

Estimating Annual High-Flow Statistics and Monthly and Seasonal Low-Flow Statistics for Ungaged Sites on Streams in Alaska and Conterminous Basins in Canada Water-Resources Investigations Report 03-4114

Prepared in cooperation with the ALASKA DEPARTMENT OF TRANSPORTATION AND PUBLIC FACILITIES

Photograph of culvert adjacent to U.S. Geological Survey stream-gaging station on Chester Creek at Arctic Boulevard in Anchorage, Alaska. Photograph taken by Janet Curran, USGS.

U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY

Estimating Annual High-Flow Statistics and Monthly and Seasonal Low-Flow Statistics for Ungaged Sites on Streams in Alaska and Conterminous Basins in Canada

By Jeffrey B. Wiley and Janet H. Curran

U.S. GEOLOGICAL SURVEY

Water-Resources Investigations Report 03-4114

Prepared in cooperation with the ALASKA DEPARTMENT OF TRANSPORTATION AND PUBLIC FACILITIES

> Anchorage, Alaska 2003

U.S. DEPARTMENT OF THE INTERIOR

GALE A. NORTON, Secretary

U.S. GEOLOGICAL SURVEY

Charles G. Groat, *Director*

Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government.

For additional information write to:

Chief, Water Resources Office U.S. Geological Survey Alaska Science Center 4230 University Drive, Suite 201 Anchorage, AK 99508-4664 http://alaska.usgs.gov Copies of this report can be obtained from:

U.S. Geological Survey Information Services Building 810 Box 25286, Federal Center Denver, CO 80225-0286

Suggested citation:

Wiley, J.B., and Curran, J.H., 2003, Estimating annual high-flow statistics and monthly and seasonal low-flow statistics for ungaged sites on streams in Alaska and conterminous basins in Canada: U.S. Geological Survey Water-Resources Investigations Report 03-4114, 61 p.

CONTENTS

Abstract	1
Introduction	1
Purpose and Scope	2
Previous Studies	2
Acknowledgments	3
Description of Study Area	3
Determination of Drainage-Basin Characteristics	5
Determination of Streamflow Analysis Regions	7
Flow Statistics for Streamflow-Gaging Stations	7
Data Collection	8
Data Adjustment	8
Months and Seasons of Analysis	9
Flow-Duration Statistics	10
Low-Flow Frequency Statistics	10
Estimating Flow Statistics for Ungaged Sites	11
Annual High-Flow Statistics	11
Monthly and Seasonal Low-Flow Statistics	14
Accuracy and Limitations of Estimating Equations	14
Procedures for Estimating Flow Statistics	22
Summary	23
References Cited	24

PLATE

[Plate is in pocket]

Plate 1. Map showing streamflow analysis regions and locations of streamflow-gaging stations for which high-flow and low-flow statistics were computed, Alaska and conterminous basins in Canada.

FIGURES

Figure 1.	Map showing physical features and streamflow analysis regions of Alaska and	
	conterminous basins in Canada	4
Figure 2.	Graph showing maximum, mean, and minimum daily mean discharge during the available	
	period of record through water year 1999 for a typical coastal Alaska stream, a typical interior	
	Alaska/Canada stream, and a typical glacial Alaska/Canada stream	9

TABLES

Table 1.	Description and methods of estimating basin characteristics used in regression analysis	6
Table 2.	Estimating equations for annual high-duration flows in Regions 1–7, Alaska and	
	conterminous basins in Canada	12
Table 3.	Range of basin characteristics used to determine estimating equations for high-flow	
	statistics in Regions 1-7, Alaska and conterminous basins in Canada	14
Table 4.	Estimating equations for monthly low-duration flows for July, August, and September	
	in Regions 1-7, Alaska and conterminous basins in Canada	15
Table 5.	Estimating equations for seasonal low-duration flows and low-flow frequencies for	
	July-through-September in Region 1, Alaska	21
Table 6.	Range of basin characteristics used to determine estimating equations for low-flow	
	statistics in Regions 1-7, Alaska and conterminous basins in Canada	21
Table 7.	Annual high-duration flow statistics for streamflow-gaging stations in Regions 1–7,	
	Alaska and conterminous basins in Canada	26
Table 8.	Monthly low-duration flow statistics for July, August, and September for	
	streamflow-gaging stations in Regions 1–7, Alaska and conterminous	
	basins in Canada	38
Table 9.	Seasonal low-duration flow statistics and low-flow frequencies for	
	July-through-September for streamflow-gaging stations in Region 1, Alaska and	
	conterminous basins in Canada	58

CONVERSION FACTORS AND DATUM

CONVERSION FACTORS

Multiply	Ву	To obtain
inch (in.)	2.54	centimeter
foot (ft)	0.3048	meter
foot per mile	0.1894	meter per kilometer
mile (mi)	1.609	kilometer
square mile (mi ²)	2.590	square kilometer
cubic foot per second (ft ³ /s)	0.02832	cubic meter per second

Temperature in degrees Fahrenheit (°F) may be converted to degrees Celsius (°C) as follows:

°C=(°F-32)/1.8

DATUM

Vertical coordinate information was referenced to the National Geodetic Vertical Datum of 1929 (NGVD 29).

Horizontal coordinate information was referenced to the North American Datum of 1927 (NAD 27).

Estimating Annual High-Flow Statistics and Monthly and Seasonal Low-Flow Statistics for Ungaged Sites on Streams in Alaska and Conterminous Basins in Canada

By Jeffrey B. Wiley and Janet H. Curran

ABSTRACT

Methods for estimating daily mean flowduration statistics for seven regions in Alaska and low-flow frequencies for one region, southeastern Alaska, were developed from daily mean discharges for streamflow-gaging stations in Alaska and conterminous basins in Canada. The 15-, 10-, 9-, 8-, 7-, 6-, 5-, 4-, 3-, 2-, and 1-percent duration flows were computed for the Octoberthrough-September water year for 222 stations in Alaska and conterminous basins in Canada. The 98-, 95-, 90-, 85-, 80-, 70-, 60-, and 50-percent duration flows were computed for the individual months of July, August, and September for 226 stations in Alaska and conterminous basins in Canada. The 98-, 95-, 90-, 85-, 80-, 70-, 60-, and 50-percent duration flows were computed for the season July-through-September for 65 stations in southeastern Alaska. The 7-day, 10-year and 7-day, 2-year low-flow frequencies for the season July-through-September were computed for 65 stations for most of southeastern Alaska. Lowflow analyses were limited to particular months or seasons in order to omit winter low flows, when ice effects reduce the quality of the records and validity of statistical assumptions.

Regression equations for estimating the selected high-flow and low-flow statistics for the selected months and seasons for ungaged sites were developed from an ordinary-least-squares regression model using basin characteristics as independent variables. Drainage area and precipitation were significant explanatory variables for high flows, and drainage area, precipitation, mean basin elevation, and area of glaciers were significant explanatory variables for low flows. The estimating equations can be used at ungaged sites in Alaska and conterminous basins in Canada where streamflow regulation, streamflow diversion, urbanization, and natural damming and releasing of water do not affect the streamflow data for the given month or season. Standard errors of estimate ranged from 15 to 56 percent for high-duration flow statistics, 25 to greater than 500 percent for monthly low-duration flow statistics, 32 to 66 percent for seasonal lowduration flow statistics, and 53 to 64 percent for low-flow frequency statistics.

INTRODUCTION

Streamflow characteristics are required for analysis of hydraulic structures, hydropower facilities, contaminant concentrations, and other uses by public and private entities throughout Alaska. The need for high-flow and low-flow statistics, specifically, has increased as the consideration of aquatic biota becomes an increasingly important criterion for efficient and effective design of culverts and bridges and for establishing limits on contaminant concentrations and loads. High-flow and low-flow statistics are commonly computed from daily mean discharge as flow-duration statistics or flow-frequency statistics. Flow-duration statistics, such as the 98-percent duration flow for July, describe the daily mean discharge that is exceeded a given percentage of the time (98 percent of the days in July, for this example). The days on which the discharge is exceeded are not necessarily consecutive.

Flow-frequency statistics, such as the 7-day, 2-year low flow, refer to the discharge that occurs on a certain number of consecutive days (7, for this example) that is associated with a certain recurrence interval (2 years, in this example). These various statistics are often needed to address multiple aspects of a single problem. For example, estimates of high-duration flows (daily mean discharges exceeded a small percentage of the time) are needed to design structures that adequately accommodate streamflow while not overtaxing the swimming capacity of fish. Likewise, estimates of lowduration flows (daily mean discharges exceeded a large percentage of the time), and low-flow frequency and magnitude, are needed to design structures that maintain adequate flow during periods critical to fish passage.

To meet the growing need for streamflow statistics, the U.S. Geological Survey (USGS), in cooperation with the Alaska Department of Transportation and Public Facilities, developed new equations for estimating high-duration and lowduration flow statistics and low-flow frequency from daily mean discharge data through water year 1999. The analysis of daily mean discharge summarized in this report complements a separate analysis of flood frequency based on annual peak flows to complete a statewide analysis of streamflows. Most data for small streams (drainage basin less than 50 mi²) were collected by the USGS under this cooperative program. Other data were collected by the USGS, under cooperative agreements with Federal, State, and local agencies, and by the Water Survey of Canada.

Purpose and Scope

This report presents (1) computed annual highflow and monthly and seasonal low-flow statistics for selected months and seasons for streamflow-gaging stations in Alaska and conterminous basins in Canada, and (2) equations for estimating high-flow and lowflow statistics at ungaged sites in Alaska. High-flow statistics are computed for the October-through-September water year, and monthly low-flow statistics are computed for July, August, and September. Seasonal low-flow statistics and low-flow frequency are computed for the period July-through-September for southeastern Alaska only. Estimating equations are based on data that were not affected by streamflow regulation, urbanization, or failure of natural dams and were compiled from streamflow-gaging station records with at least 10 years of daily mean flow data through the 1999 water year. In addition to data from all eligible Alaskan streamflow-gaging stations, data from conterminous basins in Canada were used in this report to strengthen the analysis for the eastern regions of the State.

Previous Studies

Although no previous statewide flow-duration analyses are available, several reports with equations for high- and low-flow frequency statistics have been published. Studies undertaken at the University of Alaska-Fairbanks produced high-flow frequency and low-flow frequency estimating equations for two regions delineated by Lamke (1978), one containing coastal, southeastern, and Aleutian areas (Carlson, 1987) and the other containing the rest of Alaska (Ashton and Carlson, 1984). Between the two reports, 101 stations with drainage areas less than 100 mi^2 are incorporated. Equations are presented for the 1-, 3-, 7-, and 15-day, 1.25-, 2-, 5-, 10-, and 20-year high flows for spring, summer, and fall and for the 3-, 7-, 14-, and 30-day, 1.25-, 2-, 5-, 10-, and 20-year low flows for spring, summer, and fall.

A USGS study developed equations for estimating low-flow frequency for selected regions as well as for the entire State (Parks and Madison, 1985). Parks and Madison used data from the full year for streams with flows that did not approach zero in the winter as the result of river ice buildup. They present equations for estimation of the 7-day, 10-year; 30-day, 10-year; and 90-day, 10-year low flows for southeastern, south-central, and Yukon Alaska and for the entire State.

Regional boundaries for peak-flow frequency estimation, which can be expected to be similar to high-flow regional boundaries, are presented in numerous previous studies, most recently Jones and Fahl (1994). As did the flow-duration and low-flow frequency studies, all of these peak-flow studies differentiated southeastern Alaska, along with all or parts of the rest of the southern Alaska coast, from the remaining parts of the State. Subdivision of the interior parts of the State varies.

Acknowledgments

The assistance of Lynne Campo, Water Survey of Canada, in providing updates to Canadian streamflow data is gratefully acknowledged. USGS student employees Brent Voorhees and Brian Winnestaffer digitized drainage basin outlines and developed methods to determine drainage basin characteristics from Geographic Information System (GIS) coverages. Portions of the comparison of previously obtained basin characteristics with basin characteristics obtained with modified methods appear in Brian Winnestaffer's senior thesis for Alaska Pacific University.

DESCRIPTION OF STUDY AREA

In its expanse of 586,000 mi², Alaska encompasses geographical and climatic settings ranging from the moisture-laden, mountainous regions of the southeastern region to the dry, cold plains of the Arctic north. Some Alaskan drainage basins originate in conterminous areas of Canada's Yukon and British Columbia provinces (<u>fig. 1</u>); these areas are included in the study area. Alaska's streams eventually drain to the Arctic Ocean, Bering Sea, or Pacific Ocean.

Despite the relatively sparse network of datacollection sites in Alaska, broad patterns based on climate, geography, and geomorphology can be discerned that help explain Alaska hydrology. These patterns can largely be explained by the direction of dominant storm tracks, location of mountain ranges, and influence of coastal areas.

Most precipitation in Alaska results from storms that move northeastward from the Pacific Ocean (Lamke, 1991). Seasonal and geographic distribution of precipitation is affected by mountain ranges and variations in air temperature. The prolonged cold, dry Arctic air mass over interior Alaska in the winter decreases annual precipitation in this area of the State. Average annual precipitation ranges from more than 300 in. in southeastern Alaska, received mostly during fall and winter, to less than 10 in. in areas near the Arctic Ocean, received mostly in summer and fall (Jones and Fahl, 1994, pl. 2). Three major mountainous belts stretch across all or part of Alaska. Coastal mountains rise steeply from the southern coast; an extensive arc of higher mountains consisting of the Aleutian Range, Alaska Range, and Coast Mountains spans the southern part of the State; and the Brooks Range extends across the State north of the Arctic Circle (fig. 1). Glaciers are most prevalent along the southern mountain ranges where precipitation is greater than in northern regions. Basins in coastal areas typically are small and receive large amounts of precipitation. Average basin elevations are low near the coast.

Climatic conditions that generate extended periods of high or low streamflow generally do not extend simultaneously across the State because of its size, so no statewide periods of floods or droughts have been documented. However, several regional floods and droughts have been identified since 1949, when widespread gaging records became available. Major flooding occurred in interior Alaska in 1964, near Fairbanks in 1967 (Childers and others, 1972), in south-central Alaska in 1971 (Lamke, 1972) and 1986 (Lamke and Bigelow, 1988), along the Copper River in 1981, and in south-central Alaska and the Kenai Peninsula in 1995. Flood conditions persisted for at least 3 days during each of these major events. Droughts occurred in southeastern Alaska in 1950-52, the upper Yukon River in 1950-57, southeastern Alaska from spring 1965 to spring 1966, south-central and southwestern Alaska and the middle Yukon River in 1968-71, south-central Alaska and middle Yukon River in 1973-80, and southeastern Alaska in 1981-86 (Lamke, 1991).

Figure 1. Physical features and streamflow analysis regions of Alaska and conterminous basins in Canada.

DETERMINATION OF DRAINAGE-BASIN CHARACTERISTICS

Physical and climatic features of the watershed upstream of a given stream location, termed basin characteristics, are independent variables that can be used to estimate streamflow statistics (Thomas and Benson, 1970). Nine basin characteristics used in the previous statewide flood-frequency analysis (Jones and Fahl, 1994) were available for all stations: drainage area, main channel slope, main channel length, mean basin elevation, area of lakes and ponds, area of forests, area of glaciers, mean annual precipitation, and mean minimum January temperature. Although all nine variables were included in the present analysis, only drainage area and mean annual precipitation were used in the final high-flow equations and only drainage area, mean annual precipitation, mean basin elevation, and area of glaciers were used in the final low-flow equations.

Previously determined basin characteristics were available for most of the stations used in the present analysis (Jones and Fahl, 1994). Definitions of the basin characteristics and the manual methods used to determine them are described in reports by others (Jones and Fahl, 1994; U.S. Geological Survey, 1978) and are summarized in table 1. Basin characteristics for stations not in the Jones and Fahl (1994) report were obtained using modified methods, which are also summarized in table 1. Automated procedures for determining selected basin characteristics for new stations were created using the AML programming language with Arc/Info GIS software (Environmental Systems Research Institute, 1997). Only basin characteristics used in final equations are presented in this report: additional basin characteristics are available from the Alaska Science Center.

For statistical analyses such as the regressions performed for the present study, all data must be collected in a similar manner to minimize error within individual variables. Although new methods of estimation or new sources of data for basin characteristics may produce values that more accurately represent the basin, it is not appropriate to mix such data with previously obtained data in the same analysis. To assess the level of variability introduced by the modified methods used in this study, basin characteristics were determined by both methods shown in table 1 for 19 stations on the Kenai Peninsula and were compared. A statistically significant difference was observed only between previous and modified determinations of main channel length and of main channel slope, which is derived in part from main channel length. Possible reasons for these differences include operator choice of main channel path to the drainage divide, an increased ability to measure highly sinuous paths with digital methods, and physical changes in channel path between map dates. Although main channel length and slope were included in the regression analysis, they were not used in any final equations. Differences also were noted for area of glaciers, but they were magnified because of the small magnitudes of these values and were not considered significant to the final equations. Although the variability introduced into the regression analysis by using the modified methods for a few stations is small, the user should be aware that using modified methods, especially without a comparison with previous methods, could introduce significant error for an individual site. In general, methods used for determining basin characteristics at an ungaged site should be as consistent as possible with the methods described by Jones and Fahl (1994) and the U.S. Geological Survey (1978) and summarized in table 1.

 Table 1.
 Description and methods of estimating basin characteristics used in regression analysis

		Estimating technique for stations			
Basin characteristic name and unit	Description	Included in Jones and Fahl (1994)	Added to analysis since Jones and Fahl (1994)		
Drainage area, in square miles	Area of the drainage basin upstream from the site	Basin outlined on topographic maps of various scales; area determined by planimeter	Basin outlined on paper topographic maps of various scales; outline digitized; area estimated using Arc/Info AML application		
Main channel length, in miles	Length of the main channel between the site and the basin divide measured along the channel that drains the largest basin	Length measured manually along topographic map blue lines and extension to basin divide	Sum of lengths of line segments representing stream on digital hydrography data (http://agdc.usgs.gov/data/ usgs/ to_geo.html), plus length of line extended digitally from stream end to basin divide		
Main channel slope, in feet per mile	Average slope between points 10 and 85 percent of the distance along the main channel from the site to the basin divide	Main channel length measured from topographic map as described separately; elevation at specified points estimated from topographic contours	Main channel length measured from digital hydrography data as described separately; elevation at specified points estimated from digital elevation data (http://agdc.usgs.gov/data/ usgs/ to_geo.html)		
Mean basin elevation, in feet	Mean elevation of the drainage basin upstream from the site	Grid sampling from topographic maps	Arc/Info AML application applied to digital elevation data (<u>http://agdc.usgs.gov/data/</u> usgs/ to_geo.html)		
Area of lakes and ponds, in percent	Percentage of the total drainage area shown as lakes and ponds on topographic map	Planimeter measurement or grid sampling of blue areas on topographic map	Sum of areas of lake and pond polygons from digital hydrography coverage (http://agdc.usgs.gov/data/ usgs/ to_geo.html)		
Area of forests, in percent	Percentage of total drainage area shown as forested on topographic map	Planimeter measurement or grid sampling of green areas on topographic map	Digitized green areas on topographic map		
Area of glaciers, in percent	Percentage of total drainage area shown as perennial snow or ice on topographic map	Planimeter measurement or grid sampling of areas marked as snow or ice on topographic map	Sum of areas of glacier or permanent snowfield polygons from digital hydrography coverage (http://agdc.usgs.gov/data/usgs/to_geo.html)		
Mean annual precipitation, in inches	Mean annual precipitation averaged over drainage basin	Grid sampling from plate 2, Jones and Fahl (1994) (<u>http://ak.water.usgs.gov/Publications/</u> pdf.reps/wrir93.4179.plate2.pdf)	Arc/Info AML application applied to Arc/Info coverage of plate 2, Jones and Fahl (1994) (<u>http://agdc.usgs.gov/data/ usgs/water/</u> <u>statewide.html</u>)		
Mean minimum January temperature, in degrees Fahrenheit	Mean minimum January temperature averaged over drainage basin	Grid sampling from plate 1, Jones and Fahl (1994) (<u>http://ak.water.usgs.gov/</u> <u>Publications/pdf.reps/wrir93.4179.plate1.pdf</u>)	Visual estimation from plate 1, Jones and Fahl (1994) for small basins (http://ak.water.usgs.gov/ Publications/pdf.reps/wrir93.4179.plate1.pdf)		

DETERMINATION OF STREAMFLOW ANALYSIS REGIONS

Dividing areas as large and geographically and climatically diverse as Alaska into smaller regions for analysis usually improves the accuracy of estimation equations. Stations within a region should have similar hydrologic characteristics, but a balance must be struck between isolating hydrologically similar regions and meeting minimum sample size requirements for statistical analysis. Initial placement of stations into streamflow analysis regions was guided by hydrologic unit boundaries (U.S. Geological Survey, 1987) and regional boundaries used in previous reports, in particular the peak-flow analysis by Jones and Fahl (1994). Refinement of regional boundaries was based on the geographic distribution of basin characteristics and residuals from regression analysis of selected streamflow statistics against selected basin characteristics. Specifically, dependent variables July 90- and 50-percent duration flows, 2- and 10-percent duration flows, and 7-day, 10-year low-flow frequency, as well as other variables from a peak-streamflow analysis, were regressed against independent variables drainage area and mean annual precipitation. On the basis of these analyses, the State was divided into seven hydrologically distinct streamflow analysis regions (plate 1). Stations physically located in one region but draining a large area in a neighboring region may be classified in the neighboring region if they are hydrologically more similar to that region.

Certain neighboring regions were hydrologically similar to each other for high-flow analysis but not low-flow analysis. To avoid the confusion of multiple sets of regions, all regions retained their identity for both high- and low-flow analyses. Hydrologically similar regions were grouped together for development of regional equations. Grouping of regions was based on examination of regression residuals and on comparison of the standard error of the resulting equations. Specifically, Region 3 was grouped with Region 1 for high-duration flows and with Region 4 for low-duration flows. Seasonal low-flow frequency statistics for Regions 1 and 3 indicated that these regions are too dissimilar to be combined for this particular analysis; equations were developed for Region 1, but not Region 3, because there were too few stations in Region 3. Region 7 contains very few stations but could not logically be combined with adjoining regions.

FLOW STATISTICS FOR STREAMFLOW-GAGING STATIONS

Flow durations and low-flow frequency statistics are computed from records of daily mean discharge for streamflow-gaging stations. To be suitable for use in a regional regression, streamflow must be correlated with the basin characteristics used as independent variables. Flow statistics for this study were computed for nonurbanized stations having at least 10 years of record through water year 1999. Only those stations having at least 10 years of record during unregulated periods that were unaffected by flow diversion, earth-dam failures, or periodic glacier-affected flow were used in regression analysis. Station statistics were computed for selected stations having 10 years of record that were influenced by factors not related to basin characteristics, primarily streamflow regulation or periodic glacier-affected flow. These statistics were not included in the regression analysis. Details of data collection and criteria for analysis are discussed in the following sections.

Annual high-duration flow statistics were computed for 230 streamflow-gaging stations, 177 in Alaska and 53 in Canada (table 7, at back of report). Of these, statistics from 222 stations were suitable for use in regression analysis. Monthly low-duration flow statistics were computed for 231 streamflow-gaging stations, 177 stations in Alaska and 54 stations in Canada (table 8, at back of report). Of these, statistics from 226 stations were suitable for use in regression analysis. Seasonal low-duration flow statistics were computed for 66 stations in Region 1, 65 stations in Alaska, and 1 station in Canada (table 9, at back of report). Of these, statistics from 65 stations were suitable for use in regression analysis. Seasonal lowflow frequency statistics were computed for 65 stations in Region 1, 64 stations in Alaska, and 1 station in Canada (table 9). All 65 stations were suitable for use in regression analysis.

Data Collection

Streamflow data for Alaska were collected by the USGS in accordance with methods described by Rantz and others (1982). Streamflow data for Canada were collected by the Water Survey of Canada. Canadian data collection methods are described in a series of internal manuals referred to collectively as the Hydrometric Data Computation Procedures Manual (Lynne Campo, Water Survey of Canada, written commun., 2002). These methods are similar or equivalent to USGS methods. Daily mean discharge for USGS streamflow-gaging stations in Alaska are available on the World Wide Web at http://waterdata.usgs.gov/ak/nwis/ or by contacting the Alaska Science Center at the address listed at the front of this report. Canadian streamflow data are available from Environment Canada (Environment Canada, 2002).

Data Adjustment

Stations with at least 10 years of daily mean flow data were reviewed for quality of record and for streamflow that could not be correlated with basin characteristics, such as regulated streamflow or glacialoutburst floods. Records were adjusted as needed by omitting stations, censoring years with non-recurring unsuitable streamflow, or segregating multiple parts of record for analysis, as discussed in the following paragraphs. Because few long-term stations exist and because climatic phenomena such as droughts are poorly documented in Alaska or not spatially extensive relative to the size of the State, analyses were not restricted to a common period of record but instead were performed on the entire period of record through water year 1999.

Records with non-homogeneities clearly not related to normal streamflow conditions (for example, temporary conditions related to land-surface elevation changes as a result of a large earthquake in 1964) were censored to remove inconsistent years.

Several Alaskan stations have at least 10 years of record but are subject to streamflows that cannot be correlated with basin characteristics. Streamflow regulated by dams, controlled by certain glacial phenomena, or in basins with indeterminate drainage areas can be analyzed but not used to develop predictive equations based on physical and climatic characteristics of the basin. Stations subject to these conditions are noted in <u>tables 7, 8</u>, and <u>9</u>.

Streamflow regulation may affect low flows but not high flows or vice versa, so some regulated stations were included as if unregulated in high- or low-flow analyses, wherever appropriate, based on knowledge of the type of regulation. For streamflow records affected by regulation, known dates of regulation were used to segregate the period of record into regulated and unregulated periods. Regulated periods of record were analyzed but excluded from regression analysis, and unregulated periods of record were analyzed and included in regression analysis. For example, the Kenai River (station 15258000) and the Chena River (station 15514000) had more than 10 years of record for periods of regulated flow and for periods of unregulated flow. For high-flow analysis, both regulated and unregulated periods were analyzed, resulting in two sets of station statistics for each station. For low-flow analysis, both periods were analyzed independently for the Kenai River, but were combined for the Chena River because low flows in that river are not affected by regulation.

Glacier-related controls on streamflow include glacial-outburst floods, caused when ice dams ponding water suddenly burst, and periods of low flow caused as ice-dammed lakes fill. The effect of these phenomena depends on factors such as the location of bedrock constrictions and interactions between multiple glaciers in a basin, which cannot be summarized by the available basin characteristic, the area of the basin covered by glaciers. Glacial-outburst floods generally affect high flows but have little effect on low flows, so for high-flow analysis, stations with glacial outbursts were analyzed for station statistics, but for low-flow analysis they were included in the regression analysis as unaffected stations. For the Knik River (station 15281000), the period when the glacier was no longer in a position to generate alternating damming and flooding was separated and analyzed independently from the period of glacially affected record. The glacially affected record was shorter than 10 years and was not analyzed.

Months and Seasons of Analysis

Commonly, flow duration analyses are performed for an entire water year (October through September) for high flows or climatic year (April through March) for low flows. This assumes that the record quality remains good and is unaffected by phenomena not related to basin characteristics, conditions often not met in cold environments. During Alaska winters, many rivers freeze over completely and their records include stage increases, caused by water flowing on top of ice, that do not correlate to the openwater rating curve. Because of the limited accuracy of winter streamflow records, annual analysis is useful only for high-flow analyses in environments like Alaska.

Monthly and seasonal analyses can be used for low flows in place of annual analyses to eliminate undesired effects of ice during winter months (Searcy, 1959). To select appropriate months and/or seasons for the analysis of Alaska streams, graphs of minimum, mean, and maximum daily mean discharge for the period of record for each station were prepared using the USGS Automated Data Processing System (ADAPS). Inspection of these hydrographs indicated that Alaska streams typically fit one of three general patterns: coastal, interior, or glacial (fig. 2). The distribution of these characteristic hydrographs was used to confirm the suitability of streamflow-analysis region boundaries and then to determine appropriate periods of analysis within each region.

In coastal streams, found along the Pacific Coast from southeastern Alaska to the Aleutian Islands (Regions 1 and 3, respectively), flow is affected yearround by rainfall, is not strongly affected by ice, and has a flat or rising trend following the snow melt peak (fig. 2). Coastal streams never had low flows in June and some began to freeze over by October; therefore, July, August, and September were the appropriate choices for monthly analyses. Although winter lowflow statistics may be of interest to some users and could be legitimately computed for some coastal streams, summer low-flow statistics are statistically more valid across these regions for seasonal analyses. Streams in these regions do not have a consistent downward or upward streamflow trend. Because the lowest flows could occur at any time within the openwater season, a seasonal analysis for the period July through September also was possible for selected coastal areas.

WATER YEARS 1957-66, 1968-86

Figure 2. Maximum, mean, and minimum daily mean discharge during the available period of record through water year 1999 for a typical coastal Alaska stream, a typical interior Alaska/Canada stream, and a typical glacial Alaska/Canada stream.

In contrast, flow in interior streams typically is affected by ice during the low-flow period in winter and spring, rises suddenly and strongly to a snow melt peak, then falls for the remainder of the open-water season (fig. 2). Interior streams are found in a wide

swath north of coastal areas, generally within Regions 2, 4, 5, and 6. Interior streams usually are ice-free from July through September, making analysis of July, August, and September appropriate for characterizing low flows. However, the lowest flows consistently occur near the end of the open-water season, which would strongly bias a seasonal analysis toward September. For this reason, no seasonal flow-duration or low-flow frequency statistics were computed for these streams. Streams north of the typical interior streams (Region 7) did not have a consistent hydrograph, but as a group they most closely resembled interior streams and were conservatively analyzed on a monthly basis.

Flow in glacial streams rises suddenly and strongly as winter snow melts, continues to rise until mid-summer, then declines throughout fall (<u>fig. 2</u>). These streams are found in both coastal and interior regions and were not plentiful enough to analyze separately from surrounding streams.

Flow-Duration Statistics

A flow-duration statistic is a point on a flowduration curve representing the percentage of time that particular streamflow is equaled or exceeded during a given period. For example, the 98-percent duration flow, considered a low flow, is equaled or exceeded 98 percent of the time, and the 2-percent duration flow, considered a high flow, is equaled or exceeded only 2 percent of the time. Flow-duration curves are cumulative frequency curves compiled by ranking all daily mean streamflows for the period in order of magnitude, then computing the percentage of time each streamflow is equaled or exceeded (Searcy, 1959). The final curve is a plot of the streamflows against their respective exceedance probabilities.

