habitat area with the Joint Preference Factor (JPF) equal to (a x b x c); where a, b, and a, equal preference variables for velocity, depth, and substrate. This technique implies synergistic action; optimum habitat only exists if all variables are optimum".
 - Standard Calculation With Three Matrices "This is the Standard Calculation in which depth/velocity, velocity/

^{*}This was based on the assumption that streambed elevations measured at this discharge level would be static for all predicted flows.

^{**}The WUA represents the square feet (ft^2) or percentage (%) of wetted surface habitat area predicted to be available per 1000 linear feet of stream reach at a given flow.

substrate, or depth/substrate relationships are displayed in a matrix".

- 2. Geometric Mean "This is the calculation of the habitat area with the JPF equal to $(a \times b \times c)^{0.333}$. This technique implies compensation effects; if two of the three variables are in the optimum range, the value of the third variable has little effect unless it is zero".
- 3. Lowest Limiting Parameter "This is the calculation of the habitat area with the JPF equal to the variable having the lowest preference factor at a given discharge. In other words, the optimum habitat will be based on the most limiting variable for a given discharge. This implies a limiting factor concept, or that the habitat is no better than its least suitable factor".

The six sources of habitat suitability criteria used in the demonstration WUA analysis are listed below:

- A. 1980 depth, velocity, and substrate preliminary data on pink salmon habitat from the Terror Lake Hydroelectric feasibility study, Kodiak Island (AEIDC 1980);
- B. 1978 depth, velocity, and substrate data on pink salmon habitat in Willow Creek (Watsjold and Engel 1978);
- C. 1979 depth, velocity, and substrate data on chinook salmon habitat in Willow Creek;

- D. 1978 depth, velocity, and substrate data on chinook salmon habitat in Willow Creek (Watsjold and Engel 1978);
- E. 1978 depth and velocity data on chinook salmon habitat in Willow Creek (Watsjold and Engel 1978), and 1979 substrate data on chinook salmon habitat in Willow Creek; and
- F. 1979 depth and velocity data on chinook salmon habitat in Willow Creek; and 1978 substrate data, on chinook salmon habitat in Willow Creek (Watsjold and Engel 1978).

Descriptions of the calculation methods above suggest that the Lowest Limiting Parameter calculation method would generate the most conservative* WUA value for a given discharge. However, results obtained by each of the three methods indicate that the Standard Calculation procedure will generate the most conservative WUA values (Figure 38; Tables 13, 14). This occurs because the suitability values used to compute WUA must always range between 0 and 1.

Results of the above demonstration calculations to predict WUA values indicate that suitablility data collected from one stream system may not necessarily apply to another (Figure 39; Tables 13, 14).** For example,

^{*}Conservative WUA values, as defined in this report, represent the lowest predicted WUA values for a given discharge when more than one calculation method is applied.

^{**}It should be noted that suitability data presented in this report were derived from dissimilar samples in terms of the population size sampled and location of the sampling. These factors may also have influenced the results.

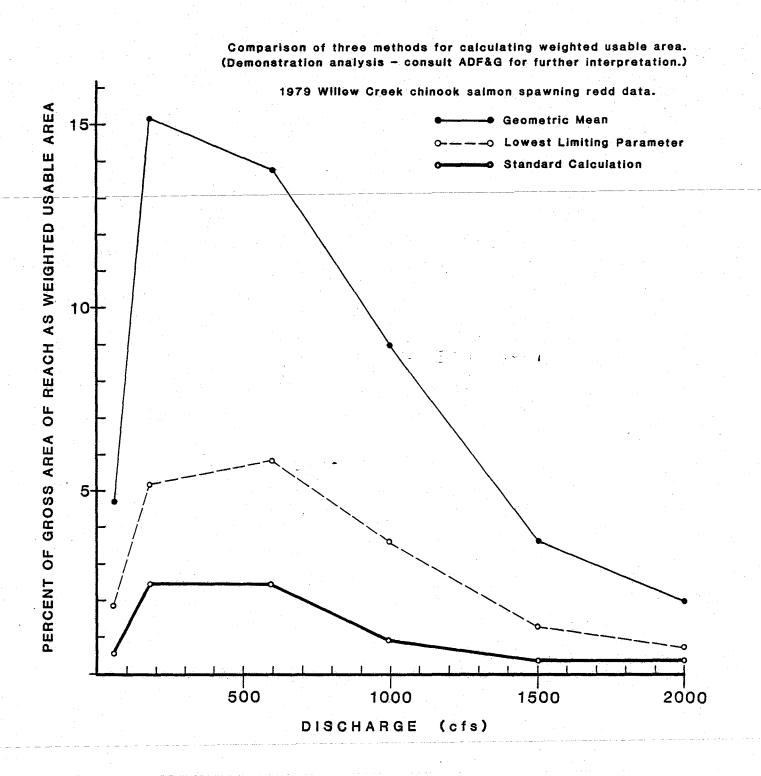


Figure 38.

Table 13. Discharge vs. predicted available spawning habitat area (ft²) per 1000 feet of the Willow Creek Instream Flow Study middle reach (Demonstration analysis - consult ADF&G for further interpretation).

DISC	HARGE (cfs)	PINK S	ALMON	•	CHINOOK :	SALMON	
		<u>A</u>	<u>B</u>	<u>c</u>	<u>D</u>	<u>E</u>	<u>F</u>
			Standard Calcu	<u>lations</u>			
	2000	16051	0000	00463	00416	0042	02876
	1500	18273	0041	00538	01371	0117	03839
	0991	16132	0026	00897	02500	0234	05674
•	0598	19586	0995	01941	04423	1411	07677
	0175	25361	0329	01552	05930	0751	09284
	0050	14315	0005	00255	01203	0112	01811
			Geometric M	ean			
	2000	45640	0000	02933	03853	1072	08044
	1500	48735	0435	04999	06501	1633	13534
	0991	39540	0508	08916	09633	3447	19737
	0598	42264	2210	11093	14997	7612	23430
	0175	44018	1401	09726	19015	6923	20612
	0050	29093	0127	02315	05750	2013	04792
		<u>Lo</u>	west Limiting	Parameter			
	2000	21451	0000	1128	01070	0477	04631
	1500	23819	0064	1735	02775	0551	07741
	0991	21557	0096	3610	05513	1005	10916
	0598	25112	1060	4678	08492	3074	13376
	0175	28956	0709	3326	10095	2058	12521
	0050	18719	0025	0905	02814	0620	03223

A Pink salmon 1980 Terror Lake depth, velocity, and substrate data (AEIDC 1980).

-78-

B Pink salmon 1978 Willow Creek depth, velocity, and substrate data (Watsjold and Engel 1978).

C Chinook salmon 1979 Willow Creek depth, velocity, and substrate data.

D Chinook salmon 1978 Willow Creek depth, velocity, and substrate data (Watsjold and Engel 1978).

E Chinook salmon Willow Creek 1978 depth and velocity data (Watsjold and Engel 1978); 1979 substrate data.

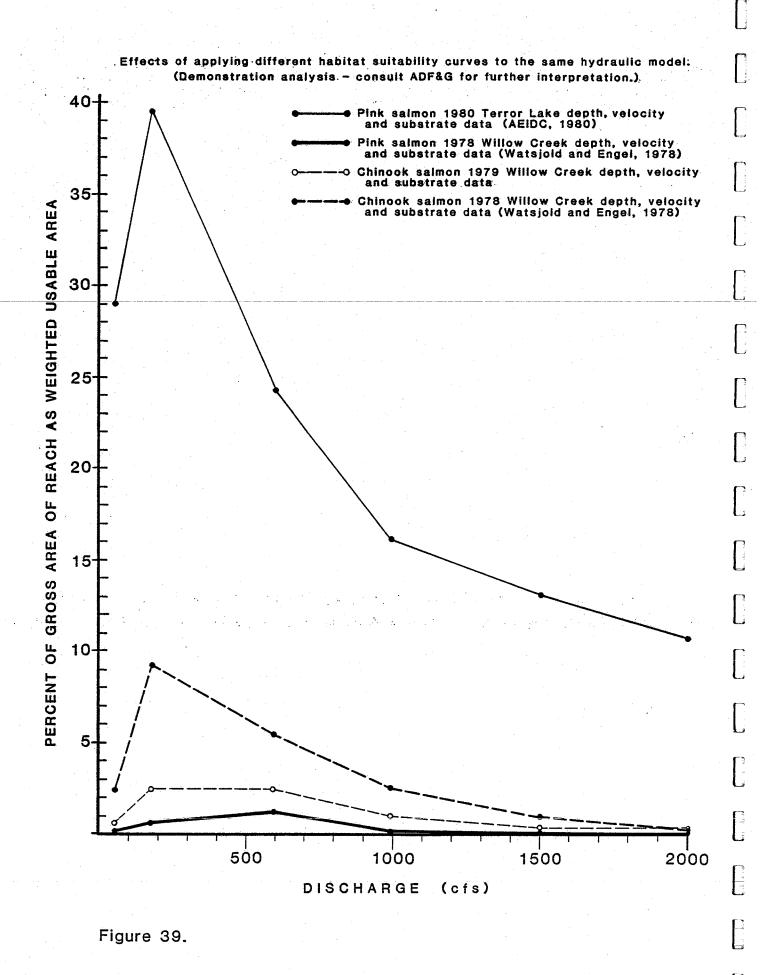
F Chinook salmon Willow Creek 1979 depth and velocity data; 1978 substrate (Watsjold and Engel 1978).

Table 14. Discharge vs. predicted available spawning habitat area (ft^2) as a percentage of the Willow Creek Instream Flow Study middle reach (Demonstration analysis - consult ADF&G for further interpretation).

DISCHARGE (cfs)	PINK S	ALMON		CHINOO	K SALMON	
	<u>A</u>	<u>B</u>	<u>c</u>	<u>D</u> .	<u>E</u>	<u>F</u>
		Standard Ca	<u>lculations</u>			
2000	10.73	0.00	00.31	00.28	00.03	01.92
1500	13.13	0.03	00.39	00.99	00.08	02.76
0991	16.18	0.03	00.90	02.51	00.23	05.69
0598	24.27	1.23	02.41	05.48	01.75	09.51
0175	39.52	0.51	02.42	09.24	01.17	14.47
0050	29.01	0.01	00.52	02.44	00.23	03.67
		Geometri	c Mean			
2000	30.50	0.00	01.96	02.57	00.72	05.38
1 500	35.01	0.31	03.59	04.67	01.17	09.72
0991	39.66	0.51	08.94	09.66	03.46	19.80
0598	52.37	2.74	13.75	18.58	09.43	29.03
0175	68.59	2.18	15.15	29.63	10.79	32.11
0050	58.96	0.26	04.69	11.65	04.08	09.71
	<u>Lc</u>	west Limit	ing Parameter		•	
2000	14.33	0.00	00.75	00.71	00.32	03.09
1500	17.11	0.05	01.25	01.99	00.40	05.56
0991	21.62	0.10	03.62	05.53	01.01	10.95
0598	31.12	1.31	05.80	10.52	03.81	16.57
0175	45.12	1.10	05.18	15.73	03.21	19.51
0050	37.94	0.05	01.83	05.70	01.26	06.53

A Pink salmon 1980 Terror Lake depth, velocity, and substrate data (AEIDC 1980).

B Pink salmon 1978 Willow Creek depth, velocity, and substrate data (Watsjold and Engel 1978).


C Chinook salmon 1979 Willow Creek depth, velocity, and substrate data.

D Chinook salmon 1978 Willow Creek depth, velocity, and substrate data (Watsjold and Engel 1978).

E Chinook salmon Willow Creek 1978 depth and velocity data (Watsjold and Engel 1978); 1979 substrate data.

F Chinook salmon Willow Creek 1979 depth and velocity data; 1978 substrate data (Watsjold and Engel 1978).

-79-

using the Standard Calculation, predicted WUA at a discharge of 175 cfs (based on suitability criteria for pink salmon collected from different stream systems) ranged from 329 $\rm ft^2$ (0.51%) per 1000 feet to 25,361 $\rm ft^2$ (39.53%) per 1000 feet (Tables 13, 14).

Supplemental Biological, Water Quantity and Quality Study

Peters/Purches Creeks

Biological Data

One hundred twenty four Dolly Varden and 10 slimy sculpin (<u>Cottus</u> <u>cognatus</u>) were captured in Peters Creek. Eighty Dolly Varden and 15 slimy sculpin were captured in Purches Creek (Table 15).

Water Quantity

Flows ranged from 1 to 76 cfs on Peters Creek and 8 to 97 cfs on Purches Creek (Table 16).

Substrate

Substrate classes ranged from II to VII in Peters Creek and from III to VII in Purches Creek (Table 17).

Table 15. Fish trapping results, Peters and Purches Creeks, 1979.

Date	Index Area	No. of Traps	No. of Fish DV* SS*	Catch, DV*	Trap SS*
08/23	Peters II	20	33 5	1.65	0.25
08/24	Peters III	20	30 4	1.50	0.20
08/26	Purches II	20	35 9	1.75	0.45
08/27	Purches II	20	45 6	2.25	0.30
 09/09	Peters IV	20	43 0	 2.15	0.00
09/10	Peters IV	20	18 1	0.90	0.50

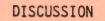
Table 16. Discharge measurements (Q) in cubic feet per second (cfs) Peters and Purches Creeks, 1979.

<u>Date</u>	Index Area	Map Location No.	Discharge (cfs)
08/23	Peters I	Q1	01
08/23	Peters I	Q2	43
08/24	Peters III	Q3	73
08/24	Peters III	Q 4	13
08/26·	Purches I	Q5	08
08/26	Purches I	Q6	32
08/27	Purches III	Q7	61
08/27	Peters III	Q8	76
08/27	Purches II	Q9	10
09/10	Purches IV	Q10	97

^{*}DV-Dolly Varden, SS-Slimy Sculpin.

Table 17. Range of predominant substrate classes observed in Peters and Purches Creeks, 1979.

PETERS CREEK INDEX AREA	SUBSTRATE CLASS RANGE	PURCHES CREEK INDEX AREA	SUBSTRATE CLASS RANGE
I	V - VII	I	V - VII
II	IV - VII -	II	III - VI
III	III - VI	III	III - VI


Water Quality

Water quality data were not collected because of instrument malfunction.

ADF&G/USGS Sites

Water Quantity and Quality

Water quantity and quality data collected in the spring, summer, and fall of 1979 are presented in Appendix B. Additional water quality data collected in the winter of 1979-80 and spring, summer, and fall 1980 will be included in the USGS publication: Water resources data for Alaska, water year 1980.

DISCUSSION

Instream Flow Study

The Willow/Deception Creeks Instream Flow Study constituted an initial "hands-on" experience at collecting and analyzing Alaskan instream flow data for the ADF&G and cooperating agencies, following Incremental Methodology procedures established by the IFG (1980a, b; Bovee 1980a; Bovee and Milhous 1978; Bovee and Cochnauer 1977; Trihey 1980). This demonstration project enabled the participants to develop the capability to perform this type of instream flow field data collection and analysis, identify the limitations of the methodology, develop suggestions for its improvement, and recommend a plan of study for determining instream flow values in Willow and Deception Creeks.*

Hydraulic Data Collection Limitations and Recommendations

Of the six individuals required to collect hydraulic data for this project, only two were actually employed by the ADF&G to perform the study. To compensate, volunteers were recruited from other ADF&G projects and from cooperating agencies. Scheduling necessary to accommodate changes in weather and to insure that one set of data was collected during each period of seasonal high, medium, and low flows often prevented

^{*}Additional recommendations and strategies for determining instream flow values are presented in the publications: A synthesis and evaluation of ADF&G fish and wildlife resources information for the Willow and Talkeetna sub-basins (Estes and Lehner-Welch 1980) and Opportunities to protect instream flows in Alaska (White 1981).

the same volunteers from returning to the project. As a result, substitutes had to be recruited, and trained in the field, while collecting data. This proved to be time consuming, and hampered efforts to insure quality control and minimize data gaps and/or errors. Another disadvantage was that a hydraulic engineer, familiar with instream flow investigations, was not assigned to the project. Without this technical input, it was difficult to determine whether site selection and related activities associated with hydraulic data collection were properly executed. These problems can be minimized in future studies if sufficient funding is secured to employ adequate numbers of full-time experienced personnel, including at least one biologist and hydraulic engineer.

