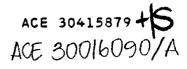


ASSESSMENT OF THE EXXON VALDEZ OIL SPILL ON BROWN BEARS ON THE ALASKA PENINSULA

TERRESTRIAL MAMMAL STUDY NUMBER 4

Decause of subsequent data.	This is an Interim and not a it may not have been scientific peer review or if subjected to scientific peer not have been rewritten edited to reflect that peer conclusions and other state report should be viewed as conclusions of the author(s) the report is written. THE CO THIS REPORT MAY HAVE CH THE REPORT WAS WRITTEN, result of the insight from p
PRINCIPAL INVESTIGATOR	
JONATHAN P. LEWIS ALASKA DEPARTMENT OF FISH A 333 RASPBERRY ROAD ANCHORAGE, ALASKA	not a final Report. een subjected to or if it has been peer review it may peer review. The peer review. The statements in the ad as the interim lor(s) at the time E CHANGEDE SINCE FTEN, either as a om peer revew or


RICHARD SELLERS ALASKA DEPARTMENT OF FISH AND GAME P.O. BOX 37 KING SALMON, ALASKA

۰.

ASSISTED BY

STERLING MILLER, DENNIS MCALLISTER, AND DONALD CALKINS

NOVEMBER 28, 1991

TABLE OF CONTENTS

Rege
List of Tables
List of Figures4
Executive Summary
Objectives
Introduction
Study Area
Study Methods7
Hydrocarbon Analyses
Study Results
Hydrocarbon Analyses. 11 Survival Rates. 11 Density Estimate. 12 Minimum Population and Density Estimate. 14 Capture-Recapture Estimates. 14 Bear-Days Estimates at Katmai and Black Lake. 14 Mean Lincoln-Peterson Estimates at Katmai
Discussion16
Hydrocarbon Analyses16 Survival Rates16 Density Estimate18
Conclusions
Literature Cited
Appendices

Summary of Geochemical and Environmental	
Research Group (GERG) Analytical Methods	for
U.S. Fish and Wildlife Service	

Fecal Samples Hydrocarbon Data.....40

•

This is an interim or deal document. Dola presentation, eculysis, interpretation, and conclusions are subject to marry. Funders are encouraged to common the Shvin terminal Gerson, Alsona Department of Law terrors calling.

ير فظر دو م

ι.

.....

2

LIST OF TABLES

۰.

Page

Table 1. Brown bear capture data, Katmai Coast, 198924
Table 2. Status of marked brown bears during densityestimation on Katmai Coast, 1990
Table 3. Summary of observations of brown bears during density estimation on Katmai Coast, June 1990
Table 4. Log-rank test calculations comparing survival (excluding hunting mortality) of radio collared adult female brown bears at Katmai coast (1989-91) and Black Lake (1988-91), Alaska
Table 5. Population and density estimates for brown bears in Katmai National Park coastal study area using the bear-days estimator
Table 6. Estimate of brown bear density using the bear-days estimator and maximum and minimum numbers of offspring still with their mothers
Table 7. Comparison of density estimates from Black'Lake,Alaska using the bear-days estimator
Table 8. Brown bear density estimate in the Katmai National Park study area using the mean of Lincoln Peterson estimates and confidence interval based on sampling mean (Eberhardt 1990)
Table 9. Brown bear population and density estimates in Katmai National Park using a binomial extension to the maximum likelihood estimator (White and Garrott 1990)37
Table 10. Katmai estimates with variable number ofoffspring still with marked mothers when date of weaningwas uncertain

This is an interim or simil document. Dote presentation, ariges, interpretation, and condictions are subject to charge. Fundant are smoothiged to control the Smiththermouth Bection, Alaska Department of Law turnes cling.

.

۰.

, (**1666**),

3

LIST OF FIGURES

•

Page

•.

of quad	irats	used	to est	imate	brow	n be	ar den	sity	location during	n • • • • • • • • • •	22
Figure	2	Black	Take e	tudu	a 703	and	locati	<u></u>	t minda	**	

Figure 2. Black Lake study area and location of quadrats used to estimate brown bear density during spring 1989.....23

۰.

ه تحديد ر

This is an interim or simil document. Dots presentation, scrayab, interpreterious, and on-clustore are subject to attract a functors are snoundiged to compare the Environmental Section, Alaska Department of Law burnes ching.

٠.

•

EXECUTIVE SUMMARY

Brown bear populations on the coast of Katmai National Park are susceptible to damage from the <u>Exxon Valdez</u> Oil Spill (EVOS) through bears ingesting oil directly, eating contaminated prey, or scavenging oil contaminated carcasses. Brown bears are long lived animals that are at the top of the food chain. Effects of oil ingestion would be expected to manifest themselves in small increments over long periods of time.

To document the impacts of the EVOS on brown bear populations, this study investigated the survival of radio-collared females, the size and density of the brown bear population along a portion of the Katmai National Park coast, and the concentrations of aromatic and aliphatic hydrocarbons in brown bear fecal samples. Each of these parameters were then compared to similar parameters in a population of brown bears that was not exposed to crude oil.

To date, natural survival of radio-collared female brown bears in the Katmai study area has been approximately 95 percent. The radio-collared females in the Black Lake study area have had a natural survival rate of 93 percent. These survival rates are not: statistically different.

Poor weather conditions and leaf emergence permitted only 4 replicates for the density estimate. The estimated density of all brown bears in the Katmai study area was 547 bears/1000 km² and in Black Lake the estimated density was 190 bears/1000 km². The higher density in the Katmai area can be explained mostly by differences in habitat and a closure on brown bear hunting there since 1931.