An internal (not publicly available) USGS computer program, DVSTAT, part of the USGS Automated Data Processing System (ADAPS), was used to compute flow durations. DVSTAT accomplishes these computations by tallying flows in 35 classes, with class boundaries based on the range of data analyzed. Although flow-duration curves technically describe streamflow characteristics only for the period of record analyzed, curves for long periods of record can be considered probability curves useful for estimation of future flows (Searcy, 1959).

The 15-, 10-, 9-, 8-, 7-, 6-, 5-, 4-, 3-, 2-, and 1-percent duration flows (high flows) for all stations analyzed are presented in <u>table 7</u>. The 98-, 95-, 90-, 85-, 80-, 70-, 60-, and 50-percent duration flows (low flows) for all stations analyzed are presented in <u>table 8</u>, arranged by month of analysis. The 98-, 95-, 90-, 85-, 80-, 70-, 60-, and 50-percent duration flows for Julythrough-September for Region 1 (Southeast Alaska) are presented in <u>table 9</u>.

Low-Flow Frequency Statistics

A low-flow frequency statistic is a point on a low-flow frequency curve representing the mean streamflow over a given number of days for a given recurrence interval. For example, the mean streamflow over 7 days is expected to be less than or equal to the 7-day, 2-year low, on average, at least once in a 2-year period. The nonexceedance probability is the inverse of the recurrence interval, so conversely, there is a 50percent probability that the mean streamflow over 7 days will be less than the 7-day, 2-year low flow in any year. Low-flow frequency curves are compiled from an annual series of the minimum mean flow for all consecutive *n*-day periods, where *n* is any number from 1 to 365, commonly 7. The annual series is ranked in order of magnitude, then the recurrence interval for each value is computed and a plot of the streamflows against their respective recurrence interval is prepared (Riggs, 1972). Recurrence intervals typically are computed by fitting a log-Pearson Type III distribution to the data.

USGS computer programs IOWDM, SWSTAT, and ANNIE (Flynn and others, 1995), available on the World Wide Web at http://water.usgs.gov/software/ surface_water.html, were used to load data, compute low-flow frequency statistics, and display output data, respectively. SWSTAT produces the series of *n*-day values, determines the minimum values for each year, ranks this annual series, fits the annual series to a log-Pearson type III distribution, plots the resulting curves, and extracts the specified low-flow frequency statistics. Because the data are fit to a distribution, however, the hydrologist must inspect the data for outliers and interpret whether the fitted distribution is valid.

The 7-day, 2-year flows (J-S7Q2) and 7-day, 10-year flows (J-S7Q10) for the season July through September for Region 1 (Southeast Alaska) are presented in <u>table 9</u>.

ESTIMATING FLOW STATISTICS FOR UNGAGED SITES

Estimated flow statistics are often needed for streams where no streamflow-gaging station exists. If sufficient records are available from a group of streamflow-gaging stations within a region, a regression model can be developed from flow statistics and basin characteristics of gaged sites to estimate flow statistics at ungaged sites where the basin characteristics can be measured. Multiple linear regression analysis is used to determine which of several basin characteristics (the independent variables) best explain, statistically, the variations in the flow statistic (the dependent variable). Regression analysis is also used to develop the final equations that relate the dependent and independent variables. Ordinary-leastsquares regression, a common form of regression analysis, was used for all analyses in this study.

Streamflow data and basin characteristics generally are log-normally distributed, so all data were log-transformed (base 10) before analysis. This required the addition of a constant value of 1 percent to all percentage data and 32 degrees to temperature data because values equal to or less than 0 cannot be logtransformed. To determine which basin characteristics best explain the variations in the flow statistics, the commercial statistics and data-management software S-Plus was used to perform a stepwise multiple linear regression for two or more representative dependent variables to determine suitable independent variables. Independent variables were further screened for statistical significance, correlation with other variables, and logical relation to streamflow in that area and were dropped if the equation's standard error fell by less than 5 percent (arbitrarily chosen as the point of diminishing returns), or if the variable could not logically be correlated with streamflow in that particular area. Once a suite of possible variables was selected for the representative flow statistics, only those variables that increased the coefficient of determination and reduced the standard error by more than 5 percent for a given flow statistic were included in the final equation.

Selected equations produced overlap, wherein a predicted value for a given flow-duration percentile exceeded a predicted value for the next lower percentile. In general, this problem did not occur within the combinations of ranges of variables expected in the study area. However, for selected equations in Region 7, constants or coefficients in the final equations had to be adjusted slightly to avoid overlap at expected ranges of variables. Adjustments were based on the values and trends in neighboring equations and were restricted to the minimum required to avoid overlap.

Annual High-Flow Statistics

Multiple stepwise regressions for the 2-percent and 10-percent duration flows were used to select appropriate variables for each region. Linear regressions for 15-, 10-, 9-, 8-, 7-, 6-, 5-, 4-, 3-, 2-, and 1-percent duration flows then were used to develop final estimating equations from the respective flow statistics and the selected basin characteristics as described above (<u>table 2</u>). The number of stations used in each region varied from 12 to 78 (<u>table 2</u>). Ranges of independent variables (basin characteristics) used in the equations are presented in <u>table 3</u>. **Table 2.**Estimating equations for annual high-duration flows in Regions 1–7,Alaska and conterminous basins in Canada

[Estimating equation: *O-Sn*, daily mean discharge for the water year October– September having an *n*-percent exceedance probability, in cubic feet per second; *A*, drainage area, in square miles; *P*, mean annual precipitation, in inches]

Estimating equation	Coefficient of determination	Standard error of estimate, in percent
Regions 1 and 3 (78 stree	amflow gaging stat	tions)
$O-S15 = 0.1358 A^{0.9660} P^{1.016}$	0.97	22
$O-S10 = 0.2145 A^{0.9472} P^{0.9740}$	0.97	21
$O-S9 = 0.2382 A^{0.9422} P^{0.9652}$	0.97	22
$O-S8 = 0.2670 A^{0.9374} P^{0.9550}$	0.97	22
$O-S7 = 0.3033 A^{0.9307} P^{0.9443}$	0.97	22
$O-S6 = 0.3486 A^{0.9234} P^{0.9329}$	0.96	22
$O-S5 = 0.4120 A^{0.9162} P^{0.9179}$	0.96	23
$O-S4 = 0.4875 A^{0.9074} P^{0.9057}$	0.96	23
$O-S3 = 0.6039 A^{0.8963} P^{0.8892}$	0.96	24
$O-S2 = 0.7960 A^{0.8829} P^{0.8697}$	0.95	25
$O-S1 = 1.279 A^{0.8637} P^{0.8293}$	0.94	27

Region 2 (22 streamflow gaging stations)

$O-S15 = 0.1487 A^{0.9842} P^{1.071}$	0.99	18
$O-S10 = 0.2281 A^{0.9777} P^{1.012}$	0.99	16
$O-S9 = 0.2546 A^{0.9753} P^{0.9959}$	0.99	15
$O-S8 = 0.2811 A \ ^{0.9737} P \ ^{0.9818}$	0.99	15
$O-S7 = 0.3145 A^{0.9713} P^{0.9662}$	0.99	15
$O-S6 = 0.3542 A \ ^{0.9682} P \ ^{0.9511}$	0.99	15
$O-S5 = 0.3996 A^{0.9651} P^{0.9362}$	0.99	15
$O-S4 = 0.4570 A^{0.9628} P^{0.9180}$	0.99	15
$O-S3 = 0.5385 A \ ^{0.9584} P \ ^{0.8979}$	0.99	15
$O-S2 = 0.6366 A^{0.9539} P^{0.8824}$	0.99	16
$O-S1 = 0.8041 A^{0.9462} P^{0.8666}$	0.99	16

Region 4 (42 streamflow gaging stations)

Q_{-} S15 - 2 443 × 10 ⁻² 4 1.055 p 1.340	0.98	30
$0.510 = 2.677 \times 10^{-2} \times 10^{42} \text{ p} 1301$	0.90	21
$0-510 = 3.637 \times 10^{-2} A^{-1.612} P^{-1.501}$	0.98	31
$O-S9 = 3.970 \times 10^{-2} A^{1.039} P^{1.293}$	0.98	31
$O-S8 = 4.353 \times 10^{-2} A^{1.036} P^{1.284}$	0.98	31
$O-S7 = 4.844 \times 10^{-2} A^{1.032} P^{1.274}$	0.98	31
$O-S6 = 5.426 \times 10^{-2} A^{1.027} P^{1.264}$	0.98	32
$O-S5 = 6.216 \times 10^{-2} A^{1.022} P^{1.249}$	0.98	32
$O-S4 = 7.213 \times 10^{-2} A^{1.017} P^{1.234}$	0.98	32
$O-S3 = 8.368 \times 10^{-2} A^{1.009} P^{1.225}$	0.98	32
$O-S2 = 0.1046 A^{1.001} P^{1.204}$	0.98	32
$O-S1 = 0.1505 A^{0.9881} P^{1.164}$	0.98	34

Table 2.Estimating equations for annual high-duration flows in Regions 1–7,Alaska and conterminous basins in Canada — *Continued*

[Estimating equation: *O-Sn*, daily mean discharge for the water year October– September having an *n*-percent exceedance probability, in cubic feet per second; *A*, drainage area, in square miles; *P*, mean annual precipitation, in inches]

Estimating equation	Coefficient of determination	Standard error of estimate, in percent
Region 5 (34 streamfle	ow gaging station	s)
$O-S15 = 6.391 \times 10^{-3} A^{1.106} P^{1.779}$	0.96	37
$O-S10 = 8.746 \times 10^{-3} A^{1.104} P^{1.751}$	0.96	38
$O-S9 = 9.570 \times 10^{-3} A^{1.103} P^{1.736}$	0.96	39
$O-S8 = 1.067 \times 10^{-2} A^{1.102} P^{1.718}$	0.96	39
$O-S7 = 1.215 \times 10^{-2} A^{1.100} P^{1.696}$	0.95	40
$O-S6 = 1.397 \times 10^{-2} A^{1.098} P^{1.668}$	0.95	41
$O-S5 = 1.579 \times 10^{-2} A^{1.097} P^{1.648}$	0.95	42
$O-S4 = 1.977 \times 10^{-2} A^{1.091} P^{1.609}$	0.95	43
$O-S3 = 2.508 \times 10^{-2} A^{1.087} P^{1.561}$	0.94	45
$O-S2 = 3.769 \times 10^{-2} A^{1.081} P^{1.468}$	0.94	46
$O-S1 = 5.859 \times 10^{-2} A^{1.078} P^{1.372}$	0.93	50

Region 6 (34 streamflow gaging stations)

$O-S15 = 3.927 \times 10^{-3} A^{1.075} P^{1.870}$	0.99	29
$O-S10 = 8.141 \times 10^{-3} A^{1.050} P^{1.765}$	0.99	27
$O-S9 = 9.743 \times 10^{-3} A^{1.045} P^{1.736}$	0.99	27
$O-S8 = 1.200 \times 10^{-2} A^{1.038} P^{1.703}$	0.99	28
$O-S7 = 1.515 \times 10^{-2} A^{1.031} P^{1.664}$	0.99	28
$O-S6 = 1.953 \times 10^{-2} A^{1.023} P^{1.618}$	0.99	29
$O-S5 = 2.546 \times 10^{-2} A^{1.015} P^{1.577}$	0.99	29
$O-S4 = 3.601 \times 10^{-2} A^{1.005} P^{1.514}$	0.99	29
$O-S3 = 5.281 \times 10^{-2} A^{0.9940} P^{1.445}$	0.99	29
$O-S2 = 9.204 \times 10^{-2} A^{0.9783} P^{1.342}$	0.99	31
$O-S1 = 0.2144 A^{0.9512} P^{1.193}$	0.99	33

Region 7	(12	streamflow	gaging	stations)
----------	-----	------------	--------	-----------

$O-S15 = 1.931 \times 10^{-3} A^{1.065} P^{2.171}$	0.98	56
$O-S10 = 1.124 \times 10^{-2} A^{1.023} P^{1.798}$	0.98	54
$O-S9 = 1.633 \times 10^{-2} A^{1.017} P^{1.715}$	0.98	51
$O-S8 = 2.406 \times 10^{-2} A^{1.013} P^{1.627}$	0.98	50
$O-S7 = 3.630 \times 10^{-2} A^{1.009} P^{1.530}$	0.98	48
$O-S6 = 5.434 \times 10^{-2} A^{1.004} P^{1.441}$	0.98	46
$O-S5 = 9.005 \times 10^{-2} A^{0.9990} P^{1.325}$	0.98	44
$O-S4 = 0.1671 A^{0.9932} P^{1.182}$	0.98	40
$O-S3 = 0.3611 A^{0.9936} P^{0.9825}$	0.98	39
$O-S2 = 0.8276 A^{0.9905} P^{0.7864}$	0.99	36
$O-S1 = 2.615 A^{0.9860} P^{0.5107}$	0.98	38

Region	Range of di (squar	rainage area e miles)	Range of mean annual precipitation (inches)			
	Minimum	Maximum	Minimum	Maximum		
1, 3	1.82	571	70	300		
2	92.7	19,900	12	100		
4	13.4	19,400	20	158		
5	269	11,400	10	24		
6 (small basins)	9.19	100	15	80		
6 (medium basins)	100	10,000	15	30		
6 (large basins)	10,000	321,000	15	25		
7	2.79	9,520	8	35		

Table 3.Range of basin characteristics used to determine estimatingequations for high-flow statistics in Regions 1-7, Alaska and conterminousbasins in Canada

Monthly and Seasonal Low-Flow Statistics

For monthly flow-duration analysis, multiple stepwise regressions for July and September 90-percent duration flows and July and September 50-percent duration flows were used to select appropriate variables for each region. For seasonal flow-duration analysis in Region 1, the July-through-September 90-percent duration flow and July-through-September 50-percent duration flow were used to select variables for flow duration analysis and the 7-day, 10-year flow was used to select variables for the low-flow frequency analysis. Linear regressions for the 98-, 95-, 90-, 85-, 80-, 70-, 60-, and 50-percent duration flows and for 7-day, 2-year and 7-day, 10-year low-flow frequency statistics then were used to develop final estimating equations from the respective flow statistics and the selected basin characteristics as described above (table 4 and 5). The number of stations used in each region ranged from 13 to 65 (table 4) for monthly analyses and was 65 for seasonal analyses. Ranges of independent variables (basin characteristics) used in the equations are presented in table 6.

Accuracy and Limitations of Estimating Equations

The adequacy of the estimating equations can be evaluated by two measures included in tables 2, 4, and 5. The coefficient of determination, also known as the R-squared (R^2) , is the percentage of variation in the dependent variable explained by the independent variables. This value is typically high for regressions of flow statistics and basin characteristics. A second value, the standard error of estimate, is the average variation between the regression estimates and the station data for the stations used to develop the regression equations. About two-thirds of the regression estimates for the stations have errors less than the standard error of estimate. The standard errors of estimate presented in the tables are thus a cumulative assessment of each particular equation and do not apply to any one station. Standard errors of estimate typically are slightly less than the average prediction error, which is a measure of the accuracy of the regression equations for predicting values at sites not used to develop the equations. Average prediction error is not available for the equations in this report. Likewise, confidence limits (prediction intervals) for estimated values for a particular station require data not available for this report. Standard errors of estimate were computed in log units and converted to percentages (Hardison, 1971). Unlike the coefficient of determination, the standard error of estimate typically varies over a wide range. Standard errors of estimate for this study ranged from 15 to 56 percent for annual high-duration flows, 25 to greater than 500 percent for monthly low-duration flows, 32 to 66 percent for seasonal low-duration flows, and 53 to 64 percent for low-flow frequency statistics (tables 2, 4, and 5).

Estimating equation	Coefficient of determination	Standard error of estimate, in percent							
Region 1 (65 streamflow gaging stations)									
JULY98 = $1.466 \times 10^{-10} A^{1.136} P^{1.616} E^{2.061}$	0.94	63							
JULY95 = $7.809 \times 10^{-10} A^{1.114} P^{1.610} E^{1.879}$	0.95	53							
JULY90 = $2.287 \times 10^{-9} A^{1.084} P^{1.566} E^{1.801}$	0.96	48							
JULY85 = $4.888 \times 10^{-9} A^{1.068} P^{1.555} E^{1.730}$	0.96	46							
JULY80 = $1.080 \times 10^{-8} A^{1.055} P^{1.513} E^{1.671}$	0.96	43							
JULY70 = $2.971 \times 10^{-8} A^{1.041} P^{1.454} E^{1.601}$	0.96	40							
JULY60 = $8.580 \times 10^{-8} A^{1.023} P^{1.398} E^{1.523}$	0.97	36							
JULY50 = $2.682 \times 10^{-7} A^{1.003} P^{1.323} E^{1.445}$	0.97	33							
AUG98 = $3.010 \times 10^{-10} A^{1.193} P^{1.477} E^{1.986}$	0.93	69							
AUG95 = $1.397 \times 10^{-9} A^{1.160} P^{1.367} E^{1.896}$	0.94	60							
AUG90 = $3.162 \times 10^{-9} A^{1.138} P^{1.374} E^{1.820}$	0.95	56							
AUG85 = $1.313 \times 10^{-8} A^{1.093} P^{1.290} E^{1.724}$	0.95	51							
AUG80 = $2.718 \times 10^{-8} A^{1.070} P^{1.241} E^{1.685}$	0.95	48							
AUG70 = $8.525 \times 10^{-8} A^{1.045} P^{1.180} E^{1.606}$	0.95	46							
AUG60 = $2.664 \times 10^{-7} A^{1.028} P^{1.151} E^{1.503}$	0.96	42							
AUG50 = $6.836 \times 10^{-7} A^{1.013} P^{1.151} E^{1.405}$	0.96	40							
SEPT98 = $3.379 \times 10^{-8} A^{1.091} P^{1.456} E^{1.380}$	0.91	67							
SEPT95 = $3.405 \times 10^{-7} A^{1.051} P^{1.259} E^{1.258}$	0.93	54							
SEPT90 = $2.052 \times 10^{-6} A^{1.044} P^{1.208} E^{1.095}$	0.94	46							
SEPT85 = $5.742 \times 10^{-6} A {}^{1.023} P {}^{1.175} E {}^{1.012}$	0.94	43							
SEPT80 = $1.035 \times 10^{-5} A^{1.017} P^{1.192} E^{0.9441}$	0.95	40							
SEPT70 = $2.979 \times 10^{-5} A^{0.9962} P^{1.171} E^{0.8582}$	0.95	36							
SEPT60 = $6.642 \times 10^{-5} A \ ^{0.9818} P \ ^{1.175} E \ ^{0.7838}$	0.96	33							
SEPT50 = $1.515 \times 10^{-4} A^{0.9701} P^{1.168} E^{0.7121}$	0.96	30							

Estimating equation	Coefficient of determination	Standard error of estimate, in percent
Region 2 (23 streamflow g	aging stations)	
JULY98 = $4.451 \times 10^{-7} A^{1.033} P^{1.349} E^{1.302}$	0.97	34
JULY95 = $2.052 \times 10^{-7} A^{1.02} P^{1.340} E^{1.419}$	0.97	31
JULY90 = $2.251 \times 10^{-7} A^{1.022} P^{1.327} E^{1.432}$	0.97	30
JULY85 = $2.479 \times 10^{-7} A^{1.019} P^{1.317} E^{1.436}$	0.97	29
JULY80 = $3.103 \times 10^{-7} A^{1.015} P^{1.304} E^{1.425}$	0.97	28
JULY70 = $4.953 \times 10^{-7} A^{1.009} P^{1.284} E^{1.393}$	0.97	28
JULY60 = $6.901 \times 10^{-7} A^{1.004} P^{1.258} E^{1.379}$	0.98	27
JULY50 = $1.034 \times 10^{-6} A^{0.9975} P^{1.230} E^{1.356}$	0.98	25
AUG98 = $6.350 \times 10^{-2} A^{0.9755} P^{1.085}$	0.93	46
AUG95 = $6.418 \times 10^{-2} A^{0.9532} P^{1.176}$	0.93	46
AUG90 = $7.253 \times 10^{-2} A^{0.9493} P^{1.185}$	0.93	47
AUG85 = $8.312 \times 10^{-2} A^{0.9465} P^{1.177}$	0.93	48
AUG80 = $9.504 \times 10^{-2} A^{0.9410} P^{1.168}$	0.92	48
$AUG70 = 0.1082 A^{0.9382} P^{1.164}$	0.92	48
$AUG60 = 0.1227 A^{0.9360} P^{1.158}$	0.93	48
$AUG50 = 0.1334 A^{0.9358} P^{1.159}$	0.93	47
SEPT98 = $8.800 \times 10^{-2} A^{0.9807} P^{0.7966}$	0.95	38
SEPT95 = $8.488 \times 10^{-2} A^{0.9829} P^{0.8424}$	0.95	38
SEPT90 = $8.061 \times 10^{-2} A^{0.9837} P^{0.9001}$	0.95	40
SEPT85 = $8.219 \times 10^{-2} A^{0.9824} P^{0.9290}$	0.95	41
SEPT80 = $8.455 \times 10^{-2} A^{0.9791} P^{0.9536}$	0.95	40
SEPT70 = $9.162 \times 10^{-2} A^{0.9734} P^{0.9807}$	0.95	39
SEPT60 = $9.777 \times 10^{-2} A^{0.9675} P^{1.006}$	0.95	39
SEPT50 = $0.1079 A^{0.9591} P^{1.027}$	0.95	38

Estimating equation	Coefficient of determination	Standard error of estimate, in percent							
Regions 3 and 4 (58 streamflow	Regions 3 and 4 (58 streamflow gaging stations)								
JULY98 = $9.428 \times 10^{-5} A^{1.118} P^{1.211} E^{0.6445}$	0.95	64							
JULY95 = $1.257 \times 10^{-4} A^{1.112} P^{1.226} E^{0.6198}$	0.96	58							
JULY90 = $1.493 \times 10^{-4} A^{1.099} P^{1.213} E^{0.6298}$	0.96	53							
JULY85 = $1.842 \times 10^{-4} A^{1.091} P^{1.212} E^{0.6192}$	0.96	51							
JULY80 = $2.078 \times 10^{-4} A^{1.085} P^{1.215} E^{0.6146}$	0.97	49							
JULY70 = $2.576 \times 10^{-4} A^{1.075} P^{1.222} E^{0.6031}$	0.97	45							
JULY60 = $3.327 \times 10^{-4} A^{1.066} P^{1.224} E^{0.5869}$	0.97	43							
JULY50 = $4.135 \times 10^{-4} A^{1.058} P^{1.221} E^{0.5771}$	0.97	41							
AUG98 = $3.471 \times 10^{-4} A^{1.130} P^{1.054} E^{0.5038}$	0.95	63							
AUG95 = $2.869 \times 10^{-4} A^{1.140} P^{1.103} E^{0.5219}$	0.96	55							
AUG90 = $2.773 \times 10^{-4} A^{1.137} P^{1.139} E^{0.5263}$	0.96	53							
AUG85 = $2.794 \times 10^{-4} A^{1.134} P^{1.168} E^{0.5244}$	0.96	51							
AUG80 = $3.035 \times 10^{-4} A^{1.128} P^{1.179} E^{0.5208}$	0.97	49							
AUG70 = $3.774 \times 10^{-4} A^{1.118} P^{1.199} E^{0.5046}$	0.97	46							
AUG60 = $4.432 \times 10^{-4} A^{1.110} P^{1.227} E^{0.4880}$	0.97	43							
AUG50 = $5.313 \times 10^{-4} A^{1.101} P^{1.246} E^{0.4744}$	0.97	41							
SEPT98 = $1.655 \times 10^{-2} A^{1.126} P^{0.9572}$	0.96	46							
SEPT95 = $1.474 \times 10^{-2} A^{1.125} P^{1.030}$	0.96	46							
SEPT90 = $1.528 \times 10^{-2} A^{1.110} P^{1.080}$	0.97	44							
SEPT85 = $1.555 \times 10^{-2} A^{1.108} P^{1.109}$	0.97	44							
SEPT80 = $1.599 \times 10^{-2} A^{1.103} P^{1.131}$	0.97	43							
SEPT70 = $1.636 \times 10^{-2} A^{1.094} P^{1.175}$	0.97	41							
SEPT60 = $1.676 \times 10^{-2} A^{1.086} P^{1.214}$	0.97	40							
SEPT50 = $1.745 \times 10^{-2} A^{1.076} P^{1.251}$	0.97	39							

Estimating equation	Coefficient of determination	Standard error of estimate, in percent	
Region 5 (35 streamflow g	_		
JULY98 = $4.916 \times 10^{-10} A^{1.250} P^{1.885} E^{1.705}$	0.94	64	
JULY95 = $7.603 \times 10^{-10} A^{1.232} P^{1.687} E^{1.754}$	0.94	62	7 m
JULY90 = $9.022 \times 10^{-10} A^{1.227} P^{1.687} E^{1.753}$	0.94	59	Elen 5
JULY85 = $1.737 \times 10^{-9} A^{1.220} P^{1.716} E^{1.683}$	0.94	57	non 6 mg
JULY80 = $5.006 \times 10^{-9} A^{1.201} P^{1.695} E^{1.590}$	0.95	54	the mark the second
JULY70 = $1.964 \times 10^{-8} A^{1.190} P^{1.689} E^{1.452}$	0.95	51	they Sal
JULY60 = $7.896 \times 10^{-8} A^{1.181} P^{1.682} E^{1.306}$	0.96	48	3.5
JULY50 = $3.238 \times 10^{-7} A^{1.171} P^{1.642} E^{1.170}$	0.96	45	Car an
AUG98 = $2.021 \times 10^{-10} A^{1.271} P^{1.910} E^{1.755}$	0.93	68	
AUG95 = $1.685 \times 10^{-9} A^{1.257} P^{1.833} E^{1.552}$	0.94	63	
AUG90 = $4.340 \times 10^{-9} A^{1.238} P^{1.644} E^{1.535}$	0.94	60	
AUG85 = $8.224 \times 10^{-9} A^{1.231} P^{1.621} E^{1.481}$	0.94	58	
AUG80 = $3.519 \times 10^{-8} A^{1.219} P^{1.625} E^{1.324}$	0.95	55	
AUG70 = $5.765 \times 10^{-7} A^{1.198} P^{1.598} E^{1.028}$	0.95	52	
AUG60 = $1.740 \times 10^{-3} A^{1.164} P^{1.911}$	0.95	52	
$AUG50 = 2.499 \times 10^{-3} A^{1.161} P^{1.819}$	0.95	49	
SEPT98 = $2.076 \times 10^{-9} A^{1.234} P^{1.806} E^{1.516}$	0.94	59	
SEPT95 = $2.731 \times 10^{-4} A^{1.188} P^{2.272}$	0.94	60	
SEPT90 = $5.742 \times 10^{-4} A^{1.182} P^{2.057}$	0.95	53	
SEPT85 = $1.009 \times 10^{-3} A^{1.171} P^{1.917}$	0.95	52	
SEPT80 = $1.188 \times 10^{-3} A^{1.170} P^{1.886}$	0.95	49	
SEPT70 = $1.757 \times 10^{-3} A^{1.166} P^{1.793}$	0.96	46	
SEPT60 = $2.110 \times 10^{-3} A^{1.162} P^{1.775}$	0.96	43	
SEPT50 = $2.506 \times 10^{-3} A^{1.158} P^{1.754}$	0.97	41	

[Estimating equation: MONTHn, n percent low-duration flow for the indicated month, in cubic feet per second; A, drainage area in square miles; P, mean annual precipitation, in inches; E, mean basin elevation, in feet above sea level; G, area of glaciers, in percentage of total basin area. >, greater than]

Estimating equation	Coefficient of determination	Standard error of estimate, in percent							
Region 6 (36 streamflow gaging stations)									
JULY98 = $1.008 \times 10^{-3} A^{1.158} P^{1.612} (G+1)^{0.5516}$	0.97	68							
JULY95 = $1.255 \times 10^{-3} A^{1.146} P^{1.613} (G+1)^{0.5577}$	0.98	58							
JULY90 = $1.635 \times 10^{-3} A^{1.138} P^{1.602} (G+1)^{0.5266}$	0.98	51							
JULY85 = $2.189 \times 10^{-3} A^{1.127} P^{1.572} (G+1)^{0.5107}$	0.98	48							
JULY80 = $2.695 \times 10^{-3} A^{1.118} P^{1.555} (G+1)^{0.4955}$	0.98	45							
JULY70 = $3.512 \times 10^{-3} A^{1.106} P^{1.553} (G+1)^{0.4592}$	0.99	41							
JULY60 = $5.051 \times 10^{-3} A^{1.092} P^{1.509} (G+1)^{0.4373}$	0.99	37							
JULY50 = $6.682 \times 10^{-3} A^{1.081} P^{1.486} (G+1)^{0.4163}$	0.99	34							
AUG98 = $9.131 \times 10^{-4} A^{1.188} P^{1.555} (G+1)^{0.3826}$	0.96	78							
AUG95 = $1.674 \times 10^{-3} A^{1.157} P^{1.486} (G+1)^{0.4148}$	0.97	63							
AUG90 = $1.690 \times 10^{-3} A^{1.144} P^{1.566} (G+1)^{0.4229}$	0.98	59							
AUG85 = $2.193 \times 10^{-3} A^{1.129} P^{1.552} (G+1)^{0.4282}$	0.98	54							
AUG80 = $2.636 \times 10^{-3} A^{1.119} P^{1.542} (G+1)^{0.4306}$	0.98	50							
AUG70 = $3.890 \times 10^{-3} A^{1.102} P^{1.507} (G+1)^{0.4160}$	0.98	43							
AUG60 = $4.962 \times 10^{-3} A^{1.095} P^{1.494} (G+1)^{0.3921}$	0.99	39							
AUG50 = $6.399 \times 10^{-3} A^{1.085} P^{1.487} (G+1)^{0.3567}$	0.99	37							
SEPT98 = $7.145 \times 10^{-4} A^{1.182} P^{1.673}$	0.97	63							
SEPT95 = $1.115 \times 10^{-3} A^{1.167} P^{1.615}$	0.98	53							
SEPT90 = $2.254 \times 10^{-3} A^{1.141} P^{1.497}$	0.98	47							
SEPT85 = $2.815 \times 10^{-3} A^{1.128} P^{1.495}$	0.98	45							
SEPT80 = $3.222 \times 10^{-3} A^{1.121} P^{1.496}$	0.98	43							
SEPT70 = $4.130 \times 10^{-3} A^{1.111} P^{1.487}$	0.98	41							
SEPT60 = $4.437 \times 10^{-3} A^{1.106} P^{1.517}$	0.99	39							
SEPT50 = $5.094 \times 10^{-3} A^{1.097} P^{1.532}$	0.99	36							

5

[Estimating equation: MONTHn, n percent low-duration flow for the indicated month, in cubic feet per second; A, drainage area in square miles; P, mean annual precipitation, in inches; E, mean basin elevation, in feet above sea level; G, area of glaciers, in percentage of total basin area. >, greater than]

Estimating equation	Coefficient of determination	Standard error of estimate, in percent						
Region 7 (13 streamflow gaging stations)								
¹ JULY98 = $1.499 \times 10^{-5} A^{1.082} P^{3.243}$	0.92	120						
1,2 JULY95 = 2.500 × 10 ⁻⁵ A $^{1.078}$ P $^{3.119}$	0.93	100						
¹ JULY90 = $9.181 \times 10^{-5} A^{1.025} P^{2.894}$	0.94	87						
1 JULY85 = 1.485 × 10 ⁻⁴ A $^{1.004}$ P $^{2.820}$	0.94	87						
¹ JULY80 = $2.200 \times 10^{-4} A^{0.9941} P^{2.744}$	0.94	85						
¹ JULY70 = $4.590 \times 10^{-4} A^{0.9756} P^{2.600}$	0.94	84						
¹ JULY60 = $8.492 \times 10^{-4} A^{0.9624} P^{2.480}$	0.94	82						
¹ JULY50 = $1.462 \times 10^{-3} A^{0.9580} P^{2.364}$	0.94	78						
1,2 AUG98 = $3.034 \times 10^{-7} A \ ^{1.082} P \ ^{4.100}$	0.67	> 500						
1,2 AUG95 = 2.000 × 10 ⁻⁶ A $^{1.030}$ P $^{3.768}$	0.78	342						
1,2 AUG90 = 1.000 × 10 ⁻⁵ A $^{0.9896}$ P $^{3.500}$	0.84	198						
${}^{1}\text{AUG85} = 3.356 \times 10^{-5} A {}^{0.9769} P {}^{3.341}$	0.87	150						
1 AUG80 = 4.146 × 10 ⁻⁵ A $^{0.9650}$ P $^{3.337}$	0.87	150						
1 AUG70 = 7.943 × 10 ⁻⁵ A $^{0.9515}$ P $^{3.223}$	0.87	160						
1 AUG60 = 1.847 × 10 ⁻⁴ A ${}^{0.9451}$ P ${}^{3.020}$	0.87	150						
¹ AUG50 = $4.039 \times 10^{-4} A^{0.9478} P^{2.824}$	0.86	150						
¹ SEPT98 = $1.381 \times 10^{-5} A^{1.077} P^{3.162}$	0.79	350						
¹ SEPT95 = $6.081 \times 10^{-5} A^{1.047} P^{2.996}$	0.81	260						
¹ SEPT90 = $6.081 \times 10^{-5} A^{1.023} P^{2.905}$	0.81	260						
¹ SEPT85 = $1.069 \times 10^{-4} A^{0.9929} P^{2.840}$	0.82	220						
¹ SEPT80 = $1.876 \times 10^{-4} A^{0.9844} P^{2.718}$	0.82	210						
1,2 SEPT70 = 3.162 × 10 ⁻⁴ A $^{0.9800}$ P $^{2.625}$	0.84	183						
¹ SEPT60 = $5.970 \times 10^{-4} A^{0.9765} P^{2.505}$	0.86	160						
¹ SEPT50 = $1.525 \times 10^{-3} A^{0.9659} P^{2.279}$	0.87	140						

¹Equations in Region 7 have unacceptably large standard error of estimate. See text page 22 for recommended alternate methods.