As would be expected in a first-time study, problems and complications arose in the data reduction and computer analysis portions of the project. The following check list of procedures for field collection of hydraulic data is recommended to insure that future data will be suitable for analysis (Newcome 1980):

- All initial cross-section data for each transect should be collected with a rod and level;
- Sufficient elevation data should be collected between the water's edges and headpins to document the shape of the entire streambed;
- 3. Headpin elevations should be measured both on the top of each headpin and on the ground beside each headpin to document its-

vertical positioning and permit reinstallation in the event it is removed or disturbed at a later date;

- 4. Magnetic bearings should be recorded, and/or diagonal distances should be measured, between transects to facilitate scale drawings of the study sites;
- 5. Stationing should begin downstream (i.e. the downstream-most transect should be 0+00) to facilitate data reduction and coding in preparation for computer analysis with the IFG models;
- 6. Streambed elevations should be recorded from left bank to right bank looking upstream to facilitate data reduction and coding in preparation for computer analysis with the IFG models;
- Water surface elevation should be recorded before and after discharge is measured at a transect;
- 8. Distance from left bank headpin (LBHP) to right bank headpin (RBHP) should be measured at each transect each time velocities are measured. This measurement should be equal to (LBHP to left edge of water) + (top width of stream) + (RBHP to right edge of water) and should not change at different flows;

- 9. Transects over islands or gravel bars should be "dog-legged" to insure water surface elevations are equal on each side of the island;
- 10. Level loops should be clearly documented with station, backsight, height of instrument, foresight, and elevations in separate columns. There should be no question as to how each reading or calculation was obtained and the error of closure should be no greater than $(0.1 \text{ ft}) \times (\sqrt{\text{square miles}})$;
- 11. Crew members should read Appendixes A and B of the IFG field data collection procedures publication No. 5 (Bovee and Milhous 1978) as part of their pre-field training;
- 12. When unusual measurements or readings are recorded, they should be footnoted with an explanation of the circumstances to insure the data will not be mistaken as being in error;
- 13. At least one member of the field crew (preferably the leader) should perform all the exercises in the manual: Field data reduction and coding procedures for use with the IFG-2 and IFG-4 hydraulic simulation models (Trihey 1980);
- 14. Field data should be reconciled and reduced in the field to identify and correct data gaps and/or errors;
- 15. Half-inch margins should be left on all borders of field forms

to permit photocopying without loss of data resulting from distortion.

Point Specific Habitat Data Collection Limitations and Recommendations

Presently, limited information exists concerning the specific spawning, rearing, incubation, and passage streamflow requirements of culturally and economically important fish. These data are essential for wise land-use planning and development (Estes and Lehner-Welch 1980). Bell (1980), Bovee (1980 b), and Estes and Lehner-Welch (1980) recommend that habitat requirements for a particular life phase of a fish species should be determined by collecting and analyzing comprehensive stream-specific data in addition to reviewing all pertinent literature. Literature review alone is not usually adequate because data and findings cited for one area are not likely to fully or accurately represent another specific location. As a result, it is recommended that point specific data collected for a particular life phase of a particular fish species in a specific geographic location not be applied to another location unless careful analysis is completed to determine if such an application is valid.

Point specific data collection for this study was limited to the spawning phase of chinook salmon.* Developing an understanding of other chinook life phases and the life phases of other fish species in Willow and

^{*}Funding, personnel, and time constraints prevented the execution of the pink salmon spawning habitat portion of Objective 3 of the Instream Flow Study and Objective 4, an evaluation of chinook salmon rearing habitat.

Deception Creeks will require a considerable amount of work over all seasons of the year (Watsjold and Engel 1978). It is recommended that future instream flow studies assign at least two individuals to collect point specific field data for species and life phases of interest. It is also suggested that research be performed by a hydraulic engineer and fishery biologist to evaluate the various techniques for collecting point specific data. For example, the topic of whether to measure point specific water velocity at the mean depth of the water column as opposed to the actual depth of the fish should be addressed.

Computer Analysis

Five man-months were expended in familiarizing personnel with methods of IFG computer analysis and in analyzing the hydraulic data. Limitations of and recommendations for improving computer analysis are discussed below:

Limitations.

Because of their familiarity with and day to day use of their programs, the IFG has inadvertently underestimated the limitations of user groups who are inexperienced or use the models infrequently. As a result,

1. The IFG computer programs on the Boeing system require more experience than is provided by the IFG computer analysis

course, or require that users have access to a computer programmer familiar with the IFG programs on the Boeing system (Newcome 1980);

- 2. IFG computer analysis often requires the supplemental input of a hydraulic engineer to insure hydraulic output is valid.

 When field data are collected incorrectly or from complex field situations and cannot be readily analyzed, a hydraulic engineer is required to modify the data to develop stage, velocity, and depth relationships, calibrate the model, and interpret the output (Newcome 1980);
- 3. Some of the recommended IFG procedures, as documented in the draft version of the IFG computer manual (IFG 1980b), do not work on the Boeing system. These errors are being corrected as users notify the IFG, but the errors are very frustrating for both novice and experienced users (Newcome 1980; Amos 1981);
- 4. Although there are less expensive methods for performing some of the analytical computer operations on an interactive* basis, the IFG has not incorporated these procedures into their manuals (e.g. running the programs in the batch** mode at a

^{*}Interactive refers to computer programs which request immediate responses from the user resulting in a "dialogue" between the user and the program.

^{**}Batch refers to computer programs which contain all of the instructions for performing a job and are submitted to the computer to be run at a later time.

lower priority or entering data with the "Editor" (Newcome 1980); and

5. Examples presented in the sections of the IFG computer manual (IFG 1980b), illustrating how to weigh the advantages and disadvantages of various procedures, lack adequate documentation (Newcome 1980).

Recommendations

To minimize these problems,

- IFG publications should be revised to provide more detailed background information on the resources and training required to collect and analyze data;
- The IFG computer manual should be revised to include a variety of sample problems with an explanation of the iterative process for solving them. Examples of outputs, interpretations of results, and sample computing sessions should also be provided (Newcome 1980);
- 3. The IFG should thoroughly test its computer programs and procedures on all computer systems having the IFG software (Newcome 1980);
- 4. IFG computer courses should be oriented towards use of all

computer systems capable of using the IFG software (Newcome 1980); and

5. The IFG should develop procedures for improving its capability to communicate procedural changes to user groups (Newcome 1980; Amos 1981).

Biological, Water Quantity and Quality Data

Instream flow related data on water chemistry, stage, and supplemental biological conditions do not indicate the presence of any unusual conditions in the study area. Additional analysis of these data are beyond the scope of this study. Therefore, if additional funding can be secured to evaluate the biological, physical, and chemical relationships which are influenced by changes in disharge, it is recommended that:

- hydrographs illustrating average daily flows as a function of time be developed for the Willow and Deception Creeks study reaches;
- water temperature and quality data as a function of time be graphically illustrated;
- 3. graphics developed for (1) and (2) above be combined for the same locations to illustrate the relationships between discharge, water quality, stage, and temperature as a function of time;
- 4. fish species periodicity charts be combined with data from (3)

above to illustrate the relationships between the time of occurrence of each life history phase of each fish species present, and discharge, water quality, stage, and temperature; and

5. air temperature data be graphed and compared with water quality data from (2) above.

WUA Calculations

The hypothetical WUA calculations for the middle Willow Creek reach presented in this report demonstrate the variability which can result from applying habitat suitability data collected for different stocks of the same fish species at different locations and times to the same sets of hydraulic data. They demonstrate also that the use of a particular calculation procedure will influence the WUA output. This variability illustrates the complexity of data acquisition, analysis, and interpretation, and emphasizes the importance of both understanding how to select and interpret a particular calculation, as well as insuring that habitat suitability data external to the project apply to the system under question.

Supplemental Biological, Water Quantity and Quality Study

Biological, water quantity and quality data collected from the Peters/Purches Creeks and ADF&G/USGS sites do not indicate the presence of any unusual conditions in the study area. Analysis of these data is beyond the scope of this study.

CONCLUSIONS

CONCLUSIONS

Criticisms in this report are intended to be constructive. Overall, the authors believe the Incremental Methodology is the best approach available for determining instream flow requirements when sufficient resources to collect and analyze the required information are on hand. The IFG has done a commendable job in developing this methodology, in light of their present budgetary constraints and the large number of user groups requesting their assistance. Alaska and other states will continue to benefit from the perpetuation of the IFG as a national clearinghouse for state-of-the-art instream flow techniques and as a central information source for all instream flow related studies.

To insure that land-use activities are planned and implemented with minimal degradation to the fish and wildlife resources within the study area, the authors recommend that:

- 1. a follow-up comprehensive IFG Incremental Methodology instream flow study be conducted over a 2-year period to:
 - a) better define and/or identify seasonal life history habitat requirements of selected fish species in Willow and Deception Creeks; and
 - b) recommend and file for an instream flow reservation to maintain the existing fishery values; and
- 2. alternative instream flow data collection and analysis techniques

described by Ott and Tarbox 1977; Fraser 1975; Orsborn and Allman 1976; Stalnaker and Arnette 1976; Smith 1979; Tennant 1975; Orsborn and Watts 1980; and Orsborn 1981 be tested on Willow and Deception Creeks to evaluate their advantages and disadvantages as alternative approaches to the IFG Incremental Methodology approach for determining instream flows.

REFERENCES

REFERENCES

- AEIDC. 1980. Pink salmon spawning habitat suitability data. (Draft). Terror Lake Hydroelectric Facility. Instream Flow Studies File. Arctic Environment Information Data Center. Anchorage, Alaska.
- Amos, D. 1981. Personal communication. USFWS. Anchorage, Alaska.
- Bell, M. 1980. Personal communication. Fishery consultant. Seattle, Washington.
- Bovee, K.D. 1980a. A user's guide to the IFG incremental method. (Draft). USFWS. IFG. Ft. Collins, Colorado.
- _____. 1980b. Personal communication. IFG. Ft. Collins, Colorado.
- ______, and T. Cochnauer. 1977. Development and evaluation of weighted criteria, probability-of-use curves for instream flow assessments: fisheries. Instream Flow Information Paper No. 3. USFWS. Ft. Collins, Colorado.
- , and R. Milhous. 1978. Hydraulic simulation in instream flow studies: Theory and Techniques. Instream Flow information paper No. 5. Cooperative Instream Flow Service Group. FWS/OBS-78/33. Ft. Collins, Colorado.
- Buchanan, T.J., and W.P. Somers. 1973. Discharge measurements at gaging stations. Techniques of Water Resources Investigations of the United States Geological Survey. Book 3. Chapter A 8. Arlington, Virginia.
- Estes, C., and D. Lehner-Welch. 1980. A synthesis and evaluation of ADF&G fish and wildlife resources information for the Willow and Talkeetna sub-basins. ADF&G. Habitat Protection Division. Anchorage, Alaska.
- Fraser, J.C. 1975. Determining discharges of fluvial resources. FAO. Fisheries Technical Paper No. 143. Rome.
- Instream Flow Group (IFG). 1980a. The incremental approach to the study of instream flows. USFWS. W/IFG-80W31. Ft. Collins, Colorado.
- . 1980b. Users guide to the Physical Habitat Simulation Model (PHABSIM). (Draft). USFWS. IFG. Ft. Collins, Colorado.
- McCoy, G.A. 1978. Water resources of the new capital site a phase I progress report prepared for the Capital Site Planning Commission. USGS. Anchorage, Alaska.
- Mills, M.J. 1980. Statewide harvest study: July 1, 1980 June 30, 1980. ADF&G. Sport Fish Division. Vol. 21. Anchorage.

REFERENCES-continued

- . 1981. Personal communication. ADF&G. Sport Fish Division.
 Anchorage, Alaska.
- Newcome, N. 1980. Personal communication. ADF&G. Sport Fish Division. Anchorage, Alaska.
- Orsborn, J.F. 1980. Personal communication. Washington State University.

 Department of Civil and Environmental Engineering. Pullman, Washington.
- . 1981 Personal communication. Washington State University.

 Department of Civil and Environmental Engineering. Pullman, Washington.
- , and C.H. Allman. 1976. Instream flow needs. Volumes I and II.
 American Fisheries Society. Bethesda, Maryland.
- , and F.J. Watts. 1980. Hydraulics and hydrology for fisheries biologists. USFWS Fisheries Academy. Kearneysville, Virginia.
- Ott, A., and K. Tarbox. 1977. Instream flow, applicability or existing methodologies for Alaska waters. Prepared for the ADF&G and ADNR. Woodward and Clyde Consultants. Anchorage, Alaska.
- Scully, D., L.S. Leveen, and R.S. George. 1978. Surface water records of Cook Inlet Basin, Alaska through September 1975. USGS. Anchorage, Alaska.
- Smith, G.L. 1979. Proceedings: Workshop in instream flow habitat criteria and modeling. Colorado Water Resources Research Institute Information Series 40. Colorado State University. Ft. Collins, Colorado.
- Smoot, G.F., and C.E. Novak. 1977. Calibration and maintenance of vertical-axis type current meters. Techniques of Water Resources Investigations of the United States Geological Survey. Book 8. Chapter B2. Instrumentation. Arlington, Virginia.
- Spence, L.E. 1975. Guidelines for using the Water Surface Profile program to determine instream flow needs for aquatic life. Montana Dept. of Fish, Wildlife, and Parks. Helena, Montana.
- Stalnaker, C.B., and J.L. Arnette. 1976. Methodologies for the determination of stream resource flow requirements: an assessment. USFWS/OBS. and Utah State University. Logan, Utah.
- Tennant, D.L. 1975. Instream flow regimes for fish, wildlife, recreation, and related environmental resources. USFWS. Billings, Montana.
- Trihey, E.W. 1980. Field data reduction and coding procedures for use with the IFG-2 and IFG-4 hydraulic simulation models. USFWS. IFG. Ft. Collins, Colorado.

REFERENCES-continued

- USGS. 1977. National handbook of recommended methods for water-data acquisition. USGS Office of Water Data Coordination. Reston, Virginia.
- ____. 1979. Cooperative USGS and ADF&G agreement. Anchorage, Alaska.
- . 1980. Water resources data for Alaska. USGS Data Report AK-79-1. Anchorage, Alaska.
- _____. 1981. Water resources for Alaska. (Draft). USGS Data Report AK-80-1. Anchorage, Alaska.
- Wadman, R. 1979. Memorandum: Autoclaving salmon roe. ADF&G. Sport Fish Division. Anchorage, Alaska.
- Watsjold, D., and L. Engel. 1978. New capital city environmental assessment program phase I. Source Document 2. Fish and Wildlife Studies. ADF&G. Sport Fish Division. Palmer, Alaska.
- White, M.R. 1981. Opportunities to protect instream flows in Alaska. (Draft). USFWS. Office of Biological Services. Washington, D.C.

ACKNOWLEDGEMENTS

ACKNOWLEDGEMENTS

Many individuals representing several state and federal agencies provided support to this project. The authors wish to especially thank T.W. Trent, L.J. Heckart, R. Redick, D.A. Watsjold, L. Engel, M.J. Mills, R. Logan, R. Andrews, J. Clark, C. Yanagawa, D. Lehner-Welch, E. Huttenen, R. Cannon, T.A. Arminski, C. Reidner, A. Bingham (ADF&G); M.L. Harle, S. Mack, and D. Brown (ADNR); R. George, R. Brown, and G. Solin (USGS); D. Amos (USFWS); B. Petrie, APA (former Chief of the ADNR Water Management Section); W. Trihey and J. Baldridge (AEIDC); and J.F. Orsborn (Washington State University, Department of Civil and Environmental Engineering).