Fecal samples from 27 bears from the Katmai area and from 22 Black Lake bears were submitted for hydrocarbon analysis. None of the samples from Black Lake contained concentrations of hydrocarbons indicative of exposure to crude oil. Four of 27 fecal samples from Katmai National contained hydrocarbons that are indicative of exposure to crude oil. A one year old offspring of one of these bears was found dead. Laboratory analysis of bile from this yearling detected high concentrations of aromatic hydrocarbons.

This is an interim or denit document. Dots preservation, ecurysts, interpretation, and conductors are subject to obtaine. Surdert one encouraged to obtain the Environmental Section, Alaska Department of Law tumors using.

OBJECTIVES

The objectives of this study are the same as those in the Natural Resources Damage Assessment Plan. The objectives are as follows:

- 1. Test the hypothesis that radio-collared brown bears in an oil contaminated area of the Alaska Peninsula (Katmai coast) ingested hydrocarbons (as evidenced by the level of hydrocarbons in fecal samples) at higher concentrations than radio-collared bears in an area on the Peninsula that was not contaminated (Black Lake).
- 2. Test the hypothesis that natural mortality rates of female brown bears near oiled areas of the Katmai coast occurred at a higher rate than females in other coastal brown bear populations inhabiting non-oiled areas during a period of three years after the EVOS.
- 3. Test the hypothesis that some of the natural mortality of brown bears near the Katmai coast can be attributed to the physiological effects of ingesting hydrocarbons.
- 4. Estimate the adult brown bear population density of the study area (approximately 150 square miles) through a cooperative project with the National Park Service using a modified. capture-recapture technique (Miller et al. 1987) with the goal of obtaining a coefficient of variation of 0.10.
- 5. Identify potential alternative methods and strategies for restoration of lost use, populations, or habitat if injury is identified.

INTRODUCTION

Brown bears (<u>Ursos arctos</u>) are present in much of the coastal area that was impacted by the <u>Exxon Valdez</u> Oil Spill (EVOS). These bears are omnivorous feeders at the top of the food chain, and may have come in contact with oil by eating contaminated plants and animals, by scavenging oiled carcasses such as seabirds that have been washed ashore, by grooming oil from their fur, or perhaps by directly consuming tar balls.

Brown bears are long lived animals that reproduce only every two to six years; the longest reproduction interval of any large North American mammal. Oil ingestion and inhalation may cause physiological problems that lead to decreased reproduction and survivorship in the population over extended periods of time.

This is an interim or simil document. Dots presentation, accepts, interpretation, and one-burleons are subject to charges. Sweders are encourtoged to contact the Environmental Section, Alaska Department of Law before charg.

κ.

ACE 30016094

Because of the difficulty in measuring the physiological effects of oil ingestion in individual brown bears, this study primarily addresses differences in female survivorship and population density in a bear population from an oiled area (Katmai National Park) and an unoiled area (Black Lake, Miller and Sellers 1990). The exposure of individual bears to petroleum hydrocarbons was measured by collecting fecal samples from bears during capture activities and by collecting tissues from bears that were found dead.

Study Area

Brown bear density was estimated for a portion of the Shelikof Strait coast of Katmai National Park. The study area extended from Amalik Bay on the south to Hallo Bay on the north. It was bordered by Shelikof Strait on the east and the crest of the Aleutian Mountains on the west. This area was subdivided into 6 quadrats for the purposes of allocating search effort. Only quadrats 1-5 (901 km²) were used in making the density estimate (Fig. 1)

Habitat in the study area included coastal sedge flats at Hallo Bay and Kukak Bay. Dense shrubs, primarily alder (<u>Alnus crispa</u> <u>sinuata</u>) dominated the slopes of the mountains; alder and willows (<u>Salix spp</u>.) dominated lower elevations. Grass/forb meadows, predominated by blue stem (<u>Calamagrostis canadensis</u>), were interspersed with shrub communities on most slopes. Trees were sparse but occasional stands of cottonwood (<u>Populus balsamifera</u>)were found at low elevations along the rivers. Snow and ice fields dominated above 3,000 feet elevation. Griggs (1936) and Cahalane (1959) gave early accounts of the vegetation along the coast of Katmai. The Smith and VanDaele (1988) Terror Lake study area had similar vegetation, physiography and climate.

While the Katmai study area had many physical and biological similarities to the Black Lake study area (Fig. 2), several notable differences contributed to the difference in bear densities reported below. The Black Lake area had proportionally much less marine coast line and had none of the heavily used salt marsh community. In addition, approximately 30% of the Black Lake area consisted of the Bering Sea coastal plain dominated by fresh water sedge marsh and ericaceous shrub tundra which did not attract much bear use until after the census period. The Black Lake area has received moderate to heavy bear harvests for the last 25 years while the Katmai study area has been closed to hunting since 1931.

STUDY METHODS

Bears were captured by darting from a helicopter (Hughes 500) and radio-marked during the spring of 1989 and 1990 (prior to density

This is an interim or dimit document. Dots presentation, acuivals, interpretation, and constrained are subject to course, functions are uncouraged to contract the Environmental Bacacon, Alsees Department of Law before calleg.

ι.

ACE 30016095

estimate). Permanent radio collars were attached to adult females. On subadults and males, where growth causes permanent collars to become too tight, non-permanent transmitters were attached. This was accomplished by inserting a canvas spacer, designed to rot through within 18 months, into a regular collar, or by gluing a small transmitter to the hair on the bears' back. A total of 28 bears were fitted with radio transmitters in 1989 and 42 in 1990, including 2 recaptures of bears whose transmitters failed in 1989.

