BEFORE THE

FEDERAL ENERGY REGULATORY COMMISSION APPLICATION FOR LICENSE FOR MAJOR PROJECT

SUSITNA HYDROELECTRIC PROJECT

VOLUME 3

DRAFT

APPENDIX B1

VOLUME 3

STATE MODEL (VERSION A85.1) REGIONALIZATION MODEL (VERSION A84.CD) SGENARIO GENERATOR

ARLIS

Alaska Resources
Library \& Information Services
Anctoragt, Alaska

VOLUME COMPARISON

FOLUME NUMBER COMPARISON
LICENSE APPLICATION AMENDMENT ∇S. JULY 29, 1983 LICENSE APPLICATION

EXHIBIT	CHAPTER	DESCRIPTION	$\begin{aligned} & \text { AMENDMENT } \\ & \text { VOLOME NO. } \end{aligned}$	JULY 29, 1983 APPLICATION VOL DME NO.
A	Entire	Project Description	1	1
B	Entire	Project Operation and Resource Utilization	2	$2 \& 2 A$
	App. B1	MAP Model Documentation Report	3	2B
	App. B2	RED Model Documentation Report	4	2C
	App. B3	RED Model Update	4	--
C	Entire	Proposed Construction Schedule	5	1
D	Entire	Project Costs and Financing	5	1
	App. D1	Fuels Pricing	5	1

E	1	General Description of Locale	6	5A
	2	Water Use and Quality	6	5A
	Tables Figures		7	5A
	Figures		8	5B
	3	Fish, Wildlife and Botanical Resources (Sect. 1 and 2)	9	$6 A$ $6 B$
		Fish, Wildlife and Botanical Resources (Sect. 3)	10	6A
		Fish, Wildife and Botanical Resources (Sect. 4, 5, 6, \& 7)	11	$\begin{aligned} & 6 A \\ & 6 B \end{aligned}$
	4	Historic \& Archaeological Resources	12	7
	5	Socioeconomic Impacts	12	7
	6	Geological and Soil Resources	12	7
	7	Recreational Resources	13	8
	8	Aesthetic Resources	13	8
	9	Land Use	13	8
	10	Alternative Locations, Designs and Energy Sources	14	9
	11	Agency Consultation	14	10 A 10 B
F	Entire	Project Design Plates	15	3
F	Entire	Supporting Design Report	16	--
G	Entire	Praject Limits and Land Ownership Plates	17	4

SUMMARY TABLE OF CONTENTS

SUSITNA HYDROELECTRIC PROJECT LICENSE APPLICATION

SUMMARY TABLE OF CONTENTS

EXHIBIT A PROJECT DESCRIPTION

	Title Page No.
	1 - project strdctures - watana stage I (**) A-1-2
	1.1 - General Arrangement (**) A-1-2
	1.2 - Dam Embankment (**) A-1-4
	1.3 - Diversion (**) A-1-6
	1.4 - Emergency Release Facilities (**) A-1-9
	1.5 - Outlet Facilities (**) A-1-10
-	1.6 - Spillway (**) A-1-13
	1.7 - This section deleted A-1-15
	1.8 - Power Intake (**) A-1-15
-	1.9 - Power Tunnels and Penstocks (**) A-1-18
	1.10 - Powerhouse (**) A-1-19
	1.11 - Tailrace (**) A-1-22
	1.12 - Main Access Plan (**) A-1-23
	1.13 - Site Facilities (**). A-1-25
	1.14 - Relict Channel (***) A-1-29
	2 - Reservoir data - watana stage I (**) A-2-1
	3 - TURBINES AND GENERATORS - Watana stage I (**) A-3-1
	3.1 - Unit Capacity (**) A-3-1
	3.2 - Turbines (***) A ${ }^{\text {a }}$-1
	3.3 - Generators (**) A ${ }^{\text {a-1 }}$
	3.4 - Governor System (0) A-3-3
	4 - APPURTENANT MECHANICAL AND ELECTRICAL EQUIPMENT -
	Watana stage I (**) A-4-1
	4.1-Miscellaneous Mechanical Equipment (**) A-4-1
	4.2 - Accessory Electrical Equipment (**) A-4-5
	4.3 - SF6 Gas-Insulated 345 kV Substation (GIS) ($* * *$) . A-4-12
	5 - TRANSMSSION FACILITIES FOR Watana Stage I (0) A-5-1
	5.1 - Transmission Requirements (0) A-5-1
	5.2 - Description of Facilities (0) A-5-1
	5.3 - Construction Staging (0) A-5-11

Exhibit a PROJECT DESCRIPTION
Title Page No．
6 －PROJECT STRUCTURES－DEVIL CANYON STAGE II（＊＊） A－6－1
6．1－General Arrangement（＊＊） A－6－1
6.2 －Arch Dam（＊＊） A－6－2
6.3 －Saddle Dam（＊＊） A－6－4
6．4－Diversion（＊＊） A－6－6
6.5 －Outlet Facilities（＊＊） A－6－8
6.6 －Spillway（＊＊） A－6－10
6.7 －Emergency Spillway A－6－12（This section deleted）
6.8 －Power Facilities（＊） A－6－12
6.9 －Penstocks（＊＊） A－6－13
6.10 －Powerhouse and Related Structures（ $* *$ ） A－6－14
6.11 －Tailrace Tunnel（＊） A－6－17
6.12 －Access Plan（＊＊） A－6－17
6．13－Site Faci1ities（＊） A－6－18
7 －DEVIL CANYON RESERVOIR STAGE II（＊） A－7－1
8 －TURBINES AND GENERATORS－DEVIL CANYON STAGE II（＊＊） A－8－1
8.1 －Unit Capacity（＊＊） A－8－1
8.2 －Turbines（＊＊） A－8－1
8.3 －Generators（o） A－8－1
8.4 －Governor System（o） A－8－2
9 －APPURTENANT EQUIPNENT－DEVIL CANYON STAGE II（0） A－9－1
9.1 －Miscellaneous Mechanical Equipment（o） A－9－1
9.2 －Accessory Electrical Equipment（o） A－9－3
9.3 －Switchyard Structures and Equipment（o）． A－9－6
10 －TRANSMISSION LINES－DEVIL CANYON STAGE II（＊＊） A－10－1
11 －PROJECT STRDCTURES－WATANA STAGE III（＊＊＊） A－11－1
11．1－General Arrangement（＊＊＊） A－11－1
11.2 －Dam Embankment（ $* * *$ ） A－11－3
11.3 －Diversion（＊＊＊） A－11－5
11．4－Emergency Release Facilities（＊＊＊） A－11－6

SUMMARY TABLE OF CONTENTS (cont'd)

Exhibit a PROJECT DESCRIPTION

Title

Page No.

11.5 - Outlet Facilities (***) A-11-6
11.6 - Spillway (***) A-11-7
11.7 - Power Intake (***) A-11-8
11.8 - Power Tunnel and Penstocks (***) A-11-11
11.9 - Powerhouse (***) A-11-11
11.10 - Trailrace (***) A-11-13
11.11 - Access Plan (***) A-11-13
11.12 - Site Facilities (***) A-11-13
11.13 - Relict Channel (***) A-11-13
12 - RESERVOIR DATA - WATANA STAGE III (***) A-12-1
13 - TURBINES AND GENERATORS - WATANA STAGE III (***) A-13-1
13.1 - Unit Capacity (***) A-13-1
13.2 - Turbines (***) A-13-1
13.3 - Generators (***) A-13-1
13.4 - Governor System (***) A-13-1
14 - appurtenant mechanical and electrical equiphent - WATANA STAGE III (***) A-14-1
14.1 - Miscellaneous Mechanical Equipment (***) A-14-1
14.2 - Accessory Electrical Equipment (***) A-14-1
15 - TRANSMISSION FACILITIES - WATANA STAGE III (***) A-15-1
15.1 Transmission Requirements (***) A-15-1
15.2 Switching and Substations (***) A-15-1
16 - LandS OF the UNITED STATES (**) A-16-1
17 - REFERENCES A-17-1
SUMMARY TABLE OF CONTENTS (cont'd)
EXHIBIT B
PROJECT OPERATION AND RESOURCE UTILIZATION

Title
Stage Model

1. Introduction 1-1
2. Economic Module Description 2-1
3. Fiscal Module Description 3-1
4. Demographic Module Description 4-1
5. Input Variables 5-1
6. Variable and Parameter Name Conventions 6-1
7. Parameter Values, Definitions and Sources 7-1
8. Model Validation and Properties 8-1
9. Input Data Sources 9-1
10. Programs for Model Use 10-1
11. Model Adjustments for Simulation 1I-1
12. Key to Regressions 12-1
13. Input Data Archives 13-1
Regionalization Model
14. Model Description 1
15. Flow Diagram 5
16. Model Inputs 7
17. Variable and Parameter Names 9
18. Parameter Values 13
19. Model Validation 31
20. Programs for Model 38
21. Model Listing 39
22. Model Parameters 57
23. Exogenous, Policy, and Startup Values 61
Scenario Generator
Introduction 1
24. Organization of the Library Archives 1
25. Using the Scenario Generator 8
26. Creating, Manipulating, Examining, and Printing Library Files 14
27. Model Output 22Page No.
SUMMARY TABLE OF CONTENTS（cont＇d）
EXHIBIT B－APPENDIX B2 B2
RAILBELT ELECTRICITY DEMAND（RED）MODELTECENICAL DOCUMENTATION REPORT（1983 VERSION）

RAILBELT ELECTRICITY DEMAND (RED) MODEL
TECBNICAL DOCUMENTATION REPORT (1983 VERSION)풍
Title Page No．
1－INTRODUCTION 1.1
2 －OVERVIEW 2.1
3 －UNCERTAINTY MODULE 3.1
4 －THE HOUSING MODULE 4.1
5 －THE RESIDENTIAL CONSUMPTION MODULE 5.1
6 －THE BUSINESS CONSUMPTION MODULE 6.1
7 －PRICE ELASTICITY 7.1
8 －THE PROGRAM－INDUCED CONSERVATION MODULE 8.1
9 －THE MISCELLANEOUS MODULE 9.1
10 －LARGE INDUSTRIAL DEMAND 10.1
11 －the peak demand module 11.1
12 －MODEL VALIDATION 12.1
13 －MISCELLANEOUS TABLES 13.1

SUMMARY TABLE OF CONTENTS (cont'd)
EXHIBIT B - APPENDIX B3
RAILBELT ELECTRICITY DEMAND (RED) MODELCHANGES MADE JULY 1983 TO ADGUST 1985
Title Page No.
1 - INTRODUCTION 1.1
2 - RED MODEL PRICE ADJUSTMENT REVISIONS 2.1
3 - RESIDENTIAL CONSUMPTION MODULE 3.1
4 - BUSINESS SECTOR 4.1
5 - PEAK DEMAND 5.1
6 - EFFECT OF THE MODEL CHANGES ON THE FORECASTS 6.1

SUMMARY TABLE of CONTENTS（cont＇d）

EXHIBIT C
 PROPOSED CONSTRUCTION SCHEDULE

1 －Watana stage I schedule（＊＊） C－1－1
1.1 －Access（＊） C－1－2
1.2 －Site Facilities（＊＊） C－1－2
1．3－Diversion（＊＊） C－1－2
1.4 －Dam Embankment（＊＊） C－1－2
1.5 －Spillway and Intakes（＊＊） C－1－3
1.6 －Powerhouse and Other Underground Works（＊＊） C－1－3
1.7 －Relict Channel（＊＊） C－1－3
1.8 －Transmission Lines／Switchyards（＊） C－1－3
1.9 －General（＊＊） C－1－3
2 －devil canyon stage il schedule（＊＊） C－2－1
2.1 －Access（＊＊） $\mathrm{C}-2-1$
2.2 －Site Facilities（＊＊） C－2－1
2.3 －Diversion（＊） C－2－1
2.4 －Arch Dam（＊＊） C－2－1
2.5 －Spillway and Intake（＊） C－2－2
2.6 －Powerhouse and Other Underground Works（a） C－2－2
2．7－Transmission Lines／Switchyards（＊） C－2－2
2.8 －General（＊） C－2－2
3 －WATANA STAGE III SCBEDULE（＊＊＊） C－3－1
3.1 －Access（＊＊＊） C－3－1
3.2 －Site Facilities（＊＊＊） C－3－1
3.3 －Dam Embankment（＊＊＊） C－3－1
3.4 －Spillway and Intakes（＊＊＊） C－3－2
3.5 －Powerhouse and Other Underground Works（＊＊） C－3－2
3.6 －Relict Channel（＊＊＊） C－3－2
3．7－Transmission Lines／Switchyards（＊＊＊） C－3－2
3.8 －General（＊＊＊） C－3－2
4 －EXISTING TRANSMISSION SYSTEM（＊＊＊） C－4－1

EXHIBIT D
PROJECT COSTS AND FINANCING

SUMMARY TABLE OF CONTENTS（cont＇d）

（

EXHIBIT D
 PROJECT COSTS AND FINANCING

Title Page No．
4.4 －Market Value of Power（＊＊＊） D－4－4
4.5 －Rate Stabilization（ $* * *$ ） D－4－4
4.6 －Sensitivity of Analyses（＊＊＊） D－4－4
5 －REFERENCES（＊＊＊） D－5－14

SUMMARY TABLE OF CONTENTS (cont'd)

EXHIBIT D - APPENDIX Dl

 FUELS PRICINGTitle Page No.
1 - INTRODOCTION (***) D1-1-1
2 - WORLD OIL PRICE (***) D1-2-1
2.1 - The Sheman H. Clark Associates Forecast ($* * *$) D1-2-1
2.2 - The Composite Oil Price Forecast (***) D1-2-2
2.3 - The Wharton Forecast (***) D1-2-5
3 - NATURAL GAS (***) D1-3-1
3.1 - Cook Inlet Gas Prices (***) D1-3-1
3.2 - Regulatory Constraints on the Availability of Natural Gas (***) D1-3-10
3.3 - Physical Constraints on the Availability of Cook Inlet Natural Gas Supply (***) D1-3-12
3.4 - North Slope Natural Gas (***) D1-3-20
4 - COAL (***) D $1-4-1$
4.1 - Resources and Reserves (***) D1-4-1
4.2 - Demand and Supply (***) D1-4-3
4.3 - Present and Potential Alaska Coal Prices ($* * *$) D1-4-4
4.4 - Alaska Coal Prices Summarized (***) D1-4-10
5 - DISTILLATE OIL (***) D1-5-1
5.1 - Availability (***) D1-5-1
5.2 - Distillate Price (***) D1-5-1
6 - REFERENCES D1-6-1
TitlePage No.
1 - GENERAL DESCRIPTION (*) E-1-1-1
1.1 - General Setting ($* *$) E-1-1-1
1.2 - Susitna Basin (*) E-1-1-2
2 - REFERENCES E-1-2-1
3 - GLOSSARY E-1-3-1

SUMMARY TABLE OF CONTENTS (cont'd)

EXHIBIT E - CHAPTER 2 WATER USE AND QUALITY

SUMMARI TABLE OF CONTENTS (cont'd)

$$
\text { EXHIBIT E - CHAPTER } 2
$$

WATER USE AND QUALITY
Title
Page No.
6.4 - Watana Stage I Operation (**) E-2-6-7
6.5 - Mitigation - Devil Canyon Stage IIConstruction (**) E-2-6-13
6.6 - Mitigation - Devil Canyon Stage II - E-2-6-13 Impoundment (*-x)
6.7 - Mitigation - Devil Canyon/Watana Operation (**) E-2-6-13
6.8 - Mitigation - Watana Stage III Construction (***) E-2-6-15
Construction (***)
6.9 - Mitigation - Watana Stage III -Impoundment/Construction (***) E-2-6-16
6.10 - Mitigation - Stage III Operation (***) E-2-6-16
6.11 - Access Road and Transmission Lines (***) E-2-6-18
7 - REFERENCES E-2-7-1
8 - GLOSSARY E-2-8-1

EXHIBIT E - CHAPTER 3
FISH, WILDLIFE, AND bOTANICAL RESOURCES

EXHIBIT E - CHAPTER 3
FISE, WILDLIFE, AND BOTANICAL RESOURCES

SUMMARY TABLE OF CONTENTS (cont'd)
 EXHIBIT E - CHAPTER 4
 HISTORIC AND ARCHEOLOGICAL RESOURCES

Title Page No.
1 - INTRODUCTION AND SUMMARY (**) E-4-1-1
1.1 - Program Objectives (**) E-4-1-4
1.2 - Program Specifics (**) E-4-1-4
2 - BASELINE DESCRIPTION (**) E-4-2-1
2.1 - The Study Area (**) E-4-2-1
2.2 - Methods - Archeology and History (**) E-4-2-2
2.3 - Methods - Geoarcheology (**) E-4-2-10
2.4 - Known Archeological and Historic Sites in the Project Area (**) E-4-2-12
2.5 - Geoarcheology (**) E-4-2-13
3 - EVALUATION OF AND IMPACT ON HISTORICAL AND ARCHEOLOGICAL SITES (**) E-4-3-1
3.1 - Evaluation of Selected Sites Found: Prehistory and History of the Middle Susitna Region (**) E-4-3-1
3.2 - Impact on Historic and Archeological Sites (**) E-4-3-4
4 - MITIGATION OF IMPACT ON HISTORIC ANDARCHEOLOGICAL SITES(**)E-4-4-1
4.1 - Mitigation Policy and Approach (**) E-4-4-1
4.2 - Mitigation Plan (**) E-4-4-2
5 - AGENCY CONSULTATION (**) E-4-5-1
6 - REFERENCES E-4-6-1
7 - GLOSSARY E-4-7-1

EXHIBIT E - CHAPTER 5

SOCIOECONOMIC IMPACTS

Title Page No.
1 - INTRODUCTION (**) E-5-1-1
2 - BASELINE DESCRIPTION (**) E-5-2-1
2.1 - Identification of Socioeconomic Impact Areas ($* *$) $E-5-2-1$
2.2 - Description of Employment, Population, Personal Income and Other Trends in the Impact Areas (**) $E-5-2-1$
3 - EVALDATION OF THE IMPACT OF THE PROJECT (**) E-5-3-1
3.1 - Impact of In-migration of People on Governmental Facilities and Services ($* *$) E-5-3-2
3.2 - On-site Worker Requirements and Payroll, by Year and Month (**) E-5-3-32
3.3 - Residency and Movement of Project Construction Personnel (**) E-5-3-35
3.4 - Adequacy of Available Housing in Impact Areas (***) E-5-3-39
3.5 - Displacement and Influences on Residences and Businesses ($* *$) E-5-3-49
3.6 - Fiscal Impact Analysis: Evaluation of Incremental Local Government Expenditures and Revenues ($k \star$) E-5-3-59
3.7 - Local and Regional Impacts on Resource User Groups (**) E-5-3-65
4 - MITIGATION (**) E-5-4-1
4.1 - Introduction (**) E-5-4-1
4.2 - Background and Approach (**) E-5-4-1
4.3 - Attitudes Toward Changes E-5-4-2
(This section deleted)
4.4 - Mitigation Objectives and Measures (**) $E-5-4-2$

```
m
\infty
    SUMMARY TABLE OF CONTENTS (cont'd)
    EXHIBIT E - CHAPTER 5
    SOCIOECONOMIC IMPACTS
```

TitlePage No.
5 - MITIGATION MEASURES RECOMNENDED BY AGENCIES(**) E-5-5-1
5.1 - Alaska Department of Natural Resources (DNR) (**) E-5-5-1
5.2 - Alaska Department of Fish and Game (ADF\&G) (*) E-5-5-1
5.3 - U.S. Fish and Wildlife Service (FWS) (*) E-5-5-25.4 - Summary of Agencies' Suggestions for FurtherStudies that Relate to Mitigation (**) E-5-5-2
6 - References E-6-6-1

SUMMARY TABLE OF CONTENTS (cont'd)

EXHIBIT E - CHAPTER 6 GEOLOGICAL AND SOIL RESOURCES

1 - INTRODUCTION (**) E-6-1-1
2 - BASELINE DESCRIPTION (*) E-6-2-1
2.1 - Regional Geology (*) E-6-2-1
2.2 - Quarternary Geology (*) E-6-2-2
2.3-Mineral Resources (o) E-6-2-3
2.4 - Seismic Geology (*) E-6-2-4
2.5 - Watana Damsite (**) E-6-2-11
2.6 - Devil Canyon Damsite (o) E-6-2-17
2.7 - Reservair Geology (*) E-6-2-23
3 - IMPACTS (*) E-6-3-1
3.1 - Reservoir-Induced Seismicity (RIS) (*) E-6-3-1
3.2 - Seepage (*) E-6-3-4
3.3 - Reservoir Slope Failures ($* *$) E-6-3-4
3.4 - Permafrost Thaw (*) E-6-3-11
3.5 - Seismically-Induced Failure.(*) E-6-3-11
3.6 - Reservoir Freeboard for Wind Waves (**) E-6-3-11
3.7 - Development of Borrow Sites and Quarries (E-6-3-12
4 - MITIGATION (**) E-6-4-1
4.1 - Impacts and Hazards (o) E-6-4-1
4.2 - Reservoir-Induced Seismicity (o) E-6-4-1
4.3 - Seepage (**) E-6-4-2
4.4 - Reservoir Slope Failures (**) E-6-4-2
4.5 - Permafrost Thaw (**) E-6-4-3
4.6 - Seismically-Induced Failure (*) E-6-4-3
4.7 - Geologic Hazards (*) E-6-4-4
4.8 - Borrow and Quarry Sites (*) E-6-4-4
5 - REFERENCES E-6-5-1
6 - GLOSSARY E-6-6-1

SUMMARY TABLE OF CONTENTS (cont'd)

EXHIBIT E - CEAPTER 7

RECREATIONAL RESOURCES
TitlePage No.
6.1 - Phasing (**) E-7-6-1
6.2 - Detailed Recreation Design ($\times * \times$) E-7-6-1
 E-7-6-2
6.4 - Monitoring ($\mathbf{*}^{*}$) E-7-6-3
7 - COSTS FOR CONSTRUCTION AND OPERATION OF THE PROPOSED RECREATION FACILITIES (**) E-7-7-1
7.1 - Construction (**) E-7-7-1
7.2 - Operations and Maintenance (**) E-7-7-1
7.3 - Monitoring ($\boldsymbol{\lambda}_{\boldsymbol{*}-\lambda}$) E-7-7-2
8 - AGENCY COORDIKATION (**) E-7-8-1
8.1 - Agencies and Persons Consulted (**) E-7-8-1
8.2 - Agency Comments ($\mathrm{\lambda}_{\mathrm{*}}$) E-7-8-1
8.3 - Native Corporation Coments ($* * *$) E-7-8-1
8.4 - Consultation Meetings (***) E-7-8-2
9 - REFERENCES E-7-9-1
10 - GLOSSARY E-7-10-1
APPENDICES
E1. 7 data on regional recreation facilities
E2. 7 attractive features - Inventory data
E3. 7 RECREATION SITE INVENTORY AND OPPORTUNITY EVALUATION
E4. 7 PROJECT RECREATIONAL DEMAND ASSESSMENTE5.7 EXAMPLES OF TYPICAL RECREATION FACILITY DESIGNSTANDARDS FOR THE SUSITNA PROJECTE6.7 PHOTOGRAPHS OF SITES WITHIN THE PROJECT RECREATIONSTUDY AREA

SUMMARY TABLE OF CONTENTS (cont'd)

EXHIBIT E - CRAPTER 8 AESTHETIC RESOURCES

Title Page No.
1 - INTRODUCTION (**) E-8-1-1
1.1 - Purpose (*) E-8-1-1
1.2 - Relationship to Other Analyses (*) E-8-1-1
1.3-Environmental Setting (**) E-8-1-1
2 - PROCEDURE (*) E-8-2-1
3 - STUDY OBJECTIVES (*) E-8-3-1
4 - PROJECT FACILITIES (*) E-8-4-1
4.1 - Watana Project Area (*) E-8-4-1
4.2 - Devil Canyon Project Area (*) E-8-4-1
4.3 - Watana Stage III Project Area (***) E-8-4-1
4.4 - Denali Highway to Watana Dam Access Road (*) . . E-8-4-1
4.5 - Watana Dam to Devil Canyon Dam Access Road (*) . E-8-4-2
4.6 - Transmission Lines (*) E-8-4-2
4.7 - Intertie E-8-4-2(This section deleted)
4.8 - Recreation Facilities and Features (*) E-8-4-2
5 - EXISTING LANDSCAPE (**) E-8-5-1
5.1 - Landscape Character Types (*) E-8-5-1
5.2 - Notable Natural Features (**) E-8-5-1
6 - VIEWS (**) E-8-6-1
6.1 - Viewers (***) E-8-6-1
6.2 - Visibility (***) E-8-6-1
7 - aesthetic evaldation ratings (**) E-8-7-1
7.1 - Aesthetic Value Rating (*) E-8-7-1
7.2 - Absorption Capability (*) E-8-7-1
7.3 - Composite Ratings (**) E-8-7-2

SUMMARY TABLE OF CONTENTS (cont'd)

EXHIBIT E - GHAPTER 8 aesthetic resources
Title Page No.
8 - AESTHETIC IMPACTS (**) E-8-8-1
8.1 - Mitigation Planning of Incompatible Aesthetic Impacts (Now addressed in Section 9) E-8-8-1
8.2 - Watana Stage I (***) E-8-8-2
8.3 - Devil Canyon Stage II (***) E-8-8-3
8.4 - Watana Stage III (***) E-8-8-4
8.5 - Access Routes (***) E-8-8-5
8.6 - Transmission Facilities (***) E-8-8-6
9 - mitigation (**) E-8-9-1
9.1 - Mitigation Feasibility (**) E-8-9-1
9.2 - Mitigation Plan (***) E-8-9-2
9.3 - Mitigation Costs (**) E-8-9-11
9.4 - Mitigation Monitoring (***) E-8-9-12
10 - aestaetic impact evaldation of the intertie E-8-10-1(This Section Delected)
11 - AGENCY COORDINATION (**) E-8-11-1
11.1 - Agencies and Persons Consulted E-8-11-1
11.2 - Agency Comments (**) E-8-11-1
12 - REFERENCES E-8-12-1
13 - glossary E-8-13-1
APPENDICES
E1.8 EXCEPTIONAL NATURAL FEATURES
E2. 8 SITE PHOTOS WITH SIMULATIONS OF PROJECT FACILITIESE3.8 PHOTOS OF PROPOSED PROJECT FACILITIES SITES
E4. 8 EXAMPLES OF EXISTING AESTHETIC IMPACTS

```
m
*
Title
Page No.
APPENDICES (cont'd)
E5.8 EXAMPLES OF RESERVOIR EDGE CONDITIONS SIMILAR TO THOSE
    ANTICIPATED AT WATANA AND DEVIL CANYON DAMS
E6.8 PROJECT FEATURES IMPACTS AND CHARTS
E7.8 GENERAL AESTHETIC MITIGATION MEASURES APPLICABLE TO THE
    PROPOSED PROJECT
E8.8 LANDSCAPE CHARACTER TYPES OF THE PROJECT AREA
E9.8 AESTHETIC VALUE AND ABSORPTION CAPABILITY RATINGS
```


SUMMARY TABLE OF CONTENTS (cont ${ }^{\circ} \mathrm{d}$)
 EXHIBIT E - CHAPTER 9
 LAND USE

Title Page No.
1 - INTRODDCTION (***) E-9-1-1
2 - HISTORICAL AND PRESENT LAND USE (***) E-9-2-1
2.1 - Historical Land Use (***) E-9-2-1
2.2 - Present Land Use (***) E-9-2-1
3 - Land management planning in the project AREA (***)

E-9-3-1
4 - impacts on land use with and hithodt the PROJECT (***)

E-9-4-1
5 - mitigation (***) E-9-5-1
6 - REFERENCES E-9-6-1

SUMMARY TABLE OF CONTENTS (cont'd)

EXHIBIT E - CHAPTER 10
ALTERNATIVE LOCATIONS, DESIGNS, AND ENERGY SOURCES
4.8 - Solar Energy Alternatives (***)
4.9 - Conservation Alternatives ($\mathrm{*}_{\mathrm{*} *}$)
E-10-4-44

$$
E-10-4-44
$$

(**x) $\mathrm{E}-10-4-44$
5 - ENVIRONMENTAL CONSEQUENCES OF LICENSE DENIAL (***) • E-10-5-1

4.7 - Wind Conversion Alternatives ($* * *$)

$E-10-4-43$4.8 - Solar Energy Alternatives ($x^{*} * *$)

$$
5 \text { - ENVIRONMENTAL CONSEQUENCES OF LICENSE DENIAL (***) • . E-10-5-1 }
$$

$$
6 \text { - BEFERENCES E-10-6-1 }
$$

$$
7 \text { - GLOSSARY }
$$

7 - GLOSSARYEE-10-7-1

$$
E-10-7-1
$$

SUMMARY TABLE OF CONTENTS (cont'd)

EXHIBIT E - CHAPTER 11 AGENCY CONSULTATION

Title

Page No.

```
1 - ACTIVITIES PRIOR TO FILING TBE INITIAL APPLICATION (1980-February 1983) (***) . . . . . . . E E \(11-1-1\)
```

2 - ADDITIONAL FORMAL AGENCY AND PUBLIC
CONSULTATION (***)

E-11-2-1
2.1 - Technical Workshops (***) E-11-2-1
2.2 - Ongoing Consultation (***) E-11-2-1
2.3 - Further Comments and Consultation (***) E-11-2-2

EXHIBIT F
SUPPORTING DESIGN REPORT (PRELIMINARY)
SUMMARY TABLE OF CONTENTS (cont'd)

Title

Page No.
1 - PROJECT DATA (***) F-1-1
2 - PROJECT DESIGN DATA (**) F-2-1
2.1 - Topographical Data (o) F-2-1
2.2 - Hydrological Data (**) F-2-1
2.3 - Meteorological Data (*) F-2-1
2.4 - Reservoir Data (o) F-2-1
2.5 - Tailwater Elevations (o) $\mathrm{F}-2-1$
2.6 - Design Floods (**) F-2-2
3 - CIVIL design data (*) F-3-1
3.1 - Governing Codes and Standards (o) F-3-1
3.2 - Design Loads (**) F-3-1
3.3 - Stability (*) F-3-6
3.4 - Material Properties (o) F-3-9
4 - GEOTECHNICAL DESIGN DATA (**) F-4-1
4.1 - Watana (**) F-4-1
4.2 - Devil Canyon (**) F-4-10
5 - hydraulic design data (**) F-5-1
5.1 - River Flows (**) F-5-1
5.2 - Design Flows (**) F-5-1
5.3 - Reservoir Levels (**) F-5-1
5.4 - Reservoir Operating Rule (**) F-5-2
5.5 - Reservoir Data (**) F-5-2
5.6 - Wind Effect (**) F-5-3
5.7 - Criteria (***) F-5-3
6 - EQUIPMENT DESIGN CODES AND STANDARDS (**) F-6-1
6.1 - Design Codes and Standards (*) F-6-1
6.2-General Criteria (*) F-6-2

STATE MODEL

ISER MAP ALASKA ECONOMIC MODEL:

 STATE MODEL DOCUMENTATION1. Introduction 1-1
2. Economic Module Description 2-1
3. Fiscal Module Description 3-1
4. Demographic Module Description 4-1
5. Input Variables 5-1
6. Variable and Parameter Name Conventions 6-1
7. Parameter Values, Definitions and Sources 7-1
8. Model Validation and Properties 8-1
9. Input Data Sources 9-1
10. Programs for Model Use 10-1
11. Model Adjustments for Simulation 11-1
12. Key to Regressions 12-1
13. Input Data Archives 13-1
Appendixes
A. Equation List
B. Coefficient and Parameter Values
C. Stochastic Equations
D. Input Variable Default Values
E. Startup Values
F. Variable and Parameter Dictionary

LIST OF FIGURES AND TABLES

Figure 1. Alaska Employment Growth 1-3
Figure 2. MAP Economic Model Structure 2-3
Figure 3. MAP Demographic Module Structure 4-2
Table 1. Employment Variables Used in MAP Economic Model 2-6
Table 2. Personal Income Variables Used in MAP Economic Model 2-9
Table 3. State Revenues 3-2
Table 4. State Expenditures 3-4
Table 5. Links Between Fiscal and Economic Activity 3-7
Table 6. Parameters of Choice: State "Fiscal Rule" for Spending Limit Case (EXRL5) 3-10
Table 7. Demographic Model Output 4-4
Table 8. Alaska Population, April 1, 1980 7-10
Table 9. 1980 Births: Number of Births and Birth Rates per Thousand Women in Five-year Age Cohorts, Alaska Residents 7-11
Table 10. 1980 Deaths: Number of Deaths and Death Rates per Thousand, Alaska Residents 7-12
Table 11. Estimated Exogenous Out-Migration Rates 7-13
Table 12. Civilian Migration to Anchorage, Alaska Public Survey Sample 7-14
Table 13. Estimated Civilian Migration Rates to Anchorage 7-15
Table 14. 1980 Alaska Civilian Headship Rates 7-16
Institute of Socialand Economic ResearchMAP DocumentationDecember 1984, Model A85.1
Table 15. Alaska Civilian Population in GroupQuarters, 19807-17
Table 16. Alaska Military Households 7-18
Table 17. Historical Simulation of Economic Module 8-2
Table 18. Comparison of Actual and Predicted Net
Migration to Alaska 8-6
'Cable 19. Variables Used to Monitor Simulation 8-8
Table 20. No-Growth Projection Results 8-11
Table 21. Impacts of a One-Time Increase in Construction Employment 8-14
'Table 22. Gas Pipeline Construction Impact 8-15
Table 23. Impacts of a Sustained Increase in
Construction Employment 8-16

Introduction

This report describes the core of the Institute for Social and Economic Research（ISER）Man－in－the－Arctic Program．（MAP）Alaska Economic Model．It consists of modules representing the economic， fiscal，and demographic structure of the state．The Native economic activity，state capital stock，and income distribution model linking modules are documented elsewhere．A scenario generator model provides input for running the model．The ISER MAP Alaska Economic Model was developed at the University of Alaska in the early 1970s under a grant from the National Science Foundation．Since its original use to demonstrate the economic，demographic，and fiscal impacts on Alaska of different schedules of federally imposed petroleum development scenarios，it has been used in a variety of types of analyses．These range from analyzing the economic and fiscal effects of specific private sector projects，to the analysis of the implications of different aggregate state wealth management strategies，to the projection of likely economic futures for the state to assist in electricity load forecasting．

These uses reflect the fact that the MAP model is designed for and primarily used for long－run policy analyses，impact analyses， and projections．The analyses are not predictions，but rather＂what if＂experiments．As such，the model has a different structure from one designed specifically for prediction．Whereas a model designed for prediction may not place a priority on describing how an economy works，a policy analysis model such as the MAP model will trade off some predictive ability for the more useful attribute of accurately reflecting within its structure how the economy works．

Because it is a long－run model，furthermore，the MAP model is not concerned with capturing all the short－run fluctuations which affect the economy over the course of the business cycle（or the seasons）．Rather，the model attempts to capture the underlying structural changes affecting the longer－run growth trajectory of the state．For this purpose，the other types of regional models in common use－－economic base models and input－output models－－are inadequate．

The economic base model is the easiest type of model to construct and use，requiring in its simplest formulation only that the basic and nonbasic sectors of the economy be identified by one of several established techniques．The ratio of nonbasic to basic activity becomes the estimate of activity which would be generated by an increase in basic activity．The simplicity of the model means that it can be widely used，but only for a narrow range of state analyses．All variations of economic activity are assumed to originate in changes in basic sector activity and the ratio of nonbasic to basic activity is assumed constant．Neither assumption makes sense for the analysis of economic growth in Alaska．

The input-output model provides much more detail on the interrelationships among industries within a regional economy and can trace the impact of a change in basic sector activity in much greater detail than an economic base model. Differential impacts from changes in different sectors of the economy can be traced. Data requirements are the largest problem in model implementation, although techniques have been developed to regionalize input-output models and make them transferable from region to region. The basic conceptual problems with input-output models are the assumption of constant coefficients over time and the fact that all economic change originates in the export sector. Constant coefficients for interindustry flows and interregional trade flows assume away economies of scale, other types of agglomeration economies such as urbanization, technological change, and import substitution. Input-output analysis is better suited for economies more mature than Alaska which have significant interindustry flows in manufacturing. Most Alaskan industry involves the extraction and exporting of natural resources or support activities such as trade and services. Neither is amenable to input-output analysis.

Econometric models offer much more flexibility in modeling regions than either economic base or input-output-type models in the sense that they can incorporate other facets of growth into the analysis. They can include the ideas from economic base and input-output models, but in addition they can treat other sources of growth and the evolution of the regional economy over time as it changes form. Some of these capabilities include the ability to handle a changing ratio of basic-to-nonbasic employment, to incorporate a fiscal sector into the model of the economy, to include relative regional prices in the model, and to handle the determination of personal income and popuation based on activity within the region. The more comprehensive modeling approach also forces consistency and independent checks into any analysis.

To illustrate the importance of the evolution of the economy over time, Figure 1 shows the growth since 1960 of the economy as measured by four categories of employment. It is clear that the relationship between basic and support sector employment has changed dramatically over the years. Any long-run analysis done in 1960 using an economic base or input-output model projecting into the future would have vastly underestimated actual growth. In the same manner, it would underestimate the level of impacts in a growing economy. This type of misunderstanding was definitely a factor in the underestimation of impacts for all a priori analyses of the Alyeska pipeline.

FIG. 1: ALASKA EMPLOYMENT

(THOUSANDS)

Source: ISER Economic Data Base.

Institute of Social

 and Economic ResearchMAP Documentation
December 1984, Model A85. 1

The choice of model type is based upon uses anticipated for the model. The choice of actual structure depends upon this factor as well as the data which is available and the perceptions of economic interrelationships by the model builder. Both of these factors change over time, and, consequently, the model structure is constantly evolving in a way which maintains and improves its ability to analyze regional economic issues for a rapidly changing economy. The fact that the Alaskan economy is relatively underdeveloped by national standards makes analysis more subject to error than in a larger, more mature economy where the size and stability of the sectors provide not only a more stable track record of past change against which to analyze the future but also the confidence that change will continue to be gradual.

In Alaska, economic change has been and will continue to be dramatic and abrupt. Analysis of past events and relationships do not always provide clear guides to future relationships. Consequently, policy analyses using any Alaskan economic model must recognize and accept a larger degree of uncertainty than elsewhere as well as the fact that different interpretations can be placed upon past events which have different future implications. Three particular areas where this is true are (1) the relationship between employment and population, (2) the growth of support relative to basic sector activity, and (3) the impact of state and local govermment on the economy. 1

2. Description of the Economic Module of the MAP Economic Model

2.1. Summary

The level of economic activity is a function of both export and support-oriented production. The output in the export sectors is determined exogenously while that of the support sectors is a function of local demand, reflected by disposable personal income and wealth. Export and support production generate wages and salaries which form the major portion, after personal taxes are deducted, of disposable personal income. Thus, demand and supply are simultaneously determined each year.

The export sectors are portions of the following two-digit SIC categories: agriculture-forestry-fisheries, manufacturing, federal government, petroleum and other mining, transportation, and construction related to these activities. Tourism crosses sectoral boundaries and is also exogenous. All other sectors are classified as nonbasic. State and local government output is an important component of economic activity, which is determined by policy choice.

The Alaskan economy is linked to the national economy through the average U.S. weekly wage, the U.S. consumer price index, the unemployment rate, and real disposable personal income per capita. The Alaskan versions of these variables are related to their national counterparts but are strongly affected by local conditions such as excess labor demand.

The close transport link to the contiguous United States means that the supplies of most inputs are infinitely elastic. Thus, a change in demand does not directly affect the price level of these inputs which are not locally supplied. Labor and natural resources are locally supplied and thus changes in demand do affect price, particularly for labor in the short run. In the long run the supply of labor is also infinitely elastic.

Data for model construction comes primarily from the Alaska Department of Labor employment statistics, the U.S. Department of Commerce Bureau of Economic Analysis personal income statistics, and the gross-product-by-industry series developed by the Institute of Social and Economic Research.

2.2. Introduction

The structure of the economic module of the MAP model (as well as the demographic) is illustrated in highly simplified form in Figure 2. In general terms, the model proceeds sequentially to estimate industrial output, industry employment, wages and salaries, and finally real disposable personal income. However, the outputs of certain industries are themselves dependent on the level of personal income. Because of this interrelationship, total output and income are simultaneously determined in the model. For example, an increase in personal income, by increasing the demand for services, leads to increased output of the service sector. The extra output will, in turn, require additional workers, and the wages and salaries paid to these workers will add further to personal income. Thus, the process has come full circle, demonstrating that industrial output and personal income are indeed simultaneously interdependent.

The model uses several different approaches in determining the level of production in each industrial sector.. This reflects the fact that the relevant causal mechanisms vary significantly from one industrial sector to another. In determining production levels, the model classifies industrial sectors into three broad categories: (1) those industries whose output is determined primarily by outside factors, (2) those industries whose output is determined by policy decisions, and (3) those industries whose output responds to changes in the level of economic activity within Alaska. These categories are, however, not mutually exclusive. Several of Alaska's important industries have their outputs determined by combinations of the above factors.

The principal industries whose output is determined by outside forces are forestry, fisheries, agriculture, tourism, and the federal government. Production levels in forestry and fisheries, Alaska's traditional resource-based industries, are determined by factors such as prices on world markets, supplies of natural resources, and policy decisions made by the federal and state governments concerning the appropriate utilization rates for Alaska's natural resources. Agriculture, now and in the future, is severely constrained by Alaska's harsh climate. Within the limits imposed by the climate, agricultural output in Alaska is determined by factors such as the availability of suitable land, prices of agricultural products, and government transportation policies. Tourism is constrained by the demand created by tourists from the United States and abroad, a demand which, nonetheless, can be stimulated by an improvement in the quantity and quality of tourist facilities. In addition to its regulatory and general policy-making role, the federal government sector has been, and undoubtedly will continue to be, a major direct element in the Alaska economy. The level of federal activity is determined primarily by national needs, with decisions concerning national defense playing a particularly

Institute of Social and Economic Research
MAP Documentation
December 1984, Model A85.1

FIGURE 2. MAP ECONOMIC MODEL STRUCTURE

I
important role. Clearly, the decisions affecting federal activity in Alaska are influenced to only a minor extent by economic conditions within Alaska.

The petroleum industry is also largely controlled by forces outside the Alaska economy; but because of its importance, it is given special and much more detailed treatment. Petroleum employment and output are projected in accordance with detailed petroleum development scenarios. On the basis of present information, Alaska's petroleum resources appear to be potentially so vast and so widespread that there are countless alternative ways in which these resources might be developed.

In contrast to the industries influenced primarily by outside forces or policy decisions, the output of the other private sector industries (consisting of trade, finance, services, transportation, communication, public utilities, local-serving manufacturing, and proprietors) is produced to meet local demands and thus responds to changes in the level of economic activity in Alaska. It is clear that there has been a close link between personal income and output of these industries in the past, and this relationship has remained stable over time.

The cause of this relationship is the fact that a major portion of the demand for output of these sectors originates in the household or consumer sector. The trade, finance (including real estate), and service industries are very closely linked to the spending decisions of Alaska households. Thus, there is a clear causal mechanism producing an increase in output in response to an increase in real personal income. Any action, public or private, which adds to personal income will induce an expansion in output. To reflect this, nonbasic private output in the model is generally made a function of Alaska real disposable personal income and real wealth.

Analyses indicate that in most instances the output of these industries increases more than in proportion to the increase in personal income. That is, if personal income rises 1 percent, the output of the typical support sector industry increases by somewhat more than 1 percent. There are two separate factors which operate to produce this result. First, other studies show that in the postwar years, the service sector in the U.S. economy has tended to expand relative to other industries. Consumers have been devoting an increasing share of their total expenditures to the purchase of various kinds of services. It is not surprising to observe this same phenomenon in the Alaska economy.

The second factor causing the relatively rapid rise in support sector output is more specific to the Alaska situation. As the Alaska economy expands, it becomes feasible to have more of the support sector output produced locally rather than imported from the

Abstract

Fint

Hower 48. The trade, finance, and service industries in particular benefit from the general expansion in the size of the Alaska economy. The share of output produced locally tends to increase relative to the share supplied from the outside. As a result, the rate of growth in the output of these industries is greater than the rate of growth in total consumer expenditures or total personal income.

The output of the construction industry is determined by a combination of internal and external factors. Part of construction activity is designed to supply the needs of the expanding Alaska economy. As in the support sector, this portion of construction output is made a function of real disposable personal income. An increase in personal income and the associated rise in general economic activity produce an increase in the demand for the construction of both residential and commercial structures. A second part of construction supplies the needs of state government capital spending. In addition to the construction required by the general expansion in economic activity, there is likely to be considerable construction activity involved in the building of pipelines, terminals, and other facilities required for petroleum production and other industrial development. This portion of construction output is exogenously determined in accordance with the relevant development scenario.

Proceeding sequentially, after output has been determined in each of the major industrial sectors, the next step in the model is to calculate industry employment. A statistical relationship derived from the Alaska data is used in most industries to project industry employment as a function of industry output. This relationship can be interpreted as a demand-for-labor equation; it specifies the number of workers required to produce a given level of industry output. The supply of labor in Alaska is effectively brought into balance with the demand through the process of migration. When an expansion in economic activity raises the demand for labor, new workers migrate into the state to take advantage of the additional job opportunities. Past experience, most recently in connection with the construction of the trans-Alaska oil pipeline, indicates that the supply of labor adjusts quite quickly. With the supply of labor being so flexible, it is the demand for labor which deterines the actual levels of employment in most industries in the Alaska economy. Table 1 shows in detail the industry classifications currently in use in the model.

There are, however, a few industries for which a different procedure is used to project industry employment. This occurs where there is no discernible systematic relationship between output and employment such as in petroleum and fish harvesting. It seems apparent, for example, that the number of persons who choose to engage in commercial fishing is determined primarily by factors such as culture, tradition, and personal preference, rather than by purely economic factors.

TABLE 1. EMPLOYMENT VARIABLES USED IN MAP ECONOMIC MODEL

Variable Name

Variable Name				m
			EMCN	
Endogenous		EMCN1		
Exogenous		EMCNX		-
exogenous high wage (enclave)	EMCNX1			
exogenous low wage	EMCNX2			
MINING (including petroleum)			EMP9	
MANUFACTURING			EMM9	samm
Endogenous		EMMO		
Exogenous		EMMX		
exogenous high wage	EMMX1			
exogenous low wage	EMMX2			ㅍut
fish processing EMMF				
lumber EMML				
pulp EMMP				m
TRANSPORTATION			EMT9	
Endogenous		EMT91		2m
nontourism related	EMTNT			
tourism related	EMTTOUR			
Exogenous		EMT9X		패TN
COMMUNICATION			EMCM	
PUBLIC UTILITIES			EMPU	-
TRADE			EMD9	
Wholesale		EMDW		\%
Retail		EMDR		
retail, nontourism related	EMDRNT			
retail, tourism related	EMDTOUR			\%
FINANCE-INSURANCE-REAL ESTATE			EMFI	
SERVICES			EMS9	\%
Non-Native Corp.-Related Services business services		EMS91		
	EMSB			
nonbusiness \& nontourism-				\cdots
related services	EMS8NT			
tourism-related services	EMSTOUR			
Native Corp.-Related Services		EMNC		\%

FEDERAL GOVERNMENT EMGF'
Civilian EMGC
Militarya EMGM
STATE-LOCAL GOVERNMENT EMGA
State EMGS
Local EMGL
AGRICULTURE-FORESTRY-FISHERY
(and Unclassified)EMA9
Fishing EMAFISH
Agriculture EMAGRI
Forestry and Unclassified EMAUN
PROPRIETOR ${ }^{\text {a }}$
Nonfish Harvesting EMPRO1EMPROFish HarvestingEMPROFIS
TOTAL CIVILIAN EM96
TOTAL NON-AGRICULTURAL WAGE \& SALARY EM9 7
TOTAL NON-AGRICULTURAL WAGE \& SALARY
PLUS MILITARY EM98
GRAND TOTAL EM99
Basic EM9BASE
Govermment (State \& Local) EM9GOV
SupportEM9SUPRT
Infrastructure EM9INFR
SPECIAL CATEGORIES
FISH HARVESTING EMFISH
Proprietor fish harvesting EMPROFISSalaried fish harvestingEMAFISH
TOURISM EMTOUR
Transporation EMTTOUR
Trade EMDTOUR
ServicesEMSTOUR
aThese are categories not covered in employment data of stateDepartment of Labor.

Institute of Social
and Economic Research
MAP Documentation
December 1984, Model A85.1

Economic activity in the state and local government sector is determined ultimately by government policies. Although economic conditions in Alaska certainly influence the decision process, the process itself is essentially political rather than economic in nature. Since the art of modeling is not nearly so advanced as to enable adequate simulation of the political decision process, the decisions are specified outside the model by a set of "fiscal rules." What is included in the model is a set of relationships that trace out the economic implications of the alternative political decisions. Indeed, one of the principal functions of the MAP model is to project the outcomes associated with alternative social choices. The relationships in the model are, therefore, designed so that they can be readily altered to reflect alternative policy choices at each step in the decision process.

Following the determination of industry output and employment, the next major element in the model is the calculation of industry wage rates. Average wages in each industry are made a function of average earnings in the United States, the cost of living in Alaska, and the "tightness" of the Alaska labor market. Since the cost of living in Alaska is linked to U.S. prices, the net effect is that wage rates in Alaska are very closely related to wages and prices in the United States as a whole. It would be impossible for it to be otherwise so long as Alaska is open to migration to and from the Lower 48. If wages in Alaska became excessively high relative to the rest of the United States, large numbers of workers would migrate into the state, thus tending to force wages down. Conversely, if wages in Alaska were too low, there would be a shortage of labor, tending to force wages up. Thus, over the long run, Alaska wages have to maintain some sort of reasonable relationship with wages in the United States as a whole.

The final piece of industry information generated by the model is total wage and salary payments. Total earnings in each industry are computed by multiplying the industry wage rate times industry employment. To review, this makes four pieces of information that are provided on an annual basis for each industry in the model: (1) real output, (2) employment, (3) wage rates, and (4) wage and salary payments.

After wages and salaries are calculated for each industry, the figures are combined to estimate total wage earnings in the Alaska economy as a whole. This forms the basis for estimating the personal income available to Alaska residents. Although wages and salaries are by far the largest single component, personal income also includes interest, dividends, rental income, proprietors. income, and miscellaneous other labor income. For the United States, these nonwage components make up about a third of total personal income. The elements of personal income are shown in Table 2. In Alaska, the nonwage components are less significant and make up less than 20 percent of personal income, although they are growing.

Institute of Social and Economic Research MAP Documentation December 1984, Model A85.1

TABLE 2. PERSONAL INCOME VARIABLES USED IN MAP ECONOMIC MODEL

Equals: Personal income by place of residence PI net of enclave employee (EMCNX1) income PI3 plus residence adjustment PI8

Minus: Federal income-related taxes RTPIF
State income-related taxes RTISCP

Local income-related taxes
DPIRES
$\begin{array}{cc}\text { Equals: Disposable personal income } \\ \text { plus residence adjustment } \\ \text { ("purchasing power") } & \text { DPI8 }\end{array}$ ("purchasing power")

Institute of Social

 and Economic Research MAP Documentation December 1984，Model A85． 1Disposable personal income is derived from the estimate of personal income－－the difference between the two measures being personal tax and nontax payments．Personal taxes in the United States amount to about 15 percent of personal income．This ratio is somewhat higher for Alaska because of the progressive nature of the federal income tax structure；that is，individuals with large incomes pay higher tax rates than individuals with low incomes． Because of the high cost of living in Alaska，the typical Alaska taxpayer receives a higher income than the U．S．average．This means that the typical Alaska taxpayer also pays a higher－than－average effective tax rate．

The final element in the personal income component of the MAP economic model is an adjustment for the effects of inflation． Disposable personal income measured in current dollars is deflated by the Alaska relative price index to produce an estimate of real disposable personal income in terms of constant 1967 prices．Since virtually all consumer goods are imported from the Lower 48 and since wage rates in Alaska are closely tied to wages in the United States，relative prices in Alaska are projected as a function of the U．S．consumer price index．The empirical studies used to derive this relationship indicate that，over the long run，prices in Alaska may be expected to increase somewhat less rapidly than prices in the United states．This is consistent with the expectation that as the Alaska economy expands，there will be a certain amount of import substitution and economies of scale that will tend to lower costs in some Alaska industries．

Real disposable personal income provides a measure of the effective purchasing power of Alaska consumers after taking into account tax payments and after making allowance for the effects of inflation．This is，of course，the income measure that was used previously in determining the demand for the output of the support sector industries．At this point，the circle is closed：personal income depends on industry output and industry output depends on personal income．

2．3．State Economic Module Detail

Economic activity is measured by four variables in each industry：employment（EM＊＊），wages and salaries（WS＊＊），the wage rate（ $W R^{\star *} *$ ），and gross product（ $X X * *$ ）．The equations describing activity in each industry differ．

Each industry is identified by a suffix．Coefficients for the stochastic equations are identified by a prefix C followed by a number and a suffix letter．In this section，the equations used for each industry are described．

Abstract

Finance, Insurance, Real Estate (**FI) Public Utilities (**PU) Communications ($* * \mathrm{CM}$)

These three industries are modeled in a similar manner which reflects the underlying structure of all the nonbasic support sector industries in the model. In each, the level of output of the industry, measured as real gross product (XX**), is determined by available real disposable personal income. Different combinations of current and lagged values of both regular disposable personal income (R.DPI8N) and the disposable personal income generated directly by premium wage rate enclave construction projects (such as construction of the Alyeska pipeline) (R.DPI8X) as well as the average level of wealth in the economy (WEALTH) work best to explain output in each case.

Average annual employment (EN**) in each case is determined by the output of the industry. This equation represents the production function. A pipeline dummy (PIPE) improves the fit of the equation for the public utilities industry.

The real annual average wage rate (WR**/PDRPI) for each industry (PDRPI is an Alaskan price index) is a function of both national and regional economic factors. The change in the real average U.S. wage rate (WEUS/PDUSCPI) is the major determinant of local wage rates because of the direct link between the Alaska and national labor markets. When the local demand for labor is growing rapidly, there may be upward pressure on wage rates because of temporary supply constraints or because of a temporary increase in premium wage rate employment opportunities. The ratio of premium wage construction employment to total employment (EMCNRT) measures this local labor market tightness. Premium wage construction employment is enclave construction employment at high wages. The oil pipeline is an example of a project which generated premium wage construction employment. A dummy variable (D.80DEC6) reflects the fact that wage rates have proved to be "sticky" in the downward direction since 1980 in the presence of a declining differential between Alaskan and lower 48 price levels.

```
    Institute of Social
    and Economic Research
    MAP Documentation
    December 1984, Model A85.1
```

Finance-Insurance-Real Estate ($* *$ FI)
389: \quad XXFI $=$ C80A + C80C*D71. $73+C 80 B * W E A L T H(-1) * P O P(-1)$
390: LOG(EMFI) $=C 81 A+C 81 B * L O G(X X F I)$
391: LOG(WRFI/PDRPI) = C82A+C82F*D.80DEC6+C82B*LOG(WEUS/ PDUSCPI $)+C 82 D * L O G(1+E M C N R T)+C 82 C * L O G(1+E M C N R T(-1))$

```
392: WSFI == EMFI*WRFI/1000.
```

Public Utilities (**PU)
372: \quad XXPU $=C 72 A+C 72 B * R . D P I 8 N(-1)+C 72 C * R . D P I 8 X+$

```C72D*R.DPI8N(-2)
```

373: LOG(EMPU) $=C 73 A+C 73 C \star$ PIPE $(-1)+C 73 B \star L O G(X X P U)$
374: LOG(WRPU/PDRPI) = C74A+C74F*D.80DEC6+C74B*LOG(WEUS/

```PDUSCPI) +C74C*LOG(1+EMCNRT(-2))+C74D*LOG(1+EMCNRT(-1))
```

375: WSPU $==$ EMPU*WRPU/1000.
Communications ($* * \mathrm{CM}$)
368: $\quad \mathrm{XXCM}=\mathrm{C} 68 \mathrm{~A}+\mathrm{C} 68 \mathrm{~B} * \mathrm{R} . \mathrm{DPI8N}(-1)+\mathrm{C} 68 \mathrm{C} * \mathrm{D} 61.74+\mathrm{C} 68 \mathrm{D} *$ WEALTH $(-1) * P O P(-1)$
369 LOG(EMCM) $=$ C69A+C69B*LOG(XXCM)
370: LOG(WRCM/PDRPI) = C70A+C70F*D.80DEC6+C70B*LOG(WEUS/ PDUSCPI) +C70C*LOG(1+EMCNRT (-2)) +C70D*LOG (1+EMCNRT (-1))
371: WSCM == EMCM*WRCM/1000.

371: WSCM == EMCM*WRCM/1000.

```
Institute of Social
and Economic Research
MAP Documentation
December 1984, Model A85.1
```


Mining (Including Petroleum) (**Pg)

```
Mining industry employment (EMP9), which consists primarily of petroleum exploration and development, is determined outside the model as part of a growth "scenario." Output (XXP9) is calculated from employment. The wage rate and total wages and salaries are calculated in a manner similar to all other industries.
347: LOG(XXP9) \(=\) C52A+C52B*LOG(EMP9)
348: LOG(WRP9/PDRPI) = C53A+C53F*D.80DEC6+C53D*D61.76+C53B* LOG(WEUS/PDUSCPI)+C53C*LOG (1+EMCNRT)
349: WSP9 == EMP9*WRP9/1000
```


Agriculture, Forestry, Fisheries, Unclassified (**Ag)

```
Wage and salary employment in this sector (EMA9) consists of that small portion of the fish harvesting industry employing workers covered by unemployment insurance programs (EMAFISH), agricultural workers (EMAGRI), and unclassified workers plus foresters (EMAUN). The part of fish harvesting employment is a constant proportion of the total (EMFISH). All of agricultural employment (determined in a "scenario") is within this sector. Unclassified and forestry employment is exogenous and not related to the development scenario.
Output and wages and salaries are determined in the same way as in the mining industry. The wage rate is set equal to the federal civilian wage rate because the small size of this industry has precluded the development of a smooth and representative historical data series on the wage rate for regression purposes. Output in this sector consists of the gross product of all fish harvesting, not only that of those workers who work for a wage.
```

```
422: EMA9 = EMAFISH+EMAGRI+EMAUN
423: XXA9 = C90A+C90B*(EMA9+EMPROFIS)
424: WRA9 = WRGC
425: WSA9 == EMA9*WRA9/1000.
```


Transportation ($* * T 9$)

Transportation industry employment has three components: a support component (EMTNT) and two basic sector components--touristrelated employment (EMTTOUR) and large pipeline employment (EMT9X). Gross product in the support component of the industry (XXTNT) is determined by real disposable personal income (R.DPI8N and R.DPI8X). This, in turn, determines support employment in transportation. Tourist-related employment is a constant portion of total tourist-related employment in the economy (EMTOUR). Large pipeline activity is determined outside the model as part of the growth "scenario."

Total industry gross product (XXT9) is the ratio of total to support employment multiplied by support gross product.

There is one wage rate for the whole industry which is calculated in the usual way. Total wages and salaries is also calculated in the usual way.

360: $\mathrm{XXTNT}=\mathrm{C} 64 \mathrm{~A}+\mathrm{C} 64 \mathrm{~B} *$ R. DPI8X + C64D*R.DPI8X*R.DPI8X(-1$)+$ C64C*R.DPI8N+C64E*D71.73

361: LOG(EMTNT) $=$ C65A + C65B*LOG(XXTNT)
362: EMTTOUR $=$ PTOURT*EMTOUR
363: EMT91 = EMTNT+EMTTOUR
364: EMT9 = EMT91+EMT9X
365: XXT9 $=$ XXTNT* $($ EMT9/EMTNT $)$
366: LOG(WRT9/PDRPI) $=$ C66A+C66F*D. 80DEC6 + C66D*D61.76+C66B* LOG(WEUS/PDUSCPI)+C66C*LOG(1+EMCNRT)+C66E* LOG(1+EMCNRT (-1))

367: WST9 == EMT9*WRT9/1000.

Institute of Social and Economic Research MAP Documentation December 1984, Model A85.1

Trade ($* *$ D9)

Employment in wholesale (EMDW) and retail (EMDR) trade are handled as separate industries. In addition, retail trade contains a tourist-related component (EMDTOUR).

Output in wholesale (XXDW) and retail trade (net of touristrelated employment) (XXDRNT) is determined as functions of real disposable personal income (R.DPI8N and R.DPI8X) and average wealth (WEALTH). Employment, in turn, is a function of output. Touristrelated employment in trade is a constant proportion of total tourist employment (EMTOUR), which is added to other retail employment to get total retail trade employment. Wage rates and wages and salaries are calculated in the usual way. Total output (XXD9) includes a tourist-related component calculated at the same ratio to employment as the rest of the industry.

376: $\mathrm{XXDW}=\mathrm{C} 71 \mathrm{~A}+\mathrm{C} 71 \mathrm{~B} * \mathrm{R}$. DPI8N+C71C*R.DPI8X+C71D*R.DPI8X(-1)* R.DPI8X+C71E*WEALTH (-1) *POP (-1)

377: XXDRNT $=\mathrm{C} 76 \mathrm{~A}+\mathrm{C} 76 \mathrm{~B}^{*} \mathrm{R} . \mathrm{DPI} 8 \mathrm{~N}+\mathrm{C} 76 \mathrm{C}^{*} \mathrm{R} . \mathrm{DPI8X}+\mathrm{C} 76 \mathrm{D}^{*}$ R.DPI8N(-1)+C76E*R.DPI8X (-1)

378: LOG(EMDW) = C77A+C77B*LOG(XXDW)
379: LOG(EMDRNT) $=C 75 A+C 75 B * L O G(X X D R N T)$
380: EMDR = EMDRNT+EMDTOUR
381: LOG(WRDW/PDRPI) $=$ C78A+C78F*D.80DEC6+C78B*LOG(WEUS/ PDUSCPI $)+$ C78C*LOG (1+EMCNRT) +C78D*LOG (1+EMCNRT (-1) $)+$ C78E*LOG (1+EMCNRT (-2))

382: LOG(WRDR/PDRPI) $=\mathrm{C} 79 \mathrm{~A}+\mathrm{C} 79 \mathrm{~F} * \mathrm{D} .80 \mathrm{DEC6}+\mathrm{C} 79 \mathrm{~B} *$ LOG (WEUS/ PDUSCPI) $+(+$ C79D) *LOG (1+EMCNRT $(-1))+$ C79E* LOG (1+EMCNRT (-2))

383: \quad EMDTOUR $=$ PTOURD*EMTOUR
384: EMD9 = EMDRNT+EMDW+EMDTOUR
385: WSD9 == (EMDRNT+EMDTOUR)*WRDR/1000+EMDW*WRDW/1000

386: WRD9 $=$ WSD9/EMD9*1000
387: $\operatorname{XXD9}=($ XXDW + XXDRNT $) /($ EMDW+EMDRNT $) * E M D 9$
388: \quad XXDR $=$ XXD9-XXDW

Services ($* \star$ S9)
Services employment consists of four components: support sector (EMS8NT), tourism (EMTOUR), business services (EMSB), and Native corporations (not explicit). Output of support sector services (XXS8NT) and business-related services (XXSB) is determined by functions of disposable personal income (R.DPI8N and R.DPI8X) and average wealth (WEALTH). Employment in each of these sectors is a function of output.

Tourism-related employment (EMSTOUR) is a constant portion of total tourist employment (EMTOUR). Separate wage rates are calculated for business services (WRSB) and other services net of business services (WRSNB).

Native corporation-related employment equals Native corporation wages and salaries (NCWS) divided by the average wage rate for the whole industry (WRS9).

Industry wages and salaries are calculated in the usual way.
Total output is the same ratio to total employment as is output in the support and business service components of the industry.

393: XXS8NT = C84A+C84B*R.DPI8N+C84C*R.DPI8X(-1)+C84D* WEALTH (-1) *POP (-1)

394: XXSB $=\mathrm{C} 83 \mathrm{~A}+(+\mathrm{C} 83 \mathrm{C}) \star \mathrm{R} . \mathrm{DPI} 8 \mathrm{X}+\mathrm{C} 83 \mathrm{D} * \mathrm{R} . \mathrm{DPI} 8 \mathrm{X}(-1)+\mathrm{C} 83 \mathrm{E} \star$ WEALTH $(-1) \star P O P(-1)$

395: LOG(EMS8NT) $=C 85 A+C 85 B * L O G(X X S 8 N T)$
396: $\operatorname{LOG}(E M S B)=C 87 A+C 87 B * L O G(X X S B)$
397: LOG(WRSNB/PDRPI) $=$ C86A+C86F*D. 80DEC6+C86B*LOG(WEUS / PDUSCPI $)+$ C86C*LOG ($1+$ EMCNRT $)+C 86$ D * LOG ($1+$ EMCNRT (-1) $)+$ C86E*LOG (1+EMCNRT (-2))

398: LOG(WRSB/PDRPI) $=$ C88A + C88 $F^{\star 2}$ D. $80 \mathrm{DEC} 6+$ C88E*D61. $70+$ C88B* LOG (WEUS/PDUSCPI) +C88C*LOG (1+EMCNRT) +C88D* $\operatorname{LOG}(1+E M C N R T(-1))+C 88 G * \operatorname{LOG}(1+E M C N R T(-2))$

399: EMSTOUR = PTOURS*EMTOUR
400: EMS91 = EMSB+EMS8NT+EMSTOUR
401: WSS91 ==(EMS8NT+EMSTOUR)*WRSNB/1000+EMSB*WRSB/1000

```
402: WSS9 == WSS91+NNCWS
403: EMS9 = EMS91+NCWS/(WRS9*1000)
404: WRS9 = WSS91/EMS91*1000
405: XXS9 = (XXS8NT+XXSB)/(EMS8NT+EMSB)*EMS9
```


Federal Government ($* *$ GF)

Federal government employment (EMGF) is the sum of civilian (EMGC) and military (EMGM) employment, both of which are determined in the growth "scenario." Output (XXGF) is a function of employment. A wage rate for civilian employment is calculated (which is not responsive to local market conditions), and the military wage rate is a fixed proportion of the civilian wage (PCIVPY). Nominal wages and salaries are calculated as a function of nominal wage rate growth in the United States, reflecting the relative insensitivity of federal wage rates to local conditions.

406: $\mathrm{EMGF}=\mathrm{EMGM}+\mathrm{EMGC}$
407: LOG(XXGF) $=$ C101A + C101B* ${ }^{*}$ LOG (EMGF)
408: LOG(WRGC) $=$ C89A+LOG(WEUS)
409: WRGM $=$ WRGC*PCIVPY
410: WSGC $=$ WRGC*EMGC $/ 1000$
411: $W S G M=W R G M * E M G M / 1000$
412: WSGF == WSGC+WSGM
413: WRGF $=$ WSGF/EMGF*1000

Construction ($* * \mathrm{CN}$)
Employment in the construction industry is in four categories: two endogenous cateogries (EMCN1)--support and government expenditure related-and two types of basic employment (EMCNX). Support sector output (XXCN8) is a function of disposable personal fincome (R.DPI8N and R.DPI8X). To this is added the value of capital expenditures made by state government (XXVACAP) to get total endogenous output (XXCN1). Exogenous output is the residual (XXCNX). Endogenous employment (EMCN1) is a function of this output.

Basic employment consists of normal wage basic employment (EMCNX2) which receives the same wage as support sector and govermment-related construction employment (WRCNNP) and premium wage construction employment (EMCNX1) which is defined as remote site, specialized employment commanding a high annual wage (WRCNP). This wage is a multiple of the regular wage (PIPADJ). Wages and salaries for the industry are calculated in the usual way.

Premium wage employment interacts with several other model components. First, it directly affects wage rates and the price level in most other industries through the variable EMCNRT, which is a measure of excess demand in the labor market. Second, it forms the basis for the special component of disposable personal income, R.DFI8X, which is a variable in some of the equations explaining support sector output.

```
334: EMCNRT = IF EMCNX1/4 LT EMCN1(-1) THEN O ELSE
    EMCNX1/(EN98-EMCNX1)
335: XXCN8 = C54A+C54B*R.DPI8N+C54D*D65+C54E*D73+C54F*
    R.DPI8X(-1)+C54G*R.DPI8X
336: XXCN1 = XXCN8+XXVACAP
337: LOG(EMCN1) = C56A+C56B*LOG(XXCN1)+G56C*D61.67
338: EMCNX = EMCNX1+EMCNX2
339: EMCN = EMCN1+EMCNX
340: XXCN = EMCN/EMCN1*XXCN1
341: XXCNX == XXCN-XXVACAP-XXCN8
```

342：LOG（WRCNNP／PDRPI）＝C59A＋C59F＊D．80DEC6＋C59B＊LOG（WEUS／ PDUSCPI）＋C59C＊LOG（1＋EMCNRT）＋G59D＊LOG（1＋EMCNRT（－1））＋ C59E丸LOG（1＋EMCNRT（ -2 ））

343：\quad WRCNP $=$ WRCNNP＊PIPADJ
344：WSCN $=($ EMCN1＋EMCNX2）＊WRCNNP／1000＋EMCNX1＊WRCNP／1000
345：WRCN＝WSCN／EMCN＊1000
346：WSCNP＝EMCNX1＊WRCNP／1000

State and Local Government（ $* * G A$ ）
Government expenditures on wages and salaries at the state （WSGS）and local（WSGL）levels are determined by the operating budgets of state and local government，respectively．Wage rates are calculated for state government（WRGS）and local government（WRGL） in the usual way with the added constraint that neither may fall in nominal dollars．Employment is calculated as total wages and salaries divided by the wage rate for state（EMGS）and local government（EMGL）．Output in the combined state and lacal government sector（XXGA）is a function of combined employment（EMGA）．

```
414：LOG（WRGS／PDRPI）＝IF C92A＋C92F＊D．80DEC6＋C92B＊LOG（WEUS／ PDUSCPI）+ C92C＊D61．73＋C92D＊D74．75 LT LOG（WRGS（－1－／ PDRPI（－1））THEN LOG（WRGS（－1）／PDRPI（－1））ELSE C92A＋C92F＊ D．80DEC6＋C92B＊LOG（WEUS／PDUSCPI）＋C92C＊D61．73＋C92D＊D74．75
```

415：EMGS $=$ WSGS／WRGS＊1000
416：LOG（WRGL／PDRPI）$=$ IF C102A＋C102F＊D．80DEC6＋C102D＊D61．69＋ C102C＊LOG（1＋EMCNRT）＋C102B＊LOG（WEUS／PDUSCPI）LT LOG（WRGL （ -1 ）／PDRPI（ -1 ））THEN LOG（WRGL（－1）／PDRPI（－1））ELSE C102A＋ C102F＊D．80DEC6＋C102D＊D61．69＋C102C＊LOG（1＋EMCNRT）＋C102B＊ LOG（WEUS／PDUSCPI）

417：EMGL＝WSGL／WRGL＊1000
418：EMGA＝EMGS＋EMGL
419：WSGA＝WSGS＋WSGL
420：WRGA $=$ WSGA／EMGA＊1000
421：LOG（XXGA）$=$ C104A + C104B＊LOG（EMGA）

Proprietor Activity

Proprietor activity (all non-wage and -salary activity) consists of fish harvesting and all other proprietor activity. Fish harvesting employment (EMPROFIS) and income (PIPROF) are determined by total fish harvesting activity.

Other employment (EMPRO1) is a function of all wages and salary employment (EM98). Personal income associated with this employment (PIPRO1) grows with the level of employment in nonfish processing proprietor activity.

Total proprietor employment (EMPRO) and income (PIPRO) are each the sum of their component parts.

300: PIPRO1*100/PDRPI = C45A+C45B*EMPRO1+C45C*D61.66+C45D*D79

302: PIPRO == PIPRO1+PIPROF

433: LOG(EMPRO1) $=$ C100A + C100C*D61.66+C100B*LOG(EM98)
436: EMPRO = EMPRO1+EMPROFIS

Total Employment

Total wage and salary employment (EM98) is defined as the sum of civilian employment covered by unemployment insurance in all industries (EM97) plus military employment (EMGM). Total employment (EM99) includes, in addition to employment covered by unemployment insurance and the military, proprietor employment (EMPRO). Total civilian employment (EM96) is net of military employment.

Note that tourism employment (EMTOUR) is all subsumed within the transportation, trade, and service sectors. Also, fish harvesting employment (EMFISH) is divided into wage and salary and proprietor components.

```
427: EM98 = EMP9+EMCN+EMM9+EMT9+EMCM+EMPU+EMD9+EMFI+
    EMS9+EMGF+EMGA+EMA9
428: EM97 = EM98-EMGM
437: EM99 == EM98+EMPRO
438: EM96 = EM99-EMGM
```

```
Institute of Social
and Economic Research
MAP Documentation
December 1984, Model A85.1
Total Output
Total output (XX98) includes all industries except nonfish harvesting-related proprietor activity.
426: \(\quad \mathrm{XX98}=\mathrm{XXP9} 9+\mathrm{XXCN}+\mathrm{XXM9} 9+\mathrm{XXT} 9+\mathrm{XXGM}+\mathrm{XXPU}+\mathrm{XXD} 9+\mathrm{XXFI}+\) XXS \(9+\mathrm{XXGF}+\mathrm{XXGA}+\mathrm{XXA} 9\)
```


Total Wages and Salaries

```
Total wages and salaries (WS98) is the sum of the wages and salaries paid in all industries and is thus net of proprietor income. Nonagricultural wage and salary employment (WS97) excludes military wages and salaries. The average wage rate for total (WR98) and nonagricultural (WR97) wages and salaries are calculated.
429: WS98 = (WRP9*EMP9+WRCN*EMCN+WRM9*EMM9+WRT9*EMT9+WRCM* EMCM+WRPU*EMPU+WRD9*EMD9+WRFI*EMFI+WRS9*EMS9+WRGF** EMGF+WRGA*EMGA+WRA9*EMA9)/1000.
430: WS97 = WS98-WSGM
431: WR98 \(=\) WS \(98 * 1000 / E M 98\)
432: WR97 == WS \(97 \times 1000 / E M 97\)
```


Personal Income

Personal income by place of residence（PI）is built up from wages and salaries．It includes，in addition to wages and salaries （WS98），other labor income（PIOLI）；proprietor income（PIPRO）； dividends，interest，and rents（PIDIR）；and transfers（PITRAN）；it is net of both social security contributions（PISSC）and a residency adjustment（PIRADJ）．Other labor income is a function of wages and salaries，as are social security contributions．Dividends，interest， and rents are a function of disposable income．Transfers consist of an exogenous state government component（EXTRNS）and all others （PITRAN1）．Endogenous transfers grow with the growth in the population over 65 （POPGER）．

Personal income prior to netting out the residence adjustment is calculated（PI8）．The residency adjustment is a function of employment．

```
295: PIDIR = C51A+C51B*(DPI+DPI(-1)+DPI(-2)+DPI(-3)+DPI(-4))
```

296：PITRAN1＝IF YR LE 1982 THEN PITRAN6 ELSE PITRAN1（ -1 ）／POPGER（ -1 ）＊（1＋GRUSGPI）＊POPGER

297：PITRAN／PDRPI＝IF YR GE 1984 THEN PITRAN1／PDRPI＋EXTRNS／ PDRPI ELSE（IF YR EQ 1983 OR YR EQ 1982 THEN PITRAN1／ PDRPI＋EXTRNSPI／PDRPI ELSE C34A＋C34B＊POP＋C34C＊D61．72＋ EXTRNS／PDRPI）

298：PIOLI $=C 44 A+C 44 D^{*}$ D61． $75+C 44 B^{*}(W S 98-W S C N P)+C 44 C^{*} W S C N P(-1)$

299：PISSC $=$ C106A + C106B＊（WS98－WSCNP）
303：PI8＝WS98＋PIOLI＋PIPRO－PISSC＋PIDIR＋PITRAN

309：PIRADJ＊100／PDRPI＝C103A＋C103B＊EMCNX1＋C103C＊EM97
310： $\mathrm{PI}=$ PI8－PIRADJ

Abstract

\section*{Components of Real Disposable Personal Income}

Disposable personal income (DPI) is personal income net of federal (RTPIF), state (RTISCP), and local (DPIRES) income-related taxes paid by Alaskan residents. Disposable personal income before the residency adjustment is also calculated (DPI8). This definition of disposable income is used to construct two real disposable income or "purchasing power" measures. One (R.DPI8X) is the real disposable personal income associated with premium wage construction employment. This is set to zero in simulation. The other (R.DPI8N) includes all other real disposable personal income as well as the income equivalent of state subsidies (EXSUB2*EXSUBS) but nets out the excess proportion of Permanent Fund dividends which are saved (EXPF2*EXTRNS).


```
317: DPI = PI-RTPIF-RTISCP-DPIRES+RTISXX
318: DPI8 = DPI+PIRADJ
321: R.DPI8N = (DPI8+EXSUB2*EXSUBS-EXPF2*EXTRNS)*
    100/PDRPI-R.DPI8X
322: R.DPI8X = 0
```


Price Indexes

There are three price indexes used in the model. The most important, PDRPI, is an index for deflating consumer prices to the 1967 U.S. level. At each point in time, this index is equal to the U.S. consumer price index, PDUSCPI, multiplied by the ratio of prices in Anchorage and the United States as measured by the Bureau of Labor Statistics moderate-family budget, PDRATIO. This ratio is a negative function of the growth in the size of the support sector of the economy as reflected by employment in trade, finance, and services as well as transportation, communication, and public utilities, EMSP. It is a positive function of tightness in the local labor market as reflected in the variable EMCNRT, which is the proportion of total employment accounted for by high wage, exogenous construction.

A price deflator for state government operating expenditures, PDEXOPS, is a weighted average of government wage rates, WRGA, and the nonpersonnel expenditure price level using PDRPI as a proxy. A price deflator for capital expenditures is based upon the wage rate in construction (nonpipeline), WRCNNP.

Many variables are deflated to a 1984 Alaska base using the 1984 level of PDRPI. All such variables have the prefix DF. MAP Documentation December 1984，Model A85． 1

```
4: PDRATIO = IF YR LE 1983 THEN PDRATIO6 ELSE (IF RTIS(-2)-
    RTIS(-1)NE O AND RTIS(-2) EQ 0 AND G.EMSP GT O THEN
    PDRATIO(-1)+C67A*(1+G.EMSP**0.5)+C67B* (EMCNRT/(EM98(-1)/
    (EM98-EMCNX1)))-C67C+C67D*(1+G.EMSP**0.5)*D68.71 ELSE (IF
    RTIS(-1)-RTIS(-1) NE O AND RTIS(-2)EQ 0 THEN PDRATIO(-1)+
    C67A+C67B* (EMCNRT/(EM98(-1)/(EM98-EMCNX1)))-C6 7C-C67D*
    D68.71 ELSE (IF G.EMSP LE 0 THEN PDRATIO(-1)+C67A+
    C67B*(EMCNRT/(EM98(-1)/(EM98-EMCNX1)))+C67D*D68.71 ELSE
    PDRATIO(-1)+C67A*(1+G.EMSP**0.5)+C6 7B*(EMCNRT/(EM98(-1)/
    (EM98-EMCNX1)))+C67D*(1+G.EMSP**0.5)*D68.71)))
5: PDRPI = PDRATIO*PDUSCPI
6: PDEXOPS = WSGSFY(-1)/EXOPS(-1)*(WRGA*100/PWRBASE)+
    (EXOPS(-1)- WSGSFY(-1))/EXOPS(-1)*PDRPI
7: PDCON = C107A+C107B*WRCNNP
```


National Variables

Real per capita disposable personal income in the United States （PR．DPIUS），the USCPI（PDUSCPI），and the average weekly wage in the United States（WEUS）each grow at exogenous rates．These are as follows：GRDIRPU，GRUSCPI，and GRRWEUS．

1：PR．DPIUS＝IF YR LE 1983 THEN PR．DPIU6 ELSE PR．DPIUS（ -1 ）＊（ $1+$ GRDIRPU）

2：PDUSCPI＝IF YR LE 1983 THEN PDUSCPI6 ELSE PDUSCPI（－1）＊（1＋GRUSCPI）

3：WEUS＝IF YR LE 1983 THEN WEUS6 ELSE WEUS（ -1 ）＊（ $1+G R U S C P I+G R R W E U S) ~$

There are four categories of state govermment revenues. Petroleum-related revenues are exogenously provided from information on production, wellhead price, and other characteristics. Endogenous revenues are functionally related directly to the level of economic activity in the economy. Federal transfers are a function of the price level, and fund earnings are determined by the balances in the general and Permanent Funds.

Total state government operating expenditures, operating expenditures by program, and capital expenditures can be determined by a variety of rules specified by the model user. These include the choice of the spending limit, historical relationships, simple growth rates, or relating spending to specific variables like population or the size of the general fund balance.

Local government revenues consist of state-local transfers, federal-local transfers, and endogenously generated revenues. Expenditures are determined by income and population.

Government expenditures affect the private economy primarily through wage and salary payments and purchases of capital. In addition, government personal income taxes and transfers determine what proportion of income is retained by individuals as disposable personal income.

Data sources for the fiscal model are primarily the Executive Budget and Annual Financial Report of the Department of Administration, Revenue Sources of the Department of Revenue, and the various state and local government fiscal summaries of the U.S. Department of Commerce, Bureau of the Census.

State fiscal activity can be analyzed in terms of revenues and expenditures moving through the various state funds. The general structure of these accounts are shown in Tables 3 and 4. The most important of these funds are the general fund and the Permanent Fund, although there are a number of smaller funds which affect the level of economic activity stimulated by government spending. These include the Enterprise Funds, Capital Projects Funds, Special Revenue Funds, and Loan Funds.

```
Institute of Social
and Economic Research
MAP Documentation
December 1984, Model A85.1
TABLE 3. STATE REVENUES
```


GENERAL FUND

INVESTMENT EARNINGS

General Fund Earnings RSIG
Permanent Fund Earnings
Transferred to General Fund
PETROLEUM REVENUES
Taxes
severance taxes
property taxes
corporate income taxes
unclassified petroleum
Nontaxes
bonuses RPBSGF
rents RPENGF
royalties
federal shared royalties
ENDOGENOUS REVENUES
Nonpetroleum Taxes
corporate income tax
personal income tax
business license tax
motor fuel tax
alcohol tax
ad valorem tax
cigarette tax (net of
special fund allocation) RTCIS
school tax
miscellaneous
Other
fees and licenses
ferry receipts
miscellaneous

RSIN

RSIPGF

RPRYGF
RSFDNPXG

RSENGF
RTCS1
RTIS
RTBS
RTMF
RTAS
RTVS

RTSS
RTOTS
ROFTS
ROFERS
RMIS

```
STATE ANCSA PAYMENTS*
(SANCSA)
```

GENERAL FUND UNRESTRICTED REVENUES [Dept. of Revenue] RSGFBM
Add: GENERAL FUND RESTRICTED REVENUES [Dept. of Revenue] RSGFRS

```Federal Grants-in-Aid to General FundRSFDNMiscellaneous Restricted General
```

Fund Revenues RMISRES

[^0]I'ABLE 3 (continued)
Equals: TOTAL GENERAL FUND REVENUES [Dept. of Revenue] RSGF (Restricted + Unrestricted)
Add: INTERAGENCY RECEIPTS EXINREC
Equals: TOTAL GENERAL FUND REVENUES RSGF.AFR
[Dept, of Administration]
PERMANENTI FUND
GROSS REVENUES EXPFCON9
RESOURCE REVENUES RP7SPF
GENERAL FUND CONTRIBUTIONS EXPFCONX
GROSS EARNINGS RSIP
14inus: General Fund Transfers to General Fund (RSIPGF)
from General Fund (EXPFCONX)
Equals: NET PERMANENT FUND REVENUES (before dividend) EXPFCON1
RETAINED EARNINGS RSIPPF
RESOURCE REVENUES RP7SGF
DIVIDENDS EXTRNS
COMBINED FUNDS
PETROLEUM RP9S
Severance taxes RPTS
Property tax RPPS
Corporate income tax RTCSPX
Unclassified taxes RP9X
Bonuses RPBS
Rents RPEN
Royalties RPRY
Federal shared royalties RSFDNPX
FUND EARNINGS RSI99
FEDERAL TRANSFERS RSFDN
ENDOGENOUS RSEN
TOTAL REVENUES R99S
MISCELLANEOUS FUNDS
ENTERPRISE FUND REVENUES RSIAS
SPECIAL FUND REVENUES (not including RSFS
Permanent Fund)
APPROPRIATIONS
Under Expenditure Limit
Operations (net ofdebt service)
Nonoperationssubsidy
EXSUBS

Minus: Special Capital Appropriations EXSPCAP
General Fund Capital EXGFCAP EXTRNSX RSFDNCAXRSFSEnterprise Fund Receipts RSIASNon-General Fund Universityof Alaska Receipts PARNONGF * EXUA
Equals: TOTAL OPERATING BUDGETEXOPS
Debt Service EXDSS
on-Ceneral Fund
PARNONGF * EXUA
Add: Capital Expenditures
EXGFCAPEXCPS
Special Capital Expenditures EXTRNS
Equals: TOTAL STATE SPENDINGEX99S

Institute of Social

Two constant difficulties in modeling state fiscal behavior are the lack of consistency in the data among the primary sources utilized and the evolution over time in programs, organizational structure, and methods and formats for the presentation of data. This evolution is often rapid and radical.

In order to obtain a complete picture of state government fiscal activities, three major sources of data--the Department of Revenue Revenue Sources and Petroleum Production Revenue Forecast, the Department of Administration Annual Financial Report, and the Office of the Governor Budget Document--as well as a number of other data sources are used. Different accounting conventions as well as different definitions of such items as the general fund balance, general fund revenues, etc., among these sources and also between these sources and other sources of information on government fiscal activity such as the legislature make it impossible, particularly during periods of rapid growth in government activity reflected in the appearance of new programs, to model state fiscal activity consistently from the perspective of all data sources. The guiding principle in the development and evolution of the fiscal model is that it be the best consistent representation of all fiscal aspects of state government and clearly incorporate into its structure the most important linking mechanisms between state spending, fund balances, and the size and composition of the private economy.

The general fund is the main state government fund into which the majority of state revenues flow and from which general appropriations for government operations, including capital expenditures, and transfers to local governments originate. Unappropriated funds accumulate in the general fund until they are appropriated and spent. These funds are, in general, available for any purpose, with two exceptions. First, a large portion of general fund appropriations fund entitlement programs which are budgeted on the basis of formulas linked to population, price level, and other economic and demographic variables. The formulas may be altered by law, but absent such changes, these program budgets will vary automatically with economic and demographic change. Second, a portion of general fund revenues termed "restricted" consists of federal grants-in-aid, interagency receipts, and other minor sources of income that are restricted in use to certain programs. These restricted revenues form a part of the overall budget but are not a source of discretionary state spending.

The Permanent Fund is the other major fund of the state. A constitutionally specified portion of state royalties and bonuses from the sale and production of natural resources, principally petroleum, is deposited in the Permanent Fund. These deposits can be supplemented by special contributions and the reinvestment of earnings. Fund earnings can also be transferred to the general fund or also directly into a cash distribution program.

State government activity affects the private economy in several ways which are listed and described in Table 5.
table 5. LINKS between fiscal and economic activity

WSGS State government wages and salaries combine with a state government wage rate to determine employment. The level of wages and salaries is a function of both the size and composition of the state operating budget.

XXVACAP The value added by state-funded (including local grants RLTMCAP) capital construction contributes to the total value added of the construction industry. Value added is a function of the size and composition of the state capital budget.

EXTRNS Permanent Fund dividends increase individual disposable personal income.

RTIS State personal income tax payments reduce individual disposable personal income.

EXSUBS Subsidies increase discretionary income and stimulate the activity being subsidized in the short run but have no effect in the long run.

WSGL Local government wages and salaries combine with a local government wage rate to determine employment. This is a function of the size of the local government budget.

RLT99 Transfers from state to local government increase local spending and reduce state spending. State spending is reduced by education transfers, tax sharing, revenue sharing, capital grants, and exogenous transfers. Local spending is increased by education transfers, tax sharing, revenue sharing, and exogenous transfers. Capital grants remain as a portion of state-funded construction activity.

Institute of Social
and Economic Research
MAP Documentation
December 1984, Model A85.1

Modeling of local fiscal activity is subject to the same problems of historical consistency and data availability as state fiscal activity modeling. The main data source is the annual report on local government fiscal activity from the U.S. Department of Commerce. The data in these documents is based upon survey rather than census, and the definitions are not always consistent with either the state of Alaska or the various local governments in the state. The major problem area is linking of the state and local fiscal sectors through the modeling of state-local transfers. Not only have the programs themselves changed form on an almost annual basis in recent years, but the local response to increased state assistance has varied by program. Local government can, and does, both increase its programs and reduce local taxes when state aid increases. These links consequently are modeled in a very general way.

The level of local government activity is essentially determined by state transfers and average per capita wealth.

Fiscal Rule

The state fiscal model is guided by a "fiscal rule" which is a set of user-specified parameters which control the level and composition of state spending (and thus indirectly influence the level of local government spending). The "fiscal rule" is necessary because the size and composition of state appropriations is the result of a political process which in years past has displayed no stability or consistency. Consequently, the past cannot serve as an adequate basis for modeling future spending.

In addition, the various uses to which the model is put require that alternative specifications of future state spending patterns be available for particular analyses. Because of the large relative size and economic importance of state spending in the Alaska economy, it is important to be able to vary the pattern of state spending when performing different analyses with the model.

Specifically, the model has been used for the following types of analyses, each requiring a different formulation of the "fiscal rule":

1. Projections. In these analyses, the most likely fiscal behavior is assumed.
2. Fiscal Policy Analysis. In these analyses, the fiscal and economic effects of particular fiscal policies are examined, for example, the effects of the Permanent Fund dividend distribution program.
Institute of Social
and Economic Research
MAP Documentation
December 1984, Model A tax after two years.

TABLE 6. PARAMETERS OF CHOICE: STATE "FISCAL RULE* FOR SPENDING LIMIT CASE (EXRL5)a

LIKELY TO CHANGE BETWEEN SCENARIOS (POLICY)

APPFCONX state general fund appropriations to the Permanent Fund
BALGFUNA state general fund balance unavailable for appropriation
EXDFPCNT percent of development fund earnings withdrawn
EXDF1 percent of state current account balance placed into development fund (hypothetical)

EXGFOPSX exogenous component of state unrestricted general fund operating expenditures

EXPFCONX Permanent Fund contributions appropriated from the general fund

EXPFDIST percent of Permanent Fund earnings (calculated as fiveyear moving average) distributed to individuals as dividends

EXPFTOGF percent of Permanent Fund earnings net of dividends transferred to the General Fund

EXPF1 percent contribution from available funds to Permanent Fund

EXSAVX if EXRLOP7 is invoked in determination of state operating expenditures, this is the exogenous amount of revenues not spent

EXSPCAP special capital appropriations over the spending limit
EXSPLITX the target allocation to operations when state spending falls below the authorized spending limit

EXSUBSX the level of exogenous state subsidies under programs initiated since 1980

EXSUB1 stimulative effect of state subsidies on construction industry

EXSUB2 stimulative effect of state subsidies on consumer spending
$a_{\text {Not }}$ including petroleum revenues.

TABLE 6 (continued)

EXTRNSX	state Permanent Fund dividend distribution funded through the general fund
L.BOND 1	proportion of state general obligation bonds for highways
LFEDI	proportion of federal capital grants for highways
LGFI	proportion of general fund capital expenditures for highways
RLPTX	exogenous local property tax
RLTFPX	petroleum-related federal-local government transfers
RLTMCAP	municipal capital grants from the state
RLTX	exogenous state-local transfers
RSFDNX	exogenous federal-state transfer payments
RTCS X	exogenous corporate income tax
UNLIKELY	CHANGE BETWEEN SCENARIOS (EXOGENOUS)
EXDSSX	annual debt service payment to service general obligation bonds outstanding at beginning of simulation period
EXPFDVX1	accounting adjustment to Permanent Fund retained earnings in early years
EXPFDVX2	accounting adjustment to Permanent Fund dividend program in early years
EXTRNSPI	state Permanent Fund dividends in 1982 and 1983 incorporated in state personal income
GODTX	general obligation bonded indebtedness of the state from debt incurred before start of simulation
LPTRAT	percentage of pipeline property within local jurisdictions actually subject to local tax because of limitations imposed by state statutes
P9PTPER	percentage of petroleum property which is taxable by state which falls within local taxing jurisdiction

RSFDNCAX	federal grants-in-aid to state general fund for capital expenditures
RSIP5	state Permanent Fund interest--initial adjustment
RTISXX	adjustment of disposable income to cover lag in refund in state personal income taxes after repeal
TCRED	individual tax credit beginning after 12/31/77
TXBASE	change in the floor of personal income tax rate schedule
TXCRPC	state personal income tax credit adjustment percentage of tax liability)
TXRT	adjustment to withold from state expenditures a portion of any personal income tax reduction

SPECIAL STARTUP VALUES REQUIRED (EXOGENOUS)

BALDF6	EXGFCAP6	RLTMA6
BALGF6	EXGFCOT6	RLTRS6
BALPF6	EXOPS6	RMISRES6
BIU6	EXUA6	RSFDN6
EXCPSFD6	PITRAN6	RSIG6
EXCPSGB6	RLTEB6	RTOTS6

Institute of Social
and Economic Research
MAP Documentation
December 1984, Model A85. 1

STATE FISCAL MODULE DETAIL

Petroleum Revenues

Petroleum revenues (RP9S) are divided between the general fund (RP9SGF) and the Permanent Fund (RP7SPF) which receives a portion (EXPF1) of bonuses (RPBS), royalties (RPRY), rents (RPEN), and federal-shared royalties (RSFDNPX). In addition to those sources of petroleum revenues split between the general and Permanent Funds (RP7S), other petroleum revenues which go into the general fund consist of the state portion of property taxes (RPPS), severance taxes (RPTS), corporate income taxes (RTCSPX), and miscellaneous (RP9X). All are exogenous. The cumulative discounted value of petroleum revenues from 1984 is calculated (DF.RSVP).

```
18: RP7S == RPBS+RPRY+RPEN+RSFDNPK
19: RPBSGF == (1-EXPF1)*RPBS
20: RPRYGF == (1-EXPF1)*RPRY
21: RPENGF == (1-EXPF1)*RPEN
22: RSFDNPXG == (1-EXPF1)*RSFDNPX
23: RP7SGF == RPBSGF+RPRYGF+RPENGF+RSFDNPXG
24: RP7SPF == RP7S-RP7SGF
25: RP9S == RP7S+RPPS+RPTS+RTCSPX+RP9X
26: RP9SGF == RP9S-RP7SPF
27: DF.RSVP = IF YR LT 1984 THEN O ELSE DF.RSVP(-1)+RP9S*
    (PDRPIBAS/PDRPI)*(1/(1+RORDISK)**(YR-1983))
```


Personal Income Taxes ${ }^{1}$

Although Alaska does not presently impose an income tax on individuals, the personal income tax equations remain in the model for several reasons. It is possible to calculate what the tax receipts would be if reimposed, the model structure is ready if it is reimposed, and the similar structure of the federal and state personal income taxes means it is easier to calculate the federal tax receipts with some information about the structure of the state tax.

IIncluding Federal and local for purposes of calculating disposable personal income

Institute of Social and Economic Research MAP Documentation December 1984, Model A85.1

Personal taxes netted out of income to arrive at disposable income include state income taxes paid by residents on a calendaryear basis (RTISCP), federal income taxes (RTPIF), and local taxes (DPIRES). Total calendar-year state income taxes (RTISC) and fiscal year taxes (RTIS) are also calculated.

The state income tax is calculated on a per-taxpayer basis (RTISCA) using Alaska taxable income (ATI) and the number of taxpayers (ATT). Alaska taxable income is derived from federal adjusted gross income earned in Alaska (FAGI) by first netting out nontaxable military pay (WSGM) and Native claims payments (ANCSA) and adding in the taxable federal cost-of-living allowance (COLA) to derive Alaskan adjusted gross income (AGI). This is next reduced by exemptions (AEX) each of which has a value (VAEX) and deductions (ATD).

Several policy variables allow for examination of changes in the tax structure (TXBASE, TXRT, TXCRPC, TCRED). Finally, the difference between tax receipts using the historical (pre-1978 schedule) and the structure under examination is calculated (RTISLOS).

Federal adjusted gross income reported in Alaska (FAGII), smaller than federal adjusted gross income earned in the state because of transient workers, forms the base for federal personal income tax collections.

```
28: LOG(FAGI) = C21A+C21B*LOG(PI8)+C21C*LOG(EMCNX1+EMP9)
29: LOG(FAGII) = C22A+C22B*LOG(PI)
30: COLA = (1-1/(1+PCOLART))*WSGC
31: AGI = FAGI+COLA-WSGM-PC12N*PC12RN*ANCSA*PCNC1
32: AEX*1000 = C10A C10B*POPC+C10C*(EMCNX1+EMP9)
33: ATT = C28A+C28B*(EM99-EMGM)+C28C*EMCNX1
34: LOG(ATD/ATT) = C23A+C23B*LOG(AGI/ATT)+C23C*D69+C23D*D72
35: VAEX = IF YR LT 1983 THEN VAEX6 ELSE VAEX(-1)*(1+GRUSCPI)
36: ATI = AGI-AEX*VAEX-ATD
37: ATI.TT = ATI/ATT
38: LOG(RTISCA1) = C24A-TXBASE+C24B*(1-TXRT)*LOG(ATI.TT)
39: LOG(RTISCA2) = C24A+C24B*LOG(ATI.TT)
```

```
40: RTISCA == IF YR GT 1984 THEN (IF EXTRNS+EXTRNS(-1) EQ O THEN
EXRL5*(RTISCA1-TXCRPC*RTISCA1-TCRED/1000) ELSE 0) ELSE (IF
YR LT 1979 THEN RTISCAl-TXCRPC*RTISCA1-TCRED/1000 ELSE O)
41: RTISLOS == (RTISCA2-RTISCA)*ATT
42: RTISC = RTISCA*ATT
43: RTIS = IF YR EQ 1980 THEN O ELSE C25A*RTISC(-1)+C25B*RTISC
44: RTISCP = C105A+C105B*PI8+C105C*RTISC
45: LOG(RTPIF/ATT) = C26A+C26B*LOG(FAGII/ATT+TCRED/1000/ATT+
RTISLOS/ATT-EXPF3*EXTRNS/ATT)+C26G*D61.68*LOG(FAGII/ATT+
TCRED/1000/ATT+RTISLOS/ATT-EXPF3*EXTRNS/ATT)
```

46: DPIRES $=$ C27A + C27B*PI3+C27C*WSCNP

Dther Taxes

A number of other small sources of revenues complete the modeling of state taxes. Of these, the most important is the corporate income tax composed of petroleum industry taxes (RTCSPX), endogenous taxes (RTCS1), and exogenous taxes associated with some future large activities (RTCSX).

The gross receipts tax (RTBS) has been largely eliminated since 1979, but its structure is still modeled using business licenses (BL) and gross receipts (GR) as the tax base. From the latter, gross taxable receipts (GTR) are calculated. Only a fraction (PBLTBL) of revenues which would have been received prior to 1980 are now collected.

The motor fuel tax (RTMF) is next in order of importance. It is a function of the volume of fuel oil sales (THG) which, in turn, is a product of the number of vehicles on the road (TPTV) and average consumption per vehicle (AHG).

Other endogenous taxes are ad valorem taxes, which are similar to a gross receipts tax but levied only on insurance companies and public utilities (RTVS), alcohol (RTAS) and cigarette (RTCIS) sales taxes, and the school tax (RTSS) which was eliminated in 1981. Finally, there is a residual category of other taxes (RTOTS) consisting of fish processing taxes and miscellaneous small revenue producers.

Total taxes (RT99) includes all general fund taxes except for a portion of cigarette taxes (PECIG) earmarked for a special revenue fund.

```
Institute of Social
and Economic Research
MAP Documentation
December 1984, Model A85.1
```

```
47: RTCS1*100/PDRPI = C43A+C43E*D80+C4 3D*(EM97(-1)-EM97(-2))+
```

47: RTCS1*100/PDRPI = C43A+C43E*D80+C4 3D*(EM97(-1)-EM97(-2))+
C43B*EMCNX1(-1)+C43C*EM97(-1)
C43B*EMCNX1(-1)+C43C*EM97(-1)
48:. RTCS == RTCS1+RTCSPX+RTCSX
48:. RTCS == RTCS1+RTCSPX+RTCSX
49: BL = C39A+C39B* (XX98-XXP9)
49: BL = C39A+C39B* (XX98-XXP9)
50: LOG(GR) = C40A+C40B*LOG(XX98-XXP9)
50: LOG(GR) = C40A+C40B*LOG(XX98-XXP9)
51: RTBS1 == BL*1000*PBTRATE
51: RTBS1 == BL*1000*PBTRATE
52: GTR = GR-BL(-1)*PNTGR\star1000
52: GTR = GR-BL(-1)*PNTGR\star1000
53: LOG(RTBS2*10**3/BL(-1)) = C29A+C29B*LOG(GTR(-1)*10**3/BL(-1))
53: LOG(RTBS2*10**3/BL(-1)) = C29A+C29B*LOG(GTR(-1)*10**3/BL(-1))
54: RTBS == IF YR GE 1979 THEN RTBS1+RTBS2*PBLTBL ELSE
54: RTBS == IF YR GE 1979 THEN RTBS1+RTBS2*PBLTBL ELSE
RTBS1+RTBS2
RTBS1+RTBS2
55: TPTV = C38A+C38B*POP
55: TPTV = C38A+C38B*POP
56: LOG(AHG) = C37A+C37B\starLOG(PR.PI)
56: LOG(AHG) = C37A+C37B\starLOG(PR.PI)
57: THG == AHG*TPTV
57: THG == AHG*TPTV
58: LOG(RTMF) = C46A+C46B*LOG(THG)
58: LOG(RTMF) = C46A+C46B*LOG(THG)
59: LOG(RTVS) = C47A+C47B*LOG(R.DPI8N(-1))
59: LOG(RTVS) = C47A+C47B*LOG(R.DPI8N(-1))
60: LOG(RTAS) = C48A+C48B*LOG(R.DPI(-1))
60: LOG(RTAS) = C48A+C48B*LOG(R.DPI(-1))
61: LOG(RTCIS) = C49A+C49B*LOG(R.DPI(-1))
61: LOG(RTCIS) = C49A+C49B*LOG(R.DPI(-1))
62: RTSS = IF YR GT 1980 THEN O ELSE C50A+C50B*(EM99-EMGM)
62: RTSS = IF YR GT 1980 THEN O ELSE C50A+C50B*(EM99-EMGM)
63: RTOTS = IF YR LE 1984 THEN RTOTS6 ELSE RTOTS(-1)*(1+GRUSCPI+
63: RTOTS = IF YR LE 1984 THEN RTOTS6 ELSE RTOTS(-1)*(1+GRUSCPI+
GRDIRPU)
GRDIRPU)
64: RT99 == RTIS+RTCS+RPPS+RPTS+RP9X+RTBS+RTMF+RTAS+(1-PECIG)*
64: RT99 == RTIS+RTCS+RPPS+RPTS+RP9X+RTBS+RTMF+RTAS+(1-PECIG)*
RTCIS+RTVS+RTSS+RTOTS

```
        RTCIS+RTVS+RTSS+RTOTS
```


Other State General Fund Unrestricted Revenues

Licenses and fees (ROFTS) consist of auto licenses and fees (ROFAS) and business and some nonbusiness licenses and fees (ROFOS). State ferry income (RFERS) is a component of general fund revenues, which grows with income. The final element is miscellaneous nontax revenues consisting of such things as nonpetroleum royalties and user fees.

65: $\operatorname{LOG}($ ROFAS $)=$ C30A + C30B*LOG (TPTV (-1) $)$
66: LOG(ROFOS) $=C 33 A+C 33 B * L O G(P I 3(-1))$
67: ROFTS $==$ ROFAS + ROFOS
68: ROFERS $=\operatorname{ROFERS}(-1) *(1+$ GRUSCPI+GRDIRPU $)$
69: LOG(RMIS) $=$ C35A + C35B*LOG(PI3(-1))

State Investment Earnings

State investment earnings from all state funds (RSI99), including the general fund (RSIG), Permanent Fund (RSIP), and a (hypothetical) development fund (RSID), are calculated based upon the balance in each fund and a fund-specific real rate of return. They are as follows: general fund--ROR, Permanent Fund--ROR+RORPPF, development fund--ROR-RORPDF .

Net earnings of each fund, after accounting for Alaskan inflation, is also calculated for each fund (RSIPNET, RSIDNET, RSIGNET, RSI99NET).

A portion (EXPFTOGF) of the earnings of the Permanent Fund (RSIPGF) is transferred to the general fund which, together with general fund earnings, comprise total investment revenues of the general fund (RSIN).

```
70: RSIP = RSIP5+(ROR+GRUSCPI+RORPPF)*(BALPF(-1)+
    (RP7SPF+EXPFCONX)/2)
71: RSIPGF = IF YR LT 1984 THEN EXPFTOGF*RSIP ELSE EXPFTOGF*
    (RSIP-EXTRNS)
72: RSID == (ROR+GRUSCPI-RORPDF)*BALDF(-1)
```

```
73: RSIG == IF YR LE 1983 THEN RSIG6 ELSE (ROR+GRUSCPI)*
    BALGF9(-1)
74: RSIN == RSIG+RSIPGF
75: RSI99 == RSIG+RSID+RSIP
76: RSIPNET == (ROR+GRUSCPI-(PDRPI/PDRPI(-1)-1)+RORPPF)*
    BALPF(-1)
77: RSIDNET == (ROR+GRUSCPI-(PDRPI/PDRPI(-1)-1)-RORPDF)*
    BALDF(-1)
78: RSIGNET == (ROR+GRUSCPI-(PDRPI/PDRPI(-1)-1))*BALGF9(-1)
79: RSI99NET == (ROR+GRUSCPI-(PDRPI/PDRPI(-1)-1))*BAL99+RORPPF*
    BALPF(-1)-RORPDF*BALDF(-1)
```

Total Unrestricted, Restricted, and Total General Fund Revenues
Total unrestricted general fund revenues (RSGFBM) is the sum of taxes and other revenues, including any transfers into the general fund from the (hypothetical) development fund (EXDFWITH), net of state ANCSA payments (SANCSA).