 $^2\mbox{Equation}$ was adjusted from least-squares fit to maintain consistency between various percentiles.

Table 5. Estimating equations for seasonal low-duration flows and low-flow frequencies for July-through-September in Region 1, Alaska

[Estimating equation: J-Sn: daily mean discharge for the season July–through-September having an *n*-percent exceedance probability, in cubic feet per second; J-S7Qn: daily mean discharge for the season July–through-September for the 7-day, *n*-year low flow, in cubic feet per second; *A*, drainage area, in square miles; *P*, mean annual precipitation, in inches; *E*, mean basin elevation, in feet above sea level]

Estimating equation	Coefficient of determination	Standard error of estimate, in percent						
Region 1 (65 gaging stations)								
$J-S98 = 2.532 \times 10^{-9} A^{1.142} P^{1.521} E^{1.674}$	0.93	66						
$J-S95 = 7.423 \times 10^{-9} A^{1.104} P^{1.485} E^{1.612}$	0.94	55						
$J-S90 = 2.479 \times 10^{-8} A^{1.080} P^{1.451} E^{1.520}$	0.95	49						
$J-S85 = 5.016 \times 10^{-8} A^{1.058} P^{1.380} E^{1.506}$	0.95	45						
$J-S80 = 8.813 \times 10^{-8} A^{1.044} P^{1.347} E^{1.477}$	0.96	43						
$J-S70 = 2.456 \times 10^{-7} A^{1.028} P^{1.300} E^{1.407}$	0.96	39						
$J-S60 = 6.997 \times 10^{-7} A^{1.013} P^{1.264} E^{1.323}$	0.97	35						
$J-S50 = 2.089 \times 10^{-6} A^{0.9961} P^{1.226} E^{1.232}$	0.97	32						
$J-S7Q10 = 3.610 \times 10^{-9} A^{1.137} P^{1.492} E^{1.637}$	0.93	64						
$J-S7Q2 = 4.984 \times 10^{-8} A \ ^{1.090} P \ ^{1.424} E \ ^{1.433}$	0.94	53						

Table 6. Range of basin characteristics used to determine estimating equations for low-flow statistics in Regions 1-7, Alaska and conterminous basins in Canada

[-, basin characteristic not used in equations for this region]

Region	Range of drainage area jion (square miles)		Range of drainage area (square miles) Range of mean annual precipitation (inches)		Range of r elev (fe	nean basin ation eet)	Range of area of glaciers (percent)	
	Minimum	Maximum	Minimum	Maximum	Minimum	Maximum	Minimum	Maximum
1	1.82	571	70	300	358	3,900	_	_
2	92.7	19,900	12	100	3,500	6,180	_	-
3,4	4.74	19,400	20	220	140	3,920	_	-
5	29.7	114,000	10	24	1,800	4,540	_	-
6	9.19	321,000	15	80	_	_	0	69
7	5.83	9,520	8	35	_	-	_	-

The estimating equations presented in <u>tables 2</u>, 4, and 5 can be used for estimating flow in streams in Alaska and conterminous basins in Canada that are not affected by natural or anthropogenic streamflow regulation. Streamflow in basins with flow diversions, dams, periodically releasing glacial impoundments, or other streamflow conditions not correlated to basin characteristics cannot be estimated accurately with these equations. The R^2 and standard error of estimate for each equation are valid only when the equations are used for sites with values of independent variables that fall within the ranges in tables 3 and 6. The range of drainage area and mean annual precipitation for the stations in Region 6 is wide, but only the smaller basins receive precipitation amounts near the upper bounds of the range. Medium-size basins (drainage area between 100 and 10,000 mi²) receive between 15 and 30 in. of precipitation annually, and the largest basins $(10,000 \text{ to } 321,000 \text{ mi}^2)$ receive between 15 and 25 in. of precipitation annually. The equations presented should not be used for large basins having mean annual precipitation greater than 25 in., or for medium basins having precipitation greater than 30 in., but then most large and medium basins in Alaska do not receive large amounts of mean annual precipitation. In fact, the only large basins in Alaska are stations on the Yukon River, which were included in the analysis and whose mean annual precipitation values define the range presented in table 3.

Equations for Region 7 must be used with particular caution because the equations were developed using a small number of stations over a very wide area which limits their statistical validity. Standard errors of estimate for these equations are remarkably large, but equations that may have explained more of the variability in the small data set were not physically or hydrologically reasonable. Lowflow statistics may be improved for ungaged sites in this region by collecting additional data on the ungaged stream and correlating them with data collected for the same period at a nearby, hydrologically similar gaging station. Methods of correlation are described by Riggs (1972), Hirsch (1982), Hirsch and Gilroy (1984), and Stedinger and Thomas (1985) and were applied to selected Alaska streams on the Kenai Peninsula by Savard and Scully (1984). Correlation methods may also be appropriate for high-flow statistics if the conditions causing the high flows are regional in nature.

PROCEDURES FOR ESTIMATING FLOW STATISTICS

Within the limitations previously described, the flow statistics and equations presented in this report can be used to estimate high-flow and low-flow statistics for gaged and ungaged streams throughout the State. Procedures for using this report to estimate flow statistics for streamflow-gaging stations and several types of ungaged sites follow.

- 1. For streamflow-gaging stations, estimates can be read directly from <u>tables 7, 8</u>, or <u>9</u>.
- 2. For ungaged sites having a drainage area in only one region and not near a gaging station on the same stream, basin characteristics can be determined from a topographic map (or from digital data, as described in <u>table 1</u>) and the precipitation map on plate 2 of Jones and Fahl (1994), available at <u>http://ak.water.usgs.gov/Publications/pdf.reps/wrir93.4179.plate2.pdf</u> or <u>http://agdc.usgs.gov/ data/usgs/water/statewide.html</u>. Basin characteristics for the ungaged site then can be substituted into the equations from <u>tables 2, 4</u>, or <u>5</u> for the appropriate region.
- 3. For ungaged sites having a drainage area that falls in two regions, basin characteristics for the entire basin can be determined as described in procedure 2 and substituted into equations from <u>tables 2</u>, 4, or <u>5</u> for each region. The two estimates should then be weighted by the respective drainage area in each region using the equation

$$Q = \frac{Q_1 A_1 + Q_2 A_2}{A_1 + A_2}, \tag{1}$$

where

- Q is the weighted flow statistic,
- Q_1 is the value for the flow statistic if the entire basin were located in Region 1,
- A_1 is the amount of drainage area in Region 1,
- Q_2 is the value for the flow statistic if the entire basin were located in Region 2, and
- A_2 is the amount of drainage area in Region 2.

4. For ungaged sites on a gaged stream having a drainage area between 50 and 150 percent of the drainage area of the gaging station, the estimate from the streamflow-gaging station obtained as for procedure 1 and the estimate for the ungaged site obtained as for procedure 2 or 3 can be weighted for an improved estimate (Ries and Friesz, 2000, p. 37). First, a correction factor for the gaging station, C_G, is computed from the equation

$$C_G = Q_{Gt} / Q_{Gr}, \qquad (2)$$

where

 Q_{Gt} is the value of the flow statistic for the gaging station from <u>table 7</u>, <u>8</u>, or <u>9</u>, and

 Q_{Gr} is the value of the flow statistic for the gaging station computed from the regression equation.

Next, a correction factor for the ungaged site, C_U , is computed from the equation

$$C_U = C_G - \frac{\Delta A(C_G - 1)}{a(A_G)}$$
, (3)

where

- ΔA is the absolute value of the difference between the drainage area of the gaging station and the ungaged site, and
 - *a* is 0.5 for ungaged site drainage areas larger than the gaging-station drainage areas and 0.7 for drainage areas smaller than the gaging-station drainage area.

SUMMARY

Streamflow statistics were computed for annual high-duration flows at 230 streamflow-gaging stations, for monthly low-duration flows at 231 stations, for seasonal low-duration flows at 66 stations, and for seasonal low-flow frequencies at 65 stations in Alaska and conterminous basins in Canada. High-duration flow statistics were computed for the October-through-September water year statewide and low-duration flow statistics were computed for the individual months of July, August, and September statewide. Seasonal lowduration flow statistics were computed for the period July-through-September for Region 1 (southeastern Alaska). Low-flow frequency statistics also were computed for the season July-through-September in Region 1. Individual months for low-flow analyses were used to eliminate winter low flows, when ice effects limit the quality of the data, and to avoid the trend toward low flows at the end of the open-water season that appeared in many interior streams. This trend was not apparent in Region 1, permitting a seasonal analysis there.

For stations not included in the 1994 peak-flow analysis by Jones and Fahl, new basin characteristics were determined using digital methods and modifications of methods used by Jones and Fahl. For the small number of stations updated, the differences in methods are not significant to the analysis, but in general, basin characteristics should be determined by the user in a manner as consistent as possible with the previous methods of Jones and Fahl to preserve the statistical validity of the estimating procedure.

The State was divided into seven regions for estimating streamflow statistics, and estimating equations were developed from ordinary-least-squares regression models of the respective flow statistics and basin characteristics. Estimating equations for annual 15-, 10-, 9-, 8-, 7-, 6-, 5-, 4-, 3-, 2-, and 1-percent duration flows and monthly 98-, 95-, 90-, 85-, 80-, 70-, 60-, and 50-percent duration flows for July, August, and September were developed for all seven regions. Seasonal 98-, 95-, 90-, 85-, 80-, 70-, 60-, and 50percent duration flows and 7-day, 2-year and 7-day, 10-year low-flow frequencies for July-through-September were developed for Region 1. A total of 222, 226, and 65 stations were used in the annual highflow, monthly low-flow analyses, and seasonal lowflow analyses, respectively. Region 7 (northern and northwestern Alaska) contains few gaging stations but is not hydrologically similar to adjacent regions. The estimating equations for Region 7 are not as strong statistically as equations for other regions because of the small number of stations, and therefore should be used with caution. Equations for estimating streamflow statistics in other regions can be used within limitations of basin characteristics and streamflow alteration described in the report.

REFERENCES CITED

Ashton, W.S., and Carlson, R.F., 1984, Determination of seasonal, frequency and durational aspects of streamflow with regard to fish passage through roadway drainage structures, Final Report: Institute of Water Resources, University of Alaska, 51 p.

Carlson, R.F., 1987, Seasonal, frequency and durational aspects of streamflow in southeast and coastal Alaska, Final Report: Water Research Center, Institute of Northern Engineering, University of Alaska-Fairbanks, 40 p.

Childers, J.M., Meckel, J.P., and Anderson, G.S., 1972, Floods of August 1967 in east-central Alaska: U.S. Geological Survey Water-Supply Paper 1880-A, 77 p.

Environment Canada, 2002, Hydat for Windows, Hydat CD Version 2.01, Surface Water and Sediment Data: Water Survey of Canada. CD-ROM.

Environmental Systems Research Institute, Inc., 1997, Understanding GIS, the ARC/INFO method: Redlands, Calif., 10 chapters., various pagination.

Flynn, K.M., Hummel, P.R., Lumb, A.M., and Kittle, J.L., Jr., 1995, User's manual for ANNIE, version 2, a computer program for interactive hydrologic data management: U.S. Geological Survey Water-Resources Investigations Report 95-4085, 211 p.

Hardison, C.H., 1971, Prediction error of regression estimates of streamflow characteristics at ungaged streams: U.S. Geological Survey Professional Paper 750-C, p. C228-C236.

Hirsch, R.M., 1982, A comparison of streamflow-record extension techniques: Water Resources Research, v. 18, no. 4, p. 1081-1088.

Hirsch, R.M., and Gilroy, R.J., 1984, Methods of fitting a straight line to data, examples in water resources: Water Resources Bulletin, v. 20, no. 5, p. 705-711.

Jones, S.H., and Fahl, C.B., 1994, Magnitude and frequency of floods in Alaska and conterminous basins of Canada: U.S. Geological Survey Water-Resources Investigations Report 93-4179, 122 p.

Lamke, R.D., 1972, Floods of the summer of 1971 in southcentral Alaska: U.S. Geological Survey Open-File Report, 88 p.

Lamke, R.D., 1991, Alaska floods and droughts, in Paulson,
R.W., and others, eds., National water summary, 1988-89 — Hydrologic events and floods and droughts, U.S.
Geological Survey Water-Supply Paper 2375, p. 171-180.

Lamke, R.D., and Bigelow, B.B., 1988, Floods of October 1986 in south-central Alaska: U.S. Geological Survey Open-File Report 87-391, 31 p.

Parks, B., and Madison, R.J., 1985, Estimation of selected flow and water-quality characteristics of Alaskan streams: U.S. Geological Survey Water-Resources Investigations Report 84-4247, 64 p.

Rantz, S.E., and others, 1982, Measurement and computation of streamflow: Volume 1, Measurement of stage and discharge; Volume 2, Computation of discharge: U.S. Geological Survey Water-Supply Paper 2175, 631 p.

Ries, K.G., III, and Friesz, P.J., 2000, Methods for estimating low-flow statistics for Massachusetts streams: U.S. Geological Survey Water-Resources Investigations Report 00-4135, 81 p.

Riggs, H.C., 1972, Low-flow investigations: U.S. Geological Survey Techniques of Water-Resources Investigations, book 4, chap. B1, 18 p.

Savard, C.S., and Scully, D.R., 1984, Surface-water quantity and quality in the lower Kenai Peninsula, Alaska: U.S. Geological Survey Water-Resources Investigations Report 84-4161, 62 p.

Searcy, J.K., 1959, Flow-duration curves, Manual of hydrology — Part 2. Low-flow techniques: U.S. Geological Survey Water-Supply Paper 1542-A, 33 p.

Stedinger, J.R., and Thomas, W.O., Jr., 1985, Low-flow frequency estimation using base-flow measurements: U.S. Geological Survey Open-File Report 85-95, 22 p.

Thomas, D.M., and Benson, M.A., 1970, Generalizations of streamflow characteristics from drainage-basin characteristics: U.S. Geological Survey Water-Supply Paper 1975, 55 p.

U.S. Geological Survey, 1978, Chap. 7, Physical basin characteristics for hydrologic analyses, National handbook of recommended methods for water-data acquisition, U.S. Geological Survey, p. 7-1 to 7-38.

^{——1987,} Hydrologic unit map – 1987 – State of Alaska: U.S. Geological Survey map, 1 sheet.

TABLES 7-9

[Station No.: R, presently regulated. Station name: AK, Alaska; BC, British Columbia; YT, Yukon. Daily mean discharge: O-Sn, for water year Octoberthrough-September having an *n*-percent exceedance probability. mi², square mile; in., inch; –, no data available]

			Latitude	Longitude Drainage		Mean annual
Station No.	Station Name	Region Latitude Longitude seconds Drainage area (mi2) 1 56 01 34 130 03 55 94 1 55 45 00 130 12 00 80 1 55 45 00 130 12 00 80 1 55 08 29 130 31 50 45 1 55 24 59 130 52 03 15 1 56 12 48 131 38 12 67 2 57 54 00 129 42 14 1,370 2 58 02 38 129 56 45 7,260 2 57 54 00 130 49 27 1,390 2 57 7 29 10 131 45 00 13,900 2 57 7 29 10 131 45 00 13,900 2 57 7 02 27 130 24 05 326 2 56 44 20 131 40 25 3,610 1 56 39 40 131 58 14 17 2 56 42 29 132 07 49 19,900 1 57 10 24 133 06 36 151 1 57 10 24 133 06 36 15	area (mi ²)	precipitation (in.)		
15008000 ¹	Salmon River near Hyder, AK	1	56 01 34	130 03 55	94.1	110
15010000	Davis River near Hyder, AK	1	55 45 00	130 12 00	80.0	175
15011500	Red River near Metlakatla, AK	1	55 08 29	130 31 50	45.3	200
15012000	Winstanley Creek near Ketchikan, AK	1	55 24 59	130 52 03	15.5	160
15015590	Unuk River near Stewart, BC	1	56 21 05	130 41 30	571	100
15022000	Harding River near Wrangell, AK	1	56 12 48	131 38 12	67.4	175
15024200	Klappan River near Telegraph Creek, BC	2	57 54 00	129 42 14	1,370	25
15024300	Stikine River above Grand Canyon near Telegraph Creek, BC	2	58 02 38	129 56 45	7,260	20
15024500	Tuya River near Telegraph Creek, BC	2	58 04 20	130 49 27	1,390	15
15024600	Stikine River at Telegraph Creek, BC	2	57 54 03	131 09 16	11,300	15
15024640	Stikine River above Butterfly Creek, BC	2	57 29 10	131 45 00	13,900	22
15024670	Iskut River at outlet of Kinaskan Lake, BC	2	57 32 00	130 12 28	483	20
15024684	More Creek near mouth, BC	2	57 02 27	130 24 05	326	70
15024690	Forrest Kerr Creek near Wrangell, BC	2	56 54 56	130 43 15	120	100
15024695	Iskut River above Snippaker Creek, BC	2	56 41 55	130 52 23	2,790	60
15024700	Iskut River below Johnson River, BC	2	56 44 20	131 40 25	3,610	60
15024750	Goat Creek near Wrangell, AK	1	56 39 40	131 58 14	17.3	175
15024800	Stikine River near Wrangell, AK	2	56 42 29	132 07 49	19,900	40
15028300	Farragut River near Petersburg, AK	1	57 10 24	133 06 36	151	175
15030000	Sweetheart Falls Creek near Juneau, AK	1	57 56 35	133 40 55	36.3	150
15031000	Long River above Long Lake near Juneau, AK	1	58 10 56	133 53 06	8.29	175
15034000 ^R	Long River near Juneau, AK	1	58 10 00	133 41 50	32.5	180
15036000	Speel River near Juneau, AK	1	58 12 10	133 36 40	226	175
15038000 ^R	Crater Creek near Juneau, AK	1	58 08 15	133 46 15	11.4	175
15039900	Dorothy Lake outlet near Juneau, AK	1	58 14 56	133 58 54	11.0	160
15040000	Dorothy Creek near Juneau, AK	1	58 13 40	134 02 25	15.2	150
15041000	Sloko River near Atlin, BC	2	59 06 20	133 39 40	165	28
15041100	Taku River near Tulsequah, BC	2	58 38 20	133 32 25	6,000	24
15041200^{1}	Taku River near Juneau, AK	1	58 32 19	133 42 00	6,600	35
15044000	Carlson Creek near Juneau, AK	1	58 19 00	134 10 15	24.3	200
15048000	Sheep Creek near Juneau, AK	1	58 16 30	134 18 50	4.57	150
15049900 ^R	Gold Creek near Juneau, AK	1	58 18 26	134 23 12	8.41	140
15050000 ^R	Gold Creek at Juneau, AK	1	58 18 25	134 24 05	9.76	150
15052000	Lemon Creek near Juneau, AK	1	58 23 30	134 25 15	12.1	180
15052500	Mendenhall River near Auke Bay, AK	1	58 25 47	134 34 22	85.1	180
15052800	Montana Creek near Auke Bay, AK	1	58 23 53	134 36 34	14.1	100
15053800	Lake Creek at Auke Bay, AK	1	58 23 40	134 37 50	2.50	80
15054000^2	Auke Creek at Auke Bay, AK	1	58 22 56	134 38 10	3.96	80
15056100	Skagway River at Skagway, AK	1	59 28 02	135 17 00	145	100
15056200	West Creek near Skagway, AK	1	59 31 35	135 21 10	43.2	100

¹Record includes glacial outbursts. Station not included in regression analysis.

²Record includes regulated years. Station not included in regression analysis.

	Daily mean discharge, in cubic feet per second										
Station No.	0-\$15	0-S10	0-S9	0-S8	0-S7	0-S6	0-S5	0-S4	0-S3	0-S2	0-S1
15008000 ¹	2,130	2,560	2,660	2,760	2,860	2,990	3,240	3,490	3,740	4,540	6,610
15010000	1,890	2,130	2,190	2,260	2,320	2,390	2,490	2,710	2,940	3,340	3,940
15011500	1,040	1,270	1,320	1,400	1,490	1,570	1,720	1,870	2,100	2,430	3,130
15012000	268	315	326	339	360	382	403	442	484	560	693
15015590	7,710	8,790	9,080	9,360	9,650	10,000	10,500	11,000	11,500	12,600	14,100
15022000	1,380	1,610	1,660	1,740	1,820	1,900	2,010	2,190	2,390	2,680	3,220
15024200	5,760	6,920	7,240	7,600	7,950	8,440	8,940	9,560	10,300	11,300	12,900
15024300	23,000	29,200	30,600	32,100	33,900	35,800	38,000	40,700	43,600	47,900	55,800
15024500	2,260	3,360	3,730	4,130	4,580	5,070	5,620	6,240	6,970	8,000	9,780
15024600	30,500	38,100	40,200	42,500	44,900	47,500	50,200	53,900	58,100	64,400	74,400
15024640	50,300	60,000	62,400	65,200	68,000	70,800	74,600	78,800	84,200	92,200	105,000
15024670	1,250	1,520	1,580	1,640	1,720	1,810	1,890	2,020	2,150	2,370	2,720
15024684	4,180	4,810	4,940	5,080	5,220	5,430	5,650	5,870	6,090	6,700	7,720
15024690	2,680	3,110	3,190	3,290	3,430	3,560	3,700	3,840	4,070	4,410	4,910
15024695	23,200	26,900	27,700	28,500	29,500	30,800	32,200	33,500	35,800	38,300	43,200
15024700	35,200	40,200	41,500	42,800	44,100	45,400	47,400	49,600	51,800	55,000	61,500
15024750	357	417	433	450	466	487	520	552	585	670	883
15024800	123,000	137,000	141,000	144,000	148,000	152,000	155,000	164,000	173,000	184,000	198,000
15028300	2,920	3,360	3,500	3,630	3,770	3,970	4,250	4,530	5,070	5,890	7,370
15030000	636	725	744	767	801	836	870	933	1,000	1,100	1,230
15031000	246	297	308	318	337	357	376	396	430	486	603
15034000 ^R	927	1,070	1,110	1,150	1,190	1,250	1,330	1,410	1,540	1,690	2,020
15036000	5,820	6,710	6,890	7,140	7,430	7,720	8,020	8,310	8,850	9,720	11,200
15038000 ^R	410	475	495	516	536	557	602	649	705	788	957
15039900	253	288	297	307	318	335	352	369	401	432	505
15040000	291	325	339	353	367	382	407	434	467	518	611
15041000	848	1,040	1,100	1,150	1,200	1,260	1,340	1,410	1,520	1,700	2,000
15041100	21,200	24,900	25,600	26,700	27,800	28,900	30,100	32,200	34,400	37,700	42,500
15041200 ¹	29,300	33,600	34,500	36,000	37,500	39,000	41,000	43,700	46,500	51,200	58,200
15044000	706	850	882	914	957	1,010	1,060	1,120	1,210	1,300	1,610
15048000	94.5	108	111	114	121	129	137	146	162	181	226
15049900 ^R	200	241	251	266	284	303	330	356	402	469	576
15050000 ^R	227	263	273	293	312	332	351	371	399	478	556
15052000	373	445	462	478	495	530	565	601	644	733	856
15052500	2,800	3,260	3,390	3,510	3,640	3,760	3,970	4,240	4,510	5,050	6,000
15052800	189	229	238	251	264	278	297	323	362	418	505
15053800	27.4	34.2	36.6	39.0	41.3	45.2	49.6	54.2	62.6	71.0	104
15054000^2	33.4	41.0	42.6	44.1	46.7	50.4	54.2	57.9	65.7	75.4	93.7
15056100	1,360	1,670	1,740	1,820	1,930	2,040	2,150	2,280	2,500	2,730	3,270
15056200	825	977	1,020	1,060	1,090	1,130	1,200	1,280	1,360	1,490	1,650

Table 7. Annual high-duration flow statistics for streamflow-gaging stations in Regions 1–7, Alaska and conterminous basins in Canada—Continued

[Station No.: R, presently regulated. Station name: AK, Alaska; BC, British Columbia; YT, Yukon. Daily mean discharge: O-Sn, for water year Octoberthrough-September having an *n*-percent exceedance probability. mi², square mile; in., inch; –, no data available]

			Latitude	Longitude	Drainage	Mean annual
Station No.	Station Name	Region	(degrees, minutes, seconds)		area (mi ²)	precipitation (in.)
15056560	Klehini River near Klukwan, AK	1	59 24 47	135 59 49	284	80
15058000	Purple Lake outlet near Metlakatla, AK	1	55 06 00	131 26 00	6.67	150
15059500	Whipple Creek near Ward Cove, AK	1	55 26 30	131 47 38	5.29	125
15060000	Perseverance Creek near Wacker, AK	1	55 24 40	131 40 05	2.81	190
15066000	Beaver Falls Creek near Ketchikan, AK	1	55 22 55	131 28 25	5.80	190
15067900	Upper Mahoney Lake outlet near Ketchikan, AK	1	55 24 50	131 33 16	2.03	200
15068000	Mahoney Creek near Ketchikan, AK	1	55 25 34	131 30 40	5.70	200
15070000 ^R	Swan Lake near Ketchikan, AK	1	55 36 54	131 20 14	36.5	200
15072000	Fish Creek near Ketchikan, AK	1	55 23 31	131 11 38	32.1	180
15074000	Ella Creek near Ketchikan, AK	1	55 30 20	131 01 25	19.7	175
15076000	Manzanita Creek near Ketchikan, AK	1	55 36 00	130 59 00	33.9	200
15078000	Grace Creek near Ketchikan, AK	1	55 39 28	130 58 14	30.2	200
15080000	Orchard Creek near Bell Island, AK	1	55 50 00	131 27 00	59.0	150
15081497	Staney Creek near Klawock, AK	1	55 48 05	133 06 31	50.6	100
15081500	Staney Creek near Craig, AK	1	55 48 57	133 07 58	51.6	100
15081580	Black Bear Lake outlet near Klawoc, AK	1	55 33 25	132 52 33	1.82	100
15083500	Perkins Creek near Metlakatla, AK	1	54 56 48	132 10 15	3.38	150
15085100	Old Tom Creek near Kasaan, AK	1	55 23 44	132 24 25	5.90	100
15085600	Indian Creek near Hollis, AK	1	55 26 58	132 41 41	8.82	100
15085700	Harris River near Hollis, AK	1	55 27 47	132 42 11	28.7	120
15085800	Maybeso Creek at Hollis, AK	1	55 29 26	132 40 31	15.1	120
15086600	Big Creek near Point Baker, AK	1	56 07 54	133 08 56	11.2	110
15087545	Municipal Watershed Creek near Petersburg, AK	1	56 46 40	132 55 07	2.20	100
15087570	Hamilton Creek near Kake, AK	1	56 52 21	133 40 30	65.0	70
15087590	Rocky Pass Creek near Point Baker, AK	1	56 37 10	133 44 10	2.72	100
15087690	Indian River near Sitka, AK	1	57 04 01	135 17 42	10.1	140
15088000 ^R	Sawmill Creek near Sitka, AK	1	57 03 05	135 13 40	39.0	150
15090000 ^R	Green Lake near Sitka, AK	1	56 59 14	135 06 37	28.8	160
15093400	Sashin Creek near Big Port Walter, AK	1	56 22 32	134 39 40	3.72	300
15094000	Deer Lake outlet near Port Alexander, AK	1	56 31 10	134 40 10	7.41	300
15098000	Baranof River at Baranof, AK	1	57 05 15	134 50 30	32.0	180
15100000	Takatz Creek near Baranof, AK	1	57 08 35	134 51 50	17.5	180
15101490 ^R	Greens Creek at Greens Creek Mine near Juneau, AK	1	58 05 00	134 37 54	8.62	98
15101500	Greens Creek near Juneau, AK	1	58 05 18	134 44 49	22.8	80
15102000	Hasselborg Creek near Angoon, AK	1	57 39 40	134 14 55	56.2	100
15106920	Kadashan River above Hook Creek near Tenakee, AK	1	57 39 46	135 11 06	10.2	100
15106940	Hook Creek above tributary near Tenakee, AK	1	57 40 39	135 07 42	4.48	100
15106960	Hook Creek near Tenakee, AK	1	57 40 22	135 10 40	8.00	100
15106980	Tonalite Creek near Tenakee, AK	1	57 40 42	135 13 17	14.5	100
15107000	Kadashan River near Tenakee, AK	1	57 41 43	135 12 59	37.7	100

¹Record includes glacial outbursts. Station not included in regression analysis.