Hydrocarbon Analyses

During tagging operations in 1989 at both Black Lake and Katmai National Park, fecal samples were collected from bears according to the U. S. Fish and Wildlife Service protocol for hydrocarbon analysis. Samples were stored in factory cleaned glass jars and frozen as soon as possible after collection. Samples were submitted to the U.S. Fish and Wildlife Service, Anchorage, for laboratory analysis. Stomach contents, brain and bile samples from a yearling bear found dead in Katmai National Park also were submitted.

Those samples were analyzed by Texas A&M University, Geochemical and Environmental Research Group, College Station Texas. Samples were extracted, purified, and analyzed by gas chromatography for aliphatic hydrocarbons and by mass spectrometer for aromatic hydrocarbons (Appendix 1).

Survival Rates

The radio transmitters fitted to females were equipped with a mortality indicating mode. When the animal was motionless for a predetermined period (usually 6 hours) the signal transmitted at a slower interval. When movement occurred (as when the animal was resting and not dead), the signal returned to normal from mortality mode. During monitoring flights, bears whose radios transmitted on mortality mode were visually located to determine if they were dead. If visual location from the air was not possible, a ground search was conducted.

Survival rates were calculated using the Kaplan-Meier technique (Pollock et al. 1989) for 23 radio-collared adult females monitored from June 1989 through May 1990, 38 adult females monitored from May-October 1990, and 32 females monitored from May through October 1991.

8

This is an interim or divit document. Does preparation, analysis, interpretation, and constructions are sufficient to analysis. Senders are encouraged to contract the Static Americal Section, Alseks Department of Law barries caling.

۱.

Density Estimate

Density was estimated using the general procedure described by Miller et al. 1987 and Miller and Sellers 1990. In brief, this procedure involved replicated searches of the entire study area in fixed-wing aircraft. When bears were seen, telemetry equipment was activated to determine whether the bear was marked (has a functioning radio-transmitter) or unmarked (without a transmitter). If a bear was marked, it's identity, association and location were recorded. Unmarked bears were not captured but estimated sex and age (adult/subadult) and location were recorded. The estimated age of offspring was also recorded. The number of radio-marked bears present in the area searched was independently determined using radio-tracking equipment. During the Katmai density estimate the presence of radio-marked bears was determined by the search planes. Radio-marked bears were not specifically located, but their presence in each quadrat was verified by telemetry signals before, after, or during the searches.

Results are reported for 3 different population components.

1. The number of independent bears refers to the number of bears excluding those offspring still accompanying their mothers (newborns, yearlings, most 2-year-olds, and some 3-year-olds). Females with young were included in this estimation, however, offspring were not. This estimation unit minimizes violation of the assumption that observations are independent of each other.

2. Total number of bears was estimated by assuming that offspring still with their mothers have the same status (marked or unmarked) as their mothers. This requires violating the assumption that observations of members of family groups were independent of each other, since all or none of family groups were usually seen. Simulation studies (Miller 1990) suggest this assumption violation tends to result in underestimation bias.

3. The number of bears >2.0 excludes newborn and yearling offspring still with their mothers but includes 2- and 3- year-olds still with their mothers as having the same status as their mothers. This is also a violation of the assumption that observations are independent; but because there are fewer 2-yearolds than newborns and yearlings, the impact is less than when there are more dependent observations. In making the estimates where families of bears were treated as independent sightings, misidentification of 2- or 3-year old offspring still with their mothers as yearlings or yearlings as older offspring will introduce error. Since unmarked bears were not captured, classification of young bears by age had to be done from the airplane, which

9

This is an interim or while document. Does programmetion, analysis, intercenterion, and constructed are subject to contracts. Sector ore resources do contract the Soviet Sector, Asses Department of Law before using.

۰.

introduced an unknown level of error. This same potential for error existed at Black Lake.

An additional potential source of error is introduced in the estimation of all bears and bears >2.0 by uncertainties about the group size of marked bears that were not seen. The number of marked bears available to be seen is not precisely known if unseen marked females separate from their 2- or 3-year-old offspring during the search period. This is because these offspring are assumed to have the same marked status as their mother. Correspondingly, unnoticed separation would inflate the number of marks considered "present". Also, the separated bears, if seen, would be classified as unmarked bears. Either would result in an over-estimation bias. The magnitude of this potential source of bias was estimated by making independent estimates under the following set of assumptions:

1. Assume the family group was together in all cases where it is uncertain whether this was the case ("maximum" estimate);

2. Assume they were not together in these cases ("minimum" estimate); and

3. Make the most likely guess on whether they were together.

This problem does not exist in the estimate of number of "independent" bears.

Different investigators have proposed a number of different estimators for use with these type of data. Miller et al. (1987) presented a number of estimators and suggested a new estimator ("bear days") based on cumulating for all replicates the values for marked bears present (m_1) , marked bears seen (m_2) , and total bears seen (n_2) and using these cumulated values in the equations for a single Lincoln-Petersen experiment. Disadvantages with the beardays estimator were noted by Eberhardt (1990) who recommended using the mean of the Lincoln-Petersen estimates for all replications and calculating the confidence interval based on the sampling variance of these values.

More recently G. White (pers. com. and in prep.) has developed a maximum likelihood estimator and confidence interval based on a binomial extension to the estimator presented by White and Garrott (1990). The extension is necessary when unmarked bears are captured and marked (sampling with replacement). When unmarked bears are not captured, the estimator collapses to that presented by White and Garrott (1990) and Neal (1990). A new parameter is necessary for this estimator (T_i) which was defined here as the

10

This is an interim or denit downrow. Dots premimition, analysis, interpretation, and condensions are subject to astropy. Subclose are sensouraged to constant the Ervin conserts. Section, Asses Department of Law tumors using.