Total general fund revenues (RSGF) consist of restricted (RSGFRS) as well as unrestricted (RSGFBM) funds. Restricted funds include federal program augmentation (RSFDN) and state program augmentation as well as miscellaneous restricted receipts (RMISRES). These are both categories for funds earmarked for specific purposes. Total general fund revenues defined by the Annual Financial Report (RSGF.AFR) also includes interagency receipts (EXINREC).

80: RSGFBM == RT99+RP7SGF+ROFTS+ROFERS+RSIN+RMIS-SANCSA+EXDFWITH
81: RSFDN = IF YR LE 1983 THEN RSFDN6 ELSE RSFDNX+RSFDN(-1)* (I+GRUSCPI+GRDIRPU)

82: RMISRES = IF YR LE 1983 THEN RMISRES6 ELSE RMISRES(-1)* (1+GRUSCPI+GRDIRPU)

83: RSGFRS == RSFDN+RMISRES
84: RSGF = RSGFBM+RSGFRS
85: RSGF.AFR == RSGF+EXINREC

Permanent Fund and Development Fund (hypothetical)
Gross Permanent Fund contributions (EXPFCON9) consist of three elements: statutorially required contributions (RP7SPF), earnings (RSIP), and general fund appropriations actually paid (EXPFCONX). permanent fund earnings are allocated between the general fund (RSIPGF), the dividend distribution program (EXTRNS), and reinvestment (RSIPPF). Earnings not transferred to the general fund (RSIPPF1) plus statutory contributions (RP7SPF) comprise net fund revenues (EXPECON1). Net fund additions (EXPFCON) are retained earnings (RSIPPF), plus statutory contributions (RP7SPF), plus special appropriations (EXPFCONX). The dividend amount is P.EXTRNS.

A development fund does not currently exist but has periodically been suggested for the specific purpose of investing in Alaskan infrastructure development. If it did, a certain portion of excess current account revenues plus annual investment earnings net of withdrawals might form the annual contributions (EXDFCON). Withdrawals might be a percentage of net earnings (EXDFPCNT).

93: RSIPPF1 == RSIP-RSIPGF
94: RSIPPF == IF YR LT 1984 THEN RSIPPF1-EXPFDVX1 ELSE (IF YR EQ 1984 THEN RSIPPF1-(EXTRNS-50) ELSE RSIPPF1-EXTRNS)

95: EXPFCON1 = RP7SPF+RSIPPF1
96: EXPFCON9 == RSIP+RP7SPF+EXPFCONX
97: EXPFCON = RSIPPF+RP7SPF+EXPFCONX

98: EXDFCON = IF RSGFBM GT EXGFBM THEN EXDF1* (RSGFBM-EXGFBM) + (RSID-EXDFWITH) ELSE RSID-EXDFWITH

99: EXDFWITH = EXDFPCNT*RSIDNET

Institute of Social and Economic Research MAP Documentation
December 1984, Model A85.1

Total Revenues and Miscellaneous Fund Revenues

Total revenues (R99S) is defined to include general fund revenues, net Permanent Fund revenues (EXPFCON1), and (hypothetical) development fund earnings, all net of state required ANCSA payments (SANCSA), which were completed in 1981. Since deposits and withdrawals can occur between these funds, care is taken to avoid double counting.

Endogenous revenues (RSEN) is the residual of total revenues minus petroleum revenues, investment earnings, and federal transfers. Total general fund unrestricted revenues can be divided into three categories: petroleum (RP9SGF), fund earnings (RSIN), and endogenous revenues (RSENGF).

Revenues into two other small families of funds are calculated. Special revenue funds (RSFS) consist of some special fees and licenses (RSFFS), a portion (PECIG) of cigarette taxes, and some miscellaneous items like federal revenue sharing. The international airport enterprise fund (RSIAS) is the final category.

86: R99S = RSGF + EXPFCON1 + (RSID-EXDFWITH)

91: RSEN $==$ SANCSA+R99S-RP9S-RSI99-RSFDN
92: RSENGF == SANCSA+RSGFBM-RP9SGF-RSIN

87: LOG(RSFFS) $=$ C58A+C58B*LOG(POP(-1))
88: RSFS1 = RSFS1(-1)*(1+GRUSCPI+GRDIRPU)
89: RSFS $==$ PECIG*RTCIS+RSFFS+RSFSI
90: \quad RSIAS $=\operatorname{RSIAS}(-1) *(1+$ GRUSCPI+GRDIRPU $)$

State Expenditures－－Major Categories

The constitutional amendment establishing the expenditure limit （EXLIM）places a ceiling on state appropriations from the general fund except for debt service（EXDSS），voter－approved capital expenditures（EXSPCAP），and supplementary Permanent Fund contributions（APPFCONX）．The ceiling has been set at $\$ 2.5$ billion for 1982，and is annually adjusted for inflation and population change．The allowable limit（EXLIMOK）may be less than this if current revenues plus the balance in the general fund are less than the spending limit ceiling．The difference between these amounts is defined as the revenue gap（RSGFGAP）．

The spending limit also requires that a portion（EXSPLIT），no more than two－thirds of appropriations，be allocated toward operations（APGFOPS），with at least one－third for capital（APGFCAP）， including subsidies（EXSUBS）and municipal capital grants（RLTMCAP）． If the limit is not in effect，this rule may be inoperative， depending upon interpretation of the amendment．Total general fund appropriations（APGF）exceeds that under the limit since it includes debt service（EXDSS），special capital appropriations（EXSPCAP）， supplementary Permanent Fund contributions（APPFCONX），and ANCSA payments（SANCSA）．

Total operating expenditures（net of debt service）funded from all sources（EXOPS）is the sum of the operating portion of the general fund（EXGFOPS）which equals appropriations（APGFOPS）and operating expenditures funded from sources not constrained by the limit．These sources are interagency receipts（EXINRECB）， restricted general fund revenues（RSGFRS）net of those federal transfers earmarked for capital expenditures（RSFDNCAX），special revenue fund receipts（RSFS），and the international airport enterprise fund（RSIAS）．

A number of other rules for determining state operating expenditures are possible but are currenty not utilized．These involve linking spending to demand factors such as income and population，allowing spending to grow at some fixed rate，allowing spending to grow as some function of a base case（BASEXOPS），or spending some annuity amount（EXANSAV or EXSAVS）．

Total capital expenditures（EXCAP）is determined in the model as capital expenditures from the general fund（EXGFCAP），augmented by capital expenditures funded out of capital projects funds（EXCPS）． Special capital expenditures（EXSPCAP）are not included in this definition of capital expenditures．

As with the operating budget，several other options are available，but not currently in use，for formulating state government capital expenditure behavior．These alternatives
parallel those for the operating budget but include，in addition， the alternative of programming capital spending to maintain a specified level of real per capita state capital stock（PR．BALCP）．

The other main elements of state spending are the Permanent Fund dividend program（EXTRNS）and subsidy programs（EXSUBS）as well as municipal capital grants（RLTMCAP）in the capital budget．The dividends are determined as a proportion（EXPFDIST）of Permanent Fund earnings over the previous five years plus general fund augmenting appropriations（EXTRNSX）．Municipal capital grants are set exogenously．Subsidies are exogenous．Interagency receipts defined in the Annual Financial Report（EXINREC）are a function of the operating budget；interagency receipts defined by the Executive Budget（EXINRECB）are a function of EXINREC．

```
110: EXLIM = IF YR EQ 1982 THEN EXLIM82 ELSE EXLIM82*
    (PDRPI/364.23)*(POP/460)
111: EXLIMOK = IF YR LT 1985 THEN EXLIM ELSE (IF RSGFBM-EXDSS+
    BALGFAFA(-1) GT EXLIM THEN EXLIM ELSE RSGFBM-EXDSS)
112: RSGFGAP == EXLIM-EXLIMOK
113: EXSPLIT == IF YR LT 1985 THEN 0.67 ELSE (IF RSGFGAP GT 0 AND
    RSGFGAP(-1) GT 0 THEN EXSPLITX ELSE (IF RSGFGAP GT 0 THEN
    0.67+(EXSPLITX-0.67)/2 ELSE 0.67))
```

114：APGFOPS $==$ EXLIMOK＊EXSPLIT
115：APGFCAP $==$ EXLIMOK＊（1－EXSPLIT）
116：APGF＝＝APGFOPS＋APGFCAP＋EXDSS＋EXSPCAP＋APPFCONX＋SANCSAX
117：EXGFOPS $==$ APGFOPS＋EXGFOPSX

118：EXOPS $=$ IF YR LE 1985 THEN EXOPS6 ELSE EXRL5＊（EXGFOPS＋ EXINRECB＋RSGFRS－RSFDNCAX＋RSFS＋RSIAS）＋EXRL1＊（EXOPS（－1）＊ （1＋（EXELI＊（POP（ -1 ）／POP（ -2 ）-1 ）＋EXEL2＊（PDEXOPS（ -1 ）／PDEXOPS （ -2 ）－1）＋EXEL3＊（PR．PI3（ -1 ）／PR．PI3（ -2 ）－1）＋EXEL4＊（PI（ -1 ）／PI $(-2)-1)+E X E L 5 *(P I 3(-1) / P I 3(-2)-1)+E X E L 6 *((P O P(-1)-E M C N X I(-1)) /$ （ $\operatorname{POP}(-2)-E M C N X 1(-2))-1))$ ）EXRLOP6＊BALGFCP（－1）＊（BALGFP（ -1 ）／ EXGF（－1）））＋EXRLOP7＊（R99S（－1）－EXNOPS（－1）－EXSAVS）＋EXRLOP8＊ （R99S（－1）－EXNOPS（ -1 ）－EXANSAV）＋EXRL3＊（1＋GRRPCEX）＊（EXOPS（ -1 ）／ $\operatorname{POP}(-1) / \operatorname{PDEXOPS}(-1) \star P O P * P D E X O P S)+E X R L 2 \star E X O P S(-1) \star(1+G R E X O P S)+$ EXRL4＊（BASEXOPS＋EXOPSIMP＊（PDEXOPS＊（POP－BASEPOP－EXRL4OP＊ （EMCNX1－BASEMCNX））））

119：EXANSAV $=$ RP9S＋RSIG＋RSIP－EXANNU＊（1＋RORANGRO）＊＊（YR－1983）
Institute of Social and Economic Research MAP Documentation December 1984, Model A85. 1
120: EXSAVS = EXSAVX+EXPFCON+TXPTXX*RTISLOS
121: EXGFCAP $==$ IF YR LE 1985 THEN EXGFCAP6 ELSE 0.3*APGFCAP+0.7* APGFCAP (-1)
122: EXCAP = IF YR LE 1985 THEN EXGFCAP+EXCPS ELSE EXRL5* (EXGFCAP+ EXCPS $)+$ EXRL $3 *((1+G R S S C P) * P R . B A L C P(-1) * P O P / 1000-R . B A L C A P(-1) *$ (1/(1+RORCPDEP)))/(100/PDCON)+EXRL2*(EXCAP(-1)*(1+GREXCAP))+ EXRL4* (BASEXCAP+EXCAPIMP* (PDCON* (POP-BASEPOP-EXRL40P* (EMCNX1-BASEMCNX))) + EXRL1* (EXCAP $(-1) *(1+E X E L 1 *(P O P(-1) /$ POP $(-2)-1)+E X E L 2 *(\operatorname{PDCON}(-1) / \operatorname{PDCON}(-2)-1)+E X E L 3 *(P R . P I 3(-1) /$ PR.PI3 (-2) -1) +EXEL4 4 (PI (-1)/PI (-2) -1) +EXEL5* (PI3 (-1)/ PI3(-2)-1)+EXEL6* ((POP(-1)-EMCNX1 (-1))/(POP(-2)-EMCNX1 (-2) -1)))
123: EXSUBS $=$ IF YR LT 2011 THEN EXSUBSX ELSE (IF EXRL5 EQ 1 THEN (IF RSGFBM(-1)+RSGFBM(-2)-1 LT EXGFBM(-1)+EXGFBM(-2) OR EXSUBS (-1) EQO THEN O ELSE EXLIMOK* (0.5*(1-EXSPLIT))) ELSE EXSUBS (-1)* (1+GRUSCPI))
124: EXTRNS = IF YR LT 1984 THEN EXTRNSX+EXPFDVX2 ELSE EXTRNSX+EXPFDVX2+EXPFDIST* (RSIP (-1) + $\operatorname{RSIP}(-2)+\operatorname{RSIP}(-3)+\operatorname{RSIP}(-4)+\operatorname{RSIP}) / 5$
125: EXINREC $=$ C17A+C17B* (EXOPS-RLT99) + C17C*D82
126: EXINRECB = C108A+C108B*EXINREC

State Expenditure Totals

Total general fund expenditures, including restricted and unrestricted accounts (EXGF), consists of operations (EXGFOPS+RSGFRS), debt service (EXDSS), general fund capital expenditures (EXGFCAP), special capital expenditures (EXSPCAP), special Permanent Fund appropriation (EXPFCONX), and Permanent Fund dividend augmentation (EXTRNSX). Unrestricted general fund expenditures (EXGFBM) nets out restricted revenues (RSGFRS).
General fund expenditures defined by the Annual Financial Report is also calculated (EXGF.AFR). Traditional general fund operating expenditures defined by the Annual Financial Report (EXGFOT.A) is also calculated.
Operating expenditures defined by the state budget (EXBUD) includes debt service expenditures and nongeneral fund University of Alaska receipts as well as operating expenditures defined above (EXOPS).
Two other variables calculated are total expenditures (EX99S) and nonoperating expenditures (EXNOPS).
186: EXGF = EXGFOPS+EXDSS+EXGFCAP+EXSPCAP+EXPFCONX+RSGFRS+EXTRNSX
187: EXGFBM $=$ EXGF-RSGFRS
188: EXGF.AFR $==$ EXGF+EXINREC
189: EXGFOT.A == EXGFOPS+EXINREC+RSGFRS-RSFDNCAX
190: EXBUD $==$ EXOPS+EXDSS+PARNONGF*EXUA
191: EX99S = EXBUD+EXTRNS+EXCAP+EXSPCAP
192: EXNOPS $=$ EX99S-EXOPS

State Operating Expenditure Detail

An initial estimate of state operating expenditures net of debt service in each of nine functional categories (EXaaa4) is calculated as a function of total operating expenditures. From these, the ratio RATIO1 is formed with total operating expenditures, and the initial estimates are ratioed down or up so that the final values (EXaaa) sum exactly to total operating expenditures. In the commerce and economic development program (EXCDS), exogenous state local transfers (RLTX) are added in before the adjustment occurs.

University of Alaska expenditures (EXUA) are a large part of the total education budget and are thus calculated separately.

Personnel expenditures by program category (EXPRaaa) are a function of expenditures. For two program categories, education and commerce, this is net of transfers to local government. Preliminary estimates of total education transfers (RLTE994), tax sharing (RLTT94), and revenue sharing (RLTRS4) come from the local government model. These are adjusted for consistency with total operating expenditures by RATIO1 and then netted out of their respective categories.

Total personnel expenditures (EXPR99) and state government wages and salaries fiscal-year (WSGSFY) and calendar-year basis (WSGS) are derived from the detailed categories.

```
127-135: LOG(EXaaa4) = CbbA+CbbB*LOG(EXOPS)
```

136: RATIO1 == EXOPS/(EXEDS4+EXSSS4+EXHES4+EXNRS4+EXPPS4+ EXJUS4+EXCDS4+RLTX+EXTRS4+EXGGS4)
137: EXUA $=$ IF YR LE 1983 THEN EXUA6 ELSE EXUA(-1)* (EXOPS/EXOPS(-1))

```
138-145: EXaaa = RATIO1*EXaaa4
    146: EXCDS = RATIO1*(EXCDS4+RLTX)
    147: RLTE99 = RLTE994*RATIO1
    148: EXEDSNT == EXEDS-RLTE99
    149: RLTT9 = RLTT94*RATIO1
    150: RLTRS = RLTRS4*RATIO1
    151: EXCDSNT = EXCDS-RLTT9-RLTRS-RLTX
    152: EXPRCDS = C7A+C7B*EXCDSNT
    153: EXPREDS1 = C1A+C1B*EXEDSNT+C1C*D61.75*EXEDSNT
154-161: EXPRaaa = CbA+CbB*EXaaa
```

162: EXPR99 = EXPREDS1+EXPRSSS+EXPRHES+EXPRNRS+EXPRPPS+
EXPRJUS+EXPRCDS+EXPRGGS+EXPRTRS+EXPRUA
163: WSGSFY = PCWS1*EXPR99
164: LOG (WSGS) = C55A+C55B*LOG(WSGSFY)+C55C*D75

State Capital Expenditure Detail

The sources of revenues for the capital projects fund (EXCPS) are federal capital grants (EXCPSFED) and general obligation bonds of the state (EXCPSGOB). This latter funding source determines the ongoing debt service requirement of the state (EXDSS) based upon the schedule of debt outstanding from previous bond sales (EXDSSX) plus debt service on debt newly incurred after 1983 (DEBTP83). This new debt is paid off at a constant rate over a fifteen-year period, like a mortgage, according to the capital recovery factor (RORCRF) applied to the newly incurred debt (retired after fifteen years using EXCPSM).

The proper measure of the current bonded debt of the state is GODT, consisting of the schedule of debt outstanding from bond sales through 1983 (GODTX) and the remaining debt from bond sales made after 1983. This debt is assumed paid off at the rate of about 7 percent annually for fifteen years.

Capital expenditures for purchases of state capital goods are divided into four major categories according to funding source and expenditure type. Highway and nonhighway capital expenditures may be funded out of the general fund (EXGFCHY and EXGFCNH) or from the

Institute of Social and Economic Research
MAP Documentation December 1984, Model A85. 1
capital projects fund which receives its revenues from general obligation bond sales and federal capital grants (EXCPSHY and EXCPSNH). The proportion of each funding source allocated to highway expenditures is LGF1 for the general fund, LFED1 for federal funds, and LBOND1 for bonds. Total highway (EXHYCAP) and nonhighway (EXNHYCP) capital expenditures are also calculated. Ferry capital expenditures (EXCAPFR) are calculated separately since they represent purchases outside the state.

Capital budget expenditures of the general fund includes traditional "bricks and mortar" expenditures (EXGFCAP1) as well as nontraditional items. These are calculated for the general fund (EXGFCOT) and total funds (EXCAPOT). They consist of subsidies (EXSUBS) and municipal grants (RLTMCAP) from the general fund.

The value added to the construction industry from state govermment capital expenditures (XXVACAP) consists of the nominal value of highway (XXVHY) and nonhighway (XXVNHY) value added, deflated by the price deflator for construction (PDCON). Special capital spending (EXSPCAP), municipal capital grants (RLTMCAP), and a portion of the value of subsidies (EXSUB1) contribute to nonhighway construction value added.

```
165: RORCRF \(==\) (GRUSCPI+RORBOND)*(1+GRUSCPI+RORBOND)**15/ ( ( \(1+\) GRUSCPI+RORBOND) \({ }^{* *}\) 15-1)
```


166: EXCPSGOB == IF YR LE 1985 THEN EXCPSGB6 ELSE IF EXDSS(-1)/ RSGFBM (-1) GT 0.05 THEN 0 ELSE ($0.05 * \operatorname{RSGFBM}(-1)-\operatorname{EXDSS}(-1)) /$ RORGRF

167: EXCPSFED = IF YR LE 1983 THEN EXCPSFD6 ELSE EXCPSFED(-1)* (1+GRUSCPI)

168: EXCPS = EXCPSGOB+EXCPSFED
169: EXGFCOT = IF YR LE 1983 THEN EXGFCOT6 ELSE EXSUBS+RLTMCAP
170: EXGECAP1 $==$ EXGFCAP-EXGFCOT
171: EXCAPOT $==$ EXGFCOT
172: EXGFCHY $=$ LGE1*(EXGFCAP-EXSUBS)
173: EXGFCNH $=(1-$ LGF1 $) \star($ EXGFCAP $-(1-$ EXSUB1 $) * E X S U B S)$
174: EXCPSHY = LFED1*EXCPSFED+LBOND1*EXCPSGOB
175: EXCPSNH $=(1-L F E D 1) * E X C P S F E D+(1-L B O N D 1) * E X C P S G O B$
176: EXNHYCP == EXGFCNH+EXCPSNH

```
max

\section*{177: EXHYCAP == EXGFCHY+EXCPSHY}
```

178: $\operatorname{EXCAPFR}=\operatorname{EXCAPFR}(-1) *(\operatorname{EXCAP} / \operatorname{EXCAP}(-1))$
179: \quad XXVHY $=$ C41A + G41B* $(E X H Y C A P+E X H Y C A P(-1))$
180: XXVNHY $=$ C42A+C42B* (EXNHYCP $(-1)+\operatorname{EXSPCAP}(-1)+$ RLTMCAP $(-1)-$ EXCAPFR(-2)+EXNHYCP+EXSPCAP+RLTMCAP-EXCAPFR(-1))
181: $\operatorname{XXVACAP~}==(X X V H Y+X X V N H Y) /(P D C O N / 100)$
182: EXDSS = IF YR LT 1984 THEN EXDSSX ELSE EXDSSX+RORCRF* DEBTP83(-1)
183: EXCPSM $=$ IF YR LT 1984 THEN 0 ELSE EXCPSGOB
184: DEBTP83 = IF YR LT 1984 THEN 0 ELSE DEBTP83(-1)+ EXCPSGOB-EXCPSM(-15)
185: GODT = IF YR LT 1984 THEN GODTX ELSE GODTX+EXCPSM(-14)* $0.067+\operatorname{EXCPSM}(-13) * 0.13+\operatorname{EXCPSM}(-12) * 0.2+\operatorname{EXCPSM}(-11) * 0.27+$ $\operatorname{EXCPSM}(-10) * 0.33+\operatorname{EXCPSM}(-9) * 0.4+\operatorname{EXCPSM}(-8) * 0.47+\operatorname{EXCPSM}(-7) *$ $0.53+\operatorname{EXCPSM}(-6) * 0.6+\operatorname{EXCPSM}(-5) * 0.67+\operatorname{EXCPSM}(-4) * 0.73+$ $\operatorname{EXCPSM}(-3) * 0.8+\operatorname{EXCPSM}(-2) * 0.87+\operatorname{EXCPSM}(-1) * 0.93+\operatorname{EXCPSGOB}$

```

\section*{State Fund Balances}

Two measures of current account balance are calculated. The first is the current account balance for the general fund account (BALCABGF), and the second is the current account balance for the general plus Permanent Fund accounts (BALCAB).

The model calculates several fund balances. The general fund balance (BALGF9) is calculated. The general fund balance available for appropriations is calculated (BALGFAFA) by netting out the portion which is not available for appropriations (BALGFUNA). The Permanent Fund (BALPF); the (hypothetical) development fund (BALDF); and the sum of the general fund, Permanent Fund, and development fund (BAL99) are calculated. Total balances available for appropriations is calculated (BAL99AFA).

Two special indicators of the general fund balance are calculated. The first shows only positive fund values (BALGFP); the second shows positive changes in the balance (BALGFCP).
```

193: BALCAB == R99S-EXGF-EXTRNS
194: BALCABGF == RSGF-EXGF

```
```

Institute of Social
and Economic Research
MAP Documentation
December 1984, Model A85.1

```
```

195: BALGF9 = IF YR LE 1983 THEN BALGF6 ELSE BALGF9(-1)+RSGF-EXGF
196: BALGFAFA = BALGF9(-1)+RSGF-EXGF-BALGFUNA
197: BALDF = IF YR LE 1983 THEN BALDF6 ELSE BALDF(-1)+EXDFCON
198: BALPF = IF YR LE 1983 THEN BALPF6 ELSE BALPF(-1)+EXPFCON
199: BAL99 = BALGF9+BALPF+BALDF
200: BAL99AFA = BALGFAFA+BALPF
201: BALGFP = IF BALGF9 LT 0 THEN O ELSE BALGF9
202: BALGFCP = IF BALGF9-BALGF9(-1) GT 0 THEN BALGF9-
BALGF9(-1) ELSE O

```

State Capital Stock and Operations, Maintenance, and Replacement Costs

The real value (R.BALCAP) and real per capita value of the capital stock (PR.BALCP) are calculated on the basis of the depreciation rate (RORCPDEP).

A set of equations calculates the cost of operations and maintenance (EXOM84) and replacement (EXRP84) of the state capital stock put in place beginning in 1984 (BALCAP84). Operations and maintenance is a constant proportion of the capital stock (EXOMCOST) while replacement is the rate necessary to offset depreciation (RORCPDEP). The running total for the capital stock put in place beginning in 1984 is augmented annually by new additions to the capital stock (EXCAPNEW). These annual new additions are net of replacement capital (EXCAPREP), consisting of the replacement of the depreciated pre-1984 capital stock in the annual amount of EXCAPOLD and replacement of the new stock (EXRP84).

203: R.BALCAP \(=\) R.BALCAP \((-1) *(1 /(1+\) RORCPDEP \())+(E X G F C H Y+E X G F C N H+\) EXCPS) \(\times 100 /\) PDCON

204: \(P R\).BALCP \(=\) R.BALCAP*1000/POP

205: EXCAPREP == IF YR LT 1984 THEN 0 ELSE RORCPDEP*BALCAP84 (-1) + EXCAPOLD* (PDRPI/PDRPIBAS)

206: EXCAPNEW == IF YR LT 1984 THEN 0 ELSE EXGFCHY+EXGFCNH+ EXCPS-EXCAPREP

207: BALCAP84 = IF YR LT 1984 THEN 0 ELSE BALCAP84(-1)* PDRPI/PDRPI (-1) +EXCAPNEW
```

208: EXOM84 == BALCAP84(-1)*EXOMCOST
209: EXRP84 == RORCPDEP*BALCAP84(-1)

```

LOCAL GOVERNMENT FISCAL MODULE DETAIL

\section*{Local Tax Revenues}

The local property tax base has one component (LPTB1) which is related to the level of personal income and population. This component of the value of real property in the state is based upon local assessments. A "full-value" assessment (LPTB1FV) is calculated by the state for revenue sharing purposes and is higher by the ratio of full value to local value (PARLVFV).

The second component of the local property tax base is derived from the value of petroleum-related capital equipment subject to the state property tax (PTBP9). This value is calculated by multiplying the tax (RPPS) by the inverse of the tax rate (PTRTS) adjusted for the portion in local jurisdictions. Only a portion (P9PTPER) of petroleum property actually lies within the boundaries of local government, and it is this amount which is the actual base for local taxes (LPTBP9). The complete local property tax base (LPTB) is the sum of the endogenous component (LPTB1) and the proportion (LPTRAT) of petroleum property within local boundaries which is actually taxable because of the per capita maximum valuation restriction. In addition, the model generates the "full value" of local property (LPTBFV) which is the sum of endogenous "full value" property and petroleum property within local boundaries. Finally, the full value of personal property in the state (PPVAL) is calculated as the full value of the local endogenous base and the value of petroleum property.

Local property tax receipts (RLPT1) is a function of the value of property. If there is exogenous activity which generates additional property taxes, this is added (RLPTX) to get a grand total (RLPT). Dther taxes (RLOT) consists primarily of sales taxes.
```

220: LOG(LPTB1) = C57A+C57B*LOG(P.PI(-1))+C57C*LOG(POP(-1))
221: LPTB1FV == LPTB1*1/PARLVFV
222: PTBP9 == RPPS*(1/PTRTS)/(1-P9PTPER*LPTRAT)
223: LPTBP9 == P9PTPER*PTBP9
224: LPTB = LPTB1+LPTBP9*LPTRAT

```

Institute of Social and Economic Research MAP Documentation December 1984, Model A85. 1
```

225: LPTBFV == LPTB1FV+LPTBP9
226: PPVAL == LPTB1FV+PTBP9
227: RLPT1 = C18A+C18B*LPTB1(-1)+C18C*PTBP9(-1)+C18D*D61.73
228: RLPT == RLPT1+RLPTX
229: LOG(RLOT*1000/POP(-1)) = C31A+C31B*LOG(PI(-1)*1000/POP(-1))

```

Local Transfers
The programs and formulas used to provide local government assistance have changed considerably in recent years, making modeling of these programs difficult. Preliminary values for all types of local transfers are calculated based upon the formulas currently used to determine transfer amounts (suffix 4). These are subsequently adjusted using RATIO1 for consistency with total state operating expenditures.

Total transfers (RLT99) consist of five categories as follows: tax sharing (RLTT9), revenue sharing (RLTRS), education (RLTE99), miscellaneous (RLTMS), and exogenous (RLTX).

The most important shared tax is a portion (PESLTC) of the corporate tax before 1982. After 1981, this program was replaced by the municipal assistance program (RLTMA). Other shared taxes are portions of ad valorem taxes (RLTVS) and other taxes (RLTOT), primarily the fish processing taxes.

State local revenue sharing (RLTRS) is a separate category of assistance. Miscellaneous transfers (RLTMS) is another which currently is composed of the municipal capital grants (RLTMCAP).

Educational transfers is the largest category (RLTE99), consisting of primary and secondary education transfers (RLTEA) and other (nonprimary and nonsecondary) education transfers (RLTEB). Primary and secondary education transfers are further divided into the following categories: cigarette tax transfers (RLTEC), Foundation program transfers (RLTEF), transportation transfers (RLTET), and other education transfers (RLTEO). The Foundation program is the basic program in support of education, and it is a function of the number of students (ADMSD) and the basic instructional unit allotment (BIU) which is a basic funding level. The number of students is calculated for district schools (ADMDIS) and for the rural educational attendance area schools (ADMREA).
```

230: RLTCS4 = IF YR GT 1981 THEN 0 ELSE PESLTC*RTCS1
231: RLTVS4 = C63A +C63B*RTVS
232: RLTOT4 == PESLT*RTOTS
233: RLTMA4 = IF YR LE 1983 THEN RLTMA6 ELSE RLTMA(-1)/
PDRPI(-1)/POP(-1)*POP*PDRPI
234: RLTT94 = RLTVS4+RLTOT4+RLTCS4+RLTMA4
235: RLTRS4 = IF YR LE 1983 THEN RLTRS6 ELSE RLTRS(-1)*
(1+GRUSCPI+GRDIRPU)
236: RLTMS = RLTMCAP
237: RLTEC4 == PECIG*RTCIS
238: ADMDIS == PAD1*POPSKUL(-1)
239: ADMREA == PAD2*POPSKUL(-1)
240: ADMSD = ADMDIS+ADMREA
241: BIU = IF YR LE 1983 THEN BIU6 ELSE BIU(-1)*(1+GRUSCPI)
242: RLTEF4 = C36A+C36F*D81.00+D71.00*C36B+BIU*C36C+C36D*ADMSD
243: RLTET4 = (POP/POP(-1)+PDRPI/PDRPI(-1)-1)*RLTET(-1)
244: RLTEO4 = RLTEO(-1)*(1+GRUSCPI+GRDIRPU)
245: RLTEA4 == RLTEC4+RLTEF4+RLTET4+RLTE04
246: RLTEB4 = IF YR LE 1983 THEN RLTEB6 ELSE RLTEB(-1)*
(1+GRUSCPI+GRDIRPU)
247: RLTE994 = RLTEA4+RLTEB4
248: RLTCS = RLTCS4*RATIO1
249: RLTVS == RLTVS4*RATIO1
250: RLTOT == RLTOT4*RATIO1
251: RLTMA = RLTMA4*RATIO1
252: RLTEC == RLTEC4*RATIO1
253: RLTEF == RLTEF4*RATIO1

```
```

254: RLTET = RLTET4*RATIO1
255: RLTEO = RLTEO4*RATIO1
256: RLTEA == RLTEA4*RATIO1
257: RLTEB = RLTEB4*RATIO1
258: RLT99 = RLTT9+RLTRS+RLTE99+RLTMS+RLTX

```

\section*{Other Local Revenues}

Other local revenues consist of federal transfers (RLTF), special petroleum-related federal transfers (RLTFPX), and miscellaneous fees and charges (RLMC). The level of miscellaneous fees and charges is set to maintain a zero balance on current account for local government accounts.
```

274: RLTF = RLTF(-1)*(1+GRUSCPI+GRDIRPU)
275: RL991 == RLPT+RLOT+RLT99+RLTF+RLTFPX
276: RLMC = EL99-RL991-(GOBONDL-GOBONDL(-1))
277: RL99 == RL991+RLMC

```

Local Government Expenditures


\section*{4. Description of the Demographic Module of the MAP Economic Model}

\subsection*{4.1. Summary}

The population module of the Alaska economic model (Figure 3) provides annual forecasts of total population and the detailed population characteristics for the state of Alaska, shown in Table 7. Population in each year is estimated as an average annual value which is determined by the sum of natural increase of the previous year's population and net immigration. The former is based upon age-sex-race-specific fertility and mortality rates. The latter is based primarily upon a stochastically determined equation relating net immigration to the change in employment opportunities in Alaska, Alaskan unemployment, and real wage levels relative to the U.S. average. This specification is based upon the theory that migration flows clear regional labor markets, with people moving into regions where employment opportunities are increasing faster than local supplies can satisfy them and out of economically declining regions. A small element of out-migration of the elderly occurs independently of employment opportunities.

The three main components of population-Native, military, and civilian non-Native--each receive separate treatment because of different characteristics. The Native population can only migrate out of Alaska and has different fertility and mortality rates than do civilian non-Natives. The military population consists of armed forces personnel and military dependents. Births, death, and net migration are not calculated for this component of the population. Its age-sex structure essentially remains constant in simulation, independent of the level of this element of population, as each year those leaving are replaced by individuals with identical characteristics.

Total Population. Total population is the sum of the three components of the population which are treated individually because of different characteristics. These components are civilian/nonNative population, Native population, and military population which is armed forces personnel plus military dependents. Each of the components of the population is divided into 30 age-sex cohorts. The population under 1 year is the first cohort for each sex, and the 65 -and-over population is cohort 15 . Cohort 2 is the population aged 1 through 4 years; all others span five years.

The military population distribution is constant at 1980 values. Thus, the age-sex structure of both the armed forces personnel and the military dependents does not change over time, nor does the ratio of military dependents to armed forces personnel. Changes in

Institute of Social and Economic Research MAP Documentation December 1984, Model A85.1

FIGURE 3. MAP EGONOMIC POPULATION MODULE
(


TABLE 7. DEMOGRAPHIC MODEL OUTPUT
\begin{tabular}{|c|c|}
\hline & Population Aggregates \\
\hline FOP & total Alaska population \\
\hline CNNTOT & total Alaska civilian non-Native population \\
\hline NATTOT & total Alaska Native population (civilian) \\
\hline POPM & Alaska active duty military personnel \\
\hline POPC & Alaska population not in military service \\
\hline POPAVAGE & average age of Alaska population \\
\hline POPij & total Alaska population in cohort ij \\
\hline CNNPij & Alaska civilian non-Native population in cohort ij \\
\hline NATPij & Alaska Native population in cohort ij \\
\hline BTOT & total Alaska civilian births \\
\hline DTOT & total Alaska civilian deaths \\
\hline \multirow[t]{2}{*}{POPNI9} & total Alaska civilian natural increase \\
\hline & Civilian Non-Native Natural Increase \\
\hline Cij & Alaska civilian non-Native population in cohort ij before migration \\
\hline BTHTOT & total Alaska civilian non-Native births to civilian population \\
\hline DTHINF & Alaska infant civilian non-Native deaths \\
\hline DTHTOT & total Alaska civilian non-Native deaths \\
\hline \multirow[t]{2}{*}{NATINC} & Alaska civilian non-Native natural increase \\
\hline & (Civilian) Native Natural Increase \\
\hline NCij NBTHTOT & Alaska Native population in cohort ij before migration total Alaska Native births \\
\hline NDTHINF & Alaska Native infant deaths \\
\hline NDTHTOT & total Alaska Native deaths \\
\hline NNATINC & Alaska Native natural increase \\
\hline \multirow[t]{2}{*}{POPNE} & Alaska Native enrollment population \\
\hline & Civilian Migration \\
\hline POPMIG & total net civilian migration to Alaska \\
\hline MIGOUT & exogenous civilian migration to Alaska \\
\hline MIGIN & endogenous civilian migration to Alaska \\
\hline
\end{tabular}
```

TABLE }7\mathrm{ (continued)

```

\section*{Labor Force and Unemployment}

PLFDOMC Alaska potential civilian non-Native labor force (population age 15 to 64)
PLFDOMN Alaska potential civilian Native labor force PLFDOMM Alaska potential military labor force (military dependents age 15 to 64, active-duty military are excluded)
PLFD9 total Alaska potential civilian labor force
LF total Alaska civilian labor force
UNEMP Alaska unemployed
WR.AK.US change in the relative real wage rate, Alaska to U.S.
U.AK.US relative unemployment rate, Alaska to U.S.
UNEMRATE Alaska unemployment rate

\section*{Households}

HH total Alaska households
HHC total Alaska civilian non-Native households
HHN total Alaska civilian Native households
HHM total Alaska military households
CHHij Alaska households headed by civilian non-Native persons in cohort ij
NHHij Alaska households headed by civilian Native persons in cohort ij
HHij total Alaska households headed by persons in cohort ij

\section*{Population in Group Quarters}

POPCGQ
POPMGQ
POPNGQ
POPGQ
Alaska civilian non-Native population in group quarters Alaska military population in group quarters in 1980
Alaska Native population in group quarters
total Alaska population in group quarters

\section*{Average Household Size}

HHSIZEM
HHSIZEN
average Alaska military household size
HHSIZEC average Alaska civilian non-Native household size
HHSIZE

TABLE 7 (continued)
Special Population Aggregates
FOPSKUL total Alaska population age \(5-19\)
POPKIDS total Alaska population under 15
POPGER \(\quad\) total Alaska population 65 and over
POPADS
total Alaska population age \(15-64\)
military employment cause total military population and each age-sex cohort to change proportionately. 1

Givilian/Non-Native Natural Increase. Each year, a percentage of individuals within each cohort die, and another percentage move into the next cohort as people age. The aging process applies to all individuals within a cohort, and the result of this process is an "intermediate cohort" to which migrants must be added to arrive at the final cohort value for the new year.

The population of the \(0-1\)-aged cohort is determined by the number of births, which is the sum of cohort-specific fertility rates applied to the female population surviving from the previous year. While mortality rates change very slowly, fertility rates are affected by a number of socioeconomic variables. Since precise relationships cannot be determined for Alaskan fertility rates, these are held constant in the model for the projection period. A percentage of infants do not survive, and a specific sex division of births is applied to total births.

From these calculations, both infant deaths and total deaths can be calculated as sums. Finally, natural increase is the excess of births over deaths.

Civilian/Non-Native Migration. Net immigration is a function of the year-to-year change in the level of total Alaskan civilian employment, the percentage change in the lagged value of the Alaskan-U.S. ratio of real weekly earnings, and the lagged ratio of U.S.-to-Alaska unemployment rates. Migrants, according to this formulation, will be drawn to Alaska in response to a tightening of the Alaskan labor market, indicated by low unemployment rates and rising real wages. Higher relative unemployment rates and declining real wages would cause net immigration to be negative.

Net immigration is distributed among the age-sex cohorts by a two-step process. First, a percentage of each cohort of the population leaves the state independent of the overall amount of net migration. The remainder of net migration is allocated among all the cohorts on the basis of a percentage of total net migration. (This remainder can be a negative number.) Net migration to Alaska is biased toward young males relative to the U.S. average.

Total civilian/non-Native population is finally calculated by summing the population in each cohort, including the results of the migration process during the year.
\({ }^{1}\) The variable MILPCT scales the 1980 military population distribution to correspond to total military population in any particular year.
4.2. Demographic Module Detail \([i=M, F\) and \(j=2\) to 15]

\section*{Total Population}

601: \(\mathrm{POP}=\) CNNTOT+NATTOT+MILPCT* (AFTOT+MDTOT)
602: POPC \(=\) POP-POPM

603-632: POPij \(==\) CNNPij+NATPij+MILPGT*MILij

Civilian/Non-Native Natural Increase
466-493: Cij == Gj*Sij*CNNPij(-1)+(1-Gj-1)*Si,j-1*CNNPi,j-1(-1)

494: BTHTOT \(==\left(\sum_{j=4}^{11}(C F j * F E R T j)\right)-\) BADD
495: CM1 \(==\) SEXDIV*BTHTOT*SURINFM
496: CF1 == (1-SEXDIV)*BTHTOT*SURINFF497: DTHINF \(==\) BTHTOT-CM1-CF1
498: DTHTOT \(==\) DTHINF \(+\sum_{i=M, F} \sum_{j=1}^{15}(C i j(-1) *(1-S i j))\)
499: NATINC == BTHTOT-DTHTOT
(Civilian) Native Natural Increase
531-558: NCij \(==\mathrm{Gj*NSij}\) NATPij( -1\()+(1-G j-1) * N S i, j-1 * N A T P i, j-1(-1)\)
559 11
559: NBTHTOT \(=\left(\sum_{j=4}(\right.\) NCFj*NFERTj) \()+\) BADD
560: \(\quad\) NCM1 \(==\) NSEXDIV*NBTHTOT^NSURINFM
561: NCF1 == (1-NSEXDIV)*NBTHTOT*NSURINFF
562-591: NATPij = NCij*(1+NMij)
592: ND'THINF \(==\) NBTHTOT-NCMI-NCF1
15 ..... \(i=M, F \quad j=1\)
594: NATTOT \(=\sum_{i=M, F} \sum_{j=1}^{15}\) NATPij
595: POPNE \(=\) POPNE ( -1 ) *NATTOT/NATTOT ( -1 )
596: NNATINC \(==\) NBTHTOT-NDTHTOT\(\sin\)
Civilian Migration and Total Civilian Population
663: POPMIG \(=\) CMIGI+CMIG2*1/U.AK.US \((-1)+\) CMIG3*WR.AK.US \((-1)+\) CMIG4*DELEMP
\[
\text { 597: MIGOUT }=\sum_{i=M, F} \sum_{j=1}^{15}((\text { OEMi } j * C i j)+(N M i j * N C i j))
\]

598: MIGIN = POPMIG-MIGOUT

500-529: CNNPij = MIGIN*Mij+Cij*(1+OEMij)

530: CNNTOT \(=\sum_{i=M, F} \sum_{j=1}^{15}\) CNNPij

Labor Force and Unemployment
```

653: PLFDOMC == 隹 }\mp@subsup{\sum}{j=5}{14}\mathrm{ GNNPij
654: PLFDOMM == \sum
655: PLFDOMM == MILPCT * (\sum
656: PLFD9 == PLFDOMC+PLFDOMN+PLFDOMM
657: LF == LAFPRT*PLFD9
658: UNEMP == LF-EM96
659: UNEMRATE == UNEMP/LF
660: U.AK.US == UNEMP/LF/U.US
661: DELEMP == EM96-EM96(-1)
662: WR.AK.US == LOG(R.WR97)-LOG(WEUS*100/PDUSCPI)-(LOG(R.WR97(-1))-
LOG(WEUS(-1)*100/PDUSGPI(-1)))

```

\section*{Military Population}

599: POPM \(==\) EMGM/MILRAT
600: MILPCT = POPM/AFTOT
Natural Increase
633: BTOT == BTHTOT+NBTHTOT
634: DTOT == DTHTOT+NDTHTOT
635: POPNI9 == BTOT-DTOT
Birth and Death Rates
636: NCBR \(==\) NBTHTOT/NATTOT*1000
637: NCDR == NDTHTOT/NATTOT*1000
638: CBR == BTHTOT/CNNTOT*1000
639: CDR == DTHTOT/CNNTOT*1000
640: BGRUDE \(==\mathrm{BTOT} /(\mathrm{CNNTOT}+\mathbb{N A T T O T}) * 1000\)
641: DCRUDE \(==\) DTOT/(CNNTOT+NATTOT)*1000
Population Aggregates
642: POPSKUL == POPM3+POPM4+POPM5+POPF3+POPF4+POPF5
643: POPKIDS == POPSKUL+POPM1+POPM2+POPF1+POPF2-POPM5-POPF5
644: POPGER = POPM15+POPF15
645: POPADS == POP-POPKIDS-POPGER
652: POPAVAGE \(==0.5 *((P O P M 1+P O P F 1) / P O P)+3 *((P O P M 2+P O P F 2) /\) POP \()+7.5^{*}((\) POPM3 + POPF3 \() / P O P)+12.5^{*}((\) POPM4+POPF4)/ POP) \(+17.5 *((\) POPM5 +POPF5 \() / P O P)+22.5 *((P O P M 6+P O P F 6) /\) POP) \(+27.5^{*}((\) POPM \(7+\) POPF7 \() /\) POP \()+32.5^{*}((\) POPM8+POPF8) / POP \()+37.5^{*}((\) POPM \(9+\) POPF9 \() /\) POP \()+42.5 \star((\) POPM10 + POPF10)/ POP \()+47.5^{*}((\) POPM11+POPF11)/POP \()+52.5 *((\) POPM12+POPF12)/ POP \()+57.5^{*}\left((\right.\) POPM13+POPF13)/POP \()+62.5^{*}((\) POPM14+POPF14)/ POP) \(+67.5 *((\) POPM15+POPF15)/POP)

\section*{Households}

A household is a living unit of one of two types: a family or an individual or group of individuals, not related, who are living as a unit. The number of households is a function of both the level of population and its age-sex distribution. The age-sex distribution of the population is important because the rate at which people form households differs across age-sex cohorts. This household formation module accounts for both of these influences of population on household formation.

The household formation module is an accounting model which depends on a set of assumptions about the age-sex cohort-specific rates of household formation, known as headship rates, and changes in those rates. The module is based on the assumption that the social, economic, and life-cycle factors which determine the formation of households can be described by a set of headship rates. Headship rates describe the probability that a person in a particular cohort is a household head.

The module requires input from the population module in the form of the projected size and age-sex distribution of the population. The total number of households in the state ( HH ) is equal to the number of households summed across age and sex cohorts.

745: \(\quad \mathrm{HH}=\sum_{i j} \mathrm{HHij}\)

The total number of households in sex cohort \(i\) and age cohort \(j\) (HHij) describes the number of households with household head or primary individual in the ith sex and jth age cohort. This total is, in turn, composed of three components: the number of civilian/ non-Native households in cohort ij (CHHij), the number of Native households in cohort ij (NHHij), and the number of military households in cohort ij (MHHij).

675+: \(\quad\) HHij \(=\) CHHij+NHHij+MHHij*MILPCT

The number of civilian and Native households in each cohort is a function of the population and headship rate for the cohort. The number of households in any cohort equals the cohort-specific headship rate multiplied by the cohort population (CNNPij for civilian/non-Natives and NATPij for Natives) net of the proportion of the population in group quarters (CPGQij for civilian/non-Natives and NPGQij for Natives).
```

673+: CHHij = CNNPij*(1-CPGQij)*(HHRij+RCij/TP*(YR-1980))
674+: NHHij = NATPij*(1-NPGQij)*(NHHRij+NRCij/NTP*(YR-1980))

```

\section*{Institute of Social}

The headship rates have changed historically and are expected to continue to vary. The headship rates are assumed to approach a specified target over a specified time period. Thus RCij (NRCij) is the specified target change for non-Natives (Natives) and TP (NTP) is the time period in which the change is assumed to take place while HHRij and NHHRij are 1980 headship rates. \({ }^{1}\)

The cohort distribution of military households (MHHij) is assumed to remain constant throughout the projection period. The number of military households equals the number in 1980, multiplied by the ratio of current year to 1980 active duty military (MILPCT).

The model calculates Native, civilian/non-Native, and total population in group quarters.

746: POPCGQ \(==\sum_{i j}(\) CNNPij \(\star\) CPGQij)
747: \(\quad\) POPNGQ \(==\sum_{i j}(\) NATPi \(j *\) NPGQij \()\)
748: POPGQ == POPNGQ+POPCGQ+POPMGQ*MILPCT

Total households is also determined for Native, civilian nonNative, and military elements of the population.
```

749: $\mathrm{HHG}==\sum \sum$ CHHij

```

750: HHN \(==\sum_{i j}\) NHHij
751: \(\quad\) HHM \(==\) MILPCT * \(\sum \sum\) MHHij
ij

The model calculates average household size for Natives, civilian/non-Natives, military, and total population.

752: HHSIZEN \(==\) (NATTOT-POPNGQ)/HHN
753: HHSIZEC \(==\) (CNNTOT-POPCGQ)/HHC
754: HHSIZEM \(==\) MILPCT*(AFTOT+MDTOT-POPMGQ)/HHM
755: HHSIZE == (POP-POPGQ)/HH
\(1_{\text {Because }}\) of the structure of these equations, the period over which the rates change must be set to exceed the length of simulations.

\section*{5. Input Variables}

A value for each of these variables for each year of simulation must be entered by the user.

\subsection*{5.1. Policy Inputs}

Values for these variables are likely to change from one simulation to the next.

Employment
```

*EMAGRI agriculture
*EMCNX1 high wage (enclave) exogenous construction
*EMCNX2 normal wage exogenous construction
*EMFISH fish harvesting
*EMGC civilian federal government
*EMGM military active duty

* EMMX1 high wage exogenous manufacturing
* EMIMX2
* EMP9
*EMT9X

```
```

 sectoral average wage exogenous manufacturing
    ```
    sectoral average wage exogenous manufacturing
    mining (including petroleum)
    mining (including petroleum)
    exogenous part of transportation
```

 exogenous part of transportation
    ```

\section*{State Expenditures}
\begin{tabular}{|c|c|}
\hline APPFCONX & general fund appropriations to the Permanent Fund \\
\hline EXDFPCNT & development fund withdrawal rate \\
\hline EXDF1 & development fund contribution rate \\
\hline EXGFOPSX & exogenous general fund operating expenditures \\
\hline EXPFCONX & extraordinary Permanent Fund contribution \\
\hline EXPFDIST & Permanent Fund distribution rate \\
\hline EXPF1 & Permanent Fund contribution rate \\
\hline EXPFTOGF & percent of Permanent Fund earnings transferred to the general fund \\
\hline EXSAVX & savings out of current revenues \\
\hline EXSPCAP & special capital expenditures \\
\hline EXSPLITX & operation expenditures as a proportion of total \\
\hline EXSUBSX & exogenous subsidy level \\
\hline EXSUBI & stimulative effect of state subsidies on construction industry \\
\hline EXSUB2 & stimulative effect of state subsidies on consumer spending \\
\hline LBOND1 & proportion of state general obligation bonds for highways \\
\hline LFED1 & proportion of federal capital grants for highways \\
\hline LGF1 & proportion of state general fund capital expenditures for highways \\
\hline
\end{tabular}

\footnotetext{
*May be provided by scenario generator model if desired.
}

\section*{Growth Rates \({ }^{\text {a }}\)}
\begin{tabular}{ll} 
GRDIRPU & U.S. disposable income per capita \\
GRRWEUS & U.S. real average weekly earnings \\
GRUSCPI & U.S. consumer price index
\end{tabular}

Local Revenues
\begin{tabular}{ll} 
RLPTX & exogenous property taxes \\
RLTFPX & petroleum-related federal transfers \\
RLTMCAP & municipal capital grants from state to local \\
& government \\
RLTX & unspecified state-local transfers
\end{tabular}

\section*{State Petroleum Revenues}
*RPBS bonus payments
RPEN rental payments
*RPPS property taxes
*RPRY royalties
*RPTS severance taxes RP9X unspecified revenues
RSFDNPX petroleum-related federal-shared revenues
*RTCSPX petroleum corporate income tax

State Nonpetroleum Revenues
\begin{tabular}{ll} 
RSFDNX & exogenous federal-state transfers \\
RTCSX & exogenous corporate income tax
\end{tabular}

\section*{Miscellaneous}

LAFPRT pseudo labor force participation rate
*TOURIST
UUS
XXMX1 tourist visitors
U.S. unemployment rate exogenous large-project manufacturing real gross state product
*May be provided by scenario generator model if desired.
ather growth rates used only with certain fiscal rule options are as follows:
```

GREXCAP - state capital expenditures
GREXOPS - state operating expenditures
GRRPCEX - real per capita state expenditures
GRSSCP - state per capita capital stock

```

\subsection*{5.2. Other Exogenous Inputs}

Values for these variables are less likely to vary across simulations.

\section*{Dummy Variables}

Dgg a dummy variable with a value of unity in the year gg only

Dgg.hh. a dummy variable with a value of unity from year gg to year hh

DggDECj a dummy variable with a value of unity in year gg and declining to zero in \(j\) years

Initial Adjustment Variables

RSIPS initial adjustment to Permanent Fund earnings level

Initial Values
BALgg6 known historical values for the balance in the state fund gg

BIU6 known historical values for basic instructional unit for allocating state education funds to districts

EXaaa6 known historical values for state expenditure category aaa

PDUSCPI6 known historical values for USCPI

PITRAN6 known historical values for transfers component of personal income

PR.DPIU6 known historical values for real per capita disposable income in U.S.

RLTEB6 known historical values for state aid to local government for education net of district and REAA aid

RLTMA6 known historical values for state-local transfers under municipal assistance

RLTRS6 known historical values for state-local revenue sharing
\begin{tabular}{|c|c|c|}
\hline RHISRES6 & known historical values for miscellaneous restricted general fund revenues & m \\
\hline RSEDN6 & known historical values for total federal grants－in－ aid to state general fund & \％ \\
\hline RSIG6 & known historical values for state general fund interest & \％ \\
\hline RTOTS6 & known historical values for other state taxes （fiduciary，inheritance，estate，mining，conservation， prepaid，and fish taxes） & \(\cdots\) \\
\hline VAEX6 & known historical values for exemption value on federal income tax & m \\
\hline WEUS6 & known historical values for U．S．average weekly earnings & N \\
\hline \multicolumn{3}{|l|}{Impact Variables} \\
\hline BASaaaa or & values from a previously run＂base case＂used in certain impact study calculations & \\
\hline BASEaaaa & & \(\cdots\) \\
\hline \multicolumn{2}{|l|}{State Personal Income Tax Variables} & m \\
\hline RTISXX & adjustment of disposable income to cover lag in refund of state personal income taxes after repeal & 0 \\
\hline TCRED & individual tax credit beginning after 12／31／77 & \\
\hline TXBASE & change in the floor of personal income tax rate schedule & m \\
\hline TXCRPC & state personal income tax credit adjustment & m \\
\hline TXPTXX & allows model user to withold from state expenditures a portion of any personal income tax reduction & m \\
\hline TXRT & percentage change in state personal income tax rate & \\
\hline \multicolumn{3}{|l|}{Native Income Variables} \\
\hline ANCSA & payment to Alaska Natives by federal and state government under Alaska Native Claims Settlement Act（ANCSA） & En \\
\hline
\end{tabular}

Institute of Social and Economic Research MAP Documentation December 1984, Model A85.1
\begin{tabular}{|c|c|}
\hline EMNATX & Native employment rate obtained from the income distribution model \\
\hline NCBP & bonus income to Natives from lease sales on Native lands \\
\hline NCRP & Native recurrent income from petroleum development on Native lands \\
\hline PCNC1 & proportion of ANCSA payments paid directly to individuals \\
\hline PCNC2 & proportion of recurring income from petroleum
development on Native lands paid directly to
individuals \\
\hline PCNC3 & proportion of earnings on Native Corporation accumulated capital paid directly to individuals \\
\hline RNATX & Native personal income calculated using the income distribution model \\
\hline SANCSA & payment to Alaska Natives by state government under ANCSA \\
\hline SANCSAX & special state appropriation to pay off ANSCA debt \\
\hline
\end{tabular}

\section*{Miscellaneous Exogenous Variables}

BADD adjustment factor to account for birth of Native children to non-Native women (see demographic module)

BALGFUNA state general fund balance unavailable for appropriations

EMAUN forestry and unclassified employment
EXDSSX annual debt service payment to service general obligation bonds outstanding at beginning of simulation period

EXPFDVX1 accounting adjustment to Permanent Fund retained earnings in early years

EXPFDVX2 accounting adjustment to Permanent Fund dividend in early years

EXTRNSPI state Permanent Fund dividends in 1982 and 1983 incorporated in state personal income

\title{
Institute of Social and Economic Research MAP Documentation December 1984, Model A85.1
}
\begin{tabular}{|c|c|c|}
\hline EXTRNSX & Permanent Fund dividend distribution funded through the general fund & 5mis \\
\hline GODTX & general obligation bonded indebtedness of the state from debt incurred before start of simulation & \% \\
\hline LPTRAT & percentage of pipeline property within local jurisdictions actually subject to local tax because of limitations imposed by state statutes & 54 \\
\hline PCOLART & cost of living differential for federal employees & 0 \\
\hline PIPADJ & ratio of "enclave" to regular construction wage rate & \\
\hline P9PTPER & percentage of petroleum property which is taxable by state which falls within local taxing jurisdiction & \\
\hline RSFDNCAX & federal grants-in-aid to state general fund for capital expenditures & \% \\
\hline YR & year & \%er \\
\hline State Cap & tal Stock & \(\cdots\) \\
\hline Lea & proportion of funding of state capital projects type a from initial funding source type c & \% \\
\hline LMUNCAP & proportion of state-funded municipal capital grants spent of capital projects & \(\infty\) \\
\hline OMba & rate of operations and maintenance cost for state capital stock type a from funding source b & \\
\hline RCDEPa & rate of depreciation of state capital stock type a & \\
\hline REPba & rate of replacement of state capital stock type a from funding source b & ( \\
\hline
\end{tabular}

Institute of Social
and Economic Research
MAP Documentation
December 1984, Model A85.1
WRGaa average annual wage rate growth rate
WSaaa wages and salaries
XXaaa gross product

A prefix followed by a period and a variable name indicates the variable is operated on in the manner dictated by the prefix.

DF.aaa variable deflated to 1984 base-year dollars (PDRPIBAS is base-year index)

DFP.aaa variable deflated to 1984 per capita base-year dollars
EM. aaaa variable is a proportion of total employment (EM99)
EX.aaa variable is a proportion of total state general fund expenditures (EXGF)

EXBM.aaa variable is a proportion of total state general fund expenditures (EXGFBM)
G.aaa change in the level of the variable from the previous year

IM.aaa variable is difference calculated from a previously run simulation with outputs specified by exogenous variables with prefix BAS

INX.aa a specially constructed variable for monitoring model simulation behavior
P.aaa variable in per capita terms (POP)

PI.aaaa variable is a proportion of personal income (PI)
POP.aaa variable is a proportion of population (POP)
PR.aaa variable in real per capita terms (deflated using PDRPI where 1967 US \(=100\) )
R.aaa variable is deflated to 1967 US price level (PDRPI)

RL99.aaa variable is a proportion of total local revenues (RL99)
RS.aaaa variable is a proportion of total state general and Permanent Fund revenues (R99S)

RSBM, aaa variable is a proportion of unrestricted state general fund revenues (RSGFBM)


\title{
Institute of Social
}

Total Civilian (Non-Ag. Wage \& Salary plus Proprietors)
Total Non-Ag. Wage and Salary
Total Non-Ag. Wage \& Salary Plus Military
Grand Total
99
Non-Tourism
b. Components of Income: used with personal income (PIaa)

DIR Dividends, Interest, Rent
OLI . Other Labor Income
PRO Proprietor Income
PRO1 Nonfishing Proprietor Income
PROF Fishery Proprietor Income

RADJ Residence Adjustment
SSG Personal Contributions to Social Security
TRAN Transfers
WS Wages and Salaries
3 Personal Income Net of Enclave Employment Income

8
Personal Income plus Residence Adjustment
c. State Expenditures by major program categories: used with expenditures (EXaa) and personnel expenditures (EXPRaa)
\begin{tabular}{ll} 
CDS & Development \\
EDS & Education \\
GGS & General Government \\
HES & Health and Social Services \\
GF & General Fund \\
& \\
GFBM & Unrestricted General Fund \\
DF & Development Fund (hypothetical) \\
PF & Permanent Fund \\
JUS & Justice \\
NRS & Natural Resources \\
& \\
PPS & Public Protection \\
SSS & Social Services \\
TRS & Transportation \\
UA & University of Alaska
\end{tabular}

6-5
7. Parameter Values, Definitions, and Sources

\subsection*{1.1. Economic and Fiscal Modules}
\begin{tabular}{|c|c|c|c|c|}
\hline & Variable & Value & Definition; Units & Historical Data Source \\
\hline \(\cdots\) & Cab & - & a stochastic coefficient, where aa is a number associated with a particular equation and \(b\) is a letter associated with the position within the equation & - \\
\hline 2ma & EXANNU & 800 & if EXRLOPB is in effect, the amount of the annual annuity which contributes to funding state operating expenditures; million \(\$\) & set by model user at level consistent with continued positive state treasury balance and maximum expenditure levels \\
\hline Pm & EXCAPIMP & . 1432 & per capital impact state capital expenditure used with fiscal rule EXRL4 & Goldsmith and Mogford, The Relationship Between the Alaska Natural Gas Pipeline \& State \& Local Government Expenditures \\
\hline - & EXCAPOLD & 1000 & state spending to replace capital stock put in place prior to 1984 & Department of Administration, Annual Financial Report \\
\hline , & EXELI & 1 & elasticity of state expenditures with respect to population & set by model user; default value consistent with idea that expenditures rise with population \\
\hline  & EXEL2 & 1 & elasticity of state expenditures with respect to prices & set by model user; default value consistent with idea that expenditures rise with prices \\
\hline Pam & EXEL3 & 1 & elasticity of state expenditures with respect to real per capita personal income & set by model user; default value assumes state operating expenditures neither inferior or superior good \\
\hline & EXEL4 & 0 & elasticity of state expenditures with respect to personal income & set by model user; default value assumes state expenditures are inferior goods \\
\hline \(\cdots\) & EXEL5 & 0 & elasticity of state expenditures to personal income net of "enclave" employment-related income (PI3) & set by model user; default value assumes state expenditures are inferior goods \\
\hline - & EXEL6 & 0 & elasticity of state expenditures to population net of "enclave" construction employment & set by model user; default value assumes state expenditures are inferior goods \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Variable & Value & Definition; Units \\
\hline EXLIM82 & 2500 & constitutionally mandated 1982 spending limit; million \$ \\
\hline EXOMCOST & . 15 & annual operations and maintenance cost of incremental state capital stock as a percentage of original cost \\
\hline EXOPSIMP & 7.678 & per capita impact state operation expenditure used with fiscal rule EXRL4 \\
\hline EXPF2 & . 162 & portion of Permanent Fund dividend income not entering purchasing power expression; percent \\
\hline EXPF3 & . 31 & portion of Pemanent Fund dividend income not subject to personal income tax; percent \\
\hline EXRLI & 0 & policy switch for determination of state expenditure growth based primarily upon aggregate demand variables, including prices, population, and income \\
\hline EXRL2 & 0 & policy switch for determination of state expenditure growth based upon a specified exogenous growth rate \\
\hline EXRL3 & 0 & policy switch for determination of state expenditure growth based upon a specified growth rate in real per capita operating expenditures and real per capita level of capital stock \\
\hline EXRL4 & 0 & policy switch for determination of state expenditure growth based upon a specified expenditure level per impact individual (for use in impact analysis) \\
\hline
\end{tabular}

\section*{Historical Data Source}
current law
author's estimate

Goldsmith and Mogford, The Relationship Between the Alaska Natural Gas Pipeline and State and Local Government Expenditures

Knapp et al., The Alaska Permanent
Fund Dividend Program: Economic
Effects and Public Attitudes

Knapp et al., The Alaska Permanent
Fund Dividend Program: Economic
Effects and Public Attitudes
set by model user; default value zero


\section*{Historical Data Source}
set by model user; default value zero
set by model user; default value one
set by model user; default value zero
set by model user; default value zero
set by model user; default value zero
values internal to model to allow income distribution model to work

Department of Education, Annual Financial Report, and population mode 1

Department of Education, Annual Financial Report, and population model

Department of Labor ( DOL ), Statistical Quarterly
average of past values from Alaska Dept. of Community and Regional
Affairs, Alaska Taxable
Department of Administration, Executive Budget
\begin{tabular}{|c|c|c|}
\hline Variable & Value & Definition; Units \\
\hline PBLTBL & . 13 & proportion of gross business receipts taxable after 1978 tax law change; percent \\
\hline PBTRATE & . 000025 & state business license tax rate; million \(\$\) per business \\
\hline PCI2N & . 922 & proportion of ANCSA payments made to 12 regional Native corporations in Alaska; percent \\
\hline PCI2RN & . 833 & proportion of members of 12 regional Native corporations residing in Alaska; percent \\
\hline PCINDA & . 1 & proportion of gap between average industry employment share and Native industry employment share that is closed within one time period; percent \\
\hline PCIVPY & . 65 & ratio of military to federal civilian wage rate \\
\hline PCNC4 & 0 & proportion of bonus income from lease sales on Native lands paid directly to individuals \\
\hline PCNCSV & . 5 & proportion of Native corporation income used for investment \\
\hline PCNCSV1 & 1 & proportion of bonus incone from lease sales on Native corporation lands and retained by Native corporations which is used for investment \\
\hline PCNCWS & . 25 & proportion of current expenditures of Native Corporations paid in wages and salaries \\
\hline
\end{tabular}
Historical Data Source
ratio of predicted receipts
under new law and old law using
information from Alaska Dept. of
Revenue, Commissioner's Newsletter
(under new law, only banks, trusts,
and savings \& loans taxed)
existing state tax law
2(c) Report: Federal Programs and
Alaska Natives by Robert Nathan
Assoc. for U.S. Department of
Interior
2(c) Report: Federal Programs and
Alaska Natives by Robert Nathan
Assoc. for U.S. Department of
Interior
author's estimate
author's estimate
author's estimate
Author's estimate
Statistical Quarterly, and U.S.
Dept. of Cormerce, Bureau of Economic
Analysis personal income data
autimate

PFISHI
PCWS 1

PCYNAI

PDCONBAS

PDRPIBAS

PECIG

PERNAI

PERNA2

PERNA3

PESLT

PESLTC

Value
. 9

\section*{e}

Definition; Units
ratio of state government wage and salary payments to personnel expenditures
1.01545 proportion by which the ratio of personal income to wages and salaries for Natives exceeds that of the total population
633.398 value of construction price deflator in base year

1984 Alaskan price level using 1967 U.S. as base; index
proportion of cigarette tax receipts paid to special fund; percent
proportion of change in state employment rate reflected in change in Native employment rate; percent
proportion of gap between Native and state employment rates that is closed in one year; percent
percentage of Native corporation jobs held by Natives; percent
proportion of "other" state taxes shared with local government; percent
proportion of state corporate income tax shared with local government; percent
percentage of fish harvesting employment reported as proprietors

\section*{Historical Data Source}

Alaska Department of Labor, Statistical Quarterly, and Alaska Dept. of Administration, Executive Budget

Alaska Department of Labor, Statistical Quarterly, and U.S. Dept. of Commerce, Government Finances

1970 U.S. Census, public use samples

Gross State Product for Alaska: Technical Documentation, ISER
variable PDRPI in database
existing state tax law
author's estimate
author's estimate
author's estimate
existing state tax law
existing state tax law

DOL Statistical Quarterly, BEA emp loyment data, and \(G\). Rogers, Measuring the Socioeconomic Impact of Alaska's Fisheries
\begin{tabular}{|c|c|c|}
\hline Variable & Value & Definition; Units \\
\hline PIDIST & 0 & model switch which results in retrieval of Native employment and wages and salaries from income distribution madel if value of one is chosen \\
\hline PNTGR & . 02 & gross receipts per business exempt from state gross receipts tax; million \$ \\
\hline PRINT2 & 0 & variable from income distribution model which allows results to be printed if value of one is chosen \\
\hline PTOURB & -4.75 & intercept term on tourist industry employment equation \\
\hline PTOURD & . 4 & proportion of tourist industry employment in trade \\
\hline Ptoure & 1 & elasticity of tourism employment to growth in number of tourists \\
\hline PTOURS & . 4 & proportion of tourist industry employment in services \\
\hline PTOURT & . 2 & proportion of tourist industry employment in transportation \\
\hline PTRTS & . 02 & tax rate on state petroleum-related property; percent \\
\hline PWRBASE & 5473 & 1967 U.S. average wage paid in government \\
\hline ROR & . 02 & real rate of return on general fund balance; percent \\
\hline RORANGRO & . 08 & rate at which state operating expenditure annuity grows; percent \\
\hline RORBOND & . 02 & real interest rate on state general obligation bonds \\
\hline RORCPDEP & . 03 & real rate of depreciation of state capital; percent \\
\hline
\end{tabular}


ROROISK
Value

\section*{Definition; Units}
discount rate applied to future petroleum revenues to calculate present value in 1982 dollars (DF.RSVP)
nominal rate of return on accumulated capital of Native Corporations
real rate of return premium applied to development fund over general fund; percent
real rate of return premium applied to Permanent Fund over general fund; percent

\subsection*{7.2. Demographic Module}
\(\qquad\)
Military Porulation
\[
23.323
\]
total armed forces personnel in 1980

MOPij
-

MILRAT
1
MDTOT
25.131
total military dependents in 1980; thousand
armed forces personnel and military dependents in cohort ij in 1980; thousand
the ratio of military employment (EMGM)

Definition; Units to military population (POPM)

\section*{Historical Data Source}
author's estimate
author's estimate
author's estimate
author's estimate

\section*{Historical Data Source}

Alaska Air Command and Kruse, Design and Implementation of Alaska, 1980 Reapportionment Data Collection Effort

BOC, 1980 Census of Population, extrapolated from military census tracts

Alaska Air Command and Kruse, Design and Implementation of Alaska, 1980 Reapportionment Data Collection Effort

BOC, 1980 Census of Population, extrapolated frommilitary census tracts

Civilian Native Natural Increase
NFERTij Table 9 Native fertility rate in female cohort j

NSij Table 10 Native survival rate for cohort jj

NSEXDIV
.513

NSURINFi Table 10
Native infant survival rates; percent

Alaska Department of Health
and Social Services and Alaska
Native Medical Center

Alaska Department of Health

Alaska Department of Health

Alaska Department of Health

Alaska Department of Health and Social Services and Alaska Native Medical Center

Alaska Department of Health and Social Services

Alaska Department of Health and Social Services

Alaska Department of Health and Social Services

See regression results

Alaska Public Survey
(non-Native) migration assigned to cohort id

NMij 0 migration rate (positive for in; negative for out) for Native populalion in cohort jj; percent

OEMij Table \(11 \quad \begin{aligned} & \text { exogenous civilian non-Native migration } \\ & \text { rate (positive for } i n \text {; negative for out) }\end{aligned}\) for population in cohort jj
Variable Value
Civilian Non-Native Natural Increase
FERTj
Table 9 \begin{tabular}{l} 
non-Native fertility rate for \\
female cohort \(j\)
\end{tabular}

Historical Data Source and Social Services and Social Services and Social Services

Civilian Migration


Anchorage Urban Observatory and BOC, 1980 Census of Population
\begin{tabular}{|c|c|c|c|}
\hline 5 & Variable & Value & Definition; Units \\
\hline & Household & Formation & \\
\hline \% & CPGQij & Table 15 & fraction of civilian non-Native population in cohort ij in group quarters \\
\hline R & HHRij & Table 14 & 1980 household formation rate for civilian non-Native population in cohort \(i j\) \\
\hline - & MHHij & Table 16 & 1980 military households headed by individual in cohort ij ; thousand \\
\hline - & NHHRij & Table 14 & 1980 household formation rate for civilian Native population in cohort ij; percent \\
\hline ama & NPGQij & Tăble 15 & fraction of civilian Native population in cohort ij in group quarters \\
\hline m & NRCij & - & targeted total change in Native household formation rate for cohort \(\mathbf{i j}\) \\
\hline m & NTP & 40 & period over which Native household formation rates trend; years \\
\hline m & POPNGQ & 9.443 & military population in group quarters; thousand \\
\hline man & RCij & - & targeted total change in civilian household formation rate for cohort \(\mathbf{i j}\) \\
\hline - & TP & 30 & period over which civilian household formation rates trend; years \\
\hline
\end{tabular}

\section*{Historical Data Source}

BOC, 1980 Census Tape STF2B

BOC, 1980 Census of Population, Census Tape STF2

BOC, 1980 Census of Population

BOC, Census of Population, Census Tape STF2

BOC, 1980 Census of Population

See MAP Technical Documentation Report, 1983

See map Technical Documentation Report, 1983

BOC, Census of Population

See MAP Technical Documentation Report, 1983

See MAP Technical Documentation Report, 1983

TABLE 8. ALASKA POPULATION, APRIL 1, 1980


\({ }^{\text {active duty military plus dependents. }}\)
SOURCE: 1980 U.S. Census

(9,557 total births in Alaska in 1980)
aRate includes one case where age was not stated.

SOURCE: Number of births from Alaska Department of Health and Social Services, Office of Information Systems; and Alaska Native Medical Center, Anchorage.

TABLE 10. 1980 DEATHS: NUMBER OF DEATHS AND DEATH RATES PER THOUSAND, ALASKA RESIDENTS
native


SOURCE: Number of deaths from Alaska Department of Health and Social Services, Office of Information Systems.

Institute of Social and Economic Research MAP Documentation December 1984, Model A85. 1
table 11. estimated exogenous out-migration rates
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Age Group} & \multicolumn{2}{|l|}{Percent of Migrants} & \multicolumn{2}{|l|}{Percent of Age-Sex Cohort} \\
\hline & Female & Male & Female & Male \\
\hline Under 5 & 5.8 & 5.8 & 10.77 & 10.17 \\
\hline 5-9 & 5.8 & 5.8 & 10.76 & 10.37 \\
\hline 10-14 & 2.9 & 2.9 & 5.17 & 4.19 \\
\hline 15-19 & 3.3 & 3.3 & 5.10 & 4.98 \\
\hline 20-24 & 3.2 & 3.6 & 4.52 & 5.33 \\
\hline 25-29 & 7.0 & 8.2 & 8.79 & 9.98 \\
\hline 30-34 & 5.8 & 8.1 & 7.42 & 9.17 \\
\hline 35-39 & 4.0 & 5.2 & 6.56 & 9.35 \\
\hline 40-44 & 3.2 & 3.5 & 1.26 & 6.38 \\
\hline 45-49 & 1.8 & 1.4 & 4.49 & 3.26 \\
\hline 50-54 & 1.9 & 1.9 & 7.09 & 5.61 \\
\hline 55-59 & 1.1 & 1.3 & 4.41 & 5.07 \\
\hline 60-64 & 1.3 & 1.3 & 9.60 & 8.55 \\
\hline \(65+\) & 0.3 & 0.3 & 1.41 & 1.78 \\
\hline Total & 47.4 & 52.6 & & \\
\hline
\end{tabular}

\footnotetext{
SOUFFE: Richard Ender, Anchorage Urban Observatory and U.S. Census, 1980.
}
table 12. CIVILIAN MIGRATION TO ANCHORAGE ALASKA PUBLIC SURVEY SAMPLE ( \(N=1,867\) Individuals)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Age Group} & \multicolumn{2}{|l|}{Interstate Migrants} & \multicolumn{2}{|l|}{Alaska Natives} & \multicolumn{2}{|l|}{Non-Native Intrastate} & \multicolumn{2}{|c|}{Total} \\
\hline & Female & Male & Female & Male & Female & Male & Female & Male \\
\hline Under 5 & 19 & 15 & 3 & 5 & 11 & 8 & 33 & 28 \\
\hline 5-9 & 18 & 19 & 4 & 6 & 5 & 9 & 21 & 34 \\
\hline 10-14 & 8 & 7 & 3 & 1 & 7 & 5 & 18 & 13 \\
\hline 15-19 & 9 & 13 & 0 & 3 & 8 & 6 & 17 & 22 \\
\hline 20-24 & 33 & 27 & 1 & 3 & 11 & 10 & 45 & 40 \\
\hline 25-29 & 26 & 34 & 4 & 2 & 15 & 16 & 45 & 52 \\
\hline 30-34 & 22 & 27 & 3 & 3 & 15 & 17 & 40 & 47 \\
\hline 35-39 & 10 & 14 & 2 & 2 & 5 & 6 & 17 & 22 \\
\hline 40-44 & 9 & 12 & 1 & 1 & 4 & 3 & 14 & 16 \\
\hline 45-49 & 5 & 6 & 1 & 0 & 4 & 5 & 10 & 11 \\
\hline 50-54 & 1 & 1 & 0 & 0 & 2 & 3 & 3 & 4 \\
\hline 55-59 & 2 & 3 & 0 & 0 & 2 & 2 & 4 & 5 \\
\hline 60-64 & 1 & 1 & 0 & 0 & 0 & 2 & 1 & 3 \\
\hline \(65+\) & 1 & 0 & 0 & 0 & 1 & 0 & 2 & 0 \\
\hline Total & 164 & 179 & 22 & 26 & 90 & 92 & 276 & 297 \\
\hline
\end{tabular}

\footnotetext{
NOTE: Figures include all members of the household of survey respondents resident in community (in Alaska for interstate migrants) thirty-six months or less.
}

Institute of Social and Economic Research MAP Documentation December 1984, Model A85. 1

\section*{TABLE 13. ESTIMATED CIVILIAN MIGRATION RATES TO ANCHORAGE}
(percent of migrants in each category)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Age Group} & \multicolumn{2}{|l|}{Interstate Migrants} & \multicolumn{2}{|l|}{Alaska Natives} & \multicolumn{2}{|l|}{All Non-Native Migrants} \\
\hline & Female & Male & Female & Male & Female & Male \\
\hline Under 5 & 5.0 & 5.0 & 8.3 & 8.3 & 5.0 & 5.0 \\
\hline 5-9 & 5.4 & 5.4 & 10.4 & 10.4 & 4.9 & 4.9 \\
\hline 10-14 & 2.2 & 2.2 & 4.2 & 4.2 & 2.6 & 2.6 \\
\hline 15-19 & 2.6 & 3.8 & 3.1 & 3.1 & 3.2 & 3.6 \\
\hline 20-24 & 9.6 & 7.9 & 4.2 & 4.2 & 8.3 & 7.0 \\
\hline 25-29 & 7.6 & 9.9 & 6.3 & 6.3 & 7.8 & 9.4 \\
\hline 30-34 & 6.4 & 7.9 & 6.3 & 6.3 & 7.0 & 8.4 \\
\hline 35-39 & 2.9 & 4.1 & 4.2 & 4.2 & 2.9 & 3.8 \\
\hline 40-44 & 2.6 & 3.5 & 2.0 & 2.0 & 2.5 & 2.9 \\
\hline 45-49 & 1.5 & 1.7 & 1.0 & 1.0 & 1.7 & 2.1 \\
\hline 50-54 & 0.3 & 0.3 & - & - & 0.6 & 0.8 \\
\hline 55-59 & 0.6 & 0.8 & - & - & 0.8 & 1.0 \\
\hline 60-64 & 0.3 & 0.3 & - & - & 0.4 & 0.4 \\
\hline \(65+\) & 0.1 & 0.1 & - & - & 0.2 & 0.2 \\
\hline Total & 47.1 & 52.9 & 50.0 & 50.0 & 47.9 & 52.1 \\
\hline
\end{tabular}

\footnotetext{
SOURCE: Data from Alaska Public Survey
}

\title{
Institute of Social and Economic Research MAP Documentation \\ December 1984, Mode1 A85. 1
}


Institute of Social and Economic Research MAP Documentation December 1984, Model A85. 1

TABLE 15. ALASKA CIVILIAN POPULATION IN GROUP QUARTERS, 1980



\section*{8. Model Validation and Properties}

Several types of analyses are done to test the validity of the MAP model. 1

\subsection*{3.1. Statistical Tests}

Statistical tests are normally applied to the stochastic equations of the model. All stochastic equations in the MAP model are estimated using ordinary least squares regression. Two-staged least squares estimations have been found in the past not to change significantly the results of simulations. In general, specifications for these equations are chosen which have good predictive qualities ( \(R^{2}\), standard error of regression) and structural properties (t tests, \(F\) test). Sometimes, however, it is necessary to compromise on the quality of the statistical tests of the model to obtain an equation specification which does well in simulation. This is because when simulating with all the equations together in a model, equations that appear correct may not always interact to produce reasonable results.

Individual equation statistical tests are applied during estimation. At the same time, the stability of the structure of the individual equations can be reviewed. As might be expected in the rapidly evolving Alaskan economy, the structures of some equations may need to be altered over time.

\subsection*{8.2. Historical Simulation}

Second, the model is tested by seeing how accurately it can predict the actual historical data upon which it is based (ex post forecast). There are no formal statistical tests of this capability except that a model that comes closer to the actual historical values is better. One value of this test is that it indicates variables or sections of the model which may require additional attention.

The results of historical simulation of the current version of the MAP model are presented in Table 17 for the most important endogenous variables of the model: personal income, wages and salaries, and employment.
\({ }^{1}\) The model used to do the tests presented in this section was developed in early 1984.

Institute of Social and Economic Research MAP Documentation
December 1984, Model A85. 1

\section*{TABLE 17. HISTORICAL SIMULATION OF ECONOMIC MODULE}

Personal Income (million \(\$\) )
\begin{tabular}{|c|c|c|c|c|}
\hline & Historical Data & Simulated Value & Error & Percent Ercor \\
\hline 1963 & 678.623 & 653.422 & -25.202 & -3.714 \\
\hline 1964 & 763.415 & 736.542 & -26.873 & -3.52 \\
\hline 1965 & 827.373 & 813.878 & -13.495 & -1.631 \\
\hline 1966 & 894.177 & 871.322 & -22.855 & -2.556 \\
\hline 1967 & 987.882 & 928.313 & -59.569 & -6.03 \\
\hline 1968 & 1068.36 & 1052.9 & -15.463 & -1.447 \\
\hline 1969 & 1215.8 & 1174.94 & -40.856 & -3.36 \\
\hline 1970 & 1388.01 & 1276.23 & -111.782 & -8.053 \\
\hline 1971 & 1519.28 & 1423.89 & -95.394 & -6.279 \\
\hline 1972 & 1677.57 & 1594.13 & -83.446 & -4.974 \\
\hline 1973 & 1958.88 & 1900.5 & -58.385 & -2.981 \\
\hline 1974 & 2391.46 & 2228.78 & -162.683 & -6.803 \\
\hline 1975 & 3454.69 & 3211.74 & -242.953 & -7.033 \\
\hline 1976 & 4128.95 & 4231.62 & 102.672 & 2.487 \\
\hline 1977 & 4260.56 & 4293.15 & 32.59 & 0.765 \\
\hline 1978 & 4323.98 & 4282.7 & -41.273 & -0.955 \\
\hline 1979 & 4554.01 & 4678.71 & 124.699 & 2.738 \\
\hline 1980 & 5152. & 5393.18 & 241.176 & 4.681 \\
\hline 1981 & 6166.58 & 6339.27 & 172.684 & 2.8 \\
\hline 1982 & 7384.34 & 7437.61 & 53.273 & 0.721 \\
\hline Mean & 2739.8 & 2726.14 & -13.657 & -2. 257 \\
\hline Root Mean Squared & 3379.33 & 3405.83 & 110.602 & 4.267 \\
\hline Standard Deviation & 2029.62 & 2094.57 & 112.607 & 3.716 \\
\hline
\end{tabular}


\title{
Institute of Social and Economic Research MAP Documentation December 1984, Model A85.1
}

TABLE 17 (continued)

Nonagriculture Wage and Salary Employment
(thousands)
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Historical Data & Simulated Value & Error & Percent Error & \\
\hline 1963 & 62.093 & 59.626 & -2.467 & -3.973 & \\
\hline 1964 & 65.38 & 65.553 & 0.173 & 0.265 & \% \\
\hline 1965 & 70.529 & 68.377 & -2.152 & -3.051 & \\
\hline 1966 & 73.195 & 71.469 & -1.726 & -2.358 & \\
\hline 1967 & 76.784 & 73.792 & -2.992 & -3.897 & \\
\hline 1968 & 79.803 & 80.388 & 0.585 & 0.733 & \\
\hline 1969 & 86.563 & 85.494 & -1.069 & -1.234 & \\
\hline 1970 & 92.465 & 90.949 & -1.516 & -1.639 & - \\
\hline 1971 & 97.584 & 97.541 & -0.043 & -0.044 & \\
\hline 1972 & 104.243 & 102.154 & -2.089 & -2.004 & \% \\
\hline 1973 & 109.849 & 109.559 & -0.29 & -0.264 & \\
\hline 1974 & 128.164 & 120.276 & -7.888 & -6.154 & \\
\hline 1975 & 161.315 & 155.908 & -5.407 & -3.352 & me \\
\hline 1976 & 171.185 & 171.404 & 0.219 & 0.128 & \\
\hline 1977 & 164.063 & 163.267 & -0.796 & -0.485 & \\
\hline 1978 & 163.293 & 161.173 & -2.12 & -1.298 & - \\
\hline 1979 & 166.406 & 163.727 & -2.679 & -1.61 & \\
\hline 1980 & 170.807 & 165.323 & -5.484 & -3.211 & \\
\hline 1981 & 185.219 & 180.591 & -4.628 & -2.499 & \\
\hline 1982 & 199.545 & 195.99 & -3.555 & -1.781 & \\
\hline Mean & 121.424 & 119.128 & -2.296 & -1.886 & \\
\hline Root Mean Squared & 129.528 & 127.088 & 3.153 & 2.531 & min \\
\hline Standard & & & & & max \\
\hline Deviation & 46.267 & 45.42 & 2.217 & 1.731 & \\
\hline
\end{tabular}

The results are summarized for each variable in terms of a MAPE value, which is the mean-absolute percent error of the predicted value from the actual value. The MAPE are as follows: personal income, 2.26; wages and salaries, 1.49 ; and nonagricultural wage and salary employment, 1.89. The results for the MAP Alaska model fall within the range reported for other regional econometric models, and the pattern of forecast errors and percent errors shows that the model has been successful in tracking a historical period during which significant growth and structural change occurred.

\subsection*{3.3. Demographic Module Validation}

The demographic module of the economic model uses as the basis of its forecasts the demographic characteristics of the population enumerated by the 1980 U.S. Census. No detailed enumeration of the state population has been undertaken since the 1980 Census. The most recent past detailed population count that could be used to test the ability of the full module to predict demographic shifts up to 1980 is the 1970 U.S. Census. Conceptually, one could use the population module to "predict" the 1980 population, given the 1970 population characteristics and estimated migration between 1970 and 1980.

Such a test is impractical, however, since Alaskan cohortspecific birth, death, and household formation rates changed significantly between the 1970 and 1980 Census benchmarks. Consequently, one would not expect a module to forecast population changes accurately during this period using the 1980 parameters.

Although it is not practical to test predictions of the full population module against historical events, it is possible to examine closely one important component of the module-net migration. The equation forecasting net civilian migration was estimated using recent historical data. To the extent that future economic conditions resemble those that have occurred in the past decade, the ability of the module equation to estimate historical migraton flows provides a reliable indicator of the type and magnitude of likely future forecasting errors. Table 18 displays a comparison of actual estimated net civilian migration to the migration equation predictions in the years for which it is possible to compute a forecast from available data.

Institute of Social and Economic Research MAP Documentation December 1984, Model A85.1

TABLE 18. COMPARISON OF ACTUAL AND PREDICTED NET MIGRATION TO ALASKA
\begin{tabular}{cccc} 
& \begin{tabular}{c} 
Implied Net \\
Civilian \\
Migration
\end{tabular} & \begin{tabular}{c} 
Regression \\
Prediction
\end{tabular} & Difference \\
\hline 1971 & 6.78 & NA & NA \\
1972 & 5.98 & 1.569 & 4.361 \\
1973 & 2.08 & -0.164 & 2.244 \\
1974 & 8.29 & 10.669 & -2.378 \\
& & 30.066 & 0.424 \\
1975 & 30.49 & 21.238 & -0.398 \\
1976 & 20.84 & 1.074 & 0.436 \\
1977 & 1.51 & -7.744 & -3.366 \\
1978 & -11.11 & -4.531 & -0.539 \\
1979 & -5.07 & -2.983 & 2.233 \\
1980 & -0.75 & 12.996 & -4.946 \\
1981 & 8.05 & 17.94 &
\end{tabular}
\(I_{\text {Net }}\) migration in year \(t\) is defined as the difference between the (mid-year) population estimate for year \(t\) and for year \(t-1\), less the excess of births over deaths (computed as a two-year moving average), adjusted to exclude estimated military population changes.

2Using the equation presented in Section 4 , including the estimate of serial correlation in the error term.

December 1984, Model A85. 1

\subsection*{8.4. Sensitivity Analysis}

The sensitivity of simulation results to changes in parameter and exogenous variable values has been investigated. The model is sensitive to the elasticity of the support sector, government spending levels, the labor force participation rate, and the real wage rate growth as well as to the exogenous employment variables.

\subsection*{8.5. Simulation Tests}

After these foregoing tests have been made, the model is run under different conditions to assess its reasonableness and stability in as many types of situations as possible as well as its ability to identify turning points. These tests include straight simulation, impact analyses, simulation under conditions of no growth, and simulation under conditions of decline. Certain variables are monitored to make sure that their values remain within a reasonable range.

Several ratios which are closely monitored are shown in Table 19 for a typical simulation. The civilian employment rate (EMRATE) holds fairly constant and jumps during boom periods. The ratio of disposable-to-total personal income (PI.DPI) trends downward except during boom periods. The Alaskan price index relative to the United States (PDRATIO) trends downward but ratchets up during boom periods. The ratio of price-adjusted personal income per capita in Alaska to the United States (INX.DI) jumps during booms but eventually falls below one as it has been historically. The ratio of the real wage in Alaska to the United states trends upward slightly (INX.WG). The ratio of wage and salary to total income falls (PI.WS98). The ratios of support (INX.S1) and infrastructure (INX.S2) employment to Alaskan real disposable personal income are relatively stable. The ratios of support (EM.EMSUP) and infrastructure (EM.EMTCU) employment to total employment show continued growth.

Institute of Social and Economic Research MAP Documentation
December 1984, Model A85.1

TABLE 19. VARIABLES USED TO MONITOR SIMULATION
EMRATE PI.DPI PDRATIO INX.DI INX.WG PI.WS98
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 1983 & 0.511 & 0.824 & 1.275 & 1.124 & 1.572 & 0.81 & - \\
\hline 1984 & 0.502 & 0.824 & 1.267 & 1.05 & 1.512 & 0.822 & \\
\hline 1985 & 0.499 & 0.823 & 1.259 & 1.021 & 1.458 & 0.807 & \\
\hline 1986 & 0.503 & 0.822 & 1.251 & 1.004 & 1.42 & 0.802 & \\
\hline 1987 & 0.501 & 0.821 & 1.243 & 0.975 & 1.375 & 0.793 & \\
\hline 1988 & 0.499 & 0.82 & 1.236 & 0.974 & 1.374 & 0.784 & - \\
\hline 1989 & 0.499 & 0.818 & 1.228 & 0.98 & 1.371 & 0.773 & \\
\hline 1990 & 0.507 & 0.817 & 1. 219 & 0.963 & 1.39 & 0.803 & \\
\hline 1991 & 0.513 & 0.792 & 1.211 & 0.944 & 1.412 & 0.811 & ) \\
\hline 1992 & 0.51 & 0.79 & 1.256 & 0.927 & 1.404 & 0.809 & \\
\hline 1993 & 0.508 & 0.789 & 1.248 & 0.916 & 1.403 & 0.81 & \\
\hline 1994 & 0.504 & 0.788 & 1.24 & 0.913 & 1.394 & 0.796 & \% \\
\hline 1995 & 0.509 & 0.787 & 1.232 & 0.915 & 1.405 & 0.802 & \\
\hline 1996 & 0.499 & 0.786 & 1.224 & 0.901 & 1.396 & 0.789 & 0 \\
\hline 1997 & 0.5 & 0.785 & 1.216 & 0.898 & 1.404 & 0.792 & \\
\hline 1998 & 0.485 & 0.784 & 1.208 & 0.891 & 1.395 & 0.781 & \\
\hline 1999 & 0.493 & 0.783 & 1.2 & 0.884 & 1.39 & 0.775 & \(\cdots\) \\
\hline 2000 & 0.491 & 0.782 & 1.192 & 0.879 & 1.389 & 0.772 & W \\
\hline 2001 & 0.496 & 0.781 & 1.184 & 0.884 & 1.397 & 0.773 & \\
\hline 2002 & 0.498 & 0.779 & 1.176 & 0.885 & 1.402 & 0.772 & * \\
\hline 2003 & 0.499 & 0.778 & 1.168 & 0.883 & 1.404 & 0.771 & \\
\hline 2004 & 0.498 & 0.777 & 1.159 & 0.879 & 1.404 & 0.768 & \\
\hline 2005 & 0.498 & 0.776 & 1.151 & 0.877 & 1.407 & 0.766 & \(\cdots\) \\
\hline 2006 & 0.498 & 0.775 & 1.143 & 0.875 & 1.412 & 0.764 & \\
\hline 2007 & 0.498 & 0.774 & 1.135 & 0.874 & 1.417 & 0.763 & mmmen \\
\hline 2008 & 0.499 & 0.772 & 1.127 & 0.874 & 1.423 & 0.763 & \\
\hline 2009 & 0.5 & 0.771 & 1.119 & 0.872 & 1.427 & 0.762 & \\
\hline 2010 & 0.5 & 0.77 & 1.111 & 0.869 & 1.431 & 0.761 & \\
\hline
\end{tabular}

SOURCE: BAT14
KEY: See text.

TABLE 19 (continued)

INX.S1
INX. S2
EM. EMTCU
EM. EMSUP
\begin{tabular}{|c|c|c|c|c|}
\hline 1.983 & 0.048 & 0.011 & 0.078 & 0.335 \\
\hline 1.984 & 0.051 & 0.012 & 0.078 & 0.342 \\
\hline 1.985 & 0.052 & 0.012 & 0.08 & 0.348 \\
\hline 1.986 & 0.053 & 0.012 & 0.08 & 0.348 \\
\hline 1.987 & 0.053 & 0.012 & 0.08 & 0.348 \\
\hline 1.988 & 0.053 & 0.012 & 0.08 & 0.349 \\
\hline 1989 & 0.052 & 0.012 & 0.08 & 0.352 \\
\hline 1990 & 0.052 & 0.012 & 0.082 & 0.35 \\
\hline 1991 & 0.053 & 0.013 & 0.084 & 0.348 \\
\hline L992 & 0.053 & 0.013 & 0.085 & 0.353 \\
\hline 1993 & 0.054 & 0.013 & 0.084 & 0.36 \\
\hline 1994 & 0.054 & 0.012 & 0.085 & 0.365 \\
\hline 1995 & 0.054 & 0.013 & 0.087 & 0.368 \\
\hline 1996 & 0.054 & 0.013 & 0.088 & 0.379 \\
\hline 1997 & 0.054 & 0.013 & 0.089 & 0.383 \\
\hline 1998 & 0.054 & 0.012 & 0.088 & 0.39 \\
\hline 1999 & 0.055 & 0.012 & 0.088 & 0.397 \\
\hline 2000 & 0.055 & 0.012 & 0.087 & 0.403 \\
\hline 2001 & 0.054 & 0.012 & 0.087 & 0.404 \\
\hline 2002 & 0.054 & 0.012 & 0.087 & 0.41 \\
\hline 2003 & 0.054 & 0.011 & 0.087 & 0.416 \\
\hline 2004 & 0.055 & 0.011 & 0.088 & 0.423 \\
\hline 2005 & 0.055 & 0.011 & 0.089 & 0.43 \\
\hline 2006 & 0.055 & 0.011 & 0.089 & 0.436 \\
\hline 2007 & 0.055 & 0.011 & 0.09 & 0.442 \\
\hline 2008 & 0.055 & 0.011 & 0.09 & 0.448 \\
\hline 2009 & 0.055 & 0.011 & 0.09 & 0.454 \\
\hline 2010 & 0.055 & 0.011 & 0.091 & 0.461 \\
\hline
\end{tabular}

SOURCE: BAT14
KEY: See text.

Table 20 shows the results of a no－growth，or flat projection done to test the stability of the model．In this projection，the values for all exogenous variables associated with basic sectors of the economy are set at constant levels．Any growth in economic activity in the absence of changes in these variables comes about as a result of one of two things．First，real wage rate increases necessary to maintain parity with real wage rate growth elsewhere in the United States will lead to some increase in disposable personal income in the absence of employment growth．Second，some activities which have not bee explicitly identified as basic sector in the economic scenario will continue to trend upward．

This case is unrealistic，both in its assumptions of no growth and of a continuation of wage rate parity with the rest of the United States in a no－growth regional economy．Nevertheless，the simulation is important because it allows investigation of the simulation properties of the model independent of and underlying any particular economic scenario．

In general，in such a simulation，one would expect some growth， but not a large amount．This is，in fact，the result．After about 1985，when government spending finally flattens out，employment holds fairly constant．Private sector employment is growing while public sector employment is falling as rising costs squeeze employment out of a constant－level budget．Population grows slowly． In this particular case，the slow growth obviates the need to reinstitute the personal income tax，so the relative price level falls continuously，and this is a stimulus to support sector growth．There is no formal standard against which to measure this case except reasonableness，economic theory，and the experience of other regions．By these criteria，the simulation appears satisfactory．
table 20. NO-GROWTH PROJECTION RESULTS
\begin{tabular}{|c|c|c|c|c|c|}
\hline & POP & EM99 & POPMIG & POPNI9 & R.DPI \\
\hline 1983 & 480.352 & 255.885 & 12.303 & 8.013 & 1781.64 \\
\hline 1984 & 492.698 & 257.886 & 4.778 & 8.348 & 1723.76 \\
\hline 1985 & 499.989 & 259.935 & -0.421 & 8.463 & 1726.71 \\
\hline 1986 & 499.359 & 253.048 & -9.078 & 8.438 & 1659.38 \\
\hline 1987 & 498.805 & 250.596 & -8.759 & 8.181 & 1627.11 \\
\hline 1988 & 499.107 & 249.524 & -7.68 & 7.959 & 1645.48 \\
\hline 1989 & 501.674 & 250.413 & -5.235 & 7.779 & 1674.8 \\
\hline 1990 & 504.525 & 251.855 & -4.84 & 7.678 & 1706.72 \\
\hline 1.991 & 507.627 & 253.716 & -4.501 & 7.593 & 1741.31 \\
\hline 1.992 & 510.403 & 255.148 & -4.784 & 7.525 & 1772.71 \\
\hline 1.993 & 513.436 & 257.016 & -4.463 & 7.457 & 1807.78 \\
\hline 1.994 & 516.988 & 259.436 & -3.895 & 7.406 & 1847.07 \\
\hline 1.995 & 520.304 & 261.325 & -4.101 & 7.377 & 1882.59 \\
\hline 1996 & 523.652 & 263.212 & -4.042 & 7.348 & 1918.77 \\
\hline 1997 & 527.085 & 265.09 & -3.937 & 7.326 & 1958.49 \\
\hline 1998 & 531.141 & 267.546 & -3.296 & 7.311 & 2003.13 \\
\hline :1999 & 535.923 & 270.682 & -2.578 & 7.319 & 2053.24 \\
\hline 2000 & 541.343 & 274.267 & -1.971 & 7.35 & 2107.05 \\
\hline 2001 & 547.41 & 278.255 & -1.374 & 7.4 & 2164.44 \\
\hline 2002 & 553.956 & 282.349 & -0.961 & 7.467 & 2223.13 \\
\hline 2003 & 560.553 & 286.003 & -0.991 & 7.546 & 2278.7 \\
\hline 2004 & 567.308 & 289.537 & -0.911 & 7.625 & 2334.1 \\
\hline 2005 & 574.38 & 293.163 & -0.679 & 7.707 & 2393.97 \\
\hline 2006 & 582.161 & 297.304 & -0.052 & 7.797 & 2460. \\
\hline 2007 & 590.841 & 203.133 & 0.729 & 7.905 & 2532.37 \\
\hline 2008 & 599.918 & 306.915 & 0.997 & 8.036 & 2604.51 \\
\hline 2009 & 608.592 & 310.775 & 0.465 & 8.174 & 2668.96 \\
\hline 2010 & 617.161 & 314.479 & 0.237 & 8.296 & 2733.31 \\
\hline
\end{tabular}
\begin{tabular}{ll} 
KEY: & POP \\
EM99 & Population (thousands) \\
& Employment (thousands) \\
POPMIG & Net migration (thousands) \\
POPNI9 & Natural Increase (thousands) \\
& R.DPI \\
& Real disposable income (millions of 1967 U.S. \$)
\end{tabular}

SOURCE: FLAT14
\begin{tabular}{|c|c|c|c|c|c|}
\hline & EMGA & PR．DPI & Emrate & PDRATIO & R \\
\hline 1983 & 46.688 & 3709.03 & 0.511 & 1.275 & \(\cdots\) \\
\hline 1984 & 46.456 & 3498.61 & 0.502 & 1.267 & \\
\hline 1985 & 45.152 & 3453.5 & 0.499 & 1.259 & \\
\hline 1986 & 43.115 & 3323.01 & 0.485 & 1.252 & \\
\hline 1987 & 42.252 & 3262.01 & 0.481 & 1.245 & \\
\hline 1988 & 41.853 & 3296.84 & 0.478 & 1.238 & \\
\hline 1989 & 41.633 & 3338.43 & 0.477 & 1.23 & \\
\hline 1990 & 41.65 & 3382.83 & 0.477 & 1.223 & \\
\hline 1991 & 41.776 & 3430.3 & 0.478 & 1.215 & － \\
\hline 1992 & 41.928 & 3473.15 & 0.478 & 1.207 & \\
\hline 1993 & 42.072 & 3520.95 & 0.479 & 1.199 & \\
\hline 1994 & 42.235 & 3572.75 & 0.481 & 1.191 & \％ \\
\hline 1995 & 42.405 & 3618.25 & 0.481 & 1.183 & \\
\hline 1996 & 42.594 & 3664.2 & 0.482 & 1.175 & ＝ \\
\hline 1997 & 42.398 & 3715.69 & 0.482 & 1.167 & \\
\hline 1998 & 42.196 & 3771.38 & 0.483 & 1.159 & \\
\hline 1999 & 42.028 & 3831.22 & 0.485 & 1.151 & \\
\hline 2000 & 41.896 & 3892.25 & 0.487 & 1.143 & \(\cdots\) \\
\hline 2001 & 41.793 & 3953.97 & 0.489 & 1.135 & \\
\hline 2002 & 41.709 & 4013.19 & 0.49 & 1.127 & m \\
\hline 2003 & 41.626 & 4065.1 & 0.491 & 1.119 & \\
\hline 2004 & 41.533 & 4114.35 & 0.492 & 1.111 & \\
\hline 2005 & 41.126 & 4167.93 & 0.492 & 1.102 & － \\
\hline 2006 & 40.614 & 4225.64 & 0.492 & 1.094 & \\
\hline 2007 & 40.133 & 4286.04 & 0.493 & 1.086 & \\
\hline 2008 & 39.678 & 4341.45 & 0.494 & 1.078 & \\
\hline 2009 & 39.219 & 4385.46 & 0.493 & 1.07 & \\
\hline 2010 & 38.74 & 4428.84 & 0.492 & 1.062 & \\
\hline
\end{tabular}

\footnotetext{
KEY：EMGA State and local government employment（thousands）
PR．DPI Real disposable income per capita（1967 U．S．\＄）
EMRATE Civilian employment rate
PDRATIO Alaskan relative price index
}

SOURGE：FLAT14

\subsection*{8.6. Some Properties of the Model}

Important properties of the model can be observed by examining select impact experiments. Table 21 shows the results of a one-time increase in construction employment of 1,000 in 1985. The upper portion of the table is premium wage, remote site, enclave employment (EMCNX1), while the lower is regular construction (EMCNX2). This exercise, although unlikely to be encountered in any actual situation, demonstrates several model features.

First, the size of the employment impact multiplier is demonstrated to be 1.54 for regular construction and 1.88 for special construction. It can be shown by further impact tests that the impact multiplier for other basic sectors is smaller. For example, for federal government employment, it is approximately 1.4. Thus, the size of the impact multiplier varies with the type of basic (or exogenous) change which occurs, and its value is within a reasonable range. The total employment effect includes, in addition to the direct employment, the indirect employment (which an I-O analysis would measure), the induced employment (which an augmented I-O model that included consumer spending would measure), the anvestment effect (which is endogenous to the MAP model but treated as exogenous in most models including \(I-0\) models), and the structural change effect. This last effect consists of new types of activities stimulated by changing economic opportunities produced by the direct employment. A static model would capture only the first or the first and second components of nondirect employment, and a growth model is necessary to capture all effects. The MAP model does this.

Second, if the exogenous change is not sustained, the employment impact will not be sustained but will diminish over time and eventually disappear. The total effect is felt over a period of several years rather than instantaneously. Population impact is dissipated more slowly than employment.

Table 22 presents a more likely time pattern for exogenous impact--that of the construction of the natural gas pipeline.

In contrast to these impact multipliers, a third impact analysis, reported in Table 23 , shows the effect of an increase in construction employment of 1,000 sustained in all future years. This clearly puts the economy onto a new long-run growth trajectory after about four years. The employment and population responses are larger than in the case of an impulse-type impact both because they are initialed in a later year when the economy is larger and because the higher level of activity is permanent and causes a permanent response in other sectors of the economy. Notice that the remote site employment impact is slightly smaller because a larger proportion of those construction employees are nonresidents.

TABLE 21. IMPACTS OF A ONE-TIME INCREASE IN CONSTRUCTION EMPLOYMENT (thousands)

Premium Wage, Remote Site, Enclave Employment (EMCNX1)

EMCNX
EMCN
EMTCU
EMSUP EMGA
EM99
POP
\begin{tabular}{rlllrrrr}
\hline & & & & & & & \\
1985 & 1. & 1.118 & 0.159 & 0.476 & 0.011 & 1.882 & 1.423 \\
1986 & 0. & 0.17 & 0.008 & -0.024 & 0.018 & 0.186 & 0.834 \\
1987 & 0. & 0.019 & 0.014 & 0.111 & 0.026 & 0.181 & 0.507 \\
1988 & 0. & 0.012 & 0.008 & 0.067 & 0.018 & 0.112 & 0.417 \\
1989 & 0. & 0.008 & 0.006 & 0.051 & 0.012 & 0.083 & 0.378 \\
1990 & 0. & 0.005 & 0.004 & 0.029 & 0.009 & 0.05 & 0.331 \\
1991 & 0. & 0.004 & 0.003 & 0.021 & 0.006 & 0.037 & 0.282 \\
1992 & 0 & 0.004 & 0.002 & 0.014 & 0.004 & 0.026 & 0.224 \\
1993 & 0. & 0.004 & 0.001 & 0.009 & 0.002 & 0.017 & 0.182 \\
1994 & 0. & 0.003 & 0.001 & 0.005 & 0.002 & 0.012 & 0.15 \\
1995 & 0. & 0.002 & 0.001 & 0.005 & 0.001 & 0.009 & 0.126 \\
1996 & 0. & 0. & 0. & 0.001 & -0.015 & -0.015 & 0.085
\end{tabular}

Regular Construction Employment (EMCNX2)
EMCNX EMCN EMTCU EMSUP EMGA EM99 POP
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 1985 & 1. & 1.075 & 0.055 & 0.281 & 0.022 & 1.536 & 1.158 & , \\
\hline 1986 & 0. & 0.02 & 0.025 & 0.249 & 0.068 & 0.388 & 0.725 & \\
\hline 1987 & 0. & 0.02 & 0.019 & 0.152 & 0.042 & 0.249 & 0.532 & \\
\hline 1988 & 0. & 0.015 & 0.015 & 0.127 & 0.038 & 0.209 & 0.511 & \% \\
\hline 1989 & 0. & 0.013 & 0.014 & 0.119 & 0.019 & 0.176 & 0.484 & \\
\hline 1990 & 0. & 0.008 & 0.006 & 0.051 & 0.014 & 0.084 & 0.404 & \\
\hline 1991 & 0. & 0.006 & 0.004 & 0.035 & 0.01 & 0.059 & 0.349 & \\
\hline 1992 & 0. & 0.005 & 0.003 & 0.024 & 0.006 & 0.041 & 0.281 & \\
\hline 1993 & 0 . & 0.004 & 0.002 & 0.015 & 0.003 & 0.026 & 0.23 & \\
\hline 1994 & 0. & 0.003 & 0.001 & 0.009 & 0.002 & 0.017 & 0.184 & \\
\hline 1995 & 0. & 0.002 & 0.001 & 0.005 & 0.001 & 0.01 & 0.155 & - \\
\hline 1996 & 0. & 0. & 0. & 0.001 & -0.017 & -0.017 & 0.106 & \\
\hline \multirow[t]{7}{*}{KEY:} & EMCNX & \multicolumn{6}{|l|}{\multirow[t]{2}{*}{Exogenous construction employment Total construction employment}} & \% \\
\hline & EMCN & & & & & & & \\
\hline & EMTCU & \multicolumn{6}{|l|}{\multirow[t]{2}{*}{Transportation/communication/public utility employment Trade/finance/service employment}} & \\
\hline & EMSUP & & & & & & & m \\
\hline & EMGA & \multicolumn{6}{|l|}{State/local government employment} & - \\
\hline & EM99 & \multicolumn{6}{|l|}{Total employment} & \\
\hline & POP & \multicolumn{6}{|l|}{Population} & \\
\hline
\end{tabular}

SOURCE: BAT14.A and BAT14.B

Institute of Social and Economic Research
MAP Documentation
December 1984, Model A85.1

\section*{TABLE 22. GAS PIPELINE CONSTRUCTION IMPACT}
EMCNX EMCN EMTCU EMSUP EMGA EM99
\begin{tabular}{lrrlllr}
1987 & 0.217 & 0.241 & 0.03 & 0.093 & 0.012 & 0.401 \\
1988 & 0.217 & 0.275 & 0.032 & 0.089 & 0.014 & 0.438 \\
1989 & 0.563 & 0.666 & 0.086 & 0.262 & 0.037 & 1.123 \\
1990 & 2.435 & 2.818 & 0.371 & 1.113 & 0.154 & 4.762 \\
1991 & 7.103 & 8.331 & 0.958 & 3.075 & 0.447 & 13.695 \\
1992 & 10.589 & 13.049 & 1.201 & 4.613 & 0.81 & 21.214 \\
1993 & 6.074 & 8.817 & 0.894 & 3.389 & 0.79 & 15.086 \\
1994 & 0.468 & 2.146 & 0.503 & 2.093 & 0.574 & 5.919 \\
1995 & 0. & 0.744 & 0.38 & 2.052 & 0.507 & 4.167 \\
1996 & 0. & 0.418 & 0.316 & 1.552 & 0.497 & 3.202 \\
1997 & 0. & 0.27 & 0.273 & 1.194 & 0.459 & 2.573 \\
1998 & 0. & 0.234 & 0.251 & 1.011 & 0.405 & 2.257 \\
1999 & 0. & 0.118 & 0.234 & 0.875 & 0.365 & 1.926 \\
2000 & 0. & -0.016 & 0.22 & 0.772 & 0.346 & 1.637 \\
& & & & & & \\
& POP & R.WR98 & PR.PI & HH & WS98 & \\
& & & & & & \\
\hline
\end{tabular}
\begin{tabular}{lcrccc}
1987 & 0.306 & 8.039 & -0.512 & 0.106 & 21.801 \\
1988 & 0.465 & 8.805 & -0.723 & 0.161 & 25.434 \\
1989 & 1.056 & 22.184 & -1.328 & 0.365 & 69.441 \\
1990 & 4.091 & 91.289 & -3.086 & 1.412 & 319.277 \\
1991 & 12.451 & 252.582 & -9.852 & 4.294 & 998.836 \\
1992 & 24.319 & 386.461 & -30.098 & 8.394 & 1731.57 \\
1993 & 25.99 & 247.703 & -49.883 & 9.007 & 1250.55 \\
1994 & 19.344 & 36.629 & -56.27 & 6.765 & 388.641 \\
1995 & 16.154 & 2.277 & -59.965 & 5.694 & 241.168 \\
1996 & 14.192 & 2.086 & -56.355 & 5.04 & 199.488 \\
1997 & 13.077 & 2.645 & -56.625 & 4.677 & 176.242 \\
1998 & 12.109 & 4.27 & -54.242 & 4.365 & 170.687 \\
1999 & 11.282 & 4.074 & -52.855 & 4.103 & 157.457 \\
2000 & 10.541 & 3.117 & -51.125 & 3.87 & 143.25
\end{tabular}

KEY: EMCNX EXogenous construction employment (thousand) EMCN Total construction employment (thousand)
EMTCU Trans/comm/public utility employment (thousand)
EMSUP Trade/finance/service employment (thousand)
EMGA State/local government employment (thousand)
EM99 Total employment (thousand)
POP Population (thousand)
R.WR98 Real wage rate (1967 U.S. \$)

PR.PI Real per capita personal income (1967 U.S. \$)
HH Households (thousand)
WS98 Wages and salaries (million \$)

SOURCE: BAT14.GP

December 1984, Model A85.1

\section*{TABLE 23. IMPACTS OF A SUSTAINED INCREASE \\ IN CONSTRUCTION EMPLOYMENT}

Regular Construction Employment (EMCNX2)

EMCNX
EMCN
EMTCU
EMSUP
EMGA
EM99
\begin{tabular}{lllllll}
\hline & & & & & & \\
1987 & 1. & 1.112 & 0.093 & 0.647 & 0.169 & 2.165 \\
1988 & 1. & 1.132 & 0.107 & 0.759 & 0.199 & 2.351 \\
1989 & 1. & 1.148 & 0.12 & 0.868 & 0.211 & 2.514 \\
1990 & 1. & 1.152 & 0.125 & 0.911 & 0.221 & 2.582 \\
& & & & & 0.15 & 0.931 \\
1991 & 1. & 1.15 & 0.126 & 0.931 & 0.23 & 2.613 \\
1992 & 1. & 1.154 & 0.13 & 0.965 & 0.235 & 2.663 \\
1993 & 1. & 1.169 & 0.134 & 1.001 & 0.241 & 2.73 \\
1994 & 1. & 1.18 & 0.138 & 1.031 & 0.244 & 2.781 \\
\(1995^{a}\) & 1. & 0.705 & 0.005 & 0.336 & -2.924 & -2.01 \\
& & & & & & \\
1996 & 1. & 0.196 & 0.065 & 0.331 & 1.068 & 1.781 \\
1997 & 1. & 0.294 & 0.059 & 0.486 & 0.247 & 1.166 \\
1998 & 1 & 0.971 & 0.089 & 0.579 & 0.263 & 2.048 \\
1999 & 1. & 1.216 & 0.111 & 0.761 & 0.31 & 2.574 \\
2000 & 1. & 1.277 & 0.141 & 1.022 & 0.304 & 2.946
\end{tabular}

POP
R.WR98

PR.PI
HH
WS 98
\({ }^{a_{A}}\) negative impact occurs in 1995 because the increase in population causes a revenue shortfall one year earlier than in the base case.

KEY: See Table 22.
SOURCE: BATI4.D
```