Special acknowlegement and appreciation are extended to N. Newcome (ADF&G) who dedicated many hours performing the computer analysis, the USDA Soil Conservation Service, most notably S. Powell, for providing the assistance which made this study possible, and the ADNR for funding a portion of the computer analysis.

APPENDIXES

Stream Peters Creek Index Area Peters Cr. I Date 8/22/79
Average Stream Width 30 Average Stream Depth 1
Tributaries Present Blues Creek plus several small serps (7Icfs) drain marshes
Dams and Obstructions Large boulders were present; w/no beaver dams
Immediate Shore Vegetation: overhanging willow ohrubs omoss. Edge
of water marked by abrupt drop from shore.
surrounding country Open alocial valley w/ hummocks of moss
and short 12" shrubs.
spawning Area Not suitable for salmon breause of large
Substrate SIZC (Class VII)
Discharge 43 cfs Map Location Anchorage 0-7 al Nolw36 BCD2
Pools and Shelter
a. size Pools ranged from 3-7' wide + 2'-3' deep.
b. Type Most pools formed in back of large boulders
obstruction the flow.
c. Frequency pool/riffle ratio: 110 - high stream bed
gradient
Bottom Type Large bouldersow/ rocks > 10" w/ some sand & grave!
Shade Mearly zero, w/ some given by slightly ova handry brush & large
Chemical Analysis - N/A
pH
Dissolved Oxygen
Temperature
Conductivity
· •

Stream Veters Creek Index Area Peter Cr. 11 Date 8/22-23/79
Average Stream Width 30' Average Stream Depth 1.0'
Tributaries Present twoof & acts plus Several small serps draining marshes
Dams and Obstructions Nodams on immediate creekalthough has some large rocks.
Immediate Shore Step shore with overhanging willow shrubs + moss + sectors
intermixed with growels a a few sand bars
surrounding country Large open valley w/ cotton wood + occasionally stands of spruce.
Numerous beaver ponds we associated bog areas
Spawning Area Large Substrate (710") w/ numerous boulders
reduces the amount of spawning rirea.
Discharge N/A Map Location
Pools and Shelter
a. size 3 to stream width in size - 1-3' indroth
b. Type Formed by large boulders in stream / bends in stream
c. Frequency Pool/sille sotio: 1/6
Bottom Type Large rocks (710"), & cobbles 3-10", w/sondsdaravels in pools
shade 25% of the stream was shaded by overhanging limbs o shrubs.
Chemical Analysis
pH 7.75
Dissolved Oxygen 10.75 mg/J
Temperature 9°C
Conductivity 24 which colom

Stream Veters Creek Index Area Peters Cr III Date 5/23/79
Average Stream Width 40A. Average Stream Depth 1.54.
Tributaries Present Seven Mile Creek & soucral small springs & scrops from marshes
Dams and Obstructions Notevidenton Peters Creeks other than a few boulders
Immediate Shore Lined by Willow Shrubs ovarious sedges +grasses w/ space stands
Gravel hars were evident w/ low water.
surrounding country Orops out of a glacial valley into a broad space
valley w/ numerous braver dams and marshes.
Spawning Area Grea Suitable for spawning w/a wide range of
substrate and riffle areas
Discharge 76 cfs Map Location anchorage D-8 20Noaw160cB2
Pools and Shelter
a. size pools no wider than channel & up to 4ft in depth
b. Type Formed by bends in the Stream and large rocks
a decreased gradients.
c. Frequency pool/ruffle ratio 50/50
Bottom Type ~ 70% cohhles (1-7") 20% sanda 10% 7"+
shade 20% of Stream shaded by overhanging spruce & shrubbery
Chemical Analysis
pH N/A
Dissolved Oxygen_
Temperature
Conductivity

Stream PETERS CREEK Index Area V Date 9/10/19
Average Stream Width 45 Sect Average Stream Depth 2 Cat
Tributaries Present A few very Small (4/cfs) seeps draining 6005
Dams and Obstructions None on main 5 team
Immediate Shore Frequent high banks and gravel bars due
to meandering of stream.
Surrounding Country Spruce and Coltenwood growing on moderatly
hilly terrain
Spawning Area large substrate our much of the area, - 1/19
providing little spawning area
Discharge 97.0 cfs Map Location 20NO2W19 DDD/
Pools and Shelter
a. Size 20-25 Feet wide and 3-4 feet deeD
b. Type pools formed at base of riffer or fall bohind large
rocks or at bends.
c. Frequency 20-30% pools
Bottom Type lange rocks 7-10" and boulders, some smaller substrate in slower area and pools.
Shade Very little slower areas and pools.
Chemical Analysis N/
pH
Dissolved Oxygen
Temperature
Conductivity

Stream Myrches (reek Index Area Myrches (reek I Date 8/26/79
Average Stream Width 25 ft. Average Stream Depth 1.3 ft.
Tributaries Present Blue berry Creek, numerous smallspring & seeps
Dams and Obstructions Large boulders
Immediate Shore Large rocks, dense Shrubbery W/moss + sedges
surrounding country wide glacial valley wivery few sprace. Bons wibleberry
patches abollies a grasses.
Spawning Area Would not be avery good spawning area because of
the large Substrate SIZE and Obstructing boulders.
Discharge 40 cfs. Map Location 9n choroge D-7 20NO/W1688A2
Pools and Shelter
a. size 5-10ft in width, 1-3ft in depth
b. Type Formed by large boulders a at the end of a few riffles
- and the first of the second process of the
c. Frequency pool/reffle ratio 1/10
Bottom Type Mostly large rocks w/some smaller cobble(1-5"), moss, asomesand
shade 20% by overhanging shrubben
Chemical Analysis
pH N/A
Dissolved Oxygen
Temperature
Conductivity
·

Stream Purches CREEK Index Area III Date 8/27/79
Average Stream Width 40 Cect Average Stream Depth 1.5 feet
Tributaries Present no large tribs, several small creeks draining manshes
Dams and Obstructions None
Immediate Shore Some high cut banks (3-4 ft) and some gravel bans
other wise Fairly abrupt short banks with short overhanging brush
Surrounding Country Sprice woods and occasional grassy field a
blueberry patches, Area Fairly Flat
Spawning Area Possible spawning area in lower part
Discharge 60 cfs Map Location Anch D-8 20NO2W16DCB2
Pools and Shelter
a. Size 10' to Stean with 2-3 ft deep
b. Type nostly Comed by bends in creek some behind
boulders
c. Frequency $\sim 50\%$
Bottom Type Rocks 3-7" with sand & gravel in between
Shade partial shade in wooded areas, there areas comprise about
Chemical Analysis NIA
pH_
Dissolved Oxygen
Temperature
Conductivity

Stream Purches Creek Index Area II Date 8/26/79
Average Stream Width 30 Feet Average Stream Depth 1.0 ft
Tributaries Present Many Small tributaries, 1 lange (10cfs) tributary
Dams and Obstructions None on main stream, some on large tributary
Immediate Shore willow shrubs, occasional firs, veluet willows and
serlages a moss a grasses
Surrounding Country Glacial valley with spruce and willow thickets
some bogs present
Spawning Area area has suitable depth, substrate sruffles for
a spawning area.
Discharge NA Map Location
Pools and Shelter
a. Size no wider than average Stream width but are mainly
6-10' in width o 1-2' indepth
b. Type formed by bends and large boulders and
over hanging banks
c. Frequency 40% 0001- 60% rifile
Bottom Type Mostly cabble 1-7", Some larger rocks & boulders present wisand
Shade 80% open, some shade from overhanging spruce & debris
Chemical Analysis
pHPH
Dissolved Oxygen
Temperature
Conductivity

Appendix B.

164

SOUTH-CENTRAL ALASKA

15294005 WILLOW CREEK NEAR WILLOW

LOCATION.--Lat 61°46'49", long 149°52'44", in NE\SE\ sec.31, T.20 N., R.3 W., Matanuska-Susitna Borough, Hydrologic Unit 19050002, on left bank 0.7 mi (1.1 km) downstream from unnamed tributary, 5.7 mi (9.2 km) northeast of Willow, and 6.9 mi (11.1 km) upstream from Deception Creek.

DRAINAGE AREA. -- 166 mi2 (430 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- June 1978 to current year.

GAGE. -- Water-stage recorder. Altitude of gage is 350 ft (107 m), from topographic map.

REMARKS .- - Water-discharge records good except those for Nov. 9 to Apr. 21, which are poor.

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 3,720 ft 3 /s (105 m 3 /s) May 28, 1979, gage height, 7.82 ft (2.384 m); minimum daily, about 50 ft 3 /s (1.4 m 3 /s) Nov. 22-25, 1978.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 3,720 ft³/s (105 m³/s) May 28, gage height, 7.82 ft (2.384 m); minimum daily, about 50 ft³/s (1.4 m³/s) Nov. 22-25.

DISCHARGE. IN CUBIC FEET PER SECOND. WATER YEAR OCTORER 1978 TO SEPTEMBER 1979 MEAN VALUES

SAY		ОСТ	40	v	DE	C	MAL	FE	7	MAR		APR	MAY	NUL	ال	H.	AUG	SEP
1		214	18	37	7	5	90	75	3	70		70	382	2530	86	4	800	555
Ž		260		53	7	5	90	79	3	70		66	434	2560	92	0	779	210
3		235	19		8		90	76		68		66	474	2020	102		682	197
4		218	Î		. 9		90	76		68		55	484	1760			610	196
		556		90	10	-	90	. 76		68		64	540	.1860			570	190
5		620	1,	70	10	•	. 49	,,	•	0.7		. 04	. 540	11000	176	·	2710	179
6 %		533		10	- 11		90	76		69		64	595	2040			620	185
7		224		58	12		90 -	76		68		64	626	1540			560	180
. 8		.531		30 .	13		. 90	. 76		68		. 64	676	1470	132		2.7.7	. 179
9		228	14	90	13	5	85	76	`	68		64	595	1590	117	70	488	176
10		510	ŧ	35	13		. 85	76	5	68		64	506	1740	110	ŋ.	448	173
11		244		75	13	2	85	76		66		64	535	1680	107	on.	421	172
15.		591		70	13		85	76		66		64	560	1480	125		393	170
13		272		55	13		85	76		66		66	642	1320			368	172
14		246		50 50	13		85	74				66	724	1150	110		374	173
										56								
15		216	•	54	13	U	80	74	•	66		- 66	786	1100	176	913	378	167
16		216		56	12		80	74		66		66	848	1080	153		343	166
17		235	9	54	13	0	80	. 74	•	69		68	832	1000	151	.0	337	503
18		374	9	54	12)	80.	74	•	68		72	856	960	128	0	327	484
1.9	100	283		52 ~	- 12)	80	74		68		90	888	928	116		300	510
20	1.	255		52	12		80	74	Value of the	.70		. 90	920	1000	9.6	14	294	912
					. 3.									•				
21		239		52	11	5	80	77	2	75		110	1020	1020	107	0	294	11.00
25		231		50:	11	0 .	80	72		90		113	1110	984	99	15	267	758
23		185		50	11		8.0	72		100		116	1140	1040	As		255	676
24		239		50	10		80	72		100		129	1240	1070	84		244	. 700
25		520		50	10		AO	72		100		142	1390	1530	124		239	570
			•	.,,,		,,				10.,			15.0					
26		515		54	10		80	70		. 95		157	1850	1980			233	502
27		203		65	10		80	70	3	99		160	5310	1410		6	226	461
28		189		70	. 9		80	-71	1	85		180	2700	1160	75	58	. 255	456
29		201		74	9	5	80		-	82		231	2700	1010	73	30	228	409
30		196.		74		5.	78		• •	78		294	2180	880	68	18	255	378
31		179			9	5	78		•	75			2160		92	20	233	
TOTAL		7203	27	3 <u>4</u>	341	,	2586	2080		7324		2985	32693	42892	3577	70	12348	11047
MEAN		232	90.		11		83.4	74.		75.0		99.5	1055	1430	119		398	358
												294					. 800	
MAX		374	. 19		13		90	75		100			2700	2560	214			1100
MIN		179		50	. 7		. 78	7(65		64	382	880	66		555	166
CESM		1.40		55	-6		-50	• 40		• 45		-60	6.36	8-61	6.9		2.40	2.22
IN.		1.61		51	. 7		•58	.47		.52		.67	7.33	9.61	8.0		2.77	2.48
4C-FT	1	4290	54	10	677	7)	5130	4130	1 4	610		5920	64850	85080	7095	10	24490	S1910
HTP Y	. 197	9 10	TAL 19	5806	7 ME	an 4	33	MAX	2700	MŤN	50		CESM 2.61	IN 35	.42 AC	-FT	313500	

NOTE. -- No gage-height record Nov. 16 to Apr. 3.

ADF&G/USGS Site A (cont.)

SOUTH-CENTRAL ALASKA

15294005 WILLOW CREEK NEAR WILLOW--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water year 1979.

PERIOD OF DAILY RECORD. -- WATER TEMPERATURES: October 1978, April to September 1979.

INSTRUMENTATION .-- Temperature recorder since Oct. 5, 1978

REMARKS. -- No record Oct. 10 to Apr. 4 and June 14-21 due to recorder or clock malfunction.

EXTREMES FOR CURRENT YEAR.-WATER TEMPERATURES: Maximum, 15.5°C July 3; minimum, 0.0°C most days during winter period.

WATED	CHALLETY	DATA.	MATED VEA	D OCTORED	1978	TΩ	SEPTEMBED	1070

				WAIER	SPE-					TEAH			COL	_I RM+	COL	_I-	ST	DEO-		٠.	HARD-	
			STRE	¥+	CON-	_					OXYO		TO	MED.	FE(7 AL .	FE: KF	4GAD	HAF	S	NESS.	-
DATE	T	IME .	TANE(ous (MICE MHOS	0-	1 1 1 1	H TS)	AT	PER- URE G C)	SOL	VED S/L1	(COL PI 100	R	(COL	-MF .S./ ML)	P	LS. ER ML)	49	5/L 5031	PONATE (4G/L CACO3	
0CT 05	. 1	700		238		75		6.7		5.0	1	2.6	:	к6		к6		<1		23		3
						•						-			- *							
	CAL	CIUM	MAGI SIL		.001L	IM's	POT SI		BIC	A-0-			SULI	FATE		_0- 0F.•		UO→ DE•	SILI	CA.	SOLIDS SUM OF CONSTI	
	(M)	VED	(MG	/ED S	DIS- OLVE (MG/	D L	SOL (MG	/L	(M	Δ'S	(MC	ITF 5/L	(M	.VED	CHO	_VED . 3/L	S01	IS− LVED G/L	(M) A9	VED S/L	TUENTS DIS- SOLVE	D
DATE	AS	CAI	AS I	4G)	AS N	IA }	AS	К)	HC	03)	45 (: 1803	AS S	5041	4.5	CL)	AS	F)	510	121	(MG/L)
05	•	7.0	1	1.4	4	.4		.7		25		٥		2.8		6.9		· •u		7.8	4	4
	•	NIT	-0a	NITR GEN		MIT	₽ ∩⇒		TRO-		TRO-		TRO- EN.		TRO-		TRO-	GEN.	TRO-			
			N.	NOZ+N DIS	03 - FD	GE AMMO TOT	N. NIA	AMM D	ONIA	G OPG	EN. ANIC	026 0	ANIC	MON	IA + ANIC	÷ SU	ORG. SP.	HOM.	IA + ANIC	G	TRO- EN. TAL	
	DATE	(MG	/L	(MG/	Ļ	(MG	/L	(4		(M	G/L N)	(M		(M		{ M	G/L N)	(M({ M	G/L N)	
	05		.07		0.7	- 3	.00%	7.			.29		•28		.29	: 1.	.01	s	.28	. :	•36	٠,.
		GE	PO-	PHOS		PHOR PHOR	US.	TO	IUM. ITAL COV-	Τņ	MIUM TAL COV-	MI TO	TAL	COP!	TAL	TO	ON. TAL	SI PEI	DN. US- NOED		ON. IS-	
	DATE		VED	TOTA	L	SOL (MG	VED /L	ER (U	ARLE IG/L BAI	ER (()	ARLE G/L CD)	(II	ABLE G/L	(B)	4BLE G/L CU)	EP (U	ABLE G/L FE)	ER/	ARLE S/L FF)	50 (U	LVED G/L FE)	
	05	٠	•35	•	00		•0ņ		0		0				. 3		140		40		Ing	
							٠.															
				MANG NESE TOTA RECO ERAR	L V-	NES SU	S= 080	ME D	NGA- SE. IS- LVED	TO PE	CURY TAL COV-	SE NT	LE- UM. TAL	TO:	VER. TAL COV-	TO RE	NC. TAL COV-	ME)[- NT.	ME DI	DI- NT S- RGF. S-	
	DATE	(00		(UG/	L	(UG		(1)	G/L MN)	ŧυ	GZL HG)	(U	G/L SE)	(U	G/L AG)	(U	G/L ZN)	PE	NDED		NDED	
	05		2		0		n		9.		.0		0		0		. 10		?		1.3	

K MON-IDEAL COLONY COUNT

Appendix B.