٤.,

total number of marked bears available to be seen based on their presence in the search area at least once during the search period. A marked bear that was never on the search area during the search period would not contribute to T_i but one that was present only once would. When unmarked bears are captured and marked, T_i increased during the study period. When, as in this estimate, unmarked bears are not captured, T_i is a constant over all replications.

STUDY RESULTS

Hydrocarbon Analysis of Tissues

Fecal samples were obtained from 27 bears from the Katmai area and from 22 Black Lake bears. None of the samples from Black Lake contained concentrations of hydrocarbons indicative of exposure to Four of 27 fecal samples from Katmai National Park crude oil. (numbers 27512, 27517, 27518, 27549) contained hydrocarbons that are indicative of exposure to crude oil (Appendix B). These differences in exposure to petroleum hydrocarbons are not statistically different (Chi-square = 1.85, 1 df, .10 < p < .20). A one year old offspring of one of these bears (bear 136) was found dead during a radiotelemetry flight. Subsequent analysis of bile this yearling detected naphthalene and phenanthrene * from concentrations of 160,000 ppb 18,000 ppb respectively.

Twenty-five of the 27 fecal samples submitted came from bears that were captured on, or within one half mile of the beach. All four bears showing exposure to petroleum hydrocarbons came from this group. This represents an exposure rate to petroleum hydrocarbons of 14.8 percent (4/27) of all bears sampled and 16 percent (4/25)of bears that most likely were on the Katmai beaches during Spring 1989.

Survival Rates

None of the radio-collared adult females in Katmai died during oil year 1, two died during oil year 2, and two died during oil year 3. Evidence at the carcass remains in oil year 2 showed that one had been killed by another bear, and the other had been fed on by a bear but there was not enough of the carcass left to determine how it had died. In both cases, by the time the remains were examined, it was not possible to collect any tissue samples for analysis. In oil year 3 (1991) the specific cause of death was again not

determined. In both cases only the skull and a few scattered bones remained. Again, itraspecific aggression was assumed in at least one case due to canine punctures in the remaining skull, a typical sign of fighting.

Thus for oil year 1, the Katmai survival rate was 1.00, for oil year 2 it was 0.95, and for oil year 3 it is 0.95. These natural survival rates are not statistically different than the Black Lake study (Miller and Sellers, 1990) and higher than the Terror Lake study (Smith and VanDaele, 1988) on Kodiak Island. Statistical testing (log-rank test) shows no significant difference (Chi-square = 0.98, 1 df, .30 < p < .50) with the adult female survival rate (excluding hunting mortality) of .90 at Black Lake between 1989 and 1990 (Miller and Sellers, 1990). Survival rates in the two study areas between 1989 and 1991 also are not statistically different (Chi-square = .09, 1df, .75 < p <.80).

Survival rates for other sex and age cohorts have not been analyzed and are not included under Objective 2. Several other cases of natural mortality have been investigated, but in only one case were we able to collect fresh samples for further chemical and histological analysis. Female #136 had 2 yearlings when she was captured on 13 June 1989. By 27 June 1989 she had lost one of them, and on 30 June she was seen standing by the body of the second yearling. We necropsied the yearling that evening and estimated that it had been dead less than 24 hours. No evidence of any trauma was found, and tissue samples were collected for. hydrocarbon analysis. Naphthalene and Phenanthrene concentrations in the bile of this yearling may have been sufficiently high to cause, or at least contribute to the death of this bear. The circumstances in this case rule out any type of accidental or violent death.

Density Estimate

Forty-four bears had functioning transmitters at the time the density estimation phase began. Following the period of marking, 4 fixed-wing aircraft each with a biologist and pilot were available to conduct the searches. Bad weather prevented any searches during the period 23-31 May. It was considered important to accomplish these searches before leaf emergence restricted sightability of bears. By May 31, leaves were well developed, especially on lower, south facing slopes so the census was canceled. The weather improved on June 3 and a single replicate was accomplished using a single airplane. Based on this flight it appeared possible that acceptable results might be obtained even

12

This is an interim or simil document. Dota pre-smoother, an usyste, interpretation, and constructions are subject to provid with the sector are encouraged to context the Erwith thesetts Section, Assault Construct of Low Science cling.

ι.

with the high level of leaf emergence and lower than ideal sightability. Correspondingly, 3 more replicates were flown on 5-7 June, each with 2 aircraft. Density was estimated based on these 4 replicate searches. Total time spent looking for bears during these 4 searches was 459, 547, 665, and 593 minutes, respectively.

During these searches it was very difficult to see bears in the shrubby habitats that composed >50% of the study area. Bears were readily visible on the intertidal sedge flats and beaches and this is where most bears were seen. Some bears, especially females with newborn cubs, were seen at higher elevations where leaf emergence occurred later. Occasionally bears were seen in openings in the shrubby overstory.

At the time the density estimation began there were 44 radio-marked bears in the study area, 33 females and 11 males (Table 2). Eighteen of these females were accompanied by a total of 28 offspring (age 0-3) (Table 2). Four bears were radio-marked in 1989 but did not enter the study area during the density estimate in 1990. During the density estimate, the population of marked bears appeared naturally closed. All of the radio-marked bears present at least once were present during all 4 replicate searches and no radio-marked bears moved onto the search area during the search period (Table 2). This means that the value for T_i , total number of individual marked bears present at some time during the density estimation phase, was 62, 44, and 52, respectively, for the estimates of all bears, independent bears, and bears > 2.0. Oneglue-on radio was shed between replicate 2 and 3, reducing the number of radio-marked bears from 44 to 43.