Institute of Social and Economic Research MAP Documentation December 1984, Model A85. 1

```

TABLE 23 (continued)

Premium Wage Remote Site, Enclave Employment (EMCNX1)
\(m\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & EMCNX & EMCN & EMTCU & EMSUP & EMGA & EM99 \\
\hline 1987 & 1. & 1.29 & 0.154 & 0.51 & 0.097 & 2.192 \\
\hline 1988 & 1. & 1.297 & 0.164 & 0.564 & 0.103 & 2.273 \\
\hline 1.989 & 1. & 1.311 & 0.176 & 0.599 & 0.105 & 2.343 \\
\hline 1.990 & 1. & 1.315 & 0.18 & 0.612 & 0.109 & 2.369 \\
\hline 1.991 & 1. & 1.314 & 0.169 & 0.602 & 0.114 & 2.352 \\
\hline 1.992 & 1. & 1.317 & 0.173 & 0.627 & 0.12 & 2.394 \\
\hline 31993 & 1. & 1.335 & 0.178 & 0.658 & 0.124 & 2.457 \\
\hline 1994 & 1. & 1.349 & 0.186 & 0.691 & 0.13 & 2.522 \\
\hline 19953 & 1. & 0.877 & 0.058 & 0.009 & -3.018 & -2.225 \\
\hline 1996 & 1. & 0.371 & 0.12 & 0.013 & 0.979 & 1.585 \\
\hline 1997 & 1. & 0.475 & 0.116 & 0.181 & 0.161 & 0.995 \\
\hline 1998 & 1. & 1.162 & 0.147 & 0.284 & 0.18 & 1.898 \\
\hline 1999 & 1. & 1.406 & 0.181 & 0.483 & 0.23 & 2.462 \\
\hline 2000 & 1. & 1.473 & 0.216 & 0.758 & 0.226 & 2.864 \\
\hline & POP & R.WR98 & PR.PI & HH & WS98 & \\
\hline 1987 & 2.714 & 39.027 & -6.066 & 0.943 & 114.16 & \\
\hline 1988 & 3.056 & 39.759 & -6.715 & 1.064 & 125.262 & \\
\hline 1989 & 3.369 & 40.492 & -7.531 & 1.176 & 137.379 & \\
\hline 1990 & 3.634 & 39.348 & -8.102 & 1.271 & 148.793 & \\
\hline 1991 & 3.858 & 38.066 & -9.625 & 1.353 & 159.441 & \\
\hline 1992 & 4.106 & 38.887 & -10.02 & 1.444 & 180.926 & \\
\hline 1993 & 4.336 & 39.59 & -9.926 & 1.528 & 197.91 & \\
\hline 1994 & 4.533 & 40.859 & -9.879 & 1.603 & 216.453 & \\
\hline 1995 & 1.054 & 27.195 & -45.594 & 0.418 & -65.746 & \\
\hline 1996 & 2.953 & 36.75 & 11.793 & 1.068 & 181.824 & \\
\hline 1997 & 2.603 & 33.879 & -16.609 & 0.954 & 149.137 & \\
\hline 1998 & 3.213 & 44.937 & -5.969 & 1.168 & 249.457 & \\
\hline 1999 & 3.8 & 48.738 & -1.77 & 1.375 & 316.273 & \\
\hline 2000 & 4.292 & 48.832 & 1.367 & 1.551 & 367.809 & \\
\hline
\end{tabular}

\footnotetext{
\({ }^{a_{A}}\) negative impact occurs in 1995 because the increase in population causes a revenue shortfall one year earlier than in the base case.
}

KEY: See Table 22.
SOURCE: BAT14.D

The large size of this impact is due to several factors. First, the measure of exogenous impact in Table 23 is only construction employment (including engineers, managers, and clerical). The actual construction of a project like a pipeline involves, in addition to construction employees, a substantial support staff in transportation, trade, and services. Thus, the direct employment observed to be directly associated with construction will be larger, by perhaps one-third than the direct construction employment. (For example, only about 68 percent of Alyeska pipeline employment was categorized as constmetion.) In the model, this support employment appears with indirect support employment. Second in the model, investment is endogenous rather than exogenous, and this increases the size of any impact response because investment activity is a result of an increase in the basic sector. Finally, the model describes the development process within the economy, and this is reflected in impact analysis. The economic development process may be described as an increase in the ratio of support-to-basic activity. Obviously, if the average ratio of support-to-basic employment is increasing, then the incremental or marginal ratio must be above the average ratio.
\begin{tabular}{lll} 
& \begin{tabular}{l} 
Institute of social \\
and Economic Research \\
MAP Documentation
\end{tabular} \\
December 1984, Model A85.
\end{tabular}
\begin{tabular}{ll} 
Variable & \multicolumn{1}{c}{ Definition } \\
\hline BASEXOPS & \(\begin{array}{l}\text { a base case vector of EXOPS values used } \\
\text { for fiscal impact analysis in conjunction } \\
\text { with fiscal policy variables EXRL4 }\end{array}\) \\
\hline BASPDRPI & \(\begin{array}{l}\text { base case value of RPI to be input } \\
\text { into impact run to calculate dif－} \\
\text { ference in state expenditures in }\end{array}\) \\
real per capita terms；index
\end{tabular}\(\}\)
default vaTues all one；alternate values obtained from a base case
default values all one；alternate values obtained from a base case
zero in simulation

DEVELOPMENT SCENARIO
constant at most recent historical level
DEVELOPMENT SCENARIO

DEVELOPMENT SCENARIO

DEVELOPMENT SCENARIO
DEVELOPMENT SCENARIO
DEVELOPMENT SCENARIO
DEVELOPMENT SCENARIO

DEVELOPNENT SCENARIO
values derived from income distribu－ tion model（currently inoperative）

EMT9X large pipeline project-related transportation employment; thousand

EXCPSFD6

EXCPSGB6
EXDF 1
\(\therefore\) EXDFPCNT

EXDSSX
mining employment; thousand
initial values for portion of capital project fund
initial value for EXCPSGOB; million \(\$\)
percent of state current account balance placed into development fund (hypothetical); percent
development fund (hypothetical) withdrawals as percent of earnings; percent
annual debt service payment to service general obligation bonds outstanding at beginning of simulation period; million \$
initial value for EXGFCAP; million \(\$\)
initial value for EXGFCOT; million \$
exogenous component of state unrestricted general fund operating expenditures; million \$

EXOPS6

EXPFTOGF

EXPF 1

EXPFCONX
EXPFCONX.
initial total state operating expenditures net of debt service and University of Alaska nongeneral fund assistance; it is the sum of the 9 functional categories; million \(\$\)
percent of Permanent Fund earnings transferred to the general fund
percent contribution from available funds to Permanent Fund; percent

Permanent Fund contributions appropriated from the general fund; million \(\$\)

DEVELOPMENT SCENARIO

Alyeska employment based upon Alaska Department of Labor estimates; additional employment from DEVELOPMENT SCENARIO
historical data
historical data

Department of Acministration, Annual Financial Report
historical data
historical data
estimated from Department of Administration, Executive Budget
author's estimate
present law requires 25 percent contribution rate on areas leased before 1981 and 50 percent subsequently
historical data

\author{
都
} －
\begin{tabular}{ll} 
VariabTe & \multicolumn{1}{c}{ Definition } \\
EXPFDIST & \begin{tabular}{l} 
percent of Permanent Fund earnings \\
transferred to general fund which are \\
distributed to individuals；percent
\end{tabular} \\
EXPFDVXI & \begin{tabular}{l} 
accounting adjustment to Permanent Fund \\
retained earnings in early years；million \(\$\)
\end{tabular} \\
EXPFDVX2 & \begin{tabular}{l} 
accounting adjustment to Permanent Fund \\
dividend program in early years；million \(\$\)
\end{tabular} \\
EXSAVX & \begin{tabular}{l} 
if EXRLOP7 is invoked in detemination \\
of state operating expenditures，this is \\
the amount of revenues not spent；million \(\$\)
\end{tabular} \\
EXSPCAP & \begin{tabular}{l} 
special state capital appropriations； \\
million \(\$\)
\end{tabular} \\
EXSPLITX & \begin{tabular}{l} 
the target allocation to operations \\
when state spending falls below the \\
authorized spending limit；percent
\end{tabular} \\
EXEneral obligation bonded indebtedness \\
of the state from debts incurred before \\
start of simulation period；million \(\$\)
\end{tabular}
author＇s estimate
ADR，The Alaska Permanent Fund：
Overview and March 1984 Projections
ADR，The Alaska Permanent Fund：
Overview and March 1984 Projections
zero in default case
author＇s estimate
author＇s estimate
author＇s estimate
Department of Administration，
Annual Financial Report
author＇s estimate
author＇s estimate


Institute of Social and Economic Research MAP Documentation December 1984, Model A85. 1
\begin{tabular}{|c|c|}
\hline Variable & Definition \\
\hline GRUSCPI & annual growth rate of U.S. consumer price index; percent \\
\hline LAFPRT & pseudo labor force participation rateemployment by place of work divided by labor force by place of residence; percent \\
\hline LBOND 1 & proportion of state general obligation bonds for highways \\
\hline LFED 1 & proportion of federal capital grants for highways \\
\hline LGF 1 & proportion of state general fund capital expenditures for highways \\
\hline LPTRAT & percentage of pipeline property within local jurisdictions actually subject to local tax because of limitations imposed by state statutes; percent \\
\hline NCBP & bonus income to Natives from lease sales; million \$ \\
\hline NCRP & Native recurrent income from petroleum development on Native land; million \$ \\
\hline P9PTPER & percentage of petroleum property which is taxable by state which falls within local taxing jurisdiction; percentage \\
\hline PCNCI & proportion of ANCSA payments paid directly to individuals; percent \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline m & Variable & Definition & Source \\
\hline \% & PCNC2 & proportion of recurring income from petroleum development on Native lands paid directly in individuals; percent & author's estimate \\
\hline \% & PCNC3 & proportion of earnings on Native corporation accumulated capital paid directly to individuals; percent & author's estimate \\
\hline & PCOLART & cost of living differential for federal employees; percentage & author's estimate \\
\hline & PDRATIO6 & initial values for ratio of Alaskan relative price index to U.S. consumer price index & historical data \\
\hline & POUSCPI6 & initial value for U.S. consumer price index; index & historical data \\
\hline \% & PIPADJ & ratio of "enclave" to regular construction employee wage rate & assumed constant based upon ratio of wages paid to heavy construction and all other construction categories during Alyeska pipeline construction period; see Alaska Department of Labor, Statistical Quarterly \\
\hline & PITRAN6 & known historical values for transfers component of personal income & historical data \\
\hline & PR.DPIU6 & initial value for U.S. real per capita disposable personal income; \$ & historical data \\
\hline & RLPTK & exogenous local property tax receipts; million \$ & zero in default case \\
\hline - & RLTEB6 & known historical values for state aid to local government for education net of district and REAA aid & historical data \\
\hline \(\checkmark\) & RLTFPX & petroleum-related federal-local transfers; million \$ & author's estimate \\
\hline & RLTMA6 & known historical values for state-local transfers under municipal assistance & historical data \\
\hline & RLTMCAP & municipal capital grants from state to local government & author's estimate \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Variable & Definition \\
\hline RLTRS6 & known historical values for state-local revenue sharing \\
\hline RLTX & exogenous state-local transfers; million \$ \\
\hline RMISRES6 & known historical values for miscellaneous restricted general fund revenues \\
\hline RNATX & Native personal income as percent of total personal income calculated using income distribution model \\
\hline RP9X & exogenous miscellaneous petroleum revenues; million \(\$\) \\
\hline RPBS & state petroleum bonuses; million \$ \\
\hline RPEN & state petroleum rents before Permanent Fund deduction; million \(\$\) \\
\hline RPPS & state petroleum property tax; million \$ \\
\hline RPRY & state petroleum royalty revenues; million \$ \\
\hline RPTS & petroleum production taxes consisting of oil and gas severance tax; million \$ \\
\hline RSFON6 & initial values for total federal grants-in-aid to state general fund; million \(\$\) \\
\hline RSFDNCAX & federal grants-in-aid to state general fund for capital expenditures \\
\hline RSFDNPX & federal-state shared petroleum royalties; million \$ \\
\hline RSFDNX & exogenous federal-state transfer payments; million \(\$\) \\
\hline RSIG6 & known historical values for state general fund interest \\
\hline RSIP5 & state Permanent Fund interest-initial adjustment; million \$ \\
\hline RTCSPX & state corporate tax receipts from petroleum sector; million \$ \\
\hline
\end{tabular}
historical data ..... 4zero in default casehistorical data
values derived from incomedistribution model; currentlyinoperative
author's estimate
DEVELOPMENT SCENARIO
author's estimate
DEVELOPMENT SCENARIODEVELOPMENT SCENARIODEVELOPMENT SCENARIOhistorical dataauthor's estimate
author's estimate
default value is zerohistorical datam
ADR, Revenue Sources ..... m
DEVELOPMENT SCENARIO3
\begin{tabular}{|c|c|c|}
\hline Variable & Definition & Source \\
\hline RTCSX & exogenous corporate income tax; million \$ & zero in default case \\
\hline RTISXX & adjustment of disposable income to cover lag in refund in state personal income taxes after repeal; million \(\$\) & author's estimate \\
\hline RTOTS6 & known historical values for other state taxes (fiduciary, inheritance, estate, mining, conservation, prepaid, \& fish taxes) & historical data \\
\hline SANCSA & payments to Alaska Natives under ANCSA out of state royalty revenues; million \(\$\) & 16 percent of state royalty revenues until \(\$ 493.1\) million paid out \\
\hline SANCSAX & special state appropriation to pay off ANSCA debt & historical data \\
\hline TCRED & individual tax credit beginning after 12/31/71; dollars & zero in default case \\
\hline TOURIST & number of tourist visitors to Alaska; thousands & DEVELOPMENT SCENARIO \\
\hline TXBASE & change in the floor of personal income tax rate schedule; units & zero in default case \\
\hline TXCRPC & state personal income tax credit (percentage of tax liability) adjustment; percentage & zero in default case \\
\hline TXPTXX & allows model user to withhold from state expenditures a portion of any personal income tax reduction; percent & default value is zero \\
\hline TXRT & percentage change in state personal income tax rate; percentage & zero in default case \\
\hline UUS & U.S. unemployment rate; percent & author's estimate \\
\hline VAEX6 & value of a personal exemption on personal income tax; dollars & author's estimate \\
\hline WEUS6 & initial value for average weekly U.S. wage rate; \$ & historical data \\
\hline XXHX 1 & large projection manufacturing real gross product & zero in default case \\
\hline YR & year & - \\
\hline
\end{tabular}

\section*{10. Programs for Model Use}
\begin{tabular}{|c|c|}
\hline A85. IRUN & Sets searches and calls state model for simulation \\
\hline A85DBCOM & ```
Prints initial year simulation values for
selected variables for comparison to
historical data tables
``` \\
\hline A85PRE & Prints summary tables of output of economic model \\
\hline A85PRFIN & Prints summary tables of inputs of fiscal model \\
\hline A85PRFOT & Prints summary tables of output of fiscal model \\
\hline A85PRPOP & Prints detailed output from the demographic module \\
\hline A85PRSCN & Prints model inputs from the scenario generator \\
\hline A85SIMAD & Macro describing all model adjustments necessary for simulation \\
\hline A85XPAR & Prints model economic parameter values \\
\hline A84DEFLT & Deflates user-specified simulation output to 1984 real dollars using PDCPI \\
\hline A84INIT & ```
Prints selected simulation results and
compares values to actual historical data;
prints difference and percent difference
``` \\
\hline A84MERGE & Combines individual historical data archives into a single archive called AKDATA \\
\hline A84RUNCD & Sets searches and calls regionalization model (A84.CD) for disaggregation of employment and population to census division level. \\
\hline A84RUNH & Sets searches and calls model for historical simulation \\
\hline A84TRANS & Performs transformations on raw data files to create archive AKHIST \\
\hline
\end{tabular}

NOTE: Programs (MACROs) without A85 prefix have not been updated for this version of the model.

Institute of Social
and Economic Research
MAP Documentation
December 1984, Model A85. 1

A83REG Sets searches for regression analysis
LOOK Lists all archives in specified account

\section*{11. Model Adjustments for Simulation}

After preliminary estimation of all parameters and construction of the model as well as whenever significant new data becomes available, the model must be adjusted for simulation. The objectives of the adjustments are to initialize the model so that simulation values begin as closely as possible to actual historical values, to correct any imbalances within the model structure which show up in initial simulations, or to handle special conditions which arise each year as the structure of the economy evolves. Model initialization is difficult because the data for a particular year becomes available over a period of more than one year. Thus, at any point in time the most current historical data available will vary over a two-year period, depending upon the variable and source. As a general rule, the most important variables for initializing the model are employment in total and by sector, total population, wage rates by industry, and the price level.

Adjustments and initialization procedures used in the economic and fiscal modules for A85.1 are as follows:

Price ratio equation. The term relating the relative Alaskan price level (PDRATIO) to the growth in local support sector employment (C67A) has the correct sign and is significant in the regression but in simulation performs poorly. Its value is decreased (to -.007) so that the Alaskan price level is less responsive to growth in support employment. The rationale for this adjustment is that the Alaskan price level is sticky downward, and the recent historical trend, reflecting downward pressure on Alaskan relative prices, must moderate in the future.

This equation is also adjusted to incorporate the possibility of a one-time upward adjustment in some future year, using the coefficient 667C, resulting from a reimposition of the state personal income tax. This change would be essentially symmetrical, but opposite in sign, to the fall in the price level which occurred in 1980 when the tax was eliminated.

State and local government wage rate equations. The equations used to simulate state and local government wage rates are altered so that the real wage in these sectors never falls below the level of the previous year.

Exogenous construction employment. In simulation, EMCNRT is defined as nonzero only when the change is significant from the previous year.

Federal civilian wage rate equation. The elasticity of the federal civilian wage rate with respect to the real wage is reduced to 1.025 in simulation (C89B). This requires that the intercept (C89A) be initialized.

Institute of Social
and Economic Research
MAP Documentation
December 1984, Model A85. 1

Migration equation. The migration equation estimation procedure contains a correction for autocorrelation. The autocorrelation coefficient is not utilized in simulation for two reasons. Net migration is initialized on the most recent data value which is an estimate rather than an observed value. Also, the influence of the autocorrelation term quickly falls to zero in a few years and can consequently be ignored in the long-run MAP model.

High wage exogenous construction income. Because the endogenous
truction gross product equation was estimated on construction
of North Slope, petroleum-related construction activity
High wage exogenous construction income. Because the endogenous
construction gross product equation was estimated on construction
net of North slope, petroleum-related construction activity
High wage exogenous construction income. Because the endogenous
construction gross product equation was estimated on construction
net of North slope, petroleum-related construction activity consistency required setting R.DPI8X to zero in simulation.

\section*{12. Key to Regressions}

Range
(may vary with particular variable)

State operating budget component

State personnel expenditure component

State revenues

Local revenues and expenditures

Wage rates
Gross product

Employment

Migration

EXaaa

EXPRaaa
Raaa

RLaa, ELaa

WRaa

XXaa

EMaa

POPMIG

1962 to 1981

1962 to 1981 various various

1961 to 1982

1961 to 1982

1961 to 1982

1971 to 1982

NOTES: 1. Regressions are run on a version of the model called REG84.2. See Section 11 for explanation of differences between the regression and simulation models.
2. Regressions are based upon the database as of the fall of 1984.

\section*{13. Input Data Archives}

\section*{Historical Data}
\begin{tabular}{|c|c|}
\hline AKDATA & All historical data series which are either (1) used in regression analysis, (2) are required to provide a startup value for simulation, or (3) interesting and relevant but not used in the model or not necessary to model simulation (created by MACRO A83MERGE from raw data files). \\
\hline AKRAW1 & Raw employment and wages data from Alaska Department of Labor, Statistical Quarterly. \\
\hline AKRAW2 & Raw state expenditures data from office of the Governor, Executive Budget. \\
\hline AKRAW3 & Raw state budget data from Alaska Department of Administration, Annual Financial Report. \\
\hline AKRAW4 & Raw state revenue data from Alaska Department of Revenue, Revenue Sources and Petroleum Revenue Forecast. \\
\hline AKRAW5 & Raw state income data from U.S. Department of Commerce, Bureau of Economic Analysis, unpublished printouts. \\
\hline AKRAW6 & Raw local fiscal data from U.S. Department of Commerce, Bureau of Census, Government Finances and State Government Finances. \\
\hline AKRAW7 & Raw data from miscellaneous sources. \\
\hline AKRAW8 & Alaskan gross state product data from model IPDAK. \\
\hline AKRAW9 & National variables from various sources. \\
\hline AKRAW10 & Raw local government data from Alaska Department of Community and Regional Affairs, Alaska Taxable. \\
\hline AKRAW11 & Miscellaneous data from Alaska Department of Labor \\
\hline AKRAW12 & New miscellaneous data and data files under construction. \\
\hline AKHIST & Data created by transformations of raw data in archives AKRAW1 to AKRAW12 (using A83TRANS). \\
\hline
\end{tabular}

\author{
Institute of Social and Economic Research MAP Documentation December 1984, Model A85.1
}

\section*{Simulation Data}

CONHIST Startup and control data specifically used for historical simulation of the economic model.

CONTROL Default values for all exogenous and policy variables for projective simulation (except the state capital stock module). In certain instances, historical data is also included. Many of these variables are overridden in simulation by the scenario model output.

FCAST Values for endogenous variables for which a complete historical series does not exist for use in nonsimultaneous historical simulation (TROLL FORECAST procedure). Where historical values do not exist, estimates are used.

Flat2 Constant levels for exogenous employment variables used to test model steady state properties.

STARTUP Startup values for all endogenous variables in the economic and fiscal components of the model for which a complete historical time series (up to the last year before the first year of simulation) does not exist. The values contained in these data files are values specifically created for model simulation and should not be used for any other purpose. In most cases, the specific value for the variable is imaterial to the output of the simulation since the purpose of these variables is to give TROLL an initial value from which to search for a solution to the simulation.

POPST3
Startup values for all endogenous variables in the population component of the model for which a complete historical time series (up to the last year before the first year of simulation) does not exist. This includes estimated 1980, 1981, and 1982 population by age, race, and sex on an average annual basis (in contrast to the census which uses an April 1 definition). The procedure for creation of this archive is as follows:
1. The population module was simulated for one full year, starting from the April 1, 1980, population but with average annual 1980 employment and wage data.

CAPSTK Startup and control data specifically for the state capital stock module.

\section*{APPENDIX A}

ISER MAP ALASKA ECONOMIC MODEL:
EQUATION LIST
1. Fiscal Module
2. Economic Module
3. Demographic Module
4. Native Economic Activity Module
5. Definitional Equations Module 6. Links to Income Distribution Model Module
7. State Government Capital Stock Module

MODEL: A85.1

PURPOSE: This model calculates annual statewide economic, fiscal, and demographic output based on user-specified input assumptions.

DATE: December 1984

\section*{SYMBOL DECLARATIONS}

ENDOGENOUS:
ADMSD AEX AGI AHG ATD ATI ATI.TT ATT BALCAP84 BALDF BALGFAFA BALGFCP BALGFP BALGF9 BALPF BAL99 BAL99AFA BIU BL CEA9N CECMN CECNN CED9N CEFIN CEGAN CEGFN CEM9N CEPUN CEP9N CES9N CET9N CNNPF1 CNNPF10 CNNPF11 CNNPF12 CNNPF13 CNNPF14 CNNPF15 CNNPF2 CNNPF3 CNNPF4 CNNPF5 CNNPF6 CNNPF7 CNNPF8 CNNPF9 CNNPM1 CNNPM10 CNNPM11 CNNPM12 CNNPM13 CNNPM14 CNNPM15 CNNPM2 CNNPM3 CNNPM4 CNNPM5 CNNPM6 CNNPM7 CNNPM8 CNNPM9 COLA DEBTP83 DF.RSVP DPI DPIRES DPI8 ELBD ELED ELEDCP ELED1 ELNED1 ELPERS EL99 EMAFISH EMA9 EMCM EMCN EMCNRT EMCNX EMCN1 EMDR EMDRNT EMDTOUR EMDW EMD9 EMFI EMGA EMGF EMGL EMGS EMMO EMM9 EMPRO EMPROFIS EMPRO1 EMPU EMRATE EMRATN1 EMSB EMSP EMSTOUR EMSUP EMS8NT EMS9 EMS91 EMTCU EMTNT EMTOUR EMTTOUR EMT9 EMT91 EMX EM9INFR EM96 EM97 EM98 EM99 EXANSAV EXCAP EXCAPFR EXCDS EXCDSNT EXCDSA EXCPS EXCPSFED EXCPSHY EXCPSM EXCPSNH EXC10 EXC15 EXC4 EXC5 EXC7 EXDFCON EXDFWITH EXDSS EXEDS EXEDS 4 EXGF EXGFBM EXGFCHY EXGFCNH EXGFCOT EXGGS EXGGS4 EXHES EXHES4 EXINREC EXINRECB EXJUS EXJUS4 EXLIM EXLIMOK EXNOPS EXNRS EXNRS4 EXOPS EXPFCON EXPFCON1 EXPPS EXPPS4 EXPRCDS EXPREDS1 EXPRGGS EXPRHES EXPRJUS EXPRNRS EXPRPPS EXPRSSS EXPRTRS EXPRUA EXPR99 EXSAVS EXSSS EXSSS4 EXSUBS EXTRNS EXTRS EXTRS4 EXUA EX99S FAGI

FAGII G.EMSP GOBONDL GODT GR GTR IM.BAL IM.BALRV LPTB LPTBI MIGIN MIGOUT MILPCT NATPF1 NATPF10 NATPF11 NATPF12 NATPF13 NATPF14 NATPF15 NATPF2 NATPF3 NATPF4 NATPF5 NATPF6 NATPF7 NATPF8 NATPF9 NATPM1 NATPM10 NATPM11 NATPM12 NATPM13 NATPM14 NATPM15 NATPM2 NATPM3 NATPM4 NATPM5 NATPM6 NATPM7 NATPM8 NATPM9 NCCAP NCCI NCPI P.DPINN PDCON PDEXOPS PDRATIO PDRPI PDUSCPI PI PIDIR PIOLI PIPROF PIPROI PIRADJ PISSC PITRAN PITRAN1 PI3 PI8 POP POPC POPGER POPM POPMIG POPNE POPSKUL PR.BALCP PR.DPINN PR.DPIUS PR.PI PR.PI3 R.BALCAP R.CAP1 R.CAP10 R.CAP11 R.CAP12 R.CAP13 R.CAP14 R.CAP15 R.CAP2 R.CAP3 R.CAP4 R.CAP5 R.CAP6 R.CAP7 R.CAP8 R.CAP9 R.DPI R.DPI8N R.DPI8X R.WR97 RLMC RLOT RLPT1 RLTCS RLTCS4 RLTEB RLTEB4 RLTEF4 RLTEO RLTEO4 RLTET RLTET4 RLTE99 RLTE994 RLTF RLTMA RLTMA4 RLTMS RLTRS RLTRS4 RLTT9 RLTT94 RLTVS4 RLT99 RMIS RMISRES ROFAS ROFERS ROFOS RSFDN RSFFS RSFS1 RSGF RSGFBM RSIAS RSIP RSIPGF RTAS RTBS2 RTCIS RTCS1 RTIS RTISC RTISCA1 RTISCA2 RTISCP RTISLOS RTMF RTOTS RTPIF RTSS RTVS R99S TPTV VAEX WEALTH WEUS WRA9 WRGM WRCN WRCNNP WRCNP WRDR WRDW WRD9 WRFI WRGA WRGC WRGF WRGL WRGM WRGS WRM91 WRPU WRP9 WRSB WRSNB WRS9 WRT9 WR98 WSCN WSCNP WSGA WSGC WSGL WSGM WSGS WSGSFY WS97 WS98 XXA9 XXCM XXCN XXCN1 XXCN8 XXDR XXDRNT XXDW XXD9 XXFI XXGA XXGF XXMO XXS8NT XXS9 XXTNT XXT9 XXVHY XXVNHY XX98

CONSTRUCT:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & DF.APGFO & - br baide & DF. BALGF & DF. BALPF & DF. BAL99 & DF. DP \\
\hline & DF.EXDSS & XGF & DF.EXG & K & DF.GOXBM & \\
\hline & & & DF.RP9S & DF.RSEN & DF. RSENG & DF RSE \\
\hline & & DF.RSGFB & & & & \\
\hline & DF.RSIPG & .RSIPN & DF.RTCS & DF & DF.R99S & \\
\hline DF.WRNS & DF. WRSP & G9 & WSN & F.WSSP & DF.WS98 & DFP. APGC \\
\hline & DFP. BAL & DFP.DP & FP.EXG & DFP.EXL & & \\
\hline EM. EMGA & GF & M & EM. EMSU & EM. EMTC & EX.DSS & \\
\hline EX.RP9S & EX.RSEN & EX.RSIN & EX.R99S & EXBM. CAB & XBM.E & ExM. \\
\hline R1 & EXBM.RV & \(v\) G.BAL9PC & C G.BAL99 & 9 G.EL99 & G. EM & \\
\hline G.PDRPI & . POP & DPI & PI G.R & 98 G. & C G.RSEN & \\
\hline IM. BALPC & IM. BALR & IM. BAL99 & IM. BLRPC & C IM. & INX.DI & INX \\
\hline INX.DI8N & INX. \({ }^{\text {S }}\) & NX. S 2 IN & WG P.BA & PF P.BAL & ININ & \\
\hline P.ELNED1 & E & BM & P. EXCAP & P.EXOPS & P.EXTRNS & P.EX99S \\
\hline & GODT & I & P & PI & P.RLT99 & \\
\hline & R & TIS & R99S PI.DPI & PPI PI. & 9 PI.EXL & \\
\hline PI.EXT & I. Ex99S & I.GODT & .RLPT PI & L99 PI. & EN PI.TX & \\
\hline PI.WS98 & POP.AD & POP.CIV & PP.GER & OP.KID & OP.MIL & OP.NAT \\
\hline PR. BALG1 & PR.BALG & PR. BALPF & PR.BALP2 & 2 PR.BAL99 & PR.DPI & \\
\hline & & & PR.ELED & PR.ELEDC & R.ELNED & \\
\hline & & & & PR.EXGGS & PR.EXHES & \\
\hline PR.EXNRS & PR.EXOPS & PS & S & TRS & R.EX99S & R.GEXP \\
\hline & PR.GFC & PR.GODT & PR.NCEXP & PR.PIN & PR.PINCL & \\
\hline R.RLT99 & PR & PR & R.RS & IS & & \\
\hline
\end{tabular}

Institute of Social and Economic Research MAP Documentation December 1984, Model A85.1
R.PINN R.WR98 RL99.PT RL99.RT RS.FED RS.PET RS.REC RS.RP9S RS.RSEN RS.RSIN RSBM.B99 RSBM.GF RSBM.PET RSBM.PF RSBM.REN \(\begin{array}{lllllllll}\text { RSBM.RP9 U.AK.US WR.AK.US } & \text { Z0.0 } & \text { Z0.1 } & \text { ZO.2 } & \text { Z0.3 } & \text { Z0.4 } & \text { Z0.5 }\end{array}\) \(\begin{array}{lllllllllll}\mathrm{ZO} 0.6 & \mathrm{ZO} .7 & \mathrm{Z} 0.8 & \mathrm{Z} 0.9 & \mathrm{Z} 1.0 & \mathrm{Z} 1.1 & \mathrm{Z} 1.2 & \mathrm{Z} 1.3 & \mathrm{Z} 1.4 & \mathrm{Z} 1.5 & \mathrm{Z} 1.6\end{array}\) \(\begin{array}{llllllllll}\mathrm{Z} 1.7 & \mathrm{Z} 1.8 & \mathrm{Z} 1.9 & \mathrm{Z} 10.0 & \mathrm{Z} 10.1 & \mathrm{Z} 10.2 & \mathrm{Z} 10.3 & \mathrm{Z} 10.4 & \mathrm{Z} 10.5 & \mathrm{Z} 10.6\end{array}\) \(\begin{array}{lllllllllll}\mathrm{Z} 10.7 & \mathrm{Z} 10.8 & \mathrm{Z} 10.9 & \mathrm{Z} 11.0 & \mathrm{Z} 11.1 & \mathrm{Z} 11.2 & \mathrm{Z} 11.3 & \mathrm{Z} 11.4 & \mathrm{Z} 11.5 & \mathrm{Z} 11.6\end{array}\) \(\begin{array}{lllllllllll}\mathrm{Z} 11.7 & \mathrm{Z} 11.8 & \mathrm{Z} 11.9 & \mathrm{Z} 2.0 & \mathrm{Z2} .1 & \mathrm{Z2.2} & \mathrm{Z} 2.3 & \mathrm{Z2} .4 & \mathrm{Z2} .5 & \mathrm{Z2} .6 & \mathrm{Z2.7}\end{array}\) \(\begin{array}{lllllllllll}\mathrm{Z} 2.8 & \mathrm{Z} 2.9 & \mathrm{Z} 3.0 & \mathrm{Z3.1} & \mathrm{Z3.2} & \mathrm{Z3} .3 & \mathrm{Z3.4} & \mathrm{Z3.5} & \mathrm{Z3.6} & \mathrm{Z3.7} & \mathrm{Z} 3.8\end{array}\) \(\begin{array}{lllllllllll}\mathrm{Z3.9} & \mathrm{Z4.0} & \mathrm{Z} 4.1 & \mathrm{Z4.2} & \mathrm{Z4.3} & \mathrm{Z4.4} & \mathrm{Z4.5} & \mathrm{Z4.6} & \mathrm{Z4.7} & \mathrm{Z4.8} & \mathrm{Z4.9}\end{array}\) \(\begin{array}{lllllllllll}\text { Z5.0 } & \text { Z5.1 } & \text { Z5.2 } & \text { Z5.3 } & \text { Z5.4 } & \text { Z5.5 } & \text { Z5.6 } & \text { Z5.7 } & \text { Z5.8 } & \text { Z5.9 } & \text { Z6.0 }\end{array}\) \(\begin{array}{lllllllllll}\mathrm{Z} 6.1 & \mathrm{Z} 6.2 & \mathrm{Z} 6.3 & \mathrm{Z} 6.4 & \mathrm{Z} 6.5 & \mathrm{Z} 6.6 & \mathrm{Z} 6.7 & \mathrm{Z} 6.8 & \mathrm{Z} 6.9 & \mathrm{Z7} .0 & \mathrm{Z} 7.1\end{array}\) \(\begin{array}{lllllllllll}\mathrm{Z7.2} & \mathrm{Z7.3} & \mathrm{Z7.4} & \mathrm{Z7.5} & \mathrm{Z7.6} & \mathrm{Z7.7} & \mathrm{Z7.8} & \mathrm{Z8.0} & \mathrm{Z8.1} & \mathrm{Z8.2} & \mathrm{Z8.3}\end{array}\) \(\begin{array}{lllllllllll}\mathrm{Z} 8.4 & \mathrm{Z} 8.5 & \mathrm{Z} 8.6 & \mathrm{Z} 8.7 & \mathrm{Z8.8} & \mathrm{Z8.9} & \mathrm{Z9.0} & \mathrm{Z} 9.1 & \mathrm{Z9.2} & \mathrm{Z9.3} & \mathrm{Z9.4}\end{array}\) \(\begin{array}{llllll}\text { Z9.5 } & \text { Z9.6 } & \text { Z9.7 } & \text { Z9.8 } & \text { Z9.9 } & \text { Z9.10 }\end{array}\)

DEFINITION:
ADMDIS ADMREA APGF APGFCAP APGFOPS BALCAB BALCABGF BALLANDS BALOCAL BCRUDE BTHTOT BTOT CBR CDR CF1 CF10 CF11 CF12 CF13 CF14 CF15 CF2 CF3 CF4 CF5 CF6 CF7 CF8 CF9 CHHF10 CHHF11 CHHF12 CHHF13 CHHF14 CHHF15 CHHF4 CHHF5 CHHF6 CHHF7 CHHF8 CHHF9 CHHM10 CHHM11 CHHM12 CHHM13 CHHM14 CHHM15 CHHM4 CHHM5 CHHM6 CHHM CM2 CM3 CM4 CM5 CM6 CM7 CM8 CM9 CNNTOT DCRUDE DELEMP DF.RSI99 DTHINF DTHTOT DTOT EMCU EMG9 EMNA EMNAT EMNC EMNNC EMNR EMNS EMOCSX EMRATN EM9BASE EM9GOV EM9SUPRT EXBUD EXCAPNEW EXCAPOT EXCAPREP EXCNT EXCN1 EXCN10 EXCN11 EXCN12 EXCN13 EXCN14 EXCN15 EXCN2 EXCN3 EXCN4 EXCN5 EXCN6 EXCN7 EXCN8 EXCN9 EXCPSGOB EXCRFT EXCRF1 EXCRF10 EXCRF11 EXCRF12 EXCRF13 EXCRF14 EXCRF15 EXCRF2 EXCRF3 EXCRF4 EXCRF5 EXCRF6 EXCRF7 EXCRF8 EXCRF9 EXCRLT EXCRL1 EXCRL10 EXCRL11 EXCRL12 EXCRL13 EXCRL14 EXCRL15 EXCRL2 EXCRL3 EXCRL4 EXCRL5 EXCRL6 EXCRL7 EXCRL8 EXCRL9 EXCRST EXCRS1 EXCRS10 EXCRS11 EXCRS12 EXCRS13 EXCRS14 EXCRS15 EXCRS2 EXCRS3 EXCRS4 EXCRS5 EXCRS6 EXCRS7 EXCRS8 EXCRS9 EXCRTT EXCRT1 EXCRT10 EXCRT11 EXCRT12 EXCRT13 EXCRT14 EXCRT15 EXCRT2 EXCRT3 EXCRT4 EXCRT5 EXCRT6 EXCRT7 EXCRT8 EXCRT9 EXCRUT EXCRU1 EXCRU10 EXCRU11 EXCRU12 EXCRU13 EXCRU14 EXCRU15 EXCRU2 EXCRU3 EXCRU4 EXCRU5 EXCRU6 EXCRU7 EXCRU8 EXCRU9 EXCT EXC1 EXC101 EXC11 EXC12 EXC13 EXC14 EXC2 EXC3 EXC6 EXC8 EXC9 EXEDSNT EXGF.AFR EXGFCAP EXGFCAP1 EXGFOPS EXGFOT.A EXHYGAP EXNHYCP EXOMFT EXOMF1 EXOMF10 EXOMF11 EXOMF12 EXOMF13 EXOMF14 EXOMF15 EXOMF2 EXOMF3 EXOMF4 EXOMF5 EXOMF6 EXOMF7 EXOMF8 EXOMF9 EXOMLT EXOML1 EXOML10 EXOML11 EXOML12 EXOML13 EXOML14 EXOML15 EXOML2 EXOML3 EXOML4 EXOMLS EXOML6 EXOML7 EXOML8 EXOML9 EXOMST EXOMS1 EXOMS10 EXOMS11 EXOMS12 EXOMS13 EXOMS14 EXOMS15 EXOMS2 EXOMS3 EXOMS4 EXOMS5 EXOMS6 EXOMS7 EXOMS8 EXOMS9 EXOMTT EXOMT1 EXOMT10 EXOMT11 EXOMT12 EXOMT13 EXOMT14 EXOMT15 EXOMT2 EXOMT3 EXOMT4 EXOMT5 EXOMT6 EXOMT7 EXOMT8 EXOMT9 EXOMUT EXOMU1 EXOMU10 EXOMU11 EXOMU12 EXOMU13 EXOMU14 EXOMU15 EXOMU2 EXOMU3 EXOMU4 EXOMU5 EXOMU6 EXOMU7 EXOMU8 EXOMU9 EXOM84 EXPFCON9

Institute of Social and Economic Research MAP Documentation
December 1984, Model A85.1

EXRP84 EXSPLIT HH HHC HHF10 HHF11 HHF12 HHF13 HHF14 HHF15 HHF4 HHF5 HHF6 HHF7 HHF8 HHF9 HHM HHM10 HHM11 HHM12 HHM13 HHM14 HHM15 HHM4 HHM5 HHM6 HHM7 HHM8 HHM9 HHN HHSIZE HHSIZEC HHSIZEM HHSIZEN HH24 HH25.29 HH30.54 HH55 LF LPTBFV LPTBP9 LPTB1FV NAPF1 NAPF2 NAPF3 NAPF4 NAPF5 NAPF6 NAPF7 NAPM1 NAPM2 NAPM3 NAPM4 NAPMS NAPM6 NAPM7 NATINC NATTOT NBTHTOT NCBR NCDR NCEXP NCF1 NCF10 NCF11 NCF12 NCF13 NCF14 NCF15 NCF2 NCF3 NCF4 NCF5 NCF6 NCF7 NCF8 NCF9 NCM1 NCM10 NCM11 NCM12 NCM13 NCM14 NCM15 NCM2 NCM3 NCM4 NCM5 NCM6 NCM7 NCM8 NCM9 NCWS NDTHINF NDTHTOT NEHA9N NEMCMN NEMCNN NEMD9N NEMFIN NEMGAN NEMGFN NEMM9N NEMPUN NEMP9N NEMS9N NEMTSN NHHF10 NHHF11 NHHF12 NHHF13 NHHF14 NHHF15 NHHF4 NHHF5 NHHF6 NHHF7 NHHF8 NHHF9 NHHM10 NHHM11 NHHM12 NHHM13 NHHM14 NHHM15 NHHM4 NHHM5 NHHM6 NHHM7 NHHM8 NHHH9 NNATINC NNPF1 NNPF2 NNPF3 NNPF4 NNPF5 NNPF6 NNPF7 NNPM1 NNPM2 NNPM3 NNPM4 NNPM5 NNPM6 NNPM7 NWSA9N NWSCMN NWSCNN NWSD9N NWSFIN NWSGAN NWSGFN NWSM9N NWSPUN NWSP9N NWSS9N NWST9N P.BALGF9 PF PFN PIL PIN PINN PIN1 PIPRO PLFDOMC PLFDOMM PLFDOMN PLFDG PM PMN POPADS POPAVAGE POPCGQ POPF1 POPF10 POPF11 POPF12 POPF13 POPF14 POPF15 POPF2 POPF3 POPF4 POPF5 POPF6 POPF7 POPF8 POPF9 POPGQ POPKIDS POPM1 POPM10 POPM11 POPM12 POPM13 POPM14 POPM15 POPM2 POPM3 POPM4 POPM5 POPM6 POPM7 POPM8 POPM9 POPNGQ POPNI9 PPVAL PRILTT PTBP9 R.CAPT RATIO1 RAT1 RLPT RLTEA RLTEA4 RLTEC RLTEC4 RLTEF RLTOT RLTOT4 RLTVS RL99 RL991 RNAT ROFTS RORGRF RPBSGF RPENGF RPRYGF RP7S RP7SGF RP7SPF RP9S RP9SGF RSBM.EXD RSEN RSENGF RSFDNPXG RSFS RSGF.AFR RSGFGAP RSGFRS RSID RSIDNET RSIG RSIGNET RSIN RSIPNET RSIPPF RSIPPF1 RSI99 RSI99NET RTBS RTBS1 RTCS RTISCA RT99 SLGEXP THG UNEMP UNEMRATE WRCU WRGCN WRGCU WRGD9 WRGFI WRGGA WRGGC WRGMS WRGM9 WRGP9 WRGS9 WRGT9 WRMX1 WRM9 WR97 WSA9 WSCM WSD9 WSFI WSGF WSMX1 WSM9 WSNA WSPU WSP9 WSS9 WSS91 WST9 WS98L XXCNX XXM9 XXVACAP X1 X2 X3 X4 X5 X6

\section*{EXOGENOUS:}

ANCSA BADD BALDF6 BALGF6 BALPF6 BASEMCNX BASEPOP BASEXCAP BASEXGF BASEXOPS BASPDRPI BIU6 D.80DEC6 D61.64 D61.66 D61.67 D61.68 D61.69 D61.70 D61.72 D61.73 D61.74 D61.75 D61.76 D61.77 D61.81 D64.65 D68.71 D69 D71.00 D71.73 D72 D73 D74.75 D75 D79 D80 D81.00 D82 EMNATX EXCPSFD6 EXCPSGB6 EXDSSX EXGFCAP6 EXGFCOT6 EXOPS6 EXPFDVX1 EXPFDVX2 EXTRNSPI EXUA6 GODTX LPTRAT NCBP NCRP PCNC1 PCNC2 PCNC3 PCOLART PDRATI06 PDUSCPI6 PIPADJ PITRAN6 PR.DPIU6 P9PTPER RLTEB6 RLTMA6 RLTRS6 RMISRES6 RNATX RSFDNCAX RSFDN6 RSIG6 RSIP5 RTISXX RTOTS6 SANCSA SANCSAX TCRED TXBASE TXCRPC TXPTXX TXRT VAEX6 WEUS6 XXMX1 YR

Institute of Social
and Economic Research
MAP Documentation
December 1984, Model A85.1

POLICY:
APPFCONX BALGFUNA EMAGRI EMAUN EMCNX1 EMCNX2 EMFISH EMGC EMGM EMMX1 EMMX2 EMP9 EMT9X EXDFPCNT EXDF1 EXGFOPSX EXPFCONX EXPFDIST EXPFTOGF EXPF1 EXSAVX EXSPCAP EXSPLITX EXSUBSX EXSUB1 EXSUB2 EXTRNSX GRDIRPU GREXCAP GREXOPS GRRPCEX GRRWEUS GRSSCP GRUSCPI LAFPRT LBOND1 LBOND10 LBOND11 LBOND12 LBOND13 LBOND14 LBOND15 LBOND2 LBOND3 LBOND4 LBOND5 LBOND6 LBOND7 LBOND8 LBOND9 LFED1 LFED10 LFED11 LFED12 LFED13 LFED14 LFED15 LFED2 LFED3 LFED4 LFED5 LFED6 LFED7 LFED8 LFED9 LGF1 LGF10 LGF11 LGF12 LGF13 LGF14 LGF15 LGF2 LGF3 LGF4 LGF5 LGF6 LGF7 LGF8 LGF9 LMUNCAP LSGF1 LSGF10 LSGF11 LSGF12 LSGF13 LSGF14 LSGF15 LSGF2 LSGF3 LSGF4 LSGF5 LSGF6 LSGF7 LSGF8 LSGF9 OMF1 OMF10 OMF11 OMF12 OMF13 OMF14 OMF15 OMF2 OMF3 OMF4 OMF5 OMF6 OMF7 OMF8 OMF9 OML1 OML10 OML11 OML12 OML13 OML14 OML15 OML2 OML3 OML4 OML5 OML6 OML7 OML8 OML9 OMS1 OMS10 OMS11 OMS12 OMS13 OMS14 OMS15 OMS2 OMS3 OMS4 OMS5 OMS6 OMS7 OMS8 OMS9 OMU1 OMU10 OMU11 OMU12 OMU13 OMU14 OMU15 OMU2 OMU3 OMU4 OMU5 OMU6 OMU7 OMU8 RCDEP10 RCDEP11 RCDEP12 RCDEP13 RCDEP14 RCDEP2 RCDEP3 RCDEP5 RCDEP6 RCDEP7 RCDEP8 RCDEP9 REPF1 REPF10 REPF11 REPF12 REPF13 REPF14 REPF15 REPF2 REPF3 REPF4 REPF5 REPF6 REPF7 REPF8 REPF9 REPL1 REPL10 REPL11 REPL12 REPL13 REPL14 REPL15 REPL2 REPL3 REPL4 REPL5 REPL6 REPL7 REPL8 REPL9 REPS1 REPS10 REPS11 REPS12 REPS13 REPS14 REPS15 REPS2 REPS3 REPS4 REPS5 REPS6 REPS7 REPS8 REPS9 REPU1 REPU10 REPU11 REPU12 REPU13 REPU14 REPU15 REPU2 REPU3 REPU4 REPU5 REPU6 REPU7 REPU8 REPU9 RLPTX RLTFPX RLTMCAP RLTX RPBS RPEN RPPS RPRY RPTS RP9X RSFDNPX RSFDNX RTCSPX RTCSX TOURIST UUS

COEFFICIENT:
CMIG1 CMIG2 CMIG3 CMIG4 C1A C1B C1C C10A C10B C10C C100A C100B C100C C101A \(\quad\) C101B C102A \(\quad\) C102B \(\quad\) C102C \(\quad\) C102D \(\quad\) C102F \(\quad\) C103A C103B C103C C104A C104B C105A C105B C105C C106A C106B C107A C107B C108A C108B C109A C109B C11A C11B C12A C12B C14A C14B C14C C15A C15B C16A C16B C16C C17A C17B C17C C18A \(\begin{array}{llllllllllll}C 18 B & C 18 C & C 18 D & C 19 A & C 19 B & C 2 A & C 2 B & C 20 A & C 20 B & C 21 A & C 21 B & C 21 C\end{array}\) C22A C22B C23A C23B C23C C23D C24A C24B C25A C25B C26A
 C30A C30B C31A. C31B C32A C32B C32C C32D C33A C33B C34A C34B C34C C35A C35B C36A C36B C36C C36D C36F C37A C37B C38A C38B C39A C39B C4A C4B C40A C40B C41A C41B C42A C42B C43A C43B C43C C43D C43E C44A C44B C44C C44D C45A C45B \(C 45 C \quad C 45 D \quad C 46 A \quad C 46 B \quad C 47 A \quad C 47 B \quad C 48 A \quad C 48 B \quad C 49 A \quad C 49 B \quad C 5 A ~ C 5 B\) C50A C50B C51A C51B C52A C52B C53A C53B C53C C53D C53F C54A C54B C54D C54E C54F C54G C54H C55A C55B C55C C56A C56B C56C C57A C57B C57C C58A C58B C59A C59B C59C C59D C59E C59F C6A C6B C60A C60B C60C C61A C61B C62A C62B C62C C62D C62F C63A \(\quad \mathrm{C} 63 \mathrm{~B} \quad \mathrm{C} 64 \mathrm{~A} \quad \mathrm{C} 64 \mathrm{~B} \quad \mathrm{C64C} \quad \mathrm{C64D} \quad \mathrm{C} 64 \mathrm{E} \quad \mathrm{C65A} \quad \mathrm{C65B}\) C66A C66B C66C C66D C66E C66F C67A C67B C67C C67D C68A

Institute of Social and Economic Research MAP Documentation
December 1984, Model A85. 1
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline C688 & C68C & C68D & C69A & C69B & C7A & C7B & & OA & C7 & & C70 & & C70D & C70E \\
\hline C70F & C71A & C71B & C71C & C71D & & E & C72 & & C72B & & C72 & & C72D & C73A \\
\hline C73B & C74A & C74B & C74C & C74D & & 4F & C75 & & C75 & & C76 & & C76B & C76C \\
\hline C76D & C76E & C77A & C778 & C78A & & 8B & C78 & & C78D & & C78E & & C78F & C79A \\
\hline C79B & C79D & C79E & C79F & C8A & C8B & C80A & & 80B & C8 & OC & C81 & & C81B & C82A \\
\hline C82B & C82C & C82D & C82F & C83A & & 3C & C83 & D & C83 & & C84A & & C84B & C84C \\
\hline C84D & C85A & C85B & C86A & C86B & & C & C86 & D & C86 & & C86F & & C87A & C87B \\
\hline C88A & C88B & C88C & C88D & C88E & C88 & & C88G & & 89A & C89 & 9 & C9A & C9B & C9C \\
\hline C90A & C90B & C91A & C91B & C92A & A C9 & 2B & C92 & & C92D & & C92F & & C93A & C93B \\
\hline C94A & C94B & C96A & C96B & C97A & C97B & & 98A & C98B & & 99A & & 9B & & \\
\hline
\end{tabular}

PARAMETER:
AFTOT CPGQF1 CPGQF10 CPGQF11 CPGQF12 CPGQF13 CPGQF14 CPGQF15 CPGQF2 CPGQF3 CPGQF4 CPGQF5 CPGQF6 CPGQF7 CPGQF8 CPGQF9 CPGQM1 CPGQM10 CPGQM11 CPGQM12 CPGQM13 CPGQM14 CPGQM15 CPGQM2 CPGQM3 CPGQM4 CPGQM5 CPGQM6 CPGQM7 CPGQM8 CPGQM9 EXANNU EXCAPIMP EXCAPOLD EXEL1 EXEL2 EXEL3 EXEL4 EXEL5 EXEL6 EXLIM82 EXOMCOST EXOPSIMP EXPF2 EXPF3 EXRLOP6 EXRLOP7 EXRLOP8 EXRL1 EXRL2 EXRL3 EXRL4 EXRL4OP EXRL5 FERT10 FERT11 FERT4 FERT5 FERT6 FERT7 FERT8 FERT9 G1 G10 G11 G12 G13 G14 G15 G2 G3 G4 G5 G6 G7 G8 G9 HHRF10 HHRF11 HHRF12 HHRF13 HHRF14 HHRF15 HHRF4 HHRF5 HHRF6 HHRF7 HHRF8 HHRF9 HHRM10 HHRM11 HHRM12 HHRM13 HHRM14 HHRM15 HHRM4 HHRM5 HHRM6 HHRM7 HHRM8 HHRM9 MDPF1 MDPF10 MDPF11 MDPF12 MDPF13 MDPF14 MDPF15 MDPF2 MDPF3 MDPF4 MDPF5 MDPF6 MDPF7 MDPF8 MDPF9 MDPM1 MDPM10 MDPM11 MDPM12 MDPM13 MDPM14 MDPM15 MDPM2 MDPM3 MDPM4 MDPM5 MDPM6 MDPM7 MDPM8 MDPM9 MDTOT MF1 MF10 MF11 MF12 MF13 MF14 MF15 MF2 MF3 MF4 MF5 MF6 MF7 MF8 MF9 MHHF10 MHHF11 MHHF12 MHHF13 MHHF14 MHHF15 MHHF5 MHHF6 MHHF7 MHHF8 MHHF9 MHHM1O MHHM11 MHHM12 MHHM13 MHHM14 MHHM15 MHHM5 MHHM6 MHHM7 MHHM8 MHHM9 MILF1 MILF10 MILF11 MILF12 MILF13 MILF14 MILF15 MILF2 MILF3 MILF4 MILF5 MILF6 MILF7 MILF8 MILF9 mILM1 MILM10 MILM11 MILM12 MILM13 MILM14 MILM15 MILM2 MILM3 MILM4 MILM5 MILM6 MILM7 MILM8 MILM9 MILRAT MM1 MM10 MM11 MM12 MM13 MM14 MM15 MM2 HM3 MM4 MM5 MM6 MM7 MM8 MM9 NFERT10 NFERT11 NFERT4 NFERT5 NFERT6 NFERT7 NFERT8 NFERT9 NHHRF10 NHHRF11 NHHRF12 NHHRF13 NHHRF14 NHHRF15 NHHRF4 NHHRF5 NHHRF6 NHHRF7 NHHRF8 NHHRF9 NHHRM10 NHHRM11 NHHRM12 NHHRM13 NHHRM14 NHHRM15 NHHRM4 NHHRMS NHHRM6 NHHRM7 NHHRM8 NHHRM9 nMF1 NMF10 NMF11 NMF12 NMF13 NMF14 NMF15 NMF2 NMF3 NMF4 NMF5 NMF6 NMF7 NMF8 NMF9 NMM1 NMM10 NMM11 NMM12 NMM13 NMM14 NMM15 NMM2 NMM3 NMM4 NMM5 NMM6 NMM7 NMM8 NMM9 NPGQF1 NPGQF10 NPGQF11 NPGQF12 NPGQF13 NPGQF14 NPGQF15 NPGQF2 NPGQF3 NPGQF4 NPGQF5 NPGQF6 NPGQF7 NPGQF8 NPGQF9 NPGQM1 NPGQM10 NPGQM11 NPGQM12 NPGQM13 NPGQM14 NPGQM15 NPGQM2 NPGQM3 NPGQM4 NPGQM5 NPGQM6 NPGQM7 NPGQM8 NPGQM9 NRCF10 NRCF11 NRCF12 NRCF13 NRCF14 NRCF15 NRCF4 NRCF5 NRCF6 NRCF7 NRCF8 NRCF9 NRCM10 NRCM11 NRCM12 NRCM13 NRCM14 NRCM15 NRCM4 NRCM5 NRCM6 NRCM7 NRCM8 NRCM9 NSEXDIV NSF1 NSF10 NSF11 NSF12 NSF13

NSF14 NSF15 NSF2 NSF3 NSF4 NSF5 NSF6 NSF7 NSF8 NSF9 NSM1 NSM10 NSM11 NSM12 NSM13 NSM14 NSM15 NSM2 NSM3 NSM4 NSM5 NSM6 NSM7 NSM8 NSM9 NSURINFF NSURINFM NTP OEMF1 OEMF1O OEMF11 OEMF12 OEMF13 OEMF14 OEMF15 OEMF2 OEMF3 OEMF4 OEMF5 OEMF6 OEMF 7 OEMF 8 OEMF9 OEMM1 OEMM1O OEMM11 OEMM12 OEMM13 OEMM14 OEMM15 OEMM2 OEMM3 OEHM4 OEMMS OEMM6 OEMM7 OEMM8 OEMM9 PADJ PAD1 PAD2 PARLVFV PARNONGF PBLTBL PBTRATE PCINDA PCIVPY PCNCSV PCNCSV1 PCNCWS PCNC4 PCWS1 PCWS2 PCYNA1 PC12N PC12RN PDCONBAS PDRPIBAS PECIG PERNA1 PERNA2 PERNA3 PESLT PESLTC PFISH1 PIDIST PNTGR POPMGQ PRINT2 PTOURB PTOURD PTOURE PTOURS PTOURT PTRTS PWRBASE P1 P2 P3 P4 P5 P6 RCF10 RCF11 RCF12 RCF13 RCF14 RCF15 RCF4 RCF5 RCF6 RCF7 RCF8 RCF9 RCM10 RCM11 RCM12 RCM13 RCM14 RCM6 RCM7 RCM8 RCM9 ROR RORANGRO RORBOND RORCPDEP RORDISK RORNC RORPDF RORPPF SEXDIV SF1 SF10 SF11 SF12 SF13 SF14 SF15 SF2 SF3 SF4 SF5 SF6 SF7 SF8 SF9 SM1 SM10 SM11 SM12
 SURINFM TP

EQUATIONS

\section*{National Variables}

1: PR.DPIUS = IF YR LE 1983 THEN PR.DPIU6 ELSE PR.DPIUS(-1)* (1+GRDIRPU)

2: PDUSCPI = IF YR LE 1983 THEN PDUSCPI6 ELSE PDUSCPI(-1)ネ (1+GRUSCPI)

3: WEUS = IF YR LE 1983 THEN WEUS6 ELSE WEUS(-1)*(1+GRUSCPI+ GRRWEUS)

\section*{Price Deflators}

4: PDRATIO = IF YR.LE 1983 THEN PDRATIO6 ELSE (IF RTIS(-2)-RTIS ( -1 ) NE 0 AND RTIS ( -2 ) EQ 0 AND G.EMSP GT 0 THEN PDRATIO ( -1 ) + C67A*(1+G.EMSP**0.5)+C67B*(EMCNRT/(EM98(-1)/(EM98-EMCNX1)))C67C+C67D* (1+G.EMSP**0.5)*D68.71 ELSE (IF RTIS (-2)-RTIS (-1) NE 0 AND RTIS ( -2 ) EQ 0 THEN PDRATIO ( -1 ) +C67A+C67B* (EMCNRT/ (EM98(-1)/(EM98-EMCNX1)))-C67C-C67D*D68.71 ELSE (IF G.EMSP LE 0 THEN PDRATIO (-1)+C67A+C67B*(EMCNRT/(EM98(-1)/(EM98-EMCNX1))) + C67D*D68.71 ELSE PDRATIO ( -1 ) + C67A* (1+G.EMSP**0.5) +C67B* (EMCNRT/ (EM98(-1)/(EM98-EMCNX1)))+C67D*(1+G.EMSP**0.5)*D68.71)))

5: \(\quad\) PDRPI \(=\) PDRATIO*PDUSCPI

6: \(\operatorname{PDEXOPS}=\operatorname{WSGSFY}(-1) / \operatorname{EXOPS}(-1) *(\operatorname{WRGA} * 100 / \operatorname{PWRBASE})+(\operatorname{EXOPS}(-1)-\) WSGSFY (-1))/EXOPS (-1)*PDRPI
en e
7: \(\quad\) PDCON \(=C 107 A+C 107 B * W R C N N P\)\(\max\)
8: \(\quad 20.9==0\)
9: \(\quad 20.8==0\)
10: Z0.7 == 0
11: \(Z 0.6==0\)
12: \(\mathrm{Z} 0.5==0\)
13: \(20.4=0\)
14: \(\mathrm{z0} .3==0\)
15: \(Z 0.2==0\)
16: \(\mathrm{Z0.1}=0\)
17: \(\quad 20.0==0\)
FISCAL MODULE
State Petroleum Revenues
18: RP7S == RPBS+RPRY+RPEN+RSFDNPX
19: RPBSGF \(==(1-\) EXPF1 \() *\) RPBS
20: RPRYGF \(=(1-\) EXPF 1\() *\) RPRY
21: RPENGF \(==(1-\) EXPF1 \() *\) RPEN
22: RSFDNPXG \(==(1-E X P F 1) * R S F D N P X\)
23: RP7SGF == RPBSGF+RPRYGF+RPENGF+RSFDNPXG
24: RP7SPF == RP7S-RP7SGF
25: RP9S == RP7S+RPPS+RPTS+RTCSPX+RP9X
26: RP9SGF == RP9S-RP7SPF
27: DF.RSVP = IF YR LT 1984 THEN 0 ELSE DF.RSVP(-1)+RP9S*(PDRPIBAS/ PDRPI)*(1/(1+RORDISK)**(YR-1983))

\section*{State Nonpetroleum Revenues}
```

28: LOG(FAGI) = C21A+C21B*LOG(PI8)+C21C*LOG(EMCNX1+EMP9)
29: LOG(FAGII) = C22A+C22B*LOG(PI)
30: COLA = (1-1/(1+PCOLART))*WSGC
31: AGI = FAGI+COLA-WSGM-PC12N*PC12RN*ANCSA*PCNC1
32: AEX*1000 = C10A+C10B*POPC+C10C*(EMCNX1+EMP9)
33: ATT = C28A+C28B*(EM99-EMGM)+C28C*EMCNX1
34: LOG(ATD/ATT) = C23A+C23B*LOG(AGI/ATT)+C23C*D69+C23D*D72
35: VAEX = IF YR LT 1983 THEN VAEX6 ELSE VAEX(-1)*(1+GRUSCPI)
36: ATI = AGI-AEX*VAEX-ATD
37: ATI.TT = ATI/ATT
38: LOG(RTISCA1) = C24A-TXBASE+C24B*(1-TXRT)*LOG(ATI.TT)
39: LOG(RTISCA2) = C24A+C24B*LOG(ATI.TT)
40: RTISCA == IF YR GT 1984 THEN (IF EXTRNS+EXTRNS(-1) EQ O THEN
EXRL5*(RTISCA1-TXCRPC*RTISCA1-TCRED/1000) ELSE 0) ELSE (IF YR
LT 1979 THEN RTISCA1-TXCRPC*RTISCA1-TCRED/1000 ELSE 0)
41: RTISLOS == (RTISCA2-RTISCA)*ATT
42: RTISC = RTISCA*ATT
43: RTIS = IF YR EQ 1980 THEN 0 ELSE C25A*RTISC(-1)+C25B*RTISC
44: RTISCP = C105A+C105B*PI8+C105C*RTISC
45: LOG(RTPIF/ATT) = C26A+C26B*LOG(FAGII/ATT+TCRED/1000/ATT+
RTISLOS/ATT-EXPF3*EXTRNS/ATT)+C26C*D61.68*LOG(FAGII/ATT+TCRED/
1000/ATT+RTISLOS/ATT-EXPF3*EXTRNS/ATT)
46: DPIRES = C27A+C27B*PI3+C27C*WSCNP
47: RTCS1*100/PDRPI = C43A+C43E*D80+C43D*(EM97(-1)-EM97(-2))+
C43B*EMCNX1(-1)+C43C*EM97(-1)
48: RTCS == RTCS1+RTCSPX+RTCSX
49: BL = C39A+C39B*(XX98-XXP9)

```
```

50: LOG(GR)=C40A+C40B*LOG(XX98-XXP9)
51: RTBS1 == BL*1000*PBTRATE
52: GTR = GR-BL(-1)*PNTGR*1000
53: LOG(RTBS2*10**3/BL(-1)) = C29A+C29B*LOG(GTR(-1)*10**3/BL(-1))
54: RTBS == IF YR GE 1979 THEN RTBS1+RTBS2*PBLTBL ELSE RTBS1+ RTBS2

```
55: TPTV \(=\mathrm{C} 38 \mathrm{~A}+\mathrm{C} 38 \mathrm{~B}\) *POP
56: LOG(AHG) \(=\mathrm{C} 37 \mathrm{~A}+\mathrm{C} 37 \mathrm{~B}^{\star} \mathrm{LOG}(\) PR.PI \()\)
57: THG == AHG*TPTV
58: LOG(RTMF) \(=C 46 A+C 46 B^{*}\) LOG (THG)
59: LOG(RTVS) \(=\) C47A+C47B*LOG(R.DPI8N(-1))
60: LOG(RTAS) \(=\mathrm{C4} 8 \mathrm{~A}+\mathrm{C4} 4 \mathrm{~B} \star \operatorname{LOG}(\mathrm{R} . \mathrm{DPI}(-1))\)
61: LOG(RTCIS) \(=\) C49A+C49B*LOG(R.DPI(-1))
62: RTSS = IF YR GT 1980 THEN 0 ELSE C50A+C50B* (EM99-EMGM)
63: RTOTS = IF YR LE 1984 THEN RTOTS6 ELSE RTOTS(-1)*(1+GRUSCPI+ GRDIRPU)
64: RT99 == RTIS+RTCS+RPPS+RPTS+RP9X+RTBS+RTMF+RTAS+(1-PECIG) * RTCIS+RTVS+RTSS+RTOTS
65: LOG(ROFAS) \(=\) C30A + C30B*LOG(TPTV \((-1))\)
66: LOG(ROFOS) \(=\) C33A + C33 \(B^{\star}\) LOG \((\) PI3 \((-1))\)
67: ROFTS == ROFAS+ROFOS
68: ROFERS \(=\) ROFERS \((-1) *(1+G R U S C P I+G R D I R P U)\)
```nan
69: LOG(RMIS) \(=\) C35A+C35B*LOG(PI3(-1))
70: RSIP = RSIP5+(ROR+GRUSCPI+RORPPF)*(BALPF (-1) +(RP7SPF+EXPFCONX)/2)
71: RSIPGF = IF YR LT 1984 THEN EXPFTOGF*RSIP ELSE EXPFTOGF*(RSIP
```-EXTRNS)
```

72: RSID $==($ ROR+GRUSCPI-RORPDF)*BALDF (-1)

73:	RSIG == IF YR LE 1983 THEN RSIG6 ELSE (ROR+GRUSCPI)*BALGF9 (-1)
74:	RSIN $==$ RSIG+RSIPGF
75:	RSI99 = = RSIG+RSID+RSIP
76:	RSIPNET $==($ ROR+GRUSCPI-(PDRPI/PDRPI $(-1)-1)+$ RORPPF $) *$ BALPF (-1)
77 :	RSIDNET $==($ ROR+GRUSCPI $-(\operatorname{PDRPI} /$ PDRPI (-1)-1)-RORPDF)*BALDF (-1)
78:	
79:	$\begin{aligned} & \text { RSI99NET }==(\text { ROR+GRUSCPI-(PDRPI/PDRPI }(-1)-1)) * \text { BAL99+RORPPF* } \\ & \text { BALPF }(-1)-\operatorname{RORPDF*BALDF}(-1) \end{aligned}$
80:	RSGFBM $==$ RT99+RP7SGF+ROFTS+ROFERS+RSIN+RMIS-SANCSA+EXDFWITH
81:	RSFDN $=$ IF YR LE 1983 THEN RSFDN6 ELSE RSFDNX+RSFDN(-1)* $(1+$ GRUSCPI+GRDIRPU)
82:	RMISRES = IF YR LE 1983 THEN RMISRES6 ELSE RMISRES(-1) * $(1+$ GRUSCPI+GRDIRPU)
83:	RSGFRS == RSFDN+RMISRES
84:	RSGF $=$ RSGFBM+RSGFRS
85:	RSGF.AFR $==$ RSGF+EXINREC
86:	R99S = RSGF+EXPFCON1+(RSID-EXDFWITH)
87:	
88:	
89:	RSFS $==$ PECIG*RTCIS+RSFFS+RSFS1
90:	RSIAS $=\operatorname{RSIAS}(-1) *(1+G R U S C P I+G R D I R P U)$
91:	RSEN $==$ SANCSA+R99S-RP9S-RSI99-RSFDN
92:	RSENGF $==$ SANCSA+RSGFBM-RP9SGF-RSIN
93:	RSIPPF1 $==$ RSIP-RSIPGF
94:	RSIPPF == IF YR LT 1984 THEN RSIPPF1-EXPFDVX1 ELSE (IF YR EQ 1984 THEN RSIPPF1-(EXTRNS-50) ELSE RSIPPF1-EXTRNS)
$95:$	EXPFCON1 $=$ RP7SPF+RSIPPF1

Institute of Socialand Economic ResearchMAP DocumentationDecember 1984, Model A85.1
96: EXPFCON9 == RSIP+RP7SPF+EXPFCONX
97: EXPFCON = RSIPPF+RP7SPF+EXPFCONX
98: EXDFCON = IF RSGFBM GT EXGFBM THEN EXDF1*(RSGFBM-EXGFBM) +(RSID-EXDFWITH) ELSE RSID-EXDFWITH
99: EXDFWITH = EXDFPCNT*RSIDNET
100: $\mathrm{Z1.9}=0$
101: Z1. $8=0$
102: $\mathrm{Z1.7}=0$
103: $\mathrm{Z1.6}=\mathbf{=}$
104: $\mathrm{Z1.5}=0$
105: $\mathrm{Z1.4}=0$
106: $\mathrm{Z1.3}=\mathbf{=} 0$
107: $\mathrm{Z1.2}=\mathbf{0}$
108: Z1.1 $=0$
109: $\mathrm{Z1.0}=\mathbf{=}$
State Expenditures: Aggregates
110: EXLIM = IF YR EQ 1982 THEN EXLIM82 ELSE EXLIM82*(PDRPI/364.23)*(POP/460)
111: EXLIMOK = IF YR LT 1985 THEN EXLIM ELSE (IF RSGFBM-EXDSS+ BALGFAFA(-1) GT EXLIM THEN EXLIM ELSE RSGFBM-EXDSS)
112: RSGFGAP == EXLIM-EXLIMOK
113: EXSPLIT == IF YR LT 1985 THEN 0.67 ELSE (IF RSGFGAP GT 0 AND RSGFGAP (-1) GT 0 THEN EXSPLITX ELSE (IF RSGFGAP GT 0 THEN $0.67+(E X S P L I T X-0.67) / 2$ ELSE 0.67))
114: APGFOPS == EXLIMOK*EXSPLIT
115: APGFCAP == EXLIMOK*(1-EXSPLIT)
116: APGF == APGFOPS+APGFCAP+EXDSS+EXSPCAP+APPFCONX+SANCSAX-4
Institute of Social and Economic Research MAP Documentation December 1984, Model A85. 1
117: EXGFOPS == APGFOPS+EXGFOPSX
118: EXOPS = IF YR LE 1985 THEN EXOPS6 ELSE EXRL5* (EXGFOPS+ EXINRECB+RSGFRS-RSFDNCAX+RSFS+RSIAS) +EXRL1*(EXOPS (-1)* ($1+($ EXEL $1 *(\operatorname{POP}(-1) / \operatorname{POP}(-2)-1)+E X E L 2 *(\operatorname{PDEXOPS}(-1) / \operatorname{PDEXOPS}(-2)-1)+$ EXEL3* (PR.PI3 (-1)/PR.PI3(-2)-1) +EXEL4* (PI (-1)/PI (-2)-1) +EXEL5 * (PI3 (-1)/PI3 (-2) -1) +EXEL6* ($(\operatorname{POP}(-1)-\operatorname{EMCNX1}(-1)) /(\operatorname{POP}(-2)-$ EMCNX1 (-2))-1)) + $\operatorname{EXRLOP6*BALGFCP}(-1) *(\operatorname{BALGFP}(-1) / E X G F(-1)))+$ EXRLOP7* (R99S (-1)-EXNOPS (-1)-EXSAVS) +EXRLOP8* (R99S(-1)-EXNOPS (-1) -EXANSAV) +EXRL3* ($1+$ GRRPCEX)* (EXOPS (-1)/POP (-1)/PDEXOPS $(-1) *$ POP*PDEXOPS) +EXRL2*EXOPS (-1)* (1+GREXOPS) +EXRL4* (BASEXOPS + EXOPSIMP*(PDEXOPS* (POP-BASEPOP-EXRL4OP* (EMCNX1-BASEMCNX))))
119: EXANSAV = RP9S+RSIG+RSIP-EXANNU* (1+RORANGRO)**(YR-1983)
120: EXSAVS = EXSAVX+EXPFCON+TXPTXX*RTISLOS
121: EXGFCAP $==$ IF YR LE 1985 THEN EXGFCAP6 ELSE 0.3*APGFCAP+0.7* APGFCAP (-1)
122: EXCAP = IF YR LE 1985 THEN EXGFCAP+EXCPS ELSE EXRL5* (EXGFCAP+ EXCPS $)+$ EXRL3* ($(1+G R S S C P) * P R . \operatorname{BALCP}(-1) * P O P / 1000-R . \operatorname{BALCAP}(-1) *$ $(1 /(1+$ RORCPDEP $))) /(100 /$ PDCON $)+E X R L 2 \star(E X C A P(-1) *(1+G R E X C A P))+$ EXRL4*(BASEXGAP+EXCAPIMP* (PDCON* (POP-BASEPOP-EXRL40Pネ (EMCNX1BASEMCNX))) +EXRL1* (EXCAP $(-1) *(1+\operatorname{EXEL} 1 *(\operatorname{POP}(-1) / \operatorname{POP}(-2)-1)+$ EXEL2* (PDCON (-1)/PDCON (-2) -1) +EXEL3* (PR.PI3 (-1)/PR.PI3 (-2) -1) +EXEL4* (PI (-1)/PI (-2)-1)+EXEL5* (PI3 (-1) /PI3 (-2)-1) +EXEL6* ((POP (-1)-EMCNX1(-1))/(POP(-2)-EMCNX1(-2))-1)))
123: EXSUBS $=$ IF YR LT 2011 THEN EXSUBSX ELSE (IF EXRL5 EQ 1 THEN (IF RSGFBM (-1)+RSGFBM(-2)-1 LT EXGFBM(-1)+EXGFBM(-2) OR EXSUBS (-1) EQ 0 THEN 0 ELSE EXLIMOK* (0.5*(1-EXSPLIT))) ELSE $\operatorname{EXSUBS}(-1) *(1+G R U S C P I))$
124: EXTRNS = IF YR LT 1984 THEN EXTRNSX+EXPFDVX2 ELSE EXPFDVX2+ EXTRNSX+EXPFDIST* (RSIP (-1) +RSIP (-2) +RSIP (-3) +RSIP (-4) +RSIP)/5
125: EXINREC $=$ C17A + C17B* $(E X O P S-R L T 99)+C 17 C^{*}$ D82
126: EXINRECB $=$ C108A + C108B*EXINREC
State Expenditures: Operating Expenditures

```
127: LOG(EXJUS4) = C20A+C20B*LOG(EXOPS)
128: LOG(EXPPS4) = C91A+C91B*LOG(EXOPS)
129: LOG(EXNRS4) = C93A+C93B*LOG(EXOPS)
```

```
130: LOG(EXHES4) = C94A+C94B*LOG(EXOPS)
131: LOG(EXSSS4) = C96A+C96B*LOG(EXOPS)
132: LOG(EXEDS4) = C19A+G19B*LOG(EXOPS)
133: LOG(EXCDS4) = C97A+C97B*LOG(EXOPS)
134: LOG(EXTRS4) = C98A+C98B*LOG(EXOPS)
135: LOG(EXGGS4) = C99A+G99B*LOG(EXOPS)
136: RATIO1 == EXOPS/(EXEDS4+EXSSS4+EXHES4+EXNRS4+EXPPS4+EXJUS4+
        EXCDS4+RLTX+EXTRS4+EXGGS4)
137: EXUA = IF YR LE 1983 THEN EXUA6 ELSE EXUA(-1)*(EXOPS/EXOPS(-1))
138: EXEDS = RATIO1*EXEDS4
139: EXSSS = RATIO1^EXSSS4
140: EXHES = RATIO1*EXHES4
141: EXNRS = RATIO1\starEXNRS4
142: EXPPS = RATIO1*EXPPS4
143: EXJUS = RATIO1*EXJUS4
144: EXTRS = RATIO1*EXTRS4
145: EXGGS = RATIO1*EXGGS4
146: EXCDS = RATIO1*(EXCDS4+RLTX)
147: RLTE99 = RLTE994*RATIO1
148: EXEDSNT == EXEDS-RLTE99
149: RLTT9 = RLTT94*RATIO1
150: RLTRS = RLTRS4*RATIO1
151: EXCDSNT = EXCDS-RLTT9-RLTRS-RLTX
152: EXPRCDS = C7A+C7B*EXCDSNT
153: EXPREDS1 = C1A+C1B*EXEDSNT+C1C*D61.75*EXEDSNT
154: EXPRSSS = C2A+C2B*EXSSS
```

```
    155: EXPRUA = C32A+C32B*EXUA+C32C*D61.70*EXUA+C32D*D61.70
    156: EXPRHES = C3A +C3B*EXHES
    157: EXPRNRS = C4A+C4B*EXNRS
    158: EXPRPPS = C5A+C5B*EXPPS
    159: EXPRGGS = C8A+C8B*EXGGS
    160: EXPRJUS = C6A+C6B*EXJUS
    161: EXPRTRS = C9A+C9B*EXTRS+C9C*D61.64
    162: EXPR99 = EXPREDS1+EXPRSSS+EXPRHES+EXPRNRS+EXPRPPS+EXPRJUS+
        (+EXPRCDS)+EXPRGGS+EXPRTRS+EXPRUA
    163: WSGSFY = PCWS1*EXPR99
    164: LOG(WSGS) = C55A+C55B*LOG(WSGSFY)+C55C*D75
State Expenditures: Capital Expenditures
165: RORCRF == (GRUSCPI+RORBOND)*(1+GRUSCPI+RORBOND)**15/((1+
    GRUSCPI+RORBOND)**15-1)
166: EXCPSGOB == IF YR LE 1985 THEN EXCPSGB6 ELSE (IF EXDSS(-1)/
    RSGFBM(-1) GT 0.05 THEN 0 ELSE (0.05*RSGFBM(-1)-EXDSS(-1))/
    RORCRF)
167: EXCPSFED = IF YR LE 1983 THEN EXCPSFD6 ELSE EXCPSFED(-1)*(1+
    GRUSCPI)
168: EXCPS = EXCPSGOB+EXCPSFED
169: EXGFCOT = IF YR LE 1983 THEN EXGFCOT6 ELSE EXSUBS+RLTMCAP
170: EXGFCAP1 == EXGFCAP-EXGFCOT
171: EXCAPOT == EXGFCOT
172: EXGFCHY = LGF1*(EXGFCAP-EXSUBS)
173: EXGFCNH = (1-LGF1)*(EXGFCAP-(1-EXSUB1)*EXSUBS)
174: EXCPSHY = LFED1*EXCPSFED+LBOND1*EXCPSGOB
175: EXCPSNH = (1-LFED1)*EXCPSFED+(1-LBOND1)*EXCPSGOB
```

```
176: EXNHYCP == EXGFCNH+EXCPSNH
177: EXHYCAP == EXGFCHY+EXCPSHY
178: EXCAPFR = EXCAPFR(-1)*(EXCAP/EXCAP}(-1)
179: XXVHY = C41A+C41B*(EXHYCAP+EXHYCAP(-1))
180: XXVNHY = C42A+C42B*(EXNHYCP(-1)+EXSPCAP(-1)+RLTMCAP(-1)-
    EXCAPFR(-2)+EXNHYCP+EXSPCAP+RLTMCAP-EXCAPFR(-1))
181: XXVACAP == (XXVHY+XXVNHY)/(PDCON/100)
182: EXDSS = IF YR LT 1984 THEN EXDSSX ELSE EXDSSX+RORCRF*DEBTP83(-1)
183: EXCPSM = IF YR LT 1984 THEN O ELSE EXCPSGOB
184: DEBTP83 = IF YR LT 1984 THEN 0 ELSE DEBTP83(-1)+EXCPSGOB-
    EXCPSM(-15)
185: GODT = IF YR LT 1984 THEN GODTX ELSE GODTX+EXCPSM(-14)*0.067+
    EXCPSM(-13)*0.13+EXCPSM(-12)*0.2+EXCPSM(-11)*0.27+EXCPSM(-10)*
    0.33+EXCPSM (-9)*0.4+EXCPSM(-8)*0.47+EXCPSM (-7)*0.53+EXCPSM (-6)*
    0.6+EXCPSM (-5)*0.67+EXCPSM (-4)*0.73+EXCPSM(-3)*0.8+EXCPSM (-2)*
    0.87+EXCPSM(-1)*0.93+EXCPSGOB
186: EXGF = EXGFOPS+EXDSS+EXGFCAP+EXSPCAP+EXPFCONX+RSGFRS+EXTRNSX
187: EXGFBM = EXGF-RSGFRS
188: EXGF.AFR == EXGF+EXINREC
189: EXGFOT.A == EXGFOPS+EXINREC+RSGFRS-RSFDNCAX
190: EXBUD == EXOPS+EXDSS+PARNONGF*EXUA
191: EX99S = EXBUD+EXTRNS+EXCAP+EXSPCAP
192: EXNOPS = EX99S-EXOPS
193: BALCAB == R99S-EXGF-EXTRNS
194: BALCABGF == RSGF-EXGF
195: BALGF9 = IF YR LE 1981 THEN BALGF6 ELSE BALGF9(-1)+RSGF-EXGF
196: BALGFAFA = BALGF9(-1)+RSGF-EXGF-BALGFUNA
197: BALDF = IF YR LE 1983 THEN BALDF6 ELSE BALDF(-1)+EXDFCON
```

```
                                    Institute of Social
                                    and Economic Research
                                    MAP Documentation
                                    December 1984, Model A85.1
```

```
198: BALPF = IF YR LE 1981 THEN BALPF6 ELSE BALPF(-1)+EXPFCON
```

198: BALPF = IF YR LE 1981 THEN BALPF6 ELSE BALPF(-1)+EXPFCON
199: BAL99 = BALGF9+BALPF+BALDF
199: BAL99 = BALGF9+BALPF+BALDF
200: BAL99AFA = BALGFAFA+BALPF
200: BAL99AFA = BALGFAFA+BALPF
201: BALGEP = IF BALGF9 LT 0 THEN O ELSE BALGF9
201: BALGEP = IF BALGF9 LT 0 THEN O ELSE BALGF9
202: BALGFCP = IF BALGF9-BALGF9(-1) GT 0 THEN BALGF9-BALGF9(-1)
202: BALGFCP = IF BALGF9-BALGF9(-1) GT 0 THEN BALGF9-BALGF9(-1)
ELSE 0
ELSE 0
203: R.BALCAP = R.BALCAP(-1)*(1/(1+RORCPDEP))+(EXGFCHY+EXGFCNH+
203: R.BALCAP = R.BALCAP(-1)*(1/(1+RORCPDEP))+(EXGFCHY+EXGFCNH+
EXCPS)*100/PDCON
EXCPS)*100/PDCON
204: PR.BALCP = R.BALCAP*1000/POP
204: PR.BALCP = R.BALCAP*1000/POP
205: EXCAPREP == IF YR LT 1984 THEN 0 ELSE RORCPDEP*BALCAP84(-1)+
205: EXCAPREP == IF YR LT 1984 THEN 0 ELSE RORCPDEP*BALCAP84(-1)+
EXCAPOLD*(PDRPI/PDRPIBAS)
EXCAPOLD*(PDRPI/PDRPIBAS)
206: EXCAPNEW == IF YR LT 1984 THEN O ELSE EXGFCHY+EXGFCNH+EXCPS-
206: EXCAPNEW == IF YR LT 1984 THEN O ELSE EXGFCHY+EXGFCNH+EXCPS-
EXCAPREP
EXCAPREP
207: BALCAP84 = IF YR LT 1984 THEN 0 ELSE BALCAP84(-1)*PDRPI/
207: BALCAP84 = IF YR LT 1984 THEN 0 ELSE BALCAP84(-1)*PDRPI/
PDRPI(-1)+EXCAPNEW
PDRPI(-1)+EXCAPNEW
208: EXOM84 == BALCAP84(-1)*EXOMCOST
208: EXOM84 == BALCAP84(-1)*EXOMCOST
209: EXRP84 == RORCPDEP*BALCAP84(-1)
209: EXRP84 == RORCPDEP*BALCAP84(-1)
210: Z2.9 == 0
210: Z2.9 == 0
211: Z2.8== 0
211: Z2.8== 0
212: Z2.7 == 0
212: Z2.7 == 0
213: Z2.6 == 0
213: Z2.6 == 0
214: Z2.5 == 0
214: Z2.5 == 0
215: Z2.4 == 0
215: Z2.4 == 0
216: Z2.3 == 0
216: Z2.3 == 0
217: Z2.2 == 0
217: Z2.2 == 0
218: Z2.1 == 0
218: Z2.1 == 0
219: Z2.0 == 0

```
219: Z2.0 == 0
```

Institute of Social and Economic Research MAP Documentation December 1984, Model A85. 1

Local Revenues

220: LOG(LPTB1) $=\mathrm{C} 57 \mathrm{~A}+\mathrm{C} 57 \mathrm{~B} * \operatorname{LOG}(\mathrm{PI}(-1) * 1000 / \mathrm{POP}(-1))+\mathrm{C} 57 \mathrm{C} * \mathrm{LOG}(\mathrm{POP}(-1))$
221: LPTB1FV $==$ LPTB1*1/PARLVFV
222: PTBP9 == RPPS*(1/PTRTS)/(1-P9PTPER*LPTRAT)
223: LPTBP9 == P9PTPER*PTBP9
224: LPTB = LPTB1+LPTBP9*LPTRAT

225: LPTBFV == LPTB1FV+LPTBP9
226: PPVAL == LPTB1FV+PTBP9

227: RLPT1 $=$ C18A + C18D*D61.73+C18B*LPTB1 $(-1)+C 18 C * P T B P 9(-1)$
228: RLPT == RLPT1+RLPTX
229: LOG(RLOT*1000/POP(-1)) = C31A+C31B*LOG(PI (-1)*1000/POP(-1))
230: RLTCS4 = IF YR GT 1981 THEN 0 ELSE PESLTC*RTCS1
231: \quad RLTVS4 $=$ C63A + C63 ${ }^{*}$ *RTVS

232: RLTOT4 == PESLT*RTOTS

233: RLTMA4 = IF YR LE 1983 THEN RLTMA6 ELSE RLTMA(-1)/PDRPI(-1)/ POP (-1) *POP*PDRPI

234: RLTT94 = RLTVS4+RLTOT4+RLTCS4+RLTMA4

235: RLTRS4 = IF YR LE 1983 THEN RLTRS6 ELSE RLTRS(-1)*(1+GRUSCPI+ GRDIRPU)

236: RLTMS $=$ RLTMCAP
237: RLTEC4 == PECIG*RTCIS
238: ADMDIS $==\operatorname{PAD} 1 * \operatorname{POPSKUL}(-1)$

239: ADMREA == PAD2*POPSKUL(-1)
240: \quad ADMSD $=$ ADMDIS + ADMREA
241: BIU = IF YR LE 1983 THEN BIU6 ELSE BIU(-1)*(1+GRUSCPI)
242: RLTEF4 $=\mathrm{C} 36 \mathrm{~A}+\mathrm{C} 36 \mathrm{~F} * \mathrm{D} 81.00+\mathrm{D} 71.00 * \mathrm{C} 36 \mathrm{~B}+\mathrm{BIU} * \mathrm{C} 36 \mathrm{C}+\mathrm{C} 36 \mathrm{D}$ *ADMSD

Institute of Social and Economic Research MAP Documentation December 1984, Model A85.1

```
243: RLTET4 = (POP/POP(-1)+PDRPI/PDRPI(-1)-1)*RLTET(-1)
244: RLTEO4 = RLTEO(-1)*(1+GRUSCPI+GRDIRPU)
245: RLTEA4 == RLTEC4+RLTEF4+RLTET4+RLTEO4
246: RLTEB4 = IF YR LE 1983 THEN RLTEB6 ELSE RLTEB(-1)*(1+GRUSCPI+
    GRDIRPU)
247: RLTE994 = RLTEA4+RLTEB4
248: RLTCS = RLTCS4*RATIO1
249: RLTVS == RLTVS4*RATIO1
250: RLTOT == RLTOT4*RATIOI
251: RLTMA = RLTMA4*RATIO1
252: RLTEC == RLTEC4*RATIO1
253: RLTEF == RLTEF4*RATIOI
254: RLTET = RLTET4*RATIO1
255: RLTEO = RLTEO4*RATIOI
256: RLTEA == RLTEA4*RATIO1
257: RLTEB = RLTEB4*RATIO1
258: RLT99 = RLTT9+RLTRS+RLTE99+RLTMS+RLTX
259: 23.1 == 0
260: Z3.2== 0
261: 23.3 == 0
262: 23.4 == 0
263: 23.5 == 0
264: 23.6 == 0
265: 23.7 == 0
266: Z3.8 == 0
```

```
    267: Z3.9 == 0
    268: Z3.0 == 0
```


Local Expenditures

```
269: ELED1 = C11A+C11B*PI3(-1)
270: ELED = RLTE99+ELED1
271: ELBD = C14A+C14C*D61.77*GOBONDL(-1)+C14B*GOBONDL(-1)
272: EL99 = ELED+ELNED1+ELBD+RLTX+RLTFPX
273: ELNED1*100/PDRPI = C16A+G16B*WEALTH+C16C*(RLTRS+RLTT9+RLTMS)/
    PDRPI
274: RLTF = RLTF(-1)*(1+GRUSCPI+GRDIRPU)
275: RL991 == RLPT+RLOT+RLT99+RLTF+RLTFPX
276: RLMC = EL99-RL991-(GOBONDL-GOBONDL(-1))
277: RL99 == RL991+RLMC
278: ELEDCP = C15A+C15B*ELED
279: ELPERS = C12A+C12B*(EL99-ELEDCP-RLTMS-ELBD)
280: WSGL = (IF YR EQ 1983 THEN 1.23 ELSE (IF YR EQ 1984 THEN
    1.23 ELSE (IF YR EQ 1985 THEN 1.27 ELSE PCWS2)))*ELPERS
281: GOBONDL = GOBONDL(-1)*(1+GRUSCPI+GRDIRPU)
282: SLGEXP == EX99S+EL99-RLT99
283: BALOCAL == RL99-(EL99-ELBD)
284: BALLANDS == BALOCAL+BALCAB
285: Z4.9 == 0
286: Z4.8 == 0
287: Z4.7 == 0
288: 24.6 == 0
289: Z4.5 == 0
```

```
                                    Institute of Social
                                    and Economic Research
                                    MAP Documentation
                                    December 1984, Model A85.1
```

```
290: Z4.4 == 0
```

290: Z4.4 == 0
291: Z4.3 == 0
291: Z4.3 == 0
292: Z4.2 == 0
292: Z4.2 == 0
293: Z4.1 == 0
293: Z4.1 == 0
294: Z4.0 == 0

```
294: Z4.0 == 0
```


ECONOMIC MODULE

```
Personal Income
```

```
295: PIDIR = C51A+C51B*(DPI+DPI(-1)+DPI(-2)+DPI(-3)+DPI(-4))
```

295: PIDIR = C51A+C51B*(DPI+DPI(-1)+DPI(-2)+DPI(-3)+DPI(-4))
296: PITRAN1 = IF YR LE 1982 THEN PITRAN6 ELSE ITRAN1(-1)/POPGER(-1)*
296: PITRAN1 = IF YR LE 1982 THEN PITRAN6 ELSE ITRAN1(-1)/POPGER(-1)*
(1+GRUSCPI)*POPGER
(1+GRUSCPI)*POPGER
297: PITRAN/PDRPI = IF YR GE 1984 THEN PITRAN1/PDRPI+EXTRNS/PDRPI
297: PITRAN/PDRPI = IF YR GE 1984 THEN PITRAN1/PDRPI+EXTRNS/PDRPI
ELSE (IF YR EQ 1983 OR YR EQ 1982 THEN PITRAN1/PDRPI+EXTRNSPI/
ELSE (IF YR EQ 1983 OR YR EQ 1982 THEN PITRAN1/PDRPI+EXTRNSPI/
PDRPI ELSE C34A+C34B*POP+C34C*D61.72+EXTRNS/PDRPI)
PDRPI ELSE C34A+C34B*POP+C34C*D61.72+EXTRNS/PDRPI)
298: PIOLI = C44A+C44D*D61.75+C44B*(WS98-WSCNP)+C44C*WSCNP(-1)
298: PIOLI = C44A+C44D*D61.75+C44B*(WS98-WSCNP)+C44C*WSCNP(-1)
299: PISSC = C106A+C106B*(WS98-WSCNP)
299: PISSC = C106A+C106B*(WS98-WSCNP)
300: PIPR01*100/PDRPI = C45A+C45B*EMPRO1+C45C*D61.66+C45D*D79
300: PIPR01*100/PDRPI = C45A+C45B*EMPRO1+C45C*D61.66+C45D*D79
301: PIPROF = EMPROFIS*(4.523*(PDRPI/340))
301: PIPROF = EMPROFIS*(4.523*(PDRPI/340))
302: PIPRO == PIPRO1+PIPROF
302: PIPRO == PIPRO1+PIPROF
303: PI8 = WS98+PIOLI+PIPRO-PISSC+PIDIR+PITRAN
303: PI8 = WS98+PIOLI+PIPRO-PISSC+PIDIR+PITRAN
304: NCCI = PC12N*(1-PCNC1)*ANCSA+(1-PCNC2)*NCRP+(1-PCNC3)*RORNC*
304: NCCI = PC12N*(1-PCNC1)*ANCSA+(1-PCNC2)*NCRP+(1-PCNC3)*RORNC*
NCCAP(-1)
NCCAP(-1)
305: NCCAP = PCNCSV*NCCI+NCCAP(-1)+PCNCSV1*(1-PCNC4)*NCBP
305: NCCAP = PCNCSV*NCCI+NCCAP(-1)+PCNCSV1*(1-PCNC4)*NCBP
306: NCEXP == (1-PCNCSV)*NCCI+(1-PCNCSV1)*(1-PCNC4)*NCBP
306: NCEXP == (1-PCNCSV)*NCCI+(1-PCNCSV1)*(1-PCNC4)*NCBP
307: NCWS == PCNCWS*NCEXP
307: NCWS == PCNCWS*NCEXP
308: NCPI = PC12N*PC12RN*PCNC1*ANCSA+PC12RN*PCNC2*NCRP+PC12RN*
308: NCPI = PC12N*PC12RN*PCNC1*ANCSA+PC12RN*PCNC2*NCRP+PC12RN*
PCNC3*RORNC*NCCAP(-1) +PC12RN*PCNC4*NCBP

```
        PCNC3*RORNC*NCCAP(-1) +PC12RN*PCNC4*NCBP
```

```
309: PIRADJ*100/PDRPI = C103A+C103B*EMCNX1+C103C*EM97
310: PI = PI8-PIRADJ
311: PI3 = PI-PI/WS98*WRCNP*EMCNX1/1000
312: R.PI == PI*100./PDRPI
313: P.PI == PI*1000./POP
314: PR.PI3 = PI3*100/PDRPI*1000/(POP-EMCNX1)
315: PR.PI = R.PI*1000./POP
316: WEALTH = (PR.PI+PR.PI(-1)+PR.PI(-2)+PR.PI(-3))/4
317: DPI = PI-RTPIF-RTISCP-DPIRES+RTISXX
318: DPI8 = DPI+PIRADJ
319: R.DPI = 100.*DPI/PDRPI
320: PR.DPI == R.DPI*1000/POP
321: R.DPI8N = (DPI8+EXSUB2*EXSUBS-EXPF2*EXTRNS)*100/PDRPI-R.DPI8X
322: R.DPI8X = 0
323: PR.DPI8N == R.DPI8N*1000/POP
324: Z5.9 == 0
325: Z5.8 == 0
326: 25.7 == 0
327: Z5.6 == 0
328: }\textrm{Z5.5}==
329: Z5.4 == 0
330: Z5.3 == 0
331: Z5.2 == 0
332: 25.1 == 0
333: 75.0== 0
```