ADF&G/USGS Site A (cont.)

166

SOUTH-CENTRAL ALASKA

15294005 WILLOW CREEK NEAR WILLOW--Continued

TEMPERATURE (DEG. C) OF WATER, OCTOBER 1978

DAY	MAX	MIN	DAY	MAX MIN
6	5.0	4.5	8	5.0 4.5
7	4.5	4.0	9	5.0 4.0

TEMPERATURE (DEG. C) OF WATER, APRIL TO SEPTEMBER 1979

1000					,							
DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	HAX	MIN	MAX	MIN
	APRIL		MAY		ازال	4F	Ju	LY	AtlG	UST	SEPTEMPER	
l 2			1.5	.0 .5	9.5 7.1 7.5	4.0	13.5 14.5 15.5	7.0 8.0 8.5	13.5 14.5 15.0	9.5 10.0 10.0	10.5 10.5 10.0	7.0 7.0 9.0
3 4 5	1.0		1.5 3.0 2.5	1.0	9.0 9.0	3.0 4.0 4.0	15.0	9.0 8.0	15.0 13.5	9.5 10.5	10.0	7.0 7.5
6 7 8 9 10	.5 1.0 1.5 1.5	.0 .5 .5	3.0 4.5 4.5 3.5 5.0	1.5 1.5 1.5 1.5	7.0 7.5 8.5 11.0 9.5	5.0 4.5 5.0 4.5 5.0	8.0 10.5 10.5 11.5 13.5	7.0 7.0 7.0 8.0 7.0	12.0 11.5 13.0 12.5 12.0	10.5 10.0 10.0 10.0 10.0	10.0 10.5 10.5 11.0 11.0	7.0 7.5 9.0 7.5 10.0
11 12 13 14 15	1.5 1.5 1.0 1.0	.0 .0 .0	4.5 5.0 6.5 6.0 7.0	2.5 2.0 2.0 2.0	9.5 9.5 7.5	6.0 4.5 5.5	13.5 12.5 11.5 11.5 9.5	9.0 9.0 8.5 8.5 8.0	12.5 13.5 12.5 12.0 11.0	10.0 10.5 10.0 10.5 10.0	10.5 10.5 10.5 10.5 10.0	8.0 9.0 9.5 8.5
16 17 18 19 20	2.0 2.0 1.5 2.0 1.5	.0 .5 1.0 .5	6+0: 7+0 6+5 6+0 7+0	2.0 2.0 2.0 2.5 2.0			10.0 14.0 12.5 12.5 13.0	8.0 9.0 9.0 9.0 8.5	11.0 12.5 12.5 12.5 12.5	9.5 10.0 10.0 11.0 10.5	9.5 9.5 8.5 9.0 8.0	7.5 9.5 7.5 7.0 7.0
21 22 23 24 25	1.5 2.0 2.0 1.5	•5 •5 •0 •0	7.5 7.0 6.0 7.5 8.5	2.5 2.5 3.0 3.0	13.5 13.5 11.0 9.5	6.9 6.5 6.5 6.5	13.0 11.5 11.5 11.0	1040 9.0 8.5 9.5 9.5	13.0 14.0 15.0 15.0	8.5 9.5 11.0 11.0	7.5 7.0 7.5 7.5 6.5	6.5 6.0 6.0 5.0
26 27: 28 29 30 31	1.0 2.0 2.0 1.5 2.0	.0 .0 .0	9.0 9.0 9.0 6.5 6.5 8.0	3.0 2.5 3.0 3.0 3.5 3.5	7.0 7.5 8.5 10.0 12.5	5.5 6.0 6.0 6.0	12.0 13.0 13.0 13.0 13.0	7.5 8.5 9.0 9.5 10.5 9.5	14.0 13.5 13.5 11.5 10.5	11.0 11.0 11.0 9.0 7.5 8.0	6.0 7.0 5.5 6.5	4.5 5.0 5.0 3.5 3.5
MONTH	2.0	.0	9.0	•0	13.5	3.0	15.5	7.0	15.0	7.5	11.0	3.5
YEAR	15.5	• 0			* * * * * * * * * * * * * * * * * * * *	•						٠

362

ANALYSES OF SAMPLES COLLECTED AT WATER-QUALITY PARTIAL-RECORD STATIONS

SOUTH-CENTRAL ALASKA--Continued

*15294012 - WILLOW C AT PARKS HWY NR WILLOW AK

WATER QUALITY DATA+ WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

•			SPE-				COLI-	STREP-		•
		*	CIFIC		4		FORM.	TOCOCCI		HARD-
		STREAM-					FECAL.		HARD-	NESS.
		FLOW.	DUCT-		TEMPEN-		0.7	XF AGAR	NESS	NONCAR-
				PH:						
		INSTAN-			ATURE.		UM-MF	COLS.	(MG/L	BONATE
	TIME	TANEOUS			AIR	ATURE	(COLS./	PER	AS	(MG/L
DATE		(CF5)	4H05}	(UNITS)	(DEG C)	(DEG C)	100 ML;	100 ML)	CACO3)	CACO3)
JUL										
24	1850	1040	54	6.4	15.0	11.5	53	K16	20	. 4
		•								
								•	•.*	
		MAGNE-		POTAS-				CHLO-		SILICA.
	CALCIUM	SIUM	SOD TUM.	SIUM.	RICAR-		SULFATE	PIDE.	910E+	DIS-
	DIS-	015-	015-	015-	BONATE		015-	DIS-	DIS-	SOLVED
	SOLVED	SOLVED	SOLVED	SOLVED	(MG/L	PONATE	SOLVED	SOLVED	SOLVED	(MG/L
	(MG/L	(MG/L	(MG/L	(MG/L	AS	(MG/L	(MG/L	(MG/L	(HG/L	AS
DATE	AS. CAI	AS MG)	AS NA)	AS XI	HC031	AS C03)	AS 504)	AS CL)	AS F)	5102)
			,							
JUL				•			. •			
24	6.1	1.1	2.8	.4	19	0:	1.9	4+8	.0	6.9
							_			
	SOLIDS.	SOLIDS.		MITRO-			NITRO-			
	residue	SUM OF	NITRO-	GEN.		NITRO-	GEN+AM-			PH05-
	DEL TA	CONSTI-	GEN+	EDM+SON	GEN.	GEN.	MONIA +	NITRO-	PH05-	PHORUS+
	neg. C	TUENTS.	K0N+20N	015-	AMMONTA	ORGANIC	ORGANIC	GEN.	PHORUS.	DIS-
	OIS-	DIS-	TOTAL	SOLVED	TOTAL	TOTAL	TOTAL	JATOT	TOTAL	SOLVED
	SOLVED	らりしゃそり	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L
DATE	(MG/L)	(MG/L)	AS N)	45 N)	AS NI	AS NI	AS N)	AS NI	AS P)	. 45 P)
	•									
JUL										
74	38	33	.11	.13	-01	-12	-13	.24	-01	.41
			•							
-				****			****			
				CHRO-			INON.			MANGA-
		HARTUM.		HIUM.	COPPEP.	TRON.	SUS-		LEAD.	NESE.
		TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	PENDED		TOTAL	TOTAL
	ARSENIC	RECOV-		RECOV-	PECOV-	OFCOV-	RECOV-	DIS→	RECOV-	BECOV-
	てのてへし	EPABLE		EPABLE	EPARLE	EPABLE	ERABLE	SOLVED		FPABLE
	(UG/L	(UG/L		(UG/L	しいらくし	(UG/L		(UG/L	(UG/L	(UG/L
DATE	45 451	45 BA)	AS COL	45 CRT	AS CU)	AS FE)	AS FE)	AS FE)	45 PR)	. AS HNI .
	e ** :									
JUL		•				_				
24	2	Q	1	0	6-5	260	160	100	14	50
		• .								
				•			•	•		
			•							_
		NGA-					_		5.50	
•			NGA- MERC		STLY				MEN	
_				AL SEL				ระก		
				OV- NEU				IDE MEN		
				SLE TOT				AL SUS		
		3/L (U		AL (UG				IL PEN		DED
34	TE AS	HN) AS	HN) AS	HG) AS	SE) AS	AG) AS	ZN1 AS	CN) (46	/L) (T/0	AY)
10 ra									•	
JUL			30		•	•	60	.00		17
. <9	•••	0		•1	0	0	90	éna ::	-6	1.6
		6119461	51372600 -	CAPPS C	NR TYONER	AK				• .
							.•			•
			•	•						

OATE	TIME	STOEAM- FLOW+ INSTAN- TANEOUS (CFS)	TEDI- MENT. SUS- PENDED (MG/L)	SEDI- MENT DIS- CHARGE. SUS- PENDED (T/DAY)
0CT 16	1300	31	16	1.3

K NON-IDEAL COLONY COUNT
* LOW-FLOW PARTIAL-RECORD STATION

SOUTH-CENTRAL ALASKA

15294010 DECEPTION CREEK NEAR WILLOW

LOCATION. --Lat 61°44'52", long 149°55'59", in NE\SE's sec.11, T.19 N., R.4 W., Matanuska-Susitna Borough, Hydrologic Unit 19050002, on right bank 0.5 mi (0.8 km) downstream from unnamed tributary, 5.4 mi (5.5 km) east of Willow, and 5.0 mi (8.0 km) upstream from mouth.

DRAINAGE AREA. -- 48.0 mi2 (124.5 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- May 1978 to current year.

GAGE. -- Water-stage recorder. Altitude of gage is 250 ft (76 m), from topographic map.

REMARKS. -- Records good except those for period of no gage-height record, Feb. 9 to Mar. 28, which are poor.

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 553 ft³/s (15.7 m³/s) May 9, 1979, gage height, 6.22 ft (1.896 m); minimum, 14 ft³/s (0.40 m³/s) Sept. 10, 1979, gage height, 3.52 ft (1.073 m).

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 553 ft 3 /s (15.7 m 3 /s) May 9, gage height, 6.22 ft (1.896 m); minimum, 14 ft 3 /s (0.40 m 3 /s) Sept. 10, gage height, 3.52 ft (1.073 m).

DISCHARGE. IN CUBIC FEET PER SECOND. WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979 MEAN VALUES

			•										
DAY	0	CT .	NOV	DEC	JAN	FÉR	MAR	APR	HAY	NUL	JUL	AUG	SEP
1		27	34	22	19	17	16	40	360	100	76	76	22
ż		62	. 35	24	19	17		41	410	95	62	69	50
3		52	35	27	19:	17		42	430	90	50	55	19
4		40	33	29	18	17	16	42	450	86	48	48	19
5		38	32	30	18	17	16	42	440	84	129	60	17
6		37	31.	31	18	16	16	. 43	440	80	155	. 70	16
7		35	30	31	18	16	16	43	450	75	145	- 55	16
А		40	28	30	18	16	16	44	494.	70	95	58	16
9		40	26	30	18	16	16	44	501	: 68	76	54	15
10.		37	24	30	18	16	15	46	359	54	64	48	14
11		56	22	30 -	18	16	15	48	347	60	53	45	15
1?		56	50	29	18	16	15	. 48	359	58	55	42	15
13		27	19	29	18	16	. 15	47	361	55	. 84	40	16
. 14	1	07	17	29	17	16	15	. 47	368	71	78	42	19
15		71	17	28	17	16	15	47	385	56	310	50	19
16		52	16	27	17	16	15	47	354	50	288	. 45	,SS
17		54 '	16	27	17	16	15	48	326	50	199	39	34
18		15	16	. 26	17	16	15	52	292	46	290	35	63
19		84	15	26	17	16	15	54	274	44	234	32	70
Su		64	15	25	17	16	. 17	58	268	60	145	55	138
21		53	15	24	17	16	20	64	. 228		106	19	244
55		50	15	55	17	16	40	70	215	.53	116	26	146
23		48	- 15	55	17	16	50	78	219	42	195	24	92
74		48	15	21	17	.16	52	88	242	36	89	55	116
25 .		46	15	21	17	16	50	100	203	65	217	20	114
26		44	17	21	17	. 16	. 48	120	193	-338	. 191	20	.76
27		40	19	20	17	16	46	150	176	285	114	19	. 62
29		36.	- 50	20	17	16	43	180	. 167	209	86	19	73
29		39	20	50	17		41	230	150	169	70	. 21	80
. 30		39	. 21	50	17		40	300	130	108	65	29	63
31		33		19	. 17		40		110		-64	26	
TOTAL		80	653	790	543	453	781	2303	9701	2733	3853	1230	1651
MEAN		•4	21.8	25.5	17.5	16.2	25.2	76.8	313	91.1	124	39.7	55.0
MAX		66	35	31	19	17		300	501	* 338	310	76	244
MIN		27	15	19	17	16	15	40	110	36	48	19	14
CFSM:		20	•45	-53	.37	• 34	•53	1.60	6.52	1.90	2.58	-83	1.15
IN.		38	.51	.61	.42	.35	-61	1.78	7.52	2.12	2.99	.95	1.28
AC-FT	35	30	1300	1570	1080	AGG	1550	4570	19240	5420	7640	2440	3270
WTR YR	1979	TOTAL	26471	MEAN 72	.5 1	MAX 501	MIN 14	CFSM	1,51	IN 20.51	AC-FT	52510	

ADF&G/USGS Site C (cont.)

SOUTH-CENTRAL ALASKA

15294010 DECEPTION CREEK NEAR WILLOW--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- October 1978 to September 1979.

PERIOD OF DAILY RECORD. -- WATER TEMPERATURES: October 1978, May to September 1979.

INSTRUMENTATION. -- Temperature recorder-since October 1, 1978.

REMARKS.--No record October 23 to May 6 and August 1-8, due to recorder malfunction. Records represent water temperature at sensor within 0.5°C.

EXTREMES FOR CURRENT YEAR.-WATER TEMPERATURES: Maximum, 17.0°C July 3; minimum, 0.0°C on many days during winter period.