²Record includes regulated years. Station not included in regression analysis.

	Daily mean discharge, in cubic feet per second												
Station No.	0-S15	0-S10	0-S9	0-S8	0-S7	0-S6	0-S5	0-S4	0-S3	0-S2	0-S1		
15056560	3,520	4,010	4,100	4,190	4,320	4,510	4,710	4,950	5,270	5,630	6,140		
15058000	158	191	198	208	220	233	248	265	282	314	366		
15059500	56.4	76.5	81.6	89.1	96.7	106	116	134	160	196	268		
15060000	68.3	86.9	92.9	98.9	105	115	125	139	159	189	241		
15066000	197	245	261	279	297	321	344	376	409	476	607		
15067900	80.0	100	105	111	120	129	141	158	182	215	257		
15068000	179	222	237	252	267	291	316	352	400	468	590		
15070000 ^R	804	954	998	1,040	1,100	1,170	1,240	1,360	1,480	1,710	2,110		
15072000	717	866	910	954	1,000	1,080	1,150	1,250	1,370	1,580	1,880		
15074000	409	480	497	520	546	573	607	650	700	772	895		
15076000	754	864	891	918	960	1,010	1,050	1,140	1,240	1,370	1,620		
15078000	728	861	901	942	987	1,050	1,110	1,190	1,290	1,460	1,730		
15080000	1,010	1,210	1,270	1,340	1,420	1,510	1,620	1,770	2,000	2,320	2,860		
15081497	651	901	960	1,070	1,180	1,320	1,460	1,630	1,860	2,230	3,040		
15081500	608	846	915	990	1,080	1,170	1,310	1,460	1,760	2,150	2,920		
15081580	49.8	60.2	62.9	66.3	70.3	74.4	80.3	86.3	96.2	109	130		
15083500	74.1	100	107	114	123	133	145	161	182	215	268		
15085100	71.6	92.2	99.8	107	115	127	140	157	181	218	282		
15085600	165	205	216	227	244	264	284	318	354	427	537		
15085700	444	556	589	627	666	719	780	855	948	1,160	1,560		
15085800	244	306	322	342	366	391	428	471	533	654	822		
15086600	158	193	201	211	226	241	262	287	327	396	521		
15087545	40.7	54.5	58.1	61.8	67.8	74.0	82.2	91.0	104	128	165		
15087570	609	859	946	1,030	1,170	1,310	1,520	1,770	2,060	2,510	3,430		
15087590	24.4	34.9	37.8	41.3	45.3	49.3	54.8	63.7	74.4	89.9	123		
15087690	154	196	208	220	240	260	290	332	396	515	738		
15088000 ^R	845	942	987	1,030	1,080	1,120	1,210	1,310	1,450	1,630	2,110		
15090000 ^R	537	624	654	685	715	756	803	850	932	1,040	1,240		
15093400	141	177	187	198	209	222	245	272	305	359	484		
15094000	236	276	287	297	312	329	347	366	388	429	510		
15098000	780	893	923	952	982	1,030	1,100	1,160	1,280	1,400	1,670		
15100000	498	568	588	608	629	668	714	770	836	964	1,200		
15101490 ^R	79.4	90.4	94.4	98.4	102	108	115	123	134	152	187		
15101500	180	216	226	235	244	261	278	297	331	385	514		
15102000	549	627	648	670	693	715	757	804	867	940	1,060		
15106920	116	142	149	158	167	177	192	206	232	272	342		
15106940	53.1	65.3	69.4	73.4	77.7	83.3	88.9	96.5	107	123	154		
15106960	79.5	96.8	102	108	114	122	134	148	165	194	278		
15106980	167	210	220	236	252	276	304	343	389	456	652		
15107000	404	502	530	558	603	652	715	783	880	1,050	1,450		

 Table 7.
 Annual high-duration flow statistics for streamflow-gaging stations in Regions 1–7, Alaska and conterminous basins in Canada—Continued

[Station No.: R, presently regulated. Station name: AK, Alaska; BC, British Columbia; YT, Yukon. Daily mean discharge: O-Sn, for water year Octoberthrough-September having an *n*-percent exceedance probability. mi², square mile; in., inch; –, no data available]

			Latitude	Longitude	Drainage	Mean annual
Station No.	Station Name	Region	(degrees) sec	s, minutes, onds)	area (mi ²)	precipitation (in.)
15108000	Pavlof River near Tenakee, AK	1	57 50 30	135 02 09	24.3	100
15109000	Fish Creek near Auke Bay, AK	1	58 19 50	134 35 20	13.6	80
15120000	Aishihik River near Whitehorse, YT	5	60 51 40	137 03 40	1,660	12
15120500 ^R	Dezadeash River at Haines Junction, YT	5	60 44 54	137 30 19	3,280	10
15120600	Alsek River above Bates River near Haines Junction, YT	2	60 07 09	137 58 27	6,250	16
15129500	Situk River near Yakutat, AK	3	59 35 00	139 29 31	36.0	140
15195000	Dick Creek near Cordova, AK	3	60 20 32	144 18 10	7.95	200
15200000	Gakona River at Gakona, AK	6	62 18 06	145 18 20	620	25
15200280	Gulkana River at Sourdough, AK	6	62 31 15	145 31 51	1,770	18
15202000 ¹	Tazlina River near Glennallen, AK	6	62 03 20	145 25 34	2,670	30
15206000	Klutina River at Copper Center, AK	6	61 57 10	145 18 20	880	30
15208000	Tonsina River at Tonsina, AK	6	61 39 41	145 11 02	420	30
15208100	Squirrel Creek at Tonsina, AK	6	61 40 05	145 10 26	70.5	15
15212000	Copper River near Chitina, AK	6	61 27 56	144 27 21	20,600	25
15216000	Power Creek near Cordova, AK	3	60 35 14	145 37 05	20.5	160
15219000	West Fork Olsen Bay Creek near Cordova, AK	3	60 45 41	146 10 20	4.78	120
15225997 ^{2,R}	Solomon Gulch at top of falls near Valdez, AK	3	61 04 45	146 18 11	-	_
15237360	San Juan River near Seward, AK	3	59 49 05	147 53 00	12.4	220
15238600	Spruce Creek near Seward, AK	3	60 04 10	149 27 08	9.26	120
15238820	Barabara Creek near Seldovia, AK	3	59 28 50	151 38 42	20.7	70
15239000 ^R	Bradley River near Homer, AK	3	59 45 30	150 51 02	56.1	120
15239050	Middle Fork Bradley River tributary near Homer, AK	3	59 46 42	150 45 15	9.25	70
15239900	Anchor River near Anchor Point, AK	4	59 44 50	151 45 11	137	25
15240000	Anchor River at Anchor Point, AK	4	59 46 21	151 50 05	224	25
15241600	Ninilchik River at Ninilchik, AK	4	60 02 56	151 39 48	131	20
15242000	Kasilof River near Kasilof, AK	4	60 19 05	151 15 35	738	50
15244000	Ptarmigan Creek at Lawing, AK	4	60 24 20	149 21 45	32.6	90
15246000	Grant Creek near Moose Pass, AK	4	60 27 25	149 21 15	44.2	90
15248000	Trail River near Lawing, AK	4	60 26 01	149 22 19	181	90
15254000	Crescent Creek near Cooper Landing, AK	4	60 29 49	149 40 38	31.7	50
15258000^1	Kenai River at Cooper Landing, AK	4	60 29 34	149 48 28	634	70
15258000 ^{1,2,R}	Kenai River at Cooper Landing, AK, regulated years	4	60 29 34	149 48 28	634	70
15266300	Kenai River at Soldotna, AK	4	60 28 39	151 04 46	1,950	50
15266500	Beaver Creek near Kenai, AK	4	60 33 50	151 07 03	51.0	20
15267900	Resurrection Creek near Hope, AK	4	60 53 40	149 38 13	149	30
15271000	Sixmile Creek near Hope, AK	4	60 49 15	149 25 31	234	60
15272280	Portage Creek at Portage Lake outlet near Whittier, AK	4	60 47 07	148 50 20	40.5	158
15272550	Glacier Creek at Girdwood, AK	4	60 56 29	149 09 44	58.2	70
15273900	South Fork Campbell Creek at canyon mouth near Anchorage, AK	4	61 08 52	149 43 12	25.2	25
15274000	South Fork Campbell Creek near Anchorage, AK	4	61 10 02	149 46 14	29.2	22

¹Record includes glacial outbursts. Station not included in regression analysis.

²Record includes regulated years. Station not included in regression analysis.

³Drainage area is indeterminate. Station not included in regression analysis.

	Daily mean discharge, in cubic feet per second												
Station No.	0-S15	0-S10	0-\$9	0-S8	0-\$7	0-S6	0-S5	0-S4	0-S3	0-S2	0-S1		
15108000	286	356	378	400	423	460	496	552	618	710	904		
15109000	151	182	189	197	208	225	242	266	296	347	435		
15120000	891	1,070	1,110	1,160	1,220	1,290	1,370	1,480	1,640	1,880	2,220		
15120500 ^R	2,630	3,140	3,280	3,420	3,560	3,770	4,010	4,260	4,660	5,130	6,050		
15120600	19,500	22,500	23,100	23,800	24,600	25,500	26,300	27,200	28,800	30,500	34,900		
15129500	481	584	606	638	673	715	762	823	902	1,040	1,250		
15195000	253	331	356	383	416	461	504	545	599	703	847		
15200000	2,090	2,480	2,560	2,640	2,720	2,850	3,030	3,210	3,390	3,570	4,320		
15200280	2,170	2,790	2,930	3,120	3,330	3,570	3,910	4,360	4,870	5,430	6,430		
15076000	10,600	12,400	12,900	13,300	13,700	14,200	14,900	15,600	16,300	17,600	20,700		
15206000	4,370	4,960	5,070	5,210	5,370	5,520	5,680	5,840	6,170	6,560	7,160		
15208000	2,100	2,480	2,580	2,690	2,810	2,930	3,120	3,350	3,610	3,970	4,500		
15208100	42.1	65.3	69.8	75.0	81.5	90.5	102	116	143	180	233		
15212000	99,000	117,000	120,000	123,000	126,000	130,000	135,000	139,000	144,000	150,000	164,000		
15216000	483	561	587	617	647	684	743	807	906	1,070	1,350		
15219000	61.0	74.1	77.5	82.2	87.0	91.7	100	113	129	156	208		
15225997 ^{2,R}	32.1	127	144	160	182	207	239	280	337	420	617		
15237360	366	523	575	627	689	756	834	950	1,110	1,350	1,820		
15238600	172	208	221	233	246	258	276	309	343	414	562		
15238820	206	252	263	274	286	297	313	332	351	389	466		
15239000 ^R	973	1,120	1,170	1,210	1,260	1,300	1,390	1,480	1,580	1,830	2,400		
15239050	129	153	158	164	169	178	188	198	208	232	263		
15239900	321	444	473	503	549	601	663	762	881	1,010	1,230		
15240000	534	736	785	832	886	946	1,010	1,090	1,180	1,290	1,560		
15241600	155	196	207	218	237	258	282	307	329	369	466		
15242000	5,410	6,250	6,420	6,640	6,890	7,140	7,400	7,650	7,970	8,760	9,540		
15244000	236	273	282	291	303	319	334	355	380	414	468		
15246000	437	498	514	531	548	564	581	617	661	718	792		
15248000	1,810	2,040	2,080	2,140	2,220	2,300	2,380	2,480	2,630	2,780	3,160		
15254000	143	171	179	186	194	203	212	227	245	268	319		
15258000 ¹	6,000	6,750	6,940	7,130	7,310	7,600	7,920	8,230	8,610	9,210	10,000		
15258000 ^{1,2,R}	6,340	7,090	7,270	7,450	7,630	7,810	8,020	8,520	9,030	9,790	11,300		
15266300	12,800	14,100	14,500	14,800	15,200	15,500	16,200	16,900	17,600	19,300	21,900		
15266500	34.6	42.1	44.2	46.8	49.4	53.2	58.1	65.7	75.6	97.6	127		
15267900	526	638	666	697	728	762	797	840	922	1,100	1,310		
15271000	1,960	2,370	2,480	2,590	2,710	2,830	2,980	3,130	3,340	3,610	4,000		
15272280	1,750	2,040	2,110	2,180	2,330	2,510	2,720	3,010	3,420	4,110	5,050		
15272550	556	660	688	716	748	787	825	863	941	1,040	1,230		
15273900	77.0	94.0	97.8	103	108	113	118	124	135	147	163		
15274000	75.7	88.6	91.7	94.8	99.4	105	110	118	127	140	160		

 Table 7.
 Annual high-duration flow statistics for streamflow-gaging stations in Regions 1–7, Alaska and conterminous basins in Canada—Continued

[Station No.: R, presently regulated. Station name: AK, Alaska; BC, British Columbia; YT, Yukon. Daily mean discharge: O-Sn, for water year Octoberthrough-September having an *n*-percent exceedance probability. mi^2 , square mile; in., inch; –, no data available]

			Latitude	Longitude	Drainage	Mean annual
Station No.	Station Name	Region	(degrees) sec	s, minutes, onds)	area (mi ²)	precipitation (in.)
15274300	North Fork Campbell Creek near Anchorage, AK	4	61 10 10	149 45 43	13.4	22
15276000 ^R	Ship Creek near Anchorage, AK	4	61 13 32	149 38 06	90.5	30
15277100	Eagle River at Eagle River, AK	4	61 18 28	149 33 32	192	40
15277410	Peters Creek near Birchwood, AK	4	61 25 08	149 29 20	87.8	35
15281000	Knik River near Palmer, AK	4	61 30 18	149 01 50	1,180	100
15282000	Caribou Creek near Sutton, AK	4	61 48 12	147 40 57	289	25
15284000	Matanuska River at Palmer, AK	4	61 36 34	149 04 16	2,070	35
15290000	Little Susitna River near Palmer, AK	4	61 42 37	149 13 47	61.9	50
15291000	Susitna River near Denali, AK	4	63 06 14	147 30 57	950	50
15291200	Maclaren River near Paxson, AK	4	63 07 10	146 31 45	280	50
15291500	Susitna River near Cantwell, AK	4	62 41 55	147 32 42	4,140	30
15292000	Susitna River at Gold Creek, AK	4	62 46 04	149 41 28	6,160	30
15292400	Chulitna River near Talkeetna, AK	4	62 33 31	150 14 02	2,570	55
15292700	Talkeetna River near Talkeetna, AK	4	62 20 49	150 01 01	2,000	35
15294005	Willow Creek near Willow, AK	4	61 46 51	149 53 04	166	30
15294300	Skwentna River near Skwentna, AK	4	61 52 23	151 22 01	2,250	45
15294350	Susitna River at Susitna Station, AK	4	61 32 41	150 30 45	19,400	35
15294450	Chuitna River near Tyonek, AK	4	61 06 31	151 15 07	131	45
15294500	Chakachatna River near Tyonek, AK	4	61 12 44	152 21 26	1,120	80
15295600 ^R	Terror River near Kodiak, AK	3	57 39 05	153 01 46	15.0	130
15296000	Uganik River near Kodiak, AK	3	57 41 06	153 25 10	123	75
15297200	Myrtle Creek near Kodiak, AK	3	57 36 12	152 24 12	4.74	130
15297900	Eskimo Creek at King Salmon, AK	4	58 41 08	156 40 08	16.1	20
15300000	Newhalen River near Iliamna, AK	4	59 51 34	154 52 24	3,480	40
15300500	Kvichak River at Igiugig, AK	4	59 19 44	155 53 57	6,500	40
15302000	Nuyakuk River near Dillingham, AK	4	59 56 08	158 11 16	1,490	60
15302500	Nushagak River at Ekwok, AK	4	59 20 57	157 28 23	9,850	30
15303000	Wood River near Aleknagik, AK	4	59 16 30	158 35 37	1,110	60
15303150	Snake River near Dillingham, AK	4	59 08 54	158 53 14	113	50
15303600	Kuskokwim River at McGrath, AK	6	62 57 10	155 35 11	11,700	23
15304000	Kuskokwim River at Crooked Creek, AK	6	61 52 16	158 06 03	31,100	22
15304520	Lubbock River near Atlin, BC	5	60 04 52	133 51 30	683	11
15304550	Pine Creek near Atlin, BC	5	59 33 40	133 39 56	269	12
15304600	Atlin River near Atlin, BC	2	59 35 57	133 48 48	2,630	12
15304650	Wann River near Atlin, BC	2	59 25 55	134 12 20	104	32
15304700	Fantail River at outlet of Fantail Lake near Atlin, BC	2	59 35 40	134 23 26	277	32
15304750	Tutshi River at outlet of Tutshi Lake near Atlin, BC	2	59 56 48	134 19 29	320	24
15304800	Lindeman River near Bennett, BC	2	59 50 12	135 00 44	92.7	52
15304850	Wheaton River near Carcross, YT	2	60 08 05	134 53 45	338	12
15304950	Maclintock River near Whitehorse, YT	5	60 36 45	134 27 27	656	12

¹Record includes glacial outbursts. Station not included in regression analysis.

²Record includes regulated years. Station not included in regression analysis.

	Daily mean discharge, in cubic feet per second												
Station No.	0-\$15	0-S10	0-89	0-S8	0-S7	0-S6	0-S5	0-S4	0-S3	0-S2	0-S1		
15274300	33.3	39.0	40.2	41.5	43.2	45.3	47.5	49.9	52.3	55.5	60.7		
15276000 ^R	297	368	390	411	432	456	494	532	577	645	743		
15277100	1,340	1,620	1,680	1,740	1,830	1,920	2,020	2,140	2,280	2,460	2,780		
15277410	239	288	299	309	326	349	377	406	433	467	517		
15281000	18,000	21,100	21,800	22,500	23,200	24,000	24,700	25,600	27,000	28,300	30,600		
15282000	608	842	899	978	1,070	1,170	1,290	1,440	1,620	1,920	2,600		
15284000	9,890	11,800	12,200	12,600	13,100	13,500	13,900	14,700	15,600	16,600	18,500		
15290000	440	568	604	640	680	731	783	854	944	1,080	1,300		
15291000	7,490	8,910	9,190	9,480	9,900	10,400	10,800	11,300	11,800	13,000	14,200		
15291200	2,660	3,110	3,210	3,320	3,420	3,550	3,710	3,880	4,050	4,420	4,960		
15291500	15,700	17,700	18,200	18,900	19,600	20,200	21,000	22,400	23,800	26,100	30,200		
15292000	22,800	25,700	26,500	27,200	28,000	28,900	30,300	31,700	33,100	36,300	41,600		
15292400	22,000	24,700	25,300	25,900	26,600	27,900	29,100	30,500	32,500	34,600	38,400		
15292700	9,250	10,700	11,100	11,500	11,800	12,500	13,200	13,800	15,000	16,400	19,300		
15294005	815	1,010	1,060	1,110	1,180	1,250	1,330	1,420	1,540	1,690	2,110		
15294300	15,000	17,500	18,300	19,100	20,000	21,100	22,200	23,600	25,100	27,100	29,800		
15294350	116,000	128,000	131,000	134,000	137,000	140,000	145,000	151,000	156,000	166,000	180,000		
15294450	703	999	1,090	1,190	1,280	1,370	1,460	1,560	1,700	1,890	2,270		
15294500	9,960	11,500	11,900	12,200	12,600	13,000	13,400	13,800	14,700	15,600	17,300		
15295600 ^R	304	372	386	403	429	455	484	521	557	638	772		
15296000	1,360	1,640	1,710	1,800	1,890	1,980	2,110	2,250	2,420	2,740	3,360		
15297200	83.3	107	113	120	132	144	161	180	208	246	314		
15297900	20.1	24.2	25.4	26.5	27.9	29.5	31.7	34.3	38.7	45.1	58.7		
15300000	19,500	21,700	22,200	22,600	23,000	23,500	24,200	24,900	25,600	26,700	28,400		
15300500	25,200	27,800	28,400	29,100	29,800	30,900	32,100	33,300	35,500	37,600	40,000		
15302000	11,800	14,400	15,000	15,700	16,400	17,100	17,900	18,800	19,800	21,100	23,100		
15302500	41,600	47,100	48,500	49,800	51,400	52,900	54,500	57,100	59,900	65,800	73,400		
15303000	8,370	9,650	9,960	10,400	10,700	11,200	11,700	12,100	13,200	14,500	16,500		
15303150	936	1,110	1,160	1,210	1,270	1,340	1,410	1,490	1,590	1,730	2,030		
15303600	25,300	29,200	30,100	31,000	32,100	34,500	37,100	40,100	43,800	48,800	56,600		
15304000	80,300	94,100	97,000	102,000	106,000	111,000	117,000	123,000	133,000	145,000	171,000		
15304520	220	253	260	267	277	288	299	318	341	388	439		
15304550	366	412	422	432	448	466	486	514	545	605	733		
15304600	6,420	7,130	7,300	7,480	7,660	7,910	8,170	8,450	8,790	9,160	9,710		
15304650	626	719	749	779	809	848	892	937	1,010	1,090	1,250		
15304700	2,060	2,390	2,460	2,530	2,600	2,700	2,830	2,960	3,090	3,330	3,660		
15304750	1,210	1,460	1,510	1,550	1,630	1,710	1,810	1,930	2,070	2,220	2,600		
15304800	862	1,010	1,050	1,100	1,140	1,190	1,240	1,320	1,420	1,520	1,760		
15304850	540	700	745	790	847	910	984	1,090	1,250	1,440	1,700		
15304950	598	745	782	824	874	932	1,010	1,110	1,240	1,460	1,750		

 Table 7.
 Annual high-duration flow statistics for streamflow-gaging stations in Regions 1–7, Alaska and conterminous basins in Canada—Continued

[Station No.: R, presently regulated. Station name: AK, Alaska; BC, British Columbia; YT, Yukon. Daily mean discharge: O-Sn, for water year Octoberthrough-September having an *n*-percent exceedance probability. mi², square mile; in., inch; –, no data available]

			Latitude	Longitude	Drainage	Mean annual
Station No.	Station Name	Region	(degrees) sec	s, minutes, onds)	area (mi ²)	precipitation (in.)
15305000	Yukon River at Whitehorse, YT	5	60 42 50	135 02 35	7,490	15
15305030	Takhini River at Kusawa Lake at Whitehorse, YT	5	60 36 46	136 07 26	1,570	16
15305050	Takhini River near Whitehorse, YT	5	60 51 08	135 44 21	2,700	14
15305100	Yukon River above Frank Creek, YT	5	61 26 04	135 11 18	11,900	14
15305150	Swift River near Swift River, BC	5	59 55 50	131 46 04	1,280	18
15305200	Gladys River at outlet of Gladys Lake near Atlin, BC	5	59 54 20	132 54 50	737	12
15305250	Teslin River near Teslin, YT	5	60 29 07	133 18 04	11,700	13
15305260	Teslin River near Whitehorse, YT	5	61 29 25	134 46 35	14,100	12
15305300	Big Salmon River near Carmack, YT	5	61 52 22	134 50 00	2,610	13
15305350	Yukon River at Carmacks, YT	5	62 05 45	136 16 18	31,600	12
15305360	Big Creek near mouth near Minto, YT	5	62 34 07	137 00 58	676	12
15305390	Ross River at Ross River, YT	5	61 59 40	132 22 40	2,800	12
15305400	Pelly River at Ross River, YT	5	61 59 12	132 26 54	7,100	12
15305406	Pelly River at Faro, YT	5	62 13 20	133 22 40	8,530	12
15305412	South MacMillan River at Canol Road near Ross River, YT	5	62 55 20	130 32 00	385	24
15305420	Pelly River at Pelly Crossing, YT	5	62 49 47	136 34 50	18,900	20
15305450	Yukon River above White River near Dawson, YT	5	63 05 02	139 29 40	57,900	10
15305500	Kluane River at outlet of Kluane Lake, YT	2	61 25 37	139 02 56	1,910	20
15305540	White River at Alaska Highway near Koidern, BC	2	61 58 41	140 33 10	2,410	22
15305582	Stewart River above Fraser Falls near Mayo, YT	5	63 29 17	135 08 06	11,810	14
15305590	Stewart River at Mayo, YT	5	63 35 26	135 53 48	12,200	15
15305620	Stewart River at Stewart Crossing, YT	5	63 22 56	136 40 59	13,500	15
15305650	Stewart River at mouth, YT	5	63 16 55	139 14 56	19,700	12
15305695	North Klondike River near mouth near Dawson, YT	5	64 01 16	138 34 58	425	16
15305698	Klondike River above Bonanza Creek near Dawson, YT	5	64 02 34	139 24 28	3,010	16
15305700	Yukon River at Dawson, YT	5	64 04 12	139 25 30	102,000	10
15356000	Yukon River at Eagle, AK	5	64 47 22	141 11 52	114,000	12
15388950	Porcupine River at Old Crow, YT	5	67 33 50	139 53 00	21,400	10
15388960	Porcupine River near International Boundary, YT	5	67 25 27	140 53 28	23,100	10
15389000	Porcupine River near Fort Yukon, AK	5	66 59 26	143 08 16	29,500	10
15389500	Chandalar River near Venetie, AK	5	67 05 49	147 11 04	9,330	10
15439800	Boulder Creek near Central, AK	6	65 34 05	144 53 13	31.3	15
15453500	Yukon River near Stevens Village, AK	6	65 52 32	149 43 04	196,000	15
15457800	Hess Creek near Livengood, AK	6	65 39 55	149 05 47	662	15
15468000	Yukon River at Rampart, AK	6	65 30 25	150 10 15	199,000	15
15470000	Chisana River at Northway Junction, AK	6	63 00 23	141 48 17	3,280	20
15476000	Tanana River near Tanacross, AK	6	63 23 18	143 44 47	8,550	18
15476300	Berry Creek near Dot Lake, AK	6	63 41 23	144 21 47	65.1	18
15478040	Phelan Creek near Paxson, AK	6	63 14 27	145 28 03	12.2	80
15484000	Salcha River near Salchaket ,AK	6	64 28 22	146 55 26	2,170	15

¹Record includes glacial outbursts. Station not included in regression analysis.

²Record includes regulated years. Station not included in regression analysis.