Sectoral Activity

```
334: EMCNRT = IF EMCNX1/4 LT EMCNX1(-1) THEN O ELSE EMCNX1/
    (EM98-EMCNX1)
335: XXCN8 = C54A+C54B*R.DPI8N+C54D*D65+C54E*D73+C54F*R.DPI8X(-1)+ C54G*R.DPI8X
336: XXCN1 = XXCN8+XXVACAP
337: LOG(EMCN1) = C56A+C56C*D61.67+C56B*LOG(XXCN1)
338: EMCNX = EMCNX1+EMCNX2
339: EMCN = EMCN1+EMCNX
340: XXCN = EMCN/EMCN1*XXCN1
341: XXCNX == XXCN-XXVACAP-XXCN8
342: LOG(WRCNNP/PDRPI) = C59A+C59F*D.80DEC6+C59B*LOG(WEUS/PDUSCPI)
    +C59C*LOG(1+EMCNRT)+C59D*LOG(1+EMCNRT (-1))+C59E*LOG (1+EMCNRT (-2))
343: WRCNP = WRCNNP*PIPADJ
344: WSCN = (EMCN1+EMCNX2)*WRCNNP/1000+EMCNX1*WRCNP/1000
345: WRCN = WSCN/EMCN*1000
346: WSCNP = EMCNXI*WRCNP/1000
347: LOG(XXP9) = C52A+C52B*LOG(EMP9)
348: LOG(WRP9/PDRPI) = C53A+C53F*D.80DEC6+C53D*D61.76+C53B*LOG(WEUS/
    PDUSCPI)+C53C*LOG(1+EMCNRT)
349:WSP9 == EMP9*WRP9/1000
350: XXMO = C60A+C60B*R.DPI8N+C60C*D61.77
351: LOG(EMMO) = C109A+C109B*LOG(XXMO)
352: LOG(XXMX2) = C61A+C61B*LOG(EMMX2)
353: XXM9 == XXMX1+XXMMX2+XXMO
354: EMM9 = EMMO+EMMX1+EMMX2
355: LOG(WRM91/PDRPI) = C62A+C62F*D.80DEC6+C62B*LOG(WEUS/PDUSCPI) +
    C62C*LOG(1+EMCNRT)+C62D*LOG(1+EMCNRT (-1))
```

Institute of Social and Economic Research MAP Documentation December 1984，Model A85． 1

```
356: WRMX1 == WRM91*PADJ
357: WSM9 == (EMMO+EMMX2)*WRM91/1000+EMMX1*WRMX1/1000
358: WSMX1 == EMMX1*WRMX1/1000
359: WRM9 == WSM9/EMM9*1000
360: XXTNT = C64A+C64B*R.DPI8X+C64D*R.DPI8X*R.DPI8X(-1)+C64C*
    R.DPI8N+C64E*D71.73
361: LOG(EMTNT) = C65A+C65B*LOG(XXTNT)
362: EMTTOUR = PTOURT*EMTOUR
363: EMT91 = EMTNT+EMTTOUR
364: EMT9 = EMT91+EMT9X
365: XXT9 = XXTNT*(EMT9/EMTNT)
366: LOG(WRT9/PDRPI) = C66A+C66F*D.80DEC6+C66D*D61.76+C66B*LOG(WEUS/
    PDUSCPI)+C66C*LOG(1+EMCNRT) +C66E*LOG(1+EMCNRT(-1))
367: WST9 == EMT9*WRT9/1000.
368: XXCM = C68A+C68B*R.DPI8N(-1)+C68C*D61.74+C68D*WEALTH(-1)*POP(-1)
369: LOG(EMCM) = C69A+C69B*LOG(XXCM)
370: LOG(WRCM/PDRPI) = C70A+C70E*D61.70+C70F*D.80DEC6+C70B*LOG(WEUS/
        PDUSCPI)+C70C*LOG(1+EMCNRT(-2))+C70D*LOG(1+EMCNRT(-1))
371: WSCM == EMCM*WRCM/1000.
372: XXPU = C72A+C72B*R.DPI8N(-1)+C72C*R.DPI8X+C72D*R.DPI8N(-2)
373: LOG(EMPU) = C73A+C73B*LOG(XXPU)
374: LOG(WRPU/PDRPI) = C74A+C74F*D.80DEC6+C74B*LOG(WEUS/PDUSCPI) +
    C74C*LOG(1+EMCNRT (-2))+C74D*LOG (1+EMCNRT (-1))
375: WSPU == EMPU*WRPU/1000.
376: XXDW = C71A+C71B*R.DPI8N+C71C*R.DPI8X+C71D*R.DPI8X(-1)*
    R.DPI8X+C71E*WEALTH(-1)*POP(-1)
377: XXDRNT = C76A+C76B*R.DPI8N+C76C*R.DPI8X+C76D*R.DPI8N(-1)+C76E
    *R.DPI8X(-1)
```

```
                                    Institute of Social
                                    and Economic Research
                                    MAP Documentation
                                    December 1984, Model A85.1
```

```
378: LOG(EMDW) = C77A CC77B*LOG(XXDW)
```

378: LOG(EMDW) = C77A CC77B*LOG(XXDW)
379: LOG(EMDRNT) = C75A+C75B*LOG(XXDRNT)
379: LOG(EMDRNT) = C75A+C75B*LOG(XXDRNT)
380: EMDR = EMDRNT+EMDTOUR
380: EMDR = EMDRNT+EMDTOUR
381: LOG(WRDW/PDRPI) = C78A+C78F*D.80DEC6+C78B*LOG(WEUS/PDUSCPI) +
381: LOG(WRDW/PDRPI) = C78A+C78F*D.80DEC6+C78B*LOG(WEUS/PDUSCPI) +
C78C*LOG(1+EMCNRT) +C78D*LOG(1+EMCNRT(-1))+C78E*LOG(1+EMCNRT (-2))
C78C*LOG(1+EMCNRT) +C78D*LOG(1+EMCNRT(-1))+C78E*LOG(1+EMCNRT (-2))
382: LOG(WRDR/PDRPI) = C79A+C79F*D.80DEC6 +C79B*LOG(WEUS/PDUSCPI) +
382: LOG(WRDR/PDRPI) = C79A+C79F*D.80DEC6 +C79B*LOG(WEUS/PDUSCPI) +
(+C79D)*LOG(1+EMCNRT(-1))+C79E*LOG(1+EMCNRT(-2))
(+C79D)*LOG(1+EMCNRT(-1))+C79E*LOG(1+EMCNRT(-2))
383: EMDTOUR = PTOURD*EMTOUR
383: EMDTOUR = PTOURD*EMTOUR
384: EMD9 = EMDRNT+EMDW+EMDTOUR
384: EMD9 = EMDRNT+EMDW+EMDTOUR
385: WSD9 == (EMDRNT+EMDTOUR)*WRDR/1000+EMDW*WRDW/1000
385: WSD9 == (EMDRNT+EMDTOUR)*WRDR/1000+EMDW*WRDW/1000
386: WRD9 = WSD9/EMD9*1000
386: WRD9 = WSD9/EMD9*1000
387: XXD9 = (XXDW+XXDRNT)/(EMDW+EMDRNT)*EMD9
387: XXD9 = (XXDW+XXDRNT)/(EMDW+EMDRNT)*EMD9
388: XXDR = XXD9-XXDW
388: XXDR = XXD9-XXDW
389: XXFI = C80A +C80C*D71.73+C80B*WEALTH (-1)*POP(-1)
389: XXFI = C80A +C80C*D71.73+C80B*WEALTH (-1)*POP(-1)
390: LOG(EMFI) = C81A+C81B*LOG(XXFI)
390: LOG(EMFI) = C81A+C81B*LOG(XXFI)
391: LOG(WRFI/PDRPI) = C82A+C82F*D.80DEC6 +C82B*LOG(WEUS/PDUSCPI) +
391: LOG(WRFI/PDRPI) = C82A+C82F*D.80DEC6 +C82B*LOG(WEUS/PDUSCPI) +
C82D*LOG(1+EMCNRT)+C82C*LOG(1+EMCNRT(-1))
C82D*LOG(1+EMCNRT)+C82C*LOG(1+EMCNRT(-1))
392: WSFI == EMFI*WRFI/1000.
392: WSFI == EMFI*WRFI/1000.
393: XXS8NT = C84A+C84B*R.DPI8N+C84C*R.DPI8X(-1)+C84D*WEALTH(-1)*
393: XXS8NT = C84A+C84B*R.DPI8N+C84C*R.DPI8X(-1)+C84D*WEALTH(-1)*
POP(-1)
POP(-1)
394: XXSB = C83A+(+C83C)*R.DPI8X+C83D*R.DPI8X(-1)+C83E*WEALTH(-1)*
394: XXSB = C83A+(+C83C)*R.DPI8X+C83D*R.DPI8X(-1)+C83E*WEALTH(-1)*
POP(-1)
POP(-1)
395: LOG(EMS8NT) = C85A+C85B*LOG(XXS8NT)
395: LOG(EMS8NT) = C85A+C85B*LOG(XXS8NT)
396: LOG(EMSB) = C87A+C87B*LOG(XXSB)
396: LOG(EMSB) = C87A+C87B*LOG(XXSB)
397: LOG(WRSNB/PDRPI) = C86A+C86F*D.80DEC6+C86B*LOG(WEUS/PDUSCPI) +
397: LOG(WRSNB/PDRPI) = C86A+C86F*D.80DEC6+C86B*LOG(WEUS/PDUSCPI) +
C86C*LOG(1+EMCNRT)+C86D*LOG(1+EMCNRT(-1))+C86E*LOG(1+EMCNRT (-2))
C86C*LOG(1+EMCNRT)+C86D*LOG(1+EMCNRT(-1))+C86E*LOG(1+EMCNRT (-2))
398: LOG(WRSB/PDRPI) = C88A+C88F*D.80DEC6+C88E*D61.70+C88B*
398: LOG(WRSB/PDRPI) = C88A+C88F*D.80DEC6+C88E*D61.70+C88B*
LOG(WEUS/PDUSCPI)+C88C*LOG(1+EMCNRT)+C88D*LOG(1+EMCNRT(-1))+
LOG(WEUS/PDUSCPI)+C88C*LOG(1+EMCNRT)+C88D*LOG(1+EMCNRT(-1))+
C88G*LOG(1+EMCNRT(-2))

```
    C88G*LOG(1+EMCNRT(-2))
```

```
399: EMSTOUR = PTOURS*EMTOUR
400: EMS91 = EMSB+EMS8NT+EMSTOUR
401: WSS91 == (EMS8NT+EMSTOUR)*WRSNB/1000+EMSB*WRSB/1000
402: WSS9 == WSS91+NCWS
403: EMS9 = EMS91+NCWS/(WRS9*1000)
404: WRS9 = WSS91/EMS91*1000
405: XXS9 = (XXS8NT+XXSB)/(EMS8NT+EMSB)*EMS9
406: EMGF = EMGM+EMGC
407: LOG(XXGF) = C101A+C101B*LOG(EMGF)
408: LOG(WRGC) = C89A+C89B*LOG(WEUS)
409: WRGM = WRGC*PCIVPY
410: WSGC = WRGC*EMGC/1000
411: WSGM = WRGM*EMGM/1000
412: WSGF == WSGC+WSGM
413: WRGF = WSGF/EMGF*1000
414: LOG(WRGS/PDRPI) = IF C92A+C92F*D.80DEC6+C92B*LOG(WEUS/PDUSCPI) +
        C92C*D61.73+C92D*D74.75 LT LOG(WRGS(-1)/PDRPI(-1)) THEN LOG
        (WRGS(-1)/PDRPI(-1)) ELSE C92A+C92F*D.80DEC6+C92B*LOG(WEUS/
        PDUSCPI)+C92C*D61.73+C92D*D74.75
415: EMGS = WSGS/WRGS*1000
416: LOG(WRGL/PDRPI) = IF C102A+C102F*D.80DEC6+C102D*D61.69+C102C*
        LOG(1+EMCNRT)+C102B*LOG(WEUS/PDUSCPI) LT LOG(WRGL(-1)/PDRPI (-1))
        THEN LOG(WRGL(-1)/PDRPI(-1)) ELSE C102A+C102F*D.80DEC6+C102D*
        D61.69+G102C*LOG(1+EMCNRT)+C102B*LOG(WEUS/PDUSCPI)
417: EMGL = WSGL/WRGL*1000
418: EMGA = EMGS+EMGL
419: WSGA = WSGS+WSGL
420: WRGA = WSGA/EMGA*1000
```

```
421: LOG(XXGA) = C104A+C104B*LOG(EMGA)
422: EMA9 = EMAFISH+EMAGRI+EMAUN
423: KXA9 = C90A+C90B*(EMA9+EMPROFIS)
424: WRA9 = WRGC
425:WSA9 == EMA9*WRA9/1000.
426: XX98 = XXP9+XXCN+XXM9+XXT9+XXCM +XXPU +XXD9+XXFI+XXS9+XXGF+
    XXGA+XXA9
427: EM98 = EMP9+EMCN+EMM9+EMT9+EMCM+EMPU+EMD9+EMFI+EMS9+EMGF+
    EMGA+EMA9
428: EM97 = EM98-EMGM
429: WS98 = (WRP9*EMP9+WRCN*EMCN+WRM9*EMM9+WRT9*EMT9+WRCM*EMCM+
    WRPU*EMPU+WRD9*EMD9+WRFI*EMFI+WRS9*EMS9+WRGF*EMGF+WRGA*EMGA+
    WRA9*EMA9)/1000.
430: WS97 = WS98-WSGM
431: WR98 = WS98*1000/EM98
432: WR97 == WS97*1000/EM97
433: LOG(EMPRO1) = C100A+C100C*D61.66+C100B*LOG(EM98)
434: EMPROFIS = PFISH1*EMFISH
435: EMAFISH = (1-PFISH1)*EMFISH
436: EMPRO = EMPRO1+EMPROFIS
437: EM99 == EM98+EMPRO
438: EM96 = EM99-EMGM
439: EM9BASE == EMCNX+EMM9-EMMO+EMP9+EMTOUR+EMGF+EMA9+EMPROFIS+
    EMT9X
440: EM9GOV == EMGS+EMGL
441: EM9INFR = EMTCU+EMCN1+EMSB-EMT9X-EMTTOUR
442: EM9SUPRT == EMD9+EMFI+EMS9-EMDTOUR-EMSTOUR-EMSB+EMMO+EMPRO1
443: EMX = EMCNX+EMP9
```

```
444: EMOCSX == EMP9+EMT9X+EMCNX1+EMCNX2+EMMX1
445: EMCU == EMCM+EMPU
446: WRCU == (WSCM+WSPU)/EMCU*1000
447: EMNC == EMS9-EMS91
448: EMTCU = EMT9+EMCM+EMPU
449: EMSUP = EMD9+EMFI+EMS9
450: EMSP = EMTCU+EMSUP
451: EMG9 == EMGF+EMGA
452: G.EMSP = (EMSP-EMSP(-1))/EMSP(-1)
453: EMNR == EM99-EMSP-EMG9-EMCN-EMP9
454: EMNS == EM99-EMSP-EMG9
455: LOG(EMTOUR) = PTOURB+PTOURE&LOG(TOURIST)
456: 26.9 == 0
457: Z6.8 == 0
458: Z6.7 == 0
459: Z6.6 == 0
460: Z6.5 == 0
461: 26.4 == 0
462: Z6.3 == 0
463: Z6.2 == 0
464: 26.1 == 0
465: Z6.0 == 0
```


DEMOGRAPHIC MODULE

Civilian Non-Native Population

```
466: CM2 == G2*SM2*CNNPM2(-1)+(1-G1)*CNNPM1 (-1)*SM1
467: CF2 == G2*SF2*CNNPF2(-1)+(1-G1)*CNNPF1(-1)*SF1
468: CM3 == G3*SM3*CNNPM3 (-1)+(1-G2)*CNNPM2(-1)*SM2
469: CF3 == G3*SF3*CNNPF3(-1)+(1-G2)*CNNPF2(-1)*SF2
470: CM4 == G4*SM4*CNNPM4(-1)+(1-G3)*CNNPM3(-1)*SM3
471: CF4 == G4*SF4*CNNPF4(-1)+(1-G3)*CNNPF3(-1)*SF3
472: CM5 == G5*SM5*CNNPM5 (-1)+(1-G4)*CNNPM4(-1)*SM4
473: CF5 == G5*SF5*CNNPF5(-1)+(1-G4)*CNNPF4(-1)*SF4
474: CM6 == G6*SM6*CNNPM6(-1)+(1-G5)*CNNPM5 (-1)*SM5
475: CF6 == G6*SF6*CNNPF6(-1)+(1-G5)*CNNPF5(-1)*SF5
476: CM7 == G7*SM7*CNNPM7(-1)+(1-G6)*CNNPM6(-1)*SM6
477: CF7 == G7*SF7*CNNPF7(-1)+(1-G6)*CNNPF6(-1)*SF6
478: CM8 == G8*SM8*CNNPM8(-1)+(1-G7)*CNNPM7(-1)*SM7
479: CF8 == G8*SF8*CNNPF8(-1)+(1-G7)*CNNPF7(-1)*SF7
480: CM9 == G9*SM9*CNNPM9(-1)+(1-G8)*CNNPM8(-1)*SM8
481: CF9 == G9*SF9*CNNPF9(-1)+(1-G8)*CNNPE'8(-1)*SF8
482: CM10 == G10*SM10*CNNPM10(-1)+(1-G9)*CNNPM9(-1)*SM9
483: CF10 == G10*SF10*CNNPF10(-1)+(1-G9)*CNNPF9(-1)*SF9
484: CM11 == G11*SM11*CNNPM11(-1)+(1-G10)*CNNPM10(-1)*SM10
485: CF11 == G11*SF11*CNNPF11(-1)+(1-G10)*CNNPF10(-1)*SF10
486: CM12 == G12*SM12*CNNPM12(-1)+(1-G11)*CNNPM11(-1)*SM11
487: CF12 == G12*SF12*CNNPF12(-1)+(1-G11)*CNNPF11(-1)*SF11
488: CM13 == G13*SM13*CNNPM13(-1)+(1-G12)*CNNPM12(-1)*SM12
```

Institute of Social and Economic Research MAP Documentation December 1984, Model A85.1

```
489: CF13 == G13*SF13*CNNPF13(-1)+(1-G12)*CNNPF12(-1)*SF12
490: CM14 == G14*SM14*CNNPM14(-1)+(1-G13)*CNNPM13(-1)*SM13
491: CF14 == G14*SF14*CNNPF14(-1)+(1-G13)*CNNPF13(-1)*SF13
492: CM15 == G15*SM15*CNNPM15(-1)+(1-G14)*CNNPM14(-1)*SM14
493: CF15 == G15*SF15*CNNPF15(-1)+(1-G14)*CNNPF14(-1)*SF14
494: BTHTOT == CF4*FERT4+CF5*FERT5+CF6*FERT6+CF7*FERT7+CF8*FERT8+CF9*FERT9+CF10*FERT10+CF11*FERT11-BADD
495: CM1 == SEXDIV*BTHTOT*SURINFM
496: CF1 == (1-SEXDIV)*BTHTOT*SURINFF
497: DTHINF == BTHTOT-CM1-CF1
498: DTHTOT == DTHINF+CM15(-1)*(1-SM15)+CF15(-1)*(1-SF15)+CM14(-1)*
        (1-SM14)+CF14(-1)*(1-SF14)+CM13(-1)*(1-SM13)+CF13(-1)*(1-SF13)+
        CM12(-1)*(1-SM12)+CF12(-1)*(1-SF12) +CM11(-1)*(1-SM11)+CF11(-1)*
        (1-SF11)+CM10(-1)*(1-SM10) +CF10(-1)*(1-SF10)+CM9(-1)*(1-SM9)+
        CF9(-1)*(1-SF9)+CM8(-1)*(1-SM8)+CF8(-1)*(1-SF8)+CM7(-1)*(1-SM7)+
        CF7(-1)*(1-SF7)+CM6(-1)*(1-SM6)+CF6(-1)*(1-SF6)+CM5(-1)*(1-SM5)+
        CF5(-1)*(1-SF5)+CM4(-1)*(1-SM4)+CF4(-1)*(1-SF4)+CM3(-1)*(1-SM3)+
        CF3(-1)*(1-SF3)+CM2(-1)*(1-SM2)+CF2(-1)*(1-SF2)+CM1 (-1)*(1-SM1)+
        CF1(-1)*(1-SF1)
499: NATINC == BTHTOT-DTHTOT
500: CNNPM10 = CM10*(1+OEMM10)+MIGIN*MM1O
501: CNNPF10 = CF10*(1+OEMF10)+MIGIN*MF10
502: CNNPM11 = CM11*(1+OEMM11)+MIGIN*MM11
503: CNNPF11 = CF11*(1+OEMF11)+MIGIN*MF11
504: CNNPM12 = CM12*(1+OEMM12) +MIGIN*MM12
505: CNNPF12 = CF12*(1+OEMF12)+MIGIN*MF12
506: CNNPM13 = CM13*(1+OEMM13)+MIGIN*MM13
507: CNNPF13 = CF13*(1+OEMF13)+MIGIN*MF13
508: CNNPM14 = CM14*(1+OEMM14)+MIGIN*MM14
509: CNNPF14 = CF14*(1+OEMF14)+MIGIN*MF14
```

```
510: CNNPM15 = CM15*(1+OEMM15)+MIGIN*MM15
511: CNNPF15 = CF15*(1+OEMF15)+MIGIN*MF15
512: CNNPM1 = CM1*(1+OEMM1)+MIGIN*MM1
513: CNNPF1 = CF1*(1+OEMF1)+MIGIN*MF1
514: CNNPM2 = CM2*(1+OEMM2)+MIGIN*MM2
515: CNNPF2 = CF2*(1+OEMF2)+MIGIN*MF2
516: CNNPM3 = CM3*(1+OEMM3)+MIGIN*MM3
517: CNNPF3 = CF3*(1+OEMF3)+MIGIN*MF3
518: CNNPM4 = CM4*(1+OEMM44)+MIGIN*MM4
519: CNNPF4 = CF4*(1+OEMF4)+MIGIN*MF4
520: CNNPM5 = CM5*(1+OEMM5)+MIGIN*MMS
521: CNNPF5 = CF5*(1+OEMF5)+MIGIN*MF5
522: CNNPM6 = CM6*(1+OEMM6)+MIGIN*MM46
523: CNNPF6 = CF6*(1+OEMF6)+MIGIN*MF6
524: CNNPM7 = CM7*(1+OEMM7)+MIGIN*MM7
525: CNNPF7 = CF7*(1+OEMF7)+MIGIN*MF7
526: CNNPM8 = CM8*(1+OEMM8)+MIGIN*MM8
527: CNNPF8 = CF8*(1+OEMF8)+MIGIN*MF8
528: CNNPM9 = CM9*(1+OEMM9)+MIGIN*MM9
529: CNNPF9 = CF9*(1+OEMF9)+MIGIN*MF9
530: CNNTOT == CNNPM15+CNNPF15+CNNPM14+CNNPF14+CNNPM13+CNNPF13+
        CNNPM12+CNNPF12+CNNPM11+CNNPF11+CNNPM10+CNNPF10+CNNPM9+CNNPF9+
        CNNPM8+CNNPF8+CNNPM7+CNNPF7+CNNPM6 +CNNPF6 +CNNPM5+CNNPF5 +
        CNNPM4+CNNPF4+CNNPM3+CNNPF3+CNNPM2+CNNPF2+CNNPM1+CNNPF1
```


Native Population

531: NCM2 == G2*NSM2*NATPM2(-1)+(1-G1)*NATPM1 (-1)*NSM1
532: NGF2 == G2*NSF2*NATPF2(-1)+(1-G1)*NATPF1 (-1)*NSF1
533: NCM3 == G3*NSM3*NATPM3(-1)+(1-G2)*NATPM2 (-1)*NSM2

534: NCF3 == G3*NSF3*NATPF3(-1)+(1-G2)*NATPF2(-1)*NSF2

535: NCM4 $==$ G4*NSM4*NATPM4 $(-1)+(1-G 3) * N A T P M 3(-1) *$ NSM3

536: NGF4 $==$ G4*NSF4*NATPF4(-1) $+(1-G 3) \times$ NATPF3 $(-1) \star$ NSF3

537: NCM5 $==$ G5*NSM5*NATPM5 (-1) $+(1-G 4) *$ NATPM4 $(-1) \times$ NSM4

538: NGF5 $==$ G5*NSF5*NATPF5 (-1) $+(1-G 4) \star$ NATPF4 $(-1) *$ NSF4

539: NGM6 == G6*NSM6*NATPM6(-1)+(1-G5)*NATPM5(-1)*NSMS
540: NCF6 == G6*NSF6*NATPF6 (-1) +(1-G5) *NATPF5 (-1) *NSF5

541: NCM7 $==$ G7*NSM7*NATPM7 (-1) $+(1-G 6) *$ NATPM6 $(-1) *$ NSM6

542: NGF7 == G7*NSF7*NATPF7(-1)+(1-G6)*NATPF6(-1)*NSF6

543: NCM8 $==$ G8*NSM8*NATPM8(-1) $+(1-G 7) *$ NATPM $7(-1) *$ NSM 7

544: NGF8 == G8*NSF8*NATPF8(-1)+(1-G7)*NATPF7(-1)*NSF7

545: NCM9 == G9*NSM9*NATPM9 (-1)+(1-G8)*NATPM8(-1)*NSM8

546: NCF9 == G9*NSF9*NATPF9(-1)+(1-G8)*NATPF8(-1)*NSF8

547: NCM10 $==$ G10*NSM10*NATPM10(-1) $+(1-G 9) *$ NATPM9 $(-1) *$ NSM9

548: NCF10 == G10*NSF10*NATPF10(-1)+(1-G9)*NATPF9(-1)*NSF9
549: NGM11 $==$ G11*NSM11*NATPM11 (-1) $+(1-G 10) *$ NATPM10 (-1) *NSM10
550: NGF11 == G11*NSF11*NATPF11(-1)+(1-G10)*NATPF10(-1)*NSF10

551: NCM12 $==$ G12*NSM12*NATPM12(-1) +(1-G11)*NATPM11 (-1)*NSM11

552: NCF12 == G12*NSF12*NATPF12(-1)+(1-G11)*NATPF11(-1)*NSF11

553: NCM13 == G13*NSM13*NATPM13(-1)+(1-G12)*NATPM12(-1)*NSM12
554: NCF13 = = G13*NSF13*NATPF13(-1)+(1-G12)*NATPF12(-1)*NSF12

```
                                    Institute of Social
                                    and Economic Research
                                    MAP Documentation
                                    December 1984, Model A85.1
```NGF8*NFERT8+NCF9*NFERT9+NCF10*NFERT10+NCF11*NFERT11+BADD
```

555: NCM14 == G14*NSM14*NATPM14(-1)+(1-G13)*NATPM13(-1)*NSM13

```
555: NCM14 == G14*NSM14*NATPM14(-1)+(1-G13)*NATPM13(-1)*NSM13
556: NGF14 == G14*NSF14*NATPF14(-1)+(1-G13)*NATPF13(-1)*NSF13
556: NGF14 == G14*NSF14*NATPF14(-1)+(1-G13)*NATPF13(-1)*NSF13
557: NGM15 == G15*NSM15*NATPM15(-1)+(1-G14)*NATPM14(-1)*NSM14
557: NGM15 == G15*NSM15*NATPM15(-1)+(1-G14)*NATPM14(-1)*NSM14
558: NCF15 == G15*NSF15*NATPF15(-1)+(1-G14)*NATPF14(-1)*NSF14
558: NCF15 == G15*NSF15*NATPF15(-1)+(1-G14)*NATPF14(-1)*NSF14
559: NBTHTOT == NCF4*NFERT4+NCF5*NFERT5+NCF6*NFERT6+NCF7*NFERT7+
559: NBTHTOT == NCF4*NFERT4+NCF5*NFERT5+NCF6*NFERT6+NCF7*NFERT7+
560: NCM1 == NSEXDIV*NBTHTOT*NSURINFM
560: NCM1 == NSEXDIV*NBTHTOT*NSURINFM
561: NCF1 == (1-NSEXDIV)*NBTHTOT*NSURINFF
561: NCF1 == (1-NSEXDIV)*NBTHTOT*NSURINFF
562: NATPM1 = NCM1*(1+NMM1)
562: NATPM1 = NCM1*(1+NMM1)
563: NATPF1 = NCF1*(1+NMF1)
563: NATPF1 = NCF1*(1+NMF1)
564: NATPM2 = NCM2*(1+NMM2)
564: NATPM2 = NCM2*(1+NMM2)
565: NATPF2 = NCF2* (1+NMF2)
565: NATPF2 = NCF2* (1+NMF2)
566: NATPM3 = NCM3* (1+NMM3)
566: NATPM3 = NCM3* (1+NMM3)
567: NATPF3 = NCF3* (1+NMF3)
567: NATPF3 = NCF3* (1+NMF3)
568: NATPM4 = NCM4* (1+NMM4)
568: NATPM4 = NCM4* (1+NMM4)
569: NATPF4 = NCF4*(1+NMF4)
569: NATPF4 = NCF4*(1+NMF4)
570: NATPM5 = NCM5* (1+NMM55)
570: NATPM5 = NCM5* (1+NMM55)
571: NATPF5 = NCF5*(1+NMF5)
571: NATPF5 = NCF5*(1+NMF5)
572: NATPM6 = NCM6*(1+NMM6)
572: NATPM6 = NCM6*(1+NMM6)
573: NATPF6 = NCF6*(1+NMF6)
573: NATPF6 = NCF6*(1+NMF6)
574: NATPM7 = NCM7*(1+NMM7)
574: NATPM7 = NCM7*(1+NMM7)
575: NATPF7 = NCF7*(1+NMF7)
575: NATPF7 = NCF7*(1+NMF7)
576: NATPM8 = NCM8*(1+NMM8)
576: NATPM8 = NCM8*(1+NMM8)
577: NATPF8 = NCF8*(1+NMF8)
577: NATPF8 = NCF8*(1+NMF8)
578: NATPM9 = NCM9*(1+NMMM9)
578: NATPM9 = NCM9*(1+NMMM9)
579: NATPF9 = NCF9*(1+NMF9)
```

579: NATPF9 = NCF9*(1+NMF9)

```

Institute of Social and Economic Research MAP Documentation December 1984, Model A85.1
```

580: NATPMIO = NCM1O* (1+NMM10)
581: NATPF10 = NGF10*(1+NMF10)
582: NATPM11 = NGM11*(1+NMM11)
583: NAATPF11 = NCF11*(1+NMF11)
584: NATPM12 = NGM12*(1+NMM12)
585: NATPF12 = NCF12*(1+NMF12)
586: NATPM13 = NCM13*(1+NMM13)
587: NATPF13 = NGF13*(1+NMF13)
588: NATPM14 = NCMI4*(1+NMM14)
589: NATPF14 = NGF14*(1+NMF14)
590: NATPM15 = NCM15*(1+NMM15)
591: NATPF15 = NCF15*(1+NMF15)
592: NDTHINF == NBTHTOT-NCM1-NCF1
593: NDTHTOT == NDTHINF+NCM15(-1)*(1-NSM15)+NCF15(-1)*(1-NSF15)+
NCM14(-1)*(1-NSM14)+NCF14(-1)*(1-NSF14)+NCM13(-1)*(1-NSM13)+
NCF13(-1)*(1-NSF13)+NCM12(-1)*(1-NSM12)+NGF12(-1)*(1-NSF12)+
NCM11 (-1)*(1-NSM11)+NCF11(-1)*(1-NSF11)+NCM10(-1)*(1-NSM10)+
NGF10(-1)*(1-NSF10)+NGM9(-1)*(1-NSM9) +NCF9(-1)*(1-NSF9) +NCM8 (-1)*
(1-NSM8)+NCF8(-1)*(1-NSF8)+NGM7 (-1)*(1-NSM7)+NGF7(-1)*(1-NSF7)+
NGM6 (-1)* (1-NSM6)+NCF6(-1)*(1-NSF6)+NCM5 (-1)* (1-NSM5) +NCF5 (-1)*
(1-NSF5)+NCM4(-1)*(1-NSM4) +NGF4(-1)*(1-NSF4) +NGM3 (-1)* (1-NSM3) +
NCF3(-1)* (1-NSF3) +NCM2(-1)*(1-NSM2) +NCF2(-1)*(1-NSF2) +NCM1 (-1)*
(1-NSM1)+NCF1(-1)*(1-NSF1)
594: NATTOT == NATPM15+NATPF15+NATPM14+NATPF14+NATPM13+NATPF13+
NATPM12+NATPF12+NATPM11+NATPF11+NATPM10+NATPF10+NATPM9+NATPF9+
NATPM8+NATPF8+NATPM7+NATPF7+NATPM6+NATPF6+NATPM5+NATPF5+
NATPM4+NATPF4+NATPM3+NATPF3+NATPM2+NATPF2+NATPM1+NATPF1
595: POPNE = POPNE(-1)*NATTOT/NATTOT(-1)
596: NNATINC == NBTHTOT-NDTHTOT

```
597: MIGOUT = OEMM1*CM1+OEMM2*CM2+OEMM3*CM3+OEMM4*CM4+OEMM5*CM5 + OEMM6*CM6+OEMM7*CM7+OEMM8*CM8+OEMM9*CM9+OEMM10*CM10+OEMM11* CM11+OEMM12*CM12+0EMM13*CM13+OEMM14*CM14+0EMM15*CM15+0EMF1* CF1+OEMF2*CF2+OEMF3*CF3+OEMF4*CF4+OEMF5*CF5+OEMF6*CF6+OEMF7* CF7+OEMF8*CF8+OEMF9*CF9+OEMF10*CF10+OEMF11*CF11+OEMF12*CF12+ OEMF13*CF13+OEMF14*CF14+OEMF15*CF15+NMM1*NCM1 + NMM2*NCM2+NMM3* NCM3 + NMM4 *NCM4 + NMM5 *NCM5 + NMM6 *NCM6 + NMM7 *NCM 7 +NMM8 *NCM8 + NMM9 * NCM9 +NMM10*NCM10 + NMM11*NCM11 + NMM1 2*NCM12 + NMM13*NCM13 +NMM14* NCM14+NMM15*NCM15+NMF1*NCF1+NMF2*NCF \(2+\mathrm{NMF} 3 * N C F 3+N M F 4 * N C F 4+\) NMF5*NCF5+NMF6*NCF6+NMF 7*NCF 7 + NMF8*NCF8 + NMF9*NCF9 + NMF10*NCF \(10+\) NMF11*NCF11+NMF12*NCF12+NMF13*NCF13+NMF14*NCF14+NMF15*NCF15
598: MIGIN = POPMIG-MIGOUT
599: POPM = EMGM/MILRAT
600: MILPCT = POPM/AFTOT
```


## Total Population

```
601: POP = CNNTOT+NATTOT+MILPCT*(AFTOT+MDTOT)
```

601: POP = CNNTOT+NATTOT+MILPCT*(AFTOT+MDTOT)
602: POPC = POP-POPM
603: POPM1 == CNNNPM1+HILPCT*MILM1+NATPM1
604: POPM2 == CNNPM2+MILPCT*MILM2+NATPM2
605: POPM3 == CNNPM3+MILPCT*MILM3+NATPM3
606: POPM4 == CNNPM4+MILPCT*MILM4+NATPM4
607: POPM5 == CNNPM5+MILPCT*MILM5+NATPM5
608: POPM6 == CNNPM6+MILPCT*MILM6+NATPM6
609: POPM7 == CNNPM7+MILPCT*MILM7+NATPM7
610: POPM8 == CNNPM8+MILPCT*MILM8+NATPM8
611: POPM9 == CNNPM9+MILPCT*MILM9+NATPM9
612: POPM10 == CNNPM10+MILPCT*MILM10+NATPM10
613: POPM11 == CNNPM11+MILPCT*MILM11+NATPM11
614: POPM12 == CNNPM12+MILPCT*MILM12+NATPM12
615: POPM13 == CNNPM13+MILPCT*MILM13+NATPM13

```
616: POPM14 == CNNPM14+MILPCT*MILM14+NATPM14
617: POPM15 == CNNPM15+MILPCT*MILM15+NATPM15
618: POPF1 == CNNPF1+MILPCT*MILF1+NATPF1619: POPF2 == CNNPF2+MILPCT*MILF2+NATPF2
620: POPF3 == CNNPF3+MILPCT*MILF3+NATPF3
621: POPF4 == CNNPF4+MILPCT*MILF4+NATPF4
622: POPF5 == CNNPF5+MILPCT*MILF5+NATPF5
623: POPF6 == CNNPF6+MILPCT*MILF6+NATPF6
624: POPF7 == CNNPF7+MILPCT*MILF7+NATPF7
625: POPF8 == CNNPF8+MILPCT*MILF8+NATPF8
626: \(\operatorname{POPF9}=\mathbf{=}\) CNNPF9+MILPCT*MILF9+NATPF9
627: POPF10 == CNNPF10+MILPCT*MILF10+NATPF10
628: POPF11 == CNNPF11+MILPCT*MILF11+NATPF11
629: POPF12 == CNNPF12+MILPCT*MILF12+NATPF12
630: POPF13 == CNNPF13+MILPCT*MILF13+NATPF13
631: POPF14 == CNNPF14+MILPCT*MILF14+NATPF14
632: POPF15 == CNNPF15+MILPCT*MILF15+NATPF15
633: BTOT == BTHTOT+NBTHTOT
634: DTOT == DTHTOT+NDTHTOT
635: POPNI9 == BTOT-DTOT
636: NCBR \(==\) NBTHTOT/NATTOT*1000
637: NCDR == NDTHTOT/NATTOT*1000
638: \(\quad\) CBR \(==\) BTHTOT/CNNTOT*1000
639: CDR == DTHTOT/CNNTOT*1000
640: BCRUDE \(==\) BTOT \(/(\) CNNTOT+NATTOT \() * 1000\)

Institute of Social and Economic Research MAP Documentation December 1984, Model A85. 1
```

641: DCRUDE == DTOT/(CNNTOT+NATTOT)*1000
642: POPSKUL == POPM3+POPM4+POPM5+POPF3+POPF4+POPF5
1543: POPKIDS == POPSKUL+POPM1+POPM2+POPF1+POPF2-POPM5-POPF5
544: POPGER = POPM15+POPF15
645: POPADS == POP-POPKIDS-POPGER
546: POP.AD == POPADS/POP
547: POP.KID == POPKIDS/POP
648: POP.GER == POPGER/POP
649: POP.MIL == MILPCT*(AFTOT+MDTOT)/POP
650: POP.NAT == NATTOT/POP
651: POP.CIV == CNNTOT/POP
652: POPAVAGE == 0.5*((POPM1+POPF1)/POP)+3*((POPM2+POPF2)/POP)+7. 5*
((POPM3+POPF3)/POP)+12.5*((POPM4+POPF4)/POP) +17.5*((POPM5+
POPF5)/POP)+22.5*((POPM6+POPF6)/POP)+27.5*((POPM7+POPF7)/POP)+
32.5*((POPM8+POPF8)/POP)+37.5* ((POPM9+POPF9)/POP) +42.5* ((POPM10+
POPF10)/POP)+47.5* ((POPM11+POPF11)/POP)+52.5*((POPM12+POPF12)/
POP)+57.5*((POPM13+POPF13)/POP)+62.5*((POPM14+POPF14)/POP)+
67.5*((POPM15+POPF15)/POP)

```

\section*{Labor Force and Migration}

653: PLFDOMC \(==\) CNNPM5+CNNPM6+CNAPM7+CNNPM8+CNNPM9+CNNPM10+CNNPM11+ 11+CNNPM12+CNNPM13+CNNPM14+CNNPF5+CNNPF6+CNNPF7+CNNPF8+ CNNPF9+CNNPF10+CNNPF11+CNNPF12+CNNPF13+CNNPF14

654: PLFDOMN == NATPM5+NATPM6+NATPM7+NATPM8+NATPM9+NATPM10+NATPM11+ NATPM12+NATPM13+NATPM14+NATPF5+NATPF6+NATPF7+NATPF8+NATPF9+ NATPF10+NATPF11+NATPF12+NATPF13+NATPF14

655: PLFDOMM \(==\) MILPCT*(MILM5+MILM6+MILM7+MILM8+MILM9+MIIM10+ MILM11+MILM12+MILM13+MILM14+MILF5+MILF6+MILF7+MILF8+MILF9+ MILF10+MILF11+MILF12+MILF13+MILF14-AFTOT)

656: PLFD9 \(==\) PLFDOMC+PLFDOMN+PLFDOMM
657: LF \(==\) LAFPRT*PLFD9
658: UNEMP \(==\) LF-EM96
659: UNEMRATE == UNEMP/LF
660: U.AK.US == UNEMP/LF/UUS
661: DELEMP == EM96-EM96(-1)
662: WR.AK.US \(==\) LOG(R.WR97)-LOG(WEUS*100/PDUSCPI)-(LOG(R.WR97(-1))-LOG(WEUS (-1)*100/PDUSCPI(-1)))
663: POPMIG \(=\) CMIG1+CMIG2*1/U.AK.US \((-1)+C M I G 3 \star W R . A K . U S(-1)+C M I G 4 *\)DELEMP
664: \(27.8=0\)
665: Z7.7 == 0
666: \(77.6=0\)
667: \(\mathrm{Z7.5}=0\)
668: \(\mathrm{Z7} .4==0\)
669: \(\mathrm{Z7.3}==0\)
670: Z7.2 == 0
671: \(27.1==0\)
672: \(27.0==0\)
Household Formation
673: CHHM4 == IF YR LT 1980 THEN 1 ELSE CNNPM4*(1-GPGQM4)*(HHRM4+ RCM4/TP* (YR-1980))
674: NHHM4 \(==\) IF YR LT 1980 THEN 1 ELSE NATPM4* (1-NPGQM4)* (NHHRM4+ NRCM4 /NTP* (YR-1980))
675: HHM4 \(==\) CHHM4 + NHHM4
676: CHHM5 == IF YR LT 1980 THEN 1 ELSE CNNPM5*(1-CPGQM5)*(HHRM5+RCM5/TP* (YR-1980))
677: NHHM5 == IF YR LT 1980 THEN 1 ELSE NATPM5*(1-NPGQM5)* (NHHRM5+ NRCM5 /NTP* (YR-1980))
678: HHM5 \(==\) CHHM5 +NHHM5+MHHM5*MILPCT
\begin{tabular}{|c|c|c|}
\hline = & 679: & CHHM6 == IF YR LT 1980 THEN 1 ELSE CNNPM6*(1-CPGQM6)*(HHRM6+ RCM6/TP*(YR-1980)) \\
\hline \(\cdots\) & 680: & NHHM6 \(==\) IF YR LT 1980 THEN 1 ELSE NATPM6*(1-NPGQM6)*(NHHRM6+ NRCM6/NTP* (YR-1980)) \\
\hline p & 681 : & HHM6 \(=\) = CHHM6 + NHHM6 + MHHM6*MILPCT \\
\hline & 682: & CHHM7 == IF YR LT 1980 THEN 1 ELSE CNNPM7*(1-CPGQM7)*(HHRM7+ RCM7/TP*(YR-1980)) \\
\hline & 683: & NHHM7 == IF YR LT 1980 THEN 1 ELSE NATPM7*(1-NPGQM7)*(NHHRM7+ NRCM \(/\) /NTP* (YR-1980)) \\
\hline & 684: & HHM \(7=\) CHHM \(7+\) NHHM \(7+\) MHHM \({ }^{\text {a }}\) MILPCT \\
\hline \(\cdots\) & 685 : & CHHM8 = \(=\) IF YR LT 1980 THEN 1 ELSE CNNPM8*(1-CPGQM8)*(HHRM8+ RCM8/TP*(YR-1980)) \\
\hline - & 686 : & NHHM8 == IF YR LT 1980 THEN 1 ELSE NATPM8*(1-NPGQM8)*(NHHRM8+ NRCM8/NTP*(YR-1980)) \\
\hline \(\cdots\) & 687 : & HHM8 \(==\) CHHM8 + NHHM \(8+\) MHHM \({ }^{\text {® }}\) MILPCT \\
\hline - & 688: & CHHM9 == IF YR LT 1980 THEN 1 ELSE CNNPM9*(1-CPGQM9)*(HHRM9+ RCM9/TP*(YR-1980)) \\
\hline m & 589 : & NHHM9 \(==\) IF YR LT 1980 THEN 1 ELSE NATPM9*(1-NPGQM9)*(NHHRM9+ NRCM9/NTP*(YR-1980)) \\
\hline - & 690: & HHM \({ }^{\text {a }}=\) CHHM9+NHHM9+MHHM9*MILPCT \\
\hline mom & 691: & CHHM1O == IF YR LT 1980 THEN 1 ELSE CNNPM10*(1-CPGQM1O)* (HHRM10+RCM10/TP*(YR-1980)) \\
\hline - & 692 : & NHHM1O == IF YR LT 1980 THEN 1 ELSE NATPM10*(1-NPGQM1O)* (NHHRM10+NRCM10/NTP*(YR-1980)) \\
\hline & 693: & HHM10 \(==\) CHHM10+NHHM10+MHHM10*MILPCT \\
\hline \(\cdots\) & 694: & CHHM11 == IF YR LT 1980 THEN 1 ELSE CNNPM11*(1-CPGQM11)* (HHRM11+RCM11/TP*(YR-1980)) \\
\hline m & 695: & NHHM11 == IF YR LT 1980 THEN 1 ELSE NATPM11*(1-NPGQM11)* (NHHRM11+NRCM11/NTP*(YR-1980)) \\
\hline - & 696: & HHM11 \(=\) = CHHM11+NHHM11+MHHM11*MILPCT \\
\hline ! & 697 : & ```
CHHM12 == IF YR LT 1980 THEN 1 ELSE CNNPM12*(1-CPGQM12)*
```

(HHRM12+RCM12/TP*(YR-1980)) <br>
\hline
\end{tabular}

698: NHHM12 == IF YR LT 1980 THEN 1 ELSE NATPM12*(1-NPGQM12)* (NHHRM12+NRCM12/NTP*(YR-1980))
699: HHM12 == CHHM12+NHHM12+MHHM12*MLLPCT
700: CHHM13 == IF YR LT 1980 THEN 1 ELSE CNNPM13*(1-CPGQM13)*(HHRM13+RCM13/TP* (YR-1980))
701: NHHM13 == IF YR LT 1980 THEN 1 ELSE NATPM13*(1-NPGQM13)*(NHHRM13+NRCM13/NTP*(YR-1980))
702: HHM13 == CHHM13+NHHM13+MHHM13*MILPCT
703: CHHM14 == IF YR LT 1980 THEN 1 ELSE CNNPM14* (1-CPGQM14)*(HHRM14+RCM14/TP* (YR-1980))
704: NHHM14 $==$ IF YR LT 1980 THEN 1 ELSE NATPM14* (1-NPGQM14)*(NHHRM14+NRCM14/NTP*(YR-1980))
705: HHM14 $==$ CHHM14+NHHM14+MHHM14*MILPCT
706: CHHM15 == IF YR LT 1980 THEN 1 ELSE CNNPM15*(1-CPGQM15)* (HHRM15+RCM15/TP* (YR-1980))
707: NHHM15 == IF YR LT 1980 THEN 1 ELSE NATPM15*(1-NPGQM15)*(NHHRM15+NRCM15/NTP*(YR-1980))
708: HHM15 == CHHM15 +NHHM15+MHHM15*MILPCT
709: CHHF4 == IF YR LT 1980 THEN 1 ELSE CNNPF4* (1-CPGQF4)* (HHRF4+RGF4/TP*(YR-1980))
710: NHHF4 == IF YR LT 1980 THEN 1 ELSE NATPF4* (1-NPGQF4)* (NHHRF4+NRCF4/NTP* (YR-1980) )
711: HHF4 $==$ CHHF4 + NHHF4
712: CHHF5 == IF YR LT 1980 THEN 1 ELSE CNNPF5* (1-CPGQF5)* (HHRF5+ RCF5/TP* (YR-1980) )
713: NHHF5 $==$ IF YR LT 1980 THEN 1 ELSE NATPF5*(1-NPGQF5)* (NHHRF5+ NRCF5/NTP* (YR-1980) )
714: HHF5 $==$ CHHF5 + NHHF5 + MHHF5*MILPCT
715: CHHF6 == IF YR LT 1980 THEN 1 ELSE CNNPF6* (1-CPGQF6)* (HHRF6+ RCF6/TP* (YR-1980) )
716: NHHF6 == IF YR LT 1980 THEN 1 ELSE NATPF6*(1-NPGQF6)* (NHHRF6+ NRCF6/NTP* (YR-1980) )
717: HHF6 $==$ CHHF6+NHHF6+MHHF6*MILPCT
718: CHHF7 == IF YR LT 1980 THEN 1 ELSE CNNPF7*(1-CPGQF7)*(HHRF7+RCF7/TP* (YR-1980) )
719: NHHF7 == IF YR LT 1980 THEN 1 ELSE NATPF7*(1-NPGQF7)* (NHHRF7+NRCF7/NTP*(YR-1980))
720: HHF7 == CHHF7+NHHF7+MHHF7*MILPCT721: CHHF8 == IF YR LT 1980 THEN 1 ELSE CNNPF8* (1-GPGQF8)* (HHRF8+RCF8/TP* (YR-1980) )
722: NHHF8 == IF YR LT 1980 THEN 1 ELSE ATPF8*(1-NPGQF8)* (NHHRF8+NRCF8/NTP*(YR-1980))
723: HHF8 == CHHF8+NHHF8+MHHF8*MILPCT
724: CHHF9 == IF YR LT 1980 THEN 1 ELSE CNNPF9*(1-CPGQF9)* (HHRF9+ RCF9/TP* (YR-1980) )
725: NHHF9 == IF YR LT 1980 THEN 1 ELSE NATPF9*(1-NPGQF9)*(NHHRF9+ NRCF9/NTP*(YR-1980))
726: HHF9 == CHHF9+NHHF9+MHHF9*MILPCT
727: CHHF10 == IF YR LT 1980 THEN 1 ELSE CNNPF10*(1-CPGQF10)*(HHRF10+RCF10/TP*(YR-1980))
728: NHHF10 == IF YR LT 1980 THEN 1 ELSE NATPF10*(1-NPGQF10)*(NHHRF10+NRCF10/ETTP*(YR-1980))
729: HHF10 == CHHF10+NHHF10+MHHF10*MILPCT
730: CHHF11 == IF YR LT 1980 THEN 1 ELSE CNNPF11*(1-CPGQF11)*(HHRF11+RCF11/TP* (YR-1980))
731: NHHF11 == IF YR LT 1980 THEN 1 ELSE NATPF11*(1-NPGQF11)*(NHHRF11+NRCF11/NTP*(YR-1980))
732: HHF11 == CHHF11+NHHF11+MHHF11*MILPCT
733: CHHF12 == IF YR LT 1980 THEN 1 ELSE CNNPF12*(1-CPGQF12)*(HHRF12+RCF12/TP* (YR-1980))
734: NHHF12 == IF YR LT 1980 THEN 1 ELSE NATPF12*(1-NPGQF12)* (NHHRF12+ NRCF12/NTP* (YR-1980))
735: HF12 == CHHF12+NHHF12+MHHF12*MILPCT
736：CHHF13＝＝IF YR LT 1980 THEN 1 ELSE CNNPF13＊（1－CPGQF13）＊（HHRF13＋RCF13／TP＊（YR－1980））
737：NHHF13＝＝IF YR LT 1980 THEN 1 ELSE NATPF13＊（1－NPGQF13）＊ （NHHRF13＋NRCF13／NTP＊（YR－1980））
738：HHF13 $=$ CHHF13＋NHHF13＋MHHF13＊MILPCT739：CHHF14＝＝IF YR LT 1980 THEN 1 ELSE CNNPF14＊（1－CPGQF14）＊（HHRF14＋RCF14／TP＊（YR－1980））
740：NHHF14＝＝IF YR LT 1980 THEN 1 ELSE NATPF14＊（1－NPGQF14）＊（NHHRF14＋NRCF14／NTP＊（YR－1980））
741： HHF14 $==$ CHHF14＋NHHF14＋MHHF14＊MILPCT
742：CHHF15＝＝IF YR LT 1980 THEN 1 ELSE CNNPF15＊（1－CPGQF15）＊（HHRF15＋RCF15／TP＊（YR－1980））
743：NHHF15 $==$ IF YR LT 1980 THEN 1 ELSE NATPF15＊（1－NPGQF15）＊（NHHRF15＋NRCF15／NTP＊（YR－1980））
744：HHF15 $==$ CHHF15＋NHHF15＋MHHF15＊MILPCT
745：HH $==$ HHM4＋HHM5 + HHM6＋HHM7＋HHM8＋HHM9＋HHM10＋HHM11＋HHM12＋HHM13＋ HHM14＋HHM15＋HHF4＋HHF5＋HHF6＋HHF7＋HHF8＋HHF 9＋HHF10＋HHF11＋HHF12＋ HHF13＋HHF14＋HHF15746：POPCGQ＝＝CNNPM1＊CPGQM1＋CNNPM2＊CPGQM2＋CNNPM3＊CPGQM3＋CNNPM4＊CPGQM4＋CNNPM5＊CPGQM5＋CNNPM6＊CPGQM6＋CNNPM7＊CPGQM7＋CNNPM8＊CPGQM8＋CNNPM9＊CPGQM9＋CNNPM10＊CPGQM10＋CNNPM11＊CPGQM11＋CNNPM12＊CPGQM12＋CNNPM13＊CPGQM13＋CNNPM14＊CPGQM14＋CNNPM15＊CPGQM15＋CNNPF1＊CPGQF1＋CNNPF2＊CPGQF2＋CNNPF3＊CPGQF3＋CNNPF4＊CPGQF4＋CNNPF5＊CPGQF5＋CNNPF6＊CPGQF6＋CNNPF7＊CPGQF7＋CNNPF8＊CPGQF8＋CNNPF9＊CPGQF9＋CNNPF10＊CPGQF10＋CNNPF11＊CPGQF11＋CNNPF12＊CPGQF12＋CNNPF13＊CPGQF13＋CNNPF14＊CPGQF14＋CNNPF15＊CPGQF15
747：POPNGQ＝＝NATPM1＊NPGQM1＋NATPM2＊NPGQM2＋NATPM3＊NPGQM3＋NATPM4＊ NPGQM4＋NATPM5＊NPGQM5＋NATPM6＊NPGQM6＋NATPM7＊NPGQM7＋NATPM8＊ NPGQM8＋NATPM9＊NPGQM9＋NATPM10＊NPGQM10＋NATPM11＊NPGQM11＋NATPM12＊ NPGQM12＋NATPM13＊NPGQM13＋NATPM14＊NPGQM14＋NATPM15＊NPGQM15＋ NATPF1＊NPGQF1＋NATPF2＊NPGQF2＋NATPF3＊NPGQF3＋NATPF4＊NPGQF4＋ NATPF5＊NPGQF5＋NATPF6＊NPGQF6＋NATPF7＊NPGQF7＋NATPF8＊NPGQF8＋ NATPF9＊NPGQF9＋NATPF10＊NPGQF10＋NATPF11＊NPGQF11＋NATPF12＊NPGQF12＋ NATPF13＊NPGQF13＋NATPF14＊NPGQF14＋NATPF15＊NPGQF15
748：POPGQ＝＝POPNGQ＋POPCGQ＋MILPCT＊POPMGQm

$\ldots$		Institute of Social   and Economic Research   MAP Documentation   December 1984, Model A85.1
mand	749:	HHC $==$ CHHM4 + CHHM5 + CHHM $6+$ CHHM $7+$ CHHM8 + CHHM9 + CHHM10 + CHHM1 $1+$ CHHM12+CHHM13+CHHM14+CHHM15+CHHF4 + CHHF5 + CHHF6+CHHF $7+$ CHHF8 + CHHF9+CHHF10+CHHF11+CHHF12+CHHF13+CHHF14+CHHF15
\%	750:	HHN $==$ NHHM4 + NHHM $5+$ NHHM $6+$ NHHM $7+$ NHHM $8+$ NHHM $9+$ NHHM10 + NHHM11 + NHHM12+NHHM13+NHHM14+NHHM15 + NHHF4 4 NHHF $5+$ NHHF $6+$ NHHF $7+$ NHHF $8+$ NHHF9+NHHF10+NHHF11+NHHF12+NHHF13+NHHF14+NHHF15
-	751:	HHM $==$ MILPCT* (MHHM5 + MHHM6 + MHHM $7+$ MHHM8 + MHHM $9+$ MHHM10 + MHHM11 + MHHM12+MHHM13+MHHM14+MHHM15+MHHF5 +MHHF6 +MHHF7 + MHHF8 + MHHF9 + MHHF10+MHHF $11+$ MHHF $12+$ MHHF $13+$ MHHF 14 +MHHF 15 )
	752:	HHSIZEN $==($ NATTOT-POPNGQ) $/ \mathrm{HHN}$
"	753:	HHSIZEC $==($ CNNTOT-POPCGQ)/HHC
-	754:	HHSIZEM $==$ MILPCT* (AFTOT+MDTOT--POPMGQ) $/ \mathrm{HHM}$
:	755:	HHSIZE $==($ POP-POPNGQ-POPCGQ-MILPCT*POPMGQ $) / \mathrm{HH}$
m	756:	HH2 $24=$ HHF4 4 HHF $5+$ HHF6 + HHM $4+$ HHM $5+$ HHM 6
	757:	HH25.29 == HHF7+HHM7
	758:	```HH30.54 == HHF8+HHF9+HHF10+HHF11+HHF12+HHM8+HHM9+HHM10+HHM11+ HHM12```
	759:	HH55 $==$ HHF13+HHF14+HHF15+HHM13+HHM14+HHM15
\%	760:	$\mathrm{Z8.9}=0$
!	761:	$\mathrm{Z} 8.8=0$
\%	762:	$28.7=0$
	763:	$\mathrm{Z} 8.6=0$
	764:	Z8.5 $=0$
9	765:	$\mathrm{Z8.4}=\mathbf{~}=0$
6	766:	$28.3=0$
$\cdots$	767:	$\mathrm{Z8.2}=\mathbf{0}$
	768:	$\mathrm{z8.1}==0$
$\cdots$	769:	$\mathrm{Z8.0}==0$

## NATIVE ECONOMIC ACTIVITY MODULE

```
770: EMNAT == EMNATX
771: RNAT == RNATX
772: EMRATE = EM96/POPC
773: EMRATN1 = (1+PERNA1*(EMRATE-EMRATE(-1))/EMRATE(-1))*EMRATN1(-1)+
 PERNA2*(EMRATE-EMRATN1 (-1))
774: EMNA == IF PIDIST EQ 1 THEN EMNAT(-1)*POPNE ELSE EMRATN1*
 POPNE+PERNA3*EMNC
775: EMNNC == EM99-EMGM-EMNA
776: EMRATN == EMNA/POPNE
777: CEA9N = (1-PCINDA)*CEA9N(-1)+PCINDA*(EMA9/(EM96-EMPRO-PERNA3*
 EMNC))
778: CEP9N = (1-PCINDA)*CEP9N(-1)+PCINDA*(EMP9/(EM96-EMPRO-PERNA3*
 EMNC))
779: CECNN = (1-PCINDA)*CECNN(-1)+PCINDA*(EMCN/(EM96-EMPRO-PERNA3*
 EMNC()
780: CEM9N = (1-PCINDA)*CEM9N(-1)+PCINDA*(EMM9/(EM96-EMPRO-PERNA3*
 EMNC))
781: CET9N = (1-PCINDA)*CET9N(-1)+PCINDA*(EMT9/(EM96-EMPRO-PERNA3*
 EMNC))
782: CECMN = (1-PCINDA)*CECMN(-1) +PGINDA* (EMCM/(EM96-EMPRO-PERNA3*
 EMNC))
783: CEPUN = (1-PCINDA)*CEPUN (-1)+PCINDA*(EMPU/(EM96-EMPRO-PERNA3*
 EMNC))
784: CED9N = (1-PGINDA)*CED9N(-1)+PCINDA*(EMD9/(EM96-EMPRO-PERNA3*
 EMNC))
785: CEFIN = (1-PCINDA)*CEFIN(-1)+PGINDA*(EMFI/(EM96-EMPRO-PERNA3*
 EMNC))
786: CES9N = (1-PCINDA)*CES9N(-1)+PCINDA* ((EMS9-PERNA3*EMNC)/(EM96-
 EMPRO-PERNA 3*EMNC))
```

```
*
fmin
*
m
```

811: NEMGAN == CEGAN*(EMNA-PERNA3*EMNC)
812: NWSGAN == WRGA*NEMGAN/1000
813: WSNA == NWSA9N+NWSP9N+NWSCNN+NWSM9N+NWST9N+NWSCMN+NWSPUN+NWSD9N+NWSFIN+NWSS9N+NWSGFN+NWSGAN

```
814: PIN1 == PCYNA1*((PI-NCPI)/WS98)*WSNA
815: PIN \(==\) IF PIDIST EQ 1 THEN RNAT(-1)*PI ELSE PIN1+NCPI
816: PINN == PI-PIN
817: R.PIN == PIN*100/PDRPI
818: R.PINN == PINN*100/PDRPI
819: P.PIN == PIN*1000/POPNE
820: P.PINCL == NCPI*1000/POPNE
821: P.PINN \(==\) PINN*1000/(POP-POPNE)
822: PR.PIN == R.PIN*1000/POPNE
823: PR.NCEXP == NCEXP/POPNE/PDRPI*100000
824: PR.PINCL == PR.PIN+PR.NCEXP
825: PR.PINN == R.PINN*1000/(POP-POPNE)
826: RAT1 == PINN/(PI-PC12N*PC12RN*PCNC1*ANCSA)
827: P.DPINN \(=1000 *(\) PINN-RAT1*(DPIRES+RTPIF+RTISCP))/(POP-POPNE)
828: P.DPINN1 \(==\) 1000*(PIN-PC12N*PC12RN*PCNC1*ANCSA-(1-RAT1)*
```(DPIRES+RTPIF+RTISCP))/POPNE
```

829: PR.DPINN = P.DPINN*100/PDRPI
830: PR.DPIN == P.DPINN1*100/PDRPI+PC12N*PC12RN*PCNC1*ANCSA/POPNE*

```100000/PDRPI
```

831: $29.10=0$
832: $29.9==0$
833: $\quad 29.8==0$
834: $29.7==0$

```
835: Z9.6 == 0
836: Z9.5 == 0
837: Z9.4== 0
838: Z9.3 == 0
839: Z9.2 == 0
840: Z9.1 == 0
841: 29.0 == 0
```


DEFINITIONAL EQUATIONS MODULE

842: R.WR98 == WR98*100/PDRPI
843: R.WR97 = WR97*100/PDRPI

844: P.EX99S $==$ EX99S*1000./POP

845: P.EXCAP == EXCAP*1000/POP

846: P.EXOPS $==$ EXOPS $* 1000 /$ POP
847: P.EXBM == EXGFBK*1000/POP
848: P.R99S == R99S*1000./POP
849: P.RTIS $==$ RTIS*1000./POP
850: P.EXTRNS == EXTRNS*1000/POP
851: P.EL99 == EL99*1000./POP

852: P.ELED $==$ ELED*1000./POP
853: P.ELNED1 == ELNED1*1000/POP

854: P.RLT99 == RLT99*1000./POP
855: P.GEXP $==$ SLGEXP*1000/POP
856: P.BAL99 == BAL99*1000/POP
857: P.BALPF $==$ BALPF*1000/POP

Institute of Social and Economic Research MAP Documentation December 1984, Model A85. 1

858: P.BALGF9 == BALGF9*1000/POP
859: P.RSIN $==$ RSIN*1000/POP
860: P.RSIP == RSIP* $1000 / \mathrm{POP}$
861: P.RSEN == RSEN*1000/POP
862: P.GODT == GODT*1000/POP
863: PR.EX99S == P.EX99S*100/PDRPI
864: PR.EXBM == EXGFBM*10**5/PDEXOPS/POP
865: PR.EXCAP == P.EXCAP*100/PDCON
866: PR.EXOPS == P.EXOPS*100/PDEXOPS
867: PR.R99S $==$ P.R99S*100/PDRPI
868: PR.RTIS == P.RTIS*100/PDRPI
869: PR.EL99 == P.EL99*100/PDRPI
870: PR.ELED == P.ELED*100/PDRPI
871: PR.ELNED == P.ELNED1*100/PDRPI
872: PR.GEXP == P.GEXP*100/PDRPI
873: PR.GFC $==$ EXGFCHY* $10 * * 5 /$ PDRPI/POP
874: PR.ECP == EXCPSHY* $10 * * 5 /$ PDRPI/POP
875: PR.GFCN == EXGFCNH*10**5/PDRPI/POP
876: PR.ECPN == EXCPSNH*10**5/PDRPI/POP
877: PR.EXEDS == EXEDS*10**5/PDEXOPS/POP
878: PR.EXSSS == EXSSSネ10**5/PDEXOPS/POP
879: PR.EXHES == EXHES*10**5/PDEXOPS/POP
880: PR.EXNRS == EXNRS*10**5/PDEXOPS/POP
881: PR.EXPPS $==$ EXPPS* $10 * * 5 /$ PDEXOPS $/$ POP
882: PR.EXJUS $==$ EXJUS* $10 * * 5 /$ PDEXOPS $/$ POP

```
883: PR.EXCDS == EXCDS* 10**5/PDEXOPS/POP
884: PR.EXTRS == EXTRS*10**5/PDEXOPS/POP
885: PR.EXGGS == EXGGS*10**5/PDEXOPS/POP
386: PR.RLT99 == RLT99*10**5/PDRPI/POP
887: PR.ELEDC == ELEDCP*10**5/PDRPI/POP
888: PR.BAL99 == P.BAL99*(100/PDRPI)
889: PR.BALPF == P.BALPF*(100/PDRPI)
890: PR.BALG1 == P.BALGF9*(100/PDRPI)
891: PR.BALP2 == P.BALPF*(100/PDEXOPS)
892: PR.BALG2 == P.BALGF9*(100/PDEXOPS)
893: PR.RSIN == P.RSIN*(100/PDRPI)
894: PR.RSIP == P.RSIP*(100/PDRPI)
895: PR.RSEN == P.RSEN*(100/PDRPI)
896: PR.GODT == P.GODT*(100/PDRPI)
897: PI.TXS == RT99/PI
898: PI.EXS == EXGF/PI
899: PI.TXL == (RL99-RLT99-RLTF)/PI
900: PI.EXL == (EL99-(GOBONDL-GOBONDL(-1)))/PI
901: PI.EXT == (EXGF+(EL99-(GOBONDL-GOBONDL(-1)))-RLT99)/PI
902: PI.RSEN == RSEN/PI
903: PI.GODT == GODT/PI
904: PI.EX99S == EX99S/PI.
905: PI.EL99 == EL99/PI
906: PI.RL99 == RL99/PI
907: PI.RLPT == RLPT/PI
```

```
908: PI.WS98 == WS98/PI
909: PI.DPI == DPI/PI
910: RL99.PT == RLPT/RL99
911: RL99.RT == RLT99/RL99
912: RS.FED == RSFDN/R99S
913: RS.RP9S == RP9S/R99S
914: RS.RSIN == RSIN/R99S
915: RS.RSEN == RSEN/R99S
916: RS.PET == (RP9S+RSIN)/R99S
917: RS.REG == (RSIN+RSEN)/R99S
918: RSBM.RP9 == RP9SGF/RSGFBM
919: RSBM.PET == (RP9SGF+RSIG+RSID+EXPFTOGF^RSIP)/RSGFBM
920: RSBM.EXD == EXDSS/RSGFBM
921: RSBM.GF == RSIG/RSGFBM
922: RSBM.B99 == (RSIG+RSID+RSIPGF)/RSGFBH
923: RSBM.PF == RSIPGF/RSGFBM
924: RSBM.REN == RSENGF/RSGFBM
925: EX.R99S == R99S/EXGF
926: EX.NRP9 == (RSEN+RSIN+RSFDN)/EXGF
927: EX.RSIN == RSIN/EXGF
928: EX.RP9S == 1-EX.NRP9
929: EX.RSEN == RSEN/EXGF
930: EX.DSS == EXDSS/EXGF
931: EXBM.RV == RSGFBM/EXGFBM
932: EXBM.CAB == BALCABGF/EXGFBM
```

```
933: EXBM.FD == BAL99/EXGFBM
934: EXBM.GR1 == (RSGFBM+EXPFCON1-RP9S)/EXGFBM
935: EXBM.END == EXDFWITH/EXGFBM
936: DF.RSFD == RSFDN*PDRPIBAS/PDRPI
937: DF.RP9S == RP9S*PDRPIBAS/PDRPI
938: DF.RSGF == RSGF*PDRPIBAS/PDRPI
939: DF.RSGFB == RSGFBM*PDRPIBAS/PDRPI
940: DF.R99S == R99S*PDRPIBAS/PDRPI
941: DF.RSEN == RSEN*PDRPIBAS/PDRPI
942: DF.RSIN == RSIN*PDRPIBAS/PDRPI
943: DF.EXGF == EXGF*PDRPIBAS/PDRPI
944: DF.EXGFB == EXGFBM*PDRPIBAS/PDRPI
945: DF.GOXBM == (EXGFBM-EXGFCAP)* 376.536/PDEXOPS
946: DF.BAL99 == BAL99*PDRPIBAS/PDRPI
947: DF.BALDF == BALDF*PDRPIBAS/PDRPI
948: DF.BALGF == BALGF9*PDRPIBAS/PDRPI
949: DF.RSIP == RSIP*PDRPIBAS/PDRPI
950: DF.BALPF == BALPF*PDRPIBAS/PDRPI
951: DF.RSIPN == RSIPNET*PDRPIBAS/PDRPI
952: DF.RSIDN == RSIDNET*PDRPIBAS/PDRPI
953: DF.RSIGN == RSIGNET*PDRPIBAS/PDRPI
954: DF.RSI99 == RSI99NET*PDRPIBAS/PDRPI
955: DF.PI == PI*PDRPIBAS/PDRPI
956: DF.WS98 == WS98*PDRPIBAS/PDRPI
957: DF.WSG9 == (WSGS+WSGL+WSGC+WSGM)*PDRPIBAS/PDRPI
```

958:	DF.WSSP = (WST9+WSCM+WSPU+WSD9+WSFI+WSS9)*PDRP
959 :	DF.WSNS $==($ WSA9+WSM9+WSCN+WSP9)*PDRPIBAS/PDRPI
960:	DF.WRG9 == DF.WSG9*1000/EMG9
961 :	DF.WRSP $==$ DF.WSSP*1000/EMSP
962:	DF.WRNS $==$ DF.WSNS*1000/(EMA9+EMM9+EMCN+EMP9)
963:	DF.RSGFA $==$ RSGF.AFR*PDRPIBAS/PDRPI
964:	DF.RP9SG == RP9SGF*PDRPIBAS/PDRPI
965 :	DF.RSENG $==$ RSENGF*PDRPIBAS/PDRPI
966 :	DF.RTCS1 == RTCS1*PDRPIBAS/PDRPI
967 :	DF.RTIS $==$ RTIS*PDRPIBAS/PDRPI
968 :	DF.RLPT == RLPT*PDRPIBAS/PDRPI
969:	DF.RLT99 == RLT99*PDRPIBAS/PDRPI
970:	DF.EL99 == EL99*PDRPIBAS/PDRPI
971:	DF.RSIPG $==$ RSIPGF*PDRPIBAS/PDRPI
972:	DF.DPI $==\mathrm{DPI}$ *PDRPIBAS/PDRPI
973:	DF.EXLOK == EXLIMOK*PDRPIBAS/PDRPI
974 :	DF.RSGFG $==$ RSGFGAP*PDRPIBAS/PDRPI
975 :	DF.APGFO $==$ APGFOPS*PDRPIBAS/PDRPI
976 :	DF.APGFC $==$ APGFCAP*PDRPIBAS/PDRPI
977 :	DF.EXDSS $==$ EXDSS*PDRPIBAS/PDRPI
978:	DFP.DPI $==$ DF.DPI*1000/POP
979:	DFP.PI $==$ DF.PI* $1000 / \mathrm{POP}$
980:	DFP.EXGF $==$ DF.EXGF*1000/POP
981:	DFP. BAL9 == DF.BAL $99 * 1000 /$ POP
982:	DFP.EXLK $==$ DF.EXLOK*1000/POP

964: DF.RP9SG == RP9SGF*PDRPIBAS/PDRPI

965: DF.RSENG == RSENGF*PDRPIBAS/PDRPI

966: DF.RTCS1 == RTCSI*PDRPIBAS/PDRPI

967: DF.RTIS == RTIS*PDRPIBAS/PDRPI

968: DF.RLPT == RLPT*PDRPIBAS/PDRPI

969: DF.RLT99 = = RLT99*PDRPIBAS/PDRPI

970: DF.EL99 == EL99*PDRPIBAS/PDRPI

971: DF.RSIPG == RSIPGF*PDRPIBAS/PDRPI

972: DF.DPI == DPI*PDRPIBAS/PDRPI

973: DF.EXLOK == EXLIMOK*PDRPIBAS/PDRPI

974: DF.RSGFG == RSGFGAP*PDRPIBAS/PDRPI

975: DF.APGFO = = APGFOPS*PDRPIBAS/PDRPI

976: DF.APGFC == APGFCAP*PDRPIBAS/PDRPI

977: DF.EXDSS == EXDSS*PDRPIBAS/PDRPI

978: DFP.DPI == DF.DPI*1000/POP

979: DFP.PI == DF.PI*1000/POP

980: DFP.EXGF == DF.EXGF* $1000 / \mathrm{POP}$

981: DFP.BAL9 == DF.BAL99*1000/POP

982: DFP.EXLK == DF.EXLOK* $1000 /$ POP

```
983: DFP.APGO == DF.APGFO*1000/POP
984: DFP.APGC == DF.APGFC*1000/POP
985: IM.REV == (EXGF/PDRPI/POP-BASEXGF/BASPDRPI/BASEPOP)*PDRPI*POP
986: IM.BALRV = IM.BAL(-1)*(ROR+RORPPF)+IM.REV
987: IM.BAL = IF YR EQ 1977 THEN O ELSE IM.BAL(-1)+IM.BALRV
988: IM.BAL99 == BAL99+IM.BAL
989: IM.BALPC == IM.BAL*1000/POP
990: IM.BALR == IM.BAL*100/PDRPI
991: IM.BLRPC == IM.BALR*1000/POP
992: EM.EMTCU == EMTCU/EM99
993: EM.EMSUP === EMSUP/EM99
994: EM.EMSP == EMSP/EM99
995: EM.EMGA == EMGA/EM99
996: EM.EMGF == EMGF/EM99
997: EM.EMCN == EMCN/EM99
998: G.PI == PI/PI(-1)-1
999: G.PR.PI == PR.PI/PR.PI(-1)-1
1000: G.PR.DPI == PR.DPI/PR.DPI(-1)-1
1001: G.RSEN == RSEN/RSEN(-1)-1
1002: G.EX99S == EX99S/EX99S(-1)-1
1003: G.EL99 == EL99/EL99(-1)-1
1004: G.PDRPI == PDRPI/PDRPI(-1)-1
1005: G.POP == POP/POP(-1)-1
1006: G.EM99 == EM99/EM99(-1)-1
1007: G.SRPC == PR.EX99S/PR.EX99S(-1)-1
```

```
1008: G.RNSPC == P.RSEN/P.RSEN(-1)-1
1009: G.BAL99 == BAL99/BAL99(-1)-1
1010: G.BAL9PC == P.BAL99/P.BAL99(-1)-1
1011: G.R.WR98 == R.WR98/R.WR98(-1)-1
1012: INX.DI == PR.DPI/PR.DPIUS
1013: INX.DINN == PR.DPINN/PR.DPIUS
1014: INX.DI8N == PR.DPI8N/PR.DPIUS
1015: INX.WG == R.WR97/(WEUS*52*100/PDUSGPI)
1016: INX.S1 == EMSUP/R.DPI
1017: INK.S2 == EMTCU/R.DPI
1018: Z10.9 == 0
1019: Z10.8== 0
1020: Z10.7 == 0
1021: 210.6 == 0
1022: Z10.5 == 0
1023: 210.4 == 0
1024: Z10.3 == 0
1025: Z10.2 == 0
1026: Z10.1 == 0
1027: }210.0==
```

```
INCOME DISTRIBUTION MODEL LINKS MODULE
1028: NNPM1 == CNNPM5+MILPCT*MDPM5
1029: NNPM2 == CNNPM6+MILPCT*MDPM6
1030: NNPM3 == CNNPM7+CNNPM8+MILPCT*(MDPM7+MDPM8)
1031: NNPM4 == CNNPM9+CNNPM10+MILPCT*(MDPM9+MDPM10)
1032: NNPM5 == CNNPM11+CNNPM12+MILPCT*(MDPM11+MDPM12)
1033: NNPM6 == CNNPM13+CNNPM14+MILPCT*(MDPM13+MDPM14)
1034: NNPM7 == CNNPM15+MILPCT*MDPM15
1035: NNPF1 == CNNPF5+MILPCT*MDPF5
1036: NNPF2 == CNNPF6+MILPCT*MDPF6
1037: NNPF3 == CNNPF7+CNNPF8+MILPCT*(MDPF7+MDPF8)
1038: NNPF4 == CNNPF9+CNNPF10+MILPCT*(MDPF9+MDPF10)
1039: NNPF5 == CNNPF11+CNNPF12+MILPCT*(MDPF11+MDPF12)
1040: NNPF6 == CNNPF13+CNNPF14+MILPCT*(MDPF13+MDPF14)
1041: NNPF7 == CNNPF15+MILPCT*MDPF15
1042: NAPM1 == NATPM5
1043: NAPM2 == NATPM6
1044: NAPM3 == NATPM7+NATPM8
1045: NAPM4 == NATPM9+NATPM10
1046: NAPM5 == NATPM11+NATPM12
1047: NAPM6 == NATPM13+NATPM14
1048: NAPM7 == NATPM15
1049: NAPF1 == NATPF5
1050: NAPF2 == NATPF6
1051: NAPF3 == NATPF7+NATPF8
```

```
1052: NAPF4 == NATPF9+NATPF10
1053: NAPF5 == NATPF11+NATPE12
1054: NAPF6 == NATPF13+NATPF14
1055: NAPF7 == NATPF15
1056: PF == CNNPF1+CNNPF2+CNNPF3+CNNPF4+MILPCT*(MDPF1+MDPF2+MDPF3+
        MDPF4)
1057: PM == CNNPM1+CNNPM2+CNNPM3+CNNPM4+MILPCT*(MDPM1+MDPM2+MDPM3+
        MDPM4)
1058: PFN == NATPF1+NATPF2+NATPF3+NATPF4
1059: PMN == NATPM1+NATPM2+NATPM3+NATPM4
1060: WRGMS == (PI8-WS98)/(EMPRO*PDRPI)/((PI8(-1)-WS98(-1))/
        (EMPRO(-1)*PDRPI(-1)))
1061: WRGP9 == WRP9/PDRPI/(WRP9(-1)/PDRPI(-1))
1062: WRGCN == WRCN/PDRPI/(WRCN(-1)/PDRPI(-1))
1063: WRGM9 == WRM9/PDRPI/(WRM9(-1)/PDRPI(-1))
1064: WRGT9 == WRT9/PDRPI/(WRT9(-1)/PDRPI(-1))
1065: WRGCU == WRCU/PDRPI/(WRCU(-1)/PDRPI(-1))
1066: WRGD9 == WRD9/PDRPI/(WRD9(-1)/PDRPI(-1))
1067: WRGFI == WRFI/PDRPI/(WRFI(-1)/PDRPI(-1))
1068: WRGS9 == WRS9/PDRPI/(WRS9(-1)/PDRPI(-1))
1069: WRGGC == WRGC/PDRPI/(WRGC(-1)/PDRPI(-1))
1070: WRGGA == WRGA/PDRPI/(WRGA(-1)/PDRPI(-1))
1071: PRINT == PRINT2
1072: X1 == P1
1073: X2 == P2
1074: X3 == P3
1075: X4 == P4
```

```
1076: X5 == P5
1077: X6 == P6
1078: WS98L == WS98(-1)
1079: PIL == PI(-1)
1080: Z11.9 == 0
1081: Z11.8 == 0
1082: Z11.7 == 0
1083: Z11.6 == 0
1084: Z11.5 == 0
1085: Z11.4== 0
1086: Z11.3 == 0
1087: Z11.2 == 0
1088: Z11.1 == 0
1089: Z11.0 == 0
```


STATE GOVERNMENT CAPITAL STOCK MODULE

```
1090: EXC1 == LGF1*(EXGFCAP+LGF15*EXGFCAP(-1))+LFED1*(EXCPSFED+
    LFED15*EXCPSFED(-1))+LBOND1*(EXCPSGOB+LBOND15*EXCPSGOB(-1))+
    LSGF1*(EXSPCAP+LSGF15*EXSPCAP(-1))
1091: EXC2 == LGF2*(EXGFCAP+LGF15*EXGFCAP(-1))+LFED2*(EXCPSFED+
    LFED15*EXCPSFED(-1))+LBOND2*(EXCPSGOB+LBOND15*EXCPSGOB(-1))+
    LSGF2*(EXSPCAP+LSGF15*EXSPCAP(-1))
1092: EXC3 == LGF3*(EXGFCAP+LGF15*EXGFCAP(-1))+LFED3*(EXCPSFED+
    LFED15*EXCPSFED(-1))+LBOND3* (EXCPSGOB+LBOND15*EXCPSGOB(-1))+
    LSGF3*(EXSPCAP+LSGF15*EXSPCAP(-1))
1093: EXC4 == LGF4*(EXGFCAP+LGF15*EXGFCAP(-1))+LFED4*(EXCPSFED+
    LFED15*EXCPSFED(-1))+LBOND4*(EXCPSGOB+LBOND15*EXCPSGOB(-1))+
    LSGF4*(EXSPCAP+LSGF15*EXSPCAP(-1))
```

Institute of Social and Economic Research

MAP Documentation

December 1984, Model A85. 1

1094 :	```EXC5 == LGF5*(EXGFCAP+LGF15*EXGFCAP(-1))+LFED5*(EXCPSFED+ LFED15*EXCPSFED(-1))+LBOND5*(EXCPSGOB+LBOND15*EXCPSGOB(-1))+ LSGF5*(EXSPCAP+LSGF15*EXSPCAP(-1))```	\%
1095:	```EXC6 == LGF6*(EXGFCAP+LGF15*EXGFCAP(-1))+LFED6*(EXCPSFED+ LFED15*EXCPSFED(-1))+LBOND6*(EXCPSGOB+LBOND15*EXCPSGOB(-1))+ LSGF6*(EXSPCAP+LSGF15*EXSPCAP (-1))```	4
1096:	```EXC7 == LGF7*(EXGFCAP+LGF15*EXGFCAP(-1))+LFED7*(EXCPSFED+ LFED15*EXCPSFED(-1))+LBOND7*(EXCPSGOB+LBOND15*EXCPSGOB(-1))+ LSGF7*(EXSPCAP+LSGF15*EXSPCAP(-1))```	-
1097:	```EXC8 == LGF8*(EXGFCAP+LGF15*EXGFCAP(-1))+LFED8*(EXCPSFED+ LFED15*EXCPSFED(-1))+LBOND8*(EXCPSGOB+LBOND15*EXCPSGOB(-1))+ LSGF8*(EXSPCAP+LSGF15*EXSPCAP(-1))```	\%er
1098:	```EXC9 == LGF9*(EXGFCAP+LGF15*EXGFCAP (-1))+LFED9*(EXCPSFED+ LFED15*EXCPSFED(-1))+LBOND9*(EXCPSGOB+LBOND15*EXCPSGOB(-1))+ LSGF9*(EXSPCAP+LSGF15*EXSPCAP(-1))```	59\%
1099:	```EXC101 == LGF10*(EXGFCAP+LGF15*EXGFCAP(-1))+LFED10*(EXCPSFED+ LFED15*EXCPSFED(-1))+LBOND10*(EXCPSGOB+LBOND15*EXCPSGOB(-1))+ LSGF10*(EXSPGAP+LSGF15*EXSPCAP (-1))```	-
1100:	EXC10 $==$ EXC101*LMUNCAP	
1101:	```EXC11 == LGF11*(EXGFCAP+LGF15*EXGFGAP(-1))+LFED11*(EXCPSFED+ LFED15*EXCPSFED(-1))+LBOND11*(EXCPSGOB+LBOND15*EXCPSGOB(-1))+ LSGF11*(EXSPCAP+LSGF15*EXSPCAP(-1))```	(remy
1102:	```EXC12 == LGF12*(EXGFCAP+LGF15*EXGFCAP(-1))+LFED12*(EXCPSFED+ LFED15*EXCPSFED(-1))+LBOND12*(EXCPSGOB+LBOND15*EXCPSGOB(-1))+ LSGF12*(EXSPCAP+LSGF15*EXSPCAP (-1))```	
1103:	```EXC13 == LGF13*(EXGFGAP+LGF15*EXGFCAP(-1))+LFED13*(EXCPSFED+ LFED15*EXCPSFED(-1))+LBOND13*(EXCPSGOB+LBOND15*EXCPSGOB(-1))+ LSGF13*(EXSPCAP+LSGF15*EXSPCAP(-1))```	\%
1104:	```EXC14 == LGF14*(EXGFCAP+LGF15*EXGFCAP(-1))+LFED14*(EXCPSFED+ LFED15*EXCPSFED(-1))+LBOND14*(EXCPSGOB+LBOND15*EXCPSGOB(-1))+ LSGF14*(EXSPCAP+LSGF15*EXSPCAP (-1))```	\%
1105:	EXC15 == LGF15*EXGFCAP+LFED15*EXCPSFED+LBOND15*EXCPSGOB + LSGF15*EXSPCAP	\%
1106:	```EXCT == EXC1+EXC2+EXC3+EXC5+EXC6+EXC7+EXC8+EXC9+EXC10+EXC11+ EXC12+EXC13+EXC14```	5am
1107:	EXCRF1 $==$ REPF1*R.CAP1 $(-1) *($ PDCON $/$ PDCONBAS $)$	
1108:	EXCRS1 $==$ REPS1*R.CAP1 $(-1) *($ PDCON $/$ PDCONBAS $)$	\%

3			Insti and E MAP D Decem
-	11209:	EXCRL1 ==	REPL1*R.CAP1 (-1)* (PDCON/PDCONBAS)
	1:10:	EXCRU1 ==	REPU1*R.CAP1 (-1)* (PDCON/PDCONBAS)
	1:111:	EXCRF2 ==	REPF2*R.CAP2 (-1)* (PDCON/PDCONBAS)
-	1:L12:	EXCRS2 ==	REPS2*R.CAP2 (-1)* (PDCON/PDCONBAS)
	1:L13:	EXCRL2 ==	REPL2*R.CAP2 (-1)* (PDCON/PDCONBAS)
-	1:114:	EXCRU2 ==	REPU2*R.CAP2 (-1)* (PDCON/PDCONBAS)
	1:115:	EXCRF3 =	REPF3*R.CAP3 (-1)* (PDCON/PDCONBAS)
	1:116:	EXCRS3 $==$	REPS 3 * . CAP3 (-1)* (PDCON/PDCONBAS)
-	1:117:	EXCRL3 = $=$	REPL3*R.CAP3 (-1)* (PDCON/PDCONBAS)
	1:L18:	EXCRU3 ==	REPU3*R.CAP3 (-1)* (PDCON/PDCONBAS)
a	1:19:	EXCRF4 $==$	REPF4*R.CAP4 (-1)* (PDCON/PDCONBAS)
	1:20:	EXCRS4 ==	REPS 4 *R.CAP $4(-1) *$ (PDCON/PDCONBAS)
	1:21:	EXCRL4 = $=$	REPL 4 *R.CAP4 (-1)* (PDCON/PDCONBAS)
m	1:22:	EXCRU4 $=$	REPU4*R.CAP4 (-1) * (PDCON/PDCONBAS)
	1123:	EXCRF5 =	REPF5*R.CAP5 (-1)* (PDCON/PDCONBAS)
\pm	1:124:	EXCRS5 =	REPS5*R.CAP5 (-1)* (PDCON/PDCONBAS)
	1125 :	EXCRL5 =	REPL5*R.CAP5 (-1)* (PDCON/PDCONBAS)
	1126:	EXCRU5 $=$	REPU5*R. CAP5 (-1)* (PDCON/PDCONBAS)
+	1127:	EXCRF6 $=$	REPF6*R.CAP6 (-1)* (PDCON/PDCONBAS)
-	1128:	EXCRS6 $=$	REPS 6 R. CAP6 (-1) * (PDCON/PDCONBAS)
com	1129:	EXCRL6 ==	REPL6*R.CAP6 (-1)* (PDCON/PDCONBAS)
	1130:	EXCRU6 ==	REPU6 *R.CAP6 (-1)* (PDCON/PDCONBAS)
,	1131:	EXCRF $7=$	REPF 7 * . CAP7 (-1)* (PDCON/PDCONBAS)
-	1132:	EXCRS 7 ==	REPS ${ }^{*}$ R.CAP7 (-1)* (PDCON/PDCONBAS)
1	1133:	EXCRL7 $==$	REPL $7 *$ R.CAP7 (-1)* (PDCON/PDCONBAS)
\%	1134:	EXCRU7 ==	REPU7*R.CAP7 (-1)* (PDCON/PDCONBAS)

1135: EXCRF8 == REPF8*R.CAP8(-1) *(PDCON/PDCONBAS)
1136: EXCRS8 $==$ REPS8*R.CAP8 $(-1) *($ PDCON $/ P D C O N B A S)$
1137: EXCRL8 == REPL8*R.CAP8(-1)*(PDCON/PDCONBAS)
1138: EXCRU8 $==$ REPU8*R.CAP8(-1) *(PDCON/PDCONBAS)
1139: EXCRF9 == REPF9*R.CAP9 (-1)*(PDCON/PDCONBAS)
1140: EXCRS9 == REPS9*R.CAP9 (-1) * (PDCON/PDCONBAS)
1141: EXCRL9 == REPL9*R.CAP9 (-1) * (PDCON/PDCONBAS $)$
1142: EXCRU9 == REPU9*R.CAP9 $(-1) \star($ PDCON $/$ PDCONBAS $)$
1143: EXCRF10 $==$ REPF10*R.CAP10(-1)*(PDCON/PDCONBAS)
1144: EXCRS10 $==$ REPS $10 *$ R.CAP10 $(-1) *(P D C O N / P D C O N B A S)$
1145: EXCRL10 $=$ REPL10*R.CAP10 (-1)*(PDCON/PDCONBAS)
1146: EXCRU10 $==$ REPU10*R.CAP10 $(-1) *($ PDCON $/$ PDCONBAS $)$
1147: EXCRF11 == REPF11*R.CAP11 (-1)*(PDCON/PDCONBAS)
1148: EXCRS11 == REPS11*R.CAP11 (-1) * (PDCON/PDCONBAS)
1149: EXCRL11 == REPL11*R.CAP11 (-1)*(PDCON/PDCONBAS)
1150: EXCRU11 $==$ REPU11*R.CAP11 $(-1) *(P D C O N / P D C O N B A S)$
1151: EXCRF12 == REPF12*R.CAP12 (-1)* (PDCON/PDCONBAS $)$
1152: EXCRS12 $==$ REPS $12 *$ R.CAP12 $(-1) *($ PDCON $/ P D C O N B A S)$
1153: EXCRL12 == REPL12*R.CAP12(-1)*(PDCON/PDCONBAS)
1154: EXCRU12 == REPU12*R.CAP12(-1)*(PDCON/PDCONBAS)
1155: EXCRF13 == REPF13*R.CAP13(-1)*(PDCON/PDCONBAS)
1156: EXCRS13 == REPS $13 *$ R.CAP13 $(-1) *($ PDCON $/$ PDCONBAS $)$
1157: EXCRL13 == REPL13*R.CAP13(-1)*(PDCON/PDCONBAS)
1158: EXCRU13 $==$ REPU13*R.CAP13(-1)*(PDCON/PDCONBAS)
1159: EXGRF14 $==$ REPF14*R.CAP14(-1)* (PDCON/PDCONBAS)
1160: EXCRS14 == REPS14*R.CAP14(-1)*(PDCON/PDCONBAS)

Institute of Social and Economic Research MAP Documentation December 1984, Model A85.1

```
1161: EXCRL14 == REPL14*R.CAP14(-1)*(PDCON/PDCONBAS)
1162: EXCRU14 == REPU14*R.CAP14(-1)*(PDCON/PDGONBAS)
1163: EXCRF15 == REPF15*R.CAP15(-1)*(PDCON/PDCONBAS)
11.64: EXCRS15 == REPS15*R.CAP15(-1)*(PDCON/PDCONBAS)
1165: EXCRL15 == REPL15*R.CAP15(-1)*(PDCON/PDCONBAS)
11.66: EXCRU15 == REPU15*R.CAP15(-1)*(PDCON/PDCONBAS)
11.67: EXCRFT == EXCRF1+EXCRF2+EXCRF3+EXCRF4+EXCRF5+EXCRF6+EXCRF7+
        EXCRF8+EXCRF9+EXCRF10+EXCRF11+EXCRF12+EXCRF13+EXCRF14+EXCRF15
11.68: EXCRST == EXCRS1+EXCRS2+EXCRS3+EXCRS4+EXCRS5+EXCRS6+EXCRS7+
        EXCRS8+EXCRS9+EXCRS10+EXCRS11+EXCRS12+EXCRS13+EXCRS14+EXCRS15
11.69: EXCRLT == EXCRL1+EXCRL2+EXCRL3+EXCRL4+EXCRL5+EXCRL6+EXCRL7+
        EXCRL8+EXCRL9+EXCRL10+EXCRL11+EXCRL12+EXCRL13+EXCRL14+EXCRL15
11.70: EXCRUT == EXCRU1+EXCRU2+EXCRU3+EXCRU4+EXCRU5+EXCRU6+EXCRU7+
        EXCRU8+EXCRU9+EXCRU10+EXCRU11+EXCRU12+EXCRU13+EXCRU14+EXCRU15
1171: EXCRT1 == EXCRF1+EXCRS1+EXCRL1+EXCRU1
11.72: EXCRT2 == EXCRF2+EXCRS2+EXCRL2+EXCRU2
1173: EXCRT3 == EXCRF3+EXCRS3+EXCRL3+EXCRU3
1174: EXCRT4 == EXCRF4+EXCRS4+EXCRL4+EXCRU4
1175: EXCRT5 == EXCRF5+EXCRS5+EXCRL5+EXCRU5
1176: EXCRT6 == EXCRF6+EXCRS6+EXCRL6+EXCRU6
1.77: EXCRT7 == EXCRF7+EXCRS7+EXCRL7+EXCRU7
1:178: EXCRT8 == EXCRF8+EXCRS8+EXCRL8+EXCRU8
1:179: EXCRT9 == EXCRF9+EXCRS9+EXCRL9+EXCRU9
1:180: EXCRT10 == EXCRF10+EXCRS10+EXCRL10+EXCRU10
1:181: EXCRT11 == EXCRF11+EXCRS11+EXCRL11+EXCRU11
1:182: EXCRT12 == EXCRF12+EXCRS12+EXCRL12+EXCRU12
1:183: EXCRT13 == EXCRF13+EXCRS13+EXCRL13+EXCRU13
1184: EXCRT14 == EXCRF14+EXCRS14+EXCRL14+EXCRU14
```

1185: EXCRT15 == EXCRF15+EXCRS15+EXCRL15+EXCRU15
1186: EXCRTT == EXCRFT+EXCRST+EXCRLT+EXCRUT
1187: EXOMF1 $==$ OMF1*R.CAP1 $(-1) \star($ PDCON $/$ PDCONBAS $)$
1188: EXOMS1 $==$ OMS1*R.CAP1 $(-1) *($ PDCON $/$ PDCONBAS $)$
1189: EXOML1 $==$ OML1*R.CAP1 $(-1) *($ PDCON $/$ PDCONBAS $)$
1190: EXOMU1 $==$ OMU1 $*$ R.CAP1 $(-1) *($ PDCON $/$ PDCONBAS $)$
1191: EXOMF2 $==$ OMF2*R.CAP2 (-1) * (PDCON/PDCONBAS)
1192: EXOMS2 $==$ OMS $2 *$ R.CAP2 $(-1) *($ PDCON $/$ PDCONBAS $)$
1193: EXOML2 $==$ OML $2 *$ R.CAP2 $(-1) *($ PDCON/PDCONBAS $)$
1194: EXOMU2 $==$ OMU $2 \star$ R.CAP2 $(-1) *($ PDCON $/$ PDCONBAS $)$
1195: EXOMF3 $==$ OMF $3 *$ R.CAP3 $(-1) *($ PDCON/PDCONBAS $)$
1196: EXOMS3 $==$ OMS3*R.CAP3 $(-1) *($ PDCON/PDCONBAS $)$
1197: EXOML3 $==$ OML $3 *$ R.CAP3 $(-1) *($ PDCON $/$ PDCONBAS $)$
1198: EXOMU3 $==$ OMU3*R.CAP3 $(-1) *($ PDCON $/$ PDCONBAS $)$
1199: $\operatorname{EXOMF4}==$ OMF $4 * R . C A P 4(-1) *($ PDCON $/$ PDCONBAS $)$
1200: EXOMS4 $==$ OMS4*R.CAP4 $(-1) *($ PDCON/PDCONBAS $)$
1201: EXOML4 $==0$ OML $4 *$ R.CAP4 $(-1) *($ PDCON/PDCONBAS $)$
1202: $\operatorname{EXOMU4}==$ OMU4*R.CAP4 $(-1) \star($ PDCON/PDCONBAS)
1203: $\operatorname{EXOMF} 5==$ OMF $5 *$ R.CAP5 $(-1) *($ PDCON $/$ PDCONBAS $)$
1204: EXOMS5 $==$ OMS5*R.CAP5 (-1) *(PDCON/PDCONBAS)
1205: EXOML5 $==$ OML5*R.CAP5 (-1) *(PDCON/PDCONBAS)
1206: EXOMU5 $==$ OMU5*R.CAP5 $(-1) \star($ PDCON $/$ PDCONBAS $)$
1207: EXOMF6 $==$ OMF6*R.CAP6 (-1)*(PDCON/PDCONBAS)
1208: EXOMS6 $==0$ OS $6 *$ R.CAP6 (-1) * (PDCON/PDCONBAS)
1209: EXOML6 $==$ OML $6 *$ R.CAP6 $(-1) *($ PDCON $/$ PDCONBAS $)$
1210: EXOMU6 $==0 M U 6 \star$ R.CAP6 $(-1) *($ PDCON $/$ PDCONBAS $)$

1211:	EXOMF $7=$ OMF $7 *$ R.CAP $7(-1) *($ PDCON $/$ PDCONBAS $)$
1212:	EXOMS $7==0 M S 7 *$ R.CAP7(-1)*(PDCON/PDCONBAS)
1213:	EXOML $7==0 M L 7 *$ R.CAP7 $(-1) *($ PDCON $/$ PDCONBAS $)$
1214 :	EXOMU7 $==0 \mathrm{MU} 7 *$ R.CAP7 $(-1) *($ PDCON $/$ PDCONBAS $)$
1215:	EXOMF8 $==0 \mathrm{OF} 8 * \mathrm{R} \cdot \mathrm{CAP8}(-1) *($ PDCON $/$ PDCONBAS $)$
1.216:	EXOMS8 $==0 \mathrm{MS8}$ *R.CAP8 $(-1) *($ PDCON/PDCONBAS $)$
1217:	EXOML $8==0 \mathrm{ML} 8 *$ R.CAP8 $(-1) *($ PDCON $/$ PDCONBAS $)$
1218:	EXOMU8 $==0 \mathrm{MU8} \times \mathrm{R} \cdot \mathrm{CAP8}(-1) *($ PDCON/PDCONBAS $)$
1.219 :	EXOMF9 $==$ OMF9*R.CAP9 $(-1) *($ PDCON $/$ PDCONBAS $)$
1.220 :	EXOMS $9=0$ OMS $9 *$ R.CAP9 $(-1) *($ PDCON $/$ PDCONBAS $)$
1221:	EXOML9 $==0 \mathrm{ML} 9 *$ R.CAP9 $(-1) *($ PDCON/PDCONBAS $)$
1222 :	EXOMU9 $==0$ OU9*R.CAP9 $(-1) *($ PDCON $/$ PDCONBAS $)$
1223:	EXOMF10 $==0 \mathrm{MF} 10 * \mathrm{R} \cdot \operatorname{CAP} 10(-1) *($ PDCON $/$ PDCONBAS $)$
1224:	EXOMS10 $==0 \mathrm{CS} 10 *$ R.CAP10(-1$) *($ PDCON $/$ PDCONBAS $)$
1225 :	EXOML10 $==0 \mathrm{ML} 10 *$ R. CAP $10(-1) *($ PDCON $/$ PDCONBAS $)$
1226:	EXOMU10 $==$ OMU10*R.CAP10(-1)*(PDCON/PDCONBAS)
1227:	EXOMF11 $==$ OMF11*R.CAP11 $(-1) \star($ PDCON $/$ PDCONBAS $)$
1228 :	EXOMS11 $==$ OMS11*R.CAP11(-1)*(PDCON/PDCONBAS)
1229:	EXOML11 $==$ OML11*R.CAP11(-1)*(PDCON/PDCONBAS $)$
1230:	EXOMU11 $==$ OMU11*R.CAP11 $(-1) *($ PDCON $/$ PDCONBAS $)$
1231:	EXOMF12 $==$ OMF $12 *$ R.CAP12(-1) ${ }^{(P D C O N / P D C O N B A S) ~}$
1232:	EXOMS12 $==0 \mathrm{CS} 12 *$ R.CAP12(-1)*(PDCON/PDCONBAS)
1233:	EXOML12 $==$ OML12*R.CAP12(-1)*(PDCON/PDCONBAS)
1234 :	EXOMU12 $==$ OMU12*R.CAP12 (-1)*(PDCON/PDCONBAS)
1235 :	EXOMF13 $==$ OMF $13 *$ R.CAP13(-1) ${ }^{\text {(PDCON }} /$ PDCONBAS $)$
1236:	EXOMS13 $==0$ OS13*R.CAP13(-1)*(PDCON/PDCONBAS $)$

1237: EXOML13 == OML13*R.CAP13(-1)*(PDCON/PDCONBAS)
1238: EXOMU13 == OMU13*R.CAP13(-1)*(PDCON/PDCONBAS)
1239: EXOMF14 == OMF14*R.CAP14(-1)*(PDCON/PDCONBAS)
1240: EXOMS14 $==0$ OMS14*R.CAP14 $(-1) *($ PDCON $/$ PDCONBAS $)$
1241: EXOML14 $==0 \mathrm{OLL} 14 * \mathrm{R} . \operatorname{CAP} 14(-1) *($ PDCON/PDCONBAS)
1242: EXOMU14 $==0$ MU14*R.CAP14(-1)*(PDCON/PDCONBAS)
1243: EXOMF15 == OMF15*R.CAP15 (-1)*(PDCON/PDCONBAS)
1244: EXOMS15 $==0 \mathrm{MS} 15 *$ R.CAP15 (-1) * (PDCON/PDCONBAS)
1245: EXOML15 $==$ OML15*R.CAP15 $(-1) *($ PDCON/PDCONBAS)
1246: EXOMU15 $==$ OMU15*R.CAP15 (-1)*(PDCON/PDCONBAS)
1247: EXOMT1 == EXOMF1+EXOMS1+EXOML1+EXOMU1
1248: EXOMT2 == EXOMF2+EXOMS2+EXOML2+EXOMU2
1249: EXOMT3 == EXOMF3+EXOMS3+EXOML3+EXOMU3
1250: EXOMT4 == EXOMF4+EXOMS4+EXOML4+EXOMU4
1251: EXOMT5 == EXOMF5+EXOMS5+EXOML5+EXOMU5
1252: EXOMT6 == EXOMF6+EXOMS6+EXOML6+EXOMU6
1253: EXOMT7 == EXOMF7+EXOMS7+EXOML7+EXOMU7
1254: EXOMT8 == EXOMF8+EXOMS8+EXOML8+EXOMU8
1255: EXOMT9 == EXOMF9+EXOMS9+EXOML9+EXOMU9
1256: EXOMT10 == EXOMF10+EXOMS10+EXOML10+EXOMU10
1257: EXOMT11 == EXOMF11+EXOMS11+EXOML11+EXOMU11
1258: EXOMT12 == EXOMF12+EXOMS12+EXOML12+EXOMU12
1259: EXOMT13 == EXOMF13+EXOMS13+EXOML13+EXOMU13
1260: EXOMT14 == EXOMF14+EXOMS14+EXOML14+EXOMU14
1261: EXOMT15 == EXOMF15+EXOMS15+EXOML15+EXOMU15

	Institute of Social and Economic Research MAP Documentation December 1984, Model A85.1
1262:	EXOMFT == EXOMF1+EXOMF2+EXOMF3+EXOMF4+EXOMFS+EXOMF6+EXOMF $7+$ EXOMF8+EXOMF9+EXOMF10+EXOMF11+EXOMF12+EXOMF13+EXOMF14+EXOMF15
1263 :	$\begin{aligned} & \text { EXOMST }==\text { EXOMS } 1+\text { EXOMS } 2+\text { EXOMS } 3+\text { EXOMS } 4+\text { EXOMS } 5+\text { EXOMS } 6+\text { EXOMS } 7+ \\ & \text { EXOMS } 8+\text { EXOMS } 9+\text { EXOMS } 10+\text { EXOMS } 11+\text { EXOMS } 12+\text { EXOMS } 13+\text { EXOMS } 14+\text { EXOMS } 15 \end{aligned}$
1264 :	EXOMLT $==$ EXOML. $1+$ EXOML $2+$ EXOML $3+$ EXOML $4+$ EXOML $5+$ EXOML $6+$ EXOML $7+$ EXOML8+EXOML9+EXOML10+EXOML11+EXOML12+EXOML13+EXOML14+EXOML15
1265:	EXOMUT $==$ EXOMU1+EXOMU2+EXOMU3+EXOMU4+EXOMU5+EXOMU6+EXOMU7+ EXOMU8+EXOMU9+EXOMU10+EXOMU11+EXOMU12+EXOMU13+EXOMU14+EXOMU15
1266:	EXOMTT $==$ EXOMFT+EXOMST+EXOMLT+EXOMUT
1267:	EXCN1 == EXC1-EXCRS1
1268:	EXCN2 $==$ EXC2-EXCRS 2
1269:	EXCN3 $==$ EXC3-EXCRS3
1270:	EXCN4 $==$ EXC4-EXCRS4
1271:	EXCN5 $==$ EXC5-EXCRS5
1272:	EXCN6 == EXC6-EXCRS6
1273:	EXCN 7 == EXC7-EXCRS 7
1274:	EXCN8 $==$ EXC8-EXCRS8
1275 :	EXCN9 $==$ EXC9-EXCRS9
1276:	EXCN10 $==$ EXC10-EXCRS10
1277:	EXCN11 $==$ EXC11-EXCRS11
1278:	EXCN12 == EXC12-EXCRS12
1279:	EXCN13 == EXC13-EXCRS13
1280:	$\operatorname{EXCN14}==$ EXC14-EXCRS14
1281:	EXCN15 == EXC15-EXCRS 15
1282:	```EXCNT == EXCN1+EXCN2+EXCN3+EXCN5+EXCN6+EXCN7+EXCN8+EXCN9+ EXCN10+EXCN11+EXCN12+EXCN13+EXCN14```
1283 :	R.CAP1 = IF YR EQ 1982 THEN 3000 ELSE R.CAP1 (-1)* (1/(1+RCDEP1))+EXC1*(PDCONBAS/PDCON)

1284：R．CAP2＝IF YR EQ 1982 THEN 333 ELSE R．CAP2（ -1 ）＊（1／（1＋RCDEP2））＋ EXC2＊（PDCONBAS／PDCON）
1285：R．CAP3＝IF YR EQ 1982 THEN 250 ELSE R．CAP3（ -1 ）＊（1／（1＋RCDEP3））＋ EXC3＊（PDCONBAS／PDCON）
1286：R．CAP4 $=0$
1287：R．CAP5＝IF YR EQ 1982 THEN 3097 ELSE R．CAP5（ -1 ）＊（1／（1＋RCDEP5））＋ EXC5＊（PDCONBAS／PDCON）
1288：R．CAP6＝IF YR EQ 1982 THEN 963 ELSE R．CAP6（ -1 ）＊（1／（1＋RCDEP6））+ EXC6＊（PDCONBAS／PDCON）
1289：R．CAP7＝IF YR EQ 1982 THEN 677 ELSE R．CAP $7(-1) *(1 /(1+$ RCDEP7 $))+$ EXC7＊（PDCONBAS／PDCON）
1290：R．CAP8＝IF YR EQ 1982 THEN 0 ELSE R．CAP8 $(-1) *(1 /(1+$ RCDEP8）$)+$ EXC8＊（PDCONBAS／PDCON）
1291：R．CAP9＝IF YR EQ 1982 THEN 0 ELSE R．CAP9（ -1 ）＊（1／（1＋RCDEP9））＋ EXC9＊（PDCONBAS／PDCON）
1292：R．CAP10＝IF YR EQ 1982 THEN 271 ELSE R．CAP10（－1）＊（1／ （1＋RCDEP10））＋EXC10＊（PDCONBAS／PDCON）
1293：R．CAP11＝IF YR EQ 1982 THEN 0 ELSE R．CAP11（－1）＊（1／ （1＋RCDEP11））＋EXC11＊（PDCONBAS／PDCON）
1294：R．CAP12＝IF YR EQ 1982 THEN 0 ELSE R．CAP12（－1）＊（1／ （1＋RCDEP12））＋EXC12＊（PDCONBAS／PDCON）
1295：R．CAP13＝IF YR EQ 1982 THEN 0 ELSE R．CAP13（－1）＊（1／ （1＋RCDEP13））＋EXC13＊（PDCONBAS／PDCON）
1296：R．CAP14＝IF YR EQ 1982 THEN 0 ELSE R．CAP14（－1）＊（1／ （1＋RCDEP14））＋EXC14＊（PDCONBAS／PDCON）
1297：R．CAP15＝IF YR EQ 1982 THEN 764 ELSE EXC15＊（PDCONBAS／PDCON）
1298：R．CAPT $==$ R．CAP1＋R．CAP2＋R．CAP3＋R．CAP4＋R．CAP5＋R．CAP6＋R．CAP7＋ R．CAP8＋R．CAP9＋R．CAP10＋R．CAP11＋R．CAP12＋R．CAP13＋R．CAP14＋R．CAP15

Institute of Social and Economic Research MAP Documentation December 1984, Model A85. 1

APPENDIX B
 ISER MAP ALASKA ECONOMIC MODEL: COEFFICIENT AND PARAMETER VALUES

A85.1 CONSTANT FILE FOR MODEL A85.1 OF THE ALASKA ECONOMY. CREATED BY THE INSTITUTE OF SOCIAL AND ECONOMIC RESEARCH OF THE UNIVERSITY OF ALASKA UNDER THE MAN-IN-THE-ARCTIC PROGRAM FUNDED BY THE NATIONAL SCIENCE FOUNDATION. REGRESSION COEFficients have the prefix c followed by a number. this file WAS CREATED DECEMBER 1984.