For each replication, information on the association, presence in the search area, and whether or not a bear was seen, is provided in Table 2. For each replication, summary information on presence and sightings of both marked and unmarked bears is presented in Table 3. The group size of marked females with 2- or 3-year-old offspring that were not seen during the search period is not precisely known because these offspring may have separated from their mothers. To bracket the feasible ranges caused by this uncertainty, the maximum and minimum number of marks present were calculated. This uncertainty does not affect estimates of number of "independent" bears (excluding offspring still with their mothers) but does affect estimates of all bears and bears >2.0 years-old (Table 6).

13

This is an interim or dirik document. Dota many portion, an upply, interpretedan, and another interaction to another. Subtract one monunaged to compare the Environmental Section, Alsona Department of Law Lorans caling.

۰.

Minimum Population and Density Estimate

A minimum number of bears known to be present was calculated as the sum of marked bears present and unmarked bears seen. For bears of all ages this minimum number was 142, 162, 182, and 159 for replications 1-4, respectively (Table 3). Based on at least 182 bears present in the study area the minimum density would be 202 bears/1,000 km² (523/1,000 mi², 1.9 mi²/bear). The minimum number of independent bears was largest during replication 3: 131 bears seen or known present.

In both cases, the minimum number of bears estimated in this way was significantly less than the lower limit of the 95% CI calculated below. This means that it would not be helpful to truncate the confidence interval at this minimum value.

Capture-Recapture Estimates

۱.

Capture-recaptures estimates were calculated in 3 ways. The first way utilized the bear-days estimator described by Miller et al. (1987). The second method utilized the mean of the Lincoln-Petersen estimates calculated for each of the 4 replications. The third method utilized the maximum likelihood estimator described by White and Garrott (1990). Results from all 3 of these estimators are presented here.

In comparison with the Katmai estimate, the density estimate obtained at Black Lake in 1989 was more precise because of more replications (7 instead of 4), higher visibility of bears (43% of independent bears instead of 21%), more intensive search effort $(0.9 \text{ min/km}^2 \text{ instead of 0.6})$, and higher percentage of marked bears in the population (28% of independent bears instead of 12%). Problems with the Katmai estimate would not have existed if weather had permitted the estimate to be conducted as originally planned, before leaves emerged and before temporary transmitters were shed (N=12).

Bear-days Estimates at Katmai and Black Lake.

Using the bear-days estimator, the number of bears (all ages) present on the study area during the search period was 493. The calculated 95% CI around this estimate based on the binomial approximation to the hypergeometric distribution was 394-651. The corresponding density estimate was 547 bears/1,000 km² (95% CI = 437-722 bears/1,000 km²) (Table 5). For independent bears, the estimated density was 407 bears/1,000 km² (95% CI = 311-571

14

This is an interior or denit discovery. Dose plasmountion, sculpts, interpretation, and construction, an subject to chord a livenciero are encouraged to contract the Emotic constants Section, Alaeks Department of Law Landra Laing.

independent bears/1,000 km²) (Table 5). For bears >2.0 the estimated density was 474 bears/1,000 km² (95% CI = 368-647 bears >2.0/1,000 km²).

Comparison data for the Black Lake study area are presented in Table 7. Corresponding density estimates were lower for the Black Lake study during which search conditions were better and a more precise estimate was obtained (Miller and Sellers 1990). At Black Lake, the estimate for bears of all ages was 190 bears/1,000 km² (95% CI = 168-219), about 35% of that estimated in Katmai. As a percentage of the 95% CI for the Katmai density estimate, the Black Lake density was 26-43% of that estimated for the Katmai coast. For independent bears, the Black Lake density was estimated at 121 bears/1,000 km² ((95% CI = 103-104 bears/1,000 km²). This density is 30% of that estimated for independent bears on the Katmai coast (21-39% based on the Katmai CI). For bears >2.0, the Black Lake density was estimated at 142 bears/1,000 km² ((95% CI = 123-166 bears >2.0/1,000 km²). This density is 30% of that estimated for bears >2.0 on the Katmai coast (22-39% based on the Katmai CI).

Mean Lincoln-Petersen Estimates at Katmai.

۰.

Estimates and confidence intervals based on the mean Lincoln-Petersen estimator (Eberhardt 1990) are presented in Table 8. The mean Lincoln-Petersen density estimate for all bears was 537 bears/1,000 km² ((95% CI = 454-621 bears/1,000 km²), just 2% less than the bear-days estimate of density. For independent bears the mean Lincoln-Petersen estimate was 396 bears/1,000 km² ((95% CI = 314-479 bears/1,000 km²), just 3% less than the bear-days estimate.

The entire range of the 95% CI can be expressed as a percentage of the estimate to compare the relative size of the CIs associated with different estimators. For the estimate of all bears, the CI of the mean Lincoln-Petersen was 31% of the estimate compared to 52% for the bear-days estimator. For the estimate of independent bears the CI of the mean Lincoln-Petersen was 42% of the estimate compared to 50% with the bear-days estimator. Even though the bear-days CI was asymmetric (larger, above than below the estimate) and the mean Lincoln-Petersen estimate was symmetric, the entire range of the mean Lincoln-Petersen CI was contained within the bear-days CI. These results suggest that for the Katmai data, the bear-days CI was more conservative than that calculated using the mean Lincoln-Petersen.

15

This is an interim or divid downward. Dots preservation, exclusion, interpretection, and conclusions are subject to councils. Swellow are encouraged to contract the Erretric invention Beretion, Alaska Department of Law before using.

Maximum Likelihood Estimates at Katmai.