	Daily mean discharge, in cubic feet per second												
Station No.	0-S15	0-S10	0-\$9	0-S8	0-S7	0-S6	0-S5	0-S4	0-S3	0-S2	0-S1		
15305000	16,200	17,200	17,500	17,900	18,200	18,500	18,800	19,300	19,900	20,400	21,400		
15305030	4,510	5,200	5,350	5,500	5,650	5,870	6,150	6,440	6,810	7,230	7,910		
15305050	5,190	5,870	6,000	6,140	6,360	6,590	6,810	7,040	7,480	7,970	8,810		
15305100	21,700	23,200	23,600	23,900	24,200	24,600	25,100	25,500	26,000	26,500	27,700		
15305150	3,120	4,200	4,450	4,710	5,020	5,350	5,810	6,320	6,880	7,670	8,810		
15305200	1,020	1,310	1,390	1,470	1,550	1,630	1,720	1,810	1,960	2,140	2,410		
15305250	20,800	26,300	27,500	28,700	30,100	31,500	33,100	34,800	36,900	39,800	45,300		
15305260	22,900	28,100	29,200	30,300	32,000	33,600	35,500	37,300	39,800	43,200	49,300		
15305300	4,480	5,440	5,700	6,030	6,390	6,800	7,260	7,850	8,550	9,470	11,200		
15305350	49,200	54,300	55,400	56,900	58,500	60,200	62,100	64,800	67,400	73,200	83,300		
15305360	540	761	812	898	984	1,070	1,160	1,360	1,580	2,000	2,850		
15305390	5,000	6,590	6,990	7,390	7,800	8,410	9,030	9,870	10,900	12,500	14,900		
15305400	13,800	18,600	19,800	21,100	22,400	23,800	25,700	27,800	30,800	34,600	44,900		
15305406	15,600	20,000	21,100	22,100	23,100	24,100	25,300	27,000	28,700	31,900	37,200		
15305412	1,670	2,180	2,300	2,430	2,570	2,720	2,870	3,090	3,310	3,590	4,030		
15305420	28,700	36,500	38,400	40,500	42,600	45,100	47,900	50,800	55,900	63,700	79,500		
15305450	78,800	90,900	93,900	97,500	101,000	105,000	109,000	114,000	123,000	135,000	156,000		
15305500	6,750	8,030	8,310	8,600	8,880	9,170	9,460	9,900	10,400	10,900	11,400		
15305540	9,990	13,400	14,100	14,800	15,500	16,300	17,000	18,200	19,300	20,900	23,400		
15305582	29,000	37,100	39,100	41,200	43,400	45,500	48,000	51,400	54,900	62,500	80,700		
15305590	29,800	38,600	40,700	42,700	44,800	48,500	53,100	59,000	67,300	78,300	91,600		
15305620	30,800	40,800	43,300	46,100	48,900	52,100	56,000	60,300	66,000	74,700	88,400		
15305650	34,500	42,900	45.200	47,400	49,700	52,500	55,200	58,100	63,700	71.000	87,000		
15305695	880	1,110	1,180	1,260	1,350	1,450	1,580	1,750	1,990	2,260	2,760		
15305698	4,530	5.910	6.310	6.750	7.210	7,720	8.250	9,000	9,860	11.000	13,200		
15305700	158.000	184.000	190.000	197.000	203.000	211.000	220,000	229,000	240.000	259.000	300,000		
15356000	172.000	197.000	203.000	209.000	214.000	223,000	233,000	242,000	259,000	278.000	321,000		
15388950	22,400	31,500	34,300	37,600	42,000	47,100	53,200	61,300	71,700	87,900	116,000		
15388960	24,400	34,000	36,700	39,600	42,800	46,700	50,700	57,900	67,600	82,600	107,000		
15389000	27,800	40,300	44,400	49,500	54,700	61,600	68,500	78,200	90,600	113,000	151,000		
15389500	12,500	17,400	18,700	20,000	21,600	23,600	25,600	27,600	30,500	35,600	41,500		
15439800	22.0	35.5	39.0	44.0	49.1	55.9	63.0	73.4	86.0	106	151		
15453500	245,000	277,000	286,000	295,000	304,000	321,000	339,000	363,000	390,000	436,000	495,000		
15457800	448	703	785	867	969	1,110	1,250	1,480	1,760	2,270	3,260		
15468000	274,000	319,000	333,000	347,000	368,000	393,000	420,000	450,000	487,000	534,000	657,000		
15470000	4,980	5,810	5,970	6,130	6,310	6,520	6,730	6,990	7,330	7,750	8,340		
15476000	17,600	21,100	21,800	22,600	23,400	24,200	25,000	26,000	26,900	28,300	30,500		
15476300	81.5	99.2	106	113	122	132	143	161	180	218	277		
15478040	186	255	270	290	310	330	356	383	411	462	520		
15484000	3,070	3,930	4,160	4,470	4,790	5,180	5,780	6,510	7,530	9,200	11,900		

 Table 7.
 Annual high-duration flow statistics for streamflow-gaging stations in Regions 1–7, Alaska and conterminous basins in Canada—Continued

[Station No.: R, presently regulated. Station name: AK, Alaska; BC, British Columbia; YT, Yukon. Daily mean discharge: O-Sn, for water year Octoberthrough-September having an *n*-percent exceedance probability. mi², square mile; in., inch; –, no data available]

			Latitude	Longitude	Drainage	Mean annual	
Station No.	Station Name	Region	(degrees) sec	s, minutes, onds)	area (mi ²)	precipitation (in.)	
15493000	Chena River near Two Rivers, AK	6	64 54 10	146 21 25	937	16	
15493700 ^{2,R}	Chena River below Moose Creek Dam, AK	6	64 48 03	147 13 40	-	_	
15511000	Little Chena River near Fairbanks, AK	6	64 53 10	147 14 50	372	15	
15514000 ^R	Chena River at Fairbanks, AK	6	64 50 45	147 42 04	2,000	15	
15514000 ^{2,R}	Chena River at Fairbanks, AK, regulated years	6	64 50 45	147 42 04	2,000	15	
15514500	Wood River near Fairbanks, AK	6	64 26 06	148 12 46	855	15	
15515500	Tanana River at Nenana, AK	6	64 33 55	149 05 30	25,600	16	
15515800	Seattle Creek near Cantwell, AK	6	63 19 32	148 14 49	36.2	20	
15516000	Nenana River near Windy, AK	6	63 27 28	148 48 11	710	30	
15518000	Nenana River near Healy, AK	6	63 50 43	148 56 37	1,910	25	
15518080	Lignite Creek above mouth near Healy, AK	6	63 54 17	148 59 01	48.1	25	
15518350	Teklanika River near Lignite, AK	6	63 55 14	149 29 51	490	25	
15535000	Caribou Creek near Chatanika, AK	6	65 09 00	147 33 05	9.19	15	
15564600	Melozitna River near Ruby, AK	6	64 47 34	155 33 39	2,690	15	
15564800	Yukon River at Ruby, AK	6	64 44 28	155 29 22	259,000	15	
15564875	Middle Fork Koyukuk River near Wiseman, AK	6	67 26 18	150 04 30	1,200	25	
15564900	Koyukuk River at Hughe, AK	6	66 02 51	154 15 30	18,400	16	
15565200	Yukon River near Kaltag, AK	6	64 19 40	158 43 10	296,000	15	
15565447	Yukon River at Pilot Station, AK	6	61 56 04	162 52 50	321,000	16	
15621000	Snake River near Nome, AK	7	64 33 51	165 30 26	85.7	30	
15668200	Crater Creek near Nome, AK	7	64 55 48	164 52 12	21.9	35	
15712000	Kuzitrin River near Nome, AK	7	65 13 17	164 37 15	1,720	15	
15744000	Kobuk River at Ambler, AK	7	67 05 13	157 50 51	6,570	25	
15744500	Kobuk River near Kiana, AK	7	66 58 25	160 07 51	9,520	25	
15747000	Wulik River below Tutak Creek near Kivalina, AK	7	67 52 34	163 40 28	705	15	
15798700	Nunavak Creek near Barrow, AK	7	71 15 35	156 46 57	2.79	8	
15896000	Kuparuk River near Deadhorse, AK	7	70 16 54	148 57 35	3,130	9	
15896700	Putuligayuk River near Deadhorse, AK	7	70 16 03	148 37 41	176	8	
15904900	Atigun River tributary near Pump Station 4, AK	7	68 22 25	149 18 48	32.6	25	
15906000	Sagavanirktok River tributary near Pump Station 3, AK	7	68 41 13	149 05 42	28.4	18	
15908000	Sagavanirktok River near Pump Station 3, AK	7	69 00 54	148 49 02	1,860	18	

¹Record includes glacial outbursts. Station not included in regression analysis.

²Record includes regulated years. Station not included in regression analysis.

	Daily mean discharge, in cubic feet per second												
Station No.	0-S15	0-S10	0-\$9	0-S8	0-\$7	0-S6	0-\$5	0-S4	0-\$3	0-S2	0-S1		
15485500 ³	44,100	50,400	51,900	53,300	54,800	56,500	58,300	60,000	62,400	65,300	69,500		
15493000	1,260	1,610	1,690	1,830	1,970	2,140	2,360	2,610	2,980	3,610	5,050		
15493700 ^{2,R}	1,880	2,450	2,580	2,760	2,970	3,190	3,410	3,740	4,170	4,950	6,680		
15511000	376	474	502	530	574	624	673	756	838	1,000	1,310		
15514000 ^R	2,550	3,260	3,450	3,720	4,020	4,370	4,820	5,400	6,100	7,480	9,770		
15514000 ^{2,R}	2,230	2,780	2,930	3,100	3,360	3,640	3,940	4,350	4,880	5,710	7,330		
15514500	1,010	1,240	1,280	1,330	1,390	1,460	1,540	1,660	1,800	2,010	2,480		
15515500	52,400	58,600	59,900	61,200	62,700	64,500	66,400	68,200	70,700	74,600	79,800		
15515800	60.9	85.8	94.0	105	120	136	157	182	210	252	420		
15516000	2,700	3,220	3,340	3,510	3,680	3,850	4,080	4,320	4,640	5,100	6,040		
15518000	8,150	9,550	9,860	10,200	10,700	11,100	11,600	12,300	13,300	14,700	17,000		
15518080	50.7	65.0	69.1	74.7	80.6	86.6	96.4	107	123	143	199		
15518350	1,370	1,700	1,780	1,860	1,960	2,090	2,220	2,480	2,800	3,250	4,050		
15535000	8.70	11.7	12.5	13.6	14.8	16.0	18.3	20.7	23.7	30.1	41.0		
15564600	4,020	5,980	6,770	7,760	8,780	9,830	10,900	12,500	14,200	16,700	19,400		
15564800	343,000	397,000	410,000	429,000	448,000	467,000	493,000	520,000	566,000	626,000	709,000		
15564875	1,790	2,610	2,840	3,090	3,340	3,590	4,020	4,490	4,970	5,970	7,380		
15564900	31,700	44,500	48,000	51,500	56,800	62,100	67,700	73,400	79,300	93,000	112,000		
15565200	478,000	554,000	569,000	584,000	599,000	615,000	632,000	678,000	736,000	817,000	893,000		
15565447	456,000	510,000	523,000	538,000	552,000	567,000	588,000	616,000	646,000	681,000	736,000		
15621000	327	468	505	560	614	695	792	918	1,060	1,320	1,790		
15668200	115	161	174	187	206	226	251	282	320	363	459		
15712000	1,780	3,060	3,510	3,990	4,510	5,040	6,020	7,290	9,360	12,500	18,100		
15744000	16,900	22,200	23,600	25,100	26,900	28,700	32,000	37,900	46,300	58,800	73,400		
15744500	32,100	42,000	44,300	47,900	51,800	56,000	60,200	66,200	73,000	81,400	103,000		
15747000	1,950	2,910	3,180	3,560	3,970	4,480	5,010	5,910	7,110	8,790	11,300		
15798700	0.70	2.10	2.50	3.00	3.60	4.40	5.50	7.20	9.70	13.4	20.3		
15896000	1,640	2,830	3,150	3,630	4,330	5,020	6,340	7,720	10,900	15,700	26,400		
15896700	15.3	32.6	41.6	53.0	69.0	89.5	122	189	310	542	1,250		
15904900	78.7	111	120	130	139	150	165	181	197	230	274		
15906000	34.7	50.7	55.0	59.9	64.9	70.0	81.5	96.0	114	153	220		
15908000	4,030	5,130	5,430	5,730	6,030	6,510	7,060	7,600	8,140	9,330	10,900		

 Table 7.
 Annual high-duration flow statistics for streamflow-gaging stations in Regions 1–7, Alaska and conterminous basins in Canada—Continued

[Station No.: R, presently regulated. Station name: AK, Alaska; BC, British Columbia; YT, Yukon. Daily mean discharge: MONTH*n*, for the indicated month having an *n*-percent exceedance probability. mi², square mile; in., inch; –, no data available]

			Latitude	Longitude	Drainage	Meanannual	
Station No.	Station Name	Region	(degrees) sec	s, minutes, onds)	area (mi ²)	precipitation (in.)	
15008000	Salmon River near Hyder, AK	1	56 01 34	130 03 55	94.1	110	
15010000	Davis River near Hyder, AK	1	55 45 00	130 12 00	80.0	175	
15011500	Red River near Metlakatla, AK	1	55 08 29	130 31 50	45.3	200	
15012000	Winstanley Creek near Ketchikan, AK	1	55 24 59	130 52 03	15.5	160	
15015590	Unuk River near Stewart, BC	1	56 21 05	130 41 30	571	100	
15018000	Shelokum Lake outlet near Bell Island, AK	1	55 59 00	131 39 00	15.6	165	
15022000	Harding River near Wrangell, AK	1	56 12 48	131 38 12	67.4	175	
15024200	Klappan River near Telegraph Creek, BC	2	57 54 00	129 42 14	1,370	25	
15024300	Stikine River above Grand Canyon near Telegraph Creek, BC	2	58 02 38	129 56 45	7,260	20	
15024500	Tuya River near Telegraph Creek, BC	2	58 04 20	130 49 27	1,390	15	
15024600	Stikine River at Telegraph Creek, BC	2	57 54 03	131 09 16	11,300	15	
15024640	Stikine River above Butterfly Creek, BC	2	57 29 10	131 45 00	13,900	22	
15024670	Iskut River at outlet of Kinaskan Lake, BC	2	57 32 00	130 12 28	483	20	
15024684	More Creek near mouth, BC	2	57 02 27	130 24 05	326	70	
15024690	Forrest Kerr Creek near Wrangell, BC	2	56 54 56	130 43 15	120	100	
15024695	Iskut River above Snippaker Creek, BC	2	56 41 55	130 52 23	2,790	60	
15024700	Iskut River below Johnson River, BC	2	56 44 20	131 40 25	3,610	60	
15024750	Goat Creek near Wrangell, AK	1	56 39 40	131 58 14	17.3	175	
15024800	Stikine River near Wrangell, AK	2	56 42 29	132 07 49	19,900	40	
15026000	Cascade Creek near Petersburg, AK	1	57 00 21	132 46 45	23.0	175	
15028300	Farragut River near Petersburg, AK	1	57 10 24	133 06 36	151	175	
15030000	Sweetheart Falls Creek near Juneau, AK	1	57 56 35	133 40 55	36.3	150	
15031000	Long River above Long Lake near Juneau, AK	1	58 10 56	133 53 06	8.29	175	
15034000 ^K	Long River near Juneau, AK	1	58 10 00	133 41 50	32.5	180	
15036000	Speel River near Juneau, AK	I	58 12 10	133 36 40	226	175	
15038000 ^K	Crater Creek near Juneau, AK	1	58 08 15	133 46 15	11.4	175	
15039900	Dorothy Lake outlet near Juneau, AK	1	58 14 56	133 58 54	11.0	160	
15040000	Dorothy Creek near Juneau, AK	1	58 13 40	134 02 25	15.2	150	
15041000	Sloko River near Atlin, BC	2	59 06 20	133 39 40	165	28	
15041100	Taku River near Tulsequah, BC	2	58 38 20	133 32 25	6,000	24	
15041200	Taku River near Juneau, AK	1	58 32 19	133 42 00	6,600	35	
15044000	Carlson Creek near Juneau, AK	1	58 19 00	134 10 15	24.3	200	
15048000	Sheep Creek near Juneau, AK	1	58 16 30	134 18 50	4.57	150	
15052000	Lemon Creek near Juneau, AK	1	58 23 30	134 25 15	12.1	180	
15052500	Mendenhall River near Auke Bay, AK	1	58 25 47	134 34 22	85.1	180	
15052800	Montana Creek near Auke Bay, AK	1	58 23 53	134 36 34	14.1	100	
15053800	Lake Creek at Auke Bay, AK	1	58 23 40	134 37 50	2.50	80	
15056100	Skagway River at Skagway, AK	1	59 28 02	135 17 00	145	100	
15056200	West Creek near Skagway, AK	I	59 31 35	135 21 10	43.2	100	
15056560	Klehini River near Klukwan, AK	1	59 24 47	135 59 49	284	80	
15058000	Purple Lake outlet near Metlakatla, AK	1	55 06 00	131 26 00	6.67	150	
15059500	Whipple Creek near Ward Cove, AK	1	55 26 30	131 47 38	5.29	125	
15060000	Perseverance Creek near Wacker, AK	1	55 24 40	131 40 05	2.81	190	
15066000	Beaver Falls Creek near Ketchikan, AK	1	55 22 55	131 28 25	5.80	190	
1506/900	Upper Mahoney Lake outlet near Ketchikan, AK	1	55 24 50	131 33 16	2.03	200	
15068000	Mahoney Creek near Ketchikan, AK	1	55 25 34	131 30 40	5.70	200	
150/000 ^m	Swan Lake near Ketchikan, AK	1	55 36 54	131 20 14	36.5	200	

¹Record indicates regulated years. Station not included in regression analysis.

	Mean	Area of			Daily mean discharge, in cubic feet per second						
Station No.	basin elevation (feet)	glaciers (percent)	JULY98	JULY95	JULY90	JULY85	JULY80	JULY70	JULY60	JULY50	
15008000	3,840	35	1,130	1,230	1,450	1,560	1,650	1,800	1,990	2,150	
15010000	3,400	11	1,150	1,270	1,360	1,440	1,510	1,610	1,690	1,800	
15011500	1,700	0	152	187	216	250	299	385	461	530	
15012000	1,730	0	32.0	51.7	69.8	82.6	91.0	109	124	142	
15015590	3,880	40	5,260	5,700	6,280	6,590	6,900	7,450	8,040	8,510	
15018000	1,700	0	38.4	54.7	83.0	99.2	114	151	186	217	
15022000	2,400	9	639	718	799	864	929	1,050	1,160	1,260	
15024200	4,800	2	3,850	4,350	4,850	5,200	5,460	5,940	6,480	6,950	
15024300	4,300	0	11,200	13,800	15,600	17,000	18,300	20,800	23,300	25,500	
15024500	3,800	0	448	559	660	733	804	933	1,100	1,300	
15024600	4,200	0	13,200	16,700	19,300	21,600	23,200	26,300	29,300	32,100	
15024640	4,250	5	31,900	36,500	40,100	42,700	44,500	47,900	51,300	54,800	
15024670	4,000	0	837	940	1,120	1,220	1,290	1,410	1,520	1,630	
15024684	4,270	40	2,620	3,030	3,440	3,700	3,920	4,310	4,660	4,930	
15024690	3,540	64	1,290	1,690	2,000	2,220	2,410	2,750	2,960	3,150	
15024695	3,500	6	16,400	17,800	19,200	20,200	21,200	22,900	24,600	26,500	
15024700	3,500	6	25,400	27,500	29,500	31,100	32,300	35,000	37,700	39,900	
15024750	2,560	5	158	179	198	210	223	246	267	289	
15024800	4,310	10	91,500	96,200	104,000	108,000	112,000	118,000	124,000	131,000	
15026000	3,160	13	278	302	325	346	365	401	438	474	
15028300	2,540	26	1,650	1,860	1,990	2,080	2,160	2,310	2,460	2,620	
15030000	2,110	9	302	327	360	384	414	453	470	516	
15031000	3,020	39	96.1	112	138	160	172	196	221	239	
15034000 ^R	2,400	22	600	635	683	715	737	787	836	886	
15028300	3,100	25	3,490	3,820	4,160	4,420	4,660	5,060	5,390	5,870	
15038000 ^R	2,590	28	246	264	289	306	324	351	381	423	
15039900	3,450	35	164	181	190	197	207	222	235	247	
15040000	3,100	16	198	211	222	231	239	254	266	284	
15041000	4,800	44	454	534	608	652	698	789	908	1,080	
15041100	3,800	4	13,400	14,400	15,800	16,900	17,900	19,400	20,800	22,300	
15041200	3,790	8	20,700	21,900	23,700	24,700	25,400	27,000	28,200	29,500	
15044000	2,200	10	285	331	401	426	451	505	564	599	
15048000	1,900	2	34.5	39.2	44.8	50.5	54	60.3	66.5	73.4	
15052000	3,430	67	229	253	274	292	309	338	363	385	
15052500	3,260	66	1,710	1,840	2,010	2,150	2,270	2,490	2,670	2,870	
15052800	1,500	3	23.0	60.7	74.7	83.8	90.5	102	115	126	
15053800	1,170	0	0.2	0.3	0.6	0.8	1.1	1.8	2.8	4.4	
15056100	3,900	17	716	823	915	1,020	1,120	1,300	1,470	1,630	
15056200	3,400	26	524	562	646	701	738	815	884	972	
15056560	3,480	15	2,300	2,560	2,870	3,090	3,240	3,540	3,790	3,970	
15058000	860	0	7.8	9.3	12.7	15.3	17.8	23.1	28.1	34.9	
15059500	880	0	3.2	4.2	4.8	5.2	5.8	7.1	8.4	10.9	
15060000	1,340	0	0.7	2.2	3.2	4.4	5.3	7.2	9.5	13	
15066000	1,630	0	28.2	36.0	41.5	46.8	52.9	61.0	69.0	77.0	
15067900	2,500	0	16.8	19.1	22.4	25.3	28.1	37.6	44.0	50.0	
15068000	1,680	0	31.6	38.0	49.2	61.9	69.2	79.5	92.1	104	
15070000 ^R	1,800	0	128	157	209	235	269	327	376	421	

 Table 8.
 Monthly low-duration flow statistics for July, August, and September for streamflow-gaging stations in Regions 1–7, Alaska and conterminous basins in Canada—Continued

[Station No.: R, presently regulated; Station name: AK, Alaska; BC, British Columbia; YT, Yukon; Daily mean discharge: MONTH*n*, for the indicated month having an *n*-percent exceedance probability; mi², square mile; in., inch; –, no data available]

0 N		Daily mean discharge, in cubic feet per second							
Station No.	Station Name	AUG98	AUG95	AUG90	AUG85	AUG80	AUG70		
15008000	Salmon River near Hyder, AK	1,110	1,200	1,440	1,610	1,780	1,980		
15010000	Davis River near Hyder, AK	814	921	1,080	1,160	1,220	1,360		
15011500	Red River near Metlakatla, AK	72.3	87.9	112	134	148	184		
15012000	Winstanley Creek near Ketchikan, AK	20.1	26.1	33.9	40.8	48.1	59.9		
15015590	Unuk River near Stewart, BC	3,840	4,340	4,730	5,150	5,590	6,260		
15018000	Shelokum Lake outlet near Bell Island, AK	26.5	35.2	53.4	68.2	74.7	94.1		
15022000	Harding River near Wrangell, AK	431	507	561	608	650	728		
15024200	Klappan River near Telegraph Creek, BC	2.230	2.550	2.850	3.030	3.190	3.540		
15024300	Stikine River above Grand Canvon near Telegraph Creek, BC	7,450	8.170	8,950	9.640	10.300	11.400		
15024500	Tuya River near Telegraph Creek, BC	321	380	432	481	521	566		
15024600	Stikine River at Telegraph Creek, BC	9,250	10,300	11,400	12,100	12,800	14,400		
15024640	Stikine River above Butterfly Creek, BC	20,400	22,700	25,700	27,100	28,200	30,900		
15024670	Iskut River at outlet of Kinaskan Lake, BC	654	697	739	784	834	903		
15024684	More Creek near mouth, BC	1,970	2,270	2,570	2,790	2,960	3,280		
15024690	Forrest Kerr Creek near Wrangell, BC	800	1,720	2,060	2,280	2,450	2,680		
15024695	Iskut River above Snippaker Creek, BC	10,800	11,800	13,000	14,200	15,000	16,600		
15024700	Iskut River below Johnson River, BC	18,100	19,800	22,100	23,900	25,100	27,500		
15024750	Goat Creek near Wrangell, AK	99.6	114	125	136	147	162		
15024800	Stikine River near Wrangell, AK	61,700	67,100	74,700	79,500	83,300	89,400		
15026000	Cascade Creek near Petersburg, AK	185	212	236	260	282	318		
15028300	Farragut River near Petersburg, AK	1,430	1,570	1,730	1,840	1,970	2,160		
15030000	Sweetheart Falls Creek near Juneau, AK	236	258	282	299	313	340		
15031000	Long River above Long Lake near Juneau, AK	87.2	119	150	166	184	207		
15034000 ^R	Long River near Juneau, AK	500	554	604	644	690	760		
15036000	Speel River near Juneau, AK	3,060	3,490	3,820	4,100	4,420	4,850		
15038000 ^R	Crater Creek near Juneau, AK	216	232	267	283	300	339		
15039900	Dorothy Lake outlet near Juneau, AK	122	142	166	182	193	204		
15040000	Dorothy Creek near Juneau, AK	172	186	206	217	224	239		
15041000	Sloko River near Atlin, BC	498	584	703	774	831	964		
15041100	Taku River near Tulsequah, BC	8,350	9,590	10,900	12,100	12,900	14,200		
15041200	Taku River near Juneau, AK	14,600	15,600	17,200	18,100	18,700	20,700		
15044000	Carlson Creek near Juneau, AK	191	203	228	253	281	338		
15048000	Sheep Creek near Juneau, AK	20.4	24.8	29.6	33.8	38.0	45.6		
15052000	Lemon Creek near Juneau, AK	202	241	275	297	310	338		
15052500	Mendenhall River near Auke Bay, AK	1,640	1,840	2,100	2,300	2,440	2,650		
15052800	Montana Creek near Auke Bay, AK	41.3	49.4	60.0	69.1	76.9	90.5		
15053800	Lake Creek at Auke Bay, AK	0.1	0.3	0.7	2.0	2.9	4.6		
15056100	Skagway River at Skagway, AK	454	551	675	752	819	952		
15056200	West Creek near Skagway, AK	430	496	559	617	670	748		
15056560	Klehini River near Klukwan, AK	1,210	1,600	1,950	2,140	2,280	2,670		
15058000	Purple Lake outlet near Metlakatla, AK	3.4	4.9	7.2	9.5	12.1	15.9		
15059500	Whipple Creek near Ward Cove, AK	1.8	2.3	3.0	4.3	5.1	6.7		
15060000	Perseverance Creek near Wacker, AK	0.6	1.0	1.4	1.9	2.8	4.0		
15066000	Beaver Falls Creek near Ketchikan, AK	14.4	15.9	19.8	23.3	25.7	30.2		
15067900	Upper Mahoney Lake outlet near Ketchikan, AK	6.4	7.4	9.9	12.2	14.5	18.3		
15068000	Mahoney Creek near Ketchikan, AK	17.4	21.2	29.9	35.7	41.0	48.4		
15070000 ^R	Swan Lake near Ketchikan, AK	91.4	106	126	141	155	180		

¹Record indicates regulated years. Station not included in regression analysis.

²Drainage area is indeterminate. Station not included in regression analysis.

Station No.	Daily mean discharge, in cubic feet per second										
Station No.	AUG60	AUG50	SEPT98	SEPT95	SEPT90	SEPT85	SEPT80	SEPT70	SEPT60	SEPT50	
15008000	2,160	2,320	556	636	801	917	1,010	1,170	1,350	1,550	
15010000	1,460	1,610	370	469	605	690	745	854	1,010	1,150	
15011500	238	306	57.0	82.5	116	145	166	249	319	404	
15012000	74.4	98.6	23.1	31.8	42.3	54.1	64.6	89.9	116	139	
15015590	6,940	7,510	1,990	2,390	2,740	3,120	3,380	3,790	4,220	4,720	
15018000	117	145	31.0	40.0	47.0	52.6	66.4	91.3	114	162	
15022000	823	910	279	329	389	433	477	576	679	835	
15024200	3,860	4,250	1,360	1,470	1,650	1,860	2,020	2,280	2,480	2,680	
15024300	12,700	13,900	5,180	5,610	6,440	7,180	7,680	8,580	9,460	10,200	
15024500	626	699	377	429	464	504	568	681	753	856	
15024600	16,100	17,900	7,150	7,860	8,820	9,420	9,970	10,900	12,000	13,100	
15024640	33,200	36,300	12,100	13,700	16,200	17,500	18,800	20,800	22,600	24,300	
15024670	980	1,060	419	467	524	562	594	648	697	753	
15024684	3,550	3,880	732	833	1,050	1,200	1,370	1,620	1,840	2,060	
15024690	2,860	3,080	457	548	690	834	996	1,220	1,420	1,720	
15024695	18,300	20,400	4,860	5,720	7,050	7,920	8,570	9,590	10,600	11,500	
15024700	29,900	32,200	8,650	10,400	12,300	13,500	14,300	16,300	18,100	19,900	
15024750	180	199	58.5	67.5	79.2	86.1	93.2	110	138	172	
15024800	96,500	104,000	32,100	38,200	44,000	49,300	53,200	58,500	64,300	70,600	
15026000	354	388	115	137	162	182	200	245	298	352	
15028300	2,320	2,510	773	943	1,140	1,270	1,390	1,630	1,860	2,230	
15030000	373	415	88.9	136	197	226	259	317	364	453	
15031000	225	243	54.9	62.9	77.7	93.9	107	143	174	203	
15034000 ^R	818	880	280	312	364	430	479	558	657	756	
15036000	5,320	5,810	1,510	1,870	2,270	2,670	2,960	3,560	4,160	4,830	
15038000 ^R	366	406	83.8	96.5	136	175	199	242	288	339	
15039900	222	238	91.6	111	129	140	151	169	194	223	
15040000	258	277	119	130	145	158	173	198	218	243	
15041000	1,090	1,220	218	261	326	368	407	468	533	601	
15041100	15,600	16,800	4,010	5,000	5,820	6,420	6,950	7,840	8,710	9,770	
15041200	22,200	23,900	7,750	8,550	9,440	10,300	11,500	13,500	15,500	17,300	
15044000	387	461	112	126	148	169	191	240	292	371	
15048000	54.5	63.0	18.3	24.0	29.5	33.2	37.2	44.0	50.9	59.8	
15052000	373	405	74.2	108	139	161	174	216	255	304	
15052500	2,870	3,100	671	896	1,100	1,250	1,390	1,670	1,980	2,250	
15052800	108	125	37.7	41.5	50.7	60.1	67.3	82.2	97.9	120	
15053800	6.4	9.6	0.1	0.7	1.3	2.0	2.5	4.0	6.6	9.4	
15056100	1,090	1,200	180	216	271	319	360	426	514	620	
15056200	822	909	151	213	251	274	298	369	448	533	
15056560	3,010	3,220	596	730	829	909	983	1,170	1,340	1,530	
15058000	20.1	27.7	6.4	15.0	23.3	29.3	34.2	45.0	56.2	69.7	
15059500	8.5	10.4	5.3	5.8	7.0	8.2	9.7	13.9	17.3	21.1	
15060000	5.9	9.0	1.5	2.3	3.9	5.4	7.2	11.4	16.8	22.0	
15066000	35.3	45.8	5.8	6.8	12.0	15.7	19.4	28.6	49.7	77.9	
15067900	23.0	28.1	4.6	5.6	7.2	9.0	10.6	14.7	19.9	28.0	
15068000	56.9	66.8	8.0	14.0	19.8	25.0	29.7	39.4	51.3	65.0	
15070000 ^к	209	250	62.6	91.0	120	142	167	215	286	366	

 Table 8.
 Monthly low-duration flow statistics for July, August, and September for streamflow-gaging stations in Regions 1–7, Alaska and conterminous basins in Canada—Continued

[Station No.: R, presently regulated. Station name: AK, Alaska; BC, British Columbia; YT, Yukon. Daily mean discharge: MONTH*n*, for the indicated month having an *n*-percent exceedance probability. mi², square mile; in., inch; –, no data available]

			Latitude	Longitude	Drainage	Mean annual
Station No.	Station Name	Region	degrees) sec	s, minutes, conds)	area (mi ²)	precipitation (in.)
15072000	Fish Creek near Ketchikan, AK	1	55 23 31	131 11 38	32.1	180
15074000	Ella Creek near Ketchikan, AK	1	55 30 20	131 01 25	19.7	175
15076000	Manzanita Creek near Ketchikan, AK	1	55 36 00	130 59 00	33.9	200
15078000	Grace Creek near Ketchikan, AK	1	55 39 28	130 58 14	30.2	200
15080000	Orchard Creek near Bell Island, AK	1	55 50 00	131 27 00	59.0	150
15081497	Staney Creek near Klawock, AK	1	55 48 05	133 06 31	50.6	100
15081500	Staney Creek near Craig, AK	1	55 48 57	133 07 58	51.6	100
15081580	Black Bear Lake outlet near Klawock, AK	1	55 33 25	132 52 33	1.82	100
15083500	Perkins Creek near Metlakatla, AK	1	54 56 48	132 10 15	3.38	150
15085100	Old Tom Creek near Kasaan, AK	1	55 23 44	132 24 25	5.90	100
15085600	Indian Creek near Hollis, AK	1	55 26 58	132 41 41	8.82	100
15085700	Harris River near Hollis, AK	1	55 27 47	132 42 11	28.7	120
15085800	Maybeso Creek at Hollis, AK	1	55 29 26	132 40 31	15.1	120
15086600	Big Creek near Point Baker, AK	1	56 07 54	133 08 56	11.2	110
15087545	Municipal Watershed Creek near Petersburg, AK	1	56 46 40	132 55 07	2.20	100
15087570	Hamilton Creek near Kake, AK	1	56 52 21	133 40 30	65.0	70
15087590	Rocky Pass Creek near Point Baker, AK	1	56 37 10	133 44 10	2.72	100
15087690	Indian River near Sitka, AK	1	57 04 01	135 17 42	10.1	140
15090000 ^R	Green Lake near Sitka, AK	1	56 59 14	135 06 37	28.8	160
15093400	Sashin Creek near Big Port Walter, AK	1	56 22 32	134 39 40	3.72	300
15094000	Deer Lake outlet near Port Alexander, AK	1	56 31 10	134 40 10	7.41	300
15098000	Baranof River at Baranof, AK	1	57 05 15	134 50 30	32.0	180
15100000	Takatz Creek near Baranof, AK	1	57 08 35	134 51 50	17.5	180
15101490 ^{1,R}	Greens Creek at Greens Creek Mine near Juneau, AK	1	58 05 00	134 37 54	8.62	98
15101500	Greens Creek near Juneau, AK	1	58 05 18	134 44 49	22.8	80
15102000	Hasselborg Creek near Angoon, AK	1	57 39 40	134 14 55	56.2	100
15106920	Kadashan River above Hook Creek near Tenakee, AK	1	57 39 46	135 11 06	10.2	100
15106940	Hook Creek above tributary near Tenakee, AK	1	57 40 39	135 07 42	4.48	100
15106960	Hook Creek near Tenakee, AK	1	57 40 22	135 10 40	8.00	100
15106980	Tonalite Creek near Tenakee, AK	1	57 40 42	135 13 17	14.5	100
15107000	Kadashan River near Tenakee, AK	1	57 41 43	135 12 59	37.7	100
15108000	Pavlof River near Tenakee, AK	1	57 50 30	135 02 09	24.3	100
15109000	Fish Creek near Auke Bay, AK	1	58 19 50	134 35 20	13.6	80
15120000	Aishihik River near Whitehorse, YT	5	60 51 40	137 03 40	1,660	12
15120500 ^R	Dezadeash River at Haines Junction, YT	5	60 44 54	137 30 19	3,280	10
15120600	Alsek River above Bates River near Haines Junction, YT	2	60 07 09	137 58 27	6,250	16
15129500	Situk River near Yakutat, AK	3	59 35 00	139 29 31	36.0	140
15195000	Dick Creek near Cordova, AK	3	60 20 32	144 18 10	7.95	200
15200000	Gakona River at Gakona, AK	6	62 18 06	145 18 20	620	25
15200280	Gulkana River at Sourdough, AK	6	62 31 15	145 31 51	1,770	18
15202000	Tazlina River near Glennallen, AK	6	62 03 20	145 25 34	2,670	30
15206000	Klutina River at Copper Center, AK	6	61 57 10	145 18 20	880	30
15208000	Tonsina River at Tonsina, AK	6	61 39 41	145 11 02	420	30
15208100	Squirrel Creek at Tonsina, AK	6	61 40 05	145 10 26	70.5	15
15212000	Copper River near Chitina, AK	6	61 27 56	144 27 21	20,600	25
15216000	Power Creek near Cordova, AK	3	60 35 14	145 37 05	20.5	160
15219000	West Fork Olsen Bay Creek near Cordova, AK	3	60 45 41	146 10 20	4.78	120

¹Record indicates regulated years. Station not included in regression analysis.