AFTOT	23.323	CMIG1	-13.5649	CMIG2	13.7169
CMIG3	35.7941	CMIG4	0.802671	CPGQF1	0.
CPGQF10	0.0036	CPGQF11	0.0092	CPGQF12	0.0051
CPGQF13	0.0093	CPGQF14	0.0032	CPGQF15	0.0751
CPGQF2	0.0045	CPGQF3	0.0032	CPGQF4	0.0031
CPGQF5	0.004	CPGQF6	0.0238	CPGQF7	0.004
CPGQF8	0.0022	CPGQF9	0.0011	CPGQM1	0.
CPGQM10	0.0369	CPGQM11	0.0392	CPGQM12	0.0265
CPGQM13	0.0266	CPGQM14	0.0268	CPGQM15	0.0648
CPGQM2	0.0071	CPGQM3	0.0046	CPGQM4	0.0044
CPGQM5	0.0435	CPGQM6	0.0729	CPGQM7	0.0238
CPGQM8	0.0166	CPGQM9	0.0278	C1A	0.42666
C1B	0.050183	C1C	0.371052	C10A	23.4911
C10B	0.861373	C10C	7.49112	C100A	-4.28484
C100B	1.23652	C100C	-0.997673	C101A	4.26682
C101B	0.466883	C102A	4.10141	C102B	1.81641
C102C	1.62414	C102D	-0.098536	C102F	0.306609
C103A	-19.9032	C103B	15.9107	C103C	0.707235
C104A	2.14567	C104B	0.992416	C105A	3.33749
C105B	0.009737	C105C	0.828288	C106A	-15.8977
C106B	0.067035	C107A	-55.8648	C107B	0.015623
C108A	-2.79176	C108B	0.479263	C109A	-1.92152
C109B	0.755283	C11A	-2.50986	C11B	0.023634
C12A	7.17255	C12B	0.523824	C14A	3.33343
C14B	0.162868	C14C	-0.113976	C15A	-9.09127
C15B	0.301513	C16A	-70.4036	C16B	0.04051
C16C	137.48	C17A	-10.9796	C17B	0.119691
C17C	76.4453	C18A	27.1904	C18B	0.011735
C18C	0.003742	C18D	-21.1564	C19A	-1.18305
C19B	1.03791	C2A	1.50943	C2B	0.274289
C20A	-2.68296	C20B	1.01735	C21A	0.363308
C21B	0.930152	C21C	0.042017	C22A	-0.898424
C22B	1.08262	C23A	-2.75748	C23B	1.34193
C23C	0.930092	C23D	0.430625	C24A	-3.45059
C24B	1.19903	C25A	0.468259	C25B	0.527066
C26A	-1.76919	C26B	1.00396	C26C	-0.118769
C27A	-6.17432	C27B	0.01118	C27C	-0.008996

Institute of Social and Economic Research
MAP Documentation
December 1984, Model A85.1

C28A	80.1874	C28B	1.09189	C28C	3.14996	-
C29A	-3.76751	C29B	0.802598	C3A	2.7822	
C3B	0.246103	C30A	-4.09671	C30B	1.19138	
C31A	-6.63097	C31B	1.21304	C32A	-1.8791	-
C32B	0.663336	C32C	1.	C32D	5.	
C33A	-5.44842	C33B	0.8965	C34A	0.286354	
C34B	0.002698	C34C	-0.649464	C35A	-1.94609	
C35B	0.592204	C36A	-46.9736	C36B	-126.31	-
C36C	7.96933	C36D	1.06682	C36F	93.4497	
C37A	-5.49422	C37B	0.642659	C38A	-182.034	
C38B	1.05111	C39A	-6.87313	C39B	0.015955	-
C4A	-1.6632	C4B	0.672086	C40A	-13.9151	
C40B	2.99018	C41A	-4.96533	C41B	0.261135	
C42A	0.925213	C42B	0.171959	C43A	-2.04504	m
C43B	0.427355	C43C	0.064835	C43D	-0.053429	
C43E	-2.99594	C44A	10.228	C44B	0.067055	
C44C	0.025531	C44D	-37.5112	C45A	27.3602	
C45B	4.28865	C45C	5.06706	C45D	-7. 20871	\cdots
C46A	-1.82278	C46B	0.907323	C47A	-11.0252	
C47B	1.83943	C48A	-4.69794	C48B	0.942175	
C49A	-3.70365	C498	0.726185	C5A	0.106732	m
C5B	0.596163	C50A	-0.314253	C50B	0.01542	
C51A	-80.4494	C51B	0.035444	C52A	3.70393	
C52B	1.80441	C53A	4.79314	C53B	3.02946	min
C53C	3.83987	C53D	-0.273211	C53F	0.3458	
C54A	26.357	C54B	. 049	C54D	14.791	
C54E	-13.852	C54F	. 096	C54G	-. 042	
C54H	. 085	C55A	0.169745	C55B	0.978561	
C55C	0.043843	C56A	-2.86578	C56B	1.08251	
C56C	-0.067495	C57A	-10.6876	C57B	1.08079	
C57C	1.64652	C58A	-18.7299	C58B	3.34048	\%
C59A	4.64239	C59B	1.96795	C59C	2.68763	
C59D	0.934046	C59E	1.46085	C59F	0.338783	
C6A	-0.757478	C6B	0.648296	C60A	9.49124	-
C60B	0.023899	C60C	-10.6719	C61A	1.7984	
C61B	1.50223	C62A	4.13839	C62B	1.2269	
C62C	0.659103	C62D	0.841715	C62F	0.121036	
C63A	-0.039147	C63B	0.129479	C64A	18.9595	
C64B	0.20385	C64C	0.098751	C64D	-0.00053	
C64E	-8.63463	C65A	-2.09365	C65B	0.844682	
C66A	4.37898	C66B	1.74487	C66C	5.7626	\cdots
C66D	-0.255419	C66E	-0.902879	C66F	0.181534	
C67A	-0.007	C67B	0.552349	C67C	-0.052675	
C67D	-0.010381	C68A	26.1807	C68B	-0.040408	*
C68C	-27.4533	C68D	0.000131	C69A	-2.01416	
C69B	0.662754	C7A	0.908821	C7B	0.209675	
C70A	4.54932	C70B	0.709893	C70C	1.30633	-
C70D	1.17991	C70E	0.033177	C70F	0.193705	
C71A	-17.0365	C71B	0.06144	C71C	0.099012	
C71D	-0.000253	C71E	$2.407734 \mathrm{E}-05$	C72A	5.88549	
C72B	0.02392	C72C	-0.00475	C72D	0.004886	\cdots

Institute of Social and Economic Research
MAP Documentation
December 1984, Model A85.1

\cdots	c73A	-3.40732	C73B	0.975722	C74A	4.37324
	c74B	2.18954	C74C	1.08894	C74D	2.98271
	C74F	0.429727	C75A	-2.29685	C75B	0.992615
mos	c76A	-17.9348	C76B	0.131153	C76C	0.023213
	C76D	0.044384	C76E	-0.088811	C77A	-2. 28187
	c77B	0.859508	C78A	4.34579	C78B	0.71098
-	C78C	1.69549	C78D	0.144154	C78E	0.586829
	C78F	0.083435	C79A	3.8396	C79B	0.604405
	C79D	0.960814	C79E	-0.91324	C79F	-0.034216
	C8A	1.14384	C8B	0.455656	C80A	-48.9126
-	C80B	0.000237	C80C	-18.3501	C81A	-3.62316
	C81B	0.984746	C82A	3.9719	C82B	1.84677
	C82C	0.772129	C82D	0.6003	C82F	0.244149
\cdots	C83A	-11.3818	C83C	0.149699	C83D	0.018428
'	C83E	4.356817E-05	C84A	-34.8153	C84B	0.069629
	C84C	-0.076037	C84D	$8.480865 \mathrm{E}-05$	C85A	-2.24398
\pm	C85B	0.998891	C86A	3.78055	C86B	1.30523
	C86C	2.80068	C86D	-0.261595	C86E	2.17424
*	C86F	0.294562	C87A	-2.3839	C87B	0.990857
	C88A	3.90497	C88B	0.5569	C88C	9.24559
	C88D	-0.185504	C88E	0.235023	C88F	0.280157
	C88G	4.46196	C89A	4.36947	C89B	1.025
	C9A	-0.394295	C9B	0.553834	C9C	-0.684496
-	C90A	4.52937	C90B	12.2905	C91A	-5.36404
	C91B	1.24213	C92A	4.3122	C92B	2.34831
	C92C	-0.262528	C92D	-0.07913	C92F	0.286098
\cdots	C93A	-2.52615	C93B	0.965943	C94A	-2.81492
	C94B	1.01315	C96A	-2.89633	C96B	1.11355
	C97A	-4.63823	C97B	1.26652	C98A	-1.02656
	C98B	0.83204	C99A	-1.31799	C99B	0.817804
	exannu	800.	EXCAPIMP	0.1432	EXCAPOLD	1000.
	ExELI	1.	EXEL2	1.	ExEL3	1.
	EXEL4	0.	EXEL5	0.	EXEL6	0.
m	EXLIM82	2500.	EXOMcost	0.15	EXOPSIMP	7.678
	EXPF2	0.162	EXPF3	0.31	EXRLOP6	0.
	EXRLOP7	0.	EXRLOP8	0.	EXRLI	0.
-	EXRL2	0.	Exrl3	0.	EXRL4	0.
	EXRL40P	0.	EXRL5	1.	FERT10	0.0043
*	FERT11	0.	FERT4	0.0004	FERT5	0.0516
\%	FERT6	0.1436	FERT7	0.12	FERT8	0.0697
	FERT9	0.0223	G1	0.	G10	0.8
	G11	0.8	G12	0.8	G13	0.8
	G14	0.8	G15	1.	G2	0.75
m	G3	0.8	G4	0.8	G5	0.8
I	G6	0.8	G7	0.8	G8	0.8
	G9	0.8	HHRF10	0.216	HHRF11	0.224
-	HHRF12	0.223	HHRF13	0.262	HHRF14	0.32
;	HHRF15	0.466	HHRF4	0.009	HHRF5	0.036
	HHRF6	0.201	HHRF7	0.234	HHRF8	0.237
-	HHRF9	0.215	HHRM10	0.914	HHRM11	0.943
	HHRM12	0.931	HHRM13	0.923	HHRM14	0.922

Institute of Social and Economic Research MAP Documentation
December 1984, Model A85.1

HHRM15	0.884	HHRM4	0.001	HHRM5	0.063	m
HHRM6	0.56	HHRM7	0.742	HHRM8	0.836	
HHRM9	0.905	MDPF1	1.013	MDPF10	1.121	
MDPF11	0.253	MDPF12	0.253	MDPE13	0.109	Anm
MDPF14	0.036	MDPF15	0.036	MDPF2	2.424	
MDPF3	3.834	MDPF4	2.749	MDPF5	1.881	
MDPF6	4.088	MDPF7	2.713	MDPF8	2.605	m
MDPF9	1.338	MDPM1	0.796	MDPM10	0.	
MDPM11	0.	MDPM12	0.	MDPM13	0.	
MDPM14	0.	MDPM15	0.	MDPM2	2.894	
MDPH3	3.871	MDPM4	2.894	MDPM5	1.302	\%
MDPM6	0.	MDPM7	0.036	MDPM8	0.	
MDPM9	0.	MDTOT	25.131	MF1	0.01	
MF10	0.026	MF11	0.015	MF12	0.003	max
MF13	0.006	MF14	0.003	MF15	0.001	
MF2	0.04	MF3	0.054	MF4	0.022	
MF5	0.026	MF6	0.096	MF7	0.076	4
MF8	0.064	MF9	0.029	MHHF10	0.015	
MHHF11	0.006	MHHF12	0.008	MHHF13	0.002	
MHHF14	0.002	MHHF15	0.012	MHHF5	0.006	
MHHF6	0.068	MHHF7	0.102	MHHF8	0.039	Stas)
MHHF9	0.028	MHHM10	0.794	MHHM11	0.206	
MHHM12	0.119	MHHM13	0.038	MHHM14	0.014	
MHHM15	0.006	MHHM5	0.074	MHHM6	2.165	\cdots
MHHM7	3.44	MHHM8	2.802	MHHM9	1.863	
MILF1	0.732	MILF10	0.816	MILF11	0.12	
MILF12	0.125	MILF13	0.043	MILF14	0.019	m
MILF15	0.057	MILF2	2.854	MILF3	2.727	
MILF4	1.718	MILF5	1.279	MILF6	3.291	
MILF7	3.254	MILF8	2.379	MILF9	1.001	-
MILM1	0.727	MILM10	0.777	MILM11	0.178	
MILM12	0.125	MILM13	0.038	MILM14	0.019	:
MILM15	0.015	MILM2	2.607	MILM3	2.947	
MILM4	1.867	MILM5	2.481	MILM6	7.219	\%
MILM 7	4.262	MILM8	2.931	MILM9	1.846	
MILRAT	1.	MM1	0.01	MM10	0.035	
MM11	0.017	MM12	0.003	MM13	0.008	nam
MM14	0.003	MM15	0.001	MM2	0.04	
MH3	0.054	MM4	0.022	MM5	0.038	
MM6	0.079	MM7	0.099	HM8	0.079	m
MH9	0.041	NFERT10	0.0131	NFERT11	0.	
NFERT4	0.0003	NFERT5	0.1083	NFERT6	0.2381	
NFERT7	0.1857	NFERT8	0.1188	NFERT9	0.0484	
NHHRF10	0.227	NHHRF11	0.267	NHHRF12	0.267	\%
NHHRF13	0.297	NHHRF14	0.33	NHHRF15	0.503	
NHHRF4	0.	NHHRF5	0.026	NHHRF6	0.127	
NHHRF7	0.188	NHHRF8	0.219	NHHRF9	0.227	\pm
NHHRM10	0.807	NHHRM11	0.864	NHHRM12	0.864	
NHHRM13	0.893	NHHRM14	0.925	NHHRM15	0.888	
NHHRM4	0.003	NHHRMS	0.025	NHHRM6	0.257	\cdots
NHHRM 7	0.539	NHHRM8	0.691	NHHRM9	0.807	

Institute of Social and Economic Research MAP Documentation December 1984, Model A85.1
$\left.\begin{array}{llllll} & \text { NMF1 } & 0 . & 0 . & \text { NMF11 } & 0 . \\ & \text { NMF12 } & 0 . & 0 . & \text { NMF10 } & \text { NF14 }\end{array}\right]$

Institute of Social and Economic Research MAP Documentation
December 1984，Model A85． 1

PBLTBL	0.13
PGIVPY	0.65
PGNCWS	0.25
PGWS2	1.3
PG12RN	0.833
PECIG	0.625
PERNA3	1.
PFISH1	0.97
POPMGQ	9.443
PTOURD	0.4
PTOURT	0.2
P1	0.
P4	1.
RGF10	0.009
RGF13	0.007
RCF4	0.
RCF7	0.026
RGM10	0.013
RCM13	-0.014
RCM4	0.
RCM7	-0.016
ROR	0.02
RORCPDEP	0.03
RORPDF	0.
SF1	0.99933
SF12	0.99646
SF15	0.9659
SF4	0.99992
SF7	0.99935
SM1	0.99913
SM12	0.99224
SM15	0.93795
SM4	0.99957
SM7	0.99748
SURINFF	1.
P1	0.

PBTRATE	$2.500000 \mathrm{E}-05$
PCNCSV	0.5
PCNC4	0.
PCYNA1	1.01545
PDCONBAS	633.398
PERNA1	0.
PESLT	0.4
PIDIST	0.
PRINT2	0.
PTOURE	1.
PTRTS	0.02
P2	0.
P5	1.
RCF11	0.008
RCF14	-0.051
RCF5	0.
RCF8	0.01
RCM11	-0.003
RCM14	-0.013
RCH5	0.
RCM8	0.041
RORANGRO	0.08
RORDISK	0.02
RORPPF	0.01
SF10	0.99829
SF13	0.99211
SF2	0.99933
SF5	0.99958
SF8	0.99923
SM10	0.996
SM13	0.98708
SM2	0.99913
SM5	0.99864
SM8	0.99746
SURINFM	1.

PCINDA	0.1	
PCNCSV1	1.	
PCWS1	0.9	
PC12N	0.922	
PDRPIBAS	385	
PERNA2	0.005	
PESLTC	0.1	
PNTGR	0.02	
PTOURB	-4.75	
PTOURS	0.4	
PWRBASE	5473.	
P3	0.	
P6	1.	
RCF12	0.009	
RCF15	0.097	
RCF6	-0.008	
RCF9	0.01	
RCM12	0.009	
RCM15	0.054	
RCM6	-0.195	
RCM9	0.022	
RORBOND	0.02	
RORNC	0.07	
SEXDIV	0.518	
SF11	0.99726	
SF14	0.9897	
SF3	0.99993	
SF6	0.9995	
SF9	0.99896	
SM11	0.99501	
SM14	0.97938	
SM3	0.99986	
SM6	0.99762	
SM9	0.99812	
TP	30.	

Institute of Social and Economic Research MAP Documentation
December 1984，Model A85．1

ORDINARY LEAST SQUARES
MODEL NAME: A85.1

4: PDRATIO $=$ PDRATIO $(-1)+$ C67A* (1+G.EMSP**0.5) +C67B* (EMCNX1/EM98 (-1)) + C6 7C*D80+C67D* (1+G.EMSP**0.5)*D68.71

1NOB $=21$	NOVAR $=4$		RAN	1962 TO 1982
RSQ $=$	0.844 CRSQ		0.816 F(4	$=$ NA
PROB $>\mathrm{F}=$	NA SER		0.011 SSR	0.002
$\mathrm{DW}(0)=$	2.371 COND		2.142 MAX	$=1$.
RSTUDENT =	NA DFFI		NA	
COEF	ESTIMATE	STER	TSTAT	PROB>ETE
C67A	-0.009	0.002	-3. 527	0.003
C67B	0.552	0.091	6.064	0.
C67C	-0.053	0.011	-4.759	0.
C6 7D	-0.01	0.005	-2.158	0.046

ORDINARY LEAST SQUARES

MODEL NAME: A85.1

7: \quad PDCON $=$ C107A + C107 B^{*} WRCNNP

Institute of Social and Economic Research
MAP Documentation
December 1984, Model A85.1

```
ORDINARY LEAST SQUARES
MODEL NAME: A85.1
28: LOG(FAGI) = C21A+C21B*LOG(PI8)+C21C*LOG(EMCNX1+EMP9)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\mathrm{NOB}=16\) & & NOVAR \(=3\) & & RANGE: & 1961 TO 1976 \\
\hline RSQ \(=\) & 0.998 & CRSQ = & 0.998 & F(2/13) & 3741.28 \\
\hline PROB \(>\mathrm{F}=\) & 0. & SER = & 0.027 & SSR = & 0.01 \\
\hline \(\mathrm{DW}(0)=\) & 1.552 & COND = & 72.633 & MAX: HAT & 0.485 \\
\hline RSTUDENT = & 2.703 & DF & -2. & & \\
\hline
\end{tabular}
\begin{tabular}{lllrl} 
COEF & ESTIMATE & STER & TSTAT & PROB>ET \\
& & & & \\
C21A & 0.363 & 0.205 & 1.768 & 0.101 \\
C21B & 0.93 & 0.031 & 30.018 & 0. \\
C21C & 0.042 & 0.021 & 2.013 & 0.065
\end{tabular}
```

ORDINARY LEAST SQUARES
MODEL NAME: A85. 1

29: $\operatorname{LOG}($ FAGII $)=C 22 A+C 22 B \star L O G(P I)$

ORDINARY LEAST SQUARES

MODEL NAME: A85.1

33: \quad ATT $=$ C28A + C28B*(EM99-EMGM) + C28C*EMCNX1

NOB $=19$		NOVAR $=3$		RANGE:	1961 TO 1979
RSQ $=$	0.995	CRSQ =	0.994	F (2/16)	$=1518.35$
PROB $>\mathrm{F}=$	0.	SER =	4.57	SSR =	334.102
$\mathrm{DW}(0)=$	2.806	COND =	7.273	MAX: HAT	$=0.524$
RSTUDENT =	-3.774	DFFITS =	3.508		

COEF	ESTIMATE	STER	TSTAT	PROB>
C28A	80.187	3.35	23.935	0.
C28B	1.092	0.031	35.564	0.
C28C	3.15	0.278	11.343	0.

ORDINARY LEAST SQUARES

MODEL NAME: A85.1

34: $\mathrm{LOG}(\mathrm{ATD} / \mathrm{ATT})=\mathrm{C} 23 \mathrm{~A}+\mathrm{C} 23 \mathrm{~B} * \mathrm{LOG}(\mathrm{AGI} / \mathrm{ATT})+\mathrm{C} 23 \mathrm{C} * \mathrm{D} 69+\mathrm{C} 23 \mathrm{D} * \mathrm{D} 72$

ORDINARY LEAST SQUARES
MODEL NAME: A85. 1

```
38: LOG(RTISGA1) = C24A-TXBASE+C24B*(1-TXRT)*LOG(ATI.TT)
```

NOB $=16$	NOVAR $=2$			RANGE:	1961 TO 1976	
RSQ $=$	0.971 CR		0.969	F(1/14)) $=$	469.863
PROB>F $=$	0. SER		0.098	SSR =		0.136
$\mathrm{DW}(0)=$	1.575 CO		6.202	MAX: HAT	T $=$	0.367
RSTUDENT =	3.377 DF	$=$	0.964			
COEF	ESTIMATE	STER	TSTA		PROB>	
C24A	-3.451	0.078	-44.0		0.	
C24B	1.199	0.055	21.6		0.	-

ORDINARY LEAST SQUARES

```
MODEL NAME: A85.1
```


44: RTISCP $=C 105 \mathrm{~A}+\mathrm{C} 105 \mathrm{~B} \star \mathrm{PI} 8+\mathrm{C} 105 \mathrm{C} *$ RTISC

NOB $=22$		NOVAR $=3$		RANGE:	1961	TO 1982
RSQ =	0.984	CRSQ =	0.982	F(2/19)	$=\quad 5$	584.988
PROB $>\mathrm{F}=$	0.	SER =	7.909	SSR =		1188.6
$\mathrm{DW}(0)=$	1.692	COND =	3.405	MAX: HAT	=	0.459
RSTUDENT =	3.859	DFFITS =	-2.184			

COEF	ESTIMATE	STER	TSTAT	PROB>ET£
C105A	3.337	2.86	1.167	0.258
C105B	0.01	0.001	11.595	0.
C105C	0.828	0.032	25.786	0.

Institute of Social and Economic Research
 MAP Documentation

 December 1984, Model A85.1```
ORDINARY LEAST SQUARES
MODEL NAME: A85.1
49: BL = C39A+C39B*(XX98-XXP9)
```



```
\begin{tabular}{lrlcc}
COEF & ESTIMATE & STER & TSTAT & PROB>£TE \\
& & & & \\
C39A & -6.873 & 1.022 & -6.728 & 0. \\
C39B & 0.016 & 0.001 & 24.772 & 0.
\end{tabular}
```

ORDINARY LEAST SQUARES

MODEL NAME: A85. 1

50: $\quad$ LOG(GR) $=C 40 A+C 40 B * L O G(X X 98-X X P 9)$


ORDINARY LEAST SQUARES

MODEL NAME: A85.1

53: LOG(RTBS2*10**3/BL(-1)) = C29A+G29B*LOG(GTR(-1)*10**3/BL(-1))


ORDINARY LEAST SQUARES
MODEL NAME: A85.1

55: $\quad$ TPTV $=\mathrm{C} 38 \mathrm{~A}+\mathrm{C} 38 \mathrm{~B} * \mathrm{POP}$

| $\mathrm{NOB}=19$ |  | NOVAR $=2$ |  | RANGE: | 1961 | T0 1979 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RSQ = | 0.981 | CRSQ = | 0.979 | F(1/17) | $=$ | 860.927 |
| PROB $>\mathrm{F}=$ | 0. | SER = | 9.58 | SSR = |  | 1560.13 |
| DW(0) $=$ | 1.328 | COND = | 10.487 | MAX: HAT | $=$ | 0.19 |
| RSTUDENT = | 2.31 | DFFITS = | 0.959 |  |  |  |


| COEF | ESTIMATE | STER | TSTAT | PROB>ETE |
| :--- | ---: | ---: | ---: | :---: |
|  |  |  |  |  |
| C38A | -182.034 | 11.629 | -15.654 | 0. |
| C38B | 1.051 | 0.036 | 29.342 | 0. |

Institute of Social and Economic Research MAP Documentation December 1984, Model A85.1

## ORDINARY LEAST SQUARES

MODEL NAME: A85.1

56: LOG(AHG) $=$ C37A+C37B*LOG(PR.PI)

| $\mathrm{NOB}=11$ | NOVAR $=2$ |  |  | RANGE: 1966 TO 1976 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RSQ = | 0.718 CR |  | 0.686 | F(1/9) | $=2$ | 22.876 |
| PROB $>\mathrm{F}=$ | 0.001 SER |  | 0.085 | SSR = |  | 0.065 |
| $\operatorname{DW}(0)=$ | 1.574 CO |  | 84.224 | MAX: HAT | $T=$ | 0.373 |
| RSTUDENT $=$ | 4.75 DF | $=$ | 3.659 |  |  |  |
| COEF | ESTIMATE | STER | TSTA |  | PROB>£T£ |  |
| C37A | -5.494 | 1.08 | -5.08 |  | 0. |  |
| C37B | 0.643 | 0.134 | 4.78 |  | 0. |  |

ORDINARY LEAST SQUARES
MODEL NAME: A85.1

58: LOG(RTMF) $=C 46 A+C 46 B * L O G(T H G)$

| NOB $=11$ |  | NOVAR $=2$ |  | RANGE: | T0 1976 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| RSQ = | 0.987 | CRSQ = | 0.985 | $F(1 / 9)=$ | 672.217 |
| PROB $>\mathrm{F}=$ | 0. | SER = | 0.048 | SSR = | 0.021 |
| $\mathrm{DW}(0)=$ | 0.858 | COND = | 22.667 | MAX: HAT | 0.498 |
| RSTUDENT = | -1.999 | DFFITS = | -1.079 |  |  |


| COEF | ESTIMATE | STER | TSTAT | PROB>£TE |
| :--- | ---: | :---: | :---: | :---: |
| C46A | -1.823 | 0.164 | -11.125 | 0. |
| C46B | 0.907 | 0.035 | 25.927 | 0. |



Institute of Social and Economic Research MAP Documentation December 1984, Model A85.1

ORDINARY LEAST SQUARES
MODEL NAME: A85.1

```
61: LOG(RTCIS) = C49A+C49B*LOG(R.DPI(-1))
```

| $\mathrm{NOB}=19$ | NOVAR $=2$ |  |  | RANGE: | 1962 TO 1980 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RSQ $=$ | 0.98 CR |  | 0.979 | F(1/17) | $)=8$ | 832.882 |
| PROB $>$ F = | $0 . \mathrm{SE}$ |  | 0.046 | SSR = |  | 0.036 |
| DW(0) = | 2.387 CO |  | 31.864 | MAX: HAT | $T=$ | 0.173 |
| RSTUDENT $=$ | 3.206 DF | $=$ | 1.022 |  |  |  |
| COEF | ESTIMATE | STER | TSTA |  | PROB>ETE |  |
| C49A | -3.704 | 0.167 | -22.1 |  | 0 |  |
| C49B | 0.726 | 0.025 | 28.8 |  | 0 |  |

ORDINARY LEAST SQUARES
MODEL NAME: A85. 1

62: RTSS $=$ IF YR GT 1980 THEN 0 ELSE C50A+C50B* (EM99-EMGM)

| NOB $=19$ | NOVAR $=2$ |  |  | RANGE: | 1962 T | TO 1980 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RSQ $=$ | 0.996 CR |  | 0.996 | $F(2 / 17)$ | = | NA |
| PROB $>$ F $=$ | NA SE |  | 0.111 | SSR = |  | 0.21 |
| $\operatorname{DW}(0)=$ | 1.291 CO |  | 5.617 | MAX: HAT | T $=$ | 0.175 |
| RSTUDENT $=$ | -1.999 DF | $=$ | -0.742 |  |  |  |
| COEF | ESTIMATE | STER | TSTA | T PR | PROB>ETE |  |
| C50A | -0.314 | 0.074 | -4.2 |  | 0. |  |
| C50B | 0.015 | 0.001 | 26.9 |  | 0. |  |



# Institute of Social and Economic Research MAP Documentation December 1984，Model A85．1 

ORDINARY LEAST SQUARES
MODEL NAME：A85．1

69：LOG（RMIS）＝C35A＋C35B＊LOG（PI3（－1））
$\mathrm{NOB}=18 \quad$ NOVAR $=2 \quad$ RANGE： 1962 TO 1964，1968
TO 1982
RSQ＝
0．648 CRSQ＝
$0.626 \mathrm{~F}(1 / 16)=29.492$
PROB $>$ F $=$
0 ．SER＝
DW（1）$=\quad 0.933$ COND $=$
RSTUDENT＝
2．405 DFFITS＝
0.334 SSR＝
1.788

20．962 MAX：HAT＝
0.202
0.874

```
MODEL NAME: A85.I
```

| COEF | ESTIMATE | STER | TSTAT | PROB＞ETE |
| :--- | ---: | :---: | :---: | :---: |
|  |  |  |  |  |
| C35A | -1.946 | 0.828 | -2.351 | 0.032 |
| C35B | 0.592 | 0.109 | 5.431 | 0. |

ORDINARY LEAST SQUARES

MODEL NAME：A85．1

87：LOG（RSFFS）$=$ C58A + C58B＊LOG（POP（ -1 ）$)$


## ORDINARY LEAST SQUARES

MODEL NAME: A85. 1

125: EXINREC $=C 17 A+C 17 B *(E X O P S-R L T 99)+C 17 C * D 82$

| INOB $=12$ |  | NOVAR $=3$ |  | RANGE: 1971 TO 1982 |
| :--- | :--- | :--- | :--- | :--- |
| RSQ $=$ | 0.95 | CRSQ $=$ | 0.939 | F (2/9) $=$ |
| 1PROB $>F=$ | 0. | SER $=$ | 14.496 | SSR $=$ |
| IWW $(O)=$ | 2.273 | COND $=$ | 5.09 | MAX:HAT $=$ |
| RSTUDENT $=$ | NA | DFFITS $=$ | NA |  |


| COEF | ESTIMATE | STER | TSTAT | PROB>ETE: |
| :--- | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
| C17A | -10.98 | 9.714 | -1.13 | 0.288 |
| C17B | 0.12 | 0.015 | 7.766 | 0. |
| C17C | 76.445 | 18.574 | 4.116 | 0.003 |

ORDINARY LEAST SQUARES
MODEL NAME: A85. 1

126: EXINRECB $=$ C108A + C108B*EXINREC


Institute of Social and Economic Research MAP Documentation December 1984, Model A85.1

ORDINARY LEAST SQUARES
MODEL NAME: A85.1

```
127: LOG(EXJUS4) = C20A+C20B*LOG(EXOPS)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\mathrm{NOB}=20\) & & NOVAR \(=2\) & & RANGE: & 1962 T0 1981 \\
\hline RSQ \(=\) & 0.995 & CRSQ = & 0.995 & F (1/18) & \(=3726.93\) \\
\hline PROB \(>\mathrm{F}=\) & 0. & SER = & 0.071 & SSR = & 0.092 \\
\hline \(\operatorname{DW}(0)=\) & 1.138 & COND = & 12.063 & MAX: HAT & \(=0.195\) \\
\hline RSTUDENT = & -2.599 & DFFITS = & -1. 28 & & \\
\hline
\end{tabular}
```

| COEF | ESTIMATE | STER | TSTAT | PROB> |
| :--- | ---: | ---: | ---: | ---: |
|  |  |  |  |  |
| C2OA | -2.683 | 0.097 | -27.692 | 0. |
| C20B | 1.017 | 0.017 | 61.049 | 0. |

ORDINARY LEAST SQUARES

MODEL NAME: A85. 1

128: LOG(EXPPS4) $=$ C91A + C91B*LOG (EXOPS $)$


```
MODEL NAME: A85.1
```

129: LOG(EXNRS4) $=$ C93A + C93B*LOG (EXOPS $)$

| NOB $=20$ |  | NOVAR $=2$ |  | RANGE: | 1962 TO 1981 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| RSQ = | 0.991 | CRSQ = | 0.99 | F(1/18) | $=1936.61$ |
| PROB $>\mathrm{F}=$ | 0. | SER = | 0.094 | SSR = | 0.159 |
| $\mathrm{DW}(0)=$ | 0.807 | COND = | 12.063 | MAX: HAT | $=0.195$ |
| RSTUDENT = | 2.436 | DFFITS = | 1.096 |  |  |


| COEF | ESTIMATE | STER | TSTAT | PROB>ETE |
| :--- | ---: | :---: | :---: | :---: |
|  |  |  |  |  |
| C93A | -2.526 | 0.128 | -19.795 | 0. |
| C93B | 0.966 | 0.022 | 44.007 | 0. |

ORDINARY LEAST SQUARES
MODEL NAME: A85. 1

130: LOG(EXHES4) $=$ C94A + C94B*LOG(EXOPS)

| $\mathrm{NOB}=20$ |  | NOVAR $=2$ |  | RANGE: | 1962 | T0 1981 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RSQ $=$ | 0.976 | CRSQ = | 0.974 | F (1/18) | = | 719.323 |
| PROB $>\mathrm{F}=$ | 0. | SER = | 0.162 | SSR = |  | 0.471 |
| DW(0) = | 0.45 | COND $=$ | 12.063 | MAX: HAT | $=$ | 0.195 |
| RSTUDENT = | 1.932 | DFFITS = | 0.775 |  |  |  |


| COEF | ESTIMATE | STER | TSTAT | PROB>ETE |
| :--- | ---: | :--- | :---: | :---: |
|  |  |  |  |  |
| C94A | -2.815 | 0.22 | -12.817 | 0. |
| C94B | 1.013 | 0.038 | 26.82 | 0. |

## ORDINARY LEAST SQUARES

MODEL NAME: A85.1

131: LOG(EXSSS4) $=$ C96A C96B*LOG(EXOPS)

| $\mathrm{NOB}=20$ |  | NOVAR $=2$ |  | RANGE: | 1962 TO 1981 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| RSQ $=$ | 0.99 | CRSQ = | 0.989 | F(1/18) | $=1758.22$ |
| PROB $>\mathrm{F}=$ | 0. | SER = | 0.114 | SSR = | 0.233 |
| $\mathrm{DW}(0)=$ | 1.072 | COND $=$ | 12.063 | MAX: HAT | $=0.195$ |
| RSTUDENT = | -2.4 | DFFITS = | -0.966 |  |  |


| COEF | ESTIMATE | STER | TSTAT | PROB |
| :--- | ---: | ---: | ---: | ---: |
|  |  |  |  |  |
| C96A | -2.896 | 0.154 | -18.759 | 0. |
| C96B | 1.114 | 0.027 | 41.931 | 0. |

ORDINARY LEAST SQUARES
MODEL NAME: A85.1

132: LOG(EXEDS4) $=C 19 A+C 19 B *$ LOG (EXOPS $)$


## ORDINARY LEAST SQUARES

MODEL NAME: A85.1

133: LOG(EXCDS4) $=C 97 A+C 97 B * L O G(E X O P S)$

| $\mathrm{NOB}=20$ |  | NOVAR $=2$ |  | RANGE: | 1962 | TO 1981 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RSQ $=$ | 0.981 | CRSQ = | 0.98 | F(1/18) | = | 930.683 |
| PROB $>$ F $=$ | 0. | SER = | 0.178 | SSR = |  | 0.569 |
| $\mathrm{DW}(0)=$ | 1.496 | COND = | 12.063 | MAX: HAT | $=$ | 0.195 |
| RSTUDENT $=$ | 3.353 | DFFITS = | 1.651 |  |  |  |


| COEF | ESTIMATE | STER | TSTAT | PROB>ETE |
| :--- | ---: | ---: | ---: | ---: |
|  |  |  |  |  |
| C97A | -4.638 | 0.241 | -19.217 | 0. |
| C97B | 1.267 | 0.042 | 30.507 | 0. |

## ORDINARY LEAST SQUARES

MODEL NAME: A85. 1

134: LOG(EXTRS4) $=$ C98A C98B*LOG(EXOPS)

| $\mathrm{NOB}=20$ |  | NOVAR $=2$ |  | RANGE: | 1962 TO 1981 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| RSQ $=$ | 0.998 | CRSQ = | 0.997 | F(1/18) | $=7372.56$ |
| PROB $>\mathrm{F}=$ | 0. | SER = | 0.041 | SSR = | 0.031 |
| DW(0) = | 1.375 | COND = | 12.063 | MAX: HAT | $=0.195$ |
| RSTUDENT = | -1.884 | DFFITS = | -0.638 |  |  |


| COEF | ESTIMATE | STER | TSTAT | PROB>£T£ |
| :--- | :---: | :--- | :---: | :---: |
|  |  |  |  |  |
| C98A | -1.027 | 0.056 | -18.221 | 0. |
| C98B | 0.832 | 0.01 | 85.864 | 0. |

# Institute of Social and Economic Research 

MAP Documentation
December 1984, Model A85.1

ORDINARY LEAST SQUARES

MODEL NAME: A85.1

135: LOG(EXGGS4) $=C 99 A+C 99 B *$ LOG(EXOPS)

| $\mathrm{NOB}=20$ | NOVAR $=2$ |  |  | RANGE: 1962 TO 1981 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RSQ $=$ | 0.916 CRS |  | 0.912 | F (1/18) | $=197$ | 197.46 |
| PROB $>\mathrm{F}=$ | 0. SER |  | 0.249 | SSR = |  | 1.117 |
| $\mathrm{DW}(0)=$ | 1.734 CON |  | 12.063 | MAX: HAT | [ $=$ | 0.195 |
| RSTUDENT = | 4.891 DFF | $=$ | 1.656 |  |  |  |
| COEF | ESTIMATE | STER | TSTAT |  | PROB>ETE |  |
| C99A | -1.318 | 0.338 | -3.89 |  | 0.001 |  |
| C99B | 0.818 | 0.058 | 14.05 |  | 0 。 |  |

ORDINARY LEAST SQUARES

MODEL NAME: A85.1

152: EXPRCDS $=$ C7A + C7B*EXCDSNT


## ORDINARY LEAST SQUARES

MODEL NAME: A85. 1
1.53: EXPREDS1 = C1A+C1B*EXEDSNT+C1C*D61.75*EXEDSNT

| $\mathrm{NOB}=17$ | NOVAR $=3$ |  |  | RANGE: 1965 TO |
| :---: | :---: | :---: | :---: | :---: |
| ESQ $=$ | 0.981 CR |  | 0.979 | $F(2 / 14)=36$ |
| FROB $>\mathrm{F}=$ | $0 . \quad S E$ |  | 1.534 | SSR = |
| $\operatorname{DW}(0)=$ | 1.8 CO |  | 4.639 | MAX: $\mathrm{HAT}=$ |
| ESTUDENT = | 3.103 DF | $=$ | -1.374 |  |
| COEF | ESTIMATE | STER | TSTAT | P PROB $>E T E$ |
| C1A | 0.427 | 0.893 | 0.478 | -0.64 |
| C1B | 0.05 | 0.005 | 9.975 | - 0 |
| C1C | 0.371 | 0.014 | 26.984 | 0. |

ORDINARY LEAST SQUARES

MODEL NAME: A85.1

L54: EXPRSSS = C2A+C2B*EXSSS

| NOB $=20$ |  | NOVAR $=2$ |  | RANGE: | 1962 TO 1981 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| RSQ $=$ | 0.978 | CRSQ = | 0.977 | F (1/18) | 797.781 |
| PROB $>\mathrm{F}=$ | 0. | SER = | 2.091 | SSR = | 78.666 |
| $\mathrm{DW}(0)=$ | 0.744 | COND = | 2.621 | MAX: HAT | 0.328 |
| RSTUDENT = | -3.526 | DFFITS = | -2.463 |  |  |


| COEF | ESTIMATE | STER | TSTAT | PROB>ET |
| :--- | :--- | :--- | ---: | :--- |
|  |  |  |  |  |
| C2A | 1.509 | 0.702 | 2.151 | 0.045 |
| C2B | 0.274 | 0.01 | 28.245 | 0. |

# Institute of Social 

 and Economic Research MAP DocumentationORDINARY LEAST SQUARES
MODEL NAME: A85.1

155: EXPRUA $=\mathrm{C} 32 \mathrm{~A}+\mathrm{C} 32 \mathrm{~B}^{*} \mathrm{EXUA}$


ORDINARY LEAST SQUARES
MODEL NAME: A85. 1

156: EXPRHES $=\mathrm{C} 3 \mathrm{~A}+\mathrm{C} 3 \mathrm{~B} *$ EXHES


```
Institute of Social
and Economic Research
MAP Documentation
December 1984, Model A85.1
```


## ORDINARY LEAST SQUARES

1HODEL NAME: A85.1

## 157: EXPRNRS $=\mathbf{C 4 A}+C 4 \mathrm{~B}^{\star}$ EXNRS

| NOB $=20$ | NOVAR $=2$ |  |  | RANGE: 1962 TO |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| RSQ = | 0.996 CR |  | 0.996 | F(1/18) | $)=4366$ |
| PROB $>$ F $=$ | $0 . \mathrm{SE}$ |  | 1.294 | SSR = |  |
| DW(0) = | 0.745 CO |  | 2.571 | MAX: HAT | T $=$ |
| RSTUDENT = | -2.317 DF | S $=$ | 0.943 |  |  |
| COEF | ESTIMATE | STER | TSTAT |  |  |
| C4A | -1.663 | 0.428 | -3.884 |  | 0.001 |
| C4B | 0.672 | 0.01 | 66.079 |  | 0 . |

ORDINARY LEAST SQUARES

MODEL NAME: A85.1

158: EXPRPPS $=C 5 A+C 5 B * E X P P S$

```
NOB=20
```

NOVAR $=2$

RANGE: 1962 TO 1981
RSQ $=$ 0.995 CRSQ =

PROB $>F=$
0 . SER =
$\mathrm{DW}(0)=$ 1.508 COND $=$ RSTUDENT $=\quad-7.039$ DFFITS $=$

TSTAT
0.686
58.917

PROB>£T£
0.502
0.

Institute of Social and Economic Research MAP Documentation December 1984, Model A85.1

## ORDINARY LEAST SQUARES

MODEL NAME: A85.1

## ORDINARY LEAST SQUARES

MODEL NAME: A85.1

160: EXPRJUS $=$ C6A+C6B*EXJUS


159: EXPRGGS $=C 8 A+C 8 B * E X G G S$

| NOB $=20$ | NOVAR $=2$ |  |  | RANGE: 1962 TO 1981 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RSQ = | 0.955 CR |  | 0.953 | F (1/18) | ) $=3$ | 385.656 |
| PROB $>\mathrm{F}=$ | $0 . \mathrm{SE}$ |  | 3.572 | SSR = |  | 229.687 |
| $\mathrm{DW}(0)=$ | 0.875 CO |  | 2.733 | MAX: HAT | $T=$ | 0.295 |
| RSTUDENT = | -3.077 DF |  | -1.067 |  |  |  |
| COEF | ESTIMATE | STER | TSTAT |  | PROB>£T£ |  |
| C8A | 1.144 | 1.237 | 0.924 |  | 0.368 |  |
| C8B | 0.456 | 0.023 | 19.638 |  | 0. |  |. 638

0

## ORDINARY LEAST SQUARES

MODEL NAME: A85.1

161: EXPRTRS $=C 9 A+C 9 B * E X T R S+C 9 C \star D 61.64$

| $1 \mathrm{SOB}=20$ |  | NOVAR $=3$ |  | RANGE: | 1962 TO 1981 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| RSQ = | 0.999 | CRSQ = | 0.998 | F(2/17) | 6220.39 |
| PROB>F = | 0 . | SER = | 0.97 | SSR = | 16.004 |
| DW ( 0 ) = | 0.895 | COND = | 3.658 | MAX: HAT | $=0.41$ |
| RRSTUDENT = | 2.754 | DFFITS $=$ | 0.878 |  |  |


| COEF | ESTIMATE | STER | TSTAT | PROB>ETE |
| :--- | ---: | :---: | :---: | :---: |
|  |  |  |  |  |
| C9A | -0.394 | 0.426 | -0.926 | 0.367 |
| C9B | 0.554 | 0.005 | 101.15 | 0. |
| C9C | -0.684 | 0.667 | -1.026 | 0.319 |

ORDINARY LEAST SQUARES

MODEL NAME: A85. 1

| NOB $=16$ |  | NOVAR $=3$ |  | RANGE: | 1965 TO 1980 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| RSQ $=$ | 0.998 | CRSQ = | 0.998 | F(2/13) | $=3104.13$ |
| PROB $>\mathrm{F}=$ | 0 . | SER = | 0.033 | SSR = | 0.015 |
| $\mathrm{DW}(0)=$ | 2.17 | COND $=$ | 15.491 | MAX: HAT | $=\quad 1$. |
| RSTUDENT = | 2.415 | DFFITS $=$ | 196.83 |  |  |

COEF ESTIMATE STER TSTAT PROB>ET£

| C55A | 0.17 | 0.063 | 2.693 | 0.018 |
| :--- | :--- | ---: | ---: | :--- |
| C55B | 0.979 | 0.013 | 77.392 | 0. |
| C55C | 0.044 | 0.035 | 1.249 | 0.234 |

## ORDINARY LEAST SQUARES

MODEL NAME: A85. 1

179: XXVHY $=$ C41A + C41B* $(E X H Y C A P+E X H Y C A P(-1))$

| HOB $=12$ |  | NOVAR $=2$ |  | RANGE: | 1964 | TO 1975 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RSQ $=$ | 0.788 | CRSQ = | 0.766 | F(1/10) | = | 37.088 |
| PROB $>\mathrm{F}=$ | 0. | SER = | 5.837 | SSR = |  | 340.691 |
| $\mathrm{DW}(0)=$ | 1.471 | COND = | 6.908 | MAX: HAT | $=$ | 0.451 |
| RSTUDENT = | 2.013 | DFFITS $=$ | 1.825 |  |  |  |


| COEF | ESTIMATE | STER | TSTAT | PROB $>$ ET |
| :--- | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
| C41A | -4.965 | 5.942 | -0.836 | 0.423 |
| C41B | 0.261 | 0.043 | 6.09 | 0. |

ORDINARY LEAST SQUARES
MODEL NAME: A85. 1

180: XXVNHY $=$ C42A+C42B* $(\operatorname{EXNHYCP}(-1)+E X S P C A P(-1)+R L T M C A P(-1)-$ EXCAPFR(-2)+EXNHYCP+EXSPCAP+RLTMCAP-EXCAPFR(-1))

| NOB $=11$ |  | NOVAR $=2$ |  | RANGE: |
| :--- | :--- | :--- | :--- | ---: |
| RSQ $=$ | 0.87 | CRSQ $=$ | 0.855 | TO 1975 |
| PROB $>F=$ | 0. | SER $=$ | 3.553 | SSR $=$ |
| DW $(O)=$ | 1.937 COND $=$ | 3.686 | MAX: HAT $=$ | 113.646 |
| RSTUDENT $=$ | 2.326 DFFITS $=$ | 0.736 |  | 0.333 |

COEF
ESTIMATE STER
TSTAT
PROB>ETE

C42A
0.925
2.12
0.022
0.436
0.673

C42B
0.172
0.022
7.759

0 .


NOB $=19$

PROB $>\mathrm{F}=$
$\operatorname{DW}(0)=$ RSTUDENT =

COEF

C18A
27.19
3.922
0.001
3.264
6.932
5.331
$-6.481$
0.

# Institute of Social 

 and Economic Research MAP Documentation December 1984, Model A85. 1
## ORDINARY LEAST SQUARES

MODEL NAME: A85. 1


## ORDINARY LEAST SQUARES

MODEL NAME: A85. 1

```
231: RLTVS4 = C63A+C63B*RTVS
```

| NOB $=21$ |  | NOVAR $=2$ |  | RANGE: | 1962 | T0 1982 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RSQ = | 0.815 | CRSQ = | 0.806 | F(1/19) | = | 83.859 |
| PROB $>\mathrm{F}=$ | 0. | SER = | 0.278 | SSR = |  | 1.465 |
| DW(0) = | 1.779 | COND = | 2.924 | MAX: HAT | $=$ | 0.221 |
| RSTUDENT = | 7.308 | DFFITS = | 3.314 |  |  |  |


| COEF | ESTIMATE | STER | TSTAT | PROB>£TE |
| :--- | ---: | :---: | :---: | :---: |
|  |  |  |  |  |
| C63A | -0.039 | 0.099 | -0.396 | 0.697 |
| C63B | 0.129 | 0.014 | 9.157 | 0. |

```
Institute of Social
and Economic Research
MAP Documentation
December 1984, Model A85.1
```


## ORDINARY LEAST SQUARES

MODEL NAME: A85. 1

242: RLTEF4 $=\mathrm{C} 36 \mathrm{~A}+\mathrm{C} 36 \mathrm{~F} * D 81.00+\mathrm{D} 71.00 * \mathrm{C} 36 \mathrm{~B}+\mathrm{BIU} * \mathrm{C} 36 \mathrm{C}+\mathrm{C} 36 \mathrm{D} * A D M S D$

| NOB $=20$ |  | NOVAR $=5$ |  | RANGE: | 1963 | T0 1982 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RSQ $=$ | 0.994 | CRSQ = | 0.993 | F(4/15) | $=$ | 658.896 |
| PROB $>\mathrm{F}=$ | 0. | SER = | 7.579 | SSR = |  | 861.632 |
| DW(0) = | 2.063 | COND = | 35.506 | MAX: HAT | $=$ | 0.523 |
| RSTUDENT = | 4.28 | DFEITS = | 4.481 |  |  |  |


| COEF | ESTIMATE | STER | TSTAT | PROB>ETE |
| :--- | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
| C36A | -46.974 | 19.186 | -2.448 | 0.027 |
| C36B | -126.31 | 14.095 | -8.962 | 0. |
| C36C | 7.969 | 0.581 | 13.723 | 0. |
| C36D | 1.067 | 0.305 | 3.501 | 0.003 |
| C36F | 93.45 | 9.487 | 9.851 | 0. |

ORDINARY LEAST SQUARES

MODEL NAME: A85. 1

269: ELED1 $=$ C11A + C11B*PI3(-1)

| NOB $=18$ | NOVAR $=2$ |  |  | RANGE: 1965 TO 1982 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| RSQ $=$ | 0.887 CR |  | 0.88 | $\mathrm{F}(1 / 16)=1$ | 125.094 |
| PROB $>$ F $=$ | 0.5 SE |  | 14.656 | SSR = 3 | 3436.97 |
| $\mathrm{DW}(0)=$ | 2.264 CO |  | 3.33 | MAX: HAT = | 0.339 |
| RSTUDENT = | -2.255 DF | S = | 0.812 |  |  |
| COEF | ESTIMATE | STER | tstat | P PROB>ETE |  |
| C11A | -2.51 | 6.271 | -0.4 | 0.694 |  |
| C11B | 0.024 | 0.002 | 11.185 | 50. |  |

Institute of Social and Economic Research MAP Documentation December 1984, Model A85.1

## ORDINARY LEAST SQUARES

MODEL NAME: A85.1

271: $E L B D=C 14 A+C 14 C * D 61.77 * G O B O N D L(-1)+C 14 B * \operatorname{GOBONDL}(-1)$

MODEL NAME: A85. 1
271: ELBD $=$ C14A+C14C*D61.77*G0BONDL(-1)+C14B*GOBONDL(-1)

## ORDINARY LEAST SQUARES

MODEL NAME: A85.1

273: ELNED1*100/PDRPI = C16A+C16B*WEALTH+C16C*(RLTRS+RLTT9+RLTMS)/PDRPI

| NOB $=18$ | NOVAR $=3$ |  |  | RANGE: 1965 T | то 1982 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| RSQ $=$ | 0.969 CR | $=$ | 0.964 | $F(2 / 15)=231$ | 231.851 |
| PROB $>\mathrm{F}=$ | 0. SER |  | 10.389 | SSR = 1 | 1618.98 |
| $\mathrm{DW}(0)=$ | 1.396 CO |  | 12.443 | MAX: $\mathrm{HAT}=$ | 0.796 |
| RSTUDENT = | -4.117 DF | TS $=$ | -1.428 |  |  |
| COEF | ESTIMATE | STER | TSTAT | PROB>£TE |  |
| C16A | -70.404 | 13.236 | -5.319 | 0. |  |
| C16B | 0.041 | 0.004 | 9.281 | 0 . |  |
| C16C | 137.48 | 13.422 | 10.243 | 0. |  |

## ORDINARY LEAST SQUARES

HODEL NAME: A85.1

## 278: $\operatorname{ELEDCP}=C 15 A+C 15 B \star E L E D$



ORDINARY LEAST SQUARES
MODEL NAME: A85.1

279: ELPERS $=C 12 A+C 12 B *(E L 99-E L E D C P-R L T M S-E L B D)$

| $\mathrm{NOB}=18$ |  | NOVAR $=2$ |  | RANGE: | 1965 TO 1982 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| RSQ $=$ | 0.988 | CRSQ = | 0.987 | F(1/16) | $=1273.59$ |
| PROB $>\mathbf{F}=$ | 0. | SER = | 16.274 | SSR = | 4237.48 |
| $\mathrm{DW}(0)=$ | 1.998 | COND = | 2.862 | MAX: HAT | $=0.367$ |
| RSTUDENT = | 6.012 | DFFITS = | 2.276 |  |  |


| COEF | ESTIMATE | STER | TSTAT | PROB>ETE |
| :--- | :---: | ---: | ---: | :--- |
|  |  |  |  |  |
| C12A | 7.173 | 6.159 | 1.165 | 0.261 |
| C12B | 0.524 | 0.015 | 35.687 | 0. |

## ORDINARY LEAST SQUARES

MODEL NAME: A85.1

295: PIDIR = C51A+C51B*(DPI+DPI (-1) $+\operatorname{DPI}(-2)+D P I(-3)+D P I(-4))$

| NOB $=18$ |  | R $=2$ |  | RANGE: 1965 TO 1982 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RSQ $=$ | 0.972 GR | $=$ | 0.97 |  |  |  |
| PROB $>\mathrm{F}=$ | $0 . \mathrm{SE}$ |  | 40.02 | SSR = |  | 25626.1 |
| $\mathrm{DW}(0)=$ | 0.499 CO | $=$ | 3.387 | MAX: HAT | $T=$ | 0.295 |
| RSTUDENT = | 2.547 DF | S $=$ | 1.469 |  |  |  |
| COEF | ESTIMATE | STER | TSTAT |  | PROB>£T£ |  |
| C51A | -80.449 | 17.367 | -4.632 |  | 0. |  |
| C51B | 0.035 | 0.002 | 23.418 |  | 0 。 |  |

ORDINARY LEAST SQUARES

MODEL NAME: A85.1

296: PITRAN/PDRPI = C34A+C34B*POP+C34C*D61.72+EXTRNS/PDRPI

| $\mathrm{NOB}=21$ |  | NOVAR $=3$ |  | RANGE: | 196 | T0 1981 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RSQ $=$ | 0.94 | CRSQ = | 0.934 | F(2/17) | $=$ | 141.826 |
| PROB $>\mathrm{F}=$ | 0. | SER = | 0.133 | SSR = |  | 0.317 |
| DW(0) $=$ | 0.69 | COND = | 27.956 | MAX: HAT | $=$ | 0.302 |
| RSTUDENT | 5.391 | DFFITS | 3.55 |  |  |  |


| COEF | ESTIMATE | STER | TSTAT | PROB>ET |
| :--- | ---: | ---: | ---: | ---: |
|  |  |  |  |  |
| C34A | 0.286 | 0.381 | 0.752 | 0.462 |
| C34B | 0.003 | 0.001 | 2.836 | 0.011 |
| C34C | -0.649 | 0.128 | -5.077 | 0. |

## ORDINARY LEAST SQUARES

NODEL NAME: A85. 1


ORDINARY LEAST SQUARES

14ODEL NAME: A85.1

299: PISSC $=$ C106A + C106B* (WS98-WSCNP)


Institute of Social and Economic Research
MAP Documentation
December 1984, Model A85.1

ORDINARY LEAST SQUARES
MODEL NAME: A85.1

| NOB $=20$ |  | $=4$ |  | RANGE: | 1961 TO 1979, | 1981 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RSQ $=$ | 0.639 CR |  | 0.571 | F (3/16) | $=9.442$ |  |
| PROB $>$ F $=$ | 0.001 SER |  | 8.595 | SSR = | 1182.01 |  |
| DW(1) = | 0.364 CO |  | 10.076 | MAX: HAT | $=1$. |  |
| RSTUDENT = | NA DF | S $=$ | NA |  | 1 |  |
| COEF | ESTIMATE | STER | TSTAT |  | ROB>ETE |  |
| C45A | 27.36 | 9.455 | 2.894 |  | 0.011 |  |
| C45B | 4.289 | 1.336 | 3.21 |  | 0.005 |  |
| C45C | 5.067 | 8.264 | 0.613 |  | 0.548 |  |
| C45D | -7.209 | 9.308 | -0.774 |  | 0.45 |  |

ORDINARY LEAST SQUARES
MODEL NAME: A85.1

309: PIRADJ*100/PDRPI $=$ C103A+C103B*EMCNX1+C103C*EM97

| NOB $=22$ | NOVAR $=3$ |  |  | RANGE: 1961 TO 1982 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| RSQ $=$ | 0.985 CR |  | 0.984 | $F(2 / 19)=627$ | 627.591 |
| PROB $>$ F = | 0 . SER |  | 11.961 | SSR = 27 | 2718.4 |
| $\mathrm{DW}(0)=$ | 2.151 CO |  | 5.905 | MAX: HAT = | 0.519 |
| RSTUDENT = | 5.597 DF |  | 5.816 |  |  |
| COEF | ESTIMATE | STER | TSTAT | P PROB>ETE |  |
| C103A | -19.903 | 7.014 | -2.838 | 80.011 |  |
| C103B | 15.911 | 0.62 | 25.673 | 30 |  |
| C103C | 0.707 | 0.06 | 11.834 | - 0 |  |

ORDINARY LEAST SQUARES
MODEL NAME: A85.1


ORDINARY LEAST SQUARES
MODEL NAME: A85. 1

337: LOG(EMCN1) $=\mathrm{C} 56 \mathrm{~A}+\mathrm{C} 56 \mathrm{C} *$ D61.67+C56B*LOG(XXCN1)
$\mathrm{NOB}=22$
RSQ $=$
PROB $>F=$
$\operatorname{DW}(0)=$
RSTUDENT =

NOVAR $=3$
0.998 CRSQ =

0 . SER =
1.221 COND =
-2.526 DFFITS $=$

RANGE: 1961 TO 1982
$0.998 F(2 / 19)=4949.89$
0.019 SSR $=\quad 0.007$
40.875 MAX:HAT $=0.227$ $-0.87$

| COEF | ESTIMATE | STER | TSTAT | PROB |
| :--- | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
| C56A | -2.866 | 0.078 | -36.594 | 0. |
| C56B | 1.083 | 0.016 | 65.99 | 0. |
| C56C | -0.067 | 0.013 | -5.34 | 0. |

Institute of Social
and Economic Research MAP Documentation December 1984, Model A85. 1

ORDINARY LEAST SQUARES

MODEL NAME: A85.1

342: LOG(WRCNNP/PDRPI) = C59A+C59F*D.80DEC6+C59B*LOG(WEUS/PDUSCPI)+C59C* LOG (1+EMCNRT) +C59D*LOG (1+EMCNRT (-1)) +C59E*LOG(1+EMCNRT ( -2 ) )

| NOB $=22$ RSO $=$ | NOVAR $=6$ |  | 0.911 | RANGE: 1961 TO 1982 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PROB $>\mathrm{F}=$ | $0 . \mathrm{SE}$ |  | 0.044 | SSR = |  | 0.031 |
| DW(0) $=$ | 1.36 CO |  | 5.906 | MAX: HAT | T = | 0.71 |
| RSTUDENT = | -2.409 DF | = | -1.358 |  |  |  |
| COEF | ESTIMATE | STER | TSTAT |  | PROB>£TE |  |
| C59A | 4.642 | 0.013 | 370.035 |  | 0. |  |
| C59B | 1.968 | 0.247 | 7.968 |  | 0. |  |
| C59C | 2.688 | 0.696 | 3.861 |  | 0.001 |  |
| C59D | 0.934 | 0.953 | 0.98 |  | 0.342 |  |
| C59E | 1.461 | 0.706 | 2.068 |  | 0.055 |  |
| C59F | 0.339 | 0.034 | 9.867 |  | 0 . |  |

ORDINARY LEAST SQUARES

MODEL NAME: A85.1

347: LOG(XXP9) $=$ C52A+C52B*LOG(EMP9)

| NOB $=22$ | NOVAR $=2$ |  |  | RANGE:$F(1 / 20)$ | 1961 TO 1982 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RSQ = | 0.96 CR |  | 0.958 |  | ) 4 | 477.805 |
| PROB $>\mathrm{F}=$ | 0. SE |  | 0.257 | SSR = |  | 1.325 |
| DW $(0)=$ | 0.834 CO |  | 3.371 | MAX: HAT | $T=$ | 0.186 |
| RSTUDENT = | 1.663 DF |  | -0.617 |  |  |  |
| COEF | ESTIMATE | STER | TSTAT |  | PROB>ETE |  |
| C52A | 3.704 | 0.101 | 36.799 |  | 0. |  |
| C52B | 1.804 | 0.083 | 21.859 |  | 0 . |  |

```
Institute of Social
and Economic Research
MAP Documentation
December 1984, Model A85.1
```


## ORDINARY LEAST SQUARES

hodel name: A85.1

```
348: LOG(WRP9/PDRPI) = C53A+C53F*D.80DEC6+C53D*D61.76+C53B*
 LOG(WEUS/PDUSCPI)+C53C*LOG(1+EMCNRT)
```

| NOB $=22$ |  | NOVAR $=5$ |  | RANGE: | 196 | то 1982 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RSQ $=$ | 0.957 | CRSQ $=$ | 0.946 | F(4/17) | = | 93.531 |
| PROB $>\mathrm{F}=$ | 0. | SER = | 0.052 | SSR = |  | 0.046 |
| DW(0) = | 1.478 | COND $=$ | 6.162 | MAX: HAT | = | 0.502 |
| RSTUDENT = | 2.525 | DFFITS $=$ | 1.197 |  |  |  |


| COEF | ESTIMATE | STER | TSTAT | PROB |
| :--- | :---: | :--- | ---: | ---: |
|  |  |  |  |  |
| C53A | 4.793 | 0.033 | 144.884 | 0. |
| C53B | 3.029 | 0.294 | 10.296 | 0. |
| C53C | 3.84 | 0.46 | 8.351 | 0. |
| C53D | -0.273 | 0.034 | -8.065 | 0. |
| C53F | 0.346 | 0.053 | 6.48 | 0. |

ORDINARY LEAST SQUARES
MODEL NAME: A85.1

350: XXMO $=$ C60A + C60B*R.DPI8N+C60C*D61.77

| NOB $=22$ |  | NOVAR $=3$ |  | RANGE: 1961 TO 1982 |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| RSQ $=$ | 0.98 | CRSQ $=$ | 0.978 | F $(2 / 19)=$ | 474.113 |
| PROB $=$ | 0. | SER $=$ | 2.066 | SSR $=$ | 81.109 |
| DW $(0)=$ | 1.058 COND $=$ | 11.092 | MAX:HAT $=$ | 0.276 |  |
| RSTUDENT $=$ | 2.767 DFFITS $=$ | 1.399 |  |  |  |


| COEF | ESTIMATE | STER | TSTAT | PROB>ETE |
| :--- | ---: | :---: | :---: | :---: |
|  |  |  |  |  |
| C60A | 9.491 | 2.379 | 3.99 | 0. |
| C60B | 0.024 | 0.001 | 16.499 | 0. |
| C60C | -10.672 | 1.457 | -7.322 | 0. |

Institute of Social and Economic Research
MAP Documentation
December 1984, Model A85. 1

ORDINARY LEAST SQUARES

MODEL NAME: A85.1

351: LOG(EMMO) $=\mathrm{C} 109 \mathrm{~A}+\mathrm{C109B}$ *LOG (XXMO)

| NOB $=22$ | NOVAR $=2$ |  |  | RANGE: 1961 TO 1982 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RSQ $=$ | 0.991 CR |  | 0.99 | F(1/20) | ) $=21$ | 2118.98 |
| PROB $>\mathrm{F}=$ | 0. SE |  | 0.045 | SSR = |  | 0.04 |
| DW(0) = | 1.063 CO |  | 10.529 | MAX: HAT | T $=$ | 0.151 |
| RSTUDENT = | 3.051 DF | $=$ | 1.031 |  |  |  |
| COEF | ESTIMATE | STER | TSTAT |  | PROB>£T£ |  |
| C109A | -1.922 | 0.051 | -37.879 |  | 0. |  |
| C109B | 0.755 | 0.016 | 46.032 |  | 0 . |  |

ORDINARY LEAST SQUARES

MODEL NAME: A85.1

352: LOG (XXMX2) $=C 61 A+C 61 B *$ LOG (EMMX2)

| $\mathrm{NOB}=22$ | NOVAR $=2$ |  |  | RANGE: 1961 TO 1982 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RSQ $=$ | 0.873 CR |  | 0.867 | F(1/20) | $)=137$ | 137.771 |
| PROB $>\mathrm{F}=$ | $0 . \mathrm{SE}$ |  | 0.172 | SSR = |  | 0.593 |
| DW(0) $=$ | 0.621 CO |  | 13.575 | MAX: HAT | $T=$ | 0.189 |
| RSTUDENT = | -2.422 DF |  | 0.779 |  |  |  |
| COEF | ESTIMATE | STER | TSTAT |  | PROB>£TE |  |
| $\begin{aligned} & \text { C61A } \\ & \text { C61B } \end{aligned}$ | 1.798 1.502 | 0.251 0.128 | 7.177 11.738 |  | 0. 0. |  |

Institute of Social and Economic Research MAP Documentation December 1984, Model A85.1

## ORDINARY LEAST SQUARES

MODEL NAME: A85.1

| NOB $=22$ |  | NOVAR $=5$ |  | range: | 1961 | то 1982 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RSQ $=$ | 0.725 | CRSQ $=$ | 0.661 | F(4/17) | = | 11.222 |
| PROB>F $=$ | 0. | SER = | 0.043 | SSR $=$ |  | 0.031 |
| $\mathrm{DW}(0)=$ | 1.472 | COND $=$ | 2.94 | mAX: hat |  | 0.654 |
| RSTUDENT = | -1.755 | DFFITS $=$ | 1.009 |  |  |  |
| COEF | ESTIMAT | E STER | tstat |  | PROB>ETE |  |
| C62A | 4.138 | 0.012 | 350.027 |  | 0. |  |
| C62B | 1.227 | 0.236 | 5.188 |  | 0. |  |
| C62C | 0.659 | 0.523 | 1.26 |  | 0.225 |  |
| C62D | 0.842 | 0.526 | 1.599 |  | 0.128 |  |
| C62F | 0.121 | 0.034 | 3.613 |  | 0.002 |  |

ORDINARY LEAST SQUARES
MODEL NAME: A85.1

360: XXTNT = C64A+C64B*R.DPI8X+C64D*R.DPI8X*R.DPI8X(-1)+C64C*R.DPI8N+ C64E*D71.73

| NOB $=21$ |  | NOVAR $=5$ |  | RANGE: | 1962 | T0 1982 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RSQ $=$ | 0.985 | CRSQ = | 0.982 | F(4/16) | = | 268.93 |
| PROB $>\mathrm{F}=$ | 0. | SER = | 6.381 | SSR $=$ |  | 651.472 |
| $\mathrm{DW}(0)=$ | 1.586 | COND = | 6.443 | MAX: hat | $=$ | 0.908 |
| RSTUDENT = | -6.068 | DFFITS $=$ | -3.999 |  |  |  |


| COEF | ESTIMATE | STER | TSTAT | PROB>ETE |
| :--- | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
| C64A | 18.96 | 3.822 | 4.961 | 0. |
| C64B | 0.204 | 0.032 | 6.401 | 0. |
| C64C | 0.099 | 0.004 | 27.009 | 0. |
| C64D | -0.001 | 0. | -3.685 | 0.002 |
| C64E | -8.635 | 4.038 | -2.139 | 0.048 |

Institute of Social and Economic Research MAP Documentation December 1984, Model A85.1

ORDINARY LEAST SQUARES
MODEL NAME: A85.1

361: LOG(EMTNT) $=$ C65A + C65B*LOG(XXTNT)

| $N \mathrm{NOB}=21$ |  | NOVAR $=2$ |  | RANGE: | 1962 то 1982 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| RSQ $=$ | 0.99 | CRSQ = | 0.989 | F(1/19) | 1796.79 |
| PROB $>\mathrm{F}=$ | 0. | SER = | 0.036 | SSR = | 0.025 |
| $\mathrm{DW}(0)=$ | 1.761 | COND $=$ | 24.018 | MAX: HAT | $=0.162$ |
| RSTUDENT = | -3.639 | DFFITS $=$ | -1.307 |  |  |
| COEF | EStIMAT | E STER | tStat |  | ROB> $\mathrm{ETE}^{\text {P }}$ |
| $\begin{aligned} & \mathrm{C} 65 \mathrm{~A} \\ & \mathrm{C} 65 \mathrm{~B} \end{aligned}$ | $\begin{array}{r} -2.094 \\ 0.845 \end{array}$ | 0.094 0.02 | $\begin{array}{r} -22.206 \\ 42.389 \end{array}$ |  | $\begin{aligned} & 0 . \\ & 0 . \end{aligned}$ |

ORDINARY LEAST SQUARES
MODEL NAME: A85.1

366: LOG(WRT9/PDRPI) = C66A+C66F*D.80DEC6+C66D*D61.76+C66B* LOG (WEUS /PDUSCPI) +C66C*LOG (1+EMCNRT) +C66E*LOG (1+EMCNRT ( -1 ) )

| NOB $=22$ |  | NOVAR $=6$ |  | RANGE: | 1961 TO 1982 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| RSQ $=$ | 0.955 | CRSQ = | 0.941 | F(5/16) | 67.919 |
| PROB $>$ F $=$ | 0. | SER = | 0.047 | SSR = | 0.035 |
| $\mathrm{DW}(0)=$ | 1.797 | COND = | 9.121 | MAX: HAT | $=0.691$ |
| RSTUDENT = | 2.149 | DFEITS $=$ | -2.025 |  |  |


| COEF | ESTIMATE | STER | TSTAT | PROB>E |
| :--- | ---: | :--- | ---: | :--- |
|  |  |  |  |  |
| C66A | 4.379 | 0.039 | 113.198 | 0. |
| C66B | 1.745 | 0.263 | 6.623 | 0. |
| C66C | 5.763 | 0.672 | 8.577 | 0. |
| C66D | -0.255 | 0.04 | -6.383 | 0. |
| C66E | -0.903 | 0.755 | -1.195 | 0.249 |
| C66F | 0.182 | 0.054 | 3.345 | 0.004 |


ORDINARY LEAST SQUARES
MODEL NAME: A85. 1
369: $\operatorname{LOG}(E M C M)=C 69 A+C 69 B^{\star} \operatorname{LOG}(X X C M)$

| WOB $=22$ |  | NOVAR $=2$ |  | RANGE: | 1961 TO 1982 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ]RSQ = | 0.968 | CRSQ = | 0.967 | F(1/20) | 607.498 |
| PROB $>\mathrm{F}=$ | 0. | SER = | 0.065 | SSR = | 0.083 |
| $\mathrm{DW}(0)=$ | 0.667 | COND = | 17.694 | MAX: HAT | 0.163 |
| RSTUDENT = | 2.076 | DFFITS = | 0.6 |  |  |


| COEF | ESTIMATE | STER | TSTAT | PRO |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
| C69A | -2.014 | 0.122 | -16.48 | 0. |
| C69B | 0.663 | 0.027 | 24.647 | 0. |

ORDINARY LEAST SQUARES
MODEL NAME: A85.1

370: LOG(WRCM/PDRPI) = C70A+C70E*D61.70+C70F*D.80DEC6+C70B* LOG(WEUS/PDUSCPI)+C70C*LOG(1+EMCNRT (-2)) +C70D*LOG(1+EMCNRT(-1))

| $N O B=22$ |  | NOVAR $=6$ |  | RANGE: |  | TO 1982 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RSQ | 0.721 | CRSQ = | 0.634 | F(5/16) | = | 8.265 |
| PROB>F $=$ | 0.001 | SER = | 0.047 | SSR $=$ |  | 0.035 |
| $\mathrm{DW}(0)=$ | 1.771 | COND $=$ | 6.192 | MAX:HAT | $=$ | 0.657 |
| RSTUDENT | 2.426 | DFFITS | 1 |  |  |  |


| COEF | ESTIMATE | STER | TSTAT | PROB>ETE |
| :--- | :--- | ---: | ---: | ---: |
|  |  |  |  |  |
| C70A | 4.549 | 0.028 | 161.794 | 0. |
| C70B | 0.71 | 0.342 | 2.075 | 0.054 |
| C70C | 1.306 | 0.586 | 2.228 | 0.041 |
| C70D | 1.18 | 0.601 | 1.964 | 0.067 |
| C70E | 0.033 | 0.033 | 1.014 | 0.326 |
| C70F | 0.194 | 0.054 | 3.615 | 0.002 |

ORDINARY LEAST SQUARES
MODEL NAME: A85.1

372: $\mathrm{XXPU}=\mathrm{C} 72 \mathrm{~A}+\mathrm{C} 72 \mathrm{~B} * \mathrm{R} . \mathrm{DPI} 8 \mathrm{~N}(-1)+\mathrm{C} 72 \mathrm{C} * \mathrm{R} . \mathrm{DPI} 8 \mathrm{X}+\mathrm{C} 72 \mathrm{D} * \mathrm{R} . \operatorname{DPI8N(-2)}$

| $\mathrm{NOB}=20$ | NOVAR $=4$ |  |  | RANGE: 1963 TO 1982 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RSQ $=$ | 0.974 CR |  | 0.969 | F (3/16) | ) $=2$ | 201.927 |
| PROB $>\mathrm{F}=$ | $0 . \mathrm{SE}$ | SER = | 1.975 | SSR = |  | 62.423 |
| $\mathrm{DW}(0)=$ | 1.868 CO | COND = | 45.001 | MAX: HAT | $T=$ | 0.612 |
| RSTUDENT = | 2.326 DF | $S=$ | 2.073 |  |  |  |
| COEF | ESTIMATE | STER | TSTAT |  | PROB>ETE |  |
| C72A | 5.885 | 1.222 | 4.815 |  | 0. |  |
| C72B | 0.024 | 0.008 | 3.033 |  | 0.008 |  |
| C72C | -0.005 | 0.006 | -0.736 |  | 0.472 |  |
| C72D | 0.005 | 0.008 | 0.621 |  | 0.543 |  |


$\mathrm{NOB}=22$
PROB $>\mathrm{F}=$
$\mathrm{DW}(0)=$
RSTUDENT =
$1.324 \operatorname{COND}=$
3.179 DFFITS $=$

TSTAT
95.687 0.
1.074 0.008
6.727

## ORDINARY LEAST SQUARES

MODEL NAME：A85．1

```
376: XXDW = C71A+C71B*R.DPI8N+C71C*R.DPI8X+C71D*R.DPI8X(-1)*
 R.DPI8X+C71E*WEALTH(-1)*POP(-1)
```

| $\mathrm{NOB}=18$ |  | NOVAR $=5$ |  | RANGE： | 1965 | TO 1982 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RSQ $=$ | 0.99 | CRSQ＝ | 0.987 | F（4／13） | $=$ | 330.132 |
| PROB $>\mathrm{F}=$ | 0. | SER＝ | 4.128 | SSR $=$ |  | 221.53 |
| $\mathrm{DW}(0)=$ | 1.759 | COND＝ | 33.372 | MAX：HAT | $=$ | 0.909 |
| RSTUDENT＝ | 2.726 | DFFITS＝ | 4.11 |  |  |  |


| COEF | ESTIMATE | STER | TSTAT | PROB＞ET£ |
| :--- | :---: | :--- | ---: | :--- |
|  |  |  |  |  |
| C71A | -17.036 | 3.176 | -5.365 | 0. |
| C71B | 0.061 | 0.011 | 5.443 | 0. |
| C71C | 0.099 | 0.024 | 4.122 | 0.001 |
| C71D | -0. | 0. | -2.617 | 0.021 |
| C71E | 0. | 0. | 2.536 | 0.025 |

ORDINARY LEAST SQUARES
MODEL NAME：A85． 1

377：XXDRNT $=C 76 A+C 76 B^{*} R . D P I 8 N+C 76 C * R . D P I 8 X+C 76 D * R . D P I 8 N(-1)+$ C76E＊R．DPI8X（－1）

NOB $=21$
RSQ＝
PROB $>\mathrm{F}=$
$\mathrm{DW}(0)=$
RSTUDENT＝

NOVAR $=5$
0.995 CRSQ $=$

0．SER＝ 1.651 COND＝
-2.555 DFFITS $=$

33．372 MAX：HAT＝ 0.909 4.11

| COEF | ESTIMATE | STER | TSTAT | PROB＞ETE |
| :--- | ---: | :--- | :---: | :--- |
|  |  |  |  |  |
| C76A | -17.935 | 3.219 | -5.571 | 0. |
| C76B | 0.131 | 0.02 | 6.49 | 0. |
| C76C | 0.023 | 0.023 | 0.991 | 0.336 |
| C76D | 0.044 | 0.022 | 2.059 | 0.056 |
| C76E | -0.089 | 0.023 | -3.891 | 0.001 |


|  | Institute of Social <br> and Economic Research <br> MAP Documentation |
| :--- | :--- | :--- | :--- | :--- |
| December 1984, Model |  |

## ORDINARY LEAST SQUARES

MODEL NAME: A85.1

379: LOG(EMDRNT) $=$ C75A + C75B*LOG (XXDRNT)

| HOB $=22$ | NOVAR $=2$ |  |  | RANGE: 1961 TO 1982 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1RSQ $=$ | 0.998 CR |  | 0.998 F | F(1/20) | $=1183$ | . 1 |
| PROB $>$ F = | $0 . \mathrm{SE}$ |  | 0.021 S | SSR = |  | 0.009 |
| DW(0) = | 1.559 CO |  | 20.077 M | MAX: HAT | $=$ | 0.163 |
| RSTUDENT = | -2.923 DF | $=$ | -0.89 |  |  |  |
| COEF | ESTIMATE | STER | TSTAT |  | OBPETE |  |
| C75A | -2.297 | 0.045 | -51.285 |  | 0. |  |
| C75B | 0.993 | 0.009 | 108.808 |  | 0 . |  |

## ORDINARY LEAST SQUARES

MODEL NAME: A85. 1


| NOB $=22$ |  | NOVAR $=6$ |  | RANGE: | 196 | T0 1982 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RSQ $=$ | 0.874 | CRSQ = | 0.834 | F(5/16) | $=$ | 22.127 |
| PROB $>$ F $=$ | 0. | SER = | 0.026 | SSR = |  | 0.011 |
| $\mathrm{DW}(0)=$ | 1.645 | COND = | 5.906 | MAX: HAT | $=$ | 0.71 |
| RSTUDENT = | 3.448 | DFFITS = | 2.64 |  |  |  |


| COEF | ESTIMATE | STER | TSTAT | PROB>ETE |
| :--- | :--- | :--- | ---: | :--- |
|  |  |  |  |  |
| C78A | 4.346 | 0.007 | 582.165 | 0. |
| C78B | 0.711 | 0.147 | 4.838 | 0. |
| C78C | 1.695 | 0.414 | 4.093 | 0. |
| C78D | 0.144 | 0.567 | 0.254 | 0.803 |
| C78E | 0.587 | 0.42 | 1.396 | 0.182 |
| C78F | 0.083 | 0.02 | 4.084 | 0. |

ORDINARY LEAST SQUARES
MODEL NAME: A85. 1

382: LOG(WRDR/PDRPI) = C79A+C79F*D.80DEC6+C79B*LOG(WEUS/PDUSCPI) +(+C79D)* LOG(1+EMCNRT(-1))+C79E*LOG(1+EMCNRT (-2))

| NOB $=22$ | NOVAR $=5$ |  |  | RANGE: 1961 TO 1982 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| RSQ $=$ | 0.764 CR |  | 0.709 | $F(4 / 17)=$ | 13.788 |
| PROB>F $=$ | $0 . \mathrm{SE}$ |  | 0.026 | SSR = | 0.011 |
| $\mathrm{DW}(0)=$ | 2.147 CO |  | 2.991 | MAX: HAT $=$ | 0.655 |
| RSTUDENT = | -4.889 DF |  | 3.64 |  |  |
| COEF | ESTIMATE | STER | TSTAT | P PROB>ETE |  |
| C79A | 3.84 | 0.007 | 545.693 | 30 |  |
| C79B | 0.604 | 0.144 | 4.187 | 70. |  |
| C79D | 0.961 | 0.314 | 3.056 | $6 \quad 0.007$ |  |
| C79E | -0.913 | 0.319 | -2.861 | 10.011 |  |
| C79F | -0.034 | 0.02 | -1.701 | 10.107 |  |



Institute of Social and Economic Research MAP Documentation
wo December 1984，Model A85．1

## ORDINARY LEAST SQUARES

MODEL NAME：A85． 1


## 號



Institute of Social and Economic Research

## MAP Documentation

December 1984, Model A85.1

## ORDINARY LEAST SQUARES

MODEL NAME: A85.1

396: LOG(EMSB) $=$ C87A + C87B*LOG (XXSB)

| $\mathrm{NOB}=22$ |  | NOVAR $=2$ |  | RANGE: 1961 TO 1982 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RSQ | 0.999 | CRSQ $=$ | 0.999 | $F(1 / 20)$ | = 18731 | 31.9 |
| PROB>F $=$ | 0. | SER = | 0.025 | SSR $=$ |  | 0.013 |
| $\mathrm{DW}(0)=$ | 0.558 | COND $=$ | 9.076 | MAX: HAT |  | 0.178 |
| RSTUDENT $=$ | -1.959 | DFFITS $=$ | -0.777 |  |  |  |
| COEF | estima | TE STER | TSTAT |  | PROB>£TE |  |
| C85A | -2.384 | 0.025 | -95.63 |  | 0. |  |
| C85B | 0.991 | 0.007 | 136.865 |  | 0. |  |

ORDINARY LEAST SQUARES
MODEL NAME: A85.1

397: LOG(WRSNB/PDRPI) $=$ C86A + C86F*D.80DEC6 + C86B ${ }^{\text {LLOG }}$ (WEUS/PDUSCPI) + C86C*LOG(1+EMCNRT) + C86D*LOG(1+EMCNRT ( -1 ) ) + C86E*LOG(1+EMCNRT( -2 ))

| NOB $=22$ |  | NOVAR $=6$ |  | RANGE: | 1961 TO 1982 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| RSQ | 0.833 | CRSQ $=$ | 0.781 | F(5/16) | ) $=15.984$ |
| PROB $>$ F $=$ | 0. | SER = | 0.061 | SSR $=$ | 0.059 |
| $\mathrm{DW}(0)=$ | 0.961 | COND $=$ | 5.906 | hax : HAT | $\mathrm{T}=0.71$ |
| RSTUDENT $=$ | 1.79 | DFFITS $=$ | 1.602 |  |  |
| COEF | estimat | E STER | tstat |  | PROB>£T£ |
| C86A | 3.781 | 0.017 | 218.036 |  | 0. |
| C86B | 1.305 | 0.341 | 3.824 |  | 0.001 |
| C86C | 2.801 | 0.962 | 2.911 |  | 0.01 |
| C86 ${ }^{\text {d }}$ | -0.262 | 1.317 | -0.199 |  | 0.845 |
| C86E | 2.174 | 0.976 | 2.227 |  | 0.041 |
| C86F | 0.295 | 0.047 | 6.207 |  | 0. |

## ORDINARY LEAST SQUARES

NODEL NAME: A85.1

```
398: LOG(WRSB/PDRPI) = C88A+C88F*D.80DEC6+C88E*D61.70+C88B*
 LOG (WEUS /PDUSCPI) +C88C*LOG (1+EMCNRT) +C88D*LOG (1+EMCNRT (-1)) +
 C88G*LOG (1+EMCNRT(-2))
```

| NOB $=22$ |  | NOVAR $=7$ |  | RANGE: | 1961 TO 1982 |
| :--- | :--- | :--- | :--- | :--- | :---: |
| RSQ $=$ | 0.94 | CRSQ $=$ | 0.916 | F $(6 / 15)=$ | 39.3 |
| PROB $>F=$ | 0. | SER $=$ | 0.065 | SSR $=$ | 0.062 |
| DW $(0)=$ | 1.813 COND $=$ | 9.293 | MAX:HAT $=$ | 0.72 |  |
| RSTUDENT $=$ | 3.056 DFFITS $=$ | 1.95 |  |  |  |


| COEF | ESTIMATE | STER | TSTAT | PROB>ETE |
| :--- | :---: | :--- | ---: | :--- |
|  |  |  |  |  |
| C88A | 3.905 | 0.049 | 79.201 | 0. |
| C88B | 0.557 | 0.5 | 1.113 | 0.283 |
| C88C | 9.246 | 1.243 | 7.437 | 0. |
| C88D | -0.186 | 1.48 | -0.125 | 0.902 |
| C88E | 0.235 | 0.055 | 4.285 | 0. |
| C88F | 0.28 | 0.085 | 3.312 | 0.005 |
| C88G | 4.462 | 1.201 | 3.714 | 0.002 |

ORDINARY LEAST SQUARES

1HODEL NAME: A85.1

407: LOG (XXGF) $=$ C101A + C101B*LOG (EMGF)

| $\mathbb{N O B}=22$ |  | NOVAR $=2$ |  | RANGE: | 1961 TO 1982 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| RSQ $=$ | 0.758 | CRSQ = | 0.746 | F(1/20) | $=62.554$ |
| PROB $>\mathrm{F}=$ | 0. | SER = | 0.023 | SSR = | 0.011 |
| DW(0) = | 0.772 | COND = | 90.285 | MAX: HAT | $=0.165$ |
| RSTUDENT = | 3.171 | DFFITS = | 0.697 |  |  |

## COEF

ESTIMATE
STER
TSTAT
PROB>ETE
C101A

> 4.267
> 0.467
0.226
18.919
0.

C101B
0.059
7.909
0.

## ORDINARY LEAST SQUARES

MODEL NAME: A85.1

408: LOG(WRGC) $=$ C89A + C89B*LOG(WEUS)

| NOB $=22$ |  | NOVAR $=2$ |  | $\begin{array}{ll}\text { RANGE: } \\ \mathrm{F}(1 / 20) & 1961 \text { T0 } 1982 \\ = & 3495.79\end{array}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RSQ $=$ | 0.994 | CRSQ $=$ | 0.994 |  |  |  |
| PROB>F $=$ | 0. | SER = | 0.033 | SSR $=$ |  | 0.022 |
| $\mathrm{DW}(0)=$ | 1.3 | COND $=$ | 26.614 | max: hat | = | 0.188 |
| RSTUDENT = | -1.951 | DFFITS $=$ | -0.621 |  |  |  |
| COEF | ESTIMA | EE STER | tStat |  | PROB>£T£ |  |
| C89A | 3.899 | 0.093 | 41.814 |  | 0. |  |
| C89B | 1.115 | 0.019 | 59.125 |  | 0. |  |

ORDINARY LEAST SQUARES
MODEL NAME: A85.1

414: LOG(WRGS/PDRPI) $=$ C92A + C92F*D.80DEC6+C92B*LOG(WEUS $/$ PDUSCPI $)+$ C92C*D61.73+C92D*D74.75

| $\mathrm{NOB}=22$ | NOVAR $=5$ |  |  | RANGE: 1961 T | то 1982 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| RSQ = | 0.962 CR | $=$ | 0.954 | $F(4 / 17)=1$ | 108.806 |
| PROB $>$ F $=$ | 0. SE |  | 0.041 | SSR = | 0.028 |
| $\mathrm{DW}(0)=$ | 1.27 CO |  | 5.014 | MAX: HAT = | 0.507 |
| RSTUDENT = | 2.502 DF | $S=$ | 1.167 |  |  |
| COEF | ESTIMATE | STER | TSTAT | PROB>ETE |  |
| C92A | 4.312 | 0.023 | 191.473 | 0. |  |
| C92B | 2.348 | 0.232 | 10.134 | 0. |  |
| C92C | -0.263 | 0.024 | -10.838 | 0. |  |
| C92D | -0.079 | 0.036 | -2.227 | 0.04 |  |
| C92F | 0.286 | 0.04 | 7.222 | 0 . |  |



Institute of Social and Economic Research MAP Documentation
December 1984, Model A85.1

## ORDINARY LEAST SQUARES

MODEL NAME: A85.1

423: XXA9 $=$ C90A + C90B* $(E M A 9+E M P R O F I S)$


ORDINARY LEAST SQUARES
MODEL NAME: A8S.1

433: LOG(EMPRO1) $=$ C100A + C100C $*$ D61.66+C100B*LOG (EM98)

| NOB $=21$ | NOVAR $=3$ |  |  | RANGE: 1961 TO 1981 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RSQ = | 0.946 CR |  | 0.94 | F(2/18) | ) $=15$ | 158.599 |
| PROB $>5=$ | $0 . \mathrm{SE}$ |  | 0.192 | SSR = |  | 0.664 |
| $\mathrm{DW}(0)=$ | 0.824 CO |  | 56.491 | MAX: HAT | T $=$ | 0.207 |
| RSTUDENT $=$ | -4.18 DF |  | -1.929 |  |  |  |
| COEF | ESTIMATE | STER | TSTAT |  | PROB>£T£ |  |
| C100A | -4.285 | 1.098 | -3.903 |  | 0.001 |  |
| C100B | 1.237 | 0.218 | 5.678 |  | 0. |  |
| C100C | -0.998 | 0.136 | -7.311 |  | 0. |  |