Estimates using the maximum likelihood estimator and CI described by White and Garrott (1990) are presented in Table 9. The density estimates were similar to the other estimators used but the CI was smaller.

Potential Errors Based on Time of Weaning.

Because leaves were out during the census period it was difficult to verify whether 2- and 3-year old offspring were still with their radio-marked mothers. This influenced the number of "marked" bears available to be resighted in the estimates for bears of all ages and bears >2.0. An attempt was made to verify the family status of radio-marked females immediately following the density estimate but not all bears were seen at this time. Some bears were not seen until mid-summer. The range of likely error introduced by this uncertainty was calculated by assuming that where family status was uncertain, that all families were still together (the "maximum" estimate) and that they were separated in all cases (the "minimum" estimate). A subjective estimate or "best" estimate was also made of whether they were together. The "best" estimate was based both on the estimated age of the young; (large or probable 3-year old offspring were assumed more likely to have separated and smaller or 2-year old offspring less likely to have separated at the time the census was conducted) and on the elapsed time between the last: observation of the intact family and the census period. The range of results is reported in Table 10. For the bear-days estimator, the minimum estimate was <4% smaller than the best estimate for both all bears and bears > 2.0; the maximum estimate was about 15% higher. Similar results were found for the mean Lincoln-Petersen estimate except the maximum estimate was 38% higher than the best estimate for bears >2.0 (Table 10).

DISCUSSION

Hydrocarbon Analysis

Approximately 15 percent (4/27) of bears captured in Katmai National Park were exposed to crude oil. None of the bears (0/22)in the Black Lake sample was exposed. High concentrations of aromatic hydrocarbons were found in the bile of a yearling bear that was found dead in Katmai National Park. Laboratory analysis

This is an interim or denit document. Data presentation, analysis, interpretation, and onnotations are subject to exterge functions are uncouraged to contact the Environmental Section, Alseks Department of Law before using.

of fecal samples showed that the mother of this bear had been exposed to crude oil.

Razor clams from the Alaska Peninsula coast, upon which bears are known to feed, have been collected for hydrocarbon analysis under Fish/Shellfish study #13. The duration or extent of exposure to oil through razor clams is still undetermined as hydrocarbon results from Fish/Shellfish study #13 are not yet available (Charles Trowbridge, ADF&G Cordova, pers. com.).

The physiological implications of oiling at the concentrations detected in fecal samples of Katmai brown bears remains unanswered. Oil has been detected other tissues of other species, however, sampling of most of those tissues required killing the animal. Studies of other mammals are critical for extrapolation of oil concentrations detected in feces to associated physiological problems. To date, those studies have not been conducted. Terrestrial Mammal Study #6 - Influence of Hydrocarbons on Reproduction of Mink - was the type of study that would provide the types of information necessary for extrapolation from feces concentrations to physiological effect. Fecal samples from mink that were fed known dosages of crude oil remain unanalyzed. Without that information, extrapolation from other tissues to physiological effect is necessary.

Concentrations of naphthalenes and phenanthrenes in the bile of harbor seals in which histological abnormalities were detected ranged from 2,200 ppb to 360,000 ppb. This is significantly higher than the 12 to 99 ppb found in brown bear fecal samples. The bile of the yearling of bear 136 contained concentrations of naphthalenes and phenanthrenes commensurate with oil induced damage in harbor seals.

Histologically detected abnormalities in harbor seals include mild rhabdomyolosis (degeneration of muscle cells) of the nostrils, acanthosis and hyperkeratosis of the skin (dry, scaly, thickened skin) and intramyelinic edema. Intramyelinic edema occurs when there is swelling within the myelin sheaths of the nerve axons. The myelin is rich in lipids, and this may attract toxic, fatsoluble hydrocarbons.

Survival Rates

Mortality within the Katmai study area is occurring at a rate that is not different from mortality at Black Lake. Because bears are long lived, it is possible that the effects of oil ingestion would be of a chronic, low-level nature. Continued monitoring of radio-

17

This is an interim or whit document. Dots presentation, sculpts, interpretation, and constructions are subject to optimize frontiers are interpretation to builded the Erster, matched Beckline, Asses Department of Law Lenars called.

collared females may detect small differences in survival as they accumulate over time. Currently, 17 female bears carry active radio transmitters. All other radios have been shed or removed. A proposal to collar additional bears in Katmai National Park and monitor the remaining 17 bears has been submitted to an alternative funding source.

Density Estimate

The density of bears in the study area of Katmai National Park is greater than both the Black Lake and the Terror Lake study areas. Because of the rich coastal habitat and the closure of Katmai National Park to hunting, this higher density of brown bears is not unexpected. It is possible that the density of brown bears in Katmai National Park was even greater before the EVOS, however, since observed bear mortality appears to be normal, and bears did not appear to be physiologically stressed, no immediate effects were detected.

CONCLUSIONS

Brown bears were observed with oil in their fur, consuming oiled carcasses, and presumably feeding on razor clams in the intertidal area.

Hydrocarbon exposure was documented, and the death of a yearling bear whose mother had been exposed to oil was likely attributable to hydrocarbon exposure.

Survival of radio-collared females in Katmai National Park was 95 percent versus 93 percent at Black Lake. These percentages are not statistically different.

Brown bear density in Katmai Natinal Park is substantially higher than in most places in Alaska. The density estimate conducted in this study had confidence intervals that made documenting a change in density as a result of the oil spill unrealistic unless massive mortality ocurred.

Methods used to document damage to the brown bears were certainly suboptimal. Fecal samples are a very poor tissue from which to measure hydrocarbon exposure, however, other tissues usually require killing the animal. Laboratory analysis using tissues that can be obtained without killing the animal (blood cell or

18

This is an interim or denit document. Dotte preservation, ecolysis, interpretation, and conclusions are subject to obtrige. Sectors are encouraged to observe the Smith area and Baction, Asseig Department of Law Lenors (Aing.