	Mean	Area of			Daily mea	n discharge,	in cubic feet	per second		
Station No.	basin elevation (feet)	glaciers (percent)	JULY98	JULY95	JULY90	JULY85	JULY80	JULY70	JULY60	JULY50
15072000	1,300	0	72.1	93.9	118	141	161	200	242	278
15074000	900	0	29.2	44.9	62.1	80.2	89.8	105	118	136
15076000	1,300	0	129	200	240	259	275	312	349	387
15078000	1,500	0	132	149	168	188	205	237	278	314
15080000	1,600	0	171	185	208	238	259	322	394	452
15081497	882	0	8.6	13.4	17.1	20.2	23.4	31.1	38.6	51.7
15081500	850	0	24.8	28.6	32.7	37.3	42.0	56.6	67.9	77.6
15081580	2,300	0	7.1	8.3	11.0	13.5	15.2	17.3	19.9	23.4
15083500	730	0	1.3	1.7	2.0	2.2	2.4	2.9	3.6	4.5
15085100	1,000	0	2.4	3.1	4.1	5.2	6.1	7.4	8.6	10.6
15085600	1,000	0	2.5	2.8	4.2	5.0	5.9	7.7	11.1	16.0
15085700	1,400	0	18.6	35.7	50.4	56.3	61.6	71.8	82.7	100
15085800	1,120	0	9.9	13.4	25.3	29.5	33.6	41.7	49.6	58.2
15086600	680	0	6.3	7.5	9.0	10.9	12.6	16.1	19.5	23.8
15087545	1,400	0	1.7	2.0	2.4	3.0	3.7	4.7	6.0	7.4
15087570	493	0	7.5	10.2	13.3	18.9	24.9	36.0	46.7	62.0
15087590	358	0	0.1	0.3	0.4	0.5	0.7	0.8	1.2	1.6
15087690	1,340	0	16.0	18.3	23.1	29.3	34.7	39.6	44.2	50.7
15090000 ^K	2,100	7	310	346	369	384	392	416	434	450
15093400	1,130	0	10.8	14.7	20.6	24.2	28.3	34.4	42.1	50.6
15094000	1,300	1	53.2	61.2	77.9	107	119	133	148	159
15098000	2,000	14	393	431	464	502	528	584	633	676
15100000	2,300	13	280	308	333	351	366	396	434	465
15101490 ^{1,R}	2,452	0	23.1	28.1	30.4	32.2	34.1	37	41.2	46.8
15101500	1,880	0	39.7	44.4	51.3	58.5	69.4	84.8	97.2	107
15102000	1,200	1	95.4	140	158	183	200	225	254	282
15106920	1,020	0	6.3	7.9	9.8	12.1	13.5	16.6	20.0	23.9
15106940	1,260	0	3.7	4.7	5.6	6.6	7.5	10.0	13.0	16.4
15106960	1,160	0	5.7	7.1	9.9	11.4	12.7	15.6	19.0	22.3
15106980	950	0	12.3	15.6	19.3	22.1	25.0	29.1	33.2	38.4
15107000	970	0	35.3	42.4	49.3	53.6	57.9	71.0	88.7	110
15108000	920	0	34.7	42.1	49.6	56.1	61.3	70.8	80.9	94.1
15109000	1,600	0	24.2	29.9	35.7	39.7	43.7	53.2	61.1	73.1
15120000	4,190	0	237	379	423	466	504	575	673	795
15120500 ^R	3,870	0	1,420	1,610	1,790	1,910	2,030	2,320	2,600	2,910
15120600	4,630	13	15,400	17,500	18,700	19,500	20,200	21,800	23,100	24,400
15129500	370	1	71.5	80.6	92.1	110	122	141	157	174
15195000	890	0	63.4	74.0	83.6	92.0	98.1	112	134	146
15200000	3,030	8	1,160	1,490	1,610	1,710	1,820	1,970	2,160	2,320
15200280	2,780	0	562	614	677	735	810	1,000	1,160	1,320
15202000	3,450	11	6,680	8,090	9,260	9,600	9,900	10,700	11,500	12,400
15206000	3,500	11	3,310	3,760	4,010	4,160	4,290	4,500	4,760	4,980
15208000	3,600	11	1,420	1,610	1,810	1,930	2,020	2,210	2,330	2,480
15208100	3,100	0	16.8	17.9	18.6	19.4	20.9	24.1	26.7	29.4
15212000	3,620	17	72,800	82,900	92,500	96,800	103,000	110,000	118,000	122,000
15216000	2,000	27	321	345	369	388	403	428	450	475
15219000	1,400	0	16.4	18.7	21.5	23.9	25.9	30.8	35.9	40.9

 Table 8.
 Monthly low-duration flow statistics for July, August, and September for streamflow-gaging stations in Regions 1–7, Alaska and conterminous basins in Canada—Continued

[Station No.: R, presently regulated; Station name: AK, Alaska; BC, British Columbia; YT, Yukon; Daily mean discharge: MONTH*n*, for the indicated month having an *n*-percent exceedance probability; mi², square mile; in., inch; –, no data available]

Station No.	Station Name	Daily mean discharge, in cubic feet per second								
Station No.	Station Name	AUG98	AUG95	AUG90	AUG85	AUG80	AUG70			
15072000	Fish Creek near Ketchikan, AK	45.2	57.3	73.9	89.2	104	130			
15074000	Ella Creek near Ketchikan, AK	23.6	30.4	41.0	48.1	54.1	67.8			
15076000	Manzanita Creek near Ketchikan, AK	105	138	160	178	191	219			
15078000	Grace Creek near Ketchikan, AK	41.6	50.7	74.4	92.2	105	134			
15080000	Orchard Creek near Bell Island, AK	72.1	93.1	109	128	145	178			
15081497	Staney Creek near Klawock, AK	14.1	17.2	24.5	28.7	34.9	42.9			
15081500	Staney Creek near Craig, AK	12.2	16.2	25.0	32.3	38.9	49.3			
15081580	Black Bear Lake outlet near Klawock, AK	5.4	6.2	7.4	8.4	9.7	11.8			
15083500	Perkins Creek near Metlakatla, AK	1.2	1.4	1.7	2.0	2.2	2.8			
15085100	Old Tom Creek near Kasaan, AK	1.8	2.3	3.1	3.8	4.3	5.2			
15085600	Indian Creek near Hollis, AK	1.9	3.0	3.9	4.9	5.5	7.5			
15085700	Harris River near Hollis, AK	21.7	26.2	31.3	36.7	42.4	51.3			
15085800	Maybeso Creek at Hollis, AK	13.8	15.6	17.6	20.2	21.7	25.8			
15086600	Big Creek near Point Baker, AK	2.9	5.8	10.1	12.5	14.2	19.1			
15087545	Municipal Watershed Creek near Petersburg, AK	0.7	0.8	1.0	1.5	2.1	3.2			
15087570	Hamilton Creek near Kake, AK	13.1	16.3	22.1	26.6	30.9	40.5			
15087590	Rocky Pass Creek near Point Baker, AK	0.1	0.2	0.2	0.5	0.7	1.0			
15087690	Indian River near Sitka, AK	17.7	23	29.4	32.2	34.7	42.5			
15090000 ^R	Green Lake near Sitka, AK	172	202	245	269	313	330			
15093400	Sashin Creek near Big Port Walter, AK	5.4	6.7	10.2	14.3	16.1	21.4			
15094000	Deer Lake outlet near Port Alexander, AK	28.4	38.9	65.8	78.5	88.7	108			
15098000	Baranof River at Baranof, AK	270	311	354	385	414	462			
15100000	Takatz Creek near Baranof, AK	197	242	256	266	276	300			
15101490 ^{1,R}	Greens Creek at Greens Creek Mine near Juneau, AK	13.8	15.5	17.7	20.2	22.4	25.6			
15101500	Greens Creek near Juneau, AK	18.0	26.2	34.8	40.3	46.3	60.1			
15102000	Hasselborg Creek near Angoon, AK	72.6	80.0	92.7	108	124	156			
15106920	Kadashan River above Hook Creek near Tenakee, AK	5.5	6.6	7.9	9.0	10.8	13.8			
15106940	Hook Creek above tributary near Tenakee, AK	2.4	2.8	3.1	3.5	4.1	5.8			
15106960	Hook Creek near Tenakee, AK	4.8	5.3	6.1	6.8	7.5	9.0			
15106980	Tonalite Creek near Tenakee, AK	8.1	10.6	14.7	16.9	18.7	23.2			
15107000	Kadashan River near Tenakee, AK	26.4	28.9	31.6	35.1	38.6	49.6			
15108000	Pavlof River near Tenakee, AK	18.8	25.5	31.4	36.0	39.8	48.2			
15109000	Fish Creek near Auke Bay, AK	9.5	14.6	18.7	22.4	26.3	31.7			
15120000	Aishihik River near Whitehorse, YT	252	334	377	405	430	473			
15120500 ^R	Dezadeash River at Haines Junction, YT	972	1,210	1,410	1,530	1,620	1,780			
15120600	Alsek River above Bates River near Haines Junction, YT	11,700	13,300	14,500	15,800	16,500	18,200			
15129500	Situk River near Yakutat, AK	57.7	78.2	97.7	111	120	140			
15195000	Dick Creek near Cordova, AK	22.4	28.4	37.5	45.8	53.8	66.2			
15200000	Gakona River at Gakona, AK	517	827	1,070	1,240	1,390	1,640			
15200280	Gulkana River at Sourdough, AK	460	513	622	662	705	824			
15202000	Tazlina River near Glennallen, AK	6,160	8,280	9,670	10,300	10,700	11,400			
15206000	Klutina River at Copper Center, AK	2,720	3,000	3,260	3,440	3,650	4,040			
15208000	Tonsina River at Tonsina, AK	653	1,020	1,240	1,350	1,470	1,630			
15208100	Squirrel Creek at Tonsina, AK	16.3	16.7	17.5	18.3	18.9	20.5			
15212000	Copper River near Chitina, AK	50,400	58,300	65,200	73,200	78,700	88,200			
15216000	Power Creek near Cordova, AK	214	256	286	305	322	356			
15219000	West Fork Olsen Bay Creek near Cordova, AK	7.9	9.8	11.4	13.3	15.3	18.9			

¹Record indicates regulated years. Station not included in regression analysis.

²Drainage area is indeterminate. Station not included in regression analysis.

0: N	Daily mean discharge, in cubic feet per second										
Station No.	AUG60	AUG50	SEPT98	SEPT95	SEPT90	SEPT85	SEPT80	SEPT70	SEPT60	SEPT50	
15072000	161	201	42.6	67.6	88.3	111	133	183	248	326	
15074000	87.2	108	16.8	27.0	46.2	62.8	77.2	110	140	173	
15076000	254	304	93.3	122	154	188	216	270	323	383	
15078000	177	248	31.4	36.1	61.0	84.0	112	145	205	265	
15080000	233	291	60.2	91.2	125	148	170	214	279	370	
15081497	53.0	67.0	9.4	13.0	30.0	39.9	54.0	92.2	138	189	
15081500	60.9	75.2	15.1	26.1	54.7	69.1	79.1	99.8	132	186	
15081580	13.7	16.4	3.3	4.6	5.8	7.7	9.4	14.3	17.5	22.0	
15083500	3.7	4.9	1.1	1.6	2.6	3.5	4.8	7.2	10.7	14.9	
15085100	6.3	7.5	1.8	2.6	5.2	6.8	8.2	11	14.4	18.3	
15085600	12.1	17.2	2.8	4.8	6.5	8.9	10.8	17.1	25.3	37.3	
15085700	59.1	71.1	27.2	34.0	45.3	53.4	62.4	81.7	106	141	
15085800	31.2	36.6	14.3	18.7	24.1	27.9	31.3	41.0	52.0	68.9	
15086600	24.9	31.3	4.5	10.6	17.6	23.3	28.9	39.9	51.6	67.8	
15087545	4.5	5.8	1.1	1.6	2.6	3.4	3.9	4.9	6.4	8.6	
15087570	54.4	72.0	9.6	18.2	28.3	37.8	50.0	73.3	105	144	
15087590	1.6	2.2	0.3	0.5	0.8	1.4	1.7	2.5	3.3	4.6	
15087690	50.8	59.0	33.0	38.3	46.2	53.2	58.0	69.7	84.0	100	
15090000 ^R	381	399	127	141	181	205	236	270	357	407	
15093400	28.5	35.0	9.3	13.2	16.3	19.8	25.1	33.2	43.1	57.1	
15094000	121	135	48.7	57.2	73.2	82.5	91.7	108	122	143	
15098000	495	544	159	206	263	297	323	374	425	490	
15100000	328	362	144	159	184	201	217	251	277	314	
15101490 ^{1,R}	29.7	33.6	13.5	17.1	20.1	23.6	27.4	34.0	39.8	48.2	
15101500	72.0	82.9	20.0	33.0	43.2	48.6	53.2	65.8	75.6	89.3	
15102000	183	231	69.7	85.0	127	150	179	238	294	348	
15106920	17.2	20.2	7.1	10.1	13.6	16.6	19.8	26	32.6	41.8	
15106940	7.1	8.2	2.5	3.6	6.3	7.7	9.1	12.2	16.0	19.6	
15106960	11.7	13.9	5.6	6.5	8.8	13.2	15.3	18.7	21.7	26.0	
15106980	27.5	33.1	15.4	18.6	24.7	28.7	32.1	40.3	49.1	59.3	
15107000	60.1	72.6	29.8	36.5	49.8	59.0	68.1	86.5	110	146	
15108000	57.3	68.2	24.3	33.5	42.0	49.3	55.9	72.0	92.4	117	
15109000	38.0	46.7	9.6	14.6	19.6	24.3	28.6	37.6	46.3	60.7	
15120000	548	674	263	290	330	374	397	436	478	566	
15120500 ^R	1,950	2,140	913	1,130	1,240	1,300	1,360	1,490	1,590	1,710	
15120600	19,800	21,400	4,170	4,750	5,490	6,230	6,830	8,020	8,980	10,100	
15129500	174	223	91.6	146	186	214	246	287	328	401	
15195000	79.9	95.5	15.5	20.0	29.2	36.3	41.4	55.1	72.8	97.7	
15200000	1,840	2,000	331	382	431	494	557	706	785	886	
15200280	978	1,090	437	476	588	621	649	784	961	1,150	
15202000	12,100	13,200	3,080	3,480	3,890	4,280	4,580	5,200	6,040	6,950	
15206000	4,240	4,420	1,270	1,420	1,520	1,670	1,780	2,060	2,310	2,520	
15208000	1,770	1,900	394	443	502	543	590	700	839	944	
15208100	21.3	22.0	16.8	18.0	18.4	18.8	19.6	20.9	21.5	22.3	
15212000	99,500	107,000	22,300	25,400	28,000	31,100	33,500	38,000	43,100	47,400	
15216000	392	421	127	150	175	194	214	257	307	363	
15219000	22.2	25.4	5.9	7.5	9.8	11.3	12.6	15.3	19.3	25.2	

 Table 8.
 Monthly low-duration flow statistics for July, August, and September for streamflow-gaging stations in Regions 1–7, Alaska and conterminous basins in Canada—Continued

[Station No.: R, presently regulated. Station name: AK, Alaska; BC, British Columbia; YT, Yukon. Daily mean discharge: MONTH*n*, for the indicated month having an *n*-percent exceedance probability. mi², square mile; in., inch; –, no data available]

			Latitude	Longitude	Drainage	Mean annual
Station No.	Station Name	Region	(degrees) sec	s, minutes, onds)	area (mi ²)	precipitation (in.)
15225997 ^{1,R}	Solomon Gulch at top of falls near Valdez ,AK	3	61 04 45	146 18 11	_	_
15237360	San Juan River near Seward, AK	3	59 49 05	147 53 00	12.4	220
15238600	Spruce Creek near Seward, AK	3	60 04 10	149 27 08	9.26	120
15238820	Barabara Creek near Seldovia, AK	3	59 28 50	151 38 42	20.7	70
15239000 ^R	Bradley River near Homer, AK	3	59 45 30	150 51 02	56.1	120
15239050	Middle Fork Bradley River tributary near Homer, AK	3	59 46 42	150 45 15	9.25	70
15239900	Anchor River near Anchor Point, AK	4	59 44 50	151 45 11	137	25
15240000	Anchor River at Anchor Point, AK	4	59 46 21	151 50 05	224	25
15241600	Ninilchik River at Ninilchik. AK	4	60 02 56	151 39 48	131	20
15242000	Kasilof River near Kasilof, AK	4	60 19 05	151 15 35	738	50
15244000	Ptarmigan Creek at Lawing, AK	4	60 24 20	149 21 45	32.6	90
15246000	Grant Creek near Moose Pass, AK	4	60 27 25	149 21 15	44.2	90
15248000	Trail River near Lawing, AK	4	60 26 01	149 22 19	181	90
15254000	Crescent Creek near Cooper Landing, AK	4	60 29 49	149 40 38	31.7	50
15258000 ^R	Kenai River at Cooper Landing, AK	4	60 29 34	149 48 28	634	70
15258000 ^{1,R}	Kenai River at Cooper Landing, AK, regulated years	4	61 29 34	150 48 28	634	70
15266300	Kenai River at Soldotna, AK	4	60 28 39	151 04 46	1,950	50
15266500	Beaver Creek near Kenai, AK	4	60 33 50	151 07 03	51.0	20
15267900	Resurrection Creek near Hope, AK	4	60 53 40	149 38 13	149	30
15271000	Sixmile Creek near Hope, AK	4	60 49 15	149 25 31	234	60
15272280	Portage Creek at Portage Lake outlet near Whittier, AK	4	60 47 07	148 50 20	40.5	158
15272550	Glacier Creek at Girdwood, AK	4	60 56 29	149 09 44	58.2	70
15273900	South Fork Campbell Creek at canyon mouth near Anchorage, AK	4	61 08 52	149 43 12	25.2	25
15274000	South Fork Campbell Creek near Anchorage, AK	4	61 10 02	149 46 14	29.2	22
15274300	North Fork Campbell Creek near Anchorag. AK	4	61 10 10	149 45 43	13.4	22
15276000 ^{1,R}	Ship Creek near Anchorage, AK	4	61 13 32	149 38 06	90.5	30
15277100	Eagle River at Eagle River AK	4	61 18 28	149 33 32	192	40
15277410	Peters Creek near Birchwood AK	4	61 25 08	149 29 20	87.8	35
15281000	Knik River near Palmer, AK	4	61 30 18	149 01 50	1.180	100
15282000	Caribou Creek near Sutton, AK	4	61 48 12	147 40 57	289	25
15284000	Matanuska River at Palmer. AK	4	61 36 34	149 04 16	2.070	35
15290000	Little Susitna River near Palmer, AK	4	61 42 37	149 13 47	61.9	50
15291000	Susitna River near Denali AK	4	63 06 14	147 30 57	950	50
15291200	Maclaren River near Paxson, AK	4	63 07 10	146 31 45	280	50
15291500	Susitna River near Cantwell AK	4	62 41 55	147 32 42	4.140	30
15292000	Susitna River at Gold Creek, AK	4	62 46 04	149 41 28	6 160	30
15292400	Chulitna River near Talkeetna AK		62 33 31	150 14 02	2 570	55
15292700	Talkaatna Divar naar Talkaatna AK	4	62 20 40	150 01 01	2,570	35
15292700	Willow Crook poor Willow AK	4	61 46 51	140 53 04	2,000	30
15294003	Skwentna River near Skwentna AK	4	61 52 23	149 55 04	2 250	30 45
15294360	Surviva Diverset Surviva Station AV	4	(1.22.41	150 20 45	10,400	
15294550	Christen Divergene Trendle, AK	4	01 52 41	150 50 45	19,400	55
15294450	Chultha River hear Tyonek, AK	4	01 00 31	151 15 07	131	45
15294500	Unakachatha River near Tyonek, AK	4	61 12 44	152 21 26	1,120	80
15295600*	Ierror Kiver near Kodiak, AK	3	57 39 05	153 01 46	15.0	130
15296000	Uganik Kiver near Kodiak, AK	3	57 41 06	153 25 10	123	15
15297200	Myrtle Creek near Kodiak, AK	3	57 36 12	152 24 12	4.74	130
15297900	Eskimo Creek at King Salmon, AK	4	58 41 08	156 40 08	16.1	20

¹Record indicates regulated years. Station not included in regression analysis.

Mean Daily mean discharge, in cubic feet per second Area of basin Station No. glaciers elevation JULY98 JULY95 JULY90 JULY85 JULY80 JULY70 JULY60 JULY50 (percent) (feet) 15225997^{1,R} 2.3 2.9 3.2 3.5 3.8 4.3 5.0 7.8 15237360 652 0 15.5 19.2 24.5 28.9 32.5 40.1 53.1 63.2 1,990 103 138 15238600 8 73.1 87.7 115 124 151 166 70.0 104 139 15238820 1,610 0 48.7 58.0 81.0 89.3 120 15239000^R 716 763 801 839 903 954 1,020 2,800 36 673 15239050 3,920 28 94.6 100 108 115 120 128 138 149 0 15239900 1,120 64.8 72.1 79.1 86.3 91.8 99.6 108 118 132 15240000 970 0 47.2 68.6 88.8 101 112 153 179 670 49.3 15241600 0 52.8 56.3 59.3 61.7 65.8 69.7 74.5 1,460 1,730 2,580 2,970 3,800 15242000 1,810 28 2,140 2,390 3,380 15244000 2,800 12 141 166 185 197 208 225 245 263 15246000 2,900 18 298 344 382 397 406 437 466 496 15248000 2,470 11 1,430 1,520 1,610 1,670 1,730 1,820 1,930 2,010 15254000 2,700 0 69.0 76.7 92.5 102 110 124 137 147 15258000^R 2,650 10 4,820 5,060 5,430 5,580 5,700 5,930 6,230 6,580 15258000^{1,R} 2,650 10 4,630 5,090 5,380 5,640 5,870 6,260 6,590 6,850 15266300 1,750 9,640 11,300 11,600 12,100 12,600 13,100 11 8,550 10,600 15266500 140 15.5 17.5 18.3 0 13.1 13.8 14.4 15.0 16.5 15267900 2,750 0 270 299 332 353 390 444 489 540 15271000 3 957 1,070 1,220 1,330 1,460 1,660 1,860 2,040 2,460 1,730 1,830 1,920 15272280 2,172 42 1,410 1,450 1,520 1,570 1,620 15272550 2,610 11 318 348 389 424 451 492 532 581 15273900 2,760 0 38.9 45.1 50.1 56.8 60.7 65.8 74.0 83.8 15274000 2,530 0 28.4 33.8 43.7 48.2 51.1 56.5 63.8 70.4 15274300 2,670 0 20.3 20.9 22.5 24.0 25.6 28.3 30.8 34.4 15276000^{1,R} 3,100 0 86.9 116 148 171 189 215 244 272 15277100 3,120 13 978 1,050 1,180 1,280 1,340 1,460 1,550 1,660 15277410 3,150 2 186 198 214 223 230 248 272 293 15281000 4,000 54 14,400 15,600 17,000 17,900 18,700 20,000 21,000 22,200 15282000 4,190 0 120 144 232 283 319 401 480 547 12 7,120 8,320 9,030 9,670 10,200 11,100 12,000 12,800 15284000 4,000 5 208 290 15290000 3,700 179 243 270 331 376 427 15291000 4,510 25 5,260 6,010 6,800 7,200 7,680 8,440 9,060 9,560 19 15291200 4,520 1,850 2,080 2,290 2,450 2,560 2,730 2,900 3,090 7 15291500 3,560 10,900 11,300 12,300 13,400 14,200 15,300 16,100 17,200 15292000 3,420 5 15,100 16,400 17,800 18,700 19,300 20,800 22,100 23,000 15292400 3,760 27 17,100 18,100 19,900 20,800 21,600 22,900 24,200 25,400 15292700 3,630 7 6,240 6,850 7,320 7,670 7,960 8,490 9,060 9,620 15294005 2,890 0 254 281 352 394 430 489 546 607 15294300 2,810 16 9,480 11,100 12,400 13,400 13,800 14,700 15,600 16,700 15294350 3,200 11 91,600 96,000 102,000 106,000 109,000 115,000 120,000 126,000 15294450 1,120 0 77.7 86.2 96.1 105 116 142 176 211 11,900 15294500 3,900 30 6,240 8,120 8,760 9,280 9,860 10,600 11,100 15295600^R 2,300 1 78.8 95.0 126 154 190 234 263 291 0 498 650 797 918 1,060 1,190 1,330 15296000 1.830 422 15297200 700 0 3.0 5.1 6.5 7.7 8.8 12.3 14.6 18.7 15297900 140 0 3.5 4.4 5.0 59 6.5 7.4 8.5 9.4

 Table 8.
 Monthly low-duration flow statistics for July, August, and September for streamflow-gaging stations in Regions 1–7, Alaska and conterminous basins in Canada—Continued

[Station No.: R, presently regulated; Station name: AK, Alaska; BC, British Columbia; YT, Yukon; Daily mean discharge: MONTH*n*, for the indicated month having an *n*-percent exceedance probability; mi², square mile; in., inch; –, no data available]

Station No.		Daily mean discharge, in cubic feet per second								
Station No.	Station Name	AUG98	AUG95	AUG90	AUG85	AUG80	AUG70			
15225997 ^{1,R}	Solomon Gulch at top of falls near Valdez ,AK	2.2	2.5	3.3	4.0	4.7	6.7			
15237360	San Juan River near Seward, AK	11.2	13.2	18.0	24.9	29.7	40.5			
15238600	Spruce Creek near Seward, AK	39.9	47.5	59.9	66.8	73.4	86.0			
15238820	Barabara Creek near Seldovia, AK	34.6	37.9	41.1	42.8	44.6	49.0			
15239000 ^R	Bradley River near Homer, AK	534	567	625	698	760	840			
15239050	Middle Fork Bradley River tributary near Homer, AK	67.8	80.0	87.8	93.8	100	110			
15239900	Anchor River near Anchor Point, AK	53.1	58.6	64.5	69.1	74.8	93.2			
15240000	Anchor River at Anchor Point, AK	70.9	86.3	92.2	101	113	138			
15241600	Ninilchik River at Ninilchik, AK	44.6	47.2	50.2	54.3	57.1	61.8			
15242000	Kasilof River near Kasilof, AK	3,920	4,550	4,770	5,070	5,420	5,800			
15244000	Ptarmigan Creek at Lawing, AK	125	130	142	154	164	175			
15246000	Grant Creek near Moose Pass, AK	216	237	282	303	320	349			
15248000	Trail River near Lawing, AK	809	1,070	1,200	1,300	1,380	1,510			
15254000	Crescent Creek near Cooper Landing, AK	54.4	57.2	61.8	65.4	69.2	82.8			
15258000 ^R	Kenai River at Cooper Landing, AK	3,960	4,310	4,670	4,860	4,990	5,190			
15258000 ^{1,R}	Kenai River at Cooper Landing, AK, regulated years	3,800	4,240	4,530	4,730	4,960	5,420			
15266300	Kenai River at Soldotna, AK	8,500	9,840	10,700	11,300	11,700	12,500			
15266500	Beaver Creek near Kenai, AK	11.4	12.5	13.2	13.6	13.9	15.0			
15267900	Resurrection Creek near Hope, AK	167	183	203	218	234	263			
15271000	Sixmile Creek near Hope, AK	674	714	765	813	850	938			
15272280	Portage Creek at Portage Lake outlet near Whittier, AK	770	950	1,140	1,220	1,280	1,410			
15272550	Glacier Creek at Girdwood, AK	182	211	256	277	301	339			
15273900	South Fork Campbell Creek at canyon mouth near Anchorage, AK	32.3	34.4	36.4	38.8	40.6	44.6			
15274000	South Fork Campbell Creek near Anchorage, AK	27.5	30.8	36.2	39.0	41.2	45.6			
15274300	North Fork Campbell Creek near Anchorag, AK	12.3	13.4	14.7	16.9	18.2	20.3			
15276000 ^{1,R}	Ship Creek near Anchorage, AK	75.2	86.8	101	112	123	143			
15277100	Eagle River at Eagle River, AK	605	705	898	1,000	1,090	1,240			
15277410	Peters Creek near Birchwood, AK	127	141	152	162	178	194			
15281000	Knik River near Palmer, AK	11,700	12,200	12,500	14,900	15,800	17,600			
15282000	Caribou Creek near Sutton, AK	134	188	216	236	252	284			
15284000	Matanuska River at Palmer, AK	2,850	4,670	5,530	6,280	6,850	7,880			
15290000	Little Susitna River near Palmer, AK	141	166	189	206	222	249			
15291000	Susitna River near Denali, AK	2,180	3,340	4,230	4,720	5,310	6,360			
15291200	Maclaren River near Paxson, AK	616	1,060	1,380	1,550	1,730	2,000			
15291500	Susitna River near Cantwell, AK	4,830	7,730	9,220	9,890	10,900	12,200			
15292000	Susitna River at Gold Creek, AK	10,200	12,500	14,300	15,300	16,100	17,500			
15292400	Chulitna River near Talkeetna, AK	8,040	12,800	14,500	15,900	16,800	18,800			
15292700	Talkeetna River near Talkeetna, AK	3,880	5,050	5,930	6,400	6,750	7,320			
15294005	Willow Creek near Willow, AK	221	254	287	315	335	376			
15294300	Skwentna River near Skwentna, AK	4,760	6,640	8,070	9,000	9,640	10,700			
15294350	Susitna River at Susitna Station, AK	64,800	72,700	79,900	84,000	88,000	95,600			
15294450	Chuitna River near Tyonek, AK	74.8	83.6	92.4	99.3	106	121			
15294500	Chakachatna River near Tyonek, AK	5,720	7,540	8,570	8,910	9,270	10,100			
15295600 ^к	Terror River near Kodiak, AK	42.7	61.7	69.8	73.3	79.7	100			
15296000	Uganik River near Kodiak, AK	266	306	359	411	463	560			
15297200	Myrtle Creek near Kodiak, AK	2.0	3.8	4.6	5.2	6.1	8.4			
15297900	Eskimo Creek at King Salmon, AK	4.8	5.4	6.2	6.6	7.4	8.6			

¹Record indicates regulated years. Station not included in regression analysis.