```
APPENDIX D
ISER MAP ALASKA ECONOMIC MODEL:
INPUT VARIABLE VALUES--EXOGENOUS AND POLICY VARIABLES
```

December 1984, Model
A85. 1

|  | ANCSA | APPFCONX | BADD | BALDF6 | BALGFUNA | BALGF6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1.983 | 0. | 0. | 0. | 0. | 2454.6 | 2315.7 |
| 1.984 | 0. | 0. | 0. | 0. | 2000. | 0. |
| 1.985 | 0. | 0. | 0. | 0. | 1500. | 0. |
| 1.986 | 0. | 0. | 0. | 0. | 1000. | 0. |
| 1.987 | 0. | 0. | 0. | 0. | 500. | 0. |
| 1988 | 0. | 0. | 0. | 0. | 500. | 0. |
| 21989 | 0. | 0. | 0. | 0. | 500. | 0. |
| 1990 | 0. | 0. | 0. | 0. | 500. | 0. |
| 1991 | 0. | 0. | 0. | 0. | 500. | 0. |
| 1992 | 0. | 0. | 0. | 0. | 500. | 0. |
| 1993 | 0. | 0. | 0. | 0. | 500. | 0. |
| -1994 | 0. | 0. | 0. | 0. | 500. | 0. |
| 1995 | 0. | 0. | 0. | 0. | 500. | 0. |
| 1996 | 0. | 0. | 0. | 0. | 500. | 0. |
| -1997 | 0. | 0. | 0. | 0. | 500. | 0. |
| 1998 | 0. | 0. | 0. | 0. | 500. | 0. |
| 1999 | 0. | 0. | 0. | 0. | 500. | 0. |
| 2000 | 0. | 0. | 0. | 0. | 500. | 0. |
| 2001 | 0. | 0. | 0. | 0. | 500. | 0. |
| 2002 | 0. | 0. | 0. | 0. | 500. | 0. |
| 2003 | 0. | 0. | 0. | 0. | 500. | 0. |
| 2004 | 0. | 0. | 0. | 0. | 500. | 0. |
| 2005 | 0. | 0. | 0. | 0. | 500. | 0. |
| 2006 | 0. | 0. | 0. | 0. | 500. | 0. |
| 2007 | 0. | 0. | 0. | 0. | 500. | 0. |
| 2008 | 0. | 0. | 0. | 0. | 500. | 0. |
| 2009 | 0. | 0. | 0. | 0. | 500. | 0. |
| 2010 | 0. | 0. | 0. | 0. | 500. | 0. |

$\qquad$
SOURCE: Dset A85.1

| 1983 | 4375. | 1. | 1. | 1. | 1. | 1. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1984 | 0 . | 1. | 1. | 1. | 1. | 1. | Fam |
| 1985 | 0. | 1. | 1. | 1. | 1. | 1. |  |
| 1986 | 0. | 1. | 1. | 1. | 1. | 1. | m |
| 1987 | 0. | 1. | 1. | 1. | 1. | 1. |  |
| 1988 | 0. | 1. | 1. | 1. | 1. | 1. |  |
| 1989 | 0. | 1. | 1. | 1. | 1. | 1. | \% |
| 1990 | 0. | 1. | 1. | 1. | 1. | 1. |  |
| 1991 | 0. | 1. | 1. | 1. | 1. | 1. |  |
| 1992 | 0 . | 1. | 1. | 1. | 1. | 1. | \% |
| 1993 | 0. | 1. | 1. | 1. | 1. | 1. |  |
| 1994 | 0 . | 1. | 1. | 1. | 1. | 1. |  |
| 1995 | 0. | 1. | 1. | 1. | 1. | 1. | 4 |
| 1996 | 0. | 1. | 1. | 1. | 1. | 1. |  |
| 1997 | 0 . | 1. | 1. | 1. | 1. | 1. | m |
| 1998 | 0. | 1. | 1. | 1. | 1. | 1. |  |
| 1999 | 0. | 1. | 1. | 1. | 1. | 1. |  |
| 2000 | 0. | 1. | 1. | 1. | 1. | 1. | 5m |
| 2001 | 0. | 1. | 1. | 1. | 1. | 1. |  |
| 2002 | 0 . | 1. | 1. | 1. | 1. | 1. |  |
| 2003 | 0. | 1. | 1. | 1. | 1. | 1. | mex |
| 2004 | 0. | 1. | 1. | 1. | 1. | 1. |  |
| 2005 | 0. | 1. | 1. | 1. | 1. | 1. |  |
| 2006 | 0. | 1. | 1. | 1. | 1. | 1. |  |
| 2007 | 0 . | 1. | 1. | 1. | 1. | 1. |  |
| 2008 | 0. | 1. | 1. | 1. | 1. | 1. | \% |
| 2009 | 0 . | 1. | 1. | 1. | 1. | 1. |  |
| 2010 | 0 . | 1. | 1. | 1. | 1. | 1. |  |

Institute of Social and Economic Research MAP Documentation December 1984, Model A85.1

| ma |  | BASPDRPI | BIU6 | D. 80DEC6 | D61.64 | D61.66 | D61.67 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| m | 1.983 | 1. | 42.5 | 0.8 | 0. | 0. | 0. |
|  | 1.984 | 1. | 0. | 0.6 | 0. | 0. | 0. |
|  | 1985 | 1. | 0. | 0.4 | 0. | 0. | 0. |
| $\pm$ | 11986 | 1. | 0. | 0.2 | 0. | 0. | 0. |
|  | 1987 | 1. | 0. | 0. | 0. | 0. | 0. |
|  | 1988 | 1. | 0. | 0. | 0. | 0. | 0. |
| - | 1989 | 1. | 0. | 0. | 0. | 0. | 0. |
|  | 1990 | 1. | 0. | 0. | 0. | 0. | 0. |
| - | 1991 | 1. | 0. | 0. | 0. | 0. | 0. |
|  | 1992 | 1. | 0. | 0. | 0. | 0. | 0. |
|  | 1993 | 1. | 0. | 0. | 0. | 0. | 0. |
|  | 1994 | 1. | 0. | 0. | 0. | 0. | 0. |
| - | 1995 | 1. | 0. | 0. | 0. | 0. | 0. |
|  | 1996 | 1. | 0. | 0. | 0. | 0. | 0. |
| - | 1997 | 1. | 0. | 0. | 0. | 0. | 0. |
|  | 1998 | 1. | 0. | 0. | 0. | 0. | 0. |
|  | 1999 | 1. | 0. | 0. | 0. | 0. | 0. |
| - | 2000 | 1. | 0. | 0. | 0. | 0. | 0. |
|  | 2001 | 1. | 0. | 0. | 0. | 0. | 0. |
|  | 2002 | 1. | 0. | 0. | 0. | 0. | 0. |
| \% | 2003 | 1. | 0. | 0. | 0. | 0. | 0. |
|  | 2004 | 1. | 0. | 0. | 0. | 0. | 0. |
|  | 2005 | 1. | 0. | 0. | 0. | 0. | 0. |
| - 0. | 2006 |  | 0. | 0. |  |  |  |
|  | 2007 | 1. | 0. | 0. | 0. | 0. | 0. |
| - | 2008 | 1. | 0. | 0. | 0. | 0. | 0. |
|  | 2009 | 1. | 0. | 0. | 0. | 0. | 0. |
|  | 2010 | 1. | 0. | 0. | 0. | 0. | 0 . |

$$
1
$$

Institute of Social and Economic Research
MAP Documentation December 1984, Model A85. 1

|  | D61.68 | D61.69 | D61. 70 | D61.72 | D61.73 | D61.74 | \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1983 | 0. | 0. | 0. | 0. | 0. | 0. |  |
| 1984 | 0. | 0. | 0. | 0. | 0. | 0. | * |
| 1985 | 0 . | 0. | 0. | 0 . | 0. | 0. |  |
| 1986 | 0. | 0. | 0. | 0. | 0. | 0. | $\cdots$ |
| 1987 | 0. | 0. | 0. | 0. | 0. | 0. |  |
| 1988 | 0. | 0. | 0. | 0. | 0. | 0. |  |
| 1989 | 0. | 0. | 0. | 0. | 0. | 0. | - |
| 1990 | 0. | 0. | 0. | 0 . | 0. | 0 . |  |
| 1991 | 0. | 0. | 0. | 0. | 0. | 0. |  |
| 1992 | 0. | 0. | 0. | 0. | 0. | 0. | $\cdots$ |
| 1993 | 0. | 0. | 0. | 0. | 0. | 0. |  |
| 1994 | 0 . | 0. | 0. | 0. | 0. | 0. |  |
| 1995 | 0 . | 0. | 0 . | 0. | 0. | 0. | - |
| 1996 | 0. | 0. | 0. | 0. | 0. | 0. |  |
| 1997 | 0. | 0. | 0. | 0. | 0. | 0. | *89 |
| 1998 | 0. | 0. | 0. | 0. | 0. | 0. |  |
| 1999 | 0. | 0. | 0 . | 0. | 0. | 0. |  |
| 2000 | 0 . | 0 . | 0. | 0. | 0 . | 0. | - |
| 2001 | 0. | 0. | 0. | 0. | 0. | 0. |  |
| 2002 | 0. | 0 . | 0. | 0. | 0. | 0. |  |
| 2003 | 0. | 0. | 0. | 0. | 0. | 0. | \% |
| 2004 | 0. | 0. | 0. | 0. | 0. | 0. |  |
| 2005 | 0. | 0 . | 0 . | 0 . | 0. | 0 . |  |
| 2006 | 0. | 0. | 0. | 0. | 0. | 0. |  |
| 2007 | 0. | 0. | 0. | 0. | 0. | 0. |  |
| 2008 | 0. | 0. | 0. | 0. | 0. | 0. | m |
| 2009 | 0. | 0. | 0. | 0. | 0. | 0. |  |
| 2010 | 0 . | 0. | 0 . | 0. | 0 . | 0. |  |


| $\cdots$ |  |  |  |  |  | ember 19 | Model A85.1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\cdots$ |  |  |  |  |  |  |  |
| $=$ |  | D61.75 | D61.76 | D61.77 | D64.65 | D68.71 | D69 |
| - | 1983 | 0. | 0. | 0. | 0. | 0. | 0. |
|  | 1.984 | 0. | 0 . | 0. | 0. | 0 . | 0 . |
|  | 1.985 | 0. | 0 . | 0 . | 0. | 0 . | 0 . |
| * | 1.986 | 0. | 0. | 0. | 0. | 0. | 0. |
|  | 1.987 | 0. | 0. | 0. | 0. | 0 . | 0. |
|  | 1.988 | 0. | 0. | 0. | 0. | 0. | 0. |
| - | 21989 | 0. | 0. | 0. | 0. | 0. | 0. |
|  | 11990 | 0. | 0. | 0. | 0 . | 0 . | 0 . |
| + | $1991$ | $0$ | $0$ | $0$ | $0$ | $0$ | $0$ |
|  | $1992$ | $0$ | $0$ | $0$ | $0$ | $0$ | $0$ |
|  | 1993 | 0. | 0 . | 0. | 0. | 0 . | 0 . |
|  | . 1994 | 0 . | 0 . | 0 . | 0 . | 0. | 0 . |
| \% | 1.1995 | 0 . | 0 . | 0 . | 0 . | 0 . | 0. |
| - | $1996$ | $0 .$ | $0$ | $0$ | $0$ | $0$ | 0. |
|  | $1997$ | $0 .$ | $0$ | $0 .$ | $0$ | $0$ | 0. |
|  | 1998 | 0. | 0. | 0. | 0. | 0. | 0. |
|  | 1999 | 0. | 0 . | 0. | 0 . | 0 . | 0 . |
| $\cdots$ | 2000 | 0. | 0 . | 0. | 0. | 0 . | 0 . |
|  | 2001 | 0. | 0. | 0. | 0. | 0. | 0. |
|  | 2002 | 0. | 0. | 0. | 0. | 0 . | 0. |
| \% | 2003 | 0 . | 0 . | 0. | 0 . | 0 . | 0 . |
|  | 2004 | 0. | 0. | 0. | 0. | 0 . | 0. |
|  | 2005 | 0. | 0 . | 0 . | 0. | 0. | 0 . |
|  | 2006 | 0. | 0. | 0. | 0. | 0. | 0. |
|  | 2007 | 0. | 0. | 0. | 0. | 0. | 0. |
| $\cdots$ | 2008 | 0. | 0. | 0. | 0. | 0. | 0. |
| + | 2009 | 0 . | 0 . | 0. | 0. | 0 . | 0 . |
|  | 2010 | 0. | 0. | 0 . | 0. | 0. | 0. |

Institute of Social and Economic Research
MAP Documentation
December 1984, Model A85. 1


Institute of Social and Economic Research
MAP Documentation
December 1984, Model A85. 1

| \% |  | D79 | D80 | D81.00 | D82 | EMAGRI | EMAUN |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| m | 1983 | 0. | 0. | 1. | 0. |  | 1.438 |
|  | 1984 | 0. | 0. | 1. | 0. |  | 1.438 |
|  | I985 | 0. | 0. | 1. | 0. |  | 1.438 |
| $15{ }^{51}$ | 1986 | 0. | 0. | 1. | 0. | F | 1.438 |
|  | 1987 | 0. | 0. | 1. | 0. | R | 1.438 |
|  | L. 1988 | 0. | 0. | 1. | 0 . | 0 | 1.438 |
| - | L. 989 | 0. | 0. | 1. | 0. | M | 1.438 |
|  | 1990 | 0. | 0. | 1. | 0. |  | 1.438 |
| * |  |  |  |  |  | S |  |
| - | 1991 | 0. | 0. | 1. | 0. | C | 1.438 |
|  | L992 | 0. | 0. | 1. | 0. | E | 1.438 |
| I | 1993 | 0. | 0. | 1. | 0. | N | 1.438 |
|  | 1994 | 0. | 0. | 1. | 0. | A | 1.438 |
| \% | 1995 | 0. | 0. | 1. | 0. | R | 1.438 |
|  |  |  |  |  |  | I |  |
|  | 1996 | 0. | 0. | 1. | 0. | 0 | 1.438 |
| " | 1997 | 0 . | 0. | 1. | 0. |  | 1.438 |
|  | 1998 | 0. | 0. | 1. | 0. | G | 1.438 |
|  | 1999 | 0. | 0. | 1. | 0. | E | 1.438 |
| $m$ | 2000 | 0. | 0. | 1. | 0. | N | 1.438 |
|  |  |  |  |  |  | E |  |
| ! | 2001 | 0. | 0. | 1. | 0. | R | 1.438 |
|  | 2002 | 0. | 0. | 1. | 0. | A | 1.438 |
| $\cdots$ | 2003 | 0. | 0. | 1. | 0. | T | 1.438 |
|  | 2004 | 0. | 0. | 1. | 0. | 0 | 1.438 |
|  | 2005 | 0. | 0. | 1. | 0. | R | 1.438 |
| 0 |  |  |  |  |  |  |  |
| + | 2006 | 0. | 0. | 1. | 0. |  | 1.438 |
| * | 2007 | 0. | 0. | 1. | 0. |  | 1.438 |
| $\cdots$ | 2008 | 0. | 0. | 1. | 0. |  | 1.438 |
|  | 2009 | 0. | 0. | 1. | 0. |  | 1.438 |
|  | 2010 | 0. | 0. | 1. | 0. |  | 1.438 |

Institute of Social and Economic Research
MAP Documentation
December 1984, Model A85.1

EMCNX1
EMCNX2
EMFISH
EMGC
EMGM
EMMX1

1983
1984
1985

## 1986

1987
1988
1989 1990

1991
1992
1993
1994
1995

1996
1997
1998
1999
2000

2001
2002
2003
2004
2005

2006
2007
2008
2009
2010

| titute of Social Economic Resear Documentation ember 1984, Mode |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - |  | EMMXX 2 | EMNATX | EMP9 | EMT9X | EXCPSFD6 | EXCPSGB6 |
| 的 | 1.983 |  | 0.17 |  |  | 110.491 | 127.692 |
|  | 1.984 |  | 0.17 |  |  | 0. | 125. |
|  | 1.985 |  | 0.17 |  |  | 0. | 125. |
| - | 1.986 | F | 0.17 | F | F | 0. | 0. |
|  | 1987 | R | 0.17 | R | R | 0. | 0. |
|  | 1.988 | 0 | 0.17 | 0 | 0 | 0. | 0. |
| pua | 1.989 | M | 0.17 | M | M | 0. | 0. |
|  | 1.990 |  | 0.17 |  |  | 0. | 0. |
|  |  | S |  | S | S |  |  |
| m | 3.991 | C | 0.17 | C | C | 0. | 0. |
|  | 1.992 | E | 0.17 | E | E | 0. | 0. |
|  | 1993 | N | 0.17 | N | N | 0. | 0. |
|  | 1994 | A | 0.17 | A | A | 0. | 0. |
| $\cdots$ | 1995 | R | 0.17 | R | R | 0. | 0. |
|  |  | I |  | I | I |  |  |
|  | 1996 | 0 | 0.17 | 0 | 0 | 0. | 0. |
| - | 1997 |  | 0.17 |  |  | 0. | 0. |
|  | 1998 | G | 0.17 | G | G | 0. | 0. |
|  | 1999 | E | 0.17 | E | E | 0. | 0. |
| \% | 2000 | N | 0.17 | N | N | 0. | 0 . |
|  |  | E |  | E | E |  |  |
| ' | 2001 | R | 0.17 | R | R | 0. | 0. |
|  | 2002 | A | 0.17 | A | A | 0. | 0. |
| mem | 2003 | T | 0.17 | T | T | 0. | 0. |
|  | 2004 | 0 | 0.17 | 0 | 0 | 0 。 | 0. |
|  | 2005 | R | 0.17 | R | R | 0 . | 0 . |
|  | 2006 |  | 0.17 |  |  | 0. | 0. |
|  | 2007 |  | 0.17 |  |  | 0. | 0. |
| - | 2008 |  | 0.17 |  |  | 0 . | 0 . |
|  | 2009 |  | 0.17 |  |  | 0. | 0 . |
|  | 2010 |  | 0.17 |  |  | 0 . | 0 . |

Institute of Social and Economic Research
MAP Documentation
December 1984，Model A85． 1

EXDSSX
EXGFCAP6
EXGFCOT6
EXGFOPSX

|  | EXDFPCNT | EXDF1 | EXDSSX | EXGFCAP6 | EXGFCOT6 | EXGFOPSX |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1983 | 0. | 0. | 142.488 | 1086.35 | 608. | 0. |
| 1984 | 0. | 0. | 163.4 | 1050. | 0. | 0. |
| 1985 | 0 ． | 0 ． | 156.2 | 1100. | 0 ． | 0 ． |
| 1986 | 0. | 0. | 150.6 | 0. | 0. | 0. |
| 1987 | 0. | 0. | 142.8 | 0. | 0 ． | 0 ． |
| 1988 | 0. | 0. | 136.3 | 0. | 0. | 0. |
| 1989 | 0. | 0. | 124.5 | 0 。 | 0. | 0 ． |
| 1990 | 0 ． | 0 ． | 109.8 | 0 ． | 0 ． | 0. |
| 1991 | 0. | 0. | 85.6 | 0. | 0. | 0. |
| 1992 | 0. | 0. | 58.9 | 0. | 0. | 0. |
| 1993 | 0 ． | 0. | 51. | 0. | 0. | 0. |
| 1994 | 0 ． | 0. | 25.8 | 0 ． | 0. | 0. |
| 1995 | 0 ． | 0 ． | 23.1 | 0 ． | 0 ． | 0 ． |
| 1996 | 0. | 0. | 21.5 | 0. | 0. | 0. |
| 1997 | 0. | 0. | 16.7 | 0. | 0 ． | 0. |
| 1998 | 0. | 0. | 14.4 | 0. | 0 ． | 0. |
| 1999 | 0 ． | 0. | 9. | 0 ． | 0 ． | 0 ． |
| 2000 | 0 ． | 0 。 | 2.6 | 0 ． | 0 ． | 0. |
| 2001 | 0. | 0. | 0. | 0. | 0. | 0. |
| 2002 | 0 ． | 0. | 0. | 0. | 0. | 0. |
| 2003 | 0 ． | 0 ． | 0. | 0. | 0. | 0. |
| 2004 | 0 ． | 0. | 0. | 0 ． | 0. | 0. |
| 2005 | 0 ． | 0 ． | 0 。 | 0 ． | 0. | 0 ． |
| 2006 | 0. | 0. | 0. | 0. | 0. | 0. |
| 2007 | 0. | 0. | 0. | 0. | 0. | 0. |
| 2008 | 0 ． | 0. | 0. | 0 ． | 0. | 0 ． |
| 2009 | 0. | 0 ． | 0. | 0. | 0. | 0. |
| 2010 | 0. | 0. | 0 ． | 0. | 0 ． | 0 ． |



Institute of Social and Economic Research
MAP Documentation December 1984，Model A85．1

EXPF1 EXSAVX EXSPCAP EXSPLITX EXSUBSX EXSUB1

| 1983 | 0.25 | 0. | 0. | 0.75 | 275. | 0.05 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1984 | 0.25 | 0. | 0. | 0.75 | 200. | 0.05 |  |
| 1985 | 0.25 | 0 ． | 0 ． | 0.75 | 200. | 0.05 |  |
| 1986 | 0.25 | 0. | 0. | 0.75 | 150. | 0.05 | ma |
| 1987 | 0.25 | 0. | 0. | 0.75 | 150. | 0.05 |  |
| 1988 | 0.25 | 0 ． | 0. | 0.75 | 100. | 0.05 |  |
| 1989 | 0.25 | 0. | 0. | 0.75 | 100. | 0.05 | \％ |
| 1990 | 0.25 | 0. | 0. | 0.75 | 50. | 0.05 |  |
| 1991 | 0.275 | 0. | 0. | 0.75 | 50. | 0.05 |  |
| 1992 | 0.275 | 0. | 0 ． | 0.75 | 0 ． | 0.05 | ， |
| 1993 | 0.3 | 0. | 0. | 0.75 | 0 ． | 0.05 |  |
| 1994 | 0.3 | 0. | 0 ． | 0.75 | 0 ． | 0.05 |  |
| 1995 | 0.3 | 0 。 | 0. | 0.75 | 0. | 0.05 | ＊ |
| 1996 | 0.3 | 0. | 0. | 0.75 | 0. | 0.05 |  |
| 1997 | 0.3 | 0 。 | 0 ． | 0.75 | 0. | 0.05 | m |
| 1998 | 0.3 | 0. | 0. | 0.75 | 0. | 0.05 |  |
| 1999 | 0.3 | 0 。 | 0 ． | 0.75 | 0. | 0.05 |  |
| 2000 | 0.3 | 0. | 0. | 0.75 | 0 ． | 0.05 | c |
| 2001 | 0.3 | 0. | 0. | 0.75 | 0. | 0.05 |  |
| 2002 | 0.3 | 0. | 0. | 0.75 | 0 ． | 0.05 |  |
| 2003 | 0.3 | 0 。 | 0. | 0.75 | 0 ． | 0.05 | $\cdots$ |
| 2004 | 0.3 | 0 ． | 0. | 0.75 | 0. | 0.05 |  |
| 2005 | 0.3 | 0 。 | 0. | 0.75 | 0 ． | 0.05 |  |
| 2006 | 0.3 | 0. | 0. | 0.75 | 0. | 0.05 |  |
| 2007 | 0.3 | 0. | 0. | 0.75 | 0 ． | 0.05 |  |
| 2008 | 0.3 | 0. | 0. | 0.75 | 0 ． | 0.05 | － |
| 2009 | 0.3 | 0. | 0. | 0.75 | 0. | 0.05 |  |
| 2010 | 0.3 | 0 ． | 0. | 0.75 | 0 ． | 0.05 |  |



4

| 1983 | 0.2 | 0.15 | 0.02 | 0.01 | 0.02 | 0.03 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1984 | 0.15 | 0.1 | 0.02 | 0.01 | 0.02 | 0.045 | m |
| 1985 | 0.15 | 0.1 | 0.02 | 0.01 | 0.02 | 0.06 |  |
| 1986 | 0.1 | 0.1 | 0.02 | 0.01 | 0.02 | 0.065 | - |
| 1987 | 0.1 | 0.1 | 0.02 | 0.01 | 0.02 | 0.065 |  |
| 1988 | 0.1 | 0.1 | 0.02 | 0.01 | 0.02 | 0.065 |  |
| 1989 | 0.1 | 0.1 | 0.02 | 0.01 | 0.02 | 0.065 | - |
| 1990 | 0.1 | 0.1 | 0.02 | 0.01 | 0.02 | 0.065 |  |
| 1991 | 0.1 | 0.1 | 0.02 | 0.01 | 0.02 | 0.065 |  |
| 1992 | 0.1 | 0.1 | 0.02 | 0.01 | 0.02 | 0.065 | \% |
| 1993 | 0.1 | 0.1 | 0.02 | 0.01 | 0.02 | 0.065 |  |
| 1994 | 0.1 | 0.1 | 0.02 | 0.01 | 0.02 | 0.065 |  |
| 1995 | 0.1 | 0.1 | 0.02 | 0.01 | 0.02 | 0.065 | a |
| 1996 | 0.1 | 0.1 | 0.02 | 0.01 | 0.02 | 0.065 |  |
| 1997 | 0.1 | 0.1 | 0.02 | 0.01 | 0.02 | 0.065 | , |
| 1998 | 0.1 | 0.1 | 0.02 | 0.01 | 0.02 | 0.065 |  |
| 1999 | 0.1 | 0.1 | 0.02 | 0.01 | 0.02 | 0.065 |  |
| 2000 | 0.1 | 0.1 | 0.02 | 0.01 | 0.02 | 0.065 |  |
| 2001 | 0.1 | 0.1 | 0.02 | 0.01 | 0.02 | 0.065 |  |
| 2002 | 0.1 | 0.1 | 0.02 | 0.01 | 0.02 | 0.065 |  |
| 2003 | 0.1 | 0.1 | 0.02 | 0.01 | 0.02 | 0.065 | \% |
| 2004 | 0.1 | 0.1 | 0.02 | 0.01 | 0.02 | 0.065 |  |
| 2005 | 0.1 | 0.1 | 0.02 | 0.01 | 0.02 | 0.065 |  |
| 2006 | 0.1 | 0.1 | 0.02 | 0.01 | 0.02 | 0.065 |  |
| 2007 | 0.1 | 0.1 | 0.02 | 0.01 | 0.02 | 0.065 |  |
| 2008 | 0.1 | 0.1 | 0.02 | 0.01 | 0.02 | 0.065 | - |
| 2009 | 0.1 | 0.1 | 0.02 | 0.01 | 0.02 | 0.065 | m |
| 2010 | 0.1 | 0.1 | 0.02 | 0.01 | 0.02 | 0.065 |  |



|  | LBOND14 | LBOND15 | LBOND2 | LBOND3 | LBOND4 | LBOND 5 | man |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1983 | 0. | 0.1 | 0. | 0.022 | 0 。 | 0. |  |
| 1984 | 0 . | 0.1 | 0. | 0.022 | 0 . | 0. | m |
| 1985 | 0. | 0.1 | 0. | 0.022 | 0. | 0. |  |
| 1986 | 0. | 0.1 | 0. | 0.022 | 0. | 0. | \% |
| 1987 | 0. | 0.1 | 0. | 0.022 | 0. | 0. |  |
| 1988 | 0. | 0.1 | 0. | 0.022 | 0. | 0. |  |
| 1989 | 0. | 0.1 | 0. | 0.022 | 0. | 0. | 5m |
| 1990 | 0. | 0.1 | 0. | 0.022 | 0. | 0 . |  |
| 1991 | 0. | 0.1 | 0. | 0.022 | 0. | 0. |  |
| 1992 | 0. | 0.1 | 0. | 0.022 | 0. | 0. | \% |
| 1993 | 0. | 0.1 | 0. | 0.022 | 0. | 0. |  |
| 1994 | 0. | 0.1 | 0. | 0.022 | 0 . | 0. |  |
| 1995 | 0 . | 0.1 | 0 . | 0.022 | 0 . | 0 . | cer |
| 1996 | 0. | 0.1 | 0. | 0.022 | 0. | 0. |  |
| 1997 | 0. | 0.1 | 0. | 0.022 | 0. | 0. | \% |
| 1998 | 0. | 0.1 | 0. | 0.022 | 0. | 0. |  |
| 1999 | 0. | 0.1 | 0. | 0.022 | 0. | 0. |  |
| 2000 | 0. | 0.1 | 0 . | 0.022 | 0 . | 0. | ] |
| 2001 | 0. | 0.1 | 0. | 0.022 | 0. | 0. |  |
| 2002 | 0. | 0.1 | 0. | 0.022 | 0. | 0. |  |
| 2003 | 0. | 0.1 | 0. | 0.022 | 0. | 0. | , max |
| 2004 | 0. | 0.1 | 0. | 0.022 | 0. | 0. |  |
| 2005 | 0 . | 0.1 | 0 . | 0.022 | 0 . | 0 . |  |
| 2006 | 0. | 0.1 | 0. | 0.022 | 0. | 0. |  |
| 2007 | 0. | 0.1 | 0. | 0.022 | 0. | 0. |  |
| 2008 | 0. | 0.1 | 0. | 0.022 | 0. | 0. | ma |
| 2009 | 0. | 0.1 | 0. | 0.022 | 0. | 0 . | m |
| 2010 | 0. | 0.1 | 0. | 0.022 | 0 . | 0. |  |

Institute of Social and Economic Research
MAP Documentation December 1984, Model A85.1

|  | LBOND6 | LBOND 7 | LBOND8 | LBOND9 | LFED1 | LFED10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1.983 | 0.392 | 0. | 0. | 0.257 | 0.738 | 0. |
| 1.984 | 0.392 | 0. | 0. | 0.257 | 0.738 | 0. |
| 1.985 | 0.392 | 0 . | 0. | 0.257 | 0.738 | 0. |
| 1.986 | 0.392 | 0. | 0. | 0.257 | 0.738 | 0. |
| 1.987 | 0.392 | 0. | 0 . | 0.257 | 0.738 | 0. |
| 1.988 | 0.392 | 0 . | 0. | 0.257 | 0.738 | 0. |
| 1989 | 0.392 | 0. | 0. | 0.257 | 0.738 | 0. |
| 1290 | 0.392 | 0 . | 0. | 0.257 | 0.738 | 0 . |
| $\text { : } 991$ | $0.392$ | $0$ | $0$ | $0.257$ | $0.738$ | $0$ |
| :L992 | $0.392$ | $0$ | $0 .$ | $0.257$ | $0.738$ | $0 .$ |
| :1993 | 0.392 | 0 . | 0. | 0.257 | 0.738 | 0. |
| 1994 | 0.392 | 0. | 0. | 0.257 | 0.738 | 0. |
| 1995 | 0.392 | 0 . | 0 . | 0.257 | 0.738 | 0 . |
| $1996$ | 0.392 | 0. | 0. | $0.257$ | 0.738 | 0. |
| 1997 | 0.392 | 0. | 0. | 0.257 | 0.738 | 0. |
| 1998 | 0.392 | 0. | 0. | 0.257 | 0.738 | 0. |
| 1999 | 0.392 | 0. | 0. | 0.257 | 0.738 | 0. |
| 2000 | 0.392 | 0. | 0. | 0.257 | 0.738 | 0 . |
| 2001 | 0.392 | 0. | 0. | 0.257 | 0.738 | 0. |
| 2002 | 0.392 | 0. | 0. | 0.257 | 0.738 | 0. |
| 2003 | 0.392 | 0. | 0. | 0.257 | 0.738 | 0. |
| 2004 | 0.392 | 0. | 0. | 0.257 | 0.738 | 0 . |
| 2005 | 0.392 | 0 . | 0. | 0.257 | 0.738 | 0 . |
| 2006 | 0.392 | 0. | 0. | 0.257 | 0.738 | $0$ |
| 2007 | 0.392 | 0. | 0. | 0.257 | 0.738 | $0 .$ |
| 2008 | 0.392 | 0. | 0. | 0.257 | 0.738 | 0. |
| 2009 | 0.392 | 0. | 0. | 0.257 | 0.738 | 0. |
| 2010 | 0.392 | 0 . | 0 . | 0.257 | 0.738 | 0 . |

Institute of Social and Economic Research MAP Documentation
December 1984，Model A85．1

LFED11 LFED12
LFED13
LFED14
LFED15
LFED2

| 1983 | 0. | 0. | 0. | 0. | 0.1 | 0.028 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1984 | 0. | 0. | 0. | 0. | 0.1 | 0.028 |
| 1985 | 0. | 0. | 0. | 0. | 0.1 | 0.028 |
| 1986 | 0. | 0. | 0. | 0. | 0.1 | 0.028 |
| 1987 | 0. | 0. | 0. | 0. | 0.1 | 0.028 |
| 1988 | 0. | 0. | 0. | 0. | 0.1 | 0.028 |
| 1989 | 0. | 0. | 0. | 0. | 0.1 | 0.028 |
| 1990 | 0. | 0. | 0. | 0. | 0.1 | 0.028 |
| 1991 | 0. | 0. | 0. | 0. | 0.1 | 0.028 |
| 1992 | 0. | 0. | 0. | 0. | 0.1 | 0.028 |
| 1993 | 0. | 0. | 0. | 0. | 0.1 | 0.028 |
| 1994 | 0. | 0. | 0. | 0. | 0.1 | 0.028 |
| 1995 | 0. | 0. | 0. | 0. | 0.1 | 0.028 |
| 1996 | 0. | 0. | 0. | 0. | 0.1 | 0.028 |
| 1997 | 0. | 0. | 0 。 | 0. | 0.1 | 0.028 |
| 1998 | 0. | 0. | 0. | 0. | 0.1 | 0.028 |
| 1999 | 0. | 0. | 0. | 0. | 0.1 | 0.028 |
| 2000 | 0 。 | 0. | 0. | 0 。 | 0.1 | 0.028 |
| 2001 | 0. | 0. | 0. | 0. | 0.1 | 0.028 |
| 2002 | 0. | 0. | 0. | 0. | 0.1 | 0.028 |
| 2003 | 0. | 0. | 0. | 0. | 0.1 | 0.028 |
| 2004 | 0. | 0. | 0. | 0. | 0.1 | 0.028 |
| 2005 | 0. | 0 ． | 0. | 0. | 0.1 | 0.028 |
| 2006 | 0. | 0. | 0. | 0. | 0.1 | 0.028 |
| 2007 | 0. | 0. | 0. | 0. | 0.1 | 0.028 |
| 2008 | 0. | 0. | 0. | 0. | 0.1 | 0.028 |
| 2009 | 0. | 0. | 0. | 0. | 0.1 | 0.028 |
| 2010 | 0. | 0. | 0. | 0 ． | 0.1 | 0.028 |


| $\infty$ |  | LFED3 | LFED4 | LFEDS | LFED6 | LFED7 | LFED8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\cdots$ | 1983 | 0.086 | 0.004 | 0. | 0.034 | 0.011 | 0. |
|  | 1984 | 0.086 | 0.004 | 0. | 0.034 | 0.011 | 0. |
|  | 1985 | 0.086 | 0.004 | 0. | 0.034 | 0.011 | 0. |
| 5 | 1986 | 0.086 | 0.004 | 0. | 0.034 | 0.011 | 0. |
|  | 1987 | 0.086 | 0.004 | 0. | 0.034 | 0.011 | 0 . |
|  | 1988 | 0.086 | 0.004 | 0. | 0.034 | 0.011 | 0 . |
| $\cdots$ | 1989 | 0.086 | 0.004 | 0. | 0.034 | 0.011 | 0. |
| : | 1990 | 0.086 | 0.004 | 0 . | 0.034 | 0.011 | 0 . |
| $\cdots$ | 1991 | 0.086 | 0.004 | 0. | 0.034 | 0.011 | 0. |
|  | 1992 | 0.086 | 0.004 | 0. | 0.034 | 0.011 | 0 . |
|  | 1993 | 0.086 | 0.004 | 0. | 0.034 | 0.011 | 0. |
|  | 1994 | 0.086 | 0.004 | 0. | 0.034 | 0.011 | 0. |
| - | 1995 | 0.086 | 0.004 | 0 . | 0.034 | 0.011 | 0 . |
|  | 1996 | 0.086 | 0.004 | 0. | 0.034 | 0.011 | 0. |
| 0 | 1997 | 0.086 | 0.004 | 0 . | 0.034 | 0.011 | 0 . |
|  | 1998 | 0.086 | 0.004 | 0. | 0.034 | 0.011 | 0 . |
|  | 1999 | 0.086 | 0.004 | 0. | 0.034 | 0.011 | 0 . |
| \% | 2000 | 0.086 | 0.004 | 0 . | 0.034 | 0.011 | 0 . |
|  | 2001 | 0.086 | 0.004 | 0. | 0.034 | 0.011 | 0. |
|  | 2002 | 0.086 | 0.004 | 0. | 0.034 | 0.011 | 0. |
| \% | 2003 | 0.086 | 0.004 | 0. | 0.034 | 0.011 | 0 . |
|  | 2004 | 0.086 | 0.004 | 0 . | 0.034 | 0.011 | 0. |
|  | 2005 | 0.086 | 0.004 | 0. | 0.034 | 0.011 | 0. |
| \% | 2006 | 0.086 | 0.004 | 0. | 0.034 | 0.011 | 0. |
|  | 2007 | 0.086 | 0.004 | 0. | 0.034 | 0.011 | 0. |
| $\cdots$ | 2008 | 0.086 | 0.004 | 0. | 0.034 | 0.011 | 0. |
|  | 2009 | 0.086 | 0.004 | 0. | 0.034 | 0.011 | 0. |
|  | 2010 | 0.086 | 0.004 | 0 . | 0.034 | 0.011 | 0 . |

Institute of Social and Economic Research
MAP Documentation
December 1984，Model A85．1

LFED9
LGF1
LGF10
LGF11
LGF12
LGF13

| 1983 | 0. | 0.048 | 0.27 | 0. | 0. | 0. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1984 | 0. | 0.048 | 0.27 | 0. | 0. | 0. |
| 1985 | 0. | 0.048 | 0.27 | 0. | 0 ． | 0. |
| 1986 | 0. | 0.048 | 0.27 | 0. | 0. | 0. |
| 1987 | 0. | 0.048 | 0.27 | 0. | 0 。 | 0. |
| 1988 | 0. | 0.048 | 0.27 | 0. | 0. | 0. |
| 1989 | 0. | 0.048 | 0.27 | 0. | 0. | 0. |
| 1990 | 0. | 0.048 | 0.27 | 0. | 0 ． | 0. |
| 1991 | 0. | 0.048 | 0.27 | 0. | 0. | 0. |
| 1992 | 0. | 0.048 | 0.27 | 0. | 0. | 0. |
| 1993 | 0. | 0.048 | 0.27 | 0. | 0. | 0. |
| 1994 | 0. | 0.048 | 0.27 | 0. | 0. | 0. |
| 1995 | 0. | 0.048 | 0.27 | 0. | 0. | 0. |
| 1996 | 0. | 0.048 | 0.27 | 0. | 0. | 0. |
| 1997 | 0. | 0.048 | 0.27 | 0. | 0. | 0. |
| 1998 | 0 ． | 0.048 | 0.27 | 0. | 0. | 0. |
| 1999 | 0. | 0.048 | 0.27 | 0. | 0. | 0. |
| 2000 | 0. | 0.048 | 0.27 | 0 ． | 0. | 0. |
| 2001 | 0. | 0.048 | 0.27 | 0. | 0. | 0. |
| 2002 | 0. | 0.048 | 0.27 | 0. | 0. | 0. |
| 2003 | 0. | 0.048 | 0.27 | 0. | 0. | 0. |
| 2004 | 0. | 0.048 | 0.27 | 0. | 0. | 0. |
| 2005 | 0. | 0.048 | 0.27 | 0. | 0. | 0. |
| 2006 | 0. | 0.048 | 0.27 | 0. | 0. | 0. |
| 2007 | 0. | 0.048 | 0.27 | 0. | 0. | 0. |
| 2008 | 0. | 0.048 | 0.27 | 0. | 0. | 0. |
| 2009 | 0. | 0.048 | 0.27 | 0. | 0. | 0. |
| 2010 | 0. | 0.048 | 0.27 | 0 | 0 | 0. |

ex
0.

0 ．
0.
0.
0.
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.
0.
0.
0.
0.

0 ．
0.
0.

| \% |  | LGF14 | LGF15 | LGF2 | LGF3 | LGF4 | LGF5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| mman | 1983 | 0. | 0.1 | 0.014 | 0.013 | 0.089 | 0. |
| ? | 1984 | 0. | 0.1 | 0.014 | 0.013 | 0.089 | 0. |
|  | 1985 | 0 . | 0.1 | 0.014 | 0.013 | 0.089 | 0 . |
| $\infty$ | 1986 | 0. | 0.1 | 0.014 | 0.013 | 0.089 | 0. |
| , | 1987 | 0 . | 0.1 | 0.014 | 0.013 | 0.089 | 0. |
|  | 1988 | 0 . | 0.1 | 0.014 | 0.013 | 0.089 | 0 . |
|  | 1989 | 0. | 0.1 | 0.014 | 0.013 | 0.089 | 0 . |
| , | 1990 | 0 . | 0.1 | 0.014 | 0.013 | 0.089 | 0. |
| \% | 1991 | 0. | 0.1 | 0.014 | 0.013 | 0.089 | 0. |
|  | 1992 | 0. | 0.1 | 0.014 | 0.013 | 0.089 | 0 . |
|  | 1993 | 0. | 0.1 | 0.014 | 0.013 | 0.089 | 0. |
|  | 1994 | 0 . | 0.1 | 0.014 | 0.013 | 0.089 | 0 . |
| -m | 1995 | 0. | 0.1 | 0.014 | 0.013 | 0.089 | 0 . |
|  | 1996 | 0. | 0.1 | 0.014 | 0.013 | 0.089 | 0. |
| + | 1997 | 0. | 0.1 | 0.014 | 0.013 | 0.089 | 0 . |
| , | 1998 | 0. | 0.1 | 0.014 | 0.013 | 0.089 | 0. |
|  | 1999 | 0. | 0.1 | 0.014 | 0.013 | 0.089 | 0 . |
| mm | 2000 | 0. | 0.1 | 0.014 | 0.013 | 0.089 | 0. |
|  | 2001 | 0. | 0.1 | 0.014 | 0.013 | 0.089 | 0. |
| \% | 2002 | 0. | 0.1 | 0.014 | 0.013 | 0.089 | 0 . |
| $\ldots$ | 2003 | 0 . | 0.1 | 0.014 | 0.013 | 0.089 | 0 . |
| , | 2004 | 0. | 0.1 | 0.014 | 0.013 | 0.089 | 0. |
|  | 2005 | 0 . | 0.1 | 0.014 | 0.013 | 0.089 | 0 . |
| \% | 2006 | 0. | 0.1 | 0.014 | 0.013 | 0.089 | 0. |
|  | 2007 | 0 。 | 0.1 | 0.014 | 0.013 | 0.089 | 0. |
| ( | 2008 | 0. | 0.1 | 0.014 | 0.013 | 0.089 | 0. |
|  | 2009 | 0. | 0.1 | 0.014 | 0.013 | 0.089 | 0. |
|  | 2010 | 0. | 0.1 | 0.014 | 0.013 | 0.089 | 0 . |

Institute of Social and Economic Research MAP Documentation
December 1984, Model A85. 1

LGF6 LGF7 LGF8 LGF9 LMUNCAP LPTRAT

| 1983 | 0.213 | 0.092 | 0.139 | 0.021 | 0.75 | 0.6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1984 | 0.213 | 0.092 | 0.139 | 0.021 | 0.75 | 0.6 |
| 1985 | 0.213 | 0.092 | 0.139 | 0.021 | 0.75 | 0.6 |
| 1986 | 0.213 | 0.092 | 0.139 | 0.021 | 0.75 | 0.6 |
| 1987 | 0.213 | 0.092 | 0.139 | 0.021 | 0.75 | 0.6 |
| 1988 | 0.213 | 0.092 | 0.139 | 0.021 | 0.75 | 0.6 |
| 1989 | 0.213 | 0.092 | 0.139 | 0.021 | 0.75 | 0.6 |
| 1990 | 0.213 | 0.092 | 0.139 | 0.021 | 0.75 | 0.6 |
| 1991 | 0.213 | 0.092 | 0.139 | 0.021 | 0.75 | 0.6 |
| 1992 | 0.213 | 0.092 | 0.139 | 0.021 | 0.75 | 0.6 |
| 1993 | 0.213 | 0.092 | 0.139 | 0.021 | 0.75 | 0.6 |
| 1994 | 0.213 | 0.092 | 0.139 | 0.021 | 0.75 | 0.6 |
| 1995 | 0.213 | 0.092 | 0.139 | 0.021 | 0.75 | 0.6 |
| 1996 | 0.213 | 0.092 | 0.139 | 0.021 | 0.75 | 0.6 |
| 1997 | 0.213 | 0.092 | 0.139 | 0.021 | 0.75 | 0.6 |
| 1998 | 0.213 | 0.092 | 0.139 | 0.021 | 0.75 | 0.6 |
| 1999 | 0.213 | 0.092 | 0.139 | 0.021 | 0.75 | 0.6 |
| 2000 | 0.213 | 0.092 | 0.139 | 0.021 | 0.75 | 0.6 |
| 2001 | 0.213 | 0.092 | 0.139 | 0.021 | 0.75 | 0.6 |
| 2002 | 0.213 | 0.092 | 0.139 | 0.021 | 0.75 | 0.6 |
| 2003 | 0.213 | 0.092 | 0.139 | 0.021 | 0.75 | 0.6 |
| 2004 | 0.213 | 0.092 | 0.139 | 0.021 | 0.75 | 0.6 |
| 2005 | 0.213 | 0.092 | 0.139 | 0.021 | 0.75 | 0.6 |
| 2006 | 0.213 | 0.092 | 0.139 | 0.021 | 0.75 | 0.6 |
| 2007 | 0.213 | 0.092 | 0.139 | 0.021 | 0.75 | 0.6 |
| 2008 | 0.213 | 0.092 | 0.139 | 0.021 | 0.75 | 0.6 |
| 2009 | 0.213 | 0.092 | 0.139 | 0.021 | 0.75 | 0.6 |
| 2010 | 0.213 | 0.092 | 0.139 | 0.021 | 0.75 | 0.6 |

Institute of Social and Economic Research
MAP Documentation
December 1984, Model A85.1

LSGF1 LSGF10 LSGF11 LSGF12 LSGF13 LSGF14

1983
1984
1985
1.986
1.987
1.988
1.989
1.990
1.991

1992
1993
1994
1995
$-1996$
1997
:1998
1999
2000

2001
.2002
2003
2004
2005

2006
2007
2008
2009
2010
1983
1984

| 0. | 0. |
| :--- | :--- |
| 0. | 0. |
| 0. | 0. |

0. 
1. 
2. 
3. 
4. 



Institute of Social and Economic Research
MAP Documentation
December 1984, Model A85.1
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
1.
1.
1.

1986
1987
1988
1989
1990

1991
1992
1993
1994
1995

1996
1997
1998
1999
2000

2001
2002
2003
2004
2005

2006
2007
2008
2009
2010

|  |
| :--- |
|  |
| 1983 |
| 1984 |
| 1985 |
|  |
| 1986 |
| 1987 |
| 1988 |
| 1989 |
| 1990 |
| 1991 |
| 1992 |
| 1993 |
| 1994 |
| 1995 |
| 1996 |
| 1997 |
| 1998 |
| 1999 |
| 2000 |
| 2001 |
| 2002 |
| 2003 |
| 2004 |
| 2005 |
| 2006 |
| 2007 |
| 2008 |
| 2009 |
| 2010 |

Institute of Social and Economic Research MAP Documentation
LSGF7 LSGF8 LSGF9 NGBP NCRP OMF1

| 1983 | 0. | 0. | 0. | 0. | 0. | 0 。 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1984 | 0. | 0. | 0. | 0. | 0. | 0 . |
| 1985 | 0. | 0. | 0. | 0. | 0. | 0 . |
| 1986 | 0. | 0. | 0. | 0. | 0. | 0. |
| 1987 | 0. | 0. | 0. | 0. | 0. | 0. |
| 1988 | 0 . | 0. | 0. | 0. | 0. | 0. |
| 1989 | 0 . | 0. | 0. | 0. | 0. | 0. |
| 1990 | 0 . | 0. | 0. | 0 . | 0. | 0 . |
| $1991$ | 0. | 0. | 0. | 0. | 0. | 0. |
| $1992$ | 0. | $0 .$ | $0$ | 0. | 0. | 0. |
| 1993 | 0. | 0. | 0. | 0. | 0. | 0. |
| 1994 | 0. | 0. | 0. | 0 . | 0. | 0 . |
| 1995 | 0 . | 0. | 0. | 0. | 0. | 0 . |
| 1996 | 0. | 0. | 0. | 0. | 0. | 0. |
| 1997 | 0. | 0. | 0. | 0. | 0. | 0. |
| 1998 | 0. | 0. | 0. | 0. | 0. | 0. |
| 1999 | 0 . | 0. | 0. | 0. | 0. | 0. |
| 2000 | 0 . | 0. | 0. | 0 . | 0. | 0. |
| 2001 | 0. | 0. | 0. | 0. | 0. | 0. |
| 2002 | 0 。 | 0. | 0. | 0. | 0. | 0. |
| 2003 | 0. | 0 . | 0. | 0. | 0. | 0. |
| 2004 | 0. | 0. | 0. | 0. | 0. | 0. |
| 2005 | 0. | 0 . | 0. | 0. | 0. | 0 . |
| 2006 | 0. | 0. | 0. | $0$ | 0. | 0. |
| 2007 | 0. | 0. | 0. | 0. | 0. | 0. |
| 2008 | 0 . | 0. | 0. | 0. | 0. | 0. |
| 2009 | 0. | 0. | 0. | 0 . | 0. | 0. |
| 2010 | 0 . | 0. | 0. | 0. | 0. | 0. |

Institute of Social and Economic Research MAP Documentation
December 1984, Model A85.1

| 1983 | 0. | 0. | 0. | 0. | 0. | 0. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1984 | 0. | 0. | 0. | 0. | 0. | 0. |
| 1985 | 0. | 0. | 0. | 0. | 0. | 0. |
| 1986 | 0. | 0. | 0. | 0. | 0. | 0. |
| 1987 | 0 . | 0. | 0. | 0. | 0. | 0. |
| 1988 | 0. | 0. | 0. | 0. | 0. | 0. |
| 1989 | 0. | 0. | 0. | 0. | 0. | 0 . |
| 1990 | 0 . | 0. | 0. | 0. | 0. | 0. |
| 1991 | 0. | 0. | 0. | 0. | 0. | 0. |
| 1992 | 0. | 0. | 0 。 | 0. | 0 . | 0. |
| 1993 | 0 。 | 0. | 0. | 0. | 0. | 0. |
| 1994 | 0 . | 0. | 0. | 0. | 0. | 0. |
| 1995 | 0. | 0. | 0. | 0. | 0. | 0. |
| 1996 | 0. | 0. | 0. | 0. | 0. | 0. |
| 1997 | 0. | 0. | 0. | 0. | 0. | 0. |
| 1998 | 0. | 0. | 0. | 0. | 0. | 0. |
| 1999 | 0. | 0. | 0. | 0. | 0. | 0. |
| 2000 | 0 . | 0. | 0. | 0. | 0. | 0. |
| 2001 | 0. | 0. | 0. | 0. | 0. | 0. |
| 2002 | 0. | 0. | 0. | 0. | 0. | 0. |
| 2003 | 0. | 0. | 0. | 0. | 0. | 0. |
| 2004 | 0. | 0. | 0. | 0. | 0. | 0. |
| 2005 | 0. | 0. | 0. | 0. | 0. | 0. |
| 2006 | 0. | 0. | 0. | 0. | 0. | 0. |
| 2007 | 0. | 0. | 0. | 0. | 0. | 0. |
| 2008 | 0. | 0. | 0. | 0. | 0. | 0. |
| 2009 | 0. | 0. | 0. | 0. | 0. | 0. |
| 2010 | 0. | 0. | 0. | 0. | 0. | 0. |


| m |  | OMF 2 | OMF3 | OMF4 | OMF5 | OMF6 | OMF 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| * | 1.983 | 0. | 0. | 0. | 0. | 0. | 0. |
|  | 1.984 | 0. | 0. | 0. | 0. | 0. | 0. |
|  | 1.985 | 0. | 0. | 0 . | 0. | 0. | 0. |
| + | 1.986 | 0. | 0. | 0. | 0. | 0. | 0. |
|  | 1.987 | 0. | 0. | 0. | 0. | 0. | 0. |
|  | 1.988 | 0. | 0. | 0. | 0 . | 0. | 0. |
| \% | 1.989 | 0. | 0. | 0. | 0. | 0. | 0. |
|  | 1.990 | 0. | 0 。 | 0 . | 0. | 0 . | 0. |
| pran | 11991 | 0. | 0. | 0. | 0. | 0. | 0. |
|  | 11992 | 0. | 0. | 0. | 0. | 0. | 0. |
|  | 11993 | 0. | 0. | 0. | 0. | 0. | 0. |
|  | 1994 | 0. | 0. | 0. | 0. | 0. | 0. |
| - | L995 | 0. | 0. | 0 . | 0. | 0. | 0. |
|  | . 1996 | 0. | 0. | 0. | 0. | 0. | 0. |
| \% | L997 | 0. | 0. | 0. | 0. | 0. | 0. |
|  | L998 | 0. | 0. | 0. | 0. | 0. | 0. |
|  | 1999 | 0. | 0. | 0 。 | 0. | 0. | 0. |
| $\pm$ | 2000 | 0. | 0. | 0. | 0. | 0. | 0. |
| : | 2001 | 0. | 0. | 0. | 0. | 0. | 0. |
| m | 2002 | 0. | 0. | 0. | 0. | 0. | 0. |
| - | 2003 | 0. | 0. | 0. | 0. | 0. | 0. |
| , | :2004 | 0. | 0. | 0. | 0. | 0. | 0. |
|  | 2005 | 0. | 0. | 0. | 0. | 0. | 0. |
|  | :2006 | 0. | 0. | 0. | 0. | 0. | 0. |
| $\cdots$ | 2008 | 0. | 0. | 0. | 0. | 0. | 0. |
|  | 2009 | 0. | 0. | 0. | 0. | 0. | 0. |
|  | 2010 | 0. | 0. | 0. | 0. | 0 . | 0. |

Institute of Social and Economic Research MAP Documentation December 1984，Model A85． 1

|  | OMF8 | OMF＇9 | OMLI | OHLIO | 0ML11 | OML12 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1983 | 0. | 0. | 0. | 0.05 | 0. | 0. |
| 1984 | 0. | 0. | 0. | 0.05 | 0. | 0. |
| 1985 | 0. | 0 ． | 0 ． | 0.05 | 0 ． | 0 ． |
| 1986 | 0. | 0. | 0. | 0.05 | 0. | 0. |
| 1987 | 0. | 0. | 0. | 0.05 | 0. | 0. |
| 1988 | 0 。 | 0. | 0. | 0.05 | 0. | 0. |
| 1989 | 0. | 0. | 0. | 0.05 | 0. | 0 ． |
| 1990 | 0. | 0 ． | 0 ． | 0.05 | 0 ． | 0 。 |
| 1991 | 0. | 0. | 0. | 0.05 | 0. | 0. |
| 1992 | 0 。 | 0. | 0. | 0.05 | 0. | 0. |
| 1993 | 0. | 0. | 0. | 0.05 | 0. | 0. |
| 1994 | 0 。 | 0. | 0 ． | 0.05 | 0. | 0 ． |
| 1995 | 0. | 0 ． | 0. | 0.05 | 0. | 0 ． |
| 1996 | 0. | 0. | 0. | 0.05 | 0. | 0. |
| 1997 | 0. | 0. | 0. | 0.05 | 0 ． | 0. |
| 1998 | 0. | 0 ． | 0. | 0.05 | 0. | 0. |
| 1999 | 0. | 0. | 0. | 0.05 | 0. | 0. |
| 2000 | 0. | 0 ． | 0. | 0.05 | 0 ． | 0 ． |
| 2001 | 0. | 0. | 0. | 0.05 | 0. | 0. |
| 2002 | 0. | 0. | 0. | 0.05 | 0. | 0. |
| 2003 | 0. | 0. | 0. | 0.05 | 0 ． | 0. |
| 2004 | 0. | 0 ． | 0. | 0.05 | 0. | 0. |
| 2005 | 0 ． | 0 ． | 0 ． | 0.05 | 0 ． | 0 ． |
| 2006 | 0. | 0. | 0. | 0.05 | 0. | 0. |
| 2007 | 0. | 0. | 0. | 0.05 | 0. | 0. |
| 2008 | 0 ． | 0. | 0. | 0.05 | 0. | 0. |
| 2009 | 0. | 0. | 0. | 0.05 | 0. | 0. |
| 2010 | 0 ． | 0. | 0 ． | 0.05 | 0. | 0. |

OML4
-
1.983 1.984 1.985
1.986
1.987
1.988
1.989
1.990

1991
1.992

1993
1994
-1995
. 1996
1997
. 1998
1999
2000

2001
2002
:2003
2004
2005

2006
.2007
2008
2009
2010
$\begin{array}{ll}0 . & 0 . \\ 0 . & 0 .\end{array}$
$\begin{array}{ll}0 . & 0 . \\ 0 . & 0 . \\ 0 . & 0 . \\ 0 . & 0 . \\ 0 . & 0 .\end{array}$
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

0 .
0.
0.
0.
0.
0.
0.
0.

0 .
0.
0.
0.
0.
0.

| 0. | 0. | 0. |
| :--- | :--- | :--- |
| 0. | 0. | 0. |
| 0. | 0. | 0. |
| 0. | 0. | 0. |
| 0. | 0. | 0. |

0. 
1. 
2. 
3. 
4. 
5. 
6. 
7. 

$$
0 .
$$

0. 
1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 
20. 
21. 
22. 
23. 
24. 
25. 
26. 
27. 
28. 
29. 
30. 
31. 
32. 
33. 
34. 
35. 
36. 

Institute of Social and Economic Research
MAP Documentation
December 1984, Model A85.1

|  | OMLS | OML6 | OML 7 | OHL 8 | OML9 | OMS1 | , |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1983 | 0. | 0. | 0. | 0. | 0. | 0.02 |  |
| 1984 | 0. | 0. | 0 . | 0. | 0. | 0.02 | \% |
| 1985 | 0. | 0. | 0. | 0 . | 0. | 0.02 |  |
| 1986 | 0. | 0. | 0. | 0. | 0. | 0.02 | $\pi$ |
| 1987 | 0. | 0. | 0. | 0. | 0. | 0.02 |  |
| 1988 | 0. | 0 . | 0. | 0. | 0. | 0.02 |  |
| 1989 | 0. | 0. | 0. | 0. | 0. | 0.02 | 4 |
| 1990 | 0. | 0. | 0. | 0. | 0 . | 0.02 |  |
| 1991 | 0. | 0. | 0. | 0. | 0. | 0.02 | 爯 |
| 1992 | 0. | 0. | 0. | 0. | 0. | 0.02 | \% |
| 1993 | 0. | 0. | 0. | 0. | 0. | 0.02 |  |
| 1994 | 0. | 0. | 0 . | 0. | 0. | 0.02 |  |
| 1995 | 0 . | 0. | 0 . | 0 . | 0. | 0.02 | = |
| 1996 | 0. | 0. | 0. | 0. | 0. | 0.02 |  |
| 1997 | 0. | 0. | 0. | 0. | 0. | 0.02 | nem |
| 1998 | 0. | 0. | 0. | 0. | 0. | 0.02 |  |
| 1999 | 0. | 0 . | 0. | 0. | 0. | 0.02 |  |
| 2000 | 0. | 0 . | 0 . | 0 . | 0 . | 0.02 | m |
| 2001 | 0. | 0. | $0$ | 0. | $0 \text { 。 }$ | $0.02$ | ; |
| 2002 | 0. | 0. | $0$ | $0$ | $0$ | $0.02$ |  |
| 2003 | 0. | 0. | 0. | 0 . | 0. | 0.02 | (mex |
| 2004 | 0. | 0. | 0. | 0. | 0. | 0.02 |  |
| 2005 | 0. | 0. | 0 . | 0 . | 0 . | 0.02 |  |
| 2006 | 0. | 0. | 0. | 0. | 0. | 0.02 | * |
| 2007 | 0. | 0. | 0. | 0. | 0. | 0.02 | - |
| 2008 | 0. | 0. | 0. | 0. | 0. | 0.02 | m |
| 2009 | 0. | 0. | 0. | 0. | 0. | 0.02 | 4 |
| 2010 | 0. | 0. | 0. | 0. | 0 . | 0.02 |  |



Institute of Social and Economic Research MAP Documentation
December 1984，Model A85．1

|  | OMS 2 | OMS3 | OMS4 | OMS5 | OMS6 | OMS 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1983 | 0. | 0.04 | 0. | 0. | 0.065 | 0.06 |
| 1984 | 0. | 0.04 | 0. | 0 。 | 0.065 | 0.06 |
| 1985 | 0. | 0.04 | 0 ． | 0. | 0.065 | 0.06 |
| 1986 | 0. | 0.04 | 0. | 0 。 | 0.065 | 0.06 |
| 1987 | 0 ． | 0.04 | 0. | 0. | 0.065 | 0.06 |
| 1988 | 0. | 0.04 | 0. | 0. | 0.065 | 0.06 |
| 1989 | 0. | 0.04 | 0 ． | 0 。 | 0.065 | 0.06 |
| 1990 | 0 ． | 0.04 | 0 ． | 0 ． | 0.065 | 0.06 |
| 1991 | 0. | 0.04 | 0. | 0. | 0.065 | 0.06 |
| 1992 | 0 ． | 0.04 | 0. | 0 。 | 0.065 | 0.06 |
| 1993 | 0. | 0.04 | 0. | 0. | 0.065 | 0.06 |
| 1994 | 0. | 0.04 | 0. | 0. | 0.065 | 0.06 |
| 1995 | 0 ． | 0.04 | 0. | 0. | 0.065 | 0.06 |
| 1996 | 0. | 0.04 | 0. | 0. | 0.065 | 0.06 |
| 1997 | 0. | 0.04 | 0. | 0. | 0.065 | 0.06 |
| 1998 | 0. | 0.04 | 0. | 0. | 0.065 | 0.06 |
| 1999 | 0 ． | 0.04 | 0. | 0 ． | 0.065 | 0.06 |
| 2000 | 0 ． | 0.04 | 0. | 0 ． | 0.065 | 0.06 |
| 2001 | 0. | 0.04 | 0. | 0. | 0.065 | 0.06 |
| 2002 | 0 ． | 0.04 | 0. | 0. | 0.065 | 0.06 |
| 2003 | 0. | 0.04 | 0. | 0 ． | 0.065 | 0.06 |
| 2004 | 0 ． | 0.04 | 0 ． | 0 ． | 0.065 | 0.06 |
| 2005 | 0 ． | 0.04 | 0 ． | 0 。 | 0.065 | 0.06 |
| 2006 | 0. | 0.04 | 0. | 0. | 0.065 | 0.06 |
| 2007 | 0. | 0.04 | 0. | 0. | 0.065 | 0.06 |
| 2008 | 0. | 0.04 | 0. | 0. | 0.065 | 0.06 |
| 2009 | 0. | 0.04 | 0. | 0. | 0.065 | 0.06 |
| 2010 | 0 ． | 0.04 | 0 ． | 0 ． | 0.065 | 0.06 |


|  |  |  |  |  |  | Institute of Social and Economic Research MAP Documentation December 1984, Model |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \% |  | OMS8 | OMS9 | OMU1 | OMU10 | OMU11 | OMU12 |
| ? | 1983 | 0. | 0. | 0. | 0.05 | 0. | 0. |
|  | 1984 | 0 . | 0. | 0 . | 0.05 | 0. | 0. |
|  | 1985 | 0 . | 0. | 0 . | 0.05 | 0. | 0 . |
| \% | 1986 | 0. | 0. | 0. | 0.05 | 0. | 0. |
|  | 1987 | 0 . | 0 . | 0 . | 0.05 | 0. | 0. |
|  | 1988 | 0 . | 0 . | 0. | 0.05 | 0. | 0. |
| \% | 1989 | 0 . | 0. | 0 . | 0.05 | 0. | 0. |
| , | 1990 | 0 . | 0. | 0 . | 0.05 | 0 . | 0 . |
| $\cdots$ | 1991 | 0. | 0. | 0. | 0.05 | 0. | 0. |
|  | 1992 | 0 . | 0. | 0 . | 0.05 | 0. | 0. |
|  | 1993 | 0. | 0 . | 0. | 0.05 | 0. | 0. |
|  | 1994 | 0. | 0. | 0. | 0.05 | 0. | 0. |
| m | 1995 | 0 . | 0 . | 0 . | 0.05 | 0. | 0 . |
|  | 1996 | 0. | 0. | 0. | 0.05 | 0. | 0. |
| ${ }^{\text {pema }}$ | 1997 | 0. | 0. | 0. | 0.05 | 0. | 0. |
| ! | 1998 | 0 . | 0 . | 0. | 0.05 | 0. | 0 . |
|  | 1999 | 0. | 0 . | 0 . | 0.05 | 0 . | 0. |
| 0 | 2000 | 0 . | 0 . | 0 . | 0.05 | 0 . | 0. |
|  | 2001 | 0. | 0. | 0. | 0.05 0.05 | 0. | 0. |
| mamememer | 2003 | 0. | 0. | 0. | 0.05 | 0. | 0. |
|  | 2004 | 0 . | 0 . | 0 . | 0.05 | 0 . | 0 . |
|  | 2005 | 0. | 0 . | 0 . | 0.05 | 0 . | 0 . |
| \% | $\begin{aligned} & 2006 \\ & 2007 \end{aligned}$ | $\begin{aligned} & 0 . \\ & 0 . \end{aligned}$ | $\begin{aligned} & 0 . \\ & 0 . \end{aligned}$ | $\begin{aligned} & 0 . \\ & 0 . \end{aligned}$ | $\begin{aligned} & 0.05 \\ & 0.05 \end{aligned}$ | $\begin{aligned} & 0 . \\ & 0 . \end{aligned}$ | 0. 0. |
| mamemememen | 2008 | 0. | 0. | 0. | 0.05 | 0 . | 0 . |
|  | 2009 | 0. | 0 . | 0. | 0.05 | 0. | 0. |
| - | 2010 | 0. | 0 . | 0. | 0.05 | 0. | 0. |

Institute of Social and Economic Research
MAP Documentation
December 1984, Model A85.

## $-$

OMU13
OMU14
OMU15
OMU2
OMU3
OMU4

|  | OMU13 | OMU14 | OMU15 | OMU2 | OMU3 | OMU4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1983 | 0. | 0. | 0. | 0.02 | 0. | 0. |
| 1984 | 0. | 0. | 0. | 0.02 | 0. | 0. |
| 1985 | 0. | 0 . | 0. | 0.02 | 0. | 0. |
| 1986 | 0. | 0. | 0. | 0.02 | 0. | 0. |
| 1987 | 0 . | 0. | 0. | 0.02 | 0. | 0. |
| 1988 | 0. | 0. | 0. | 0.02 | 0. | 0 . |
| 1989 | 0. | 0. | 0. | 0.02 | 0. | 0 . |
| 1990 | 0. | 0. | 0. | 0.02 | 0. | 0 . |
| 1991 | 0. | 0. | 0. | 0.02 | 0. | 0. |
| 1992 | 0. | 0. | 0. | 0.02 | 0 . | 0. |
| 1993 | 0. | 0. | 0. | 0.02 | 0. | 0. |
| 1994 | 0. | 0. | 0. | 0.02 | 0. | 0. |
| 1995 | 0. | 0 . | 0 . | 0.02 | 0. | 0 . |
| 1996 | 0. | 0. | 0. | 0.02 | 0. | 0. |
| 1997 | 0. | 0. | 0. | 0.02 | 0. | 0. |
| 1998 | 0. | 0. | 0. | 0.02 | 0. | 0. |
| 1999 | 0. | 0. | 0. | 0.02 | 0. | 0. |
| 2000 | 0 . | 0. | 0 . | 0.02 | 0. | 0 . |
| 2001 | 0. | 0. | 0. | 0.02 | 0. | 0. |
| 2002 | 0 . | 0. | 0. | 0.02 | 0. | 0. |
| 2003 | 0. | 0. | 0. | 0.02 | 0. | 0 . |
| 2004 | 0. | 0. | 0. | 0.02 | 0. | 0 . |
| 2005 | 0. | 0 . | 0. | 0.02 | 0. | 0 . |
| 2006 | 0. | 0. | 0. | 0.02 | 0. | 0. |
| 2007 | 0. | 0 . | 0. | 0.02 | 0. | 0. |
| 2008 | 0. | 0. | 0. | 0.02 | 0. | 0 . |
| 2009 | 0 . | 0. | 0. | 0.02 | 0. | 0. |
| 2010 | 0 . | 0. | 0 . | 0.02 | 0. | 0. |

Institute of Social and Economic Research MAP Documentation

| - |  | OMU5 | OMU6 | OMU 7 | OMU8 | OMU9 | PCNC1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | 1983 | 0. | 0. | 0. | 0.01 | 0.1 | 0.15 |
| - | 1984 | 0. | 0 . | 0. | 0.01 | 0.1 | 0.15 |
|  | 1985 | 0 . | 0. | 0. | 0.01 | 0.1 | 0.15 |
| $m$ | 1.986 | 0. | 0. | 0. | 0.01 | 0.1 | 0.15 |
| ! | 1.987 | 0. | 0. | 0. | 0.01 | 0.1 | 0.15 |
|  | 1.988 | 0. | 0. | 0. | 0.01 | 0.1 | 0.15 |
| m | 1.989 | 0. | 0. | 0. | 0.01 | 0.1 | 0.15 |
|  | 1990 | 0. | 0. | 0 . | 0.01 | 0.1 | 0.15 |
| - | 1.991 | 0. | 0. | 0. | 0.01 | 0.1 | 0.15 |
| - | 1.992 | 0. | 0. | 0. | 0.01 | 0.1 | 0.15 |
|  | 1.993 | 0. | 0. | 0. | 0.01 | 0.1 | 0.15 |
|  | 1.994 | 0. | 0. | 0. | 0.01 | 0.1 | 0.15 |
| 5 | 1.995 | 0. | 0 . | 0. | 0.01 | 0.1 | 0.15 |
|  | 1.996 | 0. | 0. | 0. | 0.01 | 0.1 | 0.15 |
| , | 1.997 | 0 . | 0. | 0. | 0.01 | 0.1 | 0.15 |
|  | 2998 | 0 . | 0. | 0. | 0.01 | 0.1 | 0.15 |
|  | 1999 | 0. | 80. | 0. | 0.01 | 0.1 | 0.15 |
|  | 2000 | 0 . | 0 . | 0 . | 0.01 | 0.1 | 0.15 |
|  | 2001 | 0. | 0. | 0. | 0.01 | 0.1 | 0.15 |
|  | 2002 | 0. | 0. | 0. | 0.01 | 0.1 | 0.15 |
| ma | 2003 | 0. | 0. | 0. | 0.01 | 0.1 | 0.15 |
|  | 2004 | 0. | 0. | 0. | 0.01 | 0.1 | 0.15 |
|  | :2005 | 0 . | 0 . | 0 . | 0.01 | 0.1 | 0.15 |
| , | 2006 | 0. | 0. | 0. | 0.01 | 0.1 | 0.15 |
|  | 2007 | 0. | 0. | 0. | 0.01 | 0.1 | 0.15 |
| - | . 2008 | 0. | 0. | 0. | 0.01 | 0.1 | 0.15 |
|  | 2009 | 0. | 0. | 0 . | 0.01 | 0.1 | 0.15 |
|  | 2010 | 0. | 0 . | 0. | 0.01 | 0.1 | 0.15 |

# Institute of Social and Economic Research <br> MAP Documentation 

December 1984, Model A85.1
3 PCHC3 PCOLART PDRATIOS PDUSCPIG PIPADJ

|  | PCNC2 | PCNC3 | PCOLART | PDRATIO6 | PDUSCPI6 | PIPADJ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1983 | 0.15 | 0.15 | 0.25 | 1.234 | 297. | 1.62 |
| 1984 | 0.15 | 0.15 | 0.25 | 0. | 0. | 1.62 |
| 1985 | 0.15 | 0.15 | 0.25 | 0. | 0. | 1.62 |
| 1986 | 0.15 | 0.15 | 0.25 | 0. | 0. | 1.62 |
| 1987 | 0.15 | 0.15 | 0.25 | 0. | 0. | 1.62 |
| 1988 | 0.15 | 0.15 | 0.25 | 0. | 0. | 1.62 |
| 1989 | 0.15 | 0.15 | 0.25 | 0. | 0. | 1.62 |
| 1990 | 0.15 | 0.15 | 0.25 | 0 . | 0 . | 1.62 |
| 1991 | 0.15 | 0.15 | 0.25 | 0. | 0. | 1.62 |
| 1992 | 0.15 | 0.15 | 0.25 | 0. | 0. | 1.62 |
| 1993 | 0.15 | 0.15 | 0.25 | 0. | 0. | 1.62 |
| 1994 | 0.15 | 0.15 | 0.25 | 0. | 0. | 1.62 |
| 1995 | 0.15 | 0.15 | 0.25 | 0 . | 0 . | 1.62 |
| 1996 | 0.15 | 0.15 | 0.25 | 0. | 0. | 1.62 |
| 1997 | 0.15 | 0.15 | 0.25 | 0. | 0. | 1.62 |
| 1998 | 0.15 | 0.15 | 0.25 | 0. | 0. | 1.62 |
| 1999 | 0.15 | 0.15 | 0.25 | 0. | 0. | 1.62 |
| 2000 | 0.15 | 0.15 | 0.25 | 0. | 0. | 1.62 |
| 2001 | 0.15 | 0.15 | 0.25 | 0. | 0. | 1.62 |
| 2002 | 0.15 | 0.15 | 0.25 | 0. | 0. | 1.62 |
| 2003 | 0.15 | 0.15 | 0.25 | 0. | 0. | 1.62 |
| 2004 | 0.15 | 0.15 | 0.25 | 0. | 0. | 1.62 |
| 2005 | 0.15 | 0.15 | 0.25 | 0 . | 0. | 1.62 |
| 2006 | 0.15 | 0.15 | 0.25 | 0. | 0. | 1.62 |
| 2007 | 0.15 | 0.15 | 0.25 | 0. | 0. | 1.62 |
| 2008 | 0.15 | 0.15 | 0.25 | 0. | 0. | 1.62 |
| 2009 | 0.15 | 0.15 | 0.25 | 0. | 0. | 1.62 |
| 2010 | 0.15 | 0.15 | 0.25 | 0 . | 0 . | 1.62 |

Institute of Social and Economic Research
MAP Documentation
December 1984, Model A85. 1

| m |  | PITRAN6 | PR.DPIU6 | P9PTPER | RCDEP1 | RCDEP10 | RCDEP11 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | 1983 | 0. | 3350. | 0.75 | 0.055 | 0.055 | 0. |
|  | 1984 | 0. | 0. | 0.75 | 0.055 | 0.055 | 0. |
|  | L. 985 | 0. | 0. | 0.75 | 0.055 | 0.055 | 0. |
| - | :1986 | 0. | 0. | 0.75 | 0.055 | 0.055 | 0. |
|  | L987 | 0. | 0. | 0.75 | 0.055 | 0.055 | 0 . |
|  | L 1988 | 0 . | 0. | 0.75 | 0.055 | 0.055 | 0 . |
| $\cdots$ | 1989 | 0. | 0. | 0.75 | 0.055 | 0.055 | 0. |
|  | 1990 | 0. | 0. | 0.75 | 0.055 | 0.055 | 0. |
| - | :1991 | 0. | 0. | 0.75 | $0.055$ | $0.055$ | 0. |
|  | L992 | 0. | 0. | 0.75 | $0.055$ | 0.055 | 0. |
|  | 1993 | 0. | 0. | 0.75 | 0.055 | 0.055 | 0 . |
|  | L994 | 0. | 0. | 0.75 | 0.055 | 0.055 | 0 . |
| momen | :1995 | 0 . | 0. | 0.75 | 0.055 | 0.055 | 0 . |
|  | 1996 | 0. | 0. | 0.75 | $0.055$ | 0.055 | 0. |
| $m$ | 1997 | 0. | 0. | 0.75 | 0.055 | 0.055 | 0. |
|  | 1998 | 0. | 0. | 0.75 | 0.055 | 0.055 | 0. |
|  | :L999 | 0. | 0. | 0.75 | 0.055 | 0.055 | 0. |
| then | 2000 | 0. | 0 . | 0.75 | 0.055 | 0.055 | 0. |
|  | 2001 | 0. | 0. | 0.75 | 0.055 | 0.055 | 0. |
|  | 2002 | 0. | 0. | 0.75 | 0.055 | 0.055 | 0. |
| m | 2003 | 0. | 0. | 0.75 | 0.055 | 0.055 | 0. |
|  | 2004 | 0. | 0. | 0.75 | 0.055 | 0.055 | 0. |
|  | 2005 | 0. | 0 . | 0.75 | 0.055 | 0.055 | 0 . |
|  |  |  |  |  |  |  |  |
| 1 | 2006 | 0. | 0. | 0.75 | 0.055 | 0.055 | 0. |
|  | 2007 | 0. | 0. | 0.75 | 0.055 | 0.055 | 0 . |
| $\cdots$ | 2008 | 0. | 0. | 0.75 | 0.055 | 0.055 | 0. |
|  | 2009 | 0. | 0. | 0.75 | 0.055 | 0.055 | 0. |
|  | 2010 | 0 . | 0. | 0.75 | 0.055 | 0.055 | 0. |

Institute of Social and Economic Research MAP Documentation December 1984, Model A85.1

RCDEP12 RCDEP13 RCDEP14 RCDEP2 RCDEP3 RCDEP5

| 1983 | 0. | 0. | 0. | 0.05 | 0.055 | 0. | $\cdots$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1984 | 0. | 0. | 0. | 0.05 | 0.055 | 0. |  |
| 1985 | 0. | 0. | 0. | 0.05 | 0.055 | 0. |  |
| 1986 | 0. | 0. | 0. | 0.05 | 0.055 | 0. | $\cdots$ |
| 1987 | 0. | 0. | 0. | 0.05 | 0.055 | 0. |  |
| 1988 | 0. | 0. | 0. | 0.05 | 0.055 | 0. |  |
| 1989 | 0. | 0. | 0. | 0.05 | 0.055 | 0. | \% |
| 1990 | 0. | 0. | 0. | 0.05 | 0.055 | 0. |  |
| 1991 | 0. | 0. | 0. | 0.05 | 0.055 | 0. |  |
| 1992 | 0. | 0. | 0. | 0.05 | 0.055 | 0. |  |
| 1993 | 0. | 0. | 0. | 0.05 | 0.055 | 0. |  |
| 1994 | 0. | 0. | 0. | 0.05 | 0.055 | 0. |  |
| 1995 | 0. | 0. | 0. | 0.05 | 0.055 | 0. | - |
| 1996 | 0. | 0. | 0. | 0.05 | 0.055 | 0. |  |
| 1997 | 0. | 0. | 0. | 0.05 | 0.055 | 0. | * |
| 1998 | 0. | 0. | 0. | 0.05 | 0.055 | 0. |  |
| 1999 | 0. | 0. | 0. | 0.05 | 0.055 | 0. |  |
| 2000 | 0. | 0. | 0. | 0.05 | 0.055 | 0. | - |
| 2001 | 0. | 0. | 0. | 0.05 | 0.055 | 0. |  |
| 2002 | 0. | 0. | 0. | 0.05 | 0.055 | 0. |  |
| 2003 | 0. | 0. | 0. | 0.05 | 0.055 | 0. | , |
| 2004 | 0. | 0. | 0. | 0.05 | 0.055 | 0. |  |
| 2005 | 0. | 0. | 0 。 | 0.05 | 0.055 | 0. |  |
| 2006 | 0. | 0. | 0. | 0.05 | 0.055 | 0. |  |
| 2007 | 0. | 0. | 0. | 0.05 | 0.055 | 0. |  |
| 2008 | 0. | 0. | 0. | 0.05 | 0.055 | 0. | 0 |
| 2009 | 0. | 0. | 0. | 0.05 | 0.055 | 0. |  |
| 2010 | 0. | 0. | 0 。 | 0.05 | 0.055 | 0. |  |



Institute of Social
and Economic Research
MAP Documentation
December 1984，Model A85．1

REPF11
REPF12
REPF13
REPF14
REPF15
REPF2

|  | REPF11 | REPF12 | REPF13 | REPF14 | REPF15 | REPF2 | m |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1983 | 0. | 0. | 0. | 0. | 0. | 0. | $\cdots$ |
| 1984 | 0. | 0. | 0 ． | 0. | 0. | 0. |  |
| 1985 | 0. | 0. | 0. | 0 。 | 0 ． | 0. |  |
| 1986 | 0. | 0. | 0. | 0. | 0. | 0. | $\cdots$ |
| 1987 | 0. | 0. | 0. | 0 。 | 0. | 0. |  |
| 1988 | 0. | 0. | 0. | 0. | 0. | 0. |  |
| 1989 | 0. | 0. | 0. | 0. | 0. | 0. | \％ |
| 1990 | 0. | 0 ． | 0. | 0. | 0. | 0 ． | ； |
| 1991 | 0. | 0. | 0. | 0. | 0. | 0 。 | － |
| 1992 | 0. | 0. | 0. | 0. | 0. | 0. |  |
| 1993 | 0. | 0. | 0. | 0. | 0. | 0. |  |
| 1994 | 0 。 | 0. | 0. | 0. | 0. | 0. |  |
| 1995 | 0. | 0. | 0. | 0. | 0 ． | 0. | \％ |
| 1996 | 0. | 0. | 0. | 0. | 0. | 0. |  |
| 1997 | 0. | 0. | 0. | 0. | 0. | 0. | ma |
| 1998 | 0. | 0. | 0. | 0. | 0. | 0. | \％ |
| 1999 | 0. | 0. | 0. | 0. | 0. | 0. |  |
| 2000 | 0. | 0. | 0 ． | 0. | 0 ． | 0 ． | 5 |
| 2001 | 0. | 0. | 0. | 0. | 0. | 0. |  |
| 2002 | 0 。 | 0. | 0. | 0. | 0. | 0. |  |
| 2003 | 0. | 0. | 0. | 0. | 0. | 0. | m |
| 2004 | 0. | 0. | 0 ． | 0. | 0. | 0. |  |
| 2005 | 0. | 0. | 0 ． | 0. | 0 ． | 0. |  |
| 2006 | 0. | 0. | 0. | 0. | 0. | 0. |  |
| 2007 | 0. | 0. | 0. | 0. | 0. | 0. |  |
| 2008 | 0. | 0. | 0. | 0. | 0. | 0. | － |
| 2009 | 0. | 0. | 0. | 0. | 0. | 0. |  |
| 2010 | 0. | 0. | 0. | 0. | 0 ． | 0. |  |

Institute of Social and Economic Research
MAP Documentation
December 1984，Model A85．1

|  | REPF3 | REPF4 | REPF5 | REPF6 | REPF7 | REPF8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1.983 | 0. | 0. | 0. | 0. | 0. | 0. |
| 1.984 | 0. | 0 ． | 0. | 0. | 0. | 0. |
| 1.985 | 0. | 0 ． | 0 ． | 0 ． | 0. | 0. |
| 1.986 | 0. | 0. | 0. | 0. | 0. | 0. |
| 1.987 | 0. | 0 ． | 0 ． | 0. | 0 ． | 0. |
| 1.988 | 0. | 0. | 0. | 0. | 0. | 0. |
| 1.989 | 0. | 0 ． | 0. | 0. | 0 ． | 0. |
| 1.990 | 0 ． | 0 ． | 0 ． | 0 ． | 0. | 0. |
| 21991 | 0. | 0. | 0. | 0. | 0. | 0. |
| L992 | 0. | 0. | 0. | 0 ． | 0. | 0 ． |
| ：1993 | 0. | 0. | 0 ． | 0. | 0 ． | 0 。 |
| ：1994 | 0. | 0 ． | 0. | 0. | 0 ． | 0 ． |
| 1995 | 0 ． | 0 ． | 0 ． | 0. | 0 ． | 0. |
| $1996$ | 0. | 0. | 0. | 0. | $0$ | $0$ |
| $1997$ | 0. | 0. | 0. | 0. | 0. | $0$ |
| ． 1998 | 0. | 0. | 0. | 0. | 0. | 0. |
| ． 1999 | 0. | 0. | 0. | 0. | 0. | 0. |
| 2000 | 0 ． | 0 ． | 0. | 0. | 0 ． | 0. |
| $\begin{array}{r} 2001 \\ 2002 \end{array}$ | 0. 0. | $\begin{aligned} & 0 . \\ & 0 . \end{aligned}$ | $\begin{aligned} & 0 . \\ & 0 . \end{aligned}$ | 0. | $\begin{aligned} & 0 . \\ & 0 . \end{aligned}$ | $\begin{aligned} & 0 . \\ & 0 . \end{aligned}$ |
| 2003 | 0 ． | 0. | 0 ． | 0 ． | 0. | 0. |
| 2004 | 0. | 0 。 | 0 ． | 0 ． | 0 ． | 0 ． |
| 2005 | 0. | 0 。 | 0 ． | 0. | 0 ． | 0 ． |
| $\begin{aligned} & 2006 \\ & 2007 \end{aligned}$ | 0. | $\begin{aligned} & 0 . \\ & 0 . \end{aligned}$ | $\begin{aligned} & 0 . \\ & 0 . \end{aligned}$ | $\begin{aligned} & 0 . \\ & 0 . \end{aligned}$ | $\begin{aligned} & 0 . \\ & 0 . \end{aligned}$ | $\begin{aligned} & 0 . \\ & 0 . \end{aligned}$ |
| 2008 | 0. | 0 ． | 0. | 0. | 0. | 0. |
| 2009 | 0. | 0. | 0. | 0. | 0. | 0. |
| 2010 | 0. | 0 。 | 0 ． | 0 ． | 0 ． | 0. |

Institute of Social and Economic Research MAP Documentation
December 1984, Model A85. 1

REPL12
REPL13

|  | REPF9 | REPL1 | REPL10 | REPLII | REPL12 | REPL13 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1983 | 0. | 0. | 0.055 | 0. | 0. | 0. | \% |
| 1984 | 0. | 0. | 0.055 | 0. | 0. | 0. |  |
| 1985 | 0 . | 0. | 0.055 | 0 . | 0 . | 0 . |  |
| 1986 | 0. | 0. | 0.055 | 0. | 0. | 0. | ? |
| 1987 | 0. | 0. | 0.055 | 0. | 0. | 0 . |  |
| 1988 | 0. | 0 . | 0.055 | 0. | 0. | 0. |  |
| 1989 | 0. | 0. | 0.055 | 0. | 0. | 0. | \% |
| 1990 | 0. | 0 . | 0.055 | 0 . | 0 . | 0 . |  |
| 1991 | 0. | 0. | 0.055 | 0. | 0. | 0. | nom |
| 1992 | 0. | 0. | 0.055 | 0. | 0. | 0. | + |
| 1993 | 0. | 0. | 0.055 | 0. | 0. | 0. | 1 |
| 1994 | 0. | 0. | 0.055 | 0. | 0. | 0. |  |
| 1995 | 0 . | 0 . | 0.055 | 0 . | 0 . | 0. | $\cdots$ |
| 1996 | 0. | 0. | 0.055 | 0. | 0. | 0. |  |
| 1997 | 0. | 0. | 0.055 | 0. | 0. | 0. | - |
| 1998 | 0. | 0. | 0.055 | 0. | 0. | 0. |  |
| 1999 | 0 。 | 0. | 0.055 | 0. | 0. | 0. |  |
| 2000 | 0 . | 0. | 0.055 | 0 . | 0 。 | 0 . | ma |
| 2001 | 0. | 0. | 0.055 | 0. | 0. | 0. |  |
| 2002 | 0. | 0 . | 0.055 | 0. | 0. | 0. |  |
| 2003 | 0. | 0. | 0.055 | 0. | 0 . | 0. | \% |
| 2004 | 0. | 0. | 0.055 | 0. | 0. | 0 . | \% |
| 2005 | 0 . | 0 . | 0.055 | 0. | 0 . | 0 . |  |
| 2006 | 0. | 0. | 0.055 | 0. | 0. | 0. |  |
| 2007 | 0 . | 0. | 0.055 | 0. | 0. | 0. |  |
| 2008 | 0. | 0. | 0.055 | 0. | 0. | 0. | \% |
| 2009 | 0. | 0. | 0.055 | 0. | 0. | 0. |  |
| 2010 | 0 . | 0 . | 0.055 | 0 . | 0 . | 0 . |  |



Institute of Social
and Economic Research
MAP Documentation
December 1984，Model A85．1

REPL6
REPL 7
REPL8
REPL9
REPS1
REPS 10  Model
$\longrightarrow$

1983 1984 1985 1986 1987 1988 1989 1990

1991 1992 1993 1994 1995

1996
1997
1998
1999
2000

2001
2002
2003
2004
2005

2006
2007
2008
2009
2010
$\begin{array}{ll}0 . & 0 . \\ 0 . & 0 . \\ 0 . & 0 .\end{array}$
0.
0.
0.
0.

0 ．
0.
0.
0.

0 。
0 。
0.

0 ．
0.
0.

0 ．
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.055
0.055
0.055
0.
0.

0 。
0
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

0 ．
0.

0 ．
0.
0.
0.

0 ．
0 ．
0.
0.

0 ．
0 ．
0.
0.
0.055
0.055
0.055
0.055
0.055
0.055
0.055
0.055
0.055
0.055
0.055
0.

0 ．
0 。
0 。
0 。
0.

0 。
0.

0 。
0.
0.
0.

0 ．
0 ．
0 ．
0.
0.
0.
0.

0 ．
0.
0.
0.
0.
0.
$\sin$
REPS11 REPS12 REPS13 REPS14 REPS15 REPS2


Institute of Social and Economic Research MAP Documentation December 1984，Model A85． 1

REPS 3
REPS4
REPS5
REPS6
REPS 7
REPS8

|  | REPS3 | REPS4 | REPS5 | REPS6 | REPS 7 | REPS8 | 27 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1983 | 0.055 | 0. | 0. | 0.04 | 0.1 | 0. | $\cdots$ |
| 1984 | 0.055 | 0. | 0. | 0.04 | 0.1 | 0. |  |
| 1985 | 0.055 | 0 ． | 0 ． | 0.04 | 0.1 | 0 ． | ： |
| 1986 | 0.055 | 0. | 0. | 0.04 | 0.1 | 0. | \％ |
| 1987 | 0.055 | 0. | 0. | 0.04 | 0.1 | 0. | ： |
| 1988 | 0.055 | 0. | 0. | 0.04 | 0.1 | 0. |  |
| 1989 | 0.055 | 0. | 0. | 0.04 | 0.1 | 0. | － |
| 1990 | 0.055 | 0. | 0. | 0.04 | 0.1 | 0 ． |  |
| 1991 | 0.055 | 0. | 0. | 0.04 | 0.1 | 0. | \％ |
| 1992 | 0.055 | 0. | 0. | 0.04 | 0.1 | 0. |  |
| 1993 | 0.055 | 0. | 0. | 0.04 | 0.1 | 0. |  |
| 1994 | 0.055 | 0. | 0 。 | 0.04 | 0.1 | 0. |  |
| 1995 | 0.055 | 0. | 0. | 0.04 | 0.1 | 0. | \％ |
| 1996 | 0.055 | 0. | 0. | 0.04 | 0.1 | 0. |  |
| 1997 | 0.055 | 0 ． | 0. | 0.04 | 0.1 | 0. | ， |
| 1998 | 0.055 | 0. | 0. | 0.04 | 0.1 | 0. |  |
| 1999 | 0.055 | 0. | 0. | 0.04 | 0.1 | 0. |  |
| 2000 | 0.055 | 0. | 0 ． | 0.04 | 0.1 | 0 ． | asm |
| 2001 | 0.055 | 0. | 0. | 0.04 | 0.1 | 0. |  |
| 2002 | 0.055 | 0. | 0 ． | 0.04 | 0.1 | 0. | ） |
| 2003 | 0.055 | 0 ． | 0. | 0.04 | 0.1 | 0. | max |
| 2004 | 0.055 | 0. | 0 ． | 0.04 | 0.1 | 0. |  |
| 2005 | 0.055 | 0 ． | 0 ． | 0.04 | 0.1 | 0 ． | \％ |
| 2006 | 0.055 | 0. | 0. | 0.04 | 0.1 | 0. |  |
| 2007 | 0.055 | 0. | 0. | 0.04 | 0.1 | 0. |  |
| 2008 | 0.055 | 0. | 0. | 0.04 | 0.1 | 0. | m |
| 2009 | 0.055 | 0 ． | 0. | 0.04 | 0.1 | 0. |  |
| 2010 | 0.055 | 0 ． | 0 ． | 0.04 | 0.1 | 0 ． |  |

Institute of Social and Economic Research

HAP Documentation
December 1984, Model A85.1

|  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  |
|  |  | REPS9 | REPU1 | REPU10 | REPU11 | REPU12 | REPU13

0.04
0.04
0.04
0.04
0.04
.04
0.04
0.04
0.04
0.04
0.04
0.04
.04
0.04
0.04
0.04
0.04
0.04
0.04
0.04
0.04
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
.

# Institute of Social <br> and Economic Research <br> MAP Documentation 

December 1984，Model A85． 1

REPU15
REPU2
REPU3
REPU4
REPU5

1983
1984
1985

1986
1987
1988
1989
1990

1991
1992
1993
1994
1995
1996
1997
1998
1999
2000

2001
2002
2003
2004
2005

2006
2007
2008
2009
2010

|  | REPU14 | REPU15 | REPU2 | REPU3 | REPU4 | REPU5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1983 | 0. | 0. | 0. | 0. | 0. | 0. |
| 1984 | 0. | 0. | 0. | 0. | 0. | 0. |
| 1985 | 0. | 0. | 0. | 0. | 0. | 0. |
| 1986 | 0. | 0. | 0. | 0. | 0. | 0. |
| 1987 | 0. | 0. | 0. | 0. | 0. | 0. |
| 1988 | 0. | 0. | 0. | 0. | 0. | 0. |
| 1989 | 0. | 0. | 0. | 0. | 0. | 0. |
| 1990 | 0. | 0 ． | 0. | 0. | 0. | 0 ． |
| 1991 | 0. | 0. | 0. | 0. | 0. | 0. |
| 1992 | 0. | 0. | 0. | 0. | 0. | 0 ． |
| 1993 | 0. | 0. | 0. | 0. | 0. | 0. |
| 1994 | 0. | 0. | 0. | 0. | 0. | 0. |
| 1995 | 0 ． | 0. | 0. | 0. | 0. | 0 ． |
| 1996 | 0. | 0. | 0. | 0. | 0. | 0. |
| 1997 | 0. | 0. | 0. | 0. | 0. | 0 ． |
| 1998 | 0. | 0 ． | 0. | 0. | 0. | 0. |
| 1999 | 0. | 0. | 0 。 | 0. | 0. | 0. |
| 2000 | 0 。 | 0. | 0. | 0 ． | 0 ． | 0 ． |
| 2001 | 0. | 0. | 0. | 0. | 0. | 0. |
| 2002 | 0 ． | 0. | 0 。 | 0. | 0. | 0. |
| 2003 | 0. | 0. | 0 ． | 0. | 0. | 0. |
| 2004 | 0 ． | 0. | 0 ． | 0. | 0. | 0. |
| 2005 | 0 ． | 0. | 0 ． | 0. | 0 ． | 0 ． |
| 2006 | 0. | 0. | 0. | 0. | 0. | 0. |
| 2007 | 0. | 0. | 0. | 0. | 0. | 0. |
| 2008 | 0. | 0. | 0. | 0. | 0. | 0. |
| 2009 | 0. | 0. | 0. | 0. | 0. | 0. |
| 2010 | 0 ． | 0. | 0. | 0. | 0. | 0. |



Institute of Social and Economic Research MAP Documentation December 1984，Model A85． 1

|  | RLTFPX | RLTMA6 | RLTMCAP | RLTRS6 | RLTX | RMISRES6 | m |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1983 | 0. | 71. | 333.3 | 56. | 0. | 34.797 | ， |
| 1984 | 0 ． | 0. | 300. | 0. | 0. | 0 ． |  |
| 1985 | 0 ． | 0. | 200. | 0 ． | 0. | 0 ． |  |
| 1986 | 0. | 0. | 100. | 0. | 0. | 0. | ， |
| 1987 | 0. | 0. | 0. | 0. | 0. | 0. |  |
| 1988 | 0. | 0. | 0. | 0. | 0. | 0 。 |  |
| 1989 | 0 ． | 0 ． | 0. | 0. | 0. | 0 。 | 0 |
| 1990 | 0. | 0. | 0. | 0 ． | 0. | 0 ． |  |
| 1991 | 0. | 0. | 0. | 0. | 0. | 0. | （ex |
| 1992 | 0 ． | 0 ． | 0. | 0 。 | 0. | 0 。 |  |
| 1993 | 0. | 0. | 0. | 0. | 0. | 0. |  |
| 1994 | 0. | 0. | 0. | 0. | 0. | 0 。 | $\cdots$ |
| 1995 | 0. | 0. | 0 ． | 0 。 | 0 ． | 0 ． | $\cdots$ |
| 1996 | 0. | 0. | 0. | 0. | 0. | 0. |  |
| 1997 | 0. | 0. | 0. | 0. | 0. | 0 ． | \％ |
| 1998 | 0. | 0. | 0. | 0. | 0. | 0. |  |
| 1999 | 0. | 0. | 0. | 0. | 0. | 0 。 |  |
| 2000 | 0. | 0 。 | 0 ． | 0 ． | 0 。 | 0 ． | ＊ |
| 2001 | 0. | 0. | 0. | 0. | 0. | 0. |  |
| 2002 | 0 ． | 0. | 0. | 0. | 0. | 0. | $\cdots$ |
| 2003 | 0. | 0. | 0. | 0. | 0. | 0 ． |  |
| 2004 | 0 ． | 0 。 | 0 ． | 0 ． | 0. | 0 ． |  |
| 2005 | 0. | 0 ． | 0 ． | 0 ． | 0 ． | 0 ． | man |
| 2006 | 0. | 0. | 0. | 0. | 0. | 0. |  |
| 2007 | 0. | 0. | 0. | 0. | 0. | 0 ． |  |
| 2008 | 0. | 0. | 0. | 0. | 0. | 0. | \％ |
| 2009 | 0. | 0. | 0 ． | 0 。 | 0. | 0 ． |  |
| 2010 | 0 ． | 0 ． | 0 ． | 0 ． | 0. | 0 ． |  |



|  | RP9X | RSFDNCAX | RSFDNPX | RSFDNX | RSEDN6 | RSIG6 | \％ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1983 | 0. | 20.438 | 23. | 0. | 184.917 | 266.3 | ance |
| 1984 | 0. | 20. | 24. | 0 。 | 0 ． | 0 ． |  |
| 1985 | 0. | 20. | 25. | 0 ． | 0 ． | 0 ． |  |
| 1986 | 0. | 20. | 26. | 0. | 0. | 0. | $\cdots$ |
| 1987 | 0. | 20. | 27. | 0. | 0. | 0. |  |
| 1988 | 0. | 20. | 28. | 0 ． | 0. | 0. |  |
| 1989 | 0. | 20. | 29. | 0 ． | 0. | 0. | \％ |
| 1990 | 0 ． | 20. | 30. | 0 ． | 0 ． | 0 ． |  |
| 1991 | 0. | 25. | 31. | 0. | 0. | 0. | \％ |
| 1992 | 0. | 25. | 32. | 0. | 0. | 0. | － |
| 1993 | 0. | 25. | 33. | 0. | 0. | 0. |  |
| 1994 | 0. | 25. | 34. | 0. | 0. | 0. |  |
| 1995 | 0 ． | 25. | 45. | 0 ． | 0 ． | 0 ． | ， |
| 1996 | 0. | 25. | 56. | 0. | 0. | 0. |  |
| 1997 | 0. | 25. | 57. | 0. | 0 ． | 0 ． | m |
| 1998 | 0. | 25. | 58. | 0 ． | 0. | 0. |  |
| 1999 | 0. | 25. | 59. | 0. | 0. | 0 。 |  |
| 2000 | 0. | 25. | 60. | 0 ． | 0. | 0 ． | \％m |
| 2001 | 0. | 30. | 61. | 0. | 0. | 0. |  |
| 2002 | 0. | 30. | 62. | 0. | 0. | 0. |  |
| 2003 | 0. | 30. | 63. | 0. | 0. | 0 ． | \％ |
| 2004 | 0. | 30. | 64. | 0. | 0. | 0 ． |  |
| 2005 | 0 ． | 30. | 65. | 0 ． | 0 ． | 0 ． |  |
| 2006 | 0. | 30. | 66. | 0. | 0. | 0. |  |
| 2007 | 0. | 30. | 67. | 0 ． | 0 ． | 0. |  |
| 2008 | 0. | 30. | 68. | 0. | 0 。 | 0. | \％ |
| 2009 | 0. | 30. | 69. | 0. | 0. | 0. |  |
| 2010 | 0. | 30. | 70. | 0 ． | 0. | 0. |  |


| 40 |  |  |  |  |  | Institute and Econom MAP Docume December | Social <br> Research <br> tion <br> , Model A |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\ldots$ |  |  |  |  |  |  |  |
| Prem |  | RSIP5 | RTCSPX | RTCSX | RTISXX | RTOTS6 | SANCSA |
| $\cdots$ | 1.983 | 255. |  | 0. | 0. | 25.6 | 0. |
|  | 1.984 | 188. |  | 0. | 0. | 23.4 | 0. |
| * | 1.985 | 0. |  | 0. | 0. | 0 . | 0. |
| mmamemer |  |  |  |  |  |  |  |
| , | 1.987 | 0. | $R$ | 0. | 0. | 0. | 0. |
|  | 7.988 | 0. | 0 | 0. | 0. | 0. | 0. |
| - | -1989 | 0. | M | 0. | 0. | 0. | 0. |
|  | 2.990 | 0. |  | 0. | 0. | 0. | 0 . |
|  |  |  | S |  |  |  |  |
| $\sim$ | 2991 | 0. | C | 0. | 0. | 0. | 0. |
|  | -1992 | 0. | E | 0. | 0. | 0. | 0. |
|  | 2993 | 0. | N | 0. | 0. | 0. | 0. |
|  | 1994 | 0. | A | 0. | 0. | 0. | 0. |
| - | -1995 | 0 . | R | 0. | 0. | 0. | 0 . |
|  |  |  | I |  |  |  |  |
|  | 1996 | 0. | 0 | 0. | 0. | 0. | 0. |
| $\ldots$ | 1997 | 0. |  | 0. | 0 . | 0. | 0. |
|  | 2998 | 0. | G | 0. | 0. | 0. | 0. |
|  | 2999 | 0. | E | 0. | 0 . | 0. | 0. |
| mom | 2000 | 0. | N | 0. | 0. | 0. | 0. |
|  |  |  | E |  |  |  |  |
|  | 2001 | 0. | R | 0. | 0. | 0. | 0. |
| - | 2002 | 0. | A | 0. | 0. | 0. | 0. |
|  | 2003 | 0. | T | 0. | 0. | 0. | 0. |
|  | 2004 | 0. | 0 | 0. | 0. | 0. | 0. |
|  | P- 0. 200 R 0. 0. 0 |  |  |  |  |  |  |
| \% | 2006 | 0. |  | 0. | 0. | 0. | 0. |
|  | 2007 | 0. |  | 0. | 0. | 0. | 0. |
| 0 | 2008 | 0. |  | 0. | 0. | 0. | 0. |
|  | 2009 | 0. |  | 0. | 0 . | 0 . | 0. |
|  | 2010 | 0. |  | 0. | 0 . | 0 . | 0. |

Institute of Social
and Economic Research
MAP Documentation
December 1984，Model A85．1

|  | SANCSAX | TCRED | TOURIST | TXBASE | TXCRPC | TXPTXX | m |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1983 | 0. | 0. |  | 0. | 0. | 0. | sm |
| 1984 | 0. | 0. |  | 0. | 0. | 0. |  |
| 1985 | 0. | 0. |  | 0 ． | 0 ． | 0 。 |  |
| 1986 | 0. | 0. | F | 0. | 0. | 0. | 5 |
| 1987 | 0. | 0. | R | 0. | 0. | 0. |  |
| 1988 | 0. | 0. | 0 | 0. | 0. | 0. |  |
| 1989 | 0. | 0. | M | 0. | 0. | 0. | － |
| 1990 | 0. | 0. |  | 0. | 0. | 0 。 |  |
|  |  |  | S |  |  |  |  |
| 1991 | 0. | 0. | C | 0. | 0. | 0. | － |
| 1992 | 0. | 0. | E | 0. | 0. | 0. |  |
| 1993 | 0. | 0. | N | 0. | 0. | 0. |  |
| 1994 | 0. | 0. | A | 0. | 0. | 0. | 280 |
| 1995 | 0. | 0 ． | R | 0 ． | 0. | 0. |  |
|  |  |  | I |  |  |  |  |
| 1996 | 0. | 0. | 0 | 0. | 0. | 0. |  |
| 1997 | 0. | 0. |  | 0. | 0. | 0. | $\cdots$ |
| 1998 | 0. | 0. | G | 0. | 0. | 0. |  |
| 1999 | 0. | 0. | E | 0. | 0. | 0. |  |
| 2000 | 0. | 0 ． | N | 0. | 0. | 0. | asm |
|  |  |  | E |  |  |  |  |
| 2001 | 0. | 0. | R | 0. | 0. | 0. |  |
| 2002 | 0. | 0. | A | 0. | 0. | 0. | － |
| 2003 | 0. | 0. | T | 0. | 0. | 0. |  |
| 2004 | 0. | 0. | 0 | 0. | 0. | 0. |  |
| 2005 | 0. | 0 ． | R | 0 ． | 0. | 0. |  |
| 2006 | 0. | 0. |  | 0. | 0. | 0. |  |
| 2007 | 0. | 0. |  | 0. | 0. | 0. |  |
| 2008 | 0. | 0. |  | 0. | 0. | 0. | $0 \times$ |
| 2009 | 0. | 0. |  | 0. | 0. | 0. |  |
| 2010 | 0. | 0. |  | 0. | 0. | 0. |  |




SOURCE: Dset A85.1

| CNNPF13 | 1982 | 5.282 | NA |  |
| :---: | :---: | :---: | :---: | :---: |
| CNNPF14 | 1982 | 3.387 | NA | max |
| CNNPF15 | 1982 | 5.264 | NA |  |
| CNNPF2 | 1982 | 11.405 | NA |  |
| CNNPF3 | 1982 | 13.5 | NA | mex |
| CNNPF4 | 1982 | 12.091 | NA |  |
| CNNPF5 | 1982 | 12.71 | NA |  |
| CNNPFF6 | 1982 | 20.05 | NA | m |
| CNNPF7 | 1982 | 20.021 | NA |  |
| CNNPF8 | 1982 | 18.981 | NA |  |
|  |  |  |  | $\cdots$ |
| CNNPF9 | 1982 | 14.083 | NA |  |
| CNNPM1 | 1982 | 3.6 | NA |  |
| CNAPM10 | 1982 | 13.206 | NA | m |
| CNNPM11 | 1982 | 10.267 | NA |  |
| CNNPM12 | 1982 | 7.372 | NA |  |
| CNNPM13 | 1982 | 6.324 | NA | * |
| CNNPM14 | 1982 | 4.514 | NA |  |
| CNNPM15 | 1982 | 5.31 | NA |  |
| CNNPM2 | 1982 | 12.225 | NA | mman |
| CNNPM3 | 1982 | 14.215 | NA |  |
| CNNPM4 | 1982 | 12.856 | NA | \% |
| CNNPMS | 1982 | 14.595 | NA |  |
| CNNPM6 | 1982 | 18.533 | NA | - |
| CNNPM7 | 1982 | 21.764 | NA | *ex |
| CNNPM8 | 1982 | 21.186 | NA |  |
| CNNPM9 | 1982 | 16.103 | NA |  |
| COLA | 1982 | 70. | NA | man |
| DEBTP83 | 1982 | 0. | 0 . |  |
| DF.RSVP | 1982 | 0. | NA |  |
| DPI | 1982 | 6094.73 | NA | m |
| DPIRES | 1982 | 74.548 | NA |  |
| DPI8 | 1982 | 6525.59 | NA | 5 |
| ELBD | 1982 | 160. | NA |  |
| ELED | 1982 | 400. | NA |  |
| ELEDCP | 1982 | 110. | NA |  |
| ELED1 | 1982 | 112. | NA |  |
| ELNED1 | 1982 | 600. | NA |  |
| ELPERS | 1982 | 450. | NA | mem |
| EL99 | 1982 | 1200. | NA |  |
| EMAFISH | 1982 | 0.21 | NA |  |



Institute of Social and Economic Research MAP Documentation December 1984，Model A85．1

| EM9 7 | 1982 | 199.545 | NA |  |
| :---: | :---: | :---: | :---: | :---: |
| EM98 | 1982 | 221.648 | NA | ＊ |
| EM99 | 1982 | 240.592 | NA |  |
| EXANSAV | 1982 | 0 。 | NA |  |
| EXCAP | 1982 | 944.515 | 1324.53 | 5 |
| EXCAPFR | 1982 | 0 。 | NA |  |
| EXCDS | 1982 | 170. | NA |  |
| EXCDSNT | 1982 | 55. | NA | \％＊ |
| EXCDS4 | 1982 | 170. | NA |  |
| EXCPS | 1982 | 267.398 | 238.183 |  |
| EXCPSFED | 1982 | 105.021 | 110.491 |  |
| EXCPSHY | 1982 | 150.115 | 165.403 |  |
| EXCPSM | 1982 | 0 。 | 0. | ＊＊＊ |
| EXCPSNH | 1982 | 117.283 | 72.78 |  |
| EXC10 | 1982 | 0 ． | NA |  |
| EXC15 | 1982 | 0. | NA | ＊ |
| EXC4 | 1982 | 0. | NA |  |
| EXC5 | 1982 | 0. | NA |  |
| EXC7 | 1982 | 0. | NA | $\cdots$ |
| EXDFCON | 1982 | 0. | NA |  |
| EXDFWITH | 1982 | 0. | NA | \％ |
| EXDSS | 1982 | 102.325 | 143.624 |  |
| EXEDS | 1982 | 600. | NA |  |
| EXEDS4 | 1982 | 600. | NA |  |
| EXGF | 1982 | 6852.71 | NA | $\cdots$ |
| EXGFBM | 1982 | 6648. | NA |  |
| EXGFCHY | 1982 | 140.017 | 202.041 | max |
| EXGFCNH | 1982 | 343.1 | 276. |  |
| EXGFCOT | 1982 | 194. | 608.305 |  |
| EXGGS | 1982 | 120. | NA | （men |
| EXGGS4 | 1982 | 120. | NA |  |
| EXHES | 1982 | 130. | NA | me |
| EXHES4 | 1982 | 130. | NA |  |
| EXINREC | 1982 | 216.396 | 217.197 |  |
| EXINRECB | 1982 | 72.636 | 136.995 |  |
| EXJUS | 1982 | 110. | NA |  |
| EXJUS4 | 1982 | 110. | NA |  |
| EXLIM | 1982 | 0. | 0. | 4x |
| EXLIMOK | 1982 | 0. | 0. |  |
| EXNOPS | 1982 | 5141.89 | NA |  |


Institute of Social
and Economic Research
MAP Documentation
December 1984, Model A85.1

| MILPCT | 1982 | 0.948 | NA |  |
| :---: | :---: | :---: | :---: | :---: |
| NATPFI | 1982 | 1.102 | NA |  |
| NATPF10 | 1982 | 1.529 | NA |  |
| NATPF11 | 1982 | 1.341 | NA |  |
| NATPF12 | 1982 | 1.143 | NA | - |
| NATPF13 | 1982 | 0.928 | NA |  |
| NATPF14 | 1982 | 0.736 | NA | m |
| NATPF15 | 1982 | 1.616 | NA |  |
| NATPF2 | 1982 | 3.305 | NA |  |
| NATPF3 | 1982 | 3.462 | NA | - |
| NATPF4 | 1982 | 3.541 | NA |  |
| NATPF5 | 1982 | 3.879 | NA |  |
| NATPF6 | 1982 | 3.648 | NA | - |
| NATPF7 | 1982 | 3.063 | NA |  |
| NATPF8 | 1982 | 2.438 | NA |  |
| NATPF9 | 1982 | 1.937 | NA |  |
| NATPM1 | 1982 | 1.161 | NA |  |
| NATPM10 | 1982 | 1.557 | NA | - |
| NATPM11 | 1982 | 1.382 | NA |  |
| NATPM12 | 1982 | 1.181 | NA |  |
| NATPM13 | 1982 | 0.981 | NA | * |
| NATPM14 | 1982 | 0.714 | NA |  |
| NATPM15 | 1982 | 1.538 | NA |  |
| NATPM2 | 1982 | 3.505 | NA | - |
| NATPM3 | 1982 | 3.609 | NA |  |
| NATPM4 | 1982 | 3.673 | NA | - |
| NATPM5 | 1982 | 4.01 | NA |  |
| NATPM6 | 1982 | 3.668 | NA |  |
| NATPM 7 | 1982 | 3.062 | NA |  |
| NATPM8 | 1982 | 2.45 | NA | m |
| NATPM9 | 1982 | 1.947 | NA |  |
| NCCAP | 1982 | 424. | NA | - |
| NCCI | 1982 | 148. | NA |  |
| NCPI | 1982 | 22. | NA |  |
| P.DPINN | 1982 | 10000. | 10000. | $\cdots$ |
| PDCON | 1982 | 633.398 | NA |  |
| PDEXOPS | 1982 | 406. | NA |  |
| PDRATIO | 1982 | 1.262 | NA | - |
| PDRPI | 1982 | 364.23 | 366.938 |  |
| PDUSCPI | 1982 | 288.6 | NA |  |


| - |  |  |  | Institute of Social <br> and Economic Research <br> MAP Documentation <br> December 1984, Model A85.1 |
| :---: | :---: | :---: | :---: | :---: |
|  | PI | 1982 | 7384.34 | NA |
|  | PIDIR | 1982 | 787.67 | NA |
| ! | PIOLI | 1982 | 411.624 | NA |
|  | PIPROF | 1982 | 30.155 | NA |
| $\cdots$ | PIPRO1 | 1982 | 172.819 | NA |
|  | PIRADJ | 1982 | 430.85 | NA |
| m | PISSC | 1982 | 362.139 | NA |
|  | PITRAN | 1982 | 837.461 | NA |
|  | PITRAN1 | 1982 | 571.619 | NA |
|  | PI3 | 1982 | 7384.34 | NA |
|  | PI8 | 1982 | 7815.19 | NA |
|  | POP | 1982 | 460.8 | NA |
|  | POPC | 1982 | 438.7 | NA |
|  | POPGER | 1982 | 13.744 | NA |
|  | POPM | 1982 | 22.1 | NA |
| m | POPMIG POPNE | $\begin{aligned} & 1982 \\ & 1982 \end{aligned}$ | $\begin{aligned} & 18.317 \\ & 74.775 \end{aligned}$ | $\begin{aligned} & \text { NA } \\ & \text { NA } \end{aligned}$ |
|  | POPSKUL | 1982 | 110.851 | NA |
|  | PR.BALCP | 1982 | 1400. | NA |
|  | PR.DPINN | 1982 | 4308. | 4200. |
| - | PR.DPIUS | 1982 | 3248.44 | NA |
| 1 | PR.PI PR.PI3 | 1982 | 4399.7 4399.7 | NA |
| - | R.BALCAP | 1982 | 600. | NA |
| ' | R.CAP1 | 1982 | 3000. | NA |
| $\cdots$ | $\begin{aligned} & \text { R.CAP10 } \\ & \text { R.CAP11 } \end{aligned}$ | 1982 1982 | $271 .$ | NA |
| , | R. CAP12 | 1982 1982 | 0. | NA |
| $\bigcirc$ | R.CAP14 | 1982 | 0 . | NA |
|  | R.CAP15 | 1982 | 764. 333. | NA |
| \% | R.CAP3 | 1982 | 250. | NA |
|  | R. CAP4 | 1982 | 0. | NA |
| pros | R.CAP5 | 1982 | 3097. | NA |
| + | R. CAP6 R. CAP 7 | 1982 1982 | 963. | NA |
| 4 | R.CAP8 R.CAP9 R.DPI | 1982 1982 1982 | 0. 0. 1673.32 | NA NA NA |


| R.DPI8N | 1982 | 1791.61 | NA |  |
| :---: | :---: | :---: | :---: | :---: |
| R.DPI8X | 1982 | 0. | NA | 4 |
| R.WR97 | 1982 | 7594.36 | NA |  |
| RLMC | 1982 | 340. | NA |  |
| RLOT | 1982 | 52. | NA | $\cdots$ |
| RLPT1 | 1982 | 200. | NA |  |
| RLTCS | 1982 | 0. | NA |  |
| RLTCS4 | 1982 | 0. | NA |  |
| RLTEB | 1982 | 10. | NA |  |
| RLTEB4 | 1982 | 10. | NA |  |
| RLTEF'4 | 1982 | 340.826 | 415.211 |  |
| RLTEO | 1982 | 71.536 | 93.262 |  |
| RLTE04 | 1982 | 71.536 | 93.262 | \% |
| RLTET | 1982 | 18.814 | 19.98 |  |
| RLTET4 | 1982 | 18.814 | 19.98 |  |
| RLTE99 | 1982 | 300. | NA | mand |
| RLTE994 | 1982 | 300. | NA |  |
| RLTF | 1982 | 80. | NA |  |
| RLTMA | 1982 | 87.9 | NA | * |
| RLTMA4 | 1982 | 87.9 | NA |  |
| RLTMS | 1982 | 50. | NA | ? |
| RLTRS | 1982 | 55.603 | NA |  |
| RLTRS4 | 1982 | 55.603 | NA |  |
| RLTT9 | 1982 | 95.757 | NA | asen: |
| RLTT94 | 1982 | 95.757 | NA |  |
| RLTVS 4 | 1982 | 1.182 | NA |  |
| RLT99 | 1982 | 450. | NA | - |
| RMIS | 1982 | 29. | 38.2 |  |
| RMISRES | 1982 | 16.739 | 34.797 |  |
| ROFAS | 1982 | 11. | NA | \% |
| ROFERS | 1982 | 20. | 8. |  |
| ROFOS | 1982 | 8. | NA | m |
| RSFDN | 1982 | 187.968 | 184.917 |  |
| RSFFS | 1982 | 4.516 | 6.329 |  |
| RSES1 | 1982 | 3.297 | 2.821 | 5 |
| RSGF | 1982 | 4313.1 | 3850.71 |  |
| RSGEBM | 1982 | 4108.4 | 3631. |  |
| RSIAS | 1982 | 31.12 | 30.969 | \% |
| RSIP | 1982 | 317. | 471. |  |
| RSIPGF' | 1982 | 71.1 | 109.5 |  |


| $\leq$ | RTAS | 1982 | 9. | 10.4 |
| :---: | :---: | :---: | :---: | :---: |
| , | RTBS2 | 1982 | 12. | NA |
|  | RTCIS | 1982 | 1.9 | 2. |
|  | RTCS 1 | 1982 | 34.8 | 30.3 |
| (ras | RTIS | 1982 | 0 。 | 0 . |
|  | RTISG | 1982 | 0. | 0. |
| = | RTISCA1 | 1982 | 0.44 | NA |
|  | RTISCA2 | 1982 | 0.44 | NA |
|  | RTISCP | 1982 | 68.189 | NA |
|  | RTISLOS | 1982 | 150. | NA |
|  | RTMF | 1982 | 30.3 | 36.7 |
|  | RTOTS | 1982 | 26.3 | 25.6 |
| $=$ | RTPIF | 1982 | 1146.86 | NA |
|  | RTSS | 1982 | 0. | 0. |
|  | RTVS | 1982 | 13.7 | 15.2 |
|  |  |  |  |  |
|  | R99S | 1982 | 4954.8 | 4596.31 |
|  | TPTV | 1982 | 260. | NA |
| - | VAEX | 1982 | 1000. | NA |
|  | WEALTH | 1982 | 4017.14 | NA |
|  | WEUS | 1982 | 266.9 | NA |
| 3 | WRA9 | 1982 | 24375.4 | NA |
|  | WRCM | 1982 | 40266.5 | NA |
|  | WRCN | 1982 | 47174.6 | NA |
| ma | WRCNNP | 1982 | 47174.6 | NA |
|  | WRCNP | 1982 | 0 . | NA |
| m | WRDR | 1982 | 15670.3 | NA |
|  | WRDW | 1982 | 29365. | NA |
| - | WRD9 | 1982 | 18298.3 | NA |
|  | WRFI | 1982 | 22956.7 | NA |
|  | WRGA | 1982 | 29442.5 | NA |
|  | WRGC | 1982 | 24246.2 | WA |
| - | WRGF | 1982 | 21279.5 | NA |
|  | WRGL | 1982 | 28365.8 | NA |
|  | WRGM | 1982 | 18911.7 | NA |
| m | WRGS | 1982 | 30812.9 | NA |
|  | WRM91 | 1982 | 23461.1 | NA |
| , | WRPU | 1982 | 39452. | NA |
| - | WRP9 | 1982 | 50329.5 | NA |
| . | WRSB | 1982 | 24394.8 | NA |
|  | WRSNB | 1982 | 20618.1 | NA |


| WRS9 | 1982 | 21347.6 | NA |  |
| :---: | :---: | :---: | :---: | :---: |
| WRT9 | 1982 | 32682.7 | NA | - |
| WR98 | 1982 | 26788.4 | NA |  |
| WSCN | 1982 | 791.496 | NA |  |
| WSCNP | 1982 | 0 . | NA | $s$ |
| WSGA | 1982 | 1204.23 | NA |  |
| WSGC | 1982 | 427.727 | NA | mm |
| WSGL | 1982 | 649.748 | NA |  |
| WSGM | 1982 | 418.005 | NA |  |
| WSGS | 1982 | 554.478 | NA |  |
| WSGSFY | 1982 | 575. | NA |  |
| WS97 | 1982 | 5519.6 | NA |  |
| WS98 | 1982 | 5937.61 | NA | 5 |
| XXA9 | 1982 | 93.938 | NA |  |
| XXCM | 1982 | 208.529 | NA |  |
| XXCN | 1982 | 188.342 | NA | m; |
| XXCN1 | 1982 | 188.342 | NA |  |
| XXCN8 | 1982 | 152.251 | NA |  |
| XXDR | 1982 | 254.556 | NA | m |
| KXDRNT | 1982 | 290.016 | NA |  |
| XXDW | 1982 | 133.766 | NA | $\cdots$ |
| XXD9 | 1982 | 388.323 | NA |  |
| XXFI | 1982 | 388.745 | NA |  |
| XXGA | 1982 | 344.316 | NA | \% |
| XXGF | 1982 | 402.274 | NA |  |
| XXMO | 1982 | 50.498 | NA |  |
| XXMX2 | 1982 | 223.407 | NA | m |
| XXPU | 1982 | 52.73 | NA |  |
| XXP9 | 1982 | 1619.95 | NA |  |
| XXSB | 1982 | 77.31 | NA | \% |
| XXS8NT | 1982 | 240.727 | NA |  |
| XxS9 | 1982 | 350.98 | NA | - |
| XXTNT | 1982 | 177.919 | NA |  |
| XXT9 | 1982 | 218.939 | NA |  |
| XXVHY | 1982 | 116.5 | NA | - |
| XXVNHY | 1982 | 112.1 | NA |  |
| XX98 | 1982 | 4530.97 | NA |  |

## APPENDIX F

ISER MAP ALASKA ECONOMIC MODEL:
VARIABLE AND PARAMETER DICTIONARY


Institute of Social and Economic Research MAP Documentation December 1984, Model A85. 1

| Variable | Definition; Units | Historical Data Source ${ }^{\text {a }}$ | 20 |
| :---: | :---: | :---: | :---: |
| APGF | state general fund appropriations; million \$ | - | $\cdots$ |
| APGFCAP | state general fund capital appropriations (not including subsidies); million $\$$ | $\rightarrow$ |  |
| APGFOPS | state general fund operating appropriations (not including debt service); million $\$$ | - | m |
| APPFCONX | state general fund appropriations to the Permanent Fund; million \$ | - | \% |
| ATD | Alaska personal income tax deductions; million \$ | Constructed from IRS, Statistics of Income, ADL Statistical Quarterly and unpublished data, and 1970 U.S. Census | \% |
| ATI | Alaska state personal income tax taxable income; million \$ | Constructed from IRS, Statistics of Income, ADL Statistical Quarterly and unpublished data, and 1970 U.S. Census |  |
| ATI. TT | Alaska state taxable personal income per taxpayer; thousand \$ | - | - |
| ATT | Alaska state personal income tax returns individual plus joint returns; thousand | constructed from IRS Statistics of Income and ADL Statistical Quarterly | m |
| BADD | birth adjustment factor to account for birth of Native children to non-Native women | - |  |
| BAL99 | combined state fund balances; million \$ | ADA, Annual Financial Report | mem |
| BAL99AFA | combined state fund balances available for appropriations; million \$ | ADA, Annual Financial Report | m |
| BALCAB | state general fund revenues minus general fund expenditures; million \$ | - | m |
| BALCABGF | unrestricted general fund revenues minus unrestricted general fund expenditures | - | $\cdots$ |
| BALCAP84 | net additions to the state capital stock put in place after 1983, inflated to current dollar value; million \$ | - | \% |
| BALOF | development fund balance; million \$ | - |  |


| m | Variable | Definition; Units |
| :---: | :---: | :---: |
| man | BALDF6 | initial state development fund (hypothetical) balance; million \$ |
|  | BALGF6 | initial state general fund balance; million \$ |
|  | BALGF9 | total state general fund balance; million \$ |
| m | BALGFAFA | state general fund balance (available for appropriations); million \$ |
| \%en | BALGFCP | positive change in general fund balance from year to year (if change negative, this takes zero value); million \$ |
| m | BALGFP | state general fund balance if positive; if state general fund balance negative, then zero; million \$ |
|  | BALGFUNA | state general fund balance unavailable for appropriation; million \$ |
| $\cdots$ | BALLANDS | state plus local government current account balance; million \$ |
| $\pm$ | BALOCAL | local government revenues minus nondebt financed expenditures; million \$ |
| * | BALPF | Pemanent Fund balance; million \$ |
| \% | BALPF6 | initial state Permanent Fund balance; million \$ |
| \% | BASEMCNX | a base case vector of EMCNX values used for fiscal impact analysis in conjunction with fiscal policy variable EXRL4 |
| $!$ | BASEPOP | a base case vector of POP values used for fiscal impact analysis in conjunction with fiscal policy variable EXRL4 |
| - | BASEXCAP | a base case vector of EXCAP values used for fiscal impact analysis in conjunction with fiscal policy variable EXRL4 |
| - | BASEXGF | base case expenditure value to be placed in impact run to calculate difference in state expenditures in real per capita terms |

## Historical Data Source ${ }^{\text {a }}$

ADA, Annual Financial Report
ADA, Annual Financial Report

ADA, Annual Financial Report

ADA, Annual Financial Report

| Variable | Definition; Units |
| :---: | :---: |
| BASEXOPS | a base case vector of EXOPS values used for fiscal impact analysis in conjunction with fiscal policy variable EXRL4 |
| BASPDRPI | base case value of RPI to be input into impact run to calculate difference in state expenditures in real per capita terms |
| BCRUDE | Alaska crude civilian birth rate |
| BIU | the Basic Instructional Unit for School Foundation distribution program; thousand $\$$ |
| BIU6 | initial value of Basic Instructional Unit for School Foundation distribution program; thousand \$ |
| BL | Alaska business licenses issued; thousand |
| BTHTOT | tota Alaska civilian non-Native births to civilian population |
| BTOT | total Alaska civilian births; thousand |
| C*** | stochastic coefficient |
| CBR | Alaska crude civilian non-Native birth rate |
| CDR | Alaska crude civilian non-Native death rate |
| CEabN | proportion of Native employment in sector $a b$ |
| CHHij | Alaska households headed by civilian nonNative persons in cohort $\mathbf{i j}$ |
| CNNPij | Alaska civilian non-Native population in cohort ij |
| CNNTOT | total Alaska civilian non-Native population |
| COLA | federal cost of living adjustment for Alaska state personal income tax purposes; million $\$$ |
| CPGQij | fraction of civilian non-Native population in cohort ij in group quarters |
| Cij | Alaska civilian non-Native population in cohort ij before migration |

Historical Data Source ${ }^{\text {a }}$ADE, Annual Report

ADR, unpublished data

1970 U.S. Census, Alaska public use samples

Constructed from ADL Statistical Quarterly and PCOLART

BOC, 1980 Census Tape STF2B

| \% |  |  | Institute of Social and Economic Research MAP Documentation December 1984, Model A85. |
| :---: | :---: | :---: | :---: |
|  | Variable | Definition; Units | Historical Data Source ${ }^{\text {a }}$ |
| (max | D*** | dummy variable with value of 1 for year or period of years indicated; units | - |
| +m | D.800EC6 | durmy variable with value of one in 1980 tapering off to zero in 6 years, reflecting the fact that Alaskan wage rates are "sticky downward" | - |
| \% | DCRUDE | Alaska crude civilian death rate | - |
| - | DEBTP83 | sum of general obligation bonded debt incurred by the state after 1983; million $\$$ | - |
| - | DELEMP | annual change in civilian employment (EM96); thousand | - |
| 0 | DF.*** | variable deflated to 1984 dollars (PDRPIBAS is base year index); | - |
|  | DFP.*** | variable deflated to 1984 per capita dollars | - |
| 0 | DF.RSVP | cumulative discounted value of petroleum revenues received from 1984; million 1984 \$ | - |
| $\cdots$ | DPI | Alaska disposable personal income; million \$ | BEA disposable personal income data \& ADA, Annual Financial Report |
| - | DPI8 | Alaska disposable personal income plus residency adjustment; million \$ | BEA disposable personal income data \& ADA, Annual Financial Report |
| mam | DPIRES | total nonfederal, nonstate personal income tax payments paid out of Alaskan personal income for purposes of calculating disposable personal income; million $\$$ | BEA, disposable personal income data |
| 0 | DTHINF | Alaska infant civilian non-Native deaths | - |
|  | DTHTOT | total Alaska civilian non-Native deaths | - |
|  | DTOT | total Alaska civilian deaths | - |
|  | EL99 | total local government expenditures; million \$ | - |
|  | ELBD | local government debt service; million \$ | BOC, Governmental Finances |
| $\square$ | ELED | local government education expenditures; million \$ | BOC, Governmental Finances |


| VariabTe | Definition; Units |
| :---: | :---: |
| ELED 1 | local government education expenditures from own sources; million $\$$ |
| ELEDCP | local government education expenditures for capital outlays; million \$ |
| ELNED 1 | local government non-education expenditures net of debt service; million \$ |
| ELPERS | local govermment personal services expenditures; milition \$ |
| EM. EMCN | ratio of construction to total employment |
| EM. EMG9 | ratio of total government to total employment |
| EM. EMGA | ratio of state and local government to total emp loyment |
| EM. EMGF | ratio of federal government to total employment |
| EM.EMNR | ratio of total minus support type (SP), goverrment, construction, and petroleum employment to total employment |
| EM.EMNS | ratio of total minus support type (SP) and government to total employment |
| EM.EMP9 | ratio of mining to total employment |
| EM. EMSP | ratio of service type ( $79, \mathrm{CM}, \mathrm{PU}, \mathrm{D9}, \mathrm{FI}, 59$ ) to total employment |
| EM.EMSUP | ratio of trade, finance, and service to total employment |
| EM. EMTCU | ratio of transport, communication, and public utilities to total employment |
| EM96 | total wage and salary plus proprietor employment; thousand |
| EM97 | nonagricultural wage \& salary employment; thousand |

Historical Data Source
Constructed from ADA, Executive
Budget and BOC, State Government
Finances
BOC, Governmental Finances
BOC, Governmental Finances
BOC, Governmental Finances
-
-
-
-
-
-
-

|  | Variable | Definition; Units | Historical Data Source ${ }^{\text {a }}$ |
| :---: | :---: | :---: | :---: |
| \% | E.M99 | total wage and salary, nonwage and salary (proprietor), and military employment; thousand | - |
|  | EM9BASE | basic employment; thousand | - |
|  | EMgGOV | state and local government employment; thousand | - |
| $=$ | EM9INFR | infrastructure employment; thousand | - |
|  | E.M9SUPRT | support employment; thousand | - |
| - | EMab | employment by industry; $a b=C M$ CN D9 FI PU GS GL M9 S9 T9 A9 GM GC P9; thousand | ADL, Statistical Quarterly |
| m | EMAFISH | wage and salary component of fish harvesting employment; thousand | - |
| 0 | EMAGRI | wage and salary component of agriculture employment; thousand | ADL, Statistical Quarterly |
|  | EMAUN | forestry and unclassified employment; thousand | ADL, Statistical Quarterly |
|  | EMCN 1 | construction employment net of exogenous construction employment; thousand | - |
| $\square$ | EMCNRT | ratio of premium wage construction employment to EM98 net of premium wage construction employment. Employed as a measure of labor market "tightness"; percent | - |
| - | EMCNX | exogenous construction employment; thousand | - |
| \% | EMCNX 1 | "enclave" high (premium) wage exogenous construction employment; thousand | constructed from ADL, unpublished worksheets |
| , | EMCNX2 | non- "enclave" low (normal) wage exogenous construction employment; thousand | - |
| $\cdots$ | EMCU | communications plus public utilities employment; thousand | - |
| pom | EMDR | employment in retail trade; thousand | ADL, Statistical Quarterly |
| + | EMDW | employment in wholesale trade; thousand | ADL, Statistical Quarterly |
|  | EMDRNT | employment in retail trade net of tourism; thousand | - |

Historical Data Source ${ }^{\text {a }}$

ADL, Statistical Quarterly

ADL, Statistical Quarterly

ADL, Statistical Quarterly
constructed from ADL, unpublished worksheets

ADL, Statistical Quarterly
ADL, Statistical Quarterly

| Variable | Definition; Units |
| :---: | :---: |
| EMDTOUR | tourism employment in trade sector; thousand |
| EMFISH | fish harvesting employment; thousand |
| EMG9 | federal, state, and local government employment; thousand |
| EMGA | state and local government employment; thousand |
| EMGC | federal civilian employment; thousand |
| EMGF | federal civilian and military employment; thousand |
| EMGL | local government employment; thousand |
| EMGM | military employment; thousand |
| EMGS | state government employment; thousand |
| EMMO | employment in endogenous manufacturing; thousand |
| EMMX 1 | high (premium) wage exogenous manufacturing employment; thousand |
| EMMX 2 | low wage exogenous manufacturing employment; thousand |
| EMNA | Native employment; thousand |
| EmNAT | Native employment obtained from the income distribution model; thousand |
| EmNATX | Native employment obtained from the incone distribution model; thousand |
| EMNC | Native Corporation direct employment; thousand |
| EMNNC | total civilian non-Native employment; thousand |
| EMNR | total employment minus support type (SP), government, construction, and mining; thousand |

Historical Data Source ${ }^{\text {a }}$
Improvements to Specification of the Map Model
G. Rogers, Measuring the Socioeconomic Impact of Alaska's Fisheries

ADL, Statistical Quarterly

ADL: Statistical Quarterly
ADL
ADL, Statistical Quarterly
ADL, Statistical Quarterly

ADL, Statistical Quarterly

EMNS

EMOCSX

EMP9

EMPRO

EMPROFIS

EMPRO1

EmRATE

EMRATN

EMRATN 1

EMSBNT

EMS91

EMSB
EMSP

EMSTOUR

EMSUP

EMT91

Definition; Units
total employment minus support type (SP) and government
sum of mining, exogenous construction, exogenous transportation, and high wage exogenous manufacturing employment; thousand
mining employment; thousand
total proprietor employment; thousand
fish harvesting proprietor employment; thousand
proprietor employment net of fish harvesting; thousand
ratio of wage and salary plus proprietor employment to civilian population

Native employment rate based on Native enrollments; percent
interim calculation of Native employment rate; percent
employment in support services (net of business, tourism, and Native claims); thousand
service sector employment net of direct Native Corporation employment; thousand
business service employment; thousand
transport, communication, public utility, trade, finance, and service employment; thousand
tourism employment in service sector; thousand
trade, finance, and service employment; thousand
transportation employment net of exogenous employment; thousand

## Historical Data Source ${ }^{\text {a }}$

## ADL, Statistical Quarterly

BEA employment data
DOL, Statistical Quarterly; BEA employment data; and G. Rogers, Measuring the Socioeconomic Impact of Alaska's Fisheries

ADL, Statistical Quarterly

Improvements to Specification of the MAP Model

| Variable | Definition；Units |
| :--- | :--- |
| EMT9X | exogenous（large pipeline project－related） <br> transportation employment；thousand |
| EMTCU | transport，communication，and public utility <br> employment；thousand |
| EMTNT | employment in transportation net of tourism <br> and exogenous components；thousand |
| EMTOUR | total tourism employment；thousand |
| EMTOUR | transportation－related tourism employment； <br> thousand |
| EXANSAV | extractive industries－related employment <br> consisting of mining and exogenous |
| fiscal rule option ExRLOP8；million $\$$ |  |

## Historical Data Source ${ }^{\text {a }}$

Improvements to Specification of the Map Model

Improvements to Specification of the MAP Model

| 0 |  |  | Institute of Social and Economic Research MAP Documentation December 1984, Model A85. 1 |
| :---: | :---: | :---: | :---: |
|  | Variable | Definition; Units | Historical Data Source ${ }^{\text {a }}$ |
| $\cdots$ | EXBM. CAB | ratio of general fund current account balance (BALCABBM) to unrestricted general fund expenditures | - |
| $\infty$ | EXBM. END | ratio of development fund withdrawals (EXDFWITH) to unrestricted general fund expenditures |  |
| m | EXBH.FD | ratio of total fund balance (BAL99) to unrestricted general fund expenditures | - |
| - | EXBM.GR1 | ratio of revenues net of petroleum (RSGFBM+ EXPFCON1-RP9S) to unrestricted general fund expenditures | - |
| Pma | EXBM.RV | ratio of general fund unrestricted revenues to unrestricted general fund expenditures | - |
| man | EXBUD | state operating expenditures as defined in the budget; million $\$$ | ADA, Executive Budget |
| mam | EXCa | state capital expenditures of type a ; million $\$$ | - |
|  | EXCAP | total state capital expenditures; million \$ | - |
| an | EXCAPFR | capital expenditures for ferries--assumed to be purchases out of state; million $\$$ | ADPW unpublished data |
| + | EXCAPIMP | per capita impact state capital expenditures used with fiscal rule EXRL. 4 | Goldsmith and Mogford, The Relationship Between the Alaska Natural Gas Pipeline and State and Local Government Expenditures |
|  | EXCAPNEW | new additions to state capital stock in a given year; million \$ | - |
|  | EXCAPOLD | state spending to replace capital stock put in place prior to 1984 | - |
| \% | EXCAPOT | state capital expenditures for nontraditional items; million \$ | ADA, Annual Financial Report |
| m | EXCAPREP | capital expenditures necessary to replace state capital stock which depreciates each year; million $\$$ | - |


| Variable | Definition; Units |
| :--- | :--- |
| EXCDS | state development operating expenditures <br> net of debt service; million $\$$ |
| EXCDSA | initial model estimate of state development <br> operating expenditures net of debt service <br> before application of RATIOl; million $\$$ |
| EXCDSNT | development component of the state operating <br> budget net of transfers to local government; <br> million $\$$ |
| EXCNa | state capital expenditures on new capital type a; <br> million $\$$ |
| EXCPS | construction expenditures from state capital <br> project funds; million $\$$ |
| EXCPSFED | portion of capital project fund revenues from <br> federal capital grants; million $\$$ |
| into development fund (hypothetical); percent |  |

Historical Data Source ${ }^{\text {a }}$

ADA, Executive Budget

ADA, Annual Financial Report

ADA, Annual Financial Report man

ADA, Annual Financial Report

EXGFBM state unrestricted general fund expenditures; million \$

Historical Data Source ${ }^{\text {a }}$

ADA, Annual Financial Report

ADA, Annual Financial Report

ADA, Executive Budget

ADA, Annual Financial Report
ADA, Annual Financial Report

| Variable | Definition; Units |
| :---: | :---: |
| EXGFCAP | state general fund capital outlays-actual disbursements; million \$ |
| EXGFCAP 1 | state general fund capital expenditures, for traditional capital items; million $\$$ |
| EXGFCAP6 | initial value for EXGFCAP; million \$ |
| EXGFCHY | state general fund capital expenditures for highways; million \$ |
| EXGFCNH | state general fund capital expenditures nonhighways; million \$ |
| EXGFCOT | state general fund capital expenditures for nontraditional items; million \$ |
| EXGFCOT6 | initial value for EXGFCOT; million \$ |
| EXGFOPS | state unrestricted general fund operating expenditures; million \$ |
| EXGFOPSX | exogenous component of state unrestricted general fund operating expenditures; million \$ |
| EXGFOT.A | state general fund operating expenditures net of extraordinary items; million \$ |
| EXGGS | state general government operating expenditures net of debt service; million $\$$ |
| EXGGS4 | initial model estimate of state general government operating expenditures net of debt service before application of RATIO1; million $\$$ |
| EXHES | state health operating expenditures net of debt service; million \$ |
| EXHES4 | state health operating expenditures net of debt service before application of RATIO1; million $\$$ |
| EXHYCAP | state capital expenditures for highways; million \$ |
| EXINREC | state govermment interagency receipts; million \$ |
| EXINRECB | state government interagency receipts; million \$ |
| EXJUS | state administration of justice operating expenditures net of debt service; million \$ |

## Historical Data Source ${ }^{\text {a }}$

ADA, Annual Financial Report

ADA, Executive Budget

ADA, Executive Budget

ADA, Executive Budget
ADA, Executive Budget

|  | Variable | Definition; Units | Historical Data Source ${ }^{\text {a }}$ |
| :---: | :---: | :---: | :---: |
| m | EXJUS4 | state administration of justice operating expenditures net of debt service before application of RATIO1; million $\$$ | - |
| m | EXLIM | state expenditures allowed by constitutionally mandated spending limit; million $\$$ | - |
| - | EXLIMB2 | constitutionally mandated 1982 state spending limit; million $\$$ | - |
| $\square$ | EXLIMOK | actual state expenditures which can be supported by revenues and general fund balance under constitutionally mandated spending limit; million $\$$ | - |
| mem | EXNHYCP | state capital expenditures for nonhighway projects; million \$ | - |
| 20 | EXNOPS | state expenditures--total net of the operating budget; million $\$$ | - |
| $\cdots$ | EXNRS | State natural resource operating expenditures net of debt service; million \$ | ADA, Executive Budget |
| 5 | EXNRS4 | ```state natural resource operating expenditures net of debt service before application of RATIOI; million$``` | - |
| \% | EXOM84 | annual operations and maintenance cost associated with incremental state capital stock put in place in 1984 and succeeding years; million \$ | - |
| $=$ | EXOrba | operating expenditures on operations and maintenance of capital stock type a from funding source $b$; million $\$$ | - |
| \% | EXOMCOST | annual operations and maintenance cost of incremental state capital stock (EXOMB4) as a percentage of original cost; percent | - |
| $\cdots$ | EXOPS | total state operating expenditures net of debt service and University of Alaska nongeneral fund assistance. It is the sum of the nine functional categories; million \$ | ADA, Executive Budget |
| - | EXOPS6 | initial total state operating expenditures net of debt service and University of Alaska nongeneral fund assistance. It is the sum of the nine functional categories; million \$ | ADA, Executive Budget |

Institute of Social and Economic Research MAP Documentation December 1984, Model A85. 1

| Variable | Definition; Units |
| :---: | :---: |
| EXOPSIMP | per capita impact state operation expenditure used with fiscal rule EXRL4 |
| EXPF 1 | percent contribution from available funds to Permanent Fund; percent |
| EXPF2 | portion of Permanent Fund dividend income not entering purchasing power expression; percent |
| EXPF3 | portion of Permanent Fund dividend income not subject to personal income tax; percent |
| EXPFTOGF | percent of Permanent Fund earnings transferred to the general fund (based on earnings net of dividends); percentage |
| EXPFCON | total additions to Permanent Fund, including special appropriations and earnings after transfers out; million \$ |
| EXPFCON 1 | contributions to the Permanent Fund, not including special appropriations or earnings transferred to general fund; million \$ |
| EXPFCONX | special Permanent Fund contributions appropriated from the general fund; million \$ |
| EXPFCON9 | total gross additions to Permanent Fund, including special appropriations and earnings before transfers out; million \$ |
| EXPFDIST | percent of Permanent Fund earnings distributed to individuals; percent |
| EXPFDVX 1 | accounting adjustment to Permanent Fund retained earnings in early years; million \$ |
| EXPFDVX2 | accounting adjustment to Permanent Fund dividend program in early years; million \$ |

ADR, The Alaska Permanent Fund: Overview and March 1984 Projections

ADR, The Alaska Permanent Fund: Overview and March 1984 Projections

| sma |  |  | Institute of Social and Economic Research MAP Documentation December 1984, Model A85.1 |
| :---: | :---: | :---: | :---: |
| - | Variable | Definition; Units | Historical Data Source ${ }^{\text {a }}$ |
| ) | EXPPS | state public protection operating expenditures net of debt service; million $\$$ | ADA, Executive Budget |
| \% | EXPPS4 | state public protection operating expenditures net of debt service before application of RATIOI; million $\$$ | - |
| \% | EXPR99 | total state personnel expenditures; million \$ | ADA, Executive Budget |
| : | EXPRCDS | state personnel expenditures for development; million $\$$ | ADA, Executive Budget |
|  | EXPREDS 1 | state personnel expenditures for education net of University of Alaska; million $\$$ | ADA, Executive Budget |
| : | EXPRGGS | state personnel expenditures for general govermment; million \$ | ADA, Executive Budget |
| - | EXPRHES | state personnel expenditures for health; million \$ | ADA, Executive Budget |
| eme | EXPRJUS | state personnel expenditures for administration of justice; million \$ | ADA, Executive Budget |
| 4 | EXPRNRS | state personnel expenditures for natural resources; million \$ | $A D A$, Executive Budget |
| 5 | EXPRPPS | state personnel expenditures for public protection; million $\$$ | ADA, Executive Budget |
| - | EXPRSSS | state personnel expenditures for social services; million \$ | ADA, Executive Budget |
|  | EXPRTRS | state personnel expenditures for transportation; million $\$$ | ADA, Executive Budget |
|  | EXPRUA | wages and salaries of University of Alaska; million \$ | constructed from University of Alaska records and ADL data |
| men | EXRL1 | policy switch which, if set at 1, determines state operating expenditure growth based primarily upon aggregate demand; | - |
| 0 | EXRL2 | policy switch which, if set at 1 , determines state operating expenditure growth based upon exogenous growth rate | - |

Variable

EXSPLIT the allocation to operations when state spending falls below the authorized spending limit；percent
policy switch which，if set at 1 ，determines state expenditure growth based upon real per capita operating expenditure levels and real per capita capital stock levels
policy switch which，if set at 1 ，determines state expenditure growth based upon a specified expenditure level per impact individual（for use in impact analysis）
policy switch used with EXRL4 with value of one if enclave construction employment not counted in impact population
policy switch which，if set at 1 ，determines state expenditure growth based upon constitutionally imposed spending limit
policy switch which，if set at 1 ，determines state operating expenditure growth based upon annual change in level of general fund balance
policy switch which，if set at 1 ，determines state operating expenditures growth based upon saving a specified amount of revenues
policy switch which，if set at 1 ，determines state operating expenditure growth based upon spending an annuity（EXANSAV）
annual cost for replacement of capital stock put in place after 1983；million $\$$
if EXRLOP7 is invoked in determination of state operating expenditures，this is the amount of revenues not spent；million $\$$
if EXRLOP7 is invoked in determination of state operating expenditures，this is the exogenous amount of revenues not spent； million \＄
special state capital appropriations；million $\$$

EXRL3

EXRL4

EXRL40P

EXRL5

EXRLOP6

EXRLOP8

EXRP84

EXSAVS

EXSAVX

EXSPCAP

EXSPIT

Historical Data Source ${ }^{\text {a }}$
Definition；Units號
 －
$\qquad$
In


$\qquad$
震
为雨

## Variable

EXSPLITX

EXSUB 1

EXSUB2

EXSUBS

EXSUBSX

EXTRNS

EXTRNSPI

EXTRNSX

EXTRS

EXTRS4

EXUA
EXUAG

FAGI

Definition; Units
the target allocation to operations when state spending falls below the authorized spending limit; percent
state social services operating expenditures net of debt service; million $\$$
state social services operating expenditures net of debt service before application of RATIO1; million \$
stimulative effect of state subsidies on construction industry; percent
stimulative effect of state subsidies on consumer spending; percent
state subsidy programs initiated after 1980; million \$
state subsidy programs initiated after 1980, set exogenously; million \$
state Permanent Fund dividend distribution; million \$
state Permanent Fund dividends in 1982 and 1983 incorporated in state personal income; million $\$$
state Permanent Fund dividend distribution funded through the general fund; million \$
state transportation operating expenditures net of debt service; million \$
state transportation operating expenditures net of debt service before application of RATIOI; million \$

University of Alaska operating budget; million \$
initial value for University of Alaska operating budget; million $\$$
federal adjusted gross income earned in Alaska; million $\$$

Historical Data Source ${ }^{\text {a }}$

ADA, Executive Budget

ADA, Executive Budget

ADA, Executive Budget

ADA, Executive Budget

Constructed from IRS, Statistics of Income and ADL Statistical Quarterly

| Variable | Definition; Units | Historical Data Source ${ }^{\text {a }}$ | pox |
| :---: | :---: | :---: | :---: |
| FAGII | federal adjusted gross income reported on federal tax returns filed from Alaska; million \$ | IRS Statistics of Income | $\cdots$ |
| FERT j | non-Native fertility rate for female cohort $\mathbf{j}$ | Alaska Department of Health and Social Services and Alaska Native Medical Center | $\cdots$ |
| G.** | annual growth rate of variable ** | - | ( |
| COBONDL | general obligation bonded indebtedness of local government; million \$ | ADCR, Alaska Taxable |  |
| GODT | general obligation bonded indebtedness of state; million \$ | ADA, Annual Financial Report |  |
| GODTX | general obligation bonded indebtedness of the state from debt incurred before start of simulation; million \$ | ADA, Annual Financial Report |  |
| GR | gross business receipts; million \$ | ADA, Annual Financial Report |  |
| GRDIRPU | annual growth rate of U.S. real disposable personal income per capita; percent | - | m |
| GREXCAP | nominal growth rate of state capital expenditures using EXRL2 | - | $\cdots$ |
| GREXOPS | nominal growth rate of state operating expenditures using EXRL2 | - | m |
| GRRPCEX | growth rate of real per capita state expenditures using EXRL3 | - | \% |
| GRRWEUS | annual real growth rate of U.S. average weekly earnings; percent | - | 5-3 |
| GRSSCP | growth rate of state real per capita state capital stock using EXRL3 | - | $\cdots$ |
| GRUSCPI | annual growth rate of U.S. consumer price index; percent | - | \% |
| GTR | gross taxable receipts; million \$ | ```Constructed from ADA, Annual Financial Report and ADR unpublished data``` | me |
| Gj | shift factor for aging of cohorts | - |  |

Variable

HH

HH24

HH25.29

HH30. 54

HH5S
HHC

HHM

HHN

HHRij

HHSIZE

HHSIZEC

HHSIZEM
HHSIZEN
HHij

IM. BAL

IM.BAL99

IM. BALPC
IM. BALR

IM. BLRPC

IM.BALRV annual revenues contributed to IMBAL, including interest; million $\$$

Definition; Units
total Alaska households; thousand
households: head under age of 25 ; thousand
households: head between ages of 25 and 29; thousand
households: head between ages of 30 and 54; thousand
households: head over 54; thousand
total Alaska civilian non-Native households; thousand
total Alaska military households; thousand
total Alaska civilian Native households; thousand

1980 household formation rate for civilian non-Native population in cohort ij
average Alaska household size, all households
average Alaska civilian non-Native household size
average Alaska military household size
average Alaska Native household size
total Alaska households headed by persons in cohort ij; thousand
the summation over time of the annual increments to IM.REV; million $\$$
the sum of the general fund, Permanent Fund, and IMBAL; million \$
"impact balance" per capita; $\$$
real "impact balance"; million 1967 U.S. $\$$
real per capita "impact balance"; 1967 U.S. $\$$

Historical Data Source ${ }^{\text {a }}$
BOC, Census of Population
BOC, Census of Population

BOC, Census of Population

BOC, Census of Population

BOC, Census of Population

BOC, Census of Population

BOC, Census of Population
BOC, Census of Population

BOC, 1980 Census of Population, Census Tape STF2

BOC, Census of Population



Variable

INX.WG ratio of Alaskan to U.S. real average wage
LAFPART pseudo labor force participation rate-employment by place of work divided by labor force by place of residence; percent

Lca proportion of funding of state capital projects type a from initial funding source type $c$; percent

LF labor force; thousand

LMUNCAP proportion of state-funded municipal capital grants spent on capital projects; percent

LPTB total value of real property falling within local government jurisdiction; million $\$$

LPTBFV total assessed value of real, personal, and petroleum property falling within local government jurisdiction; million $\$$

LPTBP9 taxable petroleum property falling within local government jurisdiction; million \$

LPTB1 assessed value of real and personal property (A.S. 29.53) (not full value); million $\$$

LPTBIFV assessed value of real and personal property assessed at full value; million \$ in an impact analysis case and what they would have been if expenditures in real per capita terms had been kept equivalent to the base case; million $\$$
ratio of Alaskan to U.S. per capita real disposable personal income
ratio of Alaska non-Native to U.S. per capita real disposable personal income
ratio of Alaska personal income produced to U.S. per capita real disposable personal income
ratio of trade/service/finance employment to Alaska real disposable personal income
ratio of transportation/cormunications/utilities employment to Alaska real disposable personal income

Historical Data Source ${ }^{\text {a }}$
--

ADCR, Alaska Taxable

ADCR, Alaska Taxable

ADCR, Alaska Taxable

Institute of Social and Economic Research MAP Documentation December 1984, Model A85. 1

NCCAP accumulated capital of Native Corporations; million \$

## Historical Data Source ${ }^{\text {a }}$

Constructed from ADCR, Alaska Taxable

BOC, 1980 Census of Population
BOC, 1980 Census of Population
BOC, 1980 Census of Population

BOC, 1980 Census of Population

Alaska Public Survey

BOC, 1980 Census of Population
BOC, 1980 Census of Population

| Variable | Definition; Units |
| :---: | :---: |
| NCCI | Native Corporation income from ANCSA-related activities; million \$ |
| NCOR | Alaska crude Native death rate |
| NCEXP | current expenditures of Native Corporations; million \$ |
| NCPI | Native personal income from ANCSA-related activities; million \$ |
| NCRP | Native recurrent income from petroleum development on Native lands; million $\$$ |
| NCWS | wages and salaries paid by Native Corporations; million \$ |
| NCij | Alaska Native population in cohort ij before migration; thousand |
| NDTHINF | Alaska Native infant deaths; thousand |
| NOTHTOT | total Alaska Native deaths; thousand |
| NEMabN | Native employment in sector $a b$; thousand |
| NFERTj | Native fertility in female cohort j |
| NHHRij | 1980 household formation rate for civilian Native population in cohort ij; percent |
| NHHij | Alaska households headed by civilian Native persons in cohort ij; thousand |
| NMij | migration rate (positive for in; negative for out) for Native population in cohort $i j$; percent |
| NNATINC | Alaska Native natural increase; thousand |
| NNPik | non-Native population in aggregated cohorts $\mathbf{k}$ for use with income distribution model; thousand |
| NPGQij | fraction of civilian Native population in cohort $i j$ in group quarters |

Historical Data Source ${ }^{\text {a }}$BOC, Census of PopulationAlaska Department of Healthand Social Services and AlaskaNative Medical Center

BOC, Census of Population, Census Tape STF2

BOC, Census of Population, Census Tape STF2

BOC, 1980 Census of Population

NRCij targeted total change in Native household formation rate for cohort $\mathbf{i j}$

Native sex division at birth

Native infant survival rates

Native survival rate for cohort $i j$
period over which Native household formation rates trend; years

Native wages and salaries in sector ab; million $\$$
exogenous civilian non-Native migration rate (positive for in; negative for out) for population in cohort ij
rate of operations and maintenance cost for state capital stock type a from funding source b; percent of value of stock
P.BAL99 combined fund balance per capita; \$
P. BALGF9 general fund balance per capita; $\$$
P. balpF Permanent Fund balance per capita; \$
P.DPINN non-Mative disposable personal income per capita; $\$$
P.OPINN1 Native disposable personal income (SIC) per capita net of nontaxable ANCSA payment; $\$$
P.EL99 per capita EL99; $\$$
P.ELED per capita ELED; $\$$
P.ELNEDI per capita ELNED $; \$$
P.EX99S per capita EX99S; $\$$
P.EXBM per capita unrestricted general fund expenditures (EXGFBM); $\$$
per capita state capital expenditures; $\$$

Historical Data Source ${ }^{\text {a }}$

Alaska Department of Health and Social Services

Alaska Department of Health and Social Services

Alaska Department of Health and Social Services

Anchorage Urban Observatory and BOC, 1980 Census of Population

| Variable | Definition; Units |
| :---: | :---: |
| P. EXOPS | per capita state operating expenditures; \$ |
| P.EXTRNS | per capita Permanent Fund dividend; \$ |
| P.GEXP | per capita state plus local goverment expenditures; $\$$ |
| P.GODT | per capita state government bonded indebtedness; \$ |
| P.PI | per capita personal income; \$ |
| P.PIN | per capita Native personal income; $\$$ |
| P.PINCL | per capita Native claims personal income; \$ |
| P.PINN | per capita non-Native personal income; $\$$ |
| P.R99S | per capita state general plus Permanent Fund revenues; \$ |
| P.RLT99 | per capita state-local revenue transfers; \$ |
| P. RSEN | per capita state endogenous revenues; \$ |
| P.RSIN | per capita general and Permanent Fund earnings; \$ |
| P.RSIP | per capita interest on the Pemanent Fund; \$ |
| P.RT99 | per capita total state taxes; \$ |
| P.RTIS | per capita state personal incone tax revenues; \$ |
| P1-P6 | variables to facilitate printing population distribution model results; |
| P9PTPER | percentage of petroleum property which is taxable by state which falls within local taxing jurisdiction; percentage |
| PADI | proportion of population aged 5 to 19 attending district schools; percent |
| PAD2 | proportion of population aged 5 to 19 attending REAA schools; percent |
| PADJ | ratio of premium (WRM9P) to average wage (WFRM91) in manufacturing sector |

Historical Data Source ${ }^{\text {a }}$