ι.

blood serum effects, Vanadium in hair samples, muscle cores) should be investigated.

One opportunity for measuring the impact of the EVOS on the Katmai bears probably rests with continued monitoring of the population. Small incremental changes that have not yet been detectable during the study, may be detectable as these changes accumulate.

٤.

. Mitter,

This is an interim or denit dougrand, Dots preconstitut, actively, intercentation, and condentions are subject to conserve function are second agoing to control the Environmental Section, Assault Department of Law Lands (Ling. I

•

19

ACE 30016107

LITERATURE CITED

Cahalane, V. H. 1959. A Biological Survey of Katmai National Monument. Smithsonian Institute Publ. 4376. 246 pp.

Eberhardt, L. L. 1990. Using radio-telemetry for mark-recapture studies with edge effects. J. Applied Ecology 27:259-271.

Griggs, R.F. 1936. The Vegetation of the Katmai District. Ecology Vol. 17, No. 3.

- Miller, S. D. 1987. Susitna hydroelectric project final report. Big game studies, Vol. VI, black and brown bear. 276pp (mimeo).
- _____, E. F. Becker, and W. B. Ballard. 1987. Black and brown bear density estimates using modified capture-recapture techniques in Alaska. Int. Conf. Bear Res. and Manage. 7:23-35.
- . 1990a. Impacts of increased hunting pressure on the density, structure, and dynamics of brown bear populations in Alaska's Game Management Unit 13. Alaska Dep. Fish and Game. Fed. Aid in Wildl. Restor. Progress Report. Proj. W- / 23-2, Study 4.21. 54pp.
- . 1990b. Detection of differences in brown bear density and population composition caused by hunting. Int. Conf. Bear Res. and Manage. 8:393-404.

۰.

- _____. 1990c. Population management of bears in North America. Int. Conf. Bear Res. and Manage. 8:357-374.
- Miller, S. D. and R. A. Sellers. 1990. Brown bear density on the Alaska Peninsula at Black Lake, Alaska. Final report of cooperative interagency brown bear studies on the Alaska Peninsula. Alaska Dep. Fish and Game. 70 pp.
- Neal, A. 1990. Evaluation of mark-resight population estimates using simulations and field data from mountain sheep. MS Thesis, Colorado State Univ., Fort Collins. 194 pp.

20

This is an interim or dimit desumers. Does precentrion, acutyste, interpretation, and conductione are subject to charge. Swelfers are encouraged to compositive Error concents Section, Alaska Department of Law Labors (Alary.

- Pollock, K. H., C. T. Moore, W. R. Davidson, F. E. Kellogg, and G. L. Doster. 1989. Survival analysis in telemetry studies: the staggered entry design. J. Wildl. Manage. 53(1):7-15.
- Smith, R.B., and L.J. VanDaele. 1988. Terror Lake hydroelectric project, Kodiak, Alaska-Final report on brown bear studies (1982-1986). Alaska Dep. Fish and Game. Rep. to Alaska Power Authority. 182 pp. (unpubl. rep.).
- White, G. C., and R. A. Garrott. 1990. Analysis of radiotracking data. Academic Press Inc. 383pp.

۰.

This is an interim or simil document. Dose pretometrion, eculyzis, interpretation, and onnetimized and subject to course a function and encoursement to course the Environmental Section, Alabas Department of Law turbors colog. 1