WATER QUALITY DATA. WATER YEAR OCTORER 1978 TO SEPTEMBER 1979

TIME TANEOUS (MICRO- AIR AT	OXYGEN. PEP- DIS- (URE SOLVED	COLI- FORM. FORM. TOTAL, FECAL. IMMED. 0.7 COLS. UM-MF PER (COLS./ 00 ML) 100 ML)	PER AS	S NONCAR-
OCT 05 1750 40 125 6.8	4.5 12.1	к10 кя	K2	36 3
JUL 24 0815 81 85 7.2 14.0	11.0 19.2	120	K13	26. 0
MAGNE- POTAS- CALCIUM SIUM» SODIUM» SIUM» BICAR- DIS- DIS- DIS- DIS- BONATE CA SOLVED SOLVED SOLVED SOLVED (MG/L RON (MG/L (MG/L (MG/L (MG/L AS (M	SULFATE R- DIS- ATF SOLVED G/L (MG/L	CHLO- FLUO- RIDE+ RIDE+ DIS- DIS- SOLVED SOLVED (MG/L (MG/L AS CL) AS F)	MGZL DI AS SOL	DUE SUM OF
OCT 05 11 2.1 10 1.0 40	0 2.3	18 .1	11	80 76
JUL 24 7.9 1.5 6.5 .7 32	n 5.1	7.2 .0	10	63 55
NITHO- NITRO- NITRO- NITRO- GEN. NO2-NO3 GEN. NO2-NO3 GEN. AMMONIA GEN. ORG NO2-NO3 DIS- AMMONIA DIS- ORGANIC DITOTAL SOLVED TOTAL SOLVED TOTAL SOLVED TOTAL (MG/L	IRO- NITRO- EN. GEN.AM- G ANIC MONIA - M IS- OPGANIC O VED TOTAL 5/L (MG/L N) 45 N) .27 .2731 IRON. SUS- IRONL PENDE! PECOV- RECOV	NITRO- EN-4M- ONIA + NITRO- RGANIC GEN- DIS- TOTAL (MG/L AS N) AS N) -30 .32 35 D IRON- TOT - DIS- REC	MANGA- OL MANGA- OL MESE- AL TOTAL OV- RECOV-	ALUM- INUM- TOTAL TOTAL TOTAL TOTAL PECOV- VED ERABLE (UG/L P) AS AL) O1 90 MANGA- NESE- SUS- PENOFO
TOTAL FRABLE ERABLE ERABLE EPABLE (UG/L (UG/L (UG/L (UG/L (UG/L DATE AS AS) AS BA) AS CD) AS CP) AS CU) OCT	ERABLE ERABLI (UG/L (UG/L AS FE) AS FE	CUGZE CUG		RECOV. (UG/L AS MN)
05	340	- 210	0	· .== ·, ·
24 1 0 1 0 13	380 19	0 196	15 20	n
MANGA- "FROURY NICKEL" SILVER, NESF. TOTAL TOTAL SFLE- TOTAL DIS- RECOV- RECOV- NIUM, RECOV- SOLVED ERABLE FRABLE TOTAL FRABLE (UG/L	ZINC. CARBON TOTAL ORGANI RECOV- DIS- ERABLE SOLVED UJGZL - (MGZL AS ZN) AS C)	C SUS- PENDED CYAN TOTAL TOT LYGZL (MG	AL 5115-	
05 16 .0 1 0 0	n 4.	7 1.0	•	3.2
05 10 .0 1 0 0	30 -	7 1.0	3	.32

Appendix B

ADF&G/USGS Site C (cont.)

•		* :		15294010		I-CENTRAL AI I CREEK NEAF	ASKA WILLOWCo	ntinued			169
				TEMPER	ATURE (DEG.	C) OF WATE	R, OCTOBER	1978			
DAY.	MAX		MIN.		DAY	MAX	MIN		DAY	MAX	MIN
 1 2 3 4 5 6 7 8	4.5 5.0 5.0 4.0 4.5 5.0 5.0		4.0 4.5 4.0 3.5 4.0 4.0 4.5 5.0		9 10 11 12 13 14	\$.0 \$.0 4.5 4.0 3.5 3.5	5.0 4.0 4.0 3.5 3.5 3.0		16 17 18 19 20 21	2.5 3.0 3.5 3.5 3.5 2.0 2.0	1.5 2.5 3.0 3.5 2.0 2.0

TEMPERATURE (DEG. C) OF WATER, MAY TO SEPTEMBER 1979

DAY	MAX MIN	MAX	MIN M	AX MIN	MAX	MIN	MAX	MIN	мах	MIN
					1	_			CEB	TEMBER
	APRIL	мач		JUNE		JULY	AUG	SUST	SEP	1 CMBEK
1	•		10	.5 9.5	15.0	10.5			10.5	8.0
ż				.5 9.5	16.0	11.0			10.0	7.5
3 .	and the second second		10	8.0	17.0	12.0			9.5	8.0
4.				.0 9.5		13.0	****		10.0	7.0
5			12	9.5	14.0	12.5			10.0	. 7.0
6			12	.0 10.5	12.5	12.0			9.5	7.0
7		3.0		.5 9.5	13.5				9.5	7.0
8.		2.0	1.0 11	.0 9.5	14.0	11.5			10.0	7.5
9		2.5	1.5 12		14.5		14.0	12.0	10.0	7.0
10		3.0	1.5 12	10.0	15.5	11.5	13.0	12.0	10.5	.3.0
11		3.5	2.0 11	.5 10.0	16.0	13.5	13.0	11.5	10.0	8.0
îż		3.5		.5 9.0	15.5	13.0	14.0	12.0	9.5	8.0
13		4.5	2.0 11	.5 9.5	13.5	12.0	13.0	11.5	9.5	8.5
14		5.0		.0 8.5	13.5	12.0	13.0	12.0	10.0	9.0
15		6.0	3.0 11	.0 9.0	12.0	11.5	12.0	11.5	10.0	9.0
16		5.5		.0 9.5	12.0.	11.5	12.0	11.0	9.5	8.0
17		5.0		.0 9.5	14.0		13.0	11.0	9.5	9.0
18			3.5 11		12.5		12.5	11.0	9.5	9.0
19		6.0		.5 10.0	14.0		12.5	11.0	9.5	8.5
50		6.0	3.5	10.0	15.0	11.5	12.5	11.0	9.5	9.0
21		7.0	4.0 13	.0 9.5	14.0	12.5	12.5	9.5	9.0	8.5
55		7.0	5.0 14	.5 10.0	12.5	11.5	12.5	9.5	9.0	8.0
23	•	7.0		.5 11.0	12.5	12.0	13.5	10.0	9.0	8.0
24 .				11.0	12.5		13.5	10.0	8.5	9.0
25		9.0	5.5 11	.5 10.5	12.0	11.5	13.0	10.0	A•5	7.0
26	•	9.5	6.5 10	.5 10.0	12.5	10.5	13.0	10.0	7.5	6.5
27		10.5	7.0 10	9.0	13.0		12.5	10.0	7.0	7.0
28		11.5		9.0	13.5	10.0	12.5	10.5	7.5	7.0
. 29		11.0		.5 9.5	13.0	10.5	11.5	10.0	7.5	5.5
30	•	10.5		9.5	13.0	11.0	11.0	a.5	6.5	. 5.0
31	•	10.5	8.0 -		12.5	11.0	11.0	9.0		
HONTH		11.5	1.0 14	.5 8.0	17.0	10.0	14.0	-8.5	10.5	5.0

Discharge measurements made at low-flow partial-record stations during water year 1979 -- Continued

277

			Drainage	Period	Measu	rements
Station No.	Station name	Location	area	of record	Date	Discharge (ft ³ /s)
		South-central AlaskaContinued	1 .			
15241570	Ninilchik River tributary 3 near Ninilchik	Lat 60°05'27", long 151°19'44", in SW4 NW4 sec.15, T.1 S., R.12 W., Kenai Peninsula Borough, 100 ft downstream from unnamed right bank tributary, and 12 mi east of Ninilchik.	22.7	1978-79	10-11-78 11-8-78 1-10-79 3-13-79 4-18-79 5-2-79 5-16-79 5-31-79 6-14-79 7-19-79 8-15-79	7.7 5.3 5.6 b2.1 9.4 40 26 9.4 b5.2 7.8 5.2
15241590	Ninilchik River tributary 3 at mouth near Ninilchik	Lat 60°03'26", long 151°32'48", in SW4 SE4 sec.29, T.1 S., R.13 W., Kenai Peninsula Borough, 300 ft upstream from mouth, and 4.0 mi east of Ninilchik.	56.8	1978-79	10-11-78 11-8-78 1-11-79 3-14-79 4-18-79 5-2-79 5-16-79 5-31-79 6-14-79 7-19-79 8-15-79	33 c9.0 26 b20 47 164 74 41 b24 28
15242080	Crooked Creek near Clam Gulch	Lat 60°08'16", long 151°10'30", in SE4 NW4 sec.34, T.1 N., R.11 W., Kenai Peninsula Borough, 500 ft downstream from unnamed left bank tributary, and 9.8 mi southeast of Clam Gulch.	21.9	1978-79	10-11-78 11- 8-78 1-10-79 3-13-79 4-18-79 5-2-79 5-16-79 5-31-79 6-14-79 7-19-79 8-15-79	25 c7.2 21 b21 23 45 26 23 b19 22
#15242100	Crooked Creek near Kasilof	Lat 60°17'50", long 151°16'20", in NE4 sec.1, T.2 N., R.12 W., Kenai Peninsula Borough, 50 ft downstream from culvert at Old Sterling Highway, 1.8 mi upstream from mouth, and 6.5 mi southeast of Kasilof.	53.8	a1951-52, a1973-77, 1978-79		80 40 33 530 96 155 81 51
	ings organized for	्रा क्षेत्र क्षेत्र से क्ष्मिक क्षित्र विश्व है। -		. 	6-13-79 7-18-79 8-14-79	b40 51 36
*15285000	Wasilla Creek near Palmer	Lat 61°38'47", long 149°11'45", in SW4 sec.13, T.18 N., R.1 E., Matanuska-Susitna Borough, 60 ft upstream from culvert entrance on Wasilla Fishhook Road and 4.1 ml northeast of Palmer.	16.6	a1954-55, 1971 a1976-77 1978-79	5- 7-79 5-24-79 5-31-79 7-16-79	96 49 50 72
#15290200	Nancy Lake tributary near Willow	Lat 61°41'17", long 149°57'58", in SE\SE sec.34, T.19 N., R.4 W., Matanuska-Susitna Borough, 10 ft upstream from culvert at Parks Highway, 0.3 mi upstream from mouth, and 4.5 mi southeas of Willow.		1978-79	10-17-78	7.6
#15294002 Site	Willow Creek at Hatcher Pass Road near Willow	Lat 61°45'49", long 149°40'54", in NE4 SW4 sec.5, T.19 N., R.2 W., Matanuska- Susirna Borough, 0.2 mi downstream from old bridge crossing, 2.5 mi up- stream from Peters Creek, and 12 mi east of Willow.	50.1	1978-79	10- 5-78	72
#15294007	Deception Creek above tributary near Houston	Lat 61°41'48", long 149°46'19", in SE4 NW4 sec.35, T.19 N., R.3 W., Matanuska Susitna Borough, 0.2 mi upstream from unnamed left bank tributary and 4.8 mi northeast of Houston.		1978-79	10- 5-78 7- 3-79 7-24-79	16 28 31

[#] See analyses of samples collected at miscellaneous sites.

* Also crest-stage partial-record station.
a Published in miscellaneous measurements table.
b Base flow.
c Water going into ice and channel storage; measurement does not represent basin yield.

Discharge measurements made at low-flow partial-record stations during water year 1979--Continued

				rainage	Period	Measu	rements
	Station No.	Station name	Location	area (mi²)	of	Date	Discharge (ft ³ /s)
		•	South-central AlaskaContinued				
E —	#15294008	Deception Creek tributary near Houston	Lat 61°41'40", long 149"46'21", in SE's NW4 sec.35, T.19 N., R.3 W., Matanuska- Susitna Borough, 0.1 mi upstream from mouth and 4.7 mi northeast of Houston.	8.89	1978-79	10- 5-78 7- 3-79 7-24-79	3.9 10 16
B	#15294012	Willow Creek at Parks Highway near Willow	Lat 61°46'03", long 150°03'48", in SW4 NE's sec.6, T.19 N., R.4 W., Matanuska-Susitna Borough, at bridge at Parks Highway, 0.9 mi downstream from Deception Creek, and 1.7 mi northwest of Willow.	233	1978-79	11-14-78 12-21-78 1-22-79 3-29-79 7-10-79 7-24-79 8-8-79	c103 b161 b139 164 1,180
						9-14-79	b205
	*15294025	Moose Creek near Talkeetna	Lat 62°19'00", long 150°26'30", in NE's sec.30, T.26 N., R.7 W., Matanuska-Susitna Borough, at bridge on Peters-ville Road and 10.5 mi west of Talkeetna.	52.3	a1972-75, 1978-79	5- 9-79 8- 1-79	596 34
	**15296554	Thumb River near Larsen Bay	Lat 57°21'26", long 153°59'41", in NW4 SE4 sec.31, T.32 S., R.29 W., on Kodiak Island, 600 ft upstream from inlet to Karluk Lake and 12.5 mi south of Larsen Bay.	25.3	1979	10-18-78 11-17-78 1-23-79 3-28-79 5-19-79 6-27-79	327 60 63 85 151 118
					1	8- 6-79 9-19-79	31 24
			Yukon Alaska				
	15511100	Hopper Creek near Fairbanks	Lat 64°53'33", long 147°24'42", Fairbanks North-Star Borough, in NE4NE4 sec.30, T. 1 N., R.2 E., at downstream end of culvert on Chena Hot Springs Road, 2.5 mi upstream from mouth, and 9.5 mi northeast of Fairbanks.	2.25	1978-79	8-13-79	ь0.0002
	15511500	Steele Creek near Fairbanks	Lat 64°53'36", long 147°29'12", in SE4 sec.23, T.1 N., R.1 E., Fairbanks North-Star Borough, 8 ft upstream from culvert at mi 4.5 on the Chena Hot Springs Highway, and 7.5 mi northeast of Fairbanks.	10.7	ad1967-74, 1976-79	8-13-79	b1.1
	15512500	Columbia Creek near Fairbanks	Lat 64°53'29", long 147°32'39", in SW's NE'sNE'sE's sec.28, T.1 N., R.1 E., Fair-	f3.0	1976-79	8-13-79	b0.10
			banks North-Star Borough, at down- stream end of culvert at mi 2.6 on Chena Hot Springs Road, 1.0 mi up- stream from Wigwam Creek and 6.1 mi northeast of Fairbanks.				
	15514005	Isabella Creek near Fairbanks	Lat 64453'10", long 147°40'30", in NE4 NE4SE4 sec.26, T.1 N., R.1 W., Fair- banks North-Star Borough, at down- stream end of culvert at mi 1.0 on Farmers Loop Road, 2.8 mi upstream from mouth and 3.1 mi north of Fairbanks.	f4.3	1976-79	8-10-79 8-14-79	b0.11 b0.12
	15514010	Jusilla Creek near Fairbanks	Lat 64°53'59", long 147°42'59", in NE4 NW45E4 sec.22, T.1 N., R.1 W., Fair- banks North-Star Borough, at down- stream end of culvert at mi 3.4 on Farmers Loop Road, 0.5 mi upstream from Creamers Field and 3.9 mi north of Fairbanks.	f1.6	1976-79	8-10-79 8-14-79	b0.02 b0.008
	15514015	Grenac Creek near Fairbanks	Lat 64°53'53", long 147°45'13", in SE's NW'sSE's sec.21, T.1 N., R.1 W., Fairbanks North-Star Borough, at downstream end of culvert at mi 4.6 on Farmers Loop Road, 1.0 mi upstream from Creamers Field and 3.9 mi north	f1.3	a1967-68, 1976-79		b0.05 b0.06

See analyses of samples collected at miscellaneous sites.
Also a continuous-record station for water temperature.
Also crest-stage partial-record station.
Published in miscellaneous measurements table.
Base flow.
Water going into ice and channel storage; measurement does not represent basin yield.
Operated as a crest-stage partial-record station.
Approximately.