²Drainage area is indeterminate. Station not included in regression analysis.

0: N	Daily mean discharge, in cubic feet per second										
Station No.	AUG60	AUG50	SEPT98	SEPT95	SEPT90	SEPT85	SEPT80	SEPT70	SEPT60	SEPT50	
15225997 ^{1,R}	21.9	57.4	2.4	2.8	3.5	4.4	5.3	8.1	18.4	47.4	
15237360	56.7	76.0	19.5	24.7	31.4	39.2	46.9	65.2	88.0	115	
15238600	99.3	112	21.1	27.9	34.6	42.5	49.8	63.9	76.1	95.0	
15238820	54.0	60.2	31.2	35.7	39.4	42.0	45.5	53.3	60.2	69.5	
15239000 ^R	916	1,020	232	261	340	376	424	512	579	687	
15239050	122	134	27.0	34.3	42.0	48.0	53.2	62.2	73.3	86.8	
15239900	106	120	56.1	59.1	67.8	81.2	92.7	112	132	156	
15240000	157	182	118	125	134	147	156	188	223	257	
15241600	67.0	73.0	50.1	54.4	58.9	64.5	69.1	77.9	87.0	97.5	
15242000	6,130	6,470	3,640	4,120	4,360	4,570	4,820	5,340	5,870	6,270	
15244000	189	197	67.0	74.4	82.4	89.2	97.5	111	123	135	
15246000	372	398	104	119	141	156	169	200	226	254	
15248000	1,620	1,720	424	474	543	613	695	800	914	1,040	
15254000	94.4	102	45.8	50.7	55.2	58.8	62.4	72.8	79.7	88.2	
15258000 ^R	5,410	5,820	2,010	2,240	2,470	2,670	2,850	3,130	3,490	3,910	
15258000 ^{1,R}	5,840	6,150	2,090	2,430	2,900	3,230	3,490	3,950	4,350	4,750	
15266300	13,300	14,000	4,670	5,710	6,750	7,340	7,790	8,590	9,610	10,700	
15266500	16.1	17.0	13.4	14.2	15.7	16.4	17.1	18.8	20.4	21.8	
15267900	294	326	131	143	154	171	190	212	238	266	
15271000	1,030	1,120	490	530	578	629	675	755	831	909	
15272280	1,570	1,730	218	386	476	702	794	949	1,140	1,330	
15272550	368	421	107	137	157	172	191	232	279	321	
15273900	48.7	53.9	22.6	27.2	30.7	33.6	36.1	39.9	43.6	48.6	
15274000	50.7	55.7	21.0	24.1	30.2	33.8	36.0	40.6	47.2	54.2	
15274300	22.4	25.3	9.7	10.9	13.0	15.1	16.3	18.2	20.2	23.2	
15276000 ^{1,R}	159	176	60.3	77.0	94.5	105	114	134	152	177	
15277100	1,350	1,530	251	297	359	392	422	520	630	753	
15277410	212	235	72.1	93.0	112	118	122	133	143	155	
15281000	19,200	20,700	4,020	5,040	5,780	6,490	7,170	8,210	9,270	10,300	
15282000	315	350	124	147	169	189	196	208	228	254	
15284000	8,790	9,550	1,800	2,000	2,300	2,570	2,870	3,390	3,860	4,350	
15290000	278	312	86.3	101	116	132	145	170	196	226	
15291000	6,990	7,870	1,010	1,210	1,430	1,600	1,800	2,130	2,470	2,820	
15291200	2,200	2,440	380	449	518	578	636	734	845	956	
15291500	13,400	14,700	2,770	3,370	3,820	4,420	5,150	5,930	6,520	7,180	
15292000	18,900	20,500	5,350	6,070	7,120	8,180	8,890	10,100	11,300	12,500	
15292400	20,100	21,300	4,940	5,820	6,640	7,050	7,460	8,540	9,490	10,400	
15292700	7,840	8,400	1,960	2,460	2,900	3,160	3,390	3,760	4,240	4,860	
15294005	442	521	181	225	270	301	338	410	471	534	
15294300	11,500	12,400	2,770	3,900	4,560	4,950	5,310	6,110	6,970	7,730	
15294350	103,000	109,000	29,100	36,600	41,600	46,800	50,600	55,900	63,300	70,400	
15294450	141	169	78.2	86.1	104	121	139	170	221	285	
15294500	10,800	11,400	2,290	2,620	2,920	3,210	3,490	4,190	4,650	5,540	
15295600 ^R	118	144	39.4	43	62.1	69.4	77.2	101	125	148	
15296000	645	729	188	213	260	302	346	422	508	603	
15297200	11.4	14.8	3.7	5.3	9.0	10.9	13.2	17.4	23.0	28.8	
15297900	9.4	10.6	6.4	7.0	7.8	8.5	9.5	10.7	11.5	12.4	

 Table 8.
 Monthly low-duration flow statistics for July, August, and September for streamflow-gaging stations in Regions 1–7, Alaska and conterminous basins in Canada—Continued

[Station No.: R, presently regulated. Station name: AK, Alaska; BC, British Columbia; YT, Yukon. Daily mean discharge: MONTH*n*, for the indicated month having an *n*-percent exceedance probability. mi², square mile; in., inch; –, no data available]

			Latitude	Longitude	Drainage	Mean annual
Station No.	Station Name	Region	(degrees, minutes, seconds)		area (mi ²)	precipitation (in.)
15300000	Newhalen River near Iliamna, AK	4	59 51 34	154 52 24	3.480	40
15300500	Kvichak River at Igiugig, AK	4	59 19 44	155 53 57	6.500	40
15302000	Nuvakuk River near Dillingham, AK	4	59 56 08	158 11 16	1.490	60
15302500	Nushagak River at Ekwok. AK	4	59 20 57	157 28 23	9.850	30
15303000	Wood River near Aleknagik, AK	4	59 16 30	158 35 37	1.110	60
15303150	Snake River near Dillingham, AK	4	59 08 54	158 53 14	113	50
15303600	Kuskokwim River at McGrath, AK	6	62 57 10	155 35 11	11,700	23
15303700	Tatalina River near Takotna AK	6	62 53 06	155 56 22	76.9	20
15304000	Kuskokwim River at Crooked Creek, AK	6	61 52 16	158 06 03	31,100	22
15304520	Lubbock River near Atlin, BC	5	60 04 52	133 51 30	683	11
15304550	Pine Creek near Atlin BC	5	59 33 40	133 39 56	269	12
15304600	Atlin River near Atlin, BC	2	59 35 57	133 48 48	2 630	12
15304650	Wann River near Atlin, BC	2	50 25 55	134 12 20	2,050	32
15304000	Fantail River at outlet of Fantail Lake near Atlin BC	2	59 35 40	134 23 26	277	32
15304750	Tutshi River at outlet of Tutshi Lake near Atlin BC	2	59 56 48	134 19 29	320	24
15304800	Lindeman River near Bennett BC	2	59 50 40	135 00 44	92.7	24 52
15304850	Wheaton River near Carcross VT	2	60.08.05	134 53 45	338	12
15304020	Tagish Creek near Carcross, VT	5	60 17 32	134 18 00	207	12
15304920	Maclintock River near Whitehorea, VT	5	60 36 45	134 18 00	29.1 656	12
15305000	Yukon River at Whitehorse, YT	5	60 42 50	134 27 27	7.490	12
15205020	Takini Divar at Kusawa Laka at Whitehama VT	5	60 26 46	126.07.26	1,570	16
15305050	Takhini River ager Whitehorea, VT	5	60 51 08	130 07 20	2,700	10
15305050	Vukon Biyar abaya Frank Croak VT	5	61 26 04	125 11 19	2,700	14
15305150	Swift Diver peer Swift Diver BC	5	50 55 50	131 46 04	1 280	14
15305200	Gladys Piver at outlet of Gladys Lake near Atlin BC	5	59 54 20	132 54 50	737	13
15305250	Taslin Diver near Taslin VT	5	59 54 20 60 20 07	132 34 30	11 700	12
15305250	Teslin River near Whitehorse, VT	5	61 20 25	134 46 35	14,100	13
15305200	Rig Salmon River near Carmacks, VT	5	61 52 22	134 50 00	2 610	12
15305350	Signation River at Carmacks, 11	5	62 05 45	134 30 00	2,010	13
15305360	Big Creek near mouth near Minto YT	5	62 03 43 62 34 07	137 00 58	676	12
15305300	Discrete at Discrete Discrete VT	5	(1 50 40	122 22 40	2 800	12
15305390	ROSS RIVER at Ross River, 11 Delly Diver at Ross Diver VT	5	61 59 40	132 22 40	2,800	12
15305400	Pelly River at Ross River, 11	5	(2 12 20	132 20 34	7,100	12
15305406	Pelly River at Faro, Y I	5	62 13 20	133 22 40	8,530	12
15305412	South MacMillan River at Canol Road near Ross River, Y I	5	62 55 20	130 32 00	385	24
15305420	Pelly River at Pelly Crossing, YI	5	62 49 47	136 34 50	18,900	20
15305450	Yukon River above white River near Dawson, Y I	5	63 05 02	139 29 40	57,900	10
15305500	Kluane River at outlet of Kluane Lake, Y I	2	61 25 37	139 02 56	1,910	20
15305540	White River at Alaska Highway near Koidern, BC	2	61 58 41	140 33 10	2,410	22
15305582	Stewart River above Fraser Falls near Mayo, YT	5	63 29 17	135 08 06	11,800	14
15305590	Stewart River at Mayo, YT	5	63 35 26	135 53 48	12,200	15
15305620	Stewart River at Stewart Crossing, YT	5	63 22 56	136 40 59	13,500	15
15305650	Stewart River at mouth, YT	5	63 16 55	139 14 56	19,700	12
15305695	North Klondike River near mouth near Dawson, YT	5	64 01 16	138 34 58	425	16
15305698	Klondike River above Bonanza Creek near Dawson, YT	5	64 02 34	139 24 28	3,010	16
15305700	Yukon River at Dawson, YT	5	64 04 12	139 25 30	102,000	10
15356000	Yukon River at Eagle, AK	5	64 47 22	141 11 52	114,000	12
15388950	Porcupine River at Old Crow, YT	5	67 33 50	139 53 00	21,400	10

¹Record indicates regulated years. Station not included in regression analysis.

²Drainage area is indeterminate. Station not included in regression analysis.

	Mean	Area of	ea of Daily mean discharge, in cubic feet per second							
Station No.	basin elevation (feet)	glaciers (percent)	JULY98	JULY95	JULY90	JULY85	JULY80	JULY70	JULY60	JULY50
15300000	2,160	8	14,300	15,800	16,400	16,800	17,100	18,200	19,100	20,600
15300500	1,790	6	13,000	13,700	14,200	15,100	15,800	16,800	17,700	19,000
15302000	1,100	0	6,060	7,070	8,380	9,160	9,810	11,100	12,500	13,600
15302500	988	1	18,600	20,300	22,300	24,000	25,500	27,700	29,500	31,500
15303000	690	0	4,120	5,270	5,700	6,040	6,360	6,870	7,510	8,250
15303150	540	0	296	323	356	386	404	447	528	606
15303600	1,850	0	17,500	18,200	19,300	19,800	20,300	22,000	23,600	25,200
15303700	890	0	18.2	20.9	26.3	31.0	34.4	43.1	49.2	55.4
15304000	1,480	1	40,500	43,800	47,600	49,800	51,900	56,000	59,900	64,100
15304520	4,190	0	40.7	50.4	62.7	71.7	82.8	99	119	143
15304550	3,880	0	265	312	329	341	350	370	389	410
15304600	3,500	4	2,510	2,810	3,130	3,390	3,590	3,960	4,340	4,730
15304650	5,310	6	426	491	555	588	620	669	708	762
15304700	5,030	20	1,400	1,630	1,800	1,940	2,030	2,200	2,340	2,470
15304750	4,290	0	866	971	1,050	1,120	1,180	1,320	1,440	1,510
15304800	4,840	8	562	617	674	728	765	819	888	954
15304850	4,620	1	366	407	444	474	511	570	629	693
15304920	3,530	0	4.1	4.5	5.1	5.9	8.0	9.0	9.5	10.5
15304950	3,560	0	142	234	262	302	332	388	442	498
15305000	3,680	5	9,610	10,500	11,400	12,100	12,700	13,700	14,400	15,200
15305030	4,540	6	3,180	3,430	4,010	4,390	4,700	5,010	5,290	5,500
15305050	4,270	3	3,570	4,220	4,810	5,160	5,390	5,670	5,950	6,260
15305100	3,800	4	11,100	12,400	13,900	15,000	16,200	18,000	19,500	20,700
15305150	4,230	0	1,100	1,400	1,650	1,810	2,000	2,290	2,610	2,890
15305200	4,000	0	544	761	857	912	964	1,050	1,130	1,240
15305250	3,920	0	11,400	13,800	15,500	16,700	17,700	20,000	22,300	24,800
15305260	3,880	0	10,400	15,600	19,000	20,300	21,300	23,100	24,800	26,700
15305300	4,140	0	2,040	2,450	2,920	3,210	3,440	3,930	4,330	4,740
15305350	4,000	1	32,600	34,700	40,500	43,300	46,200	49,300	51,900	55,000
15305360	3,340	0	75.2	87.2	107	129	167	246	340	438
15305390	3,590	0	1,750	2,040	2,370	2,590	2,760	3,130	3,520	3,920
15305400	3,870	0	5,130	6,520	7,320	7,830	8,300	9,190	10,300	11,400
15305406	3,780	0	4,710	5,700	6,780	7,620	8,290	9,860	11,500	12,700
15305412	4,540	1	854	915	1,020	1,120	1,200	1,340	1,500	1,640
15305420	3,660	0	12,200	13,300	14,900	16,400	17,700	20,100	22,500	24,900
15305450	3,770	1	47,400	52,800	58,100	62,000	65,800	71,700	76,400	83,800
15305500	4,390	4	3,170	3,590	4,250	4,670	5,030	5,740	6,360	6,830
15305540	6,180	28	5,700	7,690	9,190	10,300	11,200	12,700	14,200	15,600
15305582	3,800	0	12,400	13,600	15,700	17,300	18,400	20,800	22,700	24,500
15305590	3,780	0	12,300	13,100	15,500	18,200	20,200	23,400	25,900	28,700
15305620	3,660	0	13,300	15,400	17,100	19,900	22,200	25,000	27,500	30,100
15305650	3,600	0	14,300	16,200	18,200	20,100	21,500	24,400	26,900	29,300
15305695	3,730	0	339	384	446	487	526	592	655	722
15305698	3,230	0	1,390	1,600	1,840	2,030	2,200	2,500	2,860	3,200
15305700	3,590	1	114,000	119,000	128,000	133,000	139,000	147,000	154,000	163,000
15356000	3,340	3	115,000	124,000	132,000	139,000	145,000	155,000	165,000	175,000
15388950	1,810	0	3,710	4,470	5,300	5,890	6,510	7,940	9,970	12,700

 Table 8.
 Monthly low-duration flow statistics for July, August, and September for streamflow-gaging stations in Regions 1–7, Alaska and conterminous basins in Canada—Continued

[Station No.: R, presently regulated; Station name: AK, Alaska; BC, British Columbia; YT, Yukon; Daily mean discharge: MONTH*n*, for the indicated month having an *n*-percent exceedance probability; mi², square mile; in., inch; –, no data available]

Ctation No.	Station Nome	Daily mean discharge, in cubic feet per second							
Station No.	Station Name	AUG98	AUG95	AUG90	AUG85	AUG80	AUG70		
15300000	Newhalen River near Iliamna, AK	14,900	15,900	17,000	17,500	17,900	18,800		
15300500	Kvichak River at Igiugig, AK	15,000	16,800	18,100	18,700	19,100	20,100		
15302000	Nuyakuk River near Dillingham, AK	4,330	5,000	5,520	6,100	6,470	7,190		
15302500	Nushagak River at Ekwok, AK	15,700	17,200	19,100	20,500	21,500	23,700		
15303000	Wood River near Aleknagik, AK	3,090	3,730	4,150	4,290	4,470	4,690		
15303150	Snake River near Dillingham, AK	195	229	244	264	286	372		
15303600	Kuskokwim River at McGrath, AK	13,400	16,500	17,900	18,600	19,300	20,900		
15303700	Tatalina River near Takotna, AK	18.7	20.5	28.4	33.8	39.6	52.7		
15304000	Kuskokwim River at Crooked Creek, AK	38,100	41,000	44,600	47,800	51,400	57,900		
15304520	Lubbock River near Atlin, BC	31.7	36.4	50.6	58.8	63.0	74.8		
15304550	Pine Creek near Atlin, BC	107	113	206	217	224	244		
15304600	Atlin River near Atlin, BC	4,850	5,170	5,520	5,940	6,210	6,490		
15304650	Wann River near Atlin, BC	288	329	376	408	445	500		
15304700	Fantail River at outlet of Fantail Lake near Atlin, BC	994	1,150	1,360	1,500	1,600	1,770		
15304750	Tutshi River at outlet of Tutshi Lake near Atlin, BC	576	652	706	748	777	835		
15304800	Lindeman River near Bennett, BC	343	394	439	474	505	556		
15304850	Wheaton River near Carcross, YT	228	252	275	296	325	369		
15304920	Tagish Creek near Carcross, YT	4.0	4.1	4.3	4.7	5.7	7.2		
15304950	Maclintock River near Whitehorse, YT	117	169	209	230	251	295		
15305000	Yukon River at Whitehorse, YT	12,700	13,500	14,200	14,900	15,300	16,000		
15305030	Takhini River at Kusawa Lake at Whitehorse, YT	3,390	3,540	3,790	3,940	4,080	4,410		
15305050	Takhini River near Whitehorse, YT	3,630	3,870	4,230	4,520	4,700	4,980		
15305100	Yukon River above Frank Creek, YT	16,700	18,700	20,000	20,800	21,300	22,200		
15305150	Swift River near Swift River, BC	731	968	1,080	1,190	1,270	1,410		
15305200	Gladys River at outlet of Gladys Lake near Atlin, BC	269	440	478	526	562	611		
15305250	Teslin River near Teslin, YT	7,090	8,320	9,710	10,800	11,400	12,400		
15305260	Teslin River near Whitehorse, YT	6,870	7,960	11,000	12,500	13,400	14,900		
15305300	Big Salmon River near Carmacks, YT	1,880	2,030	2,190	2,340	2,470	2,720		
15305350	Yukon River at Carmacks, YT	30,600	32,200	33,900	36,000	38,200	41,100		
15305360	Big Creek near mouth near Minto, YT	60.2	70.2	98.7	120	148	221		
15305390	Ross River at Ross River, YT	1,070	1,270	1,510	1,750	1,920	2,230		
15305400	Pelly River at Ross River, YT	3,420	3,870	4,420	4,990	5,250	5,970		
15305406	Pelly River at Faro, YT	3,550	3,950	4,620	5,240	5,850	7,090		
15305412	South MacMillan River at Canol Road near Ross River, YT	479	520	577	626	672	761		
15305420	Pelly River at Pelly Crossing, YT	7,830	8,900	9,810	10,900	12,100	13,900		
15305450	Yukon River above White River near Dawson, YT	39,800	42,900	50,000	52,500	55,000	58,200		
15305500	Kluane River at outlet of Kluane Lake, YT	2,910	3,700	5,020	6,760	7,460	8,090		
15305540	White River at Alaska Highway near Koidern, BC	3,720	4,410	5,540	6,170	6,910	8,200		
15305582	Stewart River above Fraser Falls near Mayo,YT	7,710	8,940	10,900	12,300	13,600	15,100		
15305590	Stewart River at Mayo, YT	9,530	10,500	12,000	13,000	13,700	15,300		
15305620	Stewart River at Stewart Crossing, YT	12,100	13,200	14,400	15,100	15,900	17,100		
15305650	Stewart River at mouth, YT	10,900	12,800	14,300	15,600	16,700	18,000		
15305695	North Klondike River near mouth near Dawson, YT	322	340	368	392	414	452		
15305698	Klondike River above Bonanza Creek near Dawson, YT	1,120	1,250	1,420	1,510	1,640	1,920		
15305700	Yukon River at Dawson, YT	92,000	96,200	104,000	107,000	111,000	119,000		
15356000	Yukon River at Eagle, AK	91,200	99,400	109,000	11,4000	118,000	12,5000		
15388950	Porcupine River at Old Crow, YT	1,600	3,220	3,810	4,340	6,100	9,120		

¹Record indicates regulated years. Station not included in regression analysis.

²Drainage area is indeterminate. Station not included in regression analysis.

Ctation No.	Daily mean discharge, in cubic feet per second										
Station No.	AUG60	AUG50	SEPT98	SEPT95	SEPT90	SEPT85	SEPT80	SEPT70	SEPT60	SEPT50	
15300000	20,200	21,000	9,170	10,700	12,000	13,400	14,600	16,300	17,300	18,100	
15300500	21,100	23,200	17,000	17,900	19,000	19,500	20,100	21,000	22,800	25,200	
15302000	7,810	8,480	4,020	4,650	5,080	5,400	5,680	6,250	6,810	7,450	
15302500	26,000	27,600	12,800	13,400	14,900	20,500	21,500	23,800	25,900	28,400	
15303000	5,190	5,560	3,260	3,680	3,810	3,910	4,010	4,470	5,280	5,700	
15303150	403	431	206	225	269	315	362	406	450	526	
15303600	22,600	24,500	9,130	9,480	10,100	10,800	11,600	12,700	14,200	16,000	
15303700	63.5	77.5	19.3	22.1	28.0	47.4	52.2	59.8	70.7	84.4	
15304000	63,000	69,200	29,700	34,000	38,100	40,900	43,700	49,300	54,400	60,200	
15304520	88.2	100	24.6	32.3	52.6	62.0	69.5	80.8	94.4	106	
15304550	262	282	82.8	91.1	100	171	176	190	201	211	
15304600	6,830	7,180	4,660	5,040	5,530	5,850	6,050	6,370	6,650	7,040	
15304650	557	607	115	132	150	170	188	225	263	299	
15304700	1,940	2,110	356	424	500	563	624	737	879	1,040	
15304750	888	938	406	439	472	499	517	549	600	657	
15304800	616	674	156	185	215	236	253	295	340	392	
15304850	409	446	167	178	192	203	214	235	253	279	
15304920	7.9	8.3	4.8	5.2	5.7	6.0	6.5	7.1	7.7	8.4	
15304950	332	374	142	189	219	241	259	302	336	362	
15305000	16,600	17,200	7,800	8,750	10,300	12,100	13,500	14,700	15,500	16,100	
15305030	4,650	4,900	1,950	2,060	2,250	2,370	2,460	2,670	2,840	3,030	
15305050	5,270	5,530	2,190	2,430	2,660	2,810	2,950	3,170	3,390	3,600	
15305100	22,700	23,300	14,300	15,500	16,900	18,200	18,900	20,200	21,200	22,000	
15305150	1,530	1,700	535	942	1,040	1,110	1,220	1,380	1,510	1,630	
15305200	650	695	200	319	363	379	398	434	461	495	
15305250	13,300	14,300	5,710	6,550	7,310	7,880	8,860	9,840	10,400	11,200	
15305260	16,000	17,000	6,100	6,250	9,230	9,990	10,200	11,600	12,700	13,600	
15305300	2,970	3,230	1,590	1,730	1,880	2,000	2,120	2,340	2,580	2,860	
15305350	43,500	45,500	27,800	29,400	31,200	32,500	33,500	35,600	37,000	38,500	
15305360	293	353	79.6	89.0	99.8	113	132	180	231	268	
15305390	2,450	2,700	843	1,080	1,310	1,450	1,560	1,850	2,140	2,320	
15305400	6,940	7,780	2,020	3,350	4,010	4,150	4,370	5,210	6,000	6,650	
15305406	7,700	8,430	3,500	3,650	4,110	5,010	5,410	6,130	6,760	7,420	
15305412	854	952	313	354	392	420	442	492	554	616	
15305420	15,200	16,900	6,720	8,210	9,040	9,710	10,700	12,300	13,900	15,200	
15305450	62,000	65,000	33,700	39,600	42,600	45,200	47,200	49,700	52,600	55,400	
15305500	8,610	9,060	1,910	2,250	2,930	3,750	4,340	5,120	5,660	6,130	
15305540	9,310	10,500	1,450	1,580	1,700	1,860	2,010	2,280	2,500	2,850	
15305582	16,800	18,300	6,110	6,420	7,200	8,020	9,350	11,600	13,600	15,300	
15305590	17,300	19,000	8,650	10,100	10,800	11,300	11,800	12,400	13,100	14,000	
15305620	18,300	19,500	10,400	10,800	11,500	12,500	13,000	13,700	14,800	16,600	
15305650	19,300	21,300	8,470	9,690	10,900	12,000	12,900	14,600	16,700	18,600	
15305695	505	559	273	286	306	324	347	398	444	484	
15305698	2,190	2,490	1,190	1,290	1,390	1,510	1,610	1,810	2,100	2,380	
15305700	125,000	132,000	69,400	74,000	77,700	80,900	84,500	91,100	96,700	101,000	
15356000	133,000	140,000	70,300	77,700	82,000	86,700	90,500	97,200	104,000	110,000	
15388950	12,900	16,200	2,530	3,720	5,200	6,820	7,760	9,700	11,400	13,200	

 Table 8.
 Monthly low-duration flow statistics for July, August, and September for streamflow-gaging stations in Regions 1–7, Alaska and conterminous basins in Canada—Continued

[Station No.: R, presently regulated. Station name: AK, Alaska; BC, British Columbia; YT, Yukon. Daily mean discharge: MONTH*n*, for the indicated month having an *n*-percent exceedance probability. mi², square mile; in., inch; –, no data available]

			Latitude	Longitude	Drainage	Mean annual	
Station No.	Station Name	Region	(degrees, minutes, seconds)		area (mi ²)	precipitation (in.)	
15388960	Porcupine River near International Boundary, YT	5	67 25 27	140 53 28	23,100	10	
15389000	Porcupine River near Fort Yukon, AK	5	66 59 26	143 08 16	29,500	10	
15389500	Chandalar River near Venetie, AK	5	67 05 49	147 11 04	9,330	10	
15439800	Boulder Creek near Central, AK	6	65 34 05	144 53 13	31.3	15	
15453500	Yukon River near Stevens Village, AK	6	65 52 32	149 43 04	196,300	15	
15457800	Hess Creek near Livengood, AK	6	65 39 55	149 05 47	662	15	
15468000	Yukon River at Rampart, AK	6	65 30 25	150 10 15	199,000	15	
15470000	Chisana River at Northway Junction, AK	6	63 00 23	141 48 17	3,280	20	
15476000	Tanana River near Tanacross, AK	6	63 23 18	143 44 47	8,550	18	
15476300	Berry Creek near Dot Lake, AK	6	63 41 23	144 21 47	65.1	18	
15478040	Phelan Creek near Paxson, AK	6	63 14 27	145 28 03	12.2	80	
15484000	Salcha River near Salchaket, AK	6	64 28 22	146 55 26	2,170	15	
15485500^2	Tanana River at Fairbanks, AK	6	64 47 34	147 50 20	_	15	
15493000	Chena River near Two Rivers, AK	6	64 54 10	146 21 25	937	16	
15493700 ^{1,R}	Chena River below Moose Creek Dam, AK	6	64 48 03	147 13 40	_	_	
15511000	Little Chena River near Fairbanks, AK	6	64 53 10	147 14 50	372	15	
15514000	Chena River at Fairbanks, AK	6	64 50 45	147 42 04	2,000	15	
15514500	Wood River near Fairbanks, AK	6	64 26 06	148 12 46	855	15	
15515500	Tanana River at Nenana, AK	6	64 33 55	149 05 30	25,600	16	
15515800	Seattle Creek near Cantwell, AK	6	63 19 32	148 14 49	36.2	20	
15516000	Nenana River near Windy, AK	6	63 27 28	148 48 11	710	30	
15518000	Nenana River near Healy, AK	6	63 50 43	148 56 37	1,910	25	
15518080	Lignite Creek above mouth near Healy, AK	6	63 54 17	148 59 01	48.1	25	
15518350	Teklanika River near Lignite, AK	6	63 55 14	149 29 51	490	25	
15535000	Caribou Creek near Chatanika, AK	6	65 09 00	147 33 05	9.19	15	
15564600	Melozitna River near Ruby, AK	6	64 47 34	155 33 39	2,690	15	
15564800	Yukon River at Ruby, AK	6	64 44 28	155 29 22	259,000	15	
15564875	Middle Fork Koyukuk River near Wiseman, AK	6	67 26 18	150 04 30	1,200	25	
15564900	Koyukuk River at Hughes, AK	6	66 02 51	154 15 30	18,400	16	
15565200	Yukon River near Kaltag, AK	6	64 19 40	158 43 10	296,000	15	
15565447	Yukon River at Pilot Station, AK	6	61 56 04	162 52 50	321,000	16	
15621000	Snake River near Nome, AK	7	64 33 51	165 30 26	85.7	30	
15635000	Eldorado Creek near Teller, AK	7	64 57 38	166 11 59	5.83	18	
15668200	Crater Creek near Nome, AK	7	64 55 48	164 52 12	21.9	35	
15712000	Kuzitrin River near Nome, AK	7	65 13 17	164 37 15	1,720	15	
15743850	Dahl Creek near Kobuk, AK	7	66 56 46	156 54 32	11.0	18	
15744000	Kobuk River at Ambler, AK	7	67 05 13	157 50 51	6,570	25	
15744500	Kobuk River near Kiana, AK	7	66 58 25	160 07 51	9,520	25	
15747000	Wulik River below Tutak Creek near Kivalina, AK	7	67 52 34	163 40 28	705	15	
15896000	Kuparuk River near Deadhorse, AK	7	70 16 54	148 57 35	3,130	9	
15896700	Putuligayuk River near Deadhorse, AK	7	70 16 03	148 37 41	176	8	
15904900	Atigun River tributary near Pump Station 4, AK	7	68 22 25	149 18 48	32.6	25	
15906000	Sagavanirktok River tributary near Pump Station 3, AK	7	68 41 13	149 05 42	28.4	18	
15908000	Sagavanirktok River near Pump Station 3, AK	7	69 00 54	148 49 02	1,860	18	

¹Record indicates regulated years. Station not included in regression analysis.