```
-
-
-
-
```



```
-
-
-
-
-
-

ADCR, Alaska Taxable
-
-
\begin{tabular}{ll}
& \begin{tabular}{l}
Institute of Social \\
and Economic Research
\end{tabular} \\
MAP Documentation
\end{tabular}

\section*{PARLVFV}

PCI2RN

\section*{PCINDA}

PCIVPY

PCNC 1

PCNC2

PCNC3

PCNCA

PCNCSV

PCNCSV 1

Definition; Units
ratio of local estimate to full value of local property according to state appraiser; percent

PARNONGF proportion of University of Alaska revenues not from the general fund; percent

PBLTBL proportion of gross business receipts taxable after 1978 tax law change; percent
state business license tax rate per business; million dollars per business
proportion of ANCSA payments made to 12 regional Native corporations in Alaska; percent
proportion of members of 12 regional Native corporations residing in Alaska; percent
proportion of gap between average industry employment share and Native industry employment share that is closed within one time period
ratio of military to federal civilian wage rate; percent
proportion of ANCSA payments paid directly to individuals; percent
proportion of recurring income from petroleum development on Native lands paid directly to individuals; percent
proportion of earnings on Native Corporation accumplated capital paid directly to individuals; percent
proportion of bonus income from lease sales on Native lands paid directly to individuals; percent
proportion of Native Corporation income used for investment; percent
proportion of bonus income from lease sales on Native lands and retained by Native Corporations which is used for investment; percent

\section*{Historical Data Source \({ }^{\text {a }}\)}

ADR, Revenues Sources

Robert Nathan Associates, 2(c) Report: Federal Programs and Alaska Natives

Robert Nathan Associates, 2(c) Report: Federal Programs and Alaska Natives

Variable
PCNCWS

PCOLART

PCWS 1

PCWS2

PCYNAI

PDCON

PDCONBAS

PDEXOPS

PDRATIO

PDRATIO6

PDRPI

PDRPIBAS

PDUSCPI

PDUSCPI6

Definition; Units
proportion of current expenditures of Native Corporations paid in wages and salaries; percent
the cost of living differential for federal employees; percentage
ratio of state government wage and salary payments to personnel expenditures; percent
ratio of local government wage and salary payments to local government personal services expenditures
proportion by which the ratio of personal income to wages and salaries for Native exceeds that of the total population; percent
construction price deflator; index
value of construction price deflator in base year
state government operating expenditures price deflator: index
ratio of Alaskan relative price index to U.S. consumer price index
initial values for ratio of Alaskan relative price index to U.S. consumer price index

Alaskan relative price index--1967 value is 1.425 times U.S. CPI which in 1967 was 100; index

1982 Alaskan price level using 1967 US as base; index
U.S. consumer price index (\(1967=100\)) ; index
initial value for US consumer price index; index

\section*{Historical Data Source \({ }^{\text {a }}\)}

ADL, Statistical Quarterly and ADA, Executive Budget

ADL, Statistical Quarterly and BOC, Govermmental Finances
for construction methodology, see Brian Reeder, Gross State Product for Alaska: Technical Documentation, ISER
constructed from ADL, Statistical Quarterly, BEA personal income and employment data
constructed from U.S. Department of Labor, Bureau of Labor Statistics and University of Alaska, Agriculture Extension Service, Quarterly Food Price Survey of 13 Alaskan cities
U.S. Department of Labor, Bureau of Labor Statistics

Institute of Social and Economic Research MAP Documentation December 1984, Model A85.l

Historical Data Source \({ }^{\text {a }}\)

DOL, Statistical Quarterly; BEA employment data; and G. Rogers, Measuring the Socioeconomic Impact of Alaska's Fisheries

BEA personal income data
 -
-
\[
-
\]
-
-
\begin{tabular}{|c|c|}
\hline Variable & Definition; Units \\
\hline PI.RL99 & ratio of local government revenues to personal income \\
\hline PI.RLPT & ratio of local property taxes to personal income \\
\hline PI.RSEN & ratio of endogenous state revenues to personal income \\
\hline PI. TXL & ratio of locally generated local government taxes to personal income \\
\hline PI.TXS & ratio of state taxes net of petroleun-related taxes to personal income \\
\hline PI.W598 & ratio of wage and salary plus military salary income to personal income \\
\hline PI3 & personal income net of "enclave" construction employee personal income; million \(\$\) \\
\hline PI8 & personal income plus residence adjustment; million \$ \\
\hline PIDIR & dividends, interest, and rent component of income; million \$ \\
\hline PIDIST & model switch which results in retrieval of Native employment and wages and salaries from income distribution model if a value of one is chosen; units \\
\hline PIL & the value of personal income lagged one year for use in income distribution model \\
\hline PIN & Native personal income, including Native claims income to individuals; million \(\$\) \\
\hline PIN1 & Native personal income net of Native claims income to individuals, million \$ \\
\hline PINN & non-Native personal incore; million \$ \\
\hline PIOLI & other labor income component of personal income; milion \$ \\
\hline PIPADJ & ratio of "enclave" to regular construction wage rate; percent \\
\hline
\end{tabular}

Variable

PI.RL99

PI.RLPT

PI.RSEN

PI. TXL

PI.TXS

PI.W598

PI3

PI8

PIDIR

PIDIST

PIL the value of personal income lagged one year for use in income distribution model

Native personal income, including Native claims income to individuals; million \(\$\)

Native personal income net of Native claims income to individuals, million \$
non-Native personal incone; million \(\$\)
other labor income component of personal income;
ratio of "enclave" to regular construction wage rate; percent

Historical Data Source \({ }^{\text {a }}\)

BEA personal income
-

BEA, personal income data

ADL Statistical Quarterly
\begin{tabular}{|c|c|c|c|}
\hline \% & & & MAP Documentation December 1984, Model A85.l \\
\hline) & Variable & Definition; Units & Historical Data Source \({ }^{\text {a }}\) \\
\hline T & PIPRO & proprietors income component of personal incone; million & BEA, personal income data \\
\hline \(\cdots\) & PIPR01 & nonfishery proprietor income component of personal income; million \$ & BEA, personal income data \\
\hline + & PIPROF & fishery proprietor income component of personal income; million \$ & BEA, personal income data \\
\hline & PIRADJ & residence adjustment component of personal income; million & BEA, personal income data \\
\hline ! & PISSC & personal contributions to Social Security component of personal incone; million \$ & BEA, personal income data \\
\hline m & & & \\
\hline ! & PITRAN & transfers component of personal income; million \$ & BEA, personal income data \\
\hline mem & PITRAN1 & transfers (excluding Permanent Fund dividend payments) component of personal income; million \(\$\) & - \\
\hline - & PITRAN6 & initial values for transfers (excluding Permanent Fund) component of personal income; million \$ & - \\
\hline \(\square\) & PLFO9 & total Alaska potential civilian labor force aged 15 to 64; thousand & - \\
\hline - & PLFDOMC & Alaska potential civilian non-Native, nonmilitary dependent labor force (population aged 15 to 64); thousand & - \\
\hline mom & PLFDOMM & Alaska potential military labor force (military dependents aged 15 to 64; active-duty military are excluded); thousand & - \\
\hline m & PLFDOMN & Alaska potential civilian Native labor force aged 15 to 64; thousand & - \\
\hline \% & PM & non-Native males 14 and under used with income distribution model; thousand & - \\
\hline \% & PMN & Native males 14 and under used with income distribution model; thousand & - \\
\hline \(\pm\) & PNTGR & amount of gross receipts exempt from state gross receipts tax; million \$ & - \\
\hline & POP & total population; thousand & \(B C C\) and ADL \\
\hline
\end{tabular}

Institute of Social and Economic Research MAP Documentation December 1984, Model A85.l
\begin{tabular}{|c|c|}
\hline Variable & Definition; Units \\
\hline POP.AD & ratio of Alaska population aged 15 to 64 to total population \\
\hline POP.CIV & ratio of Alaska civilian non-Native population to total population \\
\hline POP.GER & ratio of Alaska population aged 65 and over to total population \\
\hline POP.KID & ratio of Alaska population under 15 to total population \\
\hline POP.MIL & ratio of Alaska military and military dependents to total population \\
\hline POP. NAT & ratio of Alaska Native population to total population \\
\hline POPADS & total Alaska population aged 15 to 64; thousand \\
\hline POPAVAGE & average age of Alaskan population \\
\hline POPC & total population net of armed forces personnel (includes military dependents); thousand \\
\hline POPCGQ & Alaska civilian non-Native population in group quarters; thousand \\
\hline POPGER & total Alaska population aged 65 and over; thousand \\
\hline POPGQ & total Alaska population in group quarters; thousand \\
\hline POPKIDS & total Alaska population under 15; thousand \\
\hline POPM & armed forces personne1; thousand \\
\hline POPMGQ & military population in group quarters; thousand \\
\hline POPMIG & total net civilian migration to Alaska; thousand \\
\hline POPNE & Native population based upon Native Corporation enrollment records; thousand \\
\hline
\end{tabular}

POPNGQ Alaska Native population in group quarters; thousand
Variable
POP.AD

POP.CIV

POP.GER

POP.KID ratio of Alaska population under 15 to total population
ratio of Alaska military and military dependents to total population
ratio of Alaska Native population to total population
total Alaska population aged 15 to 64; thousand average age of Alaskan population total population net of armed forces personnel

Alaska civilian non-Native population in group quarters; thousand
total Alaska population aged 65 and over; thousand total Alaska population in group quarters; thousand total Alaska population under 15; thousand armed forces personnel; thousand military population in group quarters; thousand enrollment records; thousand

POPNI9 total Alaska civilian natural increase; thousand

Historical Data Source \({ }^{\text {a }}\)
\(B O C\) and \(A D L\)

BOC, Census of Population

BOC, Census of Population
BOC, Census of Population
BOC, Census of Population
BOC, Census of Population
BOC, Census of Population

2(c) Report-Federal Program \& Alaska Natives by Robert Nathan Associates, for U.S. Department of Interior

BOC, Census of Population
Bo
\begin{tabular}{|c|c|c|}
\hline + & Variable & Definition; Units \\
\hline & POPSKUL & total Alaska population aged 5 to 19; thousand \\
\hline ! & POPij & total Alaska population in cohort ij; thousand \\
\hline \% & PPVAL & total full assessed value of real, personal, and petroleum-related property in the state; million \$ \\
\hline & PR.BAL99 & general plus Permanent Fund balance real per capita; 1967 \$ \\
\hline \% & PR. BALCP & value of state capital stock real per capita; 1967 U.S. \(\$\) \\
\hline - & PR.BALG1 & general fund balance real per capita; 1967 U.S. \(\$\) \\
\hline \% & PR.BALG2 & general fund balance real per capita deflated by state operating budget deflator; 1967 U.S. \$ \\
\hline ' & PR.BALP2 & Permanent Fund balance real per capita deflated by operating budget deflator; 1967 U.S. \$ \\
\hline & PR.BALPF & Permanent Fund balance real per capita; 1967 U.S. \$ \\
\hline man & PR.DPI & dispoable personal income real per capita; 1967 U.S. \$ \\
\hline masmen & PR.DPI8N & real disposable personal income per capita before residence adjustment and net of enclave income; 1967 U.S. \$ \\
\hline \(\cdots\) & PR.DPIN & Native disposable personal income real per capita; 1967 U.S. \$ \\
\hline - & PR.DPINN & non-Native disposable income real per capita; 1967 U.S. \$ \\
\hline + & PR.DPIU6 & initial value for US real per capita disposable personal income; \$ \\
\hline - & PR.DPIUS & U.S. disposable personal income real per capita; 1967 U.S. \$ \\
\hline - & PR.ECP & state capital expenditures for highways from bond funds real per capita (EXCPSHY); 1967 U.S. \$ \\
\hline mam & PR.ECPN & state capital expenditures nonhighway from bond funds real per capita (EXCPSNH); 1967 U.S. \(\$\) \\
\hline
\end{tabular}

Historical Data Source \({ }^{\text {a }}\)
BOC, Census of Population
-
-

U.S. Department of Commerce

Historical Data Source \({ }^{\text {a }}\)
PR.PIN
PR.PINCL

PR.PINN

PR.R99S

PR.RLT99

PR.RSEN

PR.RSIN

PR.RTIS

PRINT

PRINT2

PTBP9

PTOURB

PTOURD

PTOURE

PR.RSIP Permanent Fund earnings real per capita; 1967 U.S. \(\$\)

PR.RT99 state tax revenues (RT99) real per capita;
1967 U.S. \$
Definition; Units

Native personal income real per capita; 1967 U.S. \(\$\)
Native personal income real per capita plus real current expenditures of Native Corporations per capita; 1967 U.S. \(\$\)
non-Native personal income real per capita; 1967 U.S. \$
total state revenues (R99S) real per capita; 1967 U.S. \$
state-local revenue transfers real per capita; 1967 U.S. \$
state endogenous revenues (RSEN) real per capita; 1967 U.S. \$
general and Permanent Fund earnings real per capita; 1967 U.S. \(\$\)
state personal income tax receipts real per capita; 1967 U.S. \$
variable from incone distribution model which allows results to be printed if value of one is chosen
variable from income distribution model which allows results to be printed if value of one is chosen
total value of taxable petroleum property; million \$
intercept term on tourist industry employment equation
proportion of tourist industry employment in trade
elasticity of tourism employment to growth in number of tourists

\section*{Historical Data Source \({ }^{\text {a }}\)}

ADCR, Alaska Taxable

Improvements to Specification of the MAP Model

Improvements to specification of the MAP Model

Improvements to Specification of the MAP Model
\begin{tabular}{|c|c|}
\hline Variable & Definition; Units \\
\hline PTOURS & proportion of tourist industry employment in services \\
\hline PTOURT & proportion of tourist industry employment in transportation \\
\hline PTRTS & tax rate on state petroleum-related property; percent \\
\hline PWRBASE & average U.S. wages paid in government in 1967; \$ \\
\hline R.BALCAP & real value of state capital stock; million 1967 U.S. \$ \\
\hline R.CAPa & real value of state capital stock type \(a\); million \(1982 \$\) \\
\hline R. DPI & real disposable personal income; million 1967 U.S. \$ \\
\hline R.DPI8N & real purchasing power creating support sector demand; million 1967 U.S. \$ \\
\hline R. DPI8X & real disposable personal income plus residence adjustment of "enclave" construction employees; million 1967 U.S. \\
\hline R.PI & real personal income; million 1967 U.S. \$ \\
\hline R.PIN & Native real personal income; million 1967 U.S. \$ \\
\hline R.PINN & non-Native real personal income; million 1967 U.S. \$ \\
\hline R.WR97 & average annual real wage rate for civilian employment; 1967 U.S. \$ \\
\hline R.WR98 & average annual real wage rate including military; 1967 U.S. \$ \\
\hline R99S & total general fund and Permanent Fund revenues; million \(\$\) \\
\hline RAT 1 & ratio of non-Native income to total taxable income; percent \\
\hline RATIO1 & variable used to make individual state budget items consistent with total operating budget constraint; percent \\
\hline
\end{tabular}

Historical Data Source \({ }^{\text {a }}\)
Improvements to Specification of the MAP Model

Improvements to Specification of the MAP Model
constructed using ADA, Annual Financial Report
constructed using ADL, Statistical Quarterly

ADA, Annual Financial Report

RLTE99

Definition; Units
targeted total change in civilian household formation rate for cohort \(\mathbf{i j}\)
rate of depreciation of state capital stock type a
rate of replacement of state capital stock type a from funding source \(b\); percent of value of stock
total local government revenues; million \(\$\)
ratio of local property taxes to total local government revenues
ratio of state-local transfers to state-local government revenues
total local government revenues net of miscellaneous revenues; million \(\$\)
local charges and miscellaneous revenue; million \$
local government taxes net of property tax; million \$
local property taxes; million \$
local property tax revenues net of exogenous component; million \$
exogenous local property tax; million \(\$\)
total revenue transfers from state to local government; million \$
state-local shared corporate income tax after 1978 tax law change; million \(\$\)
initial estimate of state-local shared corporate income tax before application of RATIOI; million \(\$\)
total state-local government transfers for education purposes; million \$

\section*{Historical Data Source \({ }^{\text {a }}\)}
constructed from BOC Governmental Finances and BOC State Government Finances

BOC, Governmental Finances

BOC, Governmental Finances

BOC, Governmental Finances
BOC, Governmental Finances
\begin{tabular}{ll}
Variable & \multicolumn{1}{c}{ Definition; Units } \\
RLTE994 & \begin{tabular}{l}
initial estimate of transfers fron state to local \\
government for education purposes before application \\
of RATIO1; million \(\$\)
\end{tabular} \\
RLTEA & \begin{tabular}{l}
total transfers fron state to local government for \\
primary and secondary education; million \(\$\)
\end{tabular} \\
RLTEA4 & \begin{tabular}{l}
initial estimate of transfers from state to local \\
government for primary and secondary education before \\
application of RATIOl; million \(\$\)
\end{tabular} \\
RLTEB & \begin{tabular}{l}
state aid to local education net of aid to district \\
schools and since their inception, the REAA schools; \\
million \(\$\)
\end{tabular} \\
RLTEB4 & \begin{tabular}{l}
initial model estimate of state aid to local govern- \\
ment for education net of district and REAA aid \\
before application of RATIOl
\end{tabular} \\
RLTET & \begin{tabular}{l}
initial estimate of state aid to district \\
schools for transportation before application \\
of RATIOl; million \(\$\)
\end{tabular} \\
transportation; million \(\$\)
\end{tabular}
Historical Data Source \({ }^{\text {a }}\)

ADA, Annual Financial Report
constructed from BOC, State Governmental Finances and ADA Annual Financial Report

ADA, Annual Financial Report

ADA, Annual Financial Report

ADA, Annual Financial Report

ADA, Annual Financial Report
\begin{tabular}{|c|c|c|}
\hline & Variable & Definition; Units \\
\hline & RLTF & federal-local government transfers; million \$ \\
\hline & RLTFPX & petroleum-related federal-local government transfers; million \$ \\
\hline & RLTMA & state local transfers under municipal assistance program; million \$ \\
\hline & RLtma4 & initial model estimate of state-local transfers under municipal assistance program; million \(\$\) \\
\hline - & RLtma6 & initial values for state-local transfers under municipal assistance; million \$ \\
\hline - & RLTMCAP & municipal capital grants from state to local government; million \$ \\
\hline - & RLTMS & state-local revenue transfers net of education, revenue sharing, and tax sharing; million \(\$\) \\
\hline - & RLTOT & state-local tax sharing of other taxes (amusement licenses, aviation fuel tax, liquor licenses, fisheries tax); million \(\$\) \\
\hline & RLTOT4 & initial estimate of state-local sharing of other taxes before application of RATIOl; million \(\$\) \\
\hline & RLTRS & state-local revenue sharing; million \$ \\
\hline & RLTRS 4 & initial model estimate of state-local revenue sharing before application of RATIO1; million \(\$\) \\
\hline m & RLTRS6 & initial values for state-local revenue sharing; million \$ \\
\hline & RLTT9 & total state-local tax transfers; million \$ \\
\hline & RLTT94 & initial estimate of total state-local tax transfers; million \(\$\) \\
\hline & RLTVS & state-local shared electric and telephone co-op taxes; million \$ \\
\hline m & RLTVS4 & initial estimate of state-local shared electric and telephone co-op taxes before application of RATIO1; million \$ \\
\hline
\end{tabular}

\section*{Historical Data Source \({ }^{\text {a }}\)}

BOC, Governmental Finances

ADA, Executive Budget

ADA, Annual Financial Report
constructed from BOC State
Goverrment Finances 8 ADA
Executive Budget

ADA, Executive Budget

ADA, Executive Budget
\begin{tabular}{|c|c|}
\hline Variable & Definition; Units \\
\hline RLTX & exogenous state-local transfers; million \$ \\
\hline RMIS & miscellaneous unrestricted general fund revenues: million \$ \\
\hline RHISRES & miscellaneous restricted general fund revenues; million \$ \\
\hline RMISRES6 & initial values for miscellaneous restricted general fund revenues; million \(\$\) \\
\hline RNAT & Native personal income as percentage of total personal income calculated using the income distribution model \\
\hline RNATX & Native personal income as percentage of total personal income calculated using the income distribution model \\
\hline ROFAS & state auto licenses and fees; million \(\$\) \\
\hline ROFERS & general fund ferry receipts; million \$ \\
\hline ROFOS & nonauto-related business and nonbusiness licenses and fees to general fund; million \(\$\) \\
\hline ROFIS & total general fund fees and licenses; million \$ \\
\hline ROR & real rate of return on general fund balance; percent \\
\hline RORANGRO & under EXRLOPB, rate at which state operating expenditure annuity grows; percent \\
\hline RORBOND & real state g.o. bond interest rate; percent \\
\hline RORCPDEP & real rate of depreciation of state-owned capital; percent \\
\hline RORCRF & capital recovery factor for calculating annual servicing of bonded debt; percent \\
\hline RORDISK & discount rate applied to future petroleum revenues to calculate present value in 1982 dollars (DF.RSVP) \\
\hline RORNC & nominal rate of return on accumulated capital of Native Corporations; percent \\
\hline
\end{tabular}

\section*{Historical Data Source \({ }^{\text {a }}\)}

ADR, Revenue Sources
```

* 

```
 -
 -

RLTX exogenous state-local transfers; million \(\$\)

RMISRES

RMISRES6

RNAT

RNATX Native personal income as percentage of total personal income calculated using the income distribution model
state auto licenses and fees; million \(\$\)
general fund ferry receipts; million \(\$\)
nonauto-related business and nonbusiness licenses and fees to general fund; million \(\$\)
total general fund fees and licenses; million \$
real rate of return on general fund balance; percent
under EXRLOPB, rate at which state operating expenditure annuity grows; percent
real state g.o. bond interest rate; percent
real rate of depreciation of state-owned capital; percent of Native Corporations; percent

ADA, Annual Financial Report
ADA, Annual Financial Report
constructed from ADA, Annual Financial Report

ADA, Annual Financial Report

\begin{tabular}{|c|c|}
\hline Variable & Definition; Units \\
\hline RS.REC & ratio of endogenous and interest revenues to total state revenues \\
\hline RS.RP95 & ratio of petroleum revenues to total state revenues \\
\hline RS.RSEN & ratio of endogenous revenues to total state revenues \\
\hline RS.RSIN & ratio of general and Pemmanent Fund earnings to total state revenues \\
\hline RSBM. 899 & ratio of fund earnings (RSIG+RSID+RSIPGF) to unrestricted general fund revenues \\
\hline RSBM. EXD & ratio of debt service expenditures (EXDSS) to unrestricted general fund revenues \\
\hline RSBM.GF & ratio of general fund earnings (RSIG) to unrestricted general fund revenues \\
\hline RSBM. PET & ratio of endowment revenues (RP95GF + RSIG + RSIO + RSIPGF) to unrestricted general fund revenues \\
\hline RSBM. PF & ratio of Pemanent Fund earnings transferred to general fund (RSIPGF) to unrestricted general fund revenues \\
\hline RSBM. REN & ratio of endogenous general fund revenues (RSENGF) to unrestricted general fund revenues \\
\hline RSBM.RP9 & ratio of petroleum revenues (RP9SGF) to unrestricted general fund revenues \\
\hline RSEN & state endogenous revenues; million \$ \\
\hline RSENGF & state endogenous unrestricted general fund revenues; million \(\$\) \\
\hline RSFDN & total federal grants-in-aid to state general fund; million \$ \\
\hline RSFON6 & initial values for total federal grants-in-aid to state general fund; million \$ \\
\hline RSFDNCAX & federal grants-in-aid to state general fund for capital expenditures; million \(\$\) \\
\hline
\end{tabular}

Historical Data Source

ADA, Annual Financial Report

ADA, Annual Financial Report

ADA, Annual Financial Report
\begin{tabular}{|c|c|c|c|}
\hline \(\cdots\) & & & Institute of Social and Economic Research MAP Documentation December 1984, Model A85. 1 \\
\hline & Variable & Definition; Units & Historical Data Source \({ }^{\text {a }}\) \\
\hline - & RSFONPX & federal-state shared petroleum royalties; million \$ & ADR, Revenue Sources \\
\hline \(\pm\) & RSFONPXG & general fund portion of federal-state shared petroleum royalties; million \$ & ADR, Revenue Sources \\
\hline \% & RSFDNX & exogenous federal-state transfer payments; million \$ & - \\
\hline \% & RSFFS & fees and licenses receipts paid into the fish and game special revenue fund; million \(\$\) & ADA, Annual Financial Report \\
\hline & RSFS & total revenues of the special funds except the Permanent Fund; million \$ & ADA, Annual Financial Report \\
\hline & RSFS 1 & miscellaneous receipts of state special revenue funds; million \$ & ADA, Annual Financial Report \\
\hline \% & RSGF & total state general fund revenues (unrestricted and restricted); million \$ & ADR, Revenue Sources \\
\hline \(\pm\) & RSGFBM & total general fund unrestricted revenues; million \$ & ADR, Revenue Sources \\
\hline ? & RSGF.AFR & total general fund revenues (including interagency receipts) & ADA, Annual Financial Report \\
\hline m & RSGFGAP & the difference between the statutory spending limit and available funds; million \(\$\) & - \\
\hline & RSGFRS & restricted state general fund revenues; million \$ & - \\
\hline \(\cdots\) & RSIAS & international airport receipts (enterprise fund); million \$ & ADA, Annual Financial Report \\
\hline , & RSID & State development fund earnings; million \$ & - \\
\hline , & RSIDNET & state development fund earnings net of inflation; million \$ & - \\
\hline & RSIG & state general fund interest; million \$ & - \\
\hline & RSIG6 & initial value for state general fund interest; million \$ & - \\
\hline + & RSIGNET & State general fund interest net of inflation; million \$ & - \\
\hline m & RSIN & state investment earnings deposited in the general fund; million \(\$\) & ADR, Revenue Sources \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Variable & Definition; Units \\
\hline RSIP & state Permanent Fund interest; million \$ \\
\hline RSIPS & state Permanent Fund interest-initial adjustment; million \$ \\
\hline RSIPGF & state Permanent Fund interest transferred into general fund; million \$ \\
\hline RSIPPF & reinvested Permanent Fund earnings; million \$ \\
\hline RSIPPF 1 & Permanent Fund earnings net of transfers to general fund; million \$ \\
\hline RSIPNET & state Permanent Fund interest net of inflation; million \$ \\
\hline RSI99 & total earnings of state general fund, Permanent Fund, and development funds \\
\hline RSI99NET & total earnings of state general fund, Permanent Fund, and development funds interest net of inflation; million \$ \\
\hline RT99 & total state tax revenues; million \$ \\
\hline RTAS & alcoholic beverage tax; million \$ \\
\hline RTBS & gross receipts tax and business license tax; million \$ \\
\hline RTBS 1 & portion of gross receipts tax revenues derived from business licenses; million \$ \\
\hline RTBS2 & portion of gross receipts tax revenues derived from gross receipts in excess of exempted amount per business; million \$ \\
\hline RTCIS & cigarette tax receipts (sum of general fund and tobacco fund receipts); million \$ \\
\hline RTCS & state corporate tax receipts; million \$ \\
\hline RTCS 1 & corporate income tax net of petroleum sector; million \$ \\
\hline RTCSPX & state corporate tax receipts from petroleum sector; million \$ \\
\hline
\end{tabular}
```

Historical Data Sourcea
ADR, Revenue Sources
ADR, Revenue Sources
ADR, Revenue Sources
ADA, Annual Financial Report
and ADR, Revenue Sources
ADA, Annual Financial Report
constructed from ADR unpublished
data
constructed from ADA, Annual
Financial Report and ADL,
unpublished data
ADA, Annual Financial Report
and ADR, Revenue Sources
ADA, Annual Financial Report
and ADR, Revenue Sources
ADR, Revenue Sources

| $m$ |  |  | Institute of Social and Economic Research MAP Documentation December 1984, Model |
| :---: | :---: | :---: | :---: |
|  | Variable | Definition; Units | Historical Data Source ${ }^{\text {a }}$ |
|  | RTCSX | exogenous corporate income tax; million $\$$ | - |
| - | RTIS | personal income tax; million \$ | ADA, Annual Financial Report |
| \% | RTISC | personal income tax on a calendar year basis; million $\$$ | ADR, Cumulative Summary of Revenue, a monthly report |
| m | RTISCA | personal income tax liability per taxpayer on a calendar year basis; thousand $\$$ | - |
| 为 | RTISCA1 | initial estimate of personal income tax liability per taxpayer on a calendar year basis; thousand $\$$ | - |
| = | RTISCA2 | initial estimate of personal income tax liability per taxpayer on a calendar year basis without tax structure changes introduced by modeler; thousand $\$$ | - |
| \% | RTISCP | calendar-year state income taxes paid out of Alaskan resident personal income; million $\$$ | ADR, unpublished data |
| $\ldots$ | RTISLOS | difference per taxpayer between personal income tax liability before and after structural changes introduced by modeler; million $\$$ | - |
| m | RTISXX | adjustment of disposable income to cover lag in refund in state personal income taxes after repeal; million $\$$ | - |
|  | RTMF | highway, aviation, and marine fuel taxes; million \$ | ADA, Annual Financial Report and ADR, Revenue Sources |
| \% | RTOTS | other state taxes-consists of fiduciary, inheritance, estate, mining, conservation, prepaid, and fish taxes; million $\$$ | ADR, Revenue Sources |
| \% | RTOTS6 | initial values for other state taxes-consists of fiduciary, inheritance, estate, mining, conservation, prepaid, and fish taxes; million $\$$ | ADR, Revenue Sources |
| \% | RTPIF | federal income taxes paid out of Alaskan resident personal income; million \$ | BEA - disposable personal income data |
|  | RTSS | school tax; million \$ | ADA, Annual Financial Report |
| - | RTVS | ad valorem taxes consisting of insurance premium tax and electric telephone company revenue tax; | ADA, Annual Financial Report and ADR, Revenue Sources |


| Variable | Definition; Units |
| :---: | :---: |
| SANCSA | payments to Alaska Natives by state government under ANCSA; million $\$$ |
| SANCSAX | special state appropriation to pay off ANCSA debt |
| SEXDIV | non-Native sex division at birth; percent |
| SLGEXP | total combined state and local government expenditures; million $\$$ |
| SURINFi | non-Native infant survival rates; percent |
| Sij | non-Native survival rate for cohort ij |
| TCRED | individual tax credit beginning after 12/31/17; \$ |
| THG | total gallons of highway gasoline sold in the state (does not include off-highway gallon sales); million gallons |
| TOURIST | number of tourist visitors to Alaska; thousands |
| TP | period over which civilian household formation rates trend; years |
| TPTV | total highway motor vehicles operating in the state (passenger and truck); thousand |
| TXBASE | change in the floor of personal income tax rate schedule; units |
| TXCRPC | state personal income tax credit adjustment (percentage of tax liability); |
| TXPTXX | adjustment to withold from state expenditures a portion of any personal income tax reduction; percent |
| TXRT | percentage change in state personal income tax rate; percentage |
| U.AK.US | ratio of unemployment rates in Alaska and the U.S. average |

Historical Data Source ${ }^{\text {a }}$

Alaska Department of Health and Social Services

Alaska Department of Health and Social Services

Alaska Department of Health and Social Services

ADR, monthly motor vehicle tax forms

Alaska Department of Health and Social Services

Department of Public Safety, Motor Vehicle Division

| ! | Variable | Definition; Units | Historical Data Source ${ }^{\text {a }}$ |
| :---: | :---: | :---: | :---: |
|  | UNEMP | average annual Alaska unemployment; thousand | ADL |
|  | UNEMRATE | Alaska unemployment rate; percent | - |
| man | UUS | US unemp loyment rate; percent | U.S. Department of Labor, Bureau of Labor Statistics |
| $\cdots$ | VAEX | value of a personal exemption on personal income tax; $\$$ | IRS, Statistics of Income |
|  | VAEX6 | initial value for personal exemption; \$ | - |
| ; | WEALTH | four-year average of real per capita income; 1967 U.S. $\$$ | - |
| , | WEUS | average weekly wage \& salary earnings in U.S.; \$ | U.S. Department of Labor, Bureau of Labor Statistics |
| ma | WEUS6 | initial value for average weekly wage and salary earnings in United States; \$ | - |
| $\cdots$ | WR.AK.US | change in the ratio of Alaska to U.S. civilian wage rate | - |
| momen | WR97 | average annual wage rate for nonagricultural wage and salary employment; $\$$ | - |
| P | WR98 | average annual wage rate for nonagricultural wage and salary employment plus military; $\$$ | - |
| mamen | WRab | average annual wage rate for industry sector $a b ; \$$ | ADL, Statistical Quarterly |
| - | WRCNNP | average annual wage rate for non- "enclave" construction wage rate; $\$$ | ADL, Statistical Quarterly |
| + | WRCNP | average annual wage rate for premium wage fipeline or "enclave") construction; \$ | ADL, Statistical Quarterly |
|  | WRCU | average annual wage rate for communications and public utilities; \$ | ADL, Statistical Quarterly |
| (mam | WRGab | annual growth in real annual wage rate in industry ab (input to income distribution model) | - |
| $\cdots$ | WRGC | average annual wage rate for federal civilian; \$ | ADL, Statistical Quarterly |
| 0 m | WRGMS | annual growth in income per proprietor (input to income distribution model) | - |


| Variable | Definition; Units | Historical Data Source ${ }^{\text {a }}$ |
| :---: | :---: | :---: |
| WRM91 | average annual wage rate for existing (low wage) manufacturing employment; \$ | ADL, Statistical Quarterly |
| WRMX 1 | average annual wage rate for large-project (high wage) manufacturing employment; \$ | - |
| WRSB | average annual wage rate for business services; $\$$ | ADL, Statistical Quarterly |
| WRSNB | average annual wage rate for nonbusiness services; \$ | ADL, Statistical Quarterly |
| WS97 | total wage and salary payments in nonagricultural wage and salary industries; million \$ | - |
| WS98 | total wage and salary payments in nonagricultural wage and salary industries plus military; million $\$$ | - |
| WS98L | wages and salaries lagged one year (input to income distribution model); million \$ | - |
| WSab | wages and salaries paid in industry $a b ; a b=C N G A$ A9 CM DR DW D9 FI GF M9 PU P9 S9 T9; million $\$$ | ADL, Statistical Quarterly |
| WSCNP | wages and salary payments in high wage ("enclave") construction; million \$ | - |
| WSGC | federal civilian wages and salaries; million \$ | ADL, Statistical Quarterly |
| WSGL | local government wages and salaries; million \$ | ADL, Statistical Quarterly |
| WSGM | military personnel wages and salaries; million \$ | BEA, personal income data |
| WSGS | state government wages and salaries; million \$ | ADL, Statistical Quarterly |
| WSGSFY | state government wages and salaries on fiscal year basis; million \$ | ADL, Statistical Quarterly |
| WSMX 1 | wages and salaries paid in high wage exogenous large-project manufacturing; million \$ | - |
| WSNA | wages and salaries paid to Natives; million \$ | - |
| WSS91 | wages and salaries in services net of Native Corporation-related wages; million $\$$ | - |
| X 1-x6 | variables used to facilitate printing of output of the income distribution model | - |


|  |  | Institute of Social and Economic Research MAP Documentation December 1984, Model A85.1 |
| :---: | :---: | :---: |
| Variable | Definition; Units | Historical Data Source ${ }^{\text {a }}$ |
| XX98 | total real gross state product in wage and salary industries and military; million 1972 U.S. \$ | $\rightarrow$ |
| XXab | real gross state product in industry ab; ab=A9 CM CN DR DW D9 FI GA GF PU P9 S9 T9; million 1972 U.S. \$ | for construction methodologies, see Brian Reeder, Gross State Product for Alaska: Technical Documentation, ISER |
| XXA9 | agriculture-forestry-fisheries real gross state product; million 1972 U.S. \$ | for construction methodology, see Brian Reeder, Gross State Product for Alaska: Technical Documentation, ISER |
| XXCNI | endogenous (residentiary plus state government) component of construction real gross state product; million 1972 U.S. \$ | - |
| XXCNB | residentiary construction real gross state product; million 1972 U.S. \$ | - |
| XXCNX | gross product associated with exogenous construction; million 1972 U.S. $\$$ | - |
| XXDRNT | state retail trade net of tourism real gross state product; million $1972 \$$ | - |
| XXM9 | manufacturing real gross state product; million 1972 U.S. \$ | - |
| XXMO | endogenous manufacturing real gross state product; million 1972 U.S. $\$$ | - |
| XXMX 1 | exogenous large-project manufacturing real gross state product; million 1972 U.S. | - |
| XXMX2 | manufacturing real gross state product net of large projects; million | for construction methodologies, see Brian Reeder, Gross State Product for Alaska: Technical Documentation, ISER |
| XXS8NT | support services (net of business, tourism, and Native claims) real gross state product; million 1972 U.S. $\$$ | - |
| XXSB | business services real gross state product; million 1972 U.S. \$ | - |


| Variable | Definition; Units |
| :--- | :--- |
| XXTNT | transportation (net of tourism and exogenous <br> components) real gross state product; million <br> 1972 U.S. $\$$ |
| XXVACAP | value added in contract construction accounted for <br> by government (state) purchases from the private <br> contracting industry; million 1972 U.5. $\$$ |
| XXVHY | value added in construction industry fron private <br> contracts for highway construction let by state <br> governnent; million $\$$ |
| XXVNHY | value added in construction industry from private <br> contracts for nonhighway construction let by <br> state government; million $\$$ |
| YR | year |
| Za.a | spacer variable to maintain locational consistency <br> of equations |

Historical Data Source
constructed from ADPW worksheets

## REGIONALIZATION MODEL

 and Economic Research MAP Documentation December 1984, Model A84.CD> ISER MAP ALASKA ECONOMIC MODEL: REGIONALIZATION MODEL DOCUMENTATION VERSION A84.CD, DECEMBER 1984

1. Model Description ..... 1
2. Flow Diagram ..... 5
3. Model Inputs ..... 7
4. Variable and Parameter Names ..... 9
5. Parameter Values ..... 13
6. Model Validation ..... 31
7. Programs for Model Use ..... 38
8. Model Listing ..... 39
9. Model Parameters ..... 57
10. Exogenous, Policy, and Startup Values ..... 61

Introduction

This report presents in general outline form the structure of the regionalization model which allocates population, households, and employment to the census division level (1970 definitions revised in 1975) from a simulation of the state economic model. Southeast Census Divisions and Bristol Bay Borough Census Divisions are aggregated due to a prior constraint imposed by limited computer capabilities. The model essentially takes cross-sectional information on employment and population and projects the panel forward through time. The regional allocations are affected by variation over time in the location of basic sector and government activity. The total support employment and dependent population proportions vary over time to maintain consistency with the results of the state model.

In developing this model, several major objectives have been addressed as follows:

- that the structure be simple and generalizable
- that the parameters be specified in terms with clear, intuitive meaning
- that the regions be disaggregated to census division levels
- that the model be sufficiently flexible to be tied easily to the MAP statewide model

As such, the main strength of the model is in providing interregional consistency for any simulation analysis. On the other hand, because it treats each region in quite aggregate form, it cannot substitute for a detailed economic analysis for a particular labor market area, and in general the chance of projection error increases as the size of the census division analyzed declines.

The model consists of two components. First, given an exogenous estimate of statewide employment by sector (provided from a corresponding state model run) and vectors of basic and government employment in each of the twenty regions (1970 census division aggregates revised in 1975), the employment component of the model allocates support and total employment to each of the twenty regions. These estimates along with estimates of statewide population and households (from the statewide model) are then used to generate regional population and household allocations.

## The Employment Component

For each of the twenty regions, the model projects three types of employment: basic, government, and support. The basic sector consists of (1) all sectors or portions of sectors treated as exogenous in the state model: agriculture, fisheries, exogenous manufacturing, mining, exogenous construction, and a portion of transportation, as well as (2) some sectors which are endogenous in the state model: endogenous construction, forestry, miscellaneous, endogenous manufacturing, proprietors, and tourism employment. Government consists of federal civilian and military employees as well as state and local employees. State and local government are endogenous in the state model, but exogenous in the regionalization model. The support sector is defined as all other employment.

Total employment (M.aa) in each region aa is the sum of basic (B.aa), government (G.aa), and support (S.aa) employment.
M.aa $=$ B.aa + G.aa + S.aa

Support employment in any region aa is a function of total employment in every region of the state as follows:

$$
\mathrm{S} . \mathrm{aa}=\sum_{\Sigma}^{\mathrm{bb}}(\mathrm{~A} . \mathrm{aa} . \mathrm{bb} * \mathrm{M} . \mathrm{bb}) * \mathrm{BETA}
$$

Where A.aa.bb is the proportion of support sector employment stimulated by an increase in total employment in region bb which is observed in region aa. The preliminary estimate is adjusted by the parameter BETA (the state ratio of support to total employment) to yield a final figure which, when aggregated, is consistent with the state model simulation. According to this model formulation, an increase in basic or government employment in a single region can, in theory, give rise directly and indirectly to support employment in every other region of the state.

## The Population Component

Population (P.aa) in each region is a function of residenceadjusted employment (MR.aa). This is calculated in two steps. First, residence-adjusted employment is calculated as follows,

$$
\text { MR. } \mathrm{aa}=\Sigma_{\mathrm{\Sigma}}^{\mathrm{bb}}(I M . \mathrm{aa} . \mathrm{bb} * \mathrm{M} . \mathrm{bb})
$$

Where MR.aa is residence-adjusted employment and IM.aa.bb is the proportion of workers employed in region bb (M.bb) who live in region aa. Population is then determined as follows,

$$
\text { PRE.aa }=\text { PM.aa } * \text { MR.aa }
$$

Institute of Social and Economic Research MAP Documentation December 1984, Model A84.CD
where PRE.aa is a preliminary population estimate for region aa, and PM.aa is the ratio of population to residence-adjusted employment in region aa. This preliminary estimate is forced to conform in the aggregate to total state population by multiplying through by an adjustment factor (ADJ). This yields a final figure for population by census division (P.aa).

$$
\text { P.aa }=\text { PRE.aa * ADJ }
$$

Since the 1970 census division boundaries were changed in 1980 and were renamed census areas, the population by 1980 census areas (PCEN.cc) is calculated from the estimates of population by 1970 census divisions (P.aa) as follows:

```
PCEN.cc = \Sigma (PC.cc.aa * P.aa)
```

Where PC.cc.aa is the proportion of population in region aa (1970 census division) allocated to region cc ( 1980 census area). Fopulation by labor market areas, which are aggregates of the 1980 census areas, is also calculated (PL.dd).
From the regional population figures, based upon the 1980 census areas, a preliminary value for the number of households (HPRE.cc) can be calculated as follows:
HPRE. $\mathrm{cc}=(\mathrm{PGEN} . \mathrm{cc}-\mathrm{PGQ} . \mathrm{cc}) / \mathrm{HHSZ} . \mathrm{cc}$
Where PGQ.cc is population in group quarters and HHSZ.cc is average household size in region cc. The preliminary figure is adjusted using the ratio ADJHH for consistency with the state simulation result to yield final households by census areas (HHCEN.cc). In addition, the model produces a set of household estimates for the J. 970 census divisions using the same allocation factors as employed in allocating population ( $\mathrm{HH} . a \mathrm{a}$ ).

## 2. Flow Diagram

## FIGURE 1. MAP REGIONALIZATION MODEL

 FLOW DIAGRAM* Consistency adjustment applied to conform with state model simulation result.

[^1]
## 3. Model Inputs

Provided by the Scenario GeneratorBaa Portion of basic employment in region aa (mining[EMP9], exogenous construction [EMCNX], exogenousmanufacturing [EMMX], exogenous transportation[EMT9X], agriculture [EMAGRI], fishing [EMFISH])
Gaa Portion of government employment in region aa (federal civilian and military [EMGC and EMGM])

## Provided by MAP State Economic Model

EMA9 agriculture-forestry-fisheries employment
EMAFISH wage and salary component of fish harvesting employment

EMAGRI wage and salary component of agriculture employment

EMCN construction employment

EMCN1 construction employment net of exogenous construction employment

EM99 total wage and salary, nonwage and salary (proprietor), and military employment

EMGA state and local government employment
EMGF federal civilian and military employment
EMM9 manufacturing employment
EMMO employment in endogenous manufacturing
EMP9 mining employment
EMPRO total proprietor employment

|  |  | Institute of Soc and Economic Res MAP Documentatio December 1984, M | m |
| :---: | :---: | :---: | :---: |
| EMPRO1 | proprietor employment net | fish harvesting |  |
| EMT9X | exogenous (large pipeline transportation employment | ject-related) |  |
| EMTOUR | total tourism employment |  |  |
| HH | households |  | , |
| POP | population |  |  |

## 4. Variable and Parameter Names

## Variables

| M.aa | Total employment, region aa (EM99) |
| :--- | :--- |
| MR.aa | Total employment by place of residence, region aa |

G.aa Government employment, region aa (EMGC, EMGM, EMGS, EMGL)
B.aa Basic employment, region aa (EMP9, EMCN, EMM9, EMA9, EMTOUR, EMT9X, EMPRO)
S.aa Support employment, region aa (M.aa - G.aa - B.aa)
P.aa Populationa, region aa

PCEN.cc Population, region cc
PL.dd Population, labor market area dd
HH. aa Households, region aa
HHCEN. ce Householdsb, region cc
BETA Ratio of support to basic employment
ADJ Ratio of state model population (POP) to initial
regionalization model population estimate (PRE.ST)
ADJHH Ratio of state model households (HH) to initial regionalization model household estimate (HPRE.ST)

FRSTRY Endogenous manufacturing and forestry employment (EMMO+EMAUN)

GR.M.aa Annual percent change in employment, region aa
GR.P.aa Annual percent change in population, region aa

## Parameters

A.aa.bb Proportion of the total support sector employment stimulated by increase in total employment in region bb which occurs in region aa

EA.aa.ee Percent of basic employment category ee allocated to region aa

[^2]Institute of Social and Economic Research
MAP Documentation
December 1984, Model A84. CD

IM.aa.bb Percent of workers employed in region $b b$ who live in region aa

PM.aa Ratio of population to residence-adjusted employment in region aa

HHSZ.cc Average household size in 1980 in census area cc
PGQ.cc Population in group quarters in 1980 in census area cc
PC.cc.aa Proportion of population in region aa (1970 census division definiton) allocated to region cc (1980 census area definition)

Suffixes
aa Aggregated 1970 Census Divisions (Revised 1975)

01 Aleutian Islands
02 Anchorage
04 Barrow/North Slope
05 Bethel
06 Bristol Bay*
08 Cordova/McCarthy
09 Fairbanks
11 Southeast Alaska**
12 Kenai/Cook Inlet
14 Kobuk
15 Kodiak
16 Kuskokwim
17 Matanuska/Susitna
18 Nome
21 Seward

[^3]```
    Southeast Fairbanks
    Upper Yukon
    Valdez/Chitina/Whittier
    Wade Hampton
    Yukon/Koyukuk
    State
    Railbelt = 2 + 9 + 12 + 17 + 21 + 24 + 26
    Greater Anchorage = 2 + 12 + 17 + 21
    Anchorage + MatSu = 2 + 17
    Non-Railbelt = ST - RB
    Greater Fairbanks = 9 + 24
    Intertied Railbelt = RB - 26
cc Aggregated 1980 Census Areas
01 North Slope
02 Kobuk
03 Nome
04 Yukon/Koyukuk
05 Fairbanks
06 Southeast Fairbanks
07 Wade Hampton
0 8 ~ B e t h e l
10 Bristol Bay Borough*
11 Aleutian Islands
12 Matanuska/Susitna
13 Anchorage
14 Kenai Peninsula
15 Kodiak
16 Valdez/Gordova
19 Southeast Alaska**
```

```
*Includes Dillingham [09].
```

*Includes Dillingham [09].
**Includes Skagway/Yakutat/Angoon [17], Haines [18], Juneau [19],
**Includes Skagway/Yakutat/Angoon [17], Haines [18], Juneau [19],
Sitka [20], Wrangell/Petersburg [21], Prince of Wales/Outer
Sitka [20], Wrangell/Petersburg [21], Prince of Wales/Outer
Ketchikan [22], and Ketchikan Borough [23].

```
Ketchikan [22], and Ketchikan Borough [23].
```

ANCMS \quad Anchorage-Matanuska/Susitna $=12,13$
SEAST Southeast $=17,18,19,20,21,22,23$

INTER Interior $=5,6+$ Yukon Flats, Koyukuk net of Middle Yukon subareas of Yukon/Koyukuk

NORTH North $=1,2,3$
GULF Gulf Coast $=14,15,16$
SWEST Southwest $=7,8,9,10,11+$ McGrath-Holy Cross census subareas of Yukon/Koyrikuk
ee Employment Categories

CN endogenous construction (EMCN1)
FR forestry (FRSTRY)
PR nonfishing proprietors (EMPRO1)
TR tourism (EMTOUR)
GA state and local government (EMGA)

5. Parameter Values

A. Average Household Size (HHSZ.cc) and

Population in Group Quarters (PGQ.cc)
These parameters are calculated from the 1980 census as shown in Table 1.

TABLE 1. HOUSEHOLD SIZE AND POPULATION IN GROUP QUARTERS BY 1980 CENSUS AREAS

[^4]**Includes Skagway/Yakutat/Angoon, Haines, Juneau, Sitka, Wrangell/ Petersburg, Prince of Wales/Outer Ketchikan, and Ketchikan

```
SOURCE: 1980 Census of Population
```


B. Basic Employment Regional Allocation (EA.aa.ee)

Five industries are endogenous in the state model and are treated as basic and allocated regionally in the regional model based upon historical shares. Construction, forestry, and government (state and local) are allocated on the basis of observed employment shares in those industries from the statistical Quarterly. Tourism is allocated on the basis of data from past state studies of the tourist industry. Proprietors is based upon historical data on the distribution of proprietors from the Bureau of Economic Analysis, net of fishermen.

Institute of Social and Economic Research MAP Documentation December 1984, Model A84.CD

TABLE 2. BASIC EMPLOYMENT REGIOHAL ALLOCATION
[EA.aa.ee]

-	```Region (Adjusted 1970 Census Divisions)```		Construction (EMCN1) EA.aa.CN	Forestry (EMMO+EMAUN) EA.aa.FR	Proprietors (EMPROI) EA.aa.PR	Tourism (EMTOUR) EA.aa.TR	Government (EMGA) EA.aa.GA
	1	Aleutian Islands	. 0098	0	. 0212	0	. 0106
m	2	Anchorage	. 5733	. 4547	. 4646	. 3336	. 3386
,	4	Barrow/North Slope	. 0325	0	. 0011	0	. 0341
	5	Bethel	. 0104	0	. 0053	0	. 0255
1	6	Bristol Bay*	. 0053	0	. 0114	0	. 0174
\%	8	Cordova/McCarthy	. 0012	0	. 0096	. 005	. 0069
-	9	Fairbanks	. 1631	. 2745	. 1058	. 1282	. 1340
+	11	Southeast Alaska**	. 0955	. 04	. 2324	. 303	. 2184
	12	Kenai/Cook Inlet	. 0418	. 1677	. 0490	. 066	. 0361
-	14	Kobuk	. 0042	0	. 0032	0	. 0183
!	15	Kodiak	. 0149	. 0162	. 0353	. 039	. 0239
	16	Kuskokwim	0	0	. 0008	0	. 0083
+	17	Matanuska/Susitna	. 0184	. 0162	. 0221	. 0145	. 0301
:	18	Nome	. 0041	. 0174	. 007	. 0013	. 0208
\pm	21	Seward	. 0047	0	. 0118	. 0044	. 0084
-	24	Southeast Fairbanks	. 0024	0	. 0055	0	. 0123
	25	Upper Yukon	. 0003	0	. 0014	0	. 0065
\%	26	Valdez/Chitina/Whittier	. 0086	0	. 0077	. 105	. 0229
\%	27	Wade Hampton	. 0008	0	. 0009	0	. 0122
	29	Yukon/Koyukuk	. 0087	. 0133	. 0039	0	. 0147

*Includes Bristol Bay and Bristol Bay Borough Census Divisions
**Includes the following Census Divisions: Angoon, Haines, Juneau, Ketchikan, Outer Ketchikan, Prince of Wales, Sitka, Skagway/Yakutat, and Wrangell/Petersburg.

C. Interregional Employment Interaction Matrix (A.aa.bb)

The basic data source was regional employment for 1979 from the Alaska Department of Labor publications, specifically Statistical Quarterly and Alaska Economic Trends. The breakdown of employment by basic, government, and support sectors is shown in Table 3 for 1979.

Since the major concern of the regional model is to capture the effect of support sector demands which are supplied in regions other than the one giving rise to such demands, rather than to examine the effects of differential support demands across regions, it seems plausible, or at least not overly restrictive, to impose the condition that the ratio of support employment generated by a unit of basic employment is the same wherever the basic employment occurs. The difference between regions, then, is solely the difference in the locations from which these demands will be supplied.

This assumption has the obvious disadvantage that it neglects real interregional differences in demand for support sector services. However, it also has several advantages which may more than compensate for this shortcoming. Most obviously, it reduces the estimation problem by $n-1$ parameters. More importantly, it is extremely valuable as a tool for maintaining consistency with the statewide MAP model, in both a static and a dynamic sense. Currently, a unit of basic sector employment in the state model has the same static employment impact regardless of its location in the state. Regionally varying support/basic ratios would produce differing total statewide static impacts by location, thus being inconsistent with the state model. Furthermore, the introduction of BETA (the ratio of support to total employment from the state model) exogenously provides a valuable tool for maintaining dynamic consistency between the models. By letting BETA vary with time so as to reflect the corresponding state model simulation, we both force the matrix (A.aa.bb) to vary over time to reflect the same degree of structural change represented by the state model and force the employment totals to replicate the statewide results.

The major reason that not all support sector requirements are supplied internally within the region is that it would be more costly to do so than to secure those services from a different region. It is only natural, then, that the cost of supply should be the major determining factor in deciding to which other regions to allocate the supply. Such costs as transportation, communication, etc. are generally expected to increase with distance and to decrease with the size of the support sector source for the region. We hypothesize that the location of support services is chosen in such a way as to minimize the costs of providing the required services observed in region bb from each of the sources of such supply aa. Cost between locations is an increasing function of distance and an inverse function of employment in the supplying region.