300

ANALYSES OF SAMPLES COLLECTED AT WATER-QUALITY PARTIAL-RECORD STATIONS SOUTH-CENTRAL ALASKA--Continued

15294002 - WILLOW C AT HATCHER PASS ROAD NR WILLOW AK--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

	• •		JM				70-					NGA-	
	PHO PHOR DIS	RUS. TO	JM. TAL COV- ARSE	BAR1 To1 NIC REC		TAL TO	TAL TO	TAL TO		ON. TO	TAL TO	SE+ Tal Cov-	
v DA	SOL (MO	VED ER	ABLE TOT G/L (UG	AL ERA	AALE ERA	ARLE ER	ABLE ER	ABLE ER	ABLE SOL	LVED FR G/L (U	ABLE ERA	ARLE G/L MN)	
ОСТ			•									•	
. 05		•00	50	3	0	0 .	0	3.	110	110	1	0	
											%. 		
		MANGA- NESE.	MERCURY	NICKEL.	SELE-	SILVEP.	71NC. TOTAL	CARBON. ORGANIC	CARBON. ORGANIC SUS-	SEOT-	SEDI- MENT DIS-		
		DIS- SOLVED (UG/L	RECOV- ERABLE (UG/L	RECOV- ERABLE (UG/L	NIUM. TOTAL (UG/L	RECOV- ERABLE (IIG/L	RECOV- ERABLE ' (UG/L	DIS- SOLVED (MG/L	PENDED TOTAL (MG/L	MENT. SUS- PENDED	CHARGE, SUS- PENDED		
	DATE	AS MN)	AS HG)	AS NI)	AS SE)	AS AG)	AS ZN)	AS C)	AS C)	(MG/L)	(T/DAY)		
- 1 leg -	05	40	.0	1	0	0	4 4 6	1.6		1	•19		
		C) .	*152940	07 - DECE	EPTION C	AB TR NR I	HOUSTON A	·	•			
									`,				
			SPE- CIFIC					COLI-	FORM,			HARD-	
		STREAM- FLOW. INSTAN-	CON- DUCT- ANCE	РН	TEMPER-	TEMPER+	OXYGEN. DIS-	TOTAL, IMMED. (COLS.	FECAL. 0.7 UM-MF	FECAL+ KF AGAR (COLS.	HARD- NESS (MG/L	NESS. NONCAR- BONATE	
DATE	TIME	TANEOUS (CFS)	(MICRO- MHOS)	(UNITS)	AIR (DEG C)	ATURE (DEG C)	SOLVED (MG/L)	PER 100 ML)	(COLS./ 100 ML)	PER 100 ML)	AS CACO3)	(MG/L CACO3)	
OCT 05	0940	16	120	6.9		3.5	13.0	K36	K55	KZ	34	З	
JUL. 24	1345	31	85	7.4	16.5	12.0	10.3			K4	25	2	
	è												
		MAGNE-		POTAS-				CHLO-	FLUO-	SILICA,			
	DIS-	SIUM, DIS-		SIUM. DIS-	BICAR- BONATE	CAR-	SULFATE DIS-	DIS-	DIS-	DIS- SOLVED		CONSTI-	
DATE	SOLVED (MG/L AS CA)	(MG/L AS MG)	SOLVED (MG/L AS NA)	SOLVED- (MG/L AS K)	(MG/L AS HC()3)	BONATE (MG/L AS CO3)	SOLVED (MG/L AS S04)	SOLVED (MG/L AS CL)	SOLVED (MG/L AS F)	(MG/L AS SIO2)	DIS- SOLVED (MG/L)	DIS- SOLVED (MG/L)	
OCT	#3 ¢^/	43	A3 (1A)	43,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	#3 G037	M 9 3047	A5 (CE)	A3. ,	3102.7	(HO)_[1		
05 JUL	10	2.1	12	1.1	37	. 0	2.3	22	•0		81	79	
24	7.5	1.4	7.0	.7	28	,	6.2	8.6	0	9.9	63	56	
		NIT90-		NITRO-		NITRO-	NITRO-	NITRO-				ALUM-	
	NITRO- GEN:	GEN . NO2+NO3	NITRO- GEN.	GEN.	NITRO- GEN.	GEN. OPGANIC	GEN.AM-	GEN.AM-	NITRO-	PHOS-	PHOS- PHORUS.	INUM. TOTAL	
•	NOZ+NO3 TOTAL	DIS- SOLVED	AMMONIA TOTAL		ORGANIC TOTAL	DIS- SOLVED	ORGANIC TOTAL	ORGANIC DIS.	GEN. TOTAL	PHORUS. TOTAL	DIS- SOLVED	RECOV- ERABLE	
DATE	(MG/L AS N)	(MG/L AS N)	AS N)	(MG/L AS N)	AS N	(MG/L AS N)	(MG/L AS N)	(MG/L AS N)	(MG/L AS N)	(MG/L AS P)	(MG/L AS P)	(UG/L AS AL)	
ост 05	.04	.06	.00	.00	•20	•50	•20	•20	•24	.01		60	
JUL 24	.37	.10	.01	**	.20		•21		.58	.00	.01	**	
				•	2							•	
		ŠARI	UM. CADH	CHR TUM MTU		PER. 190	IRO N. SI	DN• JS•	LEA	D. NE	SE. NES		
	ARSE		OV- REC	∩v- REC	OV- REC	OV- REC	:0V- REC		S- REC	COV- RE	COV- PEN	is→ inen	
	101	5/L (U(ABLE ERA	/L (UG	IZL (UG	5/L (116	5/L (U)	5/L, (U(5/L (UC	5/L (U	3/L . (110	50V.	
OCT		AS) AS	BA) 45	COJ ĄS	CR) AS	CU) AS	FE) AS	FE) AS	FE) AS	PA) AS	NN) 45	MN)	
		1	0	0	0	9	250		190	0.	0 -	- -	
24	• • •	0	. 0	0	10	28	290	120	170	14	10	5	
	NON-IDEAL LOW-FLOW		COUNT RECORD STA	TION		-117-				•			

ANALYSES OF SAMPLES COLLECTED AT WATER-QUALITY PARTIAL-RECORD STATIONS

SOUTH-CENTRAL ALASKA--Continued

15294007 - DECEPTION C AB TR NR HOUSTON AK--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

DA	NES DI SOL (UC	iE. [S- ! _VED	ERCURY TOTAL RECOV-	NICKEL. TOTAL RECOV- ERARLE (UG/L AS NI)		SILVE TOTA RFCO ERAB (UG/	R. ZIII L TOT V- REC LE ER/ L (UC	vc.	CAPBON+ ORGANIC DIS- SOLVED (MG/L AS C)	CARBI	ON+ NIC - ED CYAN AL TOT /L (MG	SED IDE MEN AL SUS-	T. CHAR SUS	IT ;- IGE•
OCT	•••	0	.0	3)	0	. 0	4.2	ta e e e e e e e e e e e e e e e e e e e	•3		3	.13
JUL,			-			,)	-	30	7.5		• • • • • • • • • • • • • • • • • • • •	.00	3	.25
24	• • •	5 —	.1				0 .					• 00		
•		F		*	15294008	- DECE	TION C	TR NR	HOUSTON	I AK	1 1			
DATE	TIME	STREA FLOW INSTA TANEO (CFS	C] M- CC • DL N- AN US (M)	PE- FIC DN- JCT- JCE JCRO- JOS) (UI	PH	EMPER- ATURE: AIR DEG C)	TEMPER- ATURE (DEG C)	ก: รถเ	F T GEN. I IS- (C LVED	OLI- ORM. OTAL. MMED. OLS. PER.	COLI- FORM, FECAL. 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL. KF AGAR (COLS. PER 100 ML)	HARD- NESS (MG/L AS CACO3)	HARD- NESS. NONCAR- BONATE (MG/L) CACO3T
ост					and the e	56 " . ".	200		٠	4. E				
05	1115	8	.9	150	6.6	4 4.	3.0		13.1	K22	K28	* K4	37	3
JUL 24	1430	16		90	6.7	15.0	11.0				K76	K8	28	3
										* -				
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGN SIU DIS SOLV (MG/) AS M	M• 500 - 01 ED 50L L (F	IUM• ! IS- (VED S(IG/L ()	DIS- 80 OLVED MG/L	ICAR- BNATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	015 501 (M)	FATE R S- D LVED S G/L (HLO- IDE. IS- OLVED MG/L IS CL)	FLUO- RIDE. DIS- SOLVED (MG/L AS F)	SILICA. DIS- SOLVED (MG/L AS SIO2)	SOLIDS. RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS: SUM OF CONSTI- TUENTS: DIS- SOLVED (MG/L)
0CT 05	11	2	•2	14	1.1	41			2.0	24	•0	11	92	86
JUL	•			_			•							
24	8.4		•6	8.0	•5	30	0		4.9	9.1	•0	11	67	59
DATE	NITRO- GEN- NOZ+NO3 NOTAL (MG/L AS N)	NITH GEN NOZ+N DIS SOLV (MG/ AS N	• N3 O3 0 - AMM ED T0 L (M	TRO+ (SEN+ AM IONIA (STAL SI IG/L (I	MONIA DIS- OF DLVED MG/L	VITRO- GEN. RGANIC TOTAL (MG/L AS N)	NITRO- GEN. ORGANIC DIS- SOLVED (MG/L AS N)	GEN MON ORG TO	AM- GE IA + MO ANIC OR TIL J GVL (ITRO+ N.AM- NIA + GANIC IS- MG/L IS N)	NITRO- GEN. TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P)	ALUM- INUM. TOTAL RECOV- EPABLE (UG/L AS AL)
0CT	.19		15	•00	.01	.29	.56		•29	•57	.39	.00	• 00	60
JUL			22	.01	==	.04			•05		.31	.01	•01	
24	-26	•	26	•01.		.04			• 05		•31	•01	•01	
	10 (U	ENIC TAL G/L	ARIUM. TOTAL RECOV- ERABLE (UG/L AS BA)	RECOV- ERABLE (UG/L	TOTAL	RECO E ERAF (UG/	IL TO IV- REG ILE ER 'L (U	ON. TAL COV- ABLE G/L FE)	RECOV-	SOL (UG	S- REC VED ERA /L (UC FE) AS	AL TOT COV- REC BLE EPA	E. NES AL SI OV- PEN BLE REC /L (U)	NGA- SE. JS- NDED COV. S/L MM)
0.5	5	1	0	a		0	3	300			230	. 1	50	
JUL 24	••••	0	. 0	0	10	0	3 .	360	120		240	11 .	40	10
D4	NE: S0: (W:	SE. IS- LYED G/L	ERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	TOTAL RECOV- ERABLE	SFLE- NIUM. TOTAL (UG/L AS SE		L TO' N- REG SLE ER	NC. TAL COV- ABLE G/L ZN)	CARBON+ GRGANIC DIS- SOLVED (MG/L AS C)		NIC - ED CYAN AL TOI /L (MG	AL SUS	HEN I - DIS T. CHAR - SUS DED - PEN	5- RGE • 5- INED
OCT		60	•	,		n	n	10	6.1		.7		3	.07
JUL.		30	.0	1		0	0	20	201		•7	.60	. 7	.38
				INT	,	-	-	,					•	
	NON-ID			CORD STAT	ION		-118-					•		

51.1

ANALYSES OF SAMPLES COLLECTED AT MISCELLANEOUS SITES

SOUTH-CENTRAL ALASKA--Continued

614446149551000 - UNNAMED TRIB TO DECEPTION C NR WILLOW AK--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

					,							
	POTAS+ SIUM. DIS- SOLVED	BICAR- BONATE (MG/L	CAR- BONATE	SULFATE DIS- SOLVED	RIDE. DIS- SOLVED	FLUO- RIDE, DIS- SOLVED	DIS+ SOLVED (MG/L		CONSTI- TUENTS. DIS-	NITRO- GEN+ CON+SON TOTAL	NO2+NO3 DIS- SOLVED	
DATE	(MG/L AS K)	HCO3)	AS CO3)	(MG/L: AS 504)	(MG/L AS CL)	(MG/L AS F)	.24 (SD12	SOLVED (MG/L)	SOLVED (HG/L)	(MG/L AS N)	(MG/L AS N)	(MG/L AS N)
JIJL 24	.5	30	0	7.3	5.3	. 0	11	70	54	.05	• 06	-03
						· .		•				
		NITPO-							CHRO-			IRON.
•	NITRO- GEN+ ORGANIC TOTAL	GEN.AM- MONIA + ORGANIC TOTAL	NITRO- GEN. TOTAL	PHOS- PHORUS. TOTAL	PHOS- PHORUS. DIS- SOLVED		HARIUM. TOTAL PECOV- EPABLE	CADMIUM TOTAL RECOV- ERABLE	TOTAL RECOV- Erable	TOTAL RECOV- ERABLE	IRON. TOTAL PFCOV- ERABLE	SUS- PENDED RECOV- ERABLE
DATE	(MG/L AS N)	(MG/L AS N)	(MG/L AS N)	(MG/L AS P)	(MG/L AS P)	(UG/L AS AS)	(t)G/L AS BA)	(UG/L AS CD)	(UG/L AS CR)	(UG/L AS CU)	(UG/L AS FE)	(UG/L AS FE)
JUL			• :									
24	.34	.37	.42	.02	•05	1	0	1. 1	10	17	59 0	300
		. 5.0	MANGA-	MANGA-				eri ven				SEDI-
-	IRON.	LEAD.	NESE. TOTAL	NESE+	MANGA-	MERCURY	SELE-	SILVER. TOTAL	ZINC.		SEDI-	MENT DIS-
	DIS-	RECOV- ERABLE	RECOV- EPABLE	PENDED RECOV.	DIS- SOLVED	RECOV- ERABLE	NTUM.	RECOV- ERABLE	RECOV- ERABLE	TOTAL	MENT, SUS-	CHARGE.
DATE	(UG/L AS FE)	(UG/L AS PB)	(UG/L AS MN)	(UG/L AS MN)	(UG/L AS MN)	(UG/L AS HG)	(UG/L AS SE)	(UG/L AS AG)	AS ZN)	(MG/L AS CN)	PENDED (MG/L)	PENDED (T/DAY)
JUL 24	390	9 .	30	10	20	•0	. 0	0	0	•00	. 10	•32
	•		-	_		•	·	•	•	•••		***
			6142511	49585100	- LILLY C	AB HOWLI	NG DOG FA	ARM NR WIL	LOW AK			
	•	SPE CIF			COL			EP+	HAR	n_	was	NE-
		CON	•	OXYG	TOT	AL. FEC	AL. FEC	CAL, HAR	O- NES	S. CALC	IUM SI	UM•
•		ANC	E TEMP	ER- DI	S- (COL		MF (COL	S. IMG		TE SOL	VED SOL	S- VED
DA		ME (MIC			VED PE			ER AS ML) CAC	(MG (O3) CAC			/L MG)
OCT												
17	H	00	60	2.0 1	2.4	139	83.	7,1	28	6	8.3	1.8
	• "		•	• •				٠.				
		SODIUM.	POTAS- SIUM+	BICAR-		SULFATE	CHLO-	FLUO- RIDE.	SILICA.	SOLIDS. RESIDUE AT 180	SOLIDS. SUM OF CONSTI-	•
		DIS- SOLVED	DIS- SOLVED	BONATE (MG/L	CAR- RONATE	DIS- SOLVED	DIS- SOLVED		SOLVED (MG/L	DIS-	TUENTS.	
	DATE	(MG/L AS NA)	(MG/L AS K)	AS HCO3)	(MG/L AS CO3)	(MG/L AS SO4)	(MG/L AS CL)	(MG/L AS F)	AS S102)	SOLVED (MG/L)	SOLVED (HG/L)	
	0CT 17	1.8	.3	27	0	4.2	1.9	.1	9.0	56	41	
			• •			702	1.07	••• See	780	76	4,1	•
			NITRO-		N1700-		N1790-	NITOO	NETOO.			
		NITRO-	GEN.	NITRO-	NITRO- GEN.	NITRO-	NITRO-	NITRO- GEN+AM-	NITRO-		Seven≐	
	_	GEN. NO2+NO3	015-	GEN +	AMMONIA DIS-	GEN. ORGANIC	ORGANIC DIS-	MONIA + OPGANIC	MONIA + ORGANIC	NITRO- GEN.	PHOS- PHORUS.	
	•	TOTAL (MG/L	SOLVED (MG/L	TOTAL (MG/L	SOLVED (MG/L	TOTAL (MG/L	SOLVED (MG/L	MG/L	DIS. (MG/L	TOTAL (MG/L	TOTAL (MG/L	
	DATE	AS N)	AS N)	AS NI	AS N)	AS NI	AS N)	AS N)	AS NI	AS NI	AS PI	

DATE.