	Mean	Area of	Daily mean discharge, in cubic feet per second							
Station No.	basin elevation (feet)	glaciers (percent)	JULY98	JULY95	JULY90	JULY85	JULY80	JULY70	JULY60	JULY50
15388960	1,800	0	4,500	5,030	5,720	6,230	6,860	8,250	9,340	10,900
15389000	1,800	0	5,260	6,450	7,050	8,290	9,440	11,400	14,300	17,300
15389500	3,160	0	3,870	5,040	5,690	6,140	6,600	7,590	9,020	10,400
15439800	2,570	0	1.6	2.0	2.6	3.4	4.2	5.5	8.5	12.7
15453500	2,830	2	151,000	164,000	176,000	185,000	192,000	204,000	216,000	226,000
15457800	1,400	0	11.8	21.1	32.0	40.9	48.5	69.7	96.9	128
15468000	2,810	2	161,000	170,000	179,000	192,000	205,000	228,000	243,000	260,000
15470000	3,730	5	3,620	3,890	4,180	4,410	4,600	5,100	5,650	6,110
15476000	3,860	7	13,000	14,300	15,700	16,700	17,700	19,200	20,900	22,200
15476300	3,200	5	49.3	55.6	60.0	64.4	66.6	70.5	74.6	79.1
15478040	5,800	69	90.5	129	154	179	197	228	255	286
15484000	2,520	0	635	827	1,040	1,170	1,280	1,510	1,790	2,090
15485500^2	-	-	33,500	36,500	40,300	42,000	43,400	46,700	48,800	51,800
15493000	2,270	0	252	326	424	474	522	614	702	785
15493700 ^{1,R}	-	-	436	545	691	781	848	969	1,100	1,220
15511000	1,480	0	77.5	90.4	107	133	153	189	219	247
15514000	1,770	0	621	713	886	995	1,110	1,290	1,490	1,680
15514500	2,720	2	653	734	782	824	871	966	1,050	1,150
15515500	3,920	6	41,200	43,800	47,200	49,400	50,900	53,200	55,500	58,100
15515800	3,400	0	18.3	20.9	23.7	27.1	29.3	33.6	38.2	44.2
15516000	3,470	2	1,220	1,410	1,610	1,730	1,860	2,030	2,200	2,450
15518000	3,500	4	5,120	5,720	6,440	6,910	7,290	7,920	8,530	9,190
15518080	2,460	0	18.0	19.4	21.6	23.1	24.6	27.6	30.4	33.5
15518350	3,420	2	678	774	891	1,010	1,100	1,240	1,400	1,580
15535000	1,640	0	1.8	2.0	2.2	2.7	3.3	4.3	5.1	5.9
15564600	1,410	0	462	517	1,060	1,240	1,350	1,610	1,890	2,080
15564800	2,640	1	235,000	250,000	264,000	275,000	284,000	303,000	318,000	332,000
15564875	3,390	0	496	516	557	618	720	930	1,070	1,220
15564900	2,200	0	4,920	6,660	8,620	10,200	11,600	13,900	16,800	19,400
15565200	2,490	1	287,000	293,000	314,000	338,000	351,000	377,000	398,000	434,000
15565447	2,337	1	309,000	337,000	359,000	382,000	397,000	412,000	427,000	444,000
15621000	632	0	61.7	69.2	76.7	83.2	91.1	104	120	141
15635000	1,310	0	2.2	2.5	3.9	4.8	5.7	7.0	8.6	10.9
15668200	1,620	0	38.7	43.0	47.1	50.4	53.9	66.3	80.6	91.8
15712000	700	0	303	332	397	423	456	557	696	849
15743850	1,500	0	8.2	9.0	12.7	15.6	17.4	24.5	31.9	36.7
15744000	1,610	0	4,070	5,700	6,430	6,880	7,720	8,850	10,000	11,800
15744500	1,450	0	8,200	9,400	10,500	11,400	12,300	13,800	15,600	17,700
15747000	830	0	309	344	398	441	490	678	807	966
15896000	900	0	199	225	258	291	323	391	521	691
15896700	135	0	0.6	1.1	2.2	2.9	3.8	5.7	7.8	10.4
15904900	5,100	4	11.6	17.0	35.4	53.3	64.6	76.8	93.5	106
15906000	2,869	0	3.6	4.7	6.8	7.7	8.5	10.8	13.3	16.3
15908000	3,580	1	1,840	2,260	2,520	2,840	3,050	3,420	3,690	4,080

Table 8. Monthly low-duration flow statistics for July, August, and September for streamflow-gaging stations in Regions 1–7, Alaska and conterminous basins in Canada—*Continued*

[Station No.: R, presently regulated; Station name: AK, Alaska; BC, British Columbia; YT, Yukon; Daily mean discharge: MONTH*n*, for the indicated month having an *n*-percent exceedance probability; mi², square mile; in., inch; –, no data available]

Station No.	Station Nome	Daily mean discharge, in cubic feet per second							
Station No.		AUG98	AUG95	AUG90	AUG85	AUG80	AUG70		
15388960	Porcupine River near International Boundary, YT	5,790	6,710	7,620	8,500	8,980	10,700		
15389000	Porcupine River near Fort Yukon, AK	4,300	4,730	5,930	6,690	7,240	9,830		
15389500	Chandalar River near Venetie, AK	3,190	3,640	4,530	4,790	5,070	6,140		
15439800	Boulder Creek near Central, AK	0.8	1.5	2.0	2.5	3.0	4.2		
15453500	Yukon River near Stevens Village, AK	136,000	146,000	153,000	158,000	160,000	169,000		
15457800	Hess Creek near Livengood, AK	9.0	19.1	24.5	34	44.9	80.2		
15468000	Yukon River at Rampart, AK	125,000	140,000	148,000	160,000	167,000	183,000		
15470000	Chisana River at Northway Junction, AK	2,110	2,710	3,140	3,650	3,920	4,310		
15476000	Tanana River near Tanacross, AK	9,860	11,100	13,400	14,500	15,600	17,400		
15476300	Berry Creek near Dot Lake, AK	38.2	42.6	46.0	48.0	51.0	56.4		
15478040	Phelan Creek near Paxson, AK	33.6	47.5	81.2	111	137	174		
15484000	Salcha River near Salchaket, AK	768	893	1,100	1,290	1,410	1,640		
15485500^2	Tanana River at Fairbanks, AK	28,700	31,500	34,300	36,700	38,900	42,300		
15493000	Chena River near Two Rivers, AK	375	453	533	600	648	734		
15493700 ^{1,R}	Chena River below Moose Creek Dam, AK	686	752	837	895	947	1,050		
15511000	Little Chena River near Fairbanks, AK	95.7	118	136	158	172	200		
15514000	Chena River at Fairbanks, AK	716	806	1,020	1,140	1,230	1,380		
15514500	Wood River near Fairbanks, AK	497	530	607	725	816	927		
15515500	Tanana River at Nenana, AK	33,500	36,500	40,200	43,200	45,400	49,300		
15515800	Seattle Creek near Cantwell, AK	18.5	19.4	21.0	22.3	23.2	26.2		
15516000	Nenana River near Windy, AK	744	1,110	1,280	1,460	1,540	1,700		
15518000	Nenana River near Healy, AK	3,320	4,270	4,910	5,180	5,560	6,210		
15518080	Lignite Creek above mouth near Healy, AK	15.7	18.6	21.2	23	24.5	26.7		
15518350	Teklanika River near Lignite, AK	620	679	821	900	947	1,030		
15535000	Caribou Creek near Chatanika, AK	1.0	1.9	2.2	2.9	3.4	4.8		
15564600	Melozitna River near Ruby, AK	700	765	914	1,000	1,100	1,250		
15564800	Yukon River at Ruby, AK	205,000	223,000	244,000	251,000	256,000	267,000		
15564875	Middle Fork Koyukuk River near Wiseman, AK	414	432	478	544	598	738		
15564900	Koyukuk River at Hughes, AK	6,980	7,740	8,560	9,870	11,300	14,200		
15565200	Yukon River near Kaltag, AK	230,000	242,000	271,000	279,000	288,000	318,000		
15565447	Yukon River at Pilot Station, AK	308,000	314,000	326,000	338,000	350,000	369,000		
15621000	Snake River near Nome, AK	58.7	64.7	72.9	80.5	101	132		
15635000	Eldorado Creek near Teller, AK	5.2	6.1	6.9	7.4	9.1	12.8		
15668200	Crater Creek near Nome, AK	29.5	32.9	38.1	44.8	50.4	57.4		
15712000	Kuzitrin River near Nome, AK	318	337	377	403	436	513		
15743850	Dahl Creek near Kobuk, AK	11.6	13.0	17.4	20.5	24.7	34.7		
15744000	Kobuk River at Ambler, AK	5,820	6,120	6,460	6,830	7,270	8,370		
15744500	Kobuk River near Kiana, AK	7,200	8,090	9,580	11,200	12,900	16,500		
15747000	Wulik River below Tutak Creek near Kivalina, AK	301	374	511	612	672	969		
15896000	Kuparuk River near Deadhorse, AK	121	142	164	186	214	281		
15896700	Putuligayuk River near Deadhorse, AK	0.03	0.2	0.5	0.6	0.7	1.0		
15904900	Atigun River tributary near Pump Station 4, AK	16.8	18.8	20.9	25.8	30.4	38.5		
15906000	Sagavanirktok River tributary near Pump Station 3, AK	2.2	2.5	10.9	16.3	18.0	21.5		
15908000	Sagavanirktok River near Pump Station 3, AK	1,510	1,640	1,820	2,050	2,240	2,580		

¹Record indicates regulated years. Station not included in regression analysis.

0	Daily mean discharge, in cubic feet per second									
Station No.	AUG60	AUG50	SEPT98	SEPT95	SEPT90	SEPT85	SEPT80	SEPT70	SEPT60	SEPT50
15388960	12,500	14,500	2,520	6,140	8,250	9,460	10,300	13,000	15,100	16,600
15389000	13,800	18,100	4,450	5,880	7,410	9,140	10,700	14,000	15,700	17,600
15389500	8,070	10,300	1,260	1,540	2,200	2,560	2,950	3,660	4,110	4,640
15439800	5.2	6.7	0.8	1.5	2.4	3.1	4.0	4.6	5.7	7.5
15453500	178,000	190,000	102,000	111,000	120,000	125,000	130,000	139,000	149,000	160,000
15457800	121	198	41.2	56.4	64.9	74.5	88.1	122	166	230
15468000	207,000	221,000	98,700	110,000	117,000	130,000	138,000	152,000	164,000	171,000
15470000	4,810	5,250	1,600	1,740	1,880	1,960	2,020	2,200	2,400	2,620
15476000	18,900	20,700	5,620	6,250	6,770	7,120	7,480	8,260	8,970	9,670
15476300	61.0	67.2	29.9	31.1	32.8	33.9	34.9	37.5	40.2	42.6
15478040	201	227	9.3	11.7	13.8	17.0	20.4	26.4	34.1	42.9
15484000	1,940	2,290	707	840	1,020	1,200	1,290	1,490	1,700	1,940
15485500^2	45,200	47,900	13,800	15,400	17,100	17,900	18,600	20,600	23,000	24,900
15493000	821	931	419	459	516	556	594	681	764	865
15493700 ^{1,R}	1,150	1,320	618	690	768	822	868	953	1,050	1,200
15511000	233	266	109	120	135	149	163	197	226	260
15514000	1,560	1,770	627	761	953	1,080	1,190	1,370	1,580	1,790
15514500	1,060	1,180	245	303	333	355	380	452	507	538
15515500	52,400	55,400	18,000	19,500	21,600	22,800	24,000	26,500	28,800	30,800
15515800	31.0	38.6	16.6	17.9	20.8	23.3	25.4	28.5	31.9	35.7
15516000	1,850	2,040	624	734	865	991	1,100	1,240	1,360	1,500
15518000	6,700	7,130	1,950	2,330	2,650	2,930	3,150	3,590	4,030	4,370
15518080	29.4	33.0	14.1	16.0	18.0	19.2	20.4	23.1	24.8	28.5
15518350	1,120	1,210	340	385	439	499	530	589	628	692
15535000	5.7	6.7	0.8	1.1	2.5	3.2	3.6	5.0	5.6	6.2
15564600	1,730	2,620	530	598	773	918	1,130	1,610	1,790	2,000
15564800	277,000	292,000	152,000	162,000	175,000	181,000	186,000	200,000	217,000	235,000
15564875	894	1,120	176	226	349	420	465	549	631	770
15564900	17,300	20,500	4,190	6,560	7,990	8,940	9,590	11,500	13,400	15,600
15565200	371,000	409,000	164,000	172,000	19,9000	218,000	242,000	275,000	306,000	326,000
15565447	384,000	391,000	231,000	250,000	272,000	284,000	300,000	323,000	344,000	359,000
15621000	151	175	55.3	74.8	90.7	102	116	145	171	204
15635000	17.4	22.4	5.4	6.4	8.1	11.3	14.4	17.0	20.0	23.0
15668200	64.3	73.4	16.9	18.7	24.6	37	41.5	50.9	60.8	70.5
15712000	573	634	291	320	334	347	380	495	558	700
15743850	38.4	47.5	17.5	19.9	21.2	22.3	23.4	26.2	30.0	39.3
15744000	9,660	11,600	4,670	4,840	5,160	5,760	6,720	9,270	10,600	12,000
15744500	20,100	24,800	8,560	9,070	10,800	12,100	13,200	15,900	17,900	21,400
15747000	1,270	1,580	278	333	426	496	582	783	968	1,150
15896000	418	797	156	190	234	284	360	538	732	985
15896700	1.6	2.1	0.2	0.3	0.5	0.8	1.1	1.7	2.6	4.8
15904900	51.7	61.5	1.0	1.1	1.9	2.9	3.3	5.7	9.3	11.8
15906000	25.5	32.9	2.6	5.5	7.3	9.1	11.8	15.1	18.6	22.5
15908000	2,900	3,320	579	700	825	926	1,020	1,250	1,480	1,660

 Table 8.
 Monthly low-duration flow statistics for July, August, and September for streamflow-gaging stations in Regions 1–7, Alaska and conterminous basins in Canada—Continued

 Table 9.
 Seasonal low-duration flow statistics and low-flow frequencies for July-through-September for streamflow-gaging stations in Region 1, Alaska and conterminous basins in Canada

[Station No. R, presently regulated. Station name: AK, Alaska; BC, British Columbia; YT, Yukon. Daily mean discharge: J-Sn, for the season July-through-September having an n-percent exceedance probability; J-SQ7n, for the season July-through-September for the 7-day, n-year low flow. mi², square mile; in., inch; –, no data available]

		Latitude	Longitude	Drainage	Mean annual	Mean basin
Station No.	Station Name	(degrees sec	(degrees, minutes, seconds)		precipitation (in.)	elevation (feet)
15008000	Salmon River near Hyder, AK	56 01 34	130 03 55	94.1	110	3,840
15010000	Davis River near Hyder, AK	55 45 00	130 12 00	80.0	175	3,400
15011500	Red River near Metlakatla, AK	55 08 29	130 31 50	45.3	200	1,700
15012000	Winstanley Creek near Ketchikan, AK	55 24 59	130 52 03	15.5	160	1,730
15015590	Unuk River near Stewart, BC	56 21 05	130 41 30	571	100	3,880
15018000	Shelokum Lake outlet near Bell Island, AK	55 59 00	131 39 00	15.6	165	1,700
15022000	Harding River near Wrangell, AK	56 12 48	131 38 12	67.4	175	2,400
15024750	Goat Creek near Wrangell, AK	56 39 40	131 58 14	17.3	175	2,560
15026000	Cascade Creek near Petersburg, AK	57 00 21	132 46 45	23.0	175	3,160
15028300	Farragut River near Petersburg, AK	57 10 24	133 06 36	151	175	2,540
15030000	Sweetheart Falls Creek near Juneau, AK	57 56 35	133 40 55	36.3	150	2,110
15031000	Long River above Long Lake near Juneau, AK	58 10 56	133 53 06	8.29	175	3,020
15034000 ^R	Long River near Juneau, AK	58 10 00	133 41 50	32.5	180	2,400
15036000	Speel River near Juneau, AK	58 12 10	133 36 40	226	175	3,100
15038000 ^R	Crater Creek near Juneau, AK	58 08 15	133 46 15	11.4	175	2,590
15039900	Dorothy Lake outlet near Juneau, AK	58 14 56	133 58 54	11.0	160	3,450
15040000	Dorothy Creek near Juneau, AK	58 13 40	134 02 25	15.2	150	3,100
15044000	Carlson Creek near Juneau, AK	58 19 00	134 10 15	24.3	200	2,200
15048000	Sheep Creek near Juneau, AK	58 16 30	134 18 50	4.57	150	1,900
15052000	Lemon Creek near Juneau, AK	58 23 30	134 25 15	12.1	180	3,430
15052500	Mendenhall River near Auke Bay, AK	58 25 47	134 34 22	85.1	180	3,260
15052800	Montana Creek near Auke Bay, AK	58 23 53	134 36 34	14.1	100	1,500
15053800	Lake Creek at Auke Bay, AK	58 23 40	134 37 50	2.50	80	1,170
15056100	Skagway River at Skagway, AK	59 28 02	135 17 00	145	100	3,900
15056200	West Creek near Skagway, AK	59 31 35	135 21 10	43.2	100	3,400
15056560	Klehini River near Klukwan, AK	59 24 47	135 59 49	284	80	3,480
15058000	Purple Lake outlet near Metlakatla, AK	55 06 00	131 26 00	6.67	150	860
15059500	Whipple Creek near Ward Cove, AK	55 26 30	131 47 38	5.29	125	880
15060000	Perseverance Creek near Wacker, AK	55 24 40	131 40 05	2.81	190	1,340
15066000	Beaver Falls Creek near Ketchikan, AK	55 22 55	131 28 25	5.80	190	1,630
15067900	Upper Mahoney Lake outlet near Ketchikan, AK	55 24 50	131 33 16	2.03	200	2,500
15068000	Mahoney Creek near Ketchikan, AK	55 25 34	131 30 40	5.70	200	1,680
15070000 ^R	Swan Lake near Ketchikan, AK	55 36 54	131 20 14	36.5	200	1,800
15072000	Fish Creek near Ketchikan, AK	55 23 31	131 11 38	32.1	180	1,300
15074000	Ella Creek near Ketchikan, AK	55 30 20	131 01 25	19.7	175	900
15076000	Manzanita Creek near Ketchikan, AK	55 36 00	130 59 00	33.9	200	1,300
15078000	Grace Creek near Ketchikan, AK	55 39 28	130 58 14	30.2	200	1,500
15080000	Orchard Creek near Bell Island, AK	55 50 00	131 27 00	59.0	150	1,600
15081497	Staney Creek near Klawock, AK	55 48 05	133 06 31	50.6	100	882
15081500	Staney Creek near Craig, AK	55 48 57	133 07 58	51.6	100	850

¹Record includes regulated years. Station not included in regression analysis. Frequency statistics not calculated because station violates assumption of log-normal distribution of streamflow.

	Daily mean discharge, in cubic feet per second										
Station No.		Seasonal low-flow frequency statistics									
	J-S98	J-S95	J-S90	J-S85	J-S80	J-S70	J-S60	J-S50	J-S702	J-S7Q10	
15008000	669	885	1,080	1,220	1,360	1,600	1,810	2,010	941	623	
15010000	518	701	835	986	1,110	1,310	1,470	1,610	809	451	
15011500	81.4	106	141	163	193	260	333	414	138	77.0	
15012000	22.8	31.4	43.5	53.9	63.4	85.1	109	129	38.4	20.2	
15015590	2,450	3,080	3,760	4,300	4,770	5,700	6,550	7,270	3,360	2,180	
15018000	30.6	43.1	53.6	69.3	81.8	107	139	176	46.2	27.8	
15022000	338	420	519	593	657	781	907	1,050	481	310	
15024750	69.1	84.0	101	118	138	167	196	226	86.7	65.1	
15026000	144	177	217	253	282	329	375	419	201	124	
15028300	1,020	1,270	1,530	1,700	1,860	2,110	2,300	2,500	1,450	929	
15030000	146	213	270	302	325	365	427	467	243	119	
15031000	63.1	85.2	112	137	157	186	210	234	106	56.0	
15034000 ^R	322	429	529	599	648	725	792	860	467	299	
15036000	1,910	2,650	3,340	3,720	4,040	4,610	5,090	5,620	2,900	1,730	
15038000 ^R	103	175	225	257	280	328	362	402	189	103	
15039900	114	132	155	171	187	203	222	240	143	105	
15040000	134	157	185	204	216	234	252	272	171	126	
15044000	131	167	210	246	279	363	442	524	201	119	
15048000	21.6	26.4	33.3	37.8	41.6	50.0	57.6	65.5	30.9	19.6	
15052000	119	165	208	241	269	308	342	376	180	100	
15052500	954	1,260	1,600	1,830	2,020	2,310	2,570	2,820	1,430	773	
15052800	36.7	46.8	62.5	72.0	80.1	95.6	111	127	57.8	31.5	
15053800	0.1	0.4	0.7	1.3	1.8	3.2	5.0	7.5	0.50	0.13	
15056100	225	316	419	526	637	809	973	1,160	378	210	
15056200	224	276	370	466	535	650	751	838	322	193	
15056560	764	904	1,160	1,420	1,640	2,220	2,680	3,090	1,050	686	
15058000	4.7	7.5	11.0	14.7	17.3	24.3	32.4	42.8	9.7	3.8	
15059500	2.4	3.6	4.8	5.5	6.2	8.0	10.3	13.2	4.5	2.1	
15060000	0.7	1.4	2.5	3.4	4.4	6.8	9.9	14.6	1.9	0.71	
15066000	7.0	14.2	18.6	23.2	27.8	36.5	52.5	64.6	16.7	6.4	
15067900	5.7	7.2	10.4	13.6	16.4	22.3	28.3	37.1	8.0	4.8	
15068000	14.6	21.2	29.8	36.1	42.0	55.1	67.9	82.8	28.6	12.3	
15070000 ^R	85.6	110	136	158	180	227	288	356	124	75.7	
15072000	48.9	68.4	89.9	110	128	167	212	266	84.9	42.6	
15074000	22.2	33.6	47.1	57.7	70.1	94.7	113	138	39.1	17.1	
15076000	110	140	174	200	224	268	312	362	181	104	
15078000	36.3	57.1	90.3	116	137	181	232	283	86.7	38.0	
15080000	73.9	102	136	161	183	237	298	366	125	67.1	
15081497	9.3	14.6	20.9	26.5	32.2	42.9	58.4	82.9	23.8	9.5	
15081500	15.6	23.0	32.3	39.1	46.5	62.3	76.3	93.1	35.0	16.5	

Table 9.	Seasonal low-duration flow statistics and low-flow frequencies for July-through-September for streamflow-gaging stations in Region 1,
Alaska and c	conterminous basins in Canada— <i>Continued</i>

Table 9. Seasonal low-duration flow statistics and low-flow frequencies for July-through-September for streamflow-gaging stations in Region 1, Alaska and conterminous basins in Canada—*Continued*

[Station No. R, presently regulated. Station name: AK, Alaska; BC, British Columbia; YT, Yukon. Daily mean discharge: J-Sn, for the season July-through-September having an n-percent exceedance probability; J-SQ7n, for the season July-through-September for the 7-day, n-year low flow. mi², square mile; in., inch; –, no data available]

		Latitude	Longitude	Drainage	Mean annual	Mean basin
Station No.	Station Name	(degree: sec	s, minutes, onds)	area (mi ²)	precipitation (in.)	elevation (feet)
15081580	Black Bear Lake outlet near Klawock, AK	55 33 25	132 52 33	1.82	100	2,300
15083500	Perkins Creek near Metlakatla, AK	54 56 48	132 10 15	3.38	150	730
15085100	Old Tom Creek near Kasaan, AK	55 23 44	132 24 25	5.90	100	1,000
15085600	Indian Creek near Hollis, AK	55 26 58	132 41 41	8.82	100	1,000
15085700	Harris River near Hollis, AK	55 27 47	132 42 11	28.7	120	1,400
15085800	Maybeso Creek at Hollis, AK	55 29 26	132 40 31	15.1	120	1,120
15086600	Big Creek near Point Baker, AK	56 07 54	133 08 56	11.2	110	680
15087545	Municipal Watershed Creek near Petersburg, AK	56 46 40	132 55 07	2.20	100	1,400
15087570	Hamilton Creek near Kake, AK	56 52 21	133 40 30	65.0	70	493
15087590	Rocky Pass Creek near Point Baker, AK	56 37 10	133 44 10	2.72	100	358
15087690	Indian River near Sitka, AK	57 04 01	135 17 42	10.1	140	1,340
15090000 ^R	Green Lake near Sitka, AK	56 59 14	135 06 37	28.8	160	2,100
15093400	Sashin Creek near Big Port Walter, AK	56 22 32	134 39 40	3.72	300	1,130
15094000	Deer Lake outlet near Port Alexander, AK	56 31 10	134 40 10	7.41	300	1,300
15098000	Baranof River at Baranof, AK	57 05 15	134 50 30	32.0	180	2,000
15100000	Takatz Creek near Baranof, AK	57 08 35	134 51 50	17.5	180	2,300
15101490 ^{1,R}	Greens Creek at Greens Creek Mine near Juneau, AK	58 05 00	134 37 54	8.62	98	2,450
15101500	Greens Creek near Juneau, AK	58 05 18	134 44 49	22.8	80	1,880
15102000	Hasselborg Creek near Angoon, AK	57 39 40	134 14 55	56.2	100	1,200
15106920	Kadashan River above Hook Creek near Tenakee, AK	57 39 46	135 11 06	10.2	100	1,020
15106940	Hook Creek above tributary near Tenakee, AK	57 40 39	135 07 42	4.48	100	1,260
15106960	Hook Creek near Tenakee, AK	57 40 22	135 10 40	8.00	100	1,160
15106980	Tonalite Creek near Tenakee, AK	57 40 42	135 13 17	14.5	100	950
15107000	Kadashan River near Tenakee, AK	57 41 43	135 12 59	37.7	100	970
15108000	Pavlof River near Tenakee, AK	57 50 30	135 02 09	24.3	100	920
15109000	Fish Creek near Auke Bay, AK	58 19 50	134 35 20	13.6	80	1,600

¹Record includes regulated years. Station not included in regression analysis. Frequency statistics not calculated because station violates assumption of log-normal distribution of streamflow.

	Daily mean discharge, in cubic feet per second										
Station No.	Seasonal low-duration flow									Seasonal low-flow frequency statistics	
	J-S98	J-S95	J-S90	J-S85	J-S80	J-\$70	J-S60	J-S50	J-\$702	J-S7Q10	
15081580	4.7	6.0	7.7	9.3	11.3	14.4	17.1	20.7	7.7	3.6	
15083500	1.2	1.5	1.9	2.3	2.6	3.4	4.6	6.4	1.9	1.0	
15085100	2.0	2.6	3.7	4.7	5.5	7.0	8.7	11.1	4.4	2.0	
15085600	2.3	3.0	4.5	5.5	6.5	9.9	14.5	21.5	4.0	2.1	
15085700	21.9	29.1	39.2	47.1	52.8	64.2	79	99.9	33.9	18.7	
15085800	12.7	15.8	20.1	23.7	27.3	34.4	43.2	53.5	18.9	11.3	
15086600	4.5	7.3	10.6	13.0	15.5	20.7	27.9	36.9	11.2	5.01	
15087545	0.8	1.2	1.9	2.5	3.2	4.3	5.6	7.1	2.1	0.81	
15087570	9.1	13.4	19.9	26.4	32.4	45.3	62.1	83.3	21.3	7.7	
15087590	0.1	0.2	0.5	0.6	0.8	1.2	1.8	2.6	0.5	0.11	
15087690	17.7	22.4	30.6	35.0	38.6	46.6	54.8	63.3	34.0	20.0	
15090000 ^R	144	189	245	275	310	372	403	435	222	146	
15093400	6.8	10.5	15.1	18.3	21.8	29.5	36.6	46.4	14.3	6.1	
15094000	41.4	55.8	71.4	84.2	97.8	115	131	147	92.0	44.1	
15098000	220	283	333	375	412	474	529	591	311	193	
15100000	163	197	237	259	275	315	353	393	218	171	
15101490 ^{1,R}	20.5	12.1	14.5	17.5	21.5	24.6	27.9	32.7	-	-	
15101500	21.6	33.6	42.7	48.6	54.5	69.1	81.1	92.7	44.0	18.9	
15102000	75.3	88.3	118	142	160	205	242	281	126	72.8	
15106920	5.9	7.5	9.4	11.7	13.6	17.2	21.1	26.3	10.8	5.6	
15106940	2.6	3.1	4.0	5.4	6.5	8.2	10.6	13.6	4.9	2.4	
15106960	5.2	5.9	7.2	8.8	10.7	13.7	16.9	20.3	8.4	5.9	
15106980	9.7	14.3	17.8	21.1	24.1	29.1	34.6	41.4	19.1	10.4	
15107000	28.6	31.9	39.0	46.6	53.0	66.2	82.7	105	42.6	26.8	
15108000	24.4	31.3	38.6	45.1	51.0	62.7	75.0	90.0	36.5	21.1	
15109000	11.5	16.8	22.8	27.8	31.7	39.8	49.2	60.8	20.9	11.0	

Table 9.Seasonal low-duration flow statistics and low-flow frequencies for July-through-September for streamflow-gaging stations in Region 1,Alaska and conterminous basins in Canada—Continued

Printed on recycled paper