```
Institute of Social
and Economic Research
MAP Documentation
December 1984, Model A84.CD
```

TABLE 3. EMPLOYMENT COMPOSITION, 1979

Region-Adjusted 1970 Census Divisions		Support	Basic ${ }^{1}$	Government ${ }^{2}$	Total ${ }^{3}$
1	Aleutian Is lands	377	2,463	3,264	6,104
2	Anchorage	43,936	15,296	34,009	93,241
4	Barrow/North Slope	594	3,467	1,514	5,575
5	Bethel	1,917	420	1,360	3,697
6	Bristol Bay*	839	1,778	1,197	3,814
8	Cordova/McCarthy	381	1,027	344	1,752
9	Fairbanks	10,627	4,148	12,801	27,576
11	Southeast Alaska**	8,142	10,617	11,081	29,840
12	Kenai/Cook Inlet	2,529	3,854	1,481	7,864
14	Kobuk	402	114	935	1,451
15	Kodiak	1,472	3,803	2,051	7,326
16	Kuskokwim	123	13	435	571
17	Matanuska/Susitna	1,441	624	1,345	3,410
18	Nome	1,077	304	980	2,361
21	Seward	414	728	390	1,532
24	Southeast Fairbanks	240	149	1,636	2,025
25	Upper Yukon	99	25	302	426
26	Valdez/Chitina/ Whittier	253	1,140	927	2,320
27	Wade Hampton	208	236	595	1,039
29	Yukon/Koyukuk	506	807	1,208	2,521
ST	Statewide	79,977	46,613	77,855	204,445

$1_{\text {Mining, }}$ manufacturing, construction, agriculture-forestryfisheries, proprietors, tourism, and exogenous transportation [: EMP9
${ }^{2}$ Federal, state, and local government [EMGF+EMGA].
3^{3} Total wage and salary, nonwage and salary (proprietor), and military [EM99].
*Includes Bristol Bay and Bristol Bay Borough Census Divisions
**Includes the following Census Divisions: Angoon, Haines, Juneau, Ketchikan, Outer Ketchikan, Prince of Wales, Sitka, Skagway/Yakutat, and Wrangell/Petersburg.

SOURCE: Alaska Economic Projections for Electricity Requirements for the Railbelt, ISER, 1981, adjusted. Based on regional data archive CDAA.

Institute of Social and Economic Research MAP Documentation December 1984，Model A84．CD

The A．aa．bb matrix was estimated by a linear programming routine for the problem of minimizing the cost of service delivery using 1979 data．The matrix was recalibrated in 1984 using data for 1983 by iterative adjustment of individual elements while maintaining column sums．In addition，four of the matrix elements were converted from parameters to exogenous variables so that their values could trend over time．This allows the Matanuska／Susitna Borough to accrue an increasing portion of its own support activities over time．

The matrix，which we call the interregional employment interaction matrix，is presented in Table 4．Each entry represents the share of support requirements for region bb supplied from region aa．Each of the columns，therefore，must sum to unity． Thus，a quick glance down each column provides a subjective test of the plausibility of the matrix．A priori，one would expect nonzero entries in all of the diagonal elements and along the rows of the regional support centers and probably along the entire row corresponding to Anchorage，which is a statewide support center． The pattern is as would have been expected．All diagonal terms are nonzero，with the larger support centers being self－sufficient vis－a－vis the rest of the state（having diagonal entries close to unity）．Anchorage and Fairbanks are the most significant support centers，with Anchorage supplying most regions and Fairbanks supplying Kuskokwim，Upper Yukon，and Yukon／Koyukuk．Three local support centers emerge with Bethel supporting Wade Hampton，Nome supporting Kobuk，and Kenai supporting Kodiak．In addition， Matanuska／Susitna provides some support to Anchorage．

A complete description of the methodology used to derive this matrix appears in Alaska Economic Projections for Estimating Electricity Requirements for the Railbelt，ISER．

TABLE 4. INTERREGIONAL EMPLOYMENT INTERACTION MATRIX (A.aa.bb)

Demand Region

Institute of Social and Economic Research
MAP Documentation
December 1984, Model A84.CD

D. IM.aa.bb Interregional Residence Adjustment Matrix

The interregional residence adjustment matrix calculates the place of residence of workers employed in Alaska. It is an expanded and refined version of the Interregional Wage and Employee Flow Matrix constructed for the econometric model of Anchorage (see Municipality of Anchorage: Economic Modeling Project, ISER, 1982, p. II-24).

Four sources of information are used to construct the matrix. The first is the U.S. Census data on commuting which provides information on the proportion of residents in a region who are employed outside the region. The second is an analysis of tax returns by Alaskan places which, when compared to wages and salaries earned by place of work, provides a comparison of wages earned by workers in a region and workers living in a region. The third is the residency adjustment figures of the Bureau of Economic Analysis which provides another estimate of the ratio of wage and salary income earned in a region to resident wage and salary income. The fourth is the preliminary results of a special census for oil-related work sites on Alaska's North Slope conducted by the Alaska Department of Labor which reports usual place of residence of oil field employees. This census provided the basis for the column vector of the matrix for Barrow, after adjustment for non-oilrelated employment on the North Slope.

The first step was calculation of the diagonal elements--the proportion of employment in each region done by residents of the region. This involved the following equation:

$$
\text { IM. aa. aa }=\frac{(1-\%) \star \mathrm{WR}}{\mathrm{WP}}
$$

where \% is the proportion of workers reporting employment outside their census area of residence in 1980 (1980 Census Table 36, STF3); WR is wages reported by residents on their 1978 income tax returns (Federal Income Taxpayer Profile 1978, Alaska Department of Revenue, 1981); and WP is wages and salaries paid in 1978 by labor market area (Statistical Quarterly, Alaska Department of Labor). The resulting parameter is net of both outflows of wages by nonresidents and inflows of wages by commuting residents. Table 5 shows the ratio of wages reported to wages paid in 1978 and demonstrates a considerable amount of job commuting, particularly in certain census divisions. Table 6 is a further indication of the amount of out-of-state job commuting which occurs in Alaska.

Filling in the other cells of the matrix involved a judgmental approach because the available data left too many degrees of freedom to specify values for the 360 remaining cells.

Institute of Social and Economic Research
 MAP Documentation
 December 1984, Model A84. CD

TABLE 5. WAGES PAID BY LOCATION AND WAGES EARNED BY RESIDENTS IN 1978

 (million \$)| Census Division | (1)
 Wages ${ }^{\text {a }}$ Paid | (2)
 Wages ${ }^{b}$
 Reported
 by
 Residents | (2)-(1)
 Net Inflo (Outflo) | (3)/(1)
 Wages
 Reported
 as Percent
 of Wages Paid |
| :---: | :---: | :---: | :---: | :---: |
| Matanuska/Susitna | 52.5 | 110.4 | 58.2 | 211 |
| Kobuk | 15.5 | 21.5 | 6.0 | 139 |
| Skagway/Yakutat | 12.5 | 14.6 | 2.1 | 117 |
| Haines | 6.8 | 7.4 | 0.6 | 110 |
| Kenai/Cook Inlet | 147.3 | 160.4 | 13.1 | 109 |
| Upper Yukon | 5.5 | 6.0 | 0.5 | 109 |
| Valdez/Chitina/ Whittier | 40.7 | 44.3 | 3.6 | 109 |
| Wade Hampton | 8.7 | 9.0 | 0.3 | 103 |
| Seward | 20.2 | 19.1 | (1.1) | 95 |
| Bethel | 36.0 | 31.7 | (4.3) | 88 |
| Juneau | 191.9 | 169.0 | (22.9) | 88 |
| Anchorage | 1,737.3 | 1,513.2 | (224.1) | 87 |
| Pairbanks | 532.6 | 459.0 | (73.6) | 86 |
| Ketchikan | 102.6 | 86.6 | (16.0) | 84 |
| Home | 32.6 | 27.3 | (5.3) | 84 |
| Angoon | 2.4 | 2.0 | (0.4) | 83 |
| Wrangell/Petersburg | 41.0 | 33.6 | (7.4) | 82 |
| Kuskokwim | 8.8 | 6.9 | (1.9) | 79 |
| Sitka | 73.1 | 56.7 | (16.4) | 78 |
| Southeast Fairbanks | 26.1 | 19.4 | (6.7) | 74 |
| Bristol Bay | 17.8 | 13.0 | (4.8) | 73 |
| Outer Ketchikan | 8.4 | 5.9 | (2.5) | 70 |
| Kodiak | 86.7 | 60.6 | (26.1) | 70 |
| Yukon/Koyukuk | 54.4 | 32.8 | (21.6) | 60 |
| Cordova/McCarthy | 21.8 | 12.6 | (9.2) | 58 |
| Prince of Wales | 14.7 | 7.5 | (7.2) | 51 |
| Bristol Bay Br . | 13.9 | 5.7 | (8.2) | 41 |
| Aleutian Islands | 85.3 | 14.5 | (70.8) | 17 |
| Barrow/North Slope | 237.3 | 27.0 | (210.3) | 11 |
| Alaska | 3,634.1 | 2,977.9 | (656.2) | 82 |
| United States 1,102 | 2,062.0 | 1,092,000.0 | (10,062.0) | 99 |

[^5]Institute of Social and Economic Research MAP Documentation December 1984, Model A84.CD

State	Number of Taxpayers
1. Washington	18,259
2. California	7,480
3. Oregon	4,588
4. Texas	1,760
5. Idaho	1,244
6. Colorado	1,241
7. Arizona	1,216
8. Montana	1,168
9. Florida	1,033
10. Minnesota	857
11. Oklahoma	795
12. New York	770
13. Michigan	611
14. Utah	585
15. Hawaii	557
16. New Mexico	542
17. Virginia	534
18. Other Country	513
19. Wisconsin	505
20. Illinois	469
21. Missouri	450
22. Louisiana	448
23. Nevada	417
24. Georgia	405
25. Pennsylvania	382
26. Arkansas	373

Number of
State

1. Washington 18,2597,480
2. Oregon1,760
3. Idaho1,2447. Arizona1,216
4. Montana1,033
5. Minnesota 857
6. Oklahoma 795
7. New York 770
8. Michigan 611
9. Utah 585
10. Hawaii 557
11. New Mexico 542
12. Virginia 54
13. Other Country505
14. Illinois 469
15. Missouri448
16. Nevada 417
17. Georgia 405
18. Pennsylvania373
19. Kansas 340
20. North Carolina 340
21. Ohio 335
22. Massachusetts 326
23. Alabama 310
24. Wyoming 302
25. Maryland 285
26. New Jersey 280
27. Mississippi 230
28. Tennessee 230
29. Nebraska 223
30. Indiana 216
31. North Dakota 207
32. Iowa 199
33. South Carolina 186
34. Kentucky 174
35. South Dakota 166
36. Connecticut 146
37. Maine 135
38. New Hampshire 94
39. West Virginia 88
40. Vermont 80
41. District of Columbia 43
42. Delaware 40
43. Rhode Island 39

Abstract

Institute of Social and Economic Research MAP Documentation December 1984, Model A84.CD

The full matrix is shown in Table 7. Off-diagonal elements are best understood by considering a column where each element represents the percentage of employees who commute to the row census area. To determine these elements, three assumptions are made. First, Alaskan residents earn no wage income outside of Alaska. Second, non-Alaskan residents can earn wage income in Alaska. Third, based upon a general knowledge of the state, certain elements can be assumed to be zero, thus reducing the number of degrees of freedom for the problem considerably. The matrix was then regionally aggregated into seven regions, and the wage income earned by nonresidents in each region was allocated to the other six and out of the state so that each column summed to one and each row completely allocated all earned income. The resulting parameters were then split into the twenty regions proportionately, except in a few instances where judgment about local conditions resulted in an adjustment.

TABLE 7. INTERREGIONAL RESIDENCE ADJUSTMENT MATRIX (IM.aa.bb)

Place of work

*Components may not sum to total due to rounding.
Institute of Social
and Economic Research
MAP Documentation
December 1984, Model A84.CD

E. Ratio of Population to Residence-Adjusted Employment (PM.aa)

The relationship between residence-adjusted employment and population is difficult to accurately specify because of the lack of information about residence-adjusted employment and the difference between population estimates, which are point in time, and employment estimates, which are annual averages. Table 8, from the 1980 census, illustrates the variation in possible ratios both across regions and within regions using different definitions of employment. In regions with more seasonal employment, the ratio can vary by 100 percent, depending upon whether the employment definition is "currently working" or "worked during the year." Since most employment information is monthly or annual average, the proper ratio using average annual resident employment and July i census population should lie somewhere between the two extremes shown in Table 8.
This parameter is calculated in Table 9 as the ratio of population to employment. We use the most recent population estimate of the Department of Labor. The population data is "backward" adjusted to a labor-market basis using PG.cc.aa to be consistent with employment data by labor markets. Employment by place of residence is estimated by running the interregional residence adjustment matrix, IM.aa.bb, applied to estimated 1983 employment by place of work.

Institute of Social and Economic Research
MAP Documentation
December 1984, Model A84.CD

TABLE 8. RELATIONSHIP BETWEEN EMPLOYMENT AND POPULATION

1980 Census Area	Employment			Population/Employment Ratios		=
	[1] Employed (16 Years +)	[2] Worked in 1919 (16 Years +)	[3] Population	[3/1] Population/ Employed	[3/2] Population/ Worked in 1979	=ata
						\%
Aleutian Islands	2,432	5,160	1,768	3.19	1.51	
Anchorage	17,754	103,628	174,431	2.24	1.68	(en
Bethel	3,013	4,767	10,999	3.65	2.31	
Bristol Bay	282	798	1,094	3.88	1.37	
Dillingham	1,308	2,201	4,616	3.53	2.09	
Fairbanks N.S. Bor.	20,811	31,093	53,983	2.59	1.74	
Haines	731	949	1,680	2.30	1.77	
Juneau	10,360	12,151	19,528	1.88	1.61	\cdots
Kenai Peninsula	9,622	13,318	25,282	2.63	1.90	
Ketchikan	5,410	6,366	11,316	2.09	1.78	
		.				\cdots
Kobuk	1,206	2,122	4,831	4.01	2.28	
Kodiak	4,365	6,059	9,939	2.28	1.64	
Matanuska/Susitna	6,471	8,536	17,816	2.75	2.09	
Nome	1,831	2,991	6,537	3.57	2.19	5
North Slope Borough	1,734	2,336	4,199	2.42	1.80	
Prince of wales/						m
Outer Ketchikan	1,616	2,061	3,822	2.37	1.85	
Sitka	3,626	4,571	1,803	2.15	1.70	
Skagway/Yakutat/						\cdots
Angoon	1,294	1,928	3,478	2.69	1.80	
Southeast Fairbanks	1,519	2,961	5,676	3.74	1.92	
Valdez/Cordova	3,701	4,710	8,348	2.26	1.17	\%
Wade Hampton	964	1,844	4,665	4.84	2.53	
Wrangel1/Petersburg	2,800	3,596	6,167	2.20	1.71	
Yukon/Koyukuk	2,018	4,170	7,873	3.90	1.89	\%

[^6]
TABLE 9. POPULATION-TO-RESIDENT EMPLOYMENT

RATIOS FOR 1982
(1970 MAP-Adjusted Census Divisions)

	1983		July l Census
	Estimated		Population per
	Residence-	July 1,	Average Annual
Region	Adjusted	1983,	Employed Resident
	Employmenta	Population	
		(PM.aa)	

01	Aleutian Islands	2.884	9.114	3.167
02	Anchorage	107.796	227.070	2.099
04	Barrow/North Slope	. 817	5.168	6.326
05	Bethel	3.637	10.764	2.948
06	Bristol Bay*	2.057	6.279	3.026
08	Cordova/McCarthy	. 893	2.722	3.055
09	Fairbanks	31.160	64.810	2.152
111	Southeast Alaska**	28.954	64.658	2.236
12	Kenai/Cook Inlet	11.668	31.052	2.660
24	Kobuk	1.912	5.759	2.999
: 15	Kodiak	5.610	12.896	2.334
16	Kuskokwim	. 578	2.936	4.976
17	Matanuska/Susitna	9.397	29.849	3.168
18	Nome	2.139	7.661	3.568
21	Seward	1.263	3.838	3.041
24	Southeast Fairbanks	1.596	6.192	3.974
25	Upper Yukon	.494	1.793	3.558
26	Valdez/Chitina/			
	Whittier	2.902	7.000	2.414
27	Wade Hampton	1.233	5.294	4.269
29	Yukon/Koyukuk	1.581	5.699	3.331

Total
510.554
abased on estimated 1983 employment by place of work and residence-adjustment matrix IM.aa.bb.
$b_{\text {Alaska }}$ Population Overview 1983 adjusted to 1970 MAP-adjusted census divisions using matrix PC.cc.aa.
*Includes Bristol Bay and Bristol Bay Borough Census Divisions.
**Includes the following census divisions: Angoon, Haines, Juneau, Ketchikan, Outer Ketchikan, Prince of Wales, Sitka, Skagway/ Yakutat, and Wrangell/Petersburg.

Institute of Social and Economic Research MAP Documentation
December 1984, Model A84.CD

F. Allocation of Population from 1970 Census
 Divisions to 1980 Census Areas (PC.cC.aa)

Population is allocated in the regionalization model both by 1970 census divisions (adjusted in 1975) and by 1980 census areas. Conversion factors from the 1970 base to the 1980 base are based upon the 1980 population, for which regional allocations are available based upon both the 1970 and 1980 census boundaries. These allocations are shown in the left portion of Table 10. The right side of Table 10 shows how the population by 1970 census divisions must be reassigned to determine regional population by 1980 census areas. The reassignment affects 12,228 people who are added to census areas and subtracted from census areas. This process includes both the aggregation of some census divisions and the redrawing of some boundaries.

Based upon Table 10, the allocations used in the model were developed and are presented in Table 11.

Institute of Social and Economic Research MAP Documentation December 1984, Mode1 A84.CD

TABLE 10. FACTORS FOR CONVERSION OF 1970 CENSUS DIVISIONS (UPDATED 1975) TO 1980 CENSUS AREAS

1980 Population

1970 Census Division			1980 Census Area		
(01)	Aleutian Islands	8,290	7,768	Aleutian Islands	[11]
(02)	Anchorage	174,431	174,431	Anchorage	[13]
(03)	Angoon	. 712	- 0		
(04)	Barrow North Slope	4,199	4,199	North Slope Borough	[01]
(05)	Bethel	9,698	10,999	Bethel	[08]
(06)	Bristol Bay Borough	1,094	1,094	Bristol Bay Borough	-10]
(07)	Bristol Bay	4,094	4,616	Dillingham	[09]
(08)	Cordova-McCarthy	2,330	- 0		
(09)	Fairbanks	53,983	53,983	Fairbanks Borough	[05]
(10)	Haines	1,815	1,680	Haines	-18]
(11)	Juneau	19,528	19,528	Juneau	[19]
(12)	Kenai-Cook Inlet	22,473	25,282	Kenai Peninsula	-14]
(13)	Ketchikan	11,316	11,316	Ketchikan	$23]$
(14)	Kobuk	4,831	4,831	Kobuk	$02]$
(15)	Kodiak	9,939	9,939	Kodiak Is land	[15]
(16)	Kuskokwim	2,644	0		
(17)	Matanuska-Susitna	17,816	17,816	Matanuska-Susitna	[12]
(18)	Nome	6,537	6,537	Nome	[03]
(19)	Outer Ketchikan	1,333	- 0		
(20)	Prince of Wales	2,489.	3,822	Pr/Wales-Outer Ketch.	[22]
$\binom{21}{22}$	Seward	2,809	0 7		
(22)	Sitka	7,889	7,803	Sitka	[20]
(23)	Skagway-Yakutat	2,631	3,478	Skagway-Yakutat-Angoon	[17]
(24)	Southeast Fairbanks	5,415	5,676	Southeast Fairbanks	[06]
(25)	Upper Yukon	1,516	0		
(26)	Valdez-Chitina-Whit.	5,976	8,348	Valdez-Cordova	[16]
(27)	Wade Hampton	4,665	4,665	Wade Hampton	
(28)	Wrangell-Petersburg	6,081	6,167	Wrange ll-Petersburg	[21]
(29)	Yukon-Koyukuk	5,218	7,873	Yukon-Koyukuk	[04]
	TOTAL	401,851	401,851		

Conversion Factors (1970 to 1980)

Add From			Subtract To		
	-		[09]	Dillingham	522
	-			-	
	-		[17]	Skagway-Yakutat-Angoon	712
(16)	Kuskokwim	1,301		-	
	-				
(01)	Aleutians	522		- ${ }^{-}$	
	-		[16]	Valdez-Cordova	2,330
	-		[17]	Skagway-Yakutat-Angoon	135
(21)	Seward -	2,809		-	
	-			-	
	-				
				Bethel	1,301
	-		[04]	Yukon-Koyukuk	1,343
	-			-	
	-		[22]	Prince of Wales	1,333
(19)	Outer Ketchikan	1,333			
	-		$\left[\begin{array}{l}14 \\ 21\end{array}\right]$	Kenai Peninsula Bor. Wrangell-Petersburg	$\begin{array}{r} 2,809 \\ 86 \end{array}$
(03)	Angoon	712	[21]	Wrangell-Petersturg	
(10)	Haines	135			
(25)	Upper Yukon	303		Valdez-Cordova	
			[06]	Southeast Fairbanks	303
	-		[04]	Yukon-Koyukuk	1,312
(08)	Cordova-McCarthy	2,330		Yukon-Koyukuk	
(24)	S.E. Fairbanks	42		-	
	Sitka -			-	
(22)	Sitka	86		-	
$\begin{aligned} & (16) \\ & (25) \end{aligned}$	Kuskokwim	1,343		-	
	Upper Yukon	1,312		-	
		12,228			12,228

TABLE 11. ALLOCATION OF 1970 CENSUS DIVISION POPULATION (aa) TO 1980 CENSUS AREA (cc) [PC.cc.aa]

Adjusted MAP
Census Division (aa) Variable Proportion 1980 Census Area (cc)

| 1 Aleutian Islands | PC.11.01 | PC.10.01 | Aleutian Islands |
| :--- | :--- | :--- | :--- | :--- |
| Bristol Bay | | | |

Institute of Social
and Economic Research
MAP Documentation
December 1984, Model A84, historical trends.

TABLE 12. CURRENT POPULATION DISTRIBUTION
(USING 1970 CENSUS DIVISIONS ADJUSTED IN 1975)

Region (Adjusted 1970 Census Divisions)		$\begin{gathered} 1980 \\ \text { By } 1970 \\ \text { Census Divisions } \end{gathered}$	1980^{2}	19823	$1983{ }^{4}$
	Aleutians	8,290	8,290	9,042	9,114
	Anchorage	174,431	174,431	200,503	227,070
4	Barrow/North Slope	3,320	4,199	4,849	5,168
5	Bethel	9,698	9,698	9,964	10,764
	Bristol Bay	5,188	5,188	5,451	6,279
	Cordova/McCarthy	2,330	2,330	2,647	2,722
9	Fairbanks	53,983	53,983	59,222	64,810
	Southeast Alaska	53,794	53,794	59,201	64,658
12	Kenai/Cook Inlet	22,473	22,473	28,912	31,052
14	Kobuk	5,295	4,831	5,090	5,759
15	Kodiak	9,939	9,939	12,714	12,896
16	Kuskokwim	2,644	2,644	2,709	2,936
17	Matanuska-Susitna	17,816	17,816	25,212	29,849
18	Nome	6,537	6,537	7,459	7,661
21	Seward	2,809	2,809	3,573	3,838
24	Southeast Fairbanks	5,415	5,415	5,755	6,192
25	Upper Yukon	2,030	1,516	1,653	1,793
26	Valdez/Chitina/Whittier	- 5,976	5,976	6,807	7,000
	Wade Hampton Yukon/Koyukuk	4,665	4,665	4,832	5,294
		5,218	5,218	5,242	5,699
		401,851	401,851		
July 1 State Total			419,700	460,837	510,554

${ }^{1}$ Alaska Planning Information, Jan. 1984, p. 8.
${ }^{2}$ This is based on the formation of the North Slope Borough in 1975. Barrow/North Slope and Kobuk figures are equal to 1980 census area values and Upper Yukon is calculated as a residual.
${ }^{3}$ Alaska Population Overview, 1982, adjusted using matrix PC.cc.aa.
${ }^{4}$ Alaska Population Overview, 1983, adjusted using matrix PC.cc.aa.

TABLE 13. REGIONAL EMPLOYMENT DISTRIBUTION (percentage of state)

	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	$\begin{aligned} & \text { 1983ネ } \\ & \text { (proj.) } \end{aligned}$
Anchorage (M.02)	44.1	45.5	46.3	46.3	45.8	43.9	43.3	46.8	47.3	46.8	46.7	47.0	48.1	46.5
Matanuska/ Susitna (M.17)	1.2	1.4	1.3	1.4	1.4	1.3	1.4	1.7	2.0	2.0	2.0	2.1	2.3	2.3
Anchorage and Mat/Su	45.3	46.8	47.7	47.8	47.2	45.2	44.7	48.5	49.3	48.8	48.8	49.1	50.4	48.9
Kenai/Cook Inlet (M.12)	3.5	3.3	3.3	3.4	3.4	3.2	3.5	4.1	3.8	3.9	4.0	4.1	4.1	4.3
Seward (M.21)	0.7	0.7	0.7	0.7	0.7	1.7	0.6	0.7	0.7	0.8	0.7	0.6	0.6	0.6
Kenai and Seward	4.2	4.0	3.9	4.0	4.0	3.9	4.1	4.8	4.5	4.7	4.7	4.7	4.7	4.9
Southcentral	49.4	50.8	51.6	51.8	51.2	49.1	48.8	53.3	53.8	53.5	53.4	53.8	55.1	53.8
Fairbanks (M.9)	17.5	16.7	15.9	14.9	15.7	17.7	16.4	15.6	14.1	13.7	13.3	13.3	13.2	13.4
Southeast Fairbanks (M.24)	0.7	0.6	0.6	0.6	0.5	1.4	1.7	0.8	0.9	1.0	1.0	0.9	0.9	0.9
Fairbanks and S.E. Fairbanks	18.3	17.3	16.6	15.6	16.2	19.1	18.1	16.5	15.0	14.8	14.3	14.3	14.1	14.3
Railbelt	67.7	68.1	68.2	67.4	67.4	68.2	66.9	69.8	68.8	68.2	67.7	68.0	69.2	68.1
Balance of State	32.3	31.9	31.8	32.6	32.6	31.8	33.1	30.2	31.2	31.8	32.3	32.0	30.8	31.9
State Total	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0

*Simulation UP85.16R

Institute of Social and Economic Research MAP Documentation

TABLE 14. REGIONAL POPULATION DISTRIBUTION (thousand)

Anchorage $\text { P. } 02$	MatanuskaSusitna P. 17	Kenai, Cook Inlet and Seward P. $12+\mathrm{P} .21$	Fairbanks $\text { P. } 09$	Southeast Fairbanks P. 24	Railbelt P.IR	State P.ST

Historical

$\begin{aligned} & 1960 \\ & \text { Number } \end{aligned}$	82.833	5. 188	9.053	41.089	2.323	140.486	226.167
\% of State	36.6	2.3	4	18.2	1	62.1	
1970							
Number	126.385	6.509	16.586	45.864	4.326	199.670	302.583
\% of State	41.8	2.2	5.5	15.2	1.4	66.0	

$\begin{aligned} & 1980 \\ & \text { Number } \end{aligned}$	173.017	17.766	25.282	53.983	5.770	275.818	400.481	
of State	43.2	4.4	6.3	13.5	1.4	68.9		m
1983 (projection)								
Number	225.747	29.7	34.799	66.904	6.328	363.478	510.484	m
\% of State	44.2	5.8	6.8	13.1	1.2	71.2		

[^7]PROJECTION DATA SOURCE: Simulation UP8516.R
Institute of Social and Economic Research MAP Documentation December 1984, Model A84.CD
Model calibration has concentrated upon the structure of the interregional support sector demand matrix (A.aa.bb). Preliminary model runs for 1983 indicated that recalibration was necessary since the prior calibration had been done in 1979. Two analyses were done to gauge the degree of structural change across regions. They involved a comparison among regions of the change in percentage of statewide support to statewide basic employment over two periods: 1965 to 1979 and 1979 to 1983. The results are shown as Figures 2 and 3 .
Figure 2 shows that between 1965 and 1979 the proportion of state total support sector growth in most regions was consistent with the proportion of state total basic sector growth (observations falling on the diagonal line). Four outliers show up. In two regions, the "multiplier" grew relative to the state. In Anchorage (02), the share of support employment increased while the share of basic fell. In Fairbanks (09), shares of both types of employment fell, but support by less. In two others, the multiplier fell relative to the state. Southeast (11) experienced an increase in basic and a decrease of support employment. Barrow/North Slope (04) experienced an increase in the share of basic and no change in the share of support.
Figure 3 shows that between 1979 and 1983 these trends have continued for Anchorage and Southeast. The "multiplier" for Eethel (05) has declined while for the Aleutians (01) it has grown.
To account for these trends, four elements of the interregional support sector demand matrix have been trended. The purpose is to reflect the shift in support activities from Southeast to Anchorage (A.02.11 and A.11.11) and to reflect a shift from Anchorage to Natanuska/Susitna (A.02.02 and A.17.02).

Institute of Social and Economic Research
MAP Documentation
December 1984, Model A84.CD

Figure 2.: Proportion of Support to Basic Employment by Region: Ratio of Change 1965-1979

$$
\begin{gathered}
\operatorname{men} \\
\\
\end{gathered}
$$

Note: Numbers correspond to 1970 Census Divisions.

Institute of Social and Economic Research
7. Programs for Model Use

A84RUNCD | This MACRO takes output from a simulation using the |
| :--- |
| state economic model and inputs provided by the |
| scenario generator on basic and government sector |
| employment by census division and runs the |
| regionalization model. |

A85PREG1 | This MACRO prints initial values for population and |
| :--- |
| employment for model calibration. |

A85PREG2 This MACRO prints summary output for Anchorage and

CDTAB7 \quad| This Mailbelt. |
| :--- |

CDTAB8 \quad This MACRO prints population for each region.

8. Model Listing

MODEL: A84.CD

EEVISION HISTORY: VERSION A83.CD IS PRECURSOR.
A84.CD REVISED 10/21 TO REMOVE UNNEEDED ZERO-VALUED ENTRIES IN A.AA.BB AND IM.AA.BB MATRICES. REVISED 10/31/84 TO ADD INTERMEDIATE OUTPUTS MR.NN AND AGGREGATE POPULATION FROM CENSUS LEVEL INTO LABOR MARKET REGIONS.

SYMBOL DECLARATIONS

ENDOGENOUS :

M .01	M .02	M .03	M .04	M .05	M .06	M .07	M .08	M .09	M .10
$\mathrm{M.11}$	M .12	M .13	M .14	M .15	M .16	M .17	M .18	M .19	M .20
M .21	M .22	M .23	M .24	M .25	M .26	M .27	M .28	M .29	P .01
P .02	P .03	P .04	P .05	P .06	P .07	P .08	P .09	P .10	P .11
P .12	P .13	P .14	P .15	P .16	P .17	P .18	P .19	P .20	P .21
P .22	P .23	P .24	P .25	P .26	P .27	P .28	P .29		

CONSTRUCT:

ADJ	ADJHH	B. AG	G B.AM	B. FG	B. IR	B. NIR	B. NR	B. RB	B. ST
B. 01	B. 02	B. 04	4 B. 05	B. 06	B. 08	B. 09	B. 11	B. 12	B. 14
B. 15	B. 16	B. 17	B. 18 B	B. 21 B.	. 24 B. 2	25 B. 2	26 B. 27	B. 29	9 BAG
BAM	BETA	BFG	BNR BRB	B BST	FRSTRY	Y G.AG	G. AM	G.FG	G. IR
G.NIR	G.NR	G. RB	RB G.ST	G. 01	G. 02	G. 04	G. 05	G. 06	G. 08
G. 09	G. 11	G. 12	2 G. 14	G. 15	G. 16	G. 17	G. 18	G. 21	G. 24
G. 25	G. 26	G. 27	7 G. 29	GAG	GAM GF	FFG GNR	R GRB	GST	M. AG
M. AM	M.FG	M.IR	M. NIR	M.NR	M. RB	M. ST	MR. IR	MR. ST	P.AG
P.AM	P.FG	P.IR	R P.NIR	P.NR	P.RB	P.ST	PCEN.		EN. 02
PCEN.		EN. 04	PCEN. 05	5 PCEN	N. 06 P	PCEN. 07	PCEN.		CEN. 09
PCEN. 1	10 PC	EN. 11	PCEN. 12	2 PCEN	N. 13 P	PCEN. 14	PCEN.		CEN. 16
PCEN. 1		EN. 18	PCEN. 19	9 PCEN	N. 20 P	PCEN. 21	PCEN.		CEN. 23
PRE.ST	T PRE	.01 P	PRE. 02 P	PRE. 03	PRE. 04	4 PRE. 0	05 PRE	2.06 P	PRE. 07
PRE. 08	8 PRE	. 09 P	PRE. 10 P	PRE. 11	PRE. 12	2 PRE. 1	13 PRE	. 14 P	PRE. 15
PRE. 16	6 PRE	.17 P	PRE. 18 P	PRE. 19	PRE. 20	0 PRE. 21	21 PRE	. 22 P	PRE. 23
PRE. 24	4 PRE	. 25	PRE. 26	PRE. 27	7 PRE	. 28 PR	RE. 29	S.AG	S. AM
S.FG	S.IR	S.NIR	S.NR S	S.RB S	. ST				

DEFINITION:

EXOGENOUS:

$\begin{array}{lllllllllllll}\mathrm{B} 01 & \mathrm{~B} 02 & \mathrm{~B} 04 & \mathrm{~B} 05 & \mathrm{~B} 06 & \mathrm{~B} 08 & \mathrm{~B} 09 & \mathrm{~B} 11 & \mathrm{~B} 12 & \mathrm{~B} 14 & \mathrm{~B} 15 & \mathrm{~B} 16 & \mathrm{~B} 17\end{array}$ B18 B21 B24 B25 B26 B27 B29 EMAFISH EMAGRI EMA9 EMCN EMCN1 EMGA EMGF EMMO EMM9 EMPRO EMPRO1 EMP9 EMTOUR EMT9X EM99 G01 G02 G04 G05 G06 G08 G09 $\begin{array}{lllllllll}\text { G11 } & \text { G12 } & \text { G14 }\end{array}$ G15 $\begin{array}{llllllllllll} & \text { G16 } & \text { G17 } & \text { G18 } & \text { G21 } & \text { G24 } & \text { G25 } & \text { G26 } & \text { G27 } & \text { G29 } & \text { HH } & \text { POP }\end{array}$

POLICY:

$$
\text { A.02.02 A.02.11 A. } 11.11 \text { A. } 17.02
$$

```
Institute of Social
and Economic Research
MAP Documentation
December 1984, Model A84.CD
```

F'ARAMETER:

A.01.01 A	A. 02.01	A.02.04 A	A. 02.06	A. 02.09		2. 12
A.02.14 A	A. 02.15	A.02.17 A.02	A. 02.21	24 A.02.26		22.29
A. 04.04 A	A. 05.05	A. 05.27 A. 06	A. 06.06	08 A. 09.09		9.16
A.09.25 A	A. 09.29	A.12.12 A. 12	A. 12.15	14 A. 15		6.16
A.17.17 A	18.14	A. 18.18	A. 21.21	A. 25.25		26
A. 27.27 A	A. 29.29	B. 03 B. 07	B. 10 B	3 B. 19	B. 20	B. 22
B. 23 B. 28	$8 \mathrm{B03}$	B07	B13	B20	B23	B28
EA.01.CN	EA.01.FR	R EA.01.GA		EA.01.TR		2 . CN
EA.02.FR	EA.02.GA	EA.02.PR	EA.02.TR	EA.04.CN		4.FR
EA.04.GA	EA. $04 . \mathrm{PR}$	R EA.04.TR	EA. $05 . \mathrm{CN}$	EA.05.FR		05.GA
EA.05.PR	EA.05.TR	- EA.06.CN	EA.06.FR	EA. $06 . \mathrm{GA}$		06.PR
EA.06.TR	EA.08.CN	- EA.08.FR	EA.08.GA	EA.08.PR		08.TR
EA.09.CN	EA.09.FR	R EA.09.GA	EA.09.PR	EA.09.TR		1. CN
EA.11.FR	EA.11.GA	A EA.11.PR	EA.11.TR	EA.12.CN		2.FR
EA.12.GA	EA.12.PR	R EA.12.TR	EA.14.CN	EA.14.FR		4. GA
EA.14.PR	EA.14.TR	E EA.15.CN	EA.15.FR	EA.15.GA		R
EA.15.TR	EA.16.CN	EA.16.FR	EA.16.GA	EA.16.PR		6.TR
EA.17.CN	EA.17.FR	R EA.17.GA	EA.17.PR	EA.17.TR		8. CN
EA.18.FR	EA.18.GA	A EA.18.PR	EA.18.TR	EA. $21 . \mathrm{CN}$		21.FR
EA.21.GA	EA.21.PR	R EA.21.TR	EA. $24 . \mathrm{CN}$	EA.24.FR		24.GA
EA. $24 . \mathrm{PR}$	EA. 24. TR	R EA.25.CN	EA.25.FR	EA.25.GA		25.PR
EA. 25. TR	EA. $26 . \mathrm{CN}$	N EA.26.FR	EA.26.GA	EA. $26 . \mathrm{PR}$		26.TR
EA. $27 . \mathrm{CN}$	EA.27.FR	R EA.27.GA	EA.27.PR	EA. 27. TR		29.CN

EA.29.FR EA.29.GA EA.29.PR EA.29.TR G.03 G.07 G.10 G.13
 G23 G28 HHSZ.01 HHSZ.02 HHSZ.03 HHSZ. 04 HHSZ.05 HHSZ. 06 HHSZ. 07 HHSZ. 08 HHSZ. 10 HHSZ. 11 HHSZ. 12 HHSZ. 13 HHSZ. 14 HHSZ.15 HHSZ.16 HHSZ.19 IM.01.01 IM.02.01 IM.02.02 IM.02.04 IM.02.05 IM.02.06 IM.02.08 IM.02.12 IM. 02.15
IM.02.16 IM.02.21 IM.04.04 IM.05.04 IM.05.05 IM.05.15
IM.06.06 IM.08.08 IM.09.04 IM.09.09 IM.09.24 IM.11.04
IM.11.11 IM.12.01 IM.12.04 IM.12.05 IM.12.06 IM. 12.12
IM.12.16 IM.14.04 IM.14.14 IM.15.01 IM.15.06 IM.15.15
$I M .15 .16$ IM.16.16 IM.17.01 IM.17.02 IM.17.04 IM.17.05
IM. 17.06
IM. 17.21
IM. 25.04
IM. 29.29
IM. 17.08
IM. 18. 04
IM.17.12
IM. 17.15
IM. 17.16
IM. 17.17
IM.18.18 IM.21.21 IM.24.04 IM.24.24
IM.25.25 IM.26.04 IM.26.26 IM.27.27 IM.29.04
PC.10.01 PC.11.01 PC.16.24 PGQ.01 PGQ.02 PGQ.03 PGQ.04
PGQ. 05 PGQ. 06 PGQ. 07 PGQ. 08 PGQ. 10 PGQ. 11 PGQ. 12 PGQ. 13 PGQ. 14 PGQ. 15 PGQ. 16 PGQ. 19 PM. 01 PM. 02 PM. 04 PM. 05 $\begin{array}{lllllllll} & \text { PM. } 06 & \text { PM. } 08 & \text { PM. } 09 & \text { PM. } 11 & \text { PM. } 12 & \text { PM. } 14 & \text { PM. } 15 & \text { PM. } 16\end{array}$ PM. 17 PM. 18 PM. 21 PM. 24 PM. 25 PM. 26 PM. 27 PM. 29

EQUATIONS

```
    1: BETA == (EM99-EMA9-EMM9-EMCN-EMP9-EMT9X-EMPRO-EMGA-EMGF-EMTOUR)/EM99
    2: FRSTRY == EMMO+EMA9-EMAFISH-EMAGRI
    3: B.01 == B01+EMCN1*EA.01.CN+FRSTRY*EA.01.FR+EMPRO1*EA.01.PR+EMTOUR*
        EA.01.TR
    4: B.02 == B02+EMCN1*EA.02.CN+FRSTRY*EA.02.FR+EMPRO1*EA.02.PR+EMTOUR*
        EA.02.TR
    5: B.04 == B04+EMCN1*EA.04.CN+FRSTRY*EA.04.FR+EMPRO1*EA.04.PR+EMTOUR*
    EA.04.TR
    6: B.05== B05+EMCN1*EA.05.CN+FRSTRY*EA.05.FR+EMPRO1*EA.05.PR+EMTOUR*
    EA.05.TR
    7: B.06 == B06+EMCN1*EA.06.CN+FRSTRY*EA.06.FR+EMPRO1*EA.06.PR+EMTOUR*
    EA.06.TR
    8: B.08== B08+EMCN1*EA.08.CN+FRSTRY^EA.08.FR+EMPRO1*EA.08.PR+EMTOUR*
    EA.08.TR
    9: B.09 == B09+EMCN1*EA.09.CN+FRSTRY*EA.09.FR+EMPRO1*EA.09.PR+EMTOUR*
        EA.09.TR
10: B. 11 == B11+EMCN1*EA.11.CN+FRSTRY*EA.11.FR+EMPRO1*EA.11.PR+EMTOUR*
    EA.11.TR
11: B. \(12=\) B12+EMGN1*EA.12.GN+FRSTRY*EA.12.FR+EMPRO1*EA.12.PR+EMTOUR* EA. 12.TR
12: B. \(14==\) B14+EMCN1*EA. 14.CN+FRSTRY*EA. 14.FR+EMPRO1*EA.14.PR+EMTOUR* EA. 14.TR
13: B. \(15==\) B15+EMCN1*EA.15.CN+FRSTRY*EA.15.FR+EMPRO1*EA.15.PR+EMTOUR* EA. 15.TR
14: B. \(16==\) B16+EMCN1*EA. 16.CN+FRSTRY*EA. 16.FR+EMPRO1*EA.16.PR+EMTOUR* EA.16.TR
15: B. \(17==\) B17+EMCN1*EA.17.CN+FRSTRY*EA.17.FR+EMPRO1*EA.17.PR+EMTOUR* EA.17.TR
16: B. \(18==\) B18+EMCN1*EA.18.CN+FRSTRY*EA.18.FR+EMPRO1*EA.18.PR+EMTOUR* EA.18.TR
17: B. \(21==\) B21+EMCN1*EA.21.CN+FRSTRY*EA.21.FR+EMPRO1*EA.21.PR+EMTOUR* EA. 21 .TR
18: B. \(24=\) B24+EMCN1*EA. \(24 . C N+F R S T R Y * E A .24 . F R+E M P R O 1 * E A .24 . P R+E M T O U R *\) EA. 24. TR
```


Institute of Social and Economic Research MAP Documentation December 1984, Model A84. CD

43: \quad M. $01=$ A. $01.01 \star$ M. $01 *$ BETA + B. $01+$ G. 01
44: M. $02=(\mathrm{A} .02 .01 * \mathrm{M} .01+\mathrm{A} .02 .02 * \mathrm{M} .02+\mathrm{A} .02 .04 * \mathrm{M} .04+\mathrm{A} .02 .06 * \mathrm{M} .06+$ A. $02.08 *$ M. $08+$ A. $02.09 *$ M. $09+$ A. $02.11 *$ M. $11+$ A. $02.12 *$ M. $12+$ A. $02.14 *$ M. 14+A. $02.15 \star$ M. $15+\mathrm{A} .02 .17 \star \mathrm{M} .17+\mathrm{A} .02 .21$ *M. $21+\mathrm{A} .02 .24$ * $\mathrm{M} .24+$ A. $02.26 \star$ M. $26+$ A. $02.29 \star$ M. 29) *BETA + B. $02+$ G. 02

45: M. $03=0$.
46: M. $04=\mathrm{A} .04 .04 * \mathrm{M} .04 * \mathrm{BETA}+\mathrm{B} .04+\mathrm{G} .04$

47: M. $05=(\mathrm{A} .05 .05 \star \mathrm{M} .05+\mathrm{A} .05 .27 \star \mathrm{M} .27) *$ BETA+B.05+G.05
48: M. $06=\mathrm{A} .06 .06 \star \mathrm{M} .06 \star$ BETA+B. $06+\mathrm{G} .06$

49: M. $07=0$.
50: M. $08=\mathrm{A} .08 .08 *$ M. 08*BETA+B.08+G. 08
51: M. $09=(A .09 .09 * M .09+A .09 .16 * M .16+A .09 .25 * M .25+A .09 .29 * M .29) * B E T A+$ B. 09+G. 09

52: M. $10=0$.
53: M.11 = A.11.11*M.11*BETA+B.11+G.11
54: M. $12=(\mathrm{A} .12 .12 \star \mathrm{M} .12+\mathrm{A} .12 .15 \star \mathrm{M} .15) *$ BETA+B.12+G. 12
55:-M.13 = 0.
56: M.14 = A. 14.14*M.14*BETA+B.14+G.14

57: M. $15=$ A. 15.15*M.15*BETA+B.15+G. 15
58: M. $16=$ A. $16.16 *$ M. $16 *$ BETA + B. $16+G .16$
59: $\mathrm{M} .17=(\mathrm{A} .17 .17 * \mathrm{M} .17+\mathrm{A} .17 .02 * \mathrm{M} .02) *$ BETA+B.17+G.17
60: M. $18=\left(\mathrm{A} .18 .14^{\star} \mathrm{M} .14+\mathrm{A} .18 .18 \star \mathrm{M} .18\right) \star$ BETA $+\mathrm{B} .18+\mathrm{G} .18$
61: M. $19=0$.
62: M. $20=0$.
63: M. $21=$ A. $21.21 \star$ M. $21 *$ BETA+B. $21+G .21$
64: M. $22=0$.
65: M. $23=0$.
66: M. $24=$ A. $24.24 *$ M. $24 *$ BETA + B. $24+$ G. 24
\cdots

```
67: M. 25 = A.25.25*M.25*BETA+B.25+G.25
```

67: M. 25 = A.25.25*M.25*BETA+B.25+G.25
68: M. 26 = A.26.26*M. 26*BETA+B.26+G.26
68: M. 26 = A.26.26*M. 26*BETA+B.26+G.26
69: M.27 = A.27.27*M.27*BETA+B.27+G.27
69: M.27 = A.27.27*M.27*BETA+B.27+G.27
70: M.28=0.
70: M.28=0.
71: M.29 = A.29.29*M.29*BETA+B.29+G.29
71: M.29 = A.29.29*M.29*BETA+B.29+G.29
72: S.01 == M.01-B.01-G.01
72: S.01 == M.01-B.01-G.01
73: S.02 == M.02-B.02-G.02
73: S.02 == M.02-B.02-G.02
74: S.03 == M.03-B.03-G.03
74: S.03 == M.03-B.03-G.03
75: S.04 == M.04-B.04-G.04
75: S.04 == M.04-B.04-G.04
76: S.05 == M.05-B.05-G.05
76: S.05 == M.05-B.05-G.05
77: S.06 == M.06-B.06-G.06
77: S.06 == M.06-B.06-G.06
78: S.07 == M.07-B.07-G.07
78: S.07 == M.07-B.07-G.07
79: S.08== M.08-B.08-G.08
79: S.08== M.08-B.08-G.08
\&0: S.09 == M.09-B.09-G.09
\&0: S.09 == M.09-B.09-G.09
81: S.10== M.10-B.10-G.10
81: S.10== M.10-B.10-G.10
82: S.11 == M.11-B.11-G.11
82: S.11 == M.11-B.11-G.11
83: S.12== M.12-B.12-G.12
83: S.12== M.12-B.12-G.12
84: S.13 == M.13-B.13-G.13
84: S.13 == M.13-B.13-G.13
85: S.14 == M.14-B.14-G.14
85: S.14 == M.14-B.14-G.14
86: S.15 == M.15-B.15-G.15
86: S.15 == M.15-B.15-G.15
87: S.16 == M.16-B.16-G.16
87: S.16 == M.16-B.16-G.16
88: S.17 == M.17-B.17-G.17
88: S.17 == M.17-B.17-G.17
B9: S.18== M.18-B.18-G.18
B9: S.18== M.18-B.18-G.18
90: S.19== M.19-B.19-G.19
90: S.19== M.19-B.19-G.19
91: S.20 == M.20-B.20-G.20
91: S.20 == M.20-B.20-G.20
92: S.21 == M.21-B.21-G.21

```
92: S.21 == M.21-B.21-G.21
```

Institute of Social and Economic Research MAP Documentation December 1984, Model A84.CD

```
93: S.22 == M.22-B.22-G.22
94:S.23 == M.23-B.23-G.23
95: S.24== M.24-B.24-G.24
96:S.25== M.25-B.25-G.25
97:S.26 == M.26-B.26-G.26
98: S.27 == M.27-B.27-G.27
99: S.28== M.28-B.28-G.28
100: S.29 == M.29-B.29-G.29
101: S.ST == S.01+S.02+S.03+S.04+S.05+S.06+S.07+S.08+S.09+S.10+S.11+
    S.12+S.13+S.14+S.15+S.16+S. 17+S. 18+S. 19+S. 20+S. 21+S.22+
    S.23+S.24+S.25+S.26+S.27+S.28+S. 29
102: B.ST == B.01+B.02+B.03+B.04+B.05+B.06+B.07+B.08+B.09+B.10+B.11+
    B.12+B.13+B.14+B.15+B.16+B.17+B.18+B.19+B.20+B.21+B.22+
    B.23+B.24+B.25+B.26+B.27+B.28+B.29
103: G.ST == G.01+G.02+G.03+G.04+G.05+G.06+G.07+G.08+G.09+G.10+G.11+
                        G.12+G.13+G.14+G.15+G.16+G.17+G.18+G.19+G. 20+G.21+G.22+
                        G.23+G.24+G.25+G.26+G.27+G.28+G.29
104: M.ST == M.01+M.02+M.03+M.04+M.05+M.06+M.07+M.08+M.09+M.10+M.11+
    M.12+M.13+M.14+M.15+M.16+M.17+M.18+M.19+M.20+M.21+M.22+
    M.23+M.24+M.25+M.26+M.27+M.28+M.29
105: B.RB == B.02+B.09+B.12+B.17+B.21+B.24+B.26
106: G.RB == G.02+G.09+G.12+G.17+G.21+G.24+G.26
107: S.RB == S.02+S.09+S.12+S.17+S.21+S.24+S.26
108: M.RB == M.02+M.09+M.12+M.17+M.21+M.24+M.26
109: B.NR == B.ST-B.RB
110: G.NR == G.ST-G.RB
111: S.NR == S.ST-S.RB
112: M.NR == M.ST-M.RB
113: B.AM == B.02+B.17
114: G.AM == G.02+G.17
```

```
115: S.AM == S.02+S.17
L16: M.AM == M.02+M.17
L17: BAM == B02+B17
118: GAM == G02+G17
L19: BST == B01+B02+B03+B04+B05+B06+B07+B08+B09+B10+B11+B12+B13+B14+B15
                                    +B16+B17+B18+B19+B20+B21+B22+B23+B24+B25+B26+B27+B28+B29
L20: GST == G01+G02+G03+G04+G05+G06+G07+G08+G09+G10+G11+G12+G13+G14+G15
        +G16+G17+G18+G19+G20+G21+G22+G23+G24+G25+G26+G27+G28+G29
L21: BRB == B02+B09+B12+B17+B21+B24+B26
L22: BNR == BST-BRB
L23: GRB == G02+G09+G12+G17+G21+G24+G26
.L24: GNR == GST-GRB
L25: G.AG == G.AM+G.21+G.12
L26: B.AG == B.AM+B.21+B. 12
L27: S.AG == S.AM+S.21+S.12
L28: M.AG == M.AM+M.21+M.12
L29: G.FG == G.09+G.24
130: B.FG == B.09+B.24
L31: S.FG == S.09+S.24
L32: M.FG == M.09+M.24
133: GAG == GAM+G21+G12
134: BAG == BAM+B21+B12
L35: GFG == G09+G24
I36: BFG == B09+B24
L37: MR.01 == M.01*IM.01.01
L38: MR. \(02==\) M. \(01 *\) IM. \(02.01+\) M. \(02 *\) IM. \(02.02+M .04 * I M .02 .04+M .05 * I M .02 .05+\) M. \(06^{*}\) IM. \(02.06+\) M. \(08^{*}\) IM. \(02.08+\) M. \(12 *\) IM. \(02.12+\) M. \(15 * I M .02 .15+\) M. 16*IM.02.16+M.21*IM.02.21
```


Institute of Social and Economic Research MAP Documentation December 1984, Model A84.CD

139: MR. $03==0$.

140: MR. $04==$ M. $04 *$ IM. 04.04

141: MR. $05==$ M. $04 *$ IM. $05.04+$ M.05*IM.05.05+M.15*IM.05.15

142: MR. $06==$ M. $06 *$ IM. 06.06

143: MR. $07==0$.
144: MR. $08==$ M. $08 *$ IM. 08.08
145: MR. $09==$ M. $04 *$ IM. $09.04+M .09 * I M .09 .09+M .24 * I M .09 .24$
146: MR. $10=0$.
147: MR. $11==$ M. $04 *$ IM. $11.04+$ M.11*IM.11. 11

148: MR. $12==$ M. $01 *$ IM. $12.01+$ M. $04 * I M .12 .04+M .05 * I M .12 .05+M .06 * I M .12 .06+$ M.12*IM.12.12+M.16*IM.12.16

149: MR. $13=0$.
150: MR. $14==$ M.04*IM.14.04+M.14*IM.14.14

151: MR. $15==M .01 * I M .15 .01+M .06 * I M .15 .06+M .15 * I M \cdot 15.15+M .16 * I M .15 .16$
152: MR. $16==$ M. 16*IM. 16.16

153: MR. $17==$ M.01*IM.17.01+M.02*IM.17.02+M.04*IM.17.04+M.05*IM.17.05+ M.06*IM.17.06+M.08*IM.17.08+M.12*IM.17.12+M.15*IM.17.15+ M.16*IM.17.16+M.17*IM.17.17+M.21*IM.17.21

154: MR. $18==$ M. $04 *$ IM.18.04+M.18*IM.18.18

155: MR. $19==0$.

156: MR. $20==0$.

157: MR. $21==$ M. $21 *$ IM. 21.21
158: MR. $22==0$.
159: MR. $23==0$.
160: MR. $24==$ M.04*IM. $24.04+$ M. $24 *$ IM. 24.24

161: MR. $25==$ M. 04 *IM. $25.04+$ M. $25 \star$ IM. 25.25

162: MR. $26==$ M. 04 *IM. $26.04+$ M. $26 \star$ IM. 26.26
163: MR. $27==$ M.27*IM. 27.27

Institute of Social and Economic Research MAP Documentation December 1984, Model A84.CD

```
189: PRE. 23 == 0.
```

190: PRE. $24==$ PM. $24 *$ MR. 24
191: PRE. $25==$ PM. 25*MR. 25
192: PRE. $26==$ PM. $26 * M R .26$
193: PRE. $27==$ PM. $27 * M R .27$
194: PRE. $28=0$.
195: PRE. 29 := PM. 29*MR. 29
196: PRE.ST == PRE.01+PRE.02+PRE.03+PRE.04+PRE.05+PRE.06+PRE.07+PRE.08+
PRE. 09+PRE. 10+PRE.11+PRE.12+PRE.13+PRE.14+PRE.15+PRE.16+
PRE.17+PRE. 18+PRE. 19+PRE.20+PRE. 21+PRE. 22+PRE. 23+PRE.24+
PRE.25+PRE.26+PRE.27+PRE.28+PRE. 29
197: ADJ $==$ POP/PRE.ST
198: P. 29 == PRE.29*ADJ
199: P. $28==$ PRE. 28*ADJ
200: P. $27==$ PRE. $27 *$ ADJ
201: P. $26==$ PRE. 26*ADJ
202: P. $25==$ PRE. $25 *$ ADJ
203: P. $24==$ PRE. $24 *$ ADJ
204: P. $23==$ PRE. $23 * A D J$
205: P. $22==$ PRE. 22*ADJ
206: P. $21==$ PRE. $21 * A D J$
207: P. $20==$ PRE. 20 *ADJ
208: P. $19==$ PRE. 19*ADJ
209: P. $18==$ PRE.18*ADJ
210: P. $17==$ PRE. $17 * A D J$
211: P. $16==$ PRE. $16 * \mathrm{ADJ}$
212: P. $15==$ PRE. 15*ADJ
213: P. $14==$ PRE. $14{ }^{\star}$ ADJ

```
214: P.13 == PRE.13*ADJ
215: P.12 == PRE.12*ADJ
216: P.11 == PRE.11*ADJ
217: P.10== PRE.10*ADJ
218: P.09 == PRE.09*ADJ
219: P.08== PRE.08*ADJ
220: P.07 == PRE.07*ADJ
2.21: P. 06 == PRE. 06*ADJ
222: P.05== PRE.05*ADJ
223: P.04 == PRE.04*ADJ
224: P.03== PRE.03*ADJ
225: P. 02 == PRE.02*ADJ
226: P.O1 == PRE.01*ADJ
227: P.ST == P.01+P.02+P.03+P.04+P.05+P.06+P.07+P.08+P.09+P.10+P.11+
                        P.12+P.13+P.14+P.15+P.16+P.17+P.18+P.19+P.20+P.21+P.22+
                                    P.23+P.24+P.25+P.26+P.27+P.28+P.29
228: P.RB== P.02+P.09+P.12+P.17+P.21+P.24+P.26
229: P.NR == P.ST-P.RB
230: P.AM == P.02+P.17
231: P.AG == P.AM+P.21+P.12
232: P.FG == P.09+P.24
233: PCEN.01 == P.04
234: PCEN.02 == P.14
235: PCEN.03 == P.18
236: PCEN.04== P.29+P.16*PC.04.16+P.25*PC.04.25
237: PCEN.05 == P.09
238: PCEN.06 == P.24*PC.06.24+P.25*PC.06.25
```

```
239: PCEN.07 == P. 27
240: PCEN.08== P.05+P.16*PC.08.16
241: PCEN.09 == P.07
242: PCEN.10 == P.06+P.01*PC.10.01
243: PCEN.11 == P.01*PC.11.01
244: PCEN.12 == P.17
245: PCEN. 13 == P. 02
246: PCEN. 14 == P.12+P.21
247: PCEN. 15 == P.15
248: PCEN.16== P. 24*PC.16.24+P.08+P.26
249: PCEN.17 == P.23+P.03
250: PCEN.18 == P. 10
251: PCEN.19 == P.11
252: PCEN. 20 == P. 22
253: PCEN. 21 == P. 28
254: PCEN. 22== P.20+P.19
255: PCEN. 23 == P.13
256: HPRE.01 == (PCEN.01-PGQ.01)/HHSZ.01
257: HPRE.02 == (PCEN.02-PGQ.02)/HHSZ.02
258: HPRE.03 == (PCEN.03-PGQ.03)/HHSZ.03
259: HPRE.04 == (PCEN.04-PGQ.04)/HHSZ.04
260: HPRE.05== (PCEN.05-PGQ.05)/HHSZ.05
261: HPRE.06 == (PCEN.06-PGQ.06)/HHSZ.06
262: HPRE.07 == (PCEN.07-PGQ.07)/HHSZ.07
263: HPRE.08 == (PCEN.08-PGQ.08)/HHSZ.08
264: HPRE.09 == 0
```

```
2.65: HPRE.10 == (PCEN.10-PGQ. 10)/HHSZ. }1
2.66: HPRE.11 == (PCEN.11-PGQ.11)/HHSZ.11
267: HPRE.12 == (PCEN.12-PGQ. 12)/HHSZ.12
2:68: HPRE.13 == (PCEN.13-PGQ.13)/HHSZ.13
269: HPRE.14 == (PGEN.14-PGQ.14)/HHSZ.14
270: HPRE.15 == (PGEN.15-PGQ.15)/HHSZ.15
271: HPRE.16 == (PCEN.16-PGQ.16)/HHSZ.16
272: HPRE.17 == 0
2.73: HPRE.18==0
274: HPRE.19==(PCEN.19-PGQ.19)/HHSZ.19
275: HPRE.20== 0
276: HPRE.21 == 0
2.77: HPRE.22== 0
278: HPRE.23== 0
279: HPRE.ST == HPRE.01+HPRE.02+HPRE.03+HPRE.04+HPRE.05+HPRE.06+HPRE.07
                        +HPRE.08+HPRE.09+HPRE.10+HPRE.11+HPRE.12+HPRE.13+HPRE.14+
    HPRE.15+HPRE.16+HPRE.17+HPRE.18+HPRE.19+HPRE. 20+HPRE. 21+
    HPRE. 22+HPRE. }2
```

280: ADJHH $==$ HH/HPRE.ST
281: HHCEN. $01==$ HPRE. $01 *$ ADJHH
282: HHCEN. $02=$ HPRE. $02{ }^{*}$ ADJHH
283: HHCEN. $03==$ HPRE. $03 *$ ADJHH
284: HHCEN. $04==$ HPRE. $04 *$ ADJHH
285: HHCEN. $05==$ HPRE. $05 *$ ADJHH
286: HHCEN. $06=$ HPRE. $06 *$ ADJHH
287: HHCEN. $07=$ HPRE. O7*ADJHH
288: HHCEN. $08==$ HPRE. $08{ }^{*} \mathrm{ADJHH}$
289: HHCEN. $09=$ HPRE. 09*ADJHH

290: HHCEN. $10=$ HPRE. $10 \star$ ADJHH
291: HHCEN. 11 == HPRE. 11 *ADJHH
292: HHCEN. $12=$ HPRE. 12 *ADJHH
293: HHCEN. 13 = $=$ HPRE. 13*ADJHH
294: HHCEN. 14 == HPRE.14*ADJHH
295: HHCEN. $15=$ HPRE. $15 *$ ADJHH
296: HHCEN. $16==$ HPRE. $16 \star$ ADJHH
297: HHCEN. $17==$ HPRE. $17 *$ ADJHH
298: HHCEN. $18==$ HPRE. $18 *$ ADJHH
299: HHCEN. $19==$ HPRE. $19 *$ ADJHH
300: HHCEN. $20==$ HPRE. $20 *$ ADJHH
301: HHCEN. $21==$ HPRE. $21 *$ ADJHH
302: HHCEN. $22==$ HPRE. $22 \star$ ADJHH
303: HHCEN. $23==$ HPRE. 23 *ADJHH
304: HHCEN.ST = HHCEN.01+HHCEN.02+HHCEN.03+HHCEN.04+HHCEN.05+HHCEN.06+ HHCEN. 07+HHCEN. 08+HHCEN. 09+HHCEN. 10+HHCEN. 11+HHCEN. 12+ HHCEN. 13+HHCEN. 14+HHCEN. 15+HHCEN. 16+HHCEN. 17+HHCEN. 18+ HHCEN. 19+HHCEN. 20+HHCEN. 21+HHCEN. 22+HHCEN. 23

305: B. TR $=$ B. RB-B. 26
306: G.IR == G.RB-G. 26
307: S.IR $==$ S.RB-S. 26
308: M.IR $==$ M.RB-M. 26
309: MR.IR $==$ MR.02+MR.09+MR.12+MR.17+MR.21+MR. 24
310: P.IR == P.RB-P. 26
311: B.NIR $==$ B.ST-B.IR
312: G.NIR $==$ G.ST-G.IR
313: S.NIR $==$ S.ST-S.IR
314: M.NIR == M.ST-M.IR

```
315: P.NIR == P.ST-P.IR
316: HH.AM == HHCEN.12+HHCEN.13
317: HH.AG == HH.AM+HHCEN. 14
318: HH.FG == HHCEN.05+HHCEN.06*(P.24/PCEN.06)
319: HH.IR == HH.AG+HH.FG
320: PL.ANCMS == PCEN.12+PCEN.13
321: PL.SEAST == PCEN.19
322: PL.INTER == PCEN.05+PCEN.06+0.75*PCEN.04
323: PL.NORTH == PCEN.01+PCEN.02+PCEN.03
324: PL.GULF == PCEN.14+PCEN.15+PCEN.16
325: PL.SWEST == PCEN.07+PCEN.08+PCEN.10+PCEN.11+0.25*PCEN.04
326: GR.M.O1 == (M.01/M.O1(-1)-1)*100
327: GR.M.O2 == (M.02/M.O2(-1)-1)*100
328: GR.M.04 == (M.04/M.04(-1)-1)*100
329: GR.M.05 == (M.05/M.05(-1)-1)*100
330: GR.M.06 == (M.06/M.06(-1)-1)*100
331: GR.M.O8 == (M.08/M.08(-1)-1)*100
332: GR.M.09==(M.09/M.09(-1)-1)*100
333: GR.M.11 == (M.11/M.11(-1)-1)*100
334: GR.M.12 == (M.12/M.12(-1)-1)*100
335: GR.M.14==(M.14/M.14(-1)-1)*100
336: GR.M.15==(M.15/M.15(-1)-1)*100
337: GR.M.16 == (M.16/M.16(-1)-1)*100
338: GR.M.17 == (M.17/M.17(-1)-1)*100
339: GR.M.18 == (M.18/M.18(-1)-1)*100
340: GR.M.21 == (M.21/M.21(-1)-1)*100
```

341: GR.M. $24==($ M. 24/M.24(-1)-1)*100
342: GR.M. $25==($ M. $25 /$ M. $25(-1)-1) * 100$
343: GR.M. $26==($ M. $26 /$ M. $26(-1)-1) * 100$
344: GR.M. $27==($ M. $27 / \mathrm{M} .27(-1)-1) * 100$
345: GR.M. $29==($ M. 29/M.29(-1)-1)*100
346: GR.P. $01==($ P.01/P.01(-1)-1)*100
347: GR.P. $02==($ P.02/P.02(-1)-1)*100
348: GR.P. $04==($ P. 04/P.04(-1)-1)*100
349: GR.P. $05==($ P.05/P.05(-1)-1)*100
350: GR.P. $06==($ P. $06 /$ P. $06(-1)-1) * 100$
351: GR.P. $08==($ P.08/P.08(-1)-1)*100
352: GR.P. $09==($ P.09/P.09(-1)-1)*100
353: GR.P. $11==($ P.11/P.11(-1)-1)*100
354: GR.P. $12==($ P. 12/P. $12(-1)-1) * 100$
355: GR.P.14 $==($ P.14/P.14(-1)-1)*100
356: GR.P. $15==($ P. 15/P.15(-1)-1)*100
357: GR.P. $16==($ P. 16/P.16(-1)-1)*100
358: GR.P.17 == (P.17/P.17(-1)-1)*100
359: GR.P. $18==(P \cdot 18 / P \cdot 18(-1)-1) * 100$
360: GR.P. $21==(P .21 /$ P. $21(-1)-1) * 100$
361: GR.P. $24==($ P. 24/P.24(-1)-1)*100
362: GR.P. $25==(P .25 /$ P. 25(-1)-1)*100
363: GR.P. $26==($ P. 26/P. $26(-1)-1) * 100$
364: GR.P.27 == (P.27/P.27(-1)-1)*100
365: GR.P. $29==($ P. 29/P.29(-1)-1)*100

Institute of Social and Economic Research MAP Documentation December 1984, Model A84.CD

9. Model Parameters

MODEL: A84.CD
COMMENT: THIS FILE CONTAINS THE PARAMETERS FOR VERSION A84.CD OF THE MAP REGIONALIZATION MODEL, VERSION A84.CD WAS 'CLEANED' OF UNNECESSARY ZERO-VALUED PARAMETERS AND THE CLEANED VERSION COMPLETED ON OCTOBER 21 1984. THE DELETIONS WERE ALL FROM THE A.NN.XX AND IM.NN.XX PARAMETER MATRICES.

A.01.01	0.25	A.02.01	0.75	A.02.02	0.965
A.02.04	0.6	A.02.06	0.44	A.02.08	0.2
A.02.09	0.05	A.02.11	0.33	A.02.12	0.05
A.02.14	0.	A.02.15	0.4	A.02.17	0.2
A.02.21	0.28	A.02.24	0.7	A.02.26	0.6
A.02.29	0.15	A.04.04	0.4	A.05.05	1.
A.05.27	0.49	A.06.06	0.56	A.08.08	0.8
A.09.09	0.95	A.09.16	0.2	A.09.25	0.8
A.09.29	0.15	A.11.11	0.67	A.12.12	0.95
A.12.15	0.1	A.14.14	0.8	A.15.15	0.5
A.16.16	0.8	A.17.02	0.035	A.17.17	0.8
A.18.14	0.2	A.18.18	1.	A.21.21	0.72
A.24.24	0.3	A.25.25	0.2	A.26.26	0.4
A.27.27	0.51	A.29.29	0.7	B.03	0.
B.07	0.	B.10	0.	B.13	0.
B.19	0.	B.20	B.28	0.	B.22
B.23	0.	B07	B19	0.	0.
B03	0.	B23	0.	B10	0.
B13	0.	EA.01.FR	0.	B20	0.
B22	0.	EA.01.TR	0.	E28	0.
EA.01.CN	0.0098	EA.02.GA	0.3386	EA.02.CN	0.5733
EA.01.PR	0.0212	0.4547	EA.04.CN	0.0325	EA.04.FR

Institute of Social and Economic Research MAP Documentation
December 1984, Model A84.CD

EA.15.TR	0.039	EA.16.CN	0.
EA.16.GA	0.0083	EA.16.PR	0.0008
EA.17.CN	0.0184	EA.17.FR	0.0162
EA.17.PR	0.0221	EA.17.TR	0.0145
EA.18.FR	0.0174	EA.18.GA	0.0208
EA.18.TR	0.0013	EA.21.CN	0.0047
EA.21.GA	0.0084	EA.21.PR	0.0118
EA.24.GN	0.0024	EA.24.FR	0.
EA.24.PR	0.0055	EA.24.TR	0.
EA.25.FR	0.	EA.25.GA	0.0065
EA.25.TR	0.	EA.26.CN	0.0086
EA.26.GA	0.0229	EA.26.PR	0.0077
EA.27.GN	0.0008	EA.27.FR	0.
EA.27.PR	0.0009	EA.27.TR	0.
EA.29.FR	0.0133	EA.29.GA	0.0147
EA.29.TR	0.	G.03	0.
G.10	0.	G.13	0.
G.20	0.	G.22	0.
G.28	0.	GO3	0.
G10	0.	G13	0.
G20	0.	G22	0.
G28	0.	HHSZ.01	3.91
HHSZ.03	3.7	HHSZ.04	3.18
HHSZ.06	3.16	HHSZ.07	4.87
HHSZ.09	0.	HHSZ.10	3.68
HHSZ.12	3.06	HHSZ.13	2.8
HHSZ.15	3.06	HHSZ.16	2.84
HHSZ.18	0.	HHSZ.19	2.89
HHSZ.21	0.	HHSZ.22	0.
IM.01.01	0.412	IM.02.01	0.09
IM.02.04	0.376	IM.02.05	0.09
IM.02.08	0.02	IM.02.12	0.02
IM.02.16	0.09	IM.02.21	0.02
IM.05.04	0.002	IM.05.05	0.861
IM.06.06	0.5	IM.08.08	0.545
IM.09.09	0.863	IM.09.24	0.05
IM.11.11	0.84	IM.12.01	0.02
IM.12.05	0.02	IM.12.06	0.02
IM.12.16	0.02	IM.14.04	0.005
IM.15.01	0.02	IM.15.06	0.02
IM.15.16	0.02	IM.16.16	0.778
IM.17.02	0.02	IM.17.04	0.06
IM.17.06	0.02	IM.17.08	0.01
IM.17.15	0.01	IM.17.16	0.02
IM.17.21	0.01	IM.18.04	0.001
IM.21.21	0.8	IM.24.04	0.006
IM.25.04	0.005	IM.25.25	1.
IM.26.26	1.	IM.27.27	1.
PC.06.29	0.611	PC.04.16	0.51
0.99	PC.06.25	0.13	
0.06	PC.11.01	0.94	

EA.16.FR	0.	
EA.16.TR	0.	
EA.17.GA	0.0301	
EA.18.CN	0.0041	
EA.18.PR	0.007	
EA.21.FR	0.	
EA.21.TR	0.0044	*
EA.24.GA	0.0123	
EA. $25 . \mathrm{CN}$	0.0003	
EA.25.PR	0.0014	*
EA. $26 . \mathrm{FR}$	0.	
EA. 26. TR	0.105	
EA.27.GA	0.0122	
EA.29.CN	0.0087	
EA. 29.PR	0.0039	
G. 07	0.	
G. 19	0.	\cdots
G. 23	0.	
G07	0 .	
G19	0.	, ma
G23	0.	
HHSZ. 02	4.2	
HHSZ. 05	2.78	\%
HHSZ. 08	4.05	
HHSZ. 11	3.27	
HKSZ. 14	2.92	
HHSZ. 17	0.	\%
HHSZ. 20	0.	
HHSZ . 23	0.	
IM. 02.02	0.861	\%
IM. 02.06	0.09	
IM. 02.15	0.02	
IM. 04.04	0.078	man
IM. 05.15	0.02	
IM. 09.04	0.163	
IM. 11.04	0.011	
IM. 12.04	0.064	nen
IM. 12.12	0.986	
IM. 14.14	1.	
IM. 15.15	0.69	\%
IM.17.01	0.02	
IM. 17.05	0.02	
IM.17.12	0.01	\%
IM. 17.17	1.	
IM. 18.18	0.788	
IM. 24.24	0.692	
IM. 26.04	0.005	-
IM. 29.04	0.005	
PC. 04.25	0.87	
PC. 08.16	0.49	\cdots
PC. 16.24	0.01	

4		
-	PGQ. 01	0.365
	PGQ. 04	0.614
	PGQ. 07	0.055
∞	PGQ. 10	0.339
	PGQ. 13	4.848
	PGQ. 16	0.702
m	PGQ. 19	1.418
	PGQ. 22	0.
	PM. 02	2.099
	PM. 05	2.948
+	PM. 08	3.055
	PM. 11	2.236
	PM. 14	2.999
-	PM. 17	3.168
	PM. 20	0.
	PM. 23	0.
-	PM. 26	2.414
	PM. 29	3.331

Institute of Social and Economic Research MAP Documentation December 1984, Model A84.CD

PGQ. 02	0.048
PGQ. 05	3.339
PGQ.08	0.118
PGQ.11	2.548
PGQ.14	0.32
PGQ.17	0.
PGQ.20	0.
PGQ.23	0.
PM.03	0.
PM.06	3.026
PM.09	2.152
PM.12	2.66
PM.15	2.334
PM.18	3.568
PM.21	3.041
PM.24	3.974
PM.27	4.269

PGQ. 03
0.088

PGQ. 060.399
PGQ. 09 0.
PGQ. 120.324
PGQ. 150.681
PGQ. 18 0.
PGQ. 21 0.
PM. 01 3.167
PM. $04 \quad 6.326$
PM. 07 0.
PM. 100 .
PM. 13 0.
PM. $16 \quad 4.976$
PM. 190.
PM. 220.
PM. $25 \quad 3.558$
PM. 280 .

Institute of Social and Economic Research MAP Documentation December 1984, Model A84.CD
a. Exogenous Variables
(All exogenous variables come from the scenario generator [Baa and Gaa], or a state model simulation)
b. Policy Variables
A. 02.11
A. 02.02
A. 11.11
A. 17.02

1983	0.33	0.965	0.67	0.035
1984	0.331	0.964	0.669	0.036
1985	0.332	0.963	0.668	0.037
1986	0.333	0.962	0.667	0.038
1987	0.334	0.961	0.666	0.039
1988	0.335	0.96	0.665	0.04
1989	0.336	0.959	0.664	0.041
1990	0.337	0.958	0.663	0.042
1991	0.338	0.957	0.662	0.043
1992	0.339	0.956	0.661	0.044
1993	0.34	0.955	0.66	0.045
1994	0.341	0.954	0.659	0.046
1995	0.342	0.953	0.658	0.047
1996	0.343	0.953	0.657	0.047
1997	0.344	0.952	0.656	0.048
1998	0.345	0.951	0.655	0.049
1999	0.346	0.95	0.654	0.05
2000	0.347	0.949	0.653	0.051
2001	0.348	0.948	0.652	0.052
2002	0.349	0.947	0.651	0.053
2003	0.35	0.946	0.65	0.054
2004	0.351	0.945	0.649	0.055
2005	0.352	0.944	0.648	0.056
2006	0.353	0.943	0.647	0.057
2007	0.354	0.942	0.646	0.058
2008	0.355	0.941	0.645	0.059
2009	0.356	0.94	0.644	0.06
2010	0.357	0.939	0.643	0.061

c. Startup Variables
(Startup values for endogenous variables do not affect simulation results)

ISER MAP ALASKA ECONOMIC MODEL:

SCENARIO GENERATOR MODEL

DOCUMENTATION

0. Introduction 1
1. Organization of the Library Archives 1
a. Input File Archives--The Case Library (SCEN_) and Case Creation 4
b. Output File Archives--The Scenario
Library (SCENARIO_) 8
2. Using the Scenario Generator 8
a. Capabilities and Organization 8
b. Instructions for Using \&SCENGEN 9
c. An Example 11
3. Greating, Manipulating, Examining, and Printing Library Eiles 14
a. \&SETUP 15
b. \&MUNICASE 16
c. \&DELCASE 17
d. \&DELSCN 17
e. \&LKCASE and \&OLKCASE 17
f. \&LKSCN and \&OLKSCN 18
g. \&ADCASE 18
h. \&SUBCASE 19
i. \&LISTLIB 19
j. \&DESCLIB 19
k. \&DESCASE 20
4. \©CASE 20
m. \&CASECHEK 20
n. \&SCENCHEK 21
5. Model Output 22

0 . Introduction

The scenario generator model consists of a set of data files, macros, and programs designed to create and manipulate a library of some of the exogenous variables required for a run of each of the three major ISER models--the MAP statewide model, the regionalization model, and the Anchorage Municipality model--BIGMOD.

Part 1 documents the organization of data files in the archives related to the scenario generation tasks. Part 2 describes the use of the scenario generation macro in constructing a scenario. Part 3 then describes a set of macros which have been developed for conveniently manipulating, editing, and examining the files contained in the library archives. Part 4 displays a sample of the cutput of the model.

1. Organization of the Library Archives

Each of the three ISER economic models requires a set of data series corresponding to each of the variables treated as exogenous by that model. The scenario generator model provides the most important of those variables to each model.

Specifically, for use in a run of the MAP statewide model, the scenario generator provides a data series for each of the 16 exogenous variables listed in Table 1 . The scenario generator frovides for use in a run of the regionalization model a set of data series for each of the 40 exogenous variables shown in Table 2. Finally, the scenario generator provides for use in a run of the Anchorage Municipality model BIGMOD a set of data series for the 24 exogenous variables shown in Table 3.

Each model requires additional exogenous and policy variables to run. The scenario generator provides for each model only the subset of all exogenous variables equivalent to Table 1 for the state model. Consult individual model documentation for further details. Eecause not all exogenous and policy variables are set by the scenario generator, it is necessary to check that the assumptions implicit in the variables from the scenario generator are consistent with those variables input into the models not from the scenario generator. This is particularly true for the Anchorage Municipality model.

TABLE 1. EXOGENOUS VARIABLES PROVIDED FOR MAP STATEWIDE MODEL RUN

Variable Name	Description
EMAGRI	Agriculture Employment
EMCNX1	High Wage Exogenous Construction Employment
EMCNX2	Low Wage Exogenous Construction Employment
EMFISH	Fish Harvesting Employment
EMGC	Civilian Federal Employment
EMGM	Active Duty Military Employment
EMMX1	High Wage Exogenous Manufacturing Employment
EMMX2	Low Wage Exogenous Manufacturing Employment
EMP9	Mining Employment
EMF9X	Exogenous Transportation Employment
RPBS	State Bonus Payment Revenue
RPPS	State Property Tax Revenue
RPRY	State Royalty Income
RPTS	State Production Tax Revenue
RTCSPX	State Corporate Petroleum Tax Revenue
TOURIST	Tourists Entering Alaska

TABLE 3. EXOGENOUS VARIABLES PROVIDED FOR ANCHORAGE MUNICIPALITY MODEL RUN

```
Variable Description
rMP.ss* Employment by Place of Work, Region r, Sector ss
*Where r = B Matanuska/Susitna Region (Matanuska/Susitna CD)
            C Southcentral Region (Kenai-Cook Inlet, Kodiak, Valdez/
                Chitina/Whittier, Cordova/McCarthy, and Seward CDs)
    D Interior Region (Fairbanks, Yukon/Koyukuk, and
            Upper Yukon CDs)
            E Southeast Region (Juneau, Ketchikan, Prince of Wales,
            Sitka, Wrangell, Petersburg, and Lynn Canal CDs)
            F Northern Region (Barrow/North Slope, Kobuk, and Nome CDs)
            G Southwest Region (Aleutian Islands, Bethel, Bristol Bay,
                    Wade Hampton, and Kuskokwim CDs)
                ss = B1 High Wage Basic Sector
            B2 Low Wage Basic Sector
            G9 Government Sector
            PR Proprietor Sector

A scenario is defined as a set of values for each of these variables, and it is composed of sets of individual assumptions, or cases, each of which is itself an archive of individual component assumptions about an industry or activity. These individual components are filed in an archive called SCEN_, which can be considered to be the library from which scenarios may be constructed using the scenario generator. The scenario generator combines these cases according to user-specified instructions into scenarios, which are then filed in an archive called SCENARIO_. The scenarios archived in SCENARIO_ may be used directly as input into running the various ISER economic models.

\section*{a. Input File Archives--The Case Library (SCEN-) and Case Creation}

The SCEN_ archives contain sets of data files which will be termed "cases." A "case" may be a particular exogenous development project, such as the gas pipeline or the Alpetco refinery, or a
particular set of revenue estimates, such as those published by the Alaska Department of Revenue, or an assumption concerning the development of a component of an exogenous industry, such as commercial fishing or agriculture. Each "case" has implications for some subset of the exogenous variables in the ISER economic models.

A "case" consists of a set of data files, consisting of the effects of that case on the exogenous variables in one or more of the ISER economic models. In addition, each case contains an additional data file called COMMENT, containing no data but rather a comment which provides a short description and documentation of the case.

Each case is given a user-specified name which becomes the name of a sub-archive within the SCEN_ archive. The convention to be used in giving such names is as follows: the name will take the form ccc.nnn, where ccc is a three-digit code identifying the particular case, such as an OCS sale, which would be called OCS.nnn, or Prudhoe Bay field employment, which would be called PRB.nnn. The final three digits ( nnn ) are an identifier of the particular set of assumptions employed to describe this case. For example, there may be a series of PRB.nnn cases, each corresponding to a different set of assumptions regarding the future development of Prudhoe Bay.

It should be noted that not all cases will be usable with all models. For example, certain cases such as revenue assumptions may affect only variables in the MAP statewide model. On the other hand, any cases which involve exogenous employment will typically affect the exogenous variables in all three models, but information may be inadequate to provide sufficient regional disaggregation to use either the regionalization model or the municipality model. Alternatively, the user may have sufficient information to regionally disaggregate the statewide data to the level required by BIGMOD, but not to the level required by the regionalization model.

In order to deal with such possibilities without having to set up three special model-specific libraries in which there would be a great deal of duplication, the comment file in each case should include a list of the models with which the case may be appropriately utilized. Many cases initially entered into the library as "state" cases, usable only with the statewide model, may be gradually upgraded as more information and/or more effort is put into disaggregating the data to a regional level appropriate for use in one or both of the regional models.

A complete "case" includes both the on-line data files and a physical documentation file. While there is no single best approach in developing a "case," there are five basic steps required to complete a comprehensive "case" file: development of input numbers, data entry, data verification, written descriptions, and preparation of documentation file.

Institute of Social and Economic Research MAP Documentation December 1984

The input numbers required for a given "case" depend on the details of the specific project, industry, or revenue projections. The sources of data for these numbers are numerous and include historical data and feasiblity studies of proposed projects as well as "what if" assumptions regarding future levels of activity. For the regional and Anchorage models, regional breakdowns of the employment assumptions are required. Individual model documentations must be consulted to determine what model variables are affected by a particular project or "case."

In the data entry step, only that subset of the list of variables in Tables \(1-3\) which have nonzero values require entry. In the development of a new case archive, the macro \&SETUP simplifies the data entry process. The data entry step includes the data files and a comment file. The comment should include the case's full name, a brief description, identity of the author of the case file and designation of the models for which data has been entered (statewide [S], Regional [C], Anchorage [A]).

Once the data entry is complete, the data should be verified for accuracy and compatibility among models. The macro \&LKCASE produces a printout of all files created in an archive at the terminal. Data should be created for the Anchorage Municipality model using the macro dMUNICASE; and the macro \&CASECHEK should be run to compare input values for the statewide, regional, and Anchorage models to make sure they are consistent.

The written descriptions of the case are important for documenting the on-line case file. The written descriptions include a short description and a medium description. The short description is usually two-to-three sentences long and provides an extended project title and information on the level of activity. These short descriptions are used in tables which summarize scenarios. The medium description is usually two-to-five paragraphs long and includes historical background, source of proposal, regional and/or industry breakdowns, and timing of activity.

The final step in preparing a "case" is to prepare the documentation. The documentation file should contain:
(1) a completed Case File Documentation Status checklist (see Table 4)
(2) written description(s) of the case
(3) printout of the input numbers
(4) copies of background information, tables, or cover page of documents used to develop the numbers in case
(5) worksheets, if any, used to develop numbers.

The physical files are centrally filed at ISER.


\section*{b. Output File Archives--The Scenario Library (SCENARIO-)}

Output of the scenario generation macro is filed in the SCENARIO_ t.ddddd archive, where \(t\) is a one-digit code indicating the model to which the scenario is appropriate ( \(S=\) statewide, \(\mathrm{C}=\) regionalization, \(\mathrm{A}=\) municipality--BIGMOD). A type S scenario archive contains the 16 data files listed in Table 1; a type C scenario archive contains the 40 data files listed in Table 2; a type A scenario archive contains the 24 data files listed in Table 3; and each contains an additional COMMENT file which documents the scenario.

\section*{2. Using the Scenario Generator}
a. Capabilities and Organization

The scenario generator is simply an elaborate macro for combining the various cases contained in the SCEN_ library archives according to a variety of user-specified instructions and filing the resulting scenario in the SCENARIO_ library archives.

It expects input files in the format decribed above for the SCEN_ library and produces output in the form of data files in the format described above for the SCENARIO_ library.

It permits the user to alter the timing of events described in the individual case archives by moving the entire set of data series forward or backward in time.

In addition to the SCENARIO data files output which are automatically stored on disk following a run of the scenario generator, several online outputs are produced during and immediately following a run.

After receiving all instructions from the user, the scenario generator prints an acknowledgment that processing is beginning, of the form:
generating scenario t.dddd ...
and presents the total of the number of cases it is about to process:
CONSISTS OF n CASES, as follows:
After which it presents a description of each case as it is processed, consisting of the contents of the comment filed in the COMMENT file for that case and an acknowledgment of any moves in the
timing of the case that have been made from that found in the SCEN_ library archives.

Upon completion of processing, it prints the message
SCENARIO t.dddd FILED IN SCENARIO ARCHIVE
Finally, following this message, it will request that the user provide a written description of the scenario, which will be filed as a comment in the cOMMENT file corresponding to the newly generated scenario. This request will be indicated by the prompt:

NEW COMMENT:
at which point the user should type in a short description of the scenario. This description may be more than one line, but the prompt "NEW COMMENT:" will precede each line. Following completion of the description, the user should type a semicolon ";" followed by the command "FILE;".

\section*{b. Instructions for Using \&SCENGEN}

The command \&SCENGEN will activate the scenario generator, which will proceed to ask the user a series of questions. First, the user will be asked to provide the type and name for the scenario, with the prompts:
```

 SCENARIO TYPE (S, C, or A)
 SCENARIO NAME:

```

Once this has been provided, the scenario generator will begin to ask questions about each of the cases to be included in the scenario. The first question,

CASE NAME:
jit expects to be answered with one of the ccc.nnn names found in the SCEN_ library. It then prompts:

START:
and expects the user to provide an integer representing the number of years forward or backward in time that the case should be moved. For example, if the user wishes to leave the timing of the case as it is recorded in the library, he should respond with 0 ; if he wishes to delay the case by two years, -2 ; or move it forward five years, 5; and so on.

\title{
Institute of Social and Economic Research \\ MAP Documentation \\ December 1984
}

After providing this information for the first case, the computer will again give the prompt:

CASE NAME:

Which it expects to be answered with the name of the second case, followed by prompts for the start and type of the second case, and so on. Currently, the user may specify as many as 97 cases to be included in a scenario. Once all of the case information has been entered, respond to the CASE NAME: prompt with a semicolon to indicate the end of the input list. No further information is required from the user until processing is completed, after which the user will receive the prompt:

NEW COMMENT:
and should type in a short description of the scenario contents, followed by a semicolon and the word "file", followed by a second semicolon.

All of these commands can be included in a user-written macro with the same name as the scenario being created. This macro then provides a permanent record of the case files composing the scenario.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
c. An Example \\
Before beginning to g scan the cases in the scenario. This can be provides a complete listing
\end{tabular}} \\
\hline \multicolumn{3}{|l|}{\&LISTLIB} \\
\hline DATA & SCEN_ & \[
\begin{aligned}
& \text { AGR. SCM } \\
& \text { BCF. } 003
\end{aligned}
\] \\
\hline & & BCL. 04T \\
\hline & & DOR. 381 \\
\hline & & FLP. SCM \\
\hline & & GFC. EPM \\
\hline & & GFM. EPM \\
\hline & & NPR.MOD \\
\hline & & NWG. MG1 \\
\hline & & OCS. BFM \\
\hline & & OCS.55X \\
\hline & & OCS.57X \\
\hline & & OCS.60X \\
\hline & & OCS. 70L \\
\hline & & OCS.71M \\
\hline & & OCS. 75 H \\
\hline & & OCS.75L \\
\hline & & OCS.75M \\
\hline & & OCS. 751 \\
\hline & & OCS. 754 \\
\hline & & OCS. 755 \\
\hline & & OMN. EPH \\
\hline & & PRB. 081 \\
\hline & & TAP. XXX \\
\hline & & TCF. 001 \\
\hline & & TRS. MOD \\
\hline & & UPC. 011 \\
\hline
\end{tabular}

If the user is unfamiliar with one or more of these cases, he may use the \&DESCASE or \&DESCLIB commands explained in the following section.

After deciding on the cases he wishes to include in the scenario, the user proceeds to invoke the scenario generator with the \&SCENGEN command.

In this example, we generate a scenario for use with the statewide model called S.TEST1, consisting of 14 cases selected from the 27 available cases in the SCEN library. Note that we have changed the timing of two of those cases: OCS.60X has been moved forward 4 years, and NWG.MG1 has been moved back 1 year. After completing the questions for the desired cases, the user responds with a semicolon.

TROLL COMMAND: .\&SCENGEN
TYPE OF SCENARIO (S, C, or A): \(\underline{S}\)
NAME OF SCENARIO:
PROJECT CODE: AGR.SCM
START: - \(\underline{0}\)
CASE NAME: .BCF. 003
START: 응

CASE NAME:.DOR. 381
START:.ㅇ

CASE NAME: .FLP.SCM
START: -
CASE NAME: .GFC.EPM
START: 응
CASE NAME: .GFM.EPM
START: - \(\underline{0}\)
CASE NAME: .OCS.55X
START: ㅇ
CASE NAME: OCS.BEM
START: . \(\underline{0}\)

CASE NAME: OCS.60X
START: . 4

CASE NAME: . OHN.EPH
START: . \(\underline{0}\)
CASE NAME: TAP. XXX
START: -
CASE NAME: .TCF. 001
START: ㅇ

CASE NAME:.TRS.MOD
START: -
CASE NAME: .NWG.MG1
START:-1

CASE NAME: . \(\mathcal{i}\)


After processing all of the requested cases，the computer indicates that processing has terminated and requests a scenario description from the user．

The user types in a description，followed by a semicolon and a

\section*{}
\[
\operatorname{sex}
\]
 file command．
```

SCENARIO S.TEST1 FILED IN SCENARIO ARCHIVE
NEW COMMENT: .THIS IS A TEST CASE TO TRY OUT THE NEW SCENARIO GENERATOR
NEW COMMENT: .;FILE;

```
TROLL COMMAND: .

To generate scenarios for use with the regionalization model or the municipality model－－BIGMOD，the user would follow the same procedure，except that the response to the prompt＂TYPE OF SCENARIO：＂would be \(C\) or \(A\) ，as appropriate，and the user would have to take care that the list of cases used is appropriate for use with the \(C\) or A model．（Currently，all cases in the SCEN＿library are usable for constructing type \(S\) or \(C\) scenarios but need to be disaggregated for use in type A scenarios．）

\section*{3．Creating，Manipulating，Examining，and Printing Library Files}

A variety of macros have been developed to perform several comon operations on the library files．This section describes the functions and use of these macros．

The macros currently available are：
\＆SETUP
\＆MUNICASE
\＆DELCASE
\＆DELSCN
\＆LKCASE
\＆OLKCASE
\＆LKSCN
\＆OLKSCN
\＆ADCASE
\＆SUBCASE
\＆LISTLIB
\＆DESCLIB
\＆DESCASE
\＆COPYCASE
\＆CASECHEK

\section*{\＆SCENCHEK}

Institute of Social and Economic Research
MAP Documentation December 1984
a. \&SETUP

In order to establish a "case," it would be possible to use a series of DEDIT commands in TROLL to input each of the affected data series. However, insofar as the scenario generator requires data files extending over the 1960-2030 range, this process would normally involve inputting a large number of zero values. Macro \&SETUP is designed to make this input task simpler by setting up the affected series with zero values over the \(1960-2030\) range and permitting the user to replace the nonzero values of the series.

Example: [A 100,000 BPD refinery project in Valdez requires construction employment of 752 persons for three years beginning in 1983. Thereafter, it employs 386 persons for ten years.]

We will name this case ALP.100, indicating a 100,000 BPD version of the Alpetco proposal.

This project affects two variables in the statewide model, namely EMCNX2 and EMMX1. To prepare a case for use in constructing an "S" type scenario for use with the statewide model, the following commands would suffice.

TROLL COMMAND: \&SETUP CASE NAME: ALP. 100
VARIABLE NAME: EMCNX2
YEAR: 1983
1983 . 752 . 752 . 752 ;FILE;

TROLL COMMAND: \&SETUP
CASE NAME: ALP. 100
VARTABLE NAME: EMMX1
YEAR: 1986

FILE;

To upgrade the case for use with the regionalization model, notice that the project is located entirely in valdez and, consequently, affects only the variable \(B 26\). The case may be upgraded by the following commands.

TROLL COMMAND: \&SETUP
CASE NAME: ALP. 100
VARIABLE NAME: B26
YEAR: 1983
\(1983 \quad \frac{.752}{386} \quad \frac{.752}{386} \quad \frac{.752}{386} \quad .386 \quad \frac{.386}{386} \quad \frac{.386}{.386} \quad .386 \quad .386\)
\(1991 \quad .386 \quad .386 \quad .386 \quad .386 \quad .386\) iFILE;

To further upgrade the case for use with the municipality model, notice that the project affects only the variable C.MP.BI in BIGMOD. Consequently, the case may be further upgraded by the following sequence:

TROLL COMMAND: \&SETUP
CASE NAME: ALP. 100
VARIABLE NAME: C.MP.BI
YEAR: 1983


Finally, the user should add a comment to archive SGEN_ALP. 100 in the form of a file named COMMENT whose "comment" contains a description of the case just input. Enter this comment with a DEDIT command in the archive for the case.

\section*{b. \&MUNICASE}

The \&MUNICASE macro takes a case which contains variables for type \(S\) and \(C\) scenarios and adds to it non-Anchorage data files for type A scenarios (any files containing data for Anchorage should be added using the \&SETUP macro). This macro should be run any time a new case is created.

Example: The user wants to make case ABC.001, which is currently suited only for type \(S\) and \(C\) scenarios, suitable for type A scenarios.


\section*{c. \&DELCASE}

The \&DELCASE macro deletes all files associated with the particular case specified by the user.

Example: Case \(A B C .001\) is found to be in error or of no further value. To delete it, say:

\section*{\&DELCASE}

CASE TO BE DELETED: ABC. 001
d. \&DELSCN

The \&DELSCN macro deletes all files associated with the particular SCENARIO_ archive specified by the user.

Example: Scenario S.TEST1 is found to be of no further value. I'o delete it, say:

\section*{\&DELSCN}

SCENARIO TO BE DELETED: S.TEST1
e. \&LKCASE and \&OLKCASE

In order to examine all of the variables in each case archive, two macros are available. Macro \&LKCASE prints out all variables at the terminal. Macro \&OLKCASE prints out the same tables offline at MIT.

Example: To print out case ABC. 001 offline.
\&OLKCASE

CASE NAME: ABC. 001

\section*{f. \&LKSCN and \&OLKSCN}

In order to examine all of the variables in a SCENARIO archive, two macros are available. Macro \&LKSCN prints out all variables at the terminal. Macro \&OLKSCN prints out all variables offline at MIT.

Example: To print out scenario S.TEST1 at the terminal,
Example: To print out scenario s.TEST1 at the terminal.

\section*{\&LKSCN}

NAME OF SCENARIO: S.TEST1
g. \&ADCASE

If the user wishes to add a single case to a scenario. Without rerunning the entire scenario generator, he or she may do so using macro \&ADCASE.

It requests the name of the SCENARIO archive to which the case will be added, the name of the incrementing case, the number of years the case is to be moved, the type of scenario, and a name for the new scenario. Upon completing the processing, it will request a description of the new scenario from the user. The user types in the new description, followed by a semicolon and a file command.

Example: You want to add case ABC. 001 to scenario S.TEST1 and call the new scenario TEST2.

\section*{\&ADCASE}

OLD SCENARIO ARCHIVE: S.TEST1
INCREMENTING SCEN ARCHIVE: ABC. 001
START: \(\underline{0}\)
TYPE OF SCENARIO (S, C, or A): \(\underline{S}\)
NEW SCENARIO ARCHIVE: S.TEST2
SCENARIO S.TEST1 INCREMENTED BY
CASE ABC. 001
MOVED 0 YEARS

SCEN_ABC.001_COMMENT
SAMPLE CASE TO TEST THE SCENARIO GENERATOR

SCENARIO S.TEST2 FILED IN SCENARIO ARCHIVE
NEW COMMENT: SCENARIO S.TEST1 INCREMENTED
NEW COMMENT: BY CASE ABC. 001
NEW COMMENT: ;FILE;
```

 Institute of Social
 and Economic Research
 MAP Documentation
 December }198
 h. &SUBCASE
 If the user wishes to subtract a single case from a scenario without rerunning the scenario generator, he or she may do so using macro \&SUBCASE, which operates in a manner analogous to \&ADCASE above.
 Example: You want to take case ABC. 001 out of scenario S.TEST2 and call the new scenario TEST1.

```

\section*{\&SUBCASE}
```

OLD SCENARIO ARCHIVE: S.TEST2 DECREMENTING SCEN ARCHIVE: ABC. 001
START: $\underline{0}$
TYPE OF SCENARIO (S, C, or A): \underline{S}
NEW SCENARIO ARCHIVE: S.TEST1
SCENARIO S.TEST2 DECREMENTED BY
CASE ABC. 001
MOVED 0 YEARS
SCEN_ABC. 001 _COMMENT
SAMPLE CASE TO TEST THE SCENARIO GENERATOR
SCENARIO S.TEST1 FILED IN SCENARIO ARCHIVE
NEW COMMENT: SCENARIO S.TEST2 DECREMENTED
NEW COMMENT: BY CASE ABC. 001
NEW COMMENT: ;FILE;
i. \&LISTLIB
Lists the currently available cases for use by the scenario generator. Require no arguments.
j. \&DESCLIB
Lists the comments associated with all available cases in the SCEU_ library. Requires no arguments.

```

\title{
Institute of Social and Economic Research MAP Documentation December 1984
}
k. \&DESCASE

Lists the comments associated with a particular case in the SCEN_ library.

Example: The user is unfamiliar with case ABC. 001 and wants a description of its contents.

\section*{\&DESCASE}

CASE NAME: ABC. 001

\section*{1. \&COPYCASE}

Copies all or part of a user-specified case.

Example: The user wants to copy one of the three files in case ABC. 001.

\section*{\&COPYCASE}

OLD CASE NAME: ABC. 001

THE VARIABLES IN CASE ABC. 001 ARE:

DATA_ SCEN_ ABC.001_ COMMENT
EMCNX1
B04

NEW CASE NAME: ABC. 002
VARIABLES TO BE COPIED, SEPARATED BY SPACES, FOLLOWED BY SEMICOLON EMCNX1;
m. \&CASECHEK

The \&CASECHEK macro verifies that the type \(S\), \(C\), and \(A\) components of a case are all consistent. The macro prints a table showing the total non-Anchorage employment assumptions for each type. This macro should be run each time a new case is created.
Example: The user wants to check that case ABC. 001 is consistent for use in all three models.

\section*{\&CASECHEK}
CASE NAMES, SERARATED BY SPACES, FOLLOWED BY SEMICOLON ABC.001;
n. \&SCENCHEK
The \&SCENCHEK macro verifies that a type \(C\) and a type A scenario which contain identical case files are consistent. The macro prints a table showing the total non-Anchorage employment assumptions for each type.
Example: The user wants to verify that \(C\) type scenario C.TESTl and A type scenario A.TESTl, which contain the same cases, are consistent.
\&SCENCHEK
REGIONAL MODEL SCENARIO ARCHIVE: C.TEST1
MUNI MODEL SCENARIO ARCHIVE: A.TEST1

TABLE 5. SUMMARY OF MAP MODEL BASE CASE ASSUMPTIONS FROM THE SCENARIO GENERATOR: DECEMBER 1984 SUSITNA STUDIES (S85.SUB4)

\section*{ASSUMPTIONS}

DESCRIPTION(a)

Wational Variables Assumptions
U.S. Inflation Rate

Real Average Weekly Earnings

Real Per Capita Income

Unemployment Rate

Industry Assumptions
Trans-Alaska Pipeline

North Slope Petroleum Production

Upper Cook Inlet Petroleum Production

OCS Development

Consumer prices rise at 6.5 percent annually after 1985.

Growth in real average weekly earnings averages 1 percent annually.

Growth in real per capita income averages 1.5 percent annually after 1984.

Long-run rate of 6 percent.

Operating employment remains constant at 990 through 2010 (TAP.F84).

Petroleum employment increases through the early 1990s to a peak of 4.6 thousand and subsequently tapers off gradually. Construction employment is eliminated by the late 1990s. This case presumes no significant change in current oil price trends (NSO.84B).

Employment in exploration and development of oil and gas in the Upper Cook Inlet area declines gradually beginning in 1983 by approximately 2.5 percent per year (UPC.F84).

Exploration and development activity grows through the mid-1990s and direct employment continues through the following decade at a slightly reduced level of approximately 7,000 (OCS.CM3(-3)).
(a) Codes in parentheses indicate ISER names for MAP Model SCEN case files.
Oil Industry Headquarters
Beluga Chuitna Coal Production

Healy Coal Mining
U.S. Borax

Red Dog Mine

Other Mining Activity

Agri.culture

Logging and Sawmills

Pulp Mills

Oil company headquarters employment in Anchorage rises by 1,150 between 1983 and 1986 to remain at around 4,600 through 2010 (OHQ.F84).

Development of 4.4 million ton/year mine for export beginning in 1990 provides total employment of 524 (BCL.04T(-4)).

Export of approximately 1 million tons of coal annually will add 25 new workers to current base of 100 by 1986 (HCL. 84X).

The U.S. Borax mine near Ketchikan is brought into production with operating employment of 790 beginning in 1989 and eventually increasing to 1,020 (BXM.F84).

Production from the Greens Greek Mine on Admiralty Island results in employment of 150 people from 1988 through 2003 (GCM.F84).

The Red Dog Mine in the Western Brooks Range reaches full production with operating employment of 428 by 1993 (RED.F84).

Mining employment not included in special projects increases from current level at 1 percent annually (OMN.F84).

Moderate state support results in expansion of employment in agriculture by 4 percent per year (AGR.F83).

Employment expands to over 3,200 by 1990 before beginning to decline gradually to about 2,800 after 2000 (FLL.F84).

Employment declines at a rate of 1 percent per year after 1991 (FPU.F84).

Employment levels in traditional fisheries harvest remain constant at 7,500 through 2010 (TCF.F84).


Commercial Fishing－Bottomfish

Federal Military Employment

Light Army Division Deployment

Federal Civilian Employment

Tourism

State Hydroelectric Projects

Employment in processing traditional fisheries harvests remains at the level of the average figure for the period 1978－1982，or around 7，300 （TFP．F84）．

The total U．S．bottomfish catch expands at a constant rate to allowable catch in 2000，with Alaska resident harvesting employment rising to 733．Onshore processing capacity expands in the Aleutians and Kodiak census divisions to provide total resident employment of 971 by 2000 （BCF．F83）．

Employment declines at 1 percent per year，consistent with the long－term trend since 1960 （GFM．F84）．

A portion of a new Army division is deployed to Fairbanks and Anchorage beginning in 1986，augmenting active－ duty personnel by 2,600 （GFM．JPR）

Rises at 0.5 percent annual rate consistent with the long－term trend since 1960 （GFC．F84）．

Number of visitors to Alaska increases by 50,000 per year to over 2 million by 2010 （TRS．F83）．

Construction employment from Alaska Power Authority projects peaks at over 700 in 1990 for construction of several projects in Southcentral and Southeast Alaska（SHP．F83）．

Based on 1984 Sherman Clark world oil price projection used to drive Alaska Department of Revenue MJSENSO petro－ leum revenue model．Post－2000 values extrapolated at average rate of change for period 1997 to 2000 （SHC．B84）．

Institute of Social and Economic Research MAP Documentation December 1984

Bonuses

Property Taxes

Petroleum Corporate Income Tax

\section*{Royalties}

Based on 1984 Sherman Clark world oil price projection used to drive Alaska Department of Revenue MJSENSO petroleum revenue model. Post-2000 values extrapolated at average rate of change for period 1997 to 2000 (SHC.B84).

Nominal average of past values not including major sales (SHC.B84).

Aggregation of property taxes from specific petroleum activities based upon model CORPTX (SHC.B84) and (OCS.CM3 (-3)).

Aggregation of corporate taxes from specific petroleum activities based upon model CORPTX (SHC.B84). and Economic Research MAP Documentation

TABLE 6. STATE VARIABLES: SCENARIO S85.SUB4

Part A: Economic Variables (000)

Employment
\begin{tabular}{cc} 
Civilian & \\
(EMGC) & (EMGM)
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 1983 & 0.37 & 2.991 & 0.672 & 7.558 & 17.729 & 22.261 & 0 \\
\hline 1984 & 0.385 & 2.497 & 0.242 & 7.581 & 17.818 & 22.038 & \\
\hline 1985 & 0.4 & 2.891 & 0.218 & 7.608 & 17.907 & 21.818 & \\
\hline 1986 & 0.416 & 3.525 & 0.644 & 7.636 & 17.996 & 24.2 & \\
\hline 1987 & 0.435 & 2.361 & 1.63 & 7.664 & 18.086 & 23.984 & \\
\hline 1988 & 0.454 & 1.609 & 1.391 & 7.681 & 18.177 & 23.77 & \\
\hline 1989 & 0.475 & 2.393 & 0.89 & 7.716 & 18.268 & 23.558 & , \\
\hline 1990 & 0.496 & 2.703 & 1.025 & 7.729 & 18.359 & 23.349 & \\
\hline 1991 & 0.52 & 2. 102 & 1.13 & 7.745 & 18.451 & 23.141 & ** \\
\hline 1992 & 0.544 & 0.944 & 1.29 & 7.766 & 18.543 & 22.936 & \\
\hline 1993 & 0.573 & 1.529 & 0.571 & 7.792 & 18.636 & 22.732 & \\
\hline 1994 & 0.601 & 2.365 & 0.1 & 7.826 & 18.729 & 22.531 & 5 \\
\hline 1995 & 0.633 & 1.461 & 0. & 7.868 & 18.823 & 22.332 & \\
\hline 1996 & 0.668 & 2.217 & 0. & 7.921 & 18.917 & 22.134 & \(\cdots\) \\
\hline 1997 & 0.704 & 0.717 & 0. & 7.988 & 19.011 & 21.939 & \% \\
\hline 1998 & 0.744 & 1.655 & 0. & 8.072 & 19.106 & 21.746 & \\
\hline 1999 & 0.788 & 0.783 & 0. & 8.178 & 19.202 & 21.554 & \\
\hline 2000 & 0.834 & 1.821 & 0. & 8.233 & 19.298 & 21.365 & 0 \\
\hline 2001 & 0.866 & 0.783 & 0. & 8.233 & 19.394 & 21.177 & \\
\hline 2002 & 0.899 & 0.336 & 0. & 8.233 & 19.491 & 20.991 & 20ms \\
\hline 2003 & 0.935 & 0.336 & 0. & 8.233 & 19.589 & 20.807 & \\
\hline 2004 & 0.971 & 0.336 & 0. & 8.233 & 19.687 & 20.625 & \\
\hline 2005 & 1.008 & 0.336 & 0. & 8.233 & 19.785 & 20.445 & - \\
\hline 2006 & 1.047 & 0.336 & 0. & 8.233 & 19.884 & 20.266 & \\
\hline 2007 & 1.089 & 0.336 & 0. & 8.233 & 19.984 & 20.09 & \\
\hline 2008 & 1.132 & 0.336 & 0. & 8.233 & 20.083 & 19.915 & ms \\
\hline 2009 & 1.176 & 0.336 & 0. & 8.233 & 20.184 & 19.742 & \\
\hline 2010 & 1.223 & 0.336 & 0. & 8.233 & 20.285 & 19.57 & \\
\hline
\end{tabular} and Economic Research MAP Documentation December 1984

Table 6, Part A (continued)
\begin{tabular}{cc} 
Manufacturing Employment \\
\hline \begin{tabular}{cc} 
High Wage \\
(EMMX1) & Regular Wage \\
(EMMX2)
\end{tabular}
\end{tabular}
Petroleum
and Mining
Employment
(EMP9)

Pipeline Employment (EMT9X)

Tourists (TOURIST)
\begin{tabular}{lr}
0. & 8.938 \\
0. & 10.802 \\
0 & 11.129
\end{tabular}
8.179
9.389
10.391
\begin{tabular}{ll}
1.1 & 730. \\
1.039 & 780. \\
1.116 & 830.
\end{tabular}

1986
1987
1988 1989 1990

1991 1992
1993 1994 1995

1996
1997
1998
1999
2000

2001
2002
2003
2004
2005

2006
2007
2008 2009 2010

Institute of Social and Economic Research MAP Documentation December 1984

TABLE 6. STATE VARIABLES: SCENARIO S85.5UB4
Part B: State Petroleum Revenues (million \$)
\begin{tabular}{lccc}
\begin{tabular}{c} 
Property \\
Taxes \\
(RPPS)
\end{tabular} & \begin{tabular}{c} 
Royalties \\
(RPRY)
\end{tabular} & \begin{tabular}{c} 
Severance \\
Taxes \\
(RPTS)
\end{tabular} & \begin{tabular}{c} 
Corporate Income \\
Taxes \\
(RTCSPX)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 1983 & 48.3 & 152.6 & 1443.6 & 1493. & 236. & \\
\hline 1984 & 13.5 & 131. & 1404.5 & 1392. & 327. & \\
\hline 1985 & 7. & 145. & 1484.61 & 1478.22 & 347. & \\
\hline 1986 & 7. & 159. & 1620.81 & 1585.65 & 381. & * \\
\hline 1987 & 7. & 183. & 1775.68 & 1726.16 & 428. & \\
\hline 1988 & 7. & 187.323 & 1950.28 & 1901.39 & 441. & \\
\hline 1989 & 7. & 189.037 & 2211.31 & 1834.54 & 435. & mat \\
\hline 1990 & 7. & 184.249 & 2414.87 & 2001.94 & 432. & ; \\
\hline 1991 & 7. & 193.876 & 2365.16 & 1891.19 & 435. & \% \\
\hline 1992 & 7. & 197.125 & 2369.94 & 1840.35 & 442. & m \\
\hline 1993 & 7. & 206.815 & 2580.39 & 1959.97 & 443. & \\
\hline 1994 & 7. & 231.002 & 2642.99 & 1961.6 & 445. & \\
\hline 1995 & 7. & 219.375 & 2684.84 & 1969.15 & 435. & Nem \\
\hline 1996 & 7. & 254.837 & 2784.84 & 1982.17 & 435. & \\
\hline 1997 & 7. & 240.011 & 2900.09 & 2033.92 & 438. & m \\
\hline 1998 & 7. & 270.521 & 3052.37 & 2086.43 & 463. & \\
\hline 1999 & 7. & 321.896 & 3155.62 & 2085.74 & 491. & \\
\hline 2000 & 7. & 411.148 & 3314.17 & 2133.67 & 501. & (3x \\
\hline 2001 & 7. & 478.879 & 3466.06 & 2167.83 & 493. & \\
\hline 2002 & 7. & 508.757 & 3624.9 & 2202.53 & 474. & \\
\hline 2003 & 7. & 500.099 & 3791.03 & 2237.79 & 469. & m \\
\hline 2004 & 7. & 491.67 & 3964.17 & 2273.62 & 461. & , \\
\hline 2005 & 7. & 484.174 & 4146.47 & 2310.01 & 461. & \\
\hline 2006 & 7. & 476.435 & 4336.5 & 2347. & 461. & \\
\hline 2007 & 7. & 467.379 & 4535.24 & 2384.57 & 450. & \\
\hline 2008 & 7. & 458.758 & 4743.09 & 2422.75 & 455. & - \\
\hline 2009 & 7. & 450.472 & 4960.46 & 2461.53 & 464. & \\
\hline 2010 & 7. & 440.149 & 5187.79 & 2500.94 & 473. & \\
\hline
\end{tabular}```


[^0]:    *Net out this item before calculation of General Fund revenues.

[^1]:    Households*

[^2]:    ${ }^{a_{A}}$ preliminary population, PRE.aa, is calculated for internal use.
    ${ }^{b_{A}}$ preliminary household, HPRE.cc, is calculated for internal use.

[^3]:    *Includes Bristol Bay Borough [07].
    **Includes Angoon [03], Haines [10], Juneau [11], Ketchikan [13], Outer Ketchikan [19], Prince of Wales [20], Sitka [22], Skagway/ Yakutat [23], and Wrangel1/Petersburg [28].

[^4]:    *Includes Dillingham

[^5]:    $a_{U . S}$. Department of Commerce, Bureau of Economic Analysis.
    ${ }^{\text {b }}$ Alaska Department of Revenue, Federal Income Taxpayers Profile 1978, December 1981.

[^6]:    SOURCE: U.S. Bureau of Census, General Social and Economic Characteristics, Alaska (Employment: Table 177, Worked in 1979: Table 180; Population: Table 171)

[^7]:    HISTORICAL DATA SOURCE: U.5. Census.