ADF&G/USGS Site G

ANALYSES OF SAMPLES COLLECTED AT MISCELLANEOUS SITES SOUTH-CENTRAL ALASKA--Continued

614906149385000 - PETERS C BL PURCHES C NR WILLOW AK

WATER QUALITY DATA, WATER YEAR OCTOBER 1978 TO SEPTEMBER 1979

		STREAM-	SPE- CIFIC CON-	,				COLI- FORM. FECAL.	HARD-	HARD- NESS•	
er gar		FLOW.	DUCT-	РН	TEMPER-		OXYGEN. DIS-	UM-MF	NESS (MG/L	NONCAR- BONATE	•
DATE	TIME	(CFS)	(MICRO- MHOS)	(UNITS)	ATR	ATURE (DEG C)		(COLS./	CACO3)	(MG/L CACO3)	
JUL										• •	
24	1230	465	33	6.7	15.0	8.0	11.5	<1	13	5	
		MAGNE-		POTAS-				CHLO-	FLUO-	SILICA.	
	CALCIUM	SIUM.	SOD TUM+	SIUM.	BICAR-		SULFATE	RIDE.	RIDE.	DIS-	
	DIS- SOLVED	DIS- SOLVED	DIS- SOLVED	DIS- SOLVED	(MG/L	CAR- RONATE	SOLVED	DIS- SOLVED	DIS- SOLVED	(MG/L	
DATE	(MG/L AS. CA)	(MG/L AS MG)	(MG/L AS NA)	(MG/L AS K)	AS HCO3)	(MG/L AS CO3)	(MG/L AS SO4)	(MG/L AS CL)	(MG/L AS F)	SA (S012	
JUL		•									
24	4,6	•,4-	1.0	. 4	13	0	4.3.	• "Я	.0	5.2	
									All the training	Astronomy	
	SOL IDS.	SOLIOS.		NITRO-			NITRO-				:
	RESIDUE AT 180	SUM OF CONSTI-	NITRO-	GEN+ NO2+NO3	GEN.	NITRO- GEN+	GEN+AM- MONIA +	NITRO-	PHOS-	PHOS- PHORUS.	* . *
	DEG. C	TUENTS.	TOTAL	DIS- SOLVED	AMMONIA' TOTAL	ORGANIC TOTAL	ORGANIC TOTAL	GEN. TOTAL	PHORUS.	DIS- SOLVED	
DATE	SOLVED (MG/L)	SOLVED (MG/L)	(MG/L AS N)	(MG/L AS N)	(MG/L AS N)	(MG/L AS N)	(MG/L AS N)	(MG/L AS N)	MG/L AS PI	(MG/L AS P)	
JUL											
24	19	23	.05	-05	. •01	•27	. 28	•33	.00	.00	• •
		i.				•					
		BARIUM.	CADMIUM	CHRO-	COPPER.	IRON.	IPON.		LEAD.	MANGA-	
		TOTAL	TOTAL	TOTAL	TOTAL	TOTAL RECOV-	PENDED RECOV-	IRON.	TOTAL	TOTAL	ı
	ARSENIC TOTAL	RECOV- ERABLE	RECOV- ERABLE	RECOV- ERABLE	RECOV- ERABLE	ERABLE	ERABLE	DIS- SOLVED	RECOV- FRABLE	RECOV- ERABLE	
DATE	(UG/L AS AS)	(UG/L AS BA)	(UG/L AS CD)	(UG/L AS CR)	(HG/L AS CU)	(UG/L 45 FE)	(UG/L - AS-FE)	(UG/L AS FE)	(UG/L AS PR)	(UG/L AS MN)	
IUL	s.		**								*
24	0	. 0	1	. 10	3.	50	40	10	29		٠., .
		• •									.*
	MAN NES		GA- MEPC	URY	SILV	ER. ZIN	ir.		SED		
	. SU	S- NES	E. TOT	AL SEL	E- TOT	AL TOT	AL	SED	1- 019	; -	
•	PEN REC	OV. SOL	S- REC	BLE TOT	AL ERA	BLE ERA	BLE TOT	AL SUS	 SUS 	; -	
ÐA	(UG TE AS		/L (UG.		SE) AS		ZN) AS		DED PEN	IDED IAY)	
J U L											
24	•••	0	i	•1	.0	0	50	•00	4	5.0	•
		6144461	40551000	- IIMMANET			C NR WIL				
		SPE-	.45331000	OWNER	, IKID IU	COLI-	1. U 145. WILL	MON , AM			
		CIFIC				FORM.	11460	HARD-		MAGNE-	4 4 5 t
	STREAM+ FLOW•	CON- DUCT-		TEMPER-		FECAL.	HARD- NESS	NESS+	DIS-	SIUM. DIS-	SODIUM. DIS-
TIME	INSTAN- TANEOUS	ANCE (MICRO-	PH	ATURE.	TEMPER-	UM-MF (COLS./	MG/L AS	BONATE (MG/L	SOLVED (MS/L	SOLVED (MG/L	SOLYFD (MG/L
	(CFS)	MHOS)	(UNITS)	(DEG C)	(DEG C)	100 ML)	CACO3)	C4C03)	AS CA)	AS MG)	45 NA)
1550	12	76	5.7	16.9	13.9	94	27	2	8.0	1.7	4.9

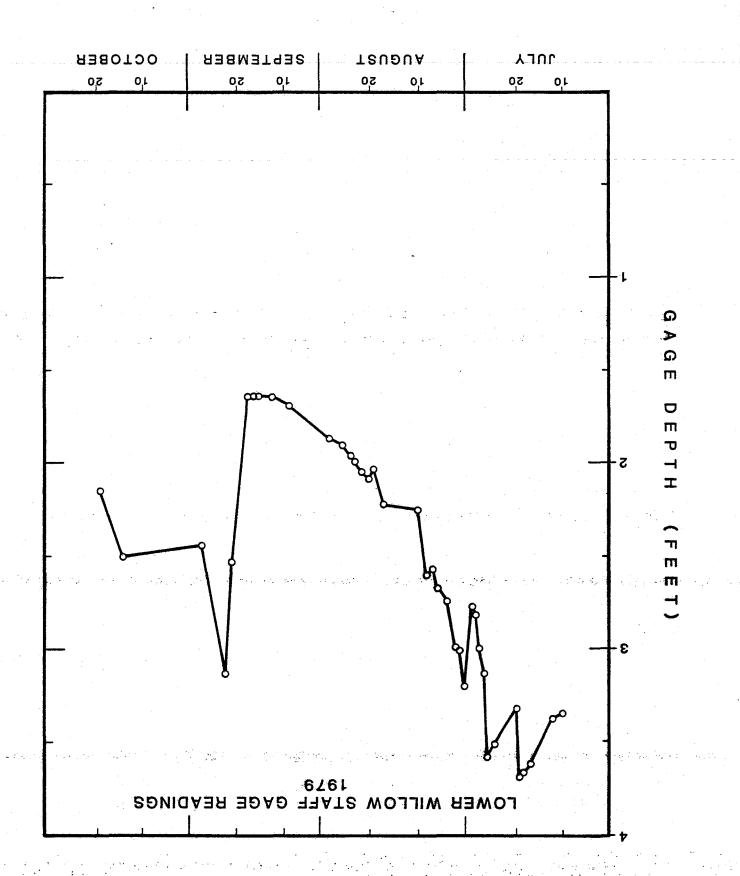


Figure 1

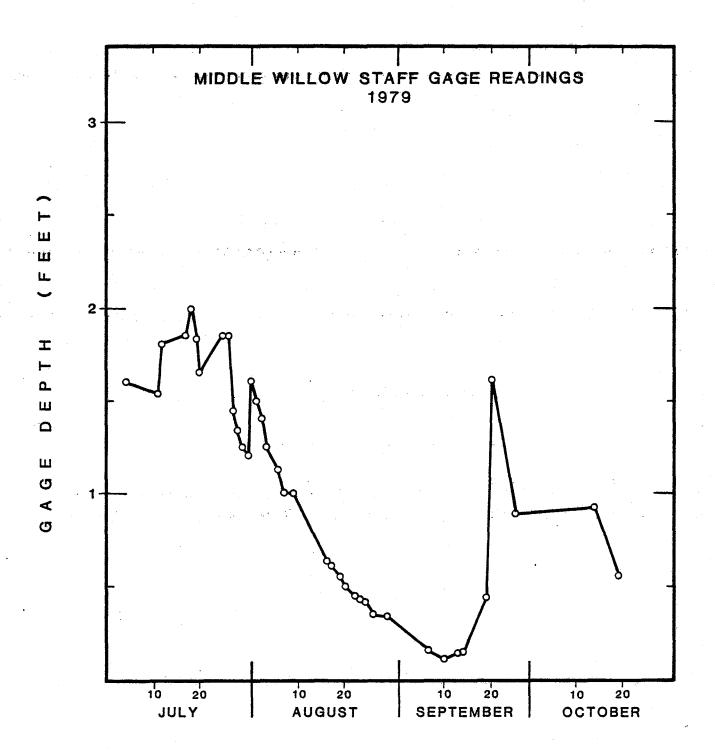
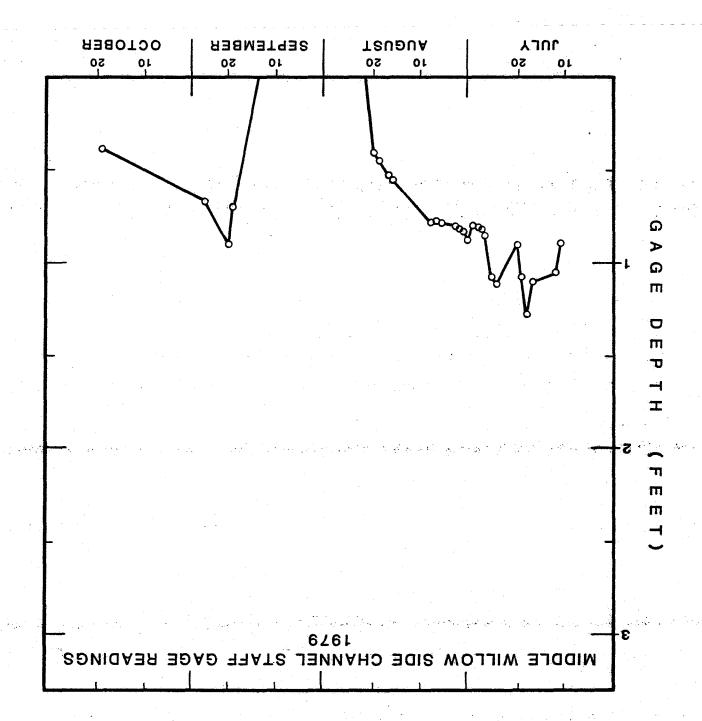



Figure 2

E anugiq

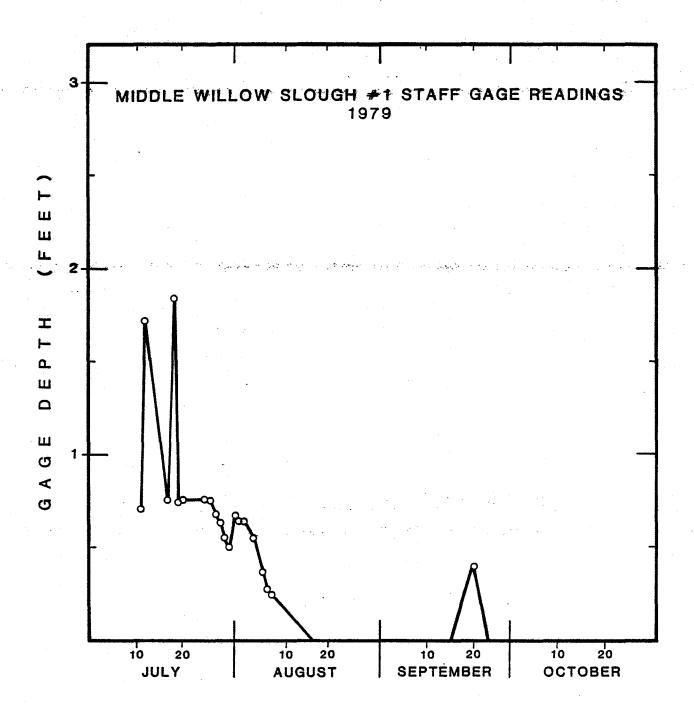


Figure 4

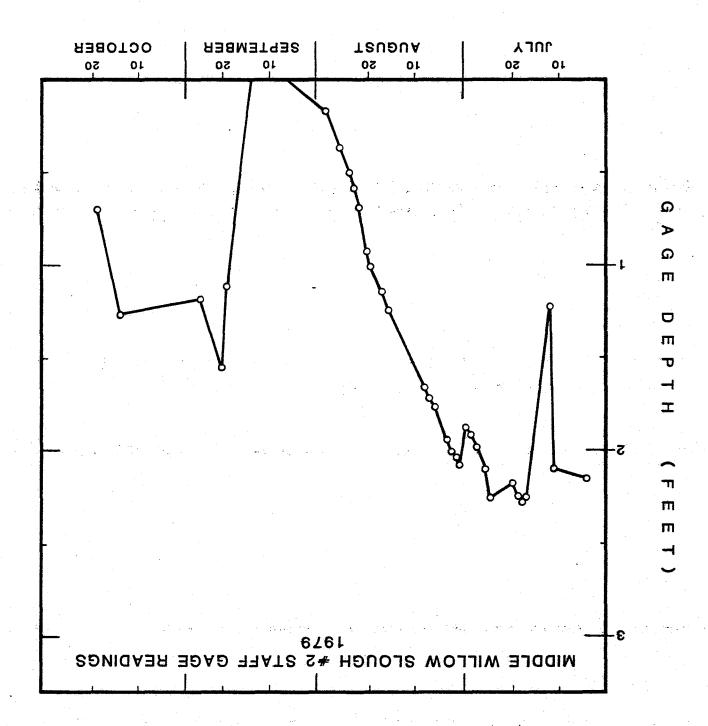


Figure 5

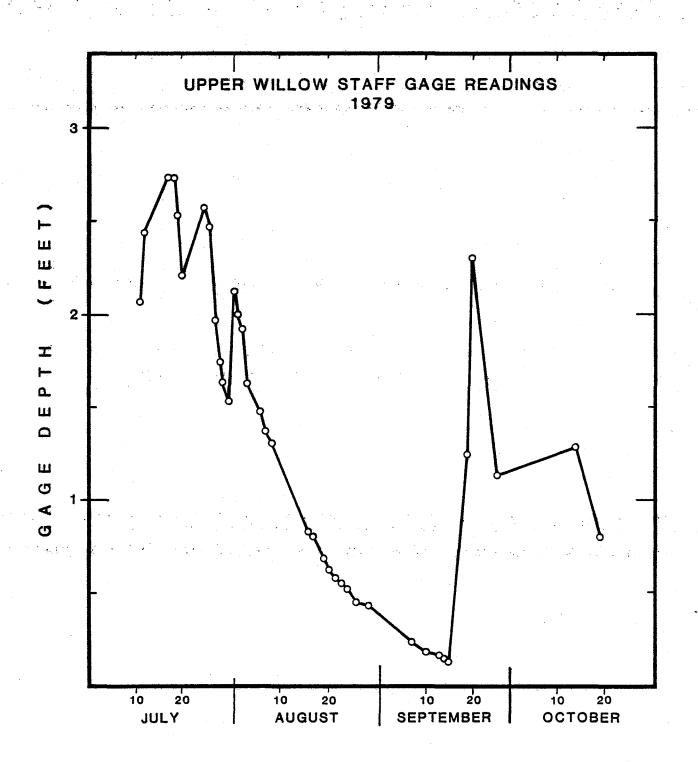


Figure 6

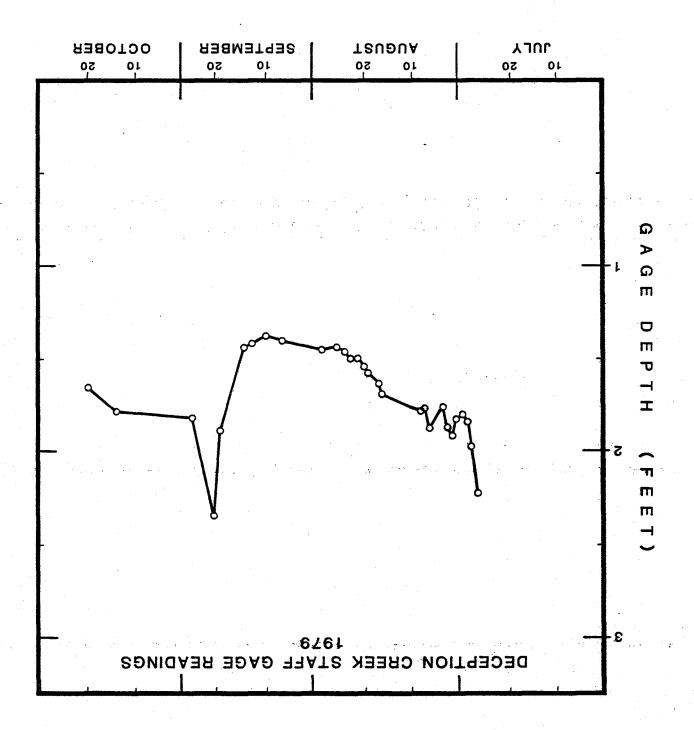


Figure 7

-127-

Appendix D.

Table 1. Thermograph data summary for Willow Creek lower reach, 1979.

Date	<u>High</u>	Mean*	Low	<u>Date</u>	<u>High</u>	Mean*	Low
08/03	15.0	14.0	13.0	08/22	13.8	13.0	12.2
08/04	13.4	13.2	13.0	08/23	14.9	14.2	13.5
08/05	13.0	12.8	12.5	08/24	15.4	15.1	14.8
08/06	12.5	12.3	12.0	08/25	15.1	15.0	15.0
08/07	12.2	12.1	12.0	08/26-09/	10 equip	ment malfu	nction
08/08	12.2	12.2	12.2	09/11	14.4	13.3	12.2
08/09	12.2	12.1	12.0	09/12	12.8	12.5	12.2
08/10	12.0	12.0	12.0	09/13	12.5	12.5	12.5
08/11	12.5	12.3	12.0	09/14	12.8	12.7	12.5
08/12	12.5	12.5	12.5	09/15	12.8	12.8	12.8
08/13	12.5	12.5	12.5	09/16	12.8	12.3	11.7
08/14	12.5	12.3	12.2	09/17	12.2	12.1	11.9
08/15	12.0	11.9	11.8	09/18	12.2	12.2	12.2
08/16	11.8	11.7	11.5	09/19	12.2	12.0	11.7
08/17	12.3	12.1	11.8	09/20	11.7	11.4	11.1
08/18	12.4	12.2	12.0	09/21	11.1	11.0	10.8
08/19	12.5	11.8	11.0	09/22	11.1	10.9	10.6
08/20	11.5	11.4	11.4	09/23	10.6	10.6	10.6
08/21	12.5	11.8	12.5	09/24**	10.6	10.6	10.6

^{*}Mean temperature (°C) is the average of the daily high and low over a 24 hour period from midnight to midnight.

^{**}Equipment malfunction - 09/25 to 10/12.

Appendix D.

Table 2. Thermograph data summary for Willow Creek middle reach, 1979.

	<u>Date</u>	<u>High</u>	Mean*	Low	<u>Date</u>	<u>High</u>	Mean*	Low
	07/03	10.5	09.0	07.5	07/28	11.7	11.2	10.7
	07/04	08.5	07.8	07.0	07/29	11.7	11.6	11.5
	07/05	10.5	09.4	08.3	07/30	11.7	10.7	09.7
	07/06	10.5	09.0	07.5	07/31	11.5	11.0	10.5
	07/07	11.5	09.8	08.0	08/03	13.5	11.8	10.0
٠	07/08	12.0	10.1	08.3	08/04	12.6	11.6	10.6
	07/09	12.0	10.5.	09.0	08/05	12.2	11.6	11.0
	07/10	12.0	10.7	09.3	08/06	11.0	10.9	10.8
	07/11	10.5	09.7	08.8	08/07	10.8	10.4	10.0
	07/12	10.5	09.8	09.0	08/08	12.0	11.0	10.0
	07/13	09.5	09.0	08.5	08/09	11.6	11.2	10.8
	07/14	10.0	08.8	07.5	08/10	11.0	10.9	10.8
	07/15	13.5	11.0	08.5	08/11	11.0	10.8	10.5
	07/16	12.5	11.0	09.5	08/12	12.0	11.5	11.0
	07/17	12.3	10.9	09.5	08/13	12.0	11.5	11.0
	07/18	12.5	11.0	09.5	08/14	11.2	11.0	10.8
	07/19	12.5	11.0	10.5	08/15	10.8	10.5	10.2
	07/20	10.5	10.0	09.5	08/16	10.2	10.1	10.0
	07/21	10.6	10.1	09.5	08/17	11.0	10.5	10.0
	07/22	10.6	10.5	10.3	08/18	11.0	10.5	10.0
	07/23	10.5	10.0	09.5	08/19	11.2	11.1	11.0
	07/24	12.3	09.9	07.5	08/20	11.2	11.1	11.0
٠	07/25	12.0	10.8	09.5	08/21	11.0	10.3	09.5
	07/26	12.3	11.4	10.5	08/22	11.8	10.9	10.0

^{*}Mean temperature (°C) is the average of the daily high and low over a 24 hour period from midnight to midnight.

Appendix D.

Table 2. (continued)

Tubic 2.	(continued)						
<u>Da te</u>	<u>High</u>	<u>Mean</u> *	Low	Date	<u>High</u>	Mean*	Low
08/23	12.5	11.9	11.2	09/23	8.5	7.8	7.0
08/24	12.8	12.6	12.4	09/24	8.9	7.7	6.5
08/25	12.8	12.4	12.0	09/25	6.9	6.3	5.7
08/26	12.8	12.4	12.0	09/26	5.7	4.9	4.1
08/27	12.2	11.9	11.6	09/27	5.5	5.4	5.3
08/28	12.2	12.1	12.0	09/28	6.0	5.8	5.5
08/29	14.1	14.0	13.9	09/29	6.0	5.1	4.2
08/30	14.0	12.0	10.0	09/30	5.0	4.6	4.1
08/31	10.0	09.3	08.5	10/01	5.3	5.1	5.0
09/01	09.5	09.3	09.0	10/02	5.1	5.1	5.1
09/02	09.5	08.8	08.1	10/03	5.3	5.3	5.2
09/03	09.0	08.6	08.1	10/04	5.5	5.3	5.1
09/11	10.5	09.8	09.0	10/05	5.8	5.7	5.5
09/12	09.5	09.5	09.5	10/06	5.8	5.5	5.2
09/13	09.8	09.7	09.5	10/07	5.5	5.1	4.8
09/14	09.9	09.9	09.8	10/08	5.0	5.0	5.0
09/15	09.9	09.2	08.5	10/09	6.0	5.6	5.0
09/16	08.8	08.4	08.0	10/10	6.0	5.6	5.2
09/17	09.0	08.9	08.8	10/11	5.8	5.7	5.5
09/18	08.8	08.2	07.5	10/12	5.5	5.0	4.5
09/19	08.3	07.9	07.4			•	
09/20	08.4	07.4	06.5				
09/21	07.0	06.5	06.0				
09/22	09.0	08.9	08.8		or de les		

^{*}Mean temperature (°C) is the average of the daily high and low over a 24 hour period from midnight to midnight.

Appendix D.

Table 3. Thermograph data summary for Willow Creek upper reach, 1979.

Date	High	Mean*	<u>Low</u>	Date	<u>High</u>	Mean*	Low
							
07/08	09.5	09.4	09.3	08/02	15.6	13.1	10.5
07/09	09.3	08.9	08.5	08/03	14.3	12.2	10.0
07/10	11.5	09.6	07.7	08/04	12.7	11.7	10.6
07/11	12.7	10.9	09.0	08/05	12.0	11.5	11.0
07/12	09.5	09.0	08.5	08/06	11.0	10.9	10.8
07/13	09.0	08.5	08.0	08/07	11.8	11.2	10.5
07/14	09.7	09.1	08.5	08/08	11.5	11.0	10.5
07/15	08.5	08.0	07.5	08/09	11.5	11.0	10.5
07/16	09.5	08.6	07.7	08/10	11.3	10.9	10.5
07/17	11.5	10.0	08.5	08/11	10.7	10.5	10.3
07/18	11.0	10.1	09.3	08/12	12.5	11.5	10.5
07/19	11.7	11.0	10.3	08/13	11.0	10.8	10.5
07/20	11.7	11.3	11.0	08/14	11.5	10.5	10.0
07/21	12.5	10.6	08.7	08/15	10.0	09.9	09.7
07/22	11.5	11.0	10.5	08/16	10.5	10.3	10.0
07/23	09.5	09.3	09.0	08/17	11.0	10.5	10.0
07/24	10.0	09.5	09.0	08/18	11.5	11.0	10.5
07/25	10.5	09.5	08.5	08/19	11.5	11.1	10.7
07/26	11.0	09.5	08.0	08/20	11.5	11.0	10.5
07/27	11.0	09.8	08.5	08/21	10.7	10.6	10.5
07/28	11.5	10.0	08.5	08/22	11.5	10.8	10.0
07/29	11.5	10.2	08.8	08/23	12.7	12.1	11.5
07/30	11.5	11.0	10.5	08/24	12.7	12.4	12.0

^{*}Mean temperature (°C) is the average of the daily high and low over a 24 hour period from midnight to midnight.

Appendix D.

Table 3. (continued)

<u>Date</u>	<u>High</u>	Mean*	Low	Date	<u>High</u>	Mean*	Low
08/25	12.7	12.2	11.7	09/25	6.1	5.0	3.9
08/26	13.0	12.8	11.5	09/26	4.4	4.2	3.9
08/27	11.6	11.3	11.0	09/27	4.4	4.3	4.2
08/28	11.8	11.7	11.6	09/28	5.0	4.7	4.4
08/29	11.6	10.6	09.8	09/29	5.0	4.2	3.3
08/30	09.8	09.2	08.5	09/30	3.9	3.6	3.3
08/31	09.0	08.8	08.5	10/01	4.4	4.2	3.9
09/01	09.3	08.8	08.3	10/02	4.4	4.3	4.2
09/02	08.5	08.5	08.5	10/03	4.7	4.5	4.2
09/03-09/10	equipment	malfunction	on	10/04	5.0	4.5	3.9
09/11	10.5	09.4	08.3	10/05	4.4	4.2	3.9
09/12	08.9	08.8	08.6	10/06	4.4	4.1	3.6
09/13	09.3	09.1	08.9	10/07	4.2	4.1	3.9
09/14	09.3	09.1	08.9	10/08	3.9	3.9	3.9
09/15	08.9	08.4	07.8	10/09	5.0	4.5	3.9
09/16	08.3	08.1	07.8	10/10	5.0	4.2	3.3
09/17	08.3	07.8	07.2	10/11	4.7	4.3	3.9
09/18	07.8	07.5	07.2	10/12	4.4	3.9	3.3
09/19	07.8	07.5	07.2	10/13	4.7	3.7	2.8
09/20	06.7	06.2	05.6				
09/21	06.1	05.9	05.6				
09/22	06.7	06.2	05.6				
09/23	06.7	06.2	05.6				
09/24	06.7	05.9	05.0				

^{*}Mean temperature (°C) is the average of the daily high and low over a 24 hour period from midnight to midnight.

Table 4. Thermograph data summary for Deception Creek reach, 1979.

Date	<u>High</u>	Mean*	Low	<u>Date</u>	<u>High</u>	Mean*	Low
07/08	11.0	10.5	10.0	08/03	14.8	12.9	11.0
07/09	12.0	11.0	10.0	08/04	13.5	12.0	11.5
07/10	13.1	11.5	10.0	08/05	13.0	12.4	11.8
07/11	14.0	13.2	12.5	08/06	11.8	11.7	11.5
07/12	13.5	12.5	11.5	08/07	11.8	11.5	11.2
07/13	12.0	11.4	10.8	08/08	12.0	11.5	11.0
07/14	12.0	11.5	11.0	08/09	12.1	11.6	11.2
07/15	11.0	10.1	09.2	08/10	12.0	11.6	11.2
07/16	10.5	09.9	09.2	08/11	11.4	11.2	11.0
07/17	14.0	12.2	09.5	08/12	12.4	11.8	11.1
07/18	13.0	11.5	10.0	08/13	12.2	11.6	11.0
07/19	11.5	10.8	10.0	08/14	12.0	11.5	11.1
07/20	12.2	11.1	11.0	08/15	11.1	11.0	11.0
07/21	12.2	12.0	11.8	08/16	11.0	11.0	11.0
07/22	12.0	11.1	11.2	08/17	11.5	10.9	10.4
07/23	11.5	11.2	10.8	08/18	11.4	11.1	10.8
07/24	11.0	10.9	10.8	08/19	11.4	11.2	11.0
07/25	11.2	10.9	10.5	08/20	11.5	11.3	11.0
07/26	11.0	10.2	09.5	08/21	11.5	10.7	09.8
07/27	10.0	10.1	10.2	08/22	11.6	10.6	09.5
07/28	11.5	10.9	10.2	08/23	12.0	11.0	10.0
07/29	12.0	11.5	11.0	08/24	12.0	11.0	10.0
07/30	12.0	11.8	11.5	08/25	12.0	11.0	10.0
07/31	12.2	11.9	11.5	08/26	11.6	10.8	10.0
08/01	11.2	11.1	11.0	08/27	11.8	10.9	10.0
08/02	12.0	11.5	11.0	08/28	12.2	11.1	10.0

^{*}Mean temperature (°C) is the average of the daily high and low over a 24 hour period from midnight to midnight.

Appendix D.

Table 4. (continued)

	200						
<u>Date</u>	<u>High</u>	Mean*	Low	Date	<u>High</u>	Mean*	Low
08/29	11.0	10.2	09.4	09/24	06.7	06.6	06.4
08/30	09.4	08.9	08.5	09/25	06.7	06.1	05.6
08/31	09.2	08.8	08.4	09/26	05.6	05.3	05.0
09/01	09.5	08.5	07.5	09/27	05.0	05.0	05.0
09/02	08.8	07.9	07.0	09/28	05.6	05.4	05.3
09/03	08.8	07.9	07.0	09/29	05.6	03.7	03.9
09/04-09/10	equipment	malfuncti	on	09/30	03.9	03.6	03.3
09/11	08.9	07.8	06.7	10/01	03.9	03.8	03.6
09/12	07.8	06.2	04.7	10/02	04.2	04.1	03.9
09/13	07.8	07.5	07.2	10/03	04.4	04.3	04.2
09/14	08.3	08.0	07.8	10/04	04.7	04.6	04.4
09/15	08.3	08.3	08.3	10/05	05.0	04.9	04.7
09/16	08.3	07.5	06.7	10/06	05.3	04.6	03.9
09/17	07.8	07.5	07.2	10/07	05.3	04.8	04.2
09/18	07.8	07.8	07.8	10/08	04.2	04.2	04.2
09/19	07.8	07.6	07.5	10/09	04.2	04.1	03.9
09/20	07.8	07.2	06.7	10/10	05.3	04.1	03.9
09/21	07.2	06.7	06.1	10/11	05.0	04.7	04.4
09/22	06.7	06.4	06.1	10/12	05.0	04.1	04.3
09/23	06.7	06.4	06.1	1.48			

^{*}Mean temperature (°C) is the average of the daily high and low over a 24 hour period from midnight to midnight.

VOLUME TWO

Appendix E*

Instream Flow Computer Analysis Data
Willow Creek Middle Reach

^{*}Copies of Volume Two are on file at the ADF&G Region II Headquarters of the Habitat and Sport Fish Divisions in Anchorage.