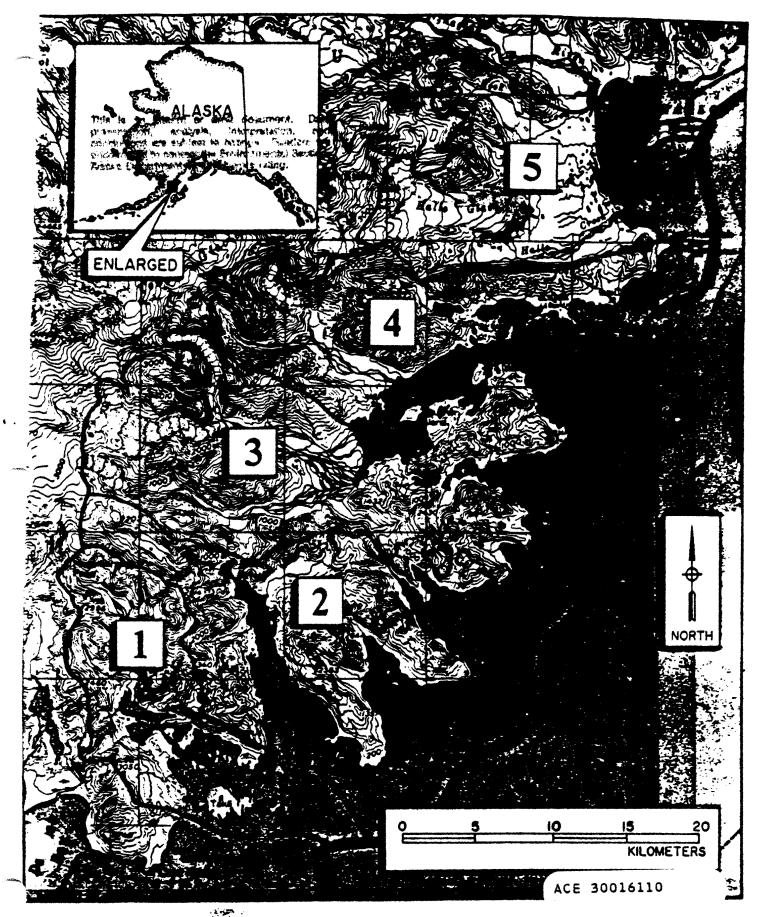
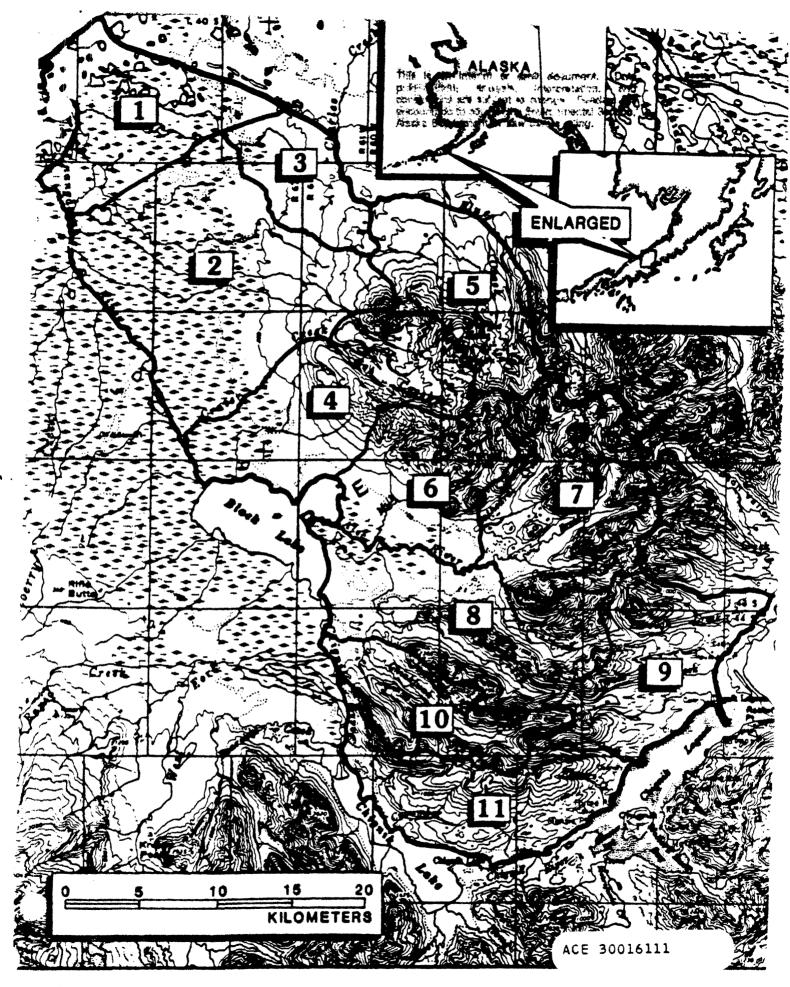



Figure L. Katmal National Park study area and location of quadrats used to estimate brown bear density.

gure 2. Black Lake study area and location of quadrats used to estimate brown bear density during

This is an interfit of provinced on a sub-two constants of a sub-two a uyala R ŗ 10 and doalmert. D Internetation, r Internetation, r Internetation, subtraction Environmental Gera the states -Berra Section.

33

8

AC m 30016112

Capture Capture Eer Tegs Collar Flag Per Cent Samples Left Right C* PCV 10 Sex Age Location Veight Date Type Color HB Nair Feces Comments SHIKSHAK 101 400 5/31/89 42 41 R CANVAS RED 14.2 41.0 ¥ Y ALONE 4 102 7 SULKSHAK 800 5/31/89 2509 2651 R NONE NONE 16.5 45.0 Y ۲ WITH UNCAP. FEMALE M 103 3 SULKSHAK 275 5/31/89 51 55 RED 13.9 . R CANVAS 41.0 Y Y ALONE 104 13 HALLO 430 5/31/89 53 54 ¥ 15.0 WHITE 43.0 Y Y REG WITH 105 14 750 105 HALLO 5/31/89 2641 95 R 17.0 . NONE NONE 45.0 Y ÷. **WITH 104** 5 400 106 . KINAK 6/4/89 99 95 Y REG YELLOW 16.2 48.0 Y WITH 107 ۲ 39 107 Ħ 12 KINAK 800 6/4/89 40 R NONE NONE 16.5 48.5 Y WITH 106 FEMALE 108 . 4 KLIKAK RIVER 250 6/4/89 3065 3086 Y REG YELLOW 16.7 48.5 ¥ N WITH LARGE MALE 430 109 R 6 KUKAK 6/4/89 2634 2628 R CANVAS 16.0 RED 46.5 Y Y ALONE 110 KUKAK 375 6/4/89 47 48 . 6 R CANVAS RED 14.6 42.0 ۲ Y ALONE 111 9 AMAL 1K 300 3206 . 6/5/89 3066 Y REG YELLOW 15.9 46.5 Y W/222 Y 112 12 ANAL IK 400 6/5/89 3098 ¥ . 86 REG YELLOW 14.3 41.0 Y ¥ W/201 113 19 AMALIK 350 F 6/5/89 NONE 300 ¥ NA REG YELLOW KA H W/202 RECAP M 9 375 253 ¥ 114 ANALIK 6/5/89 262 F REG YELLOW 13.8 37.5 Y * W/200 115 3 ANAL IK 325 6/5/89 3001 3097 Y 15.0 F REG WHITE 42.0 ۲ ¥ WITH NALE 3 350 6/5/89 83 116 冀 **KUKAK** 72 R RED ¥ CANVAS 16.2 48.0 Y ALONE 325 117 6/5/89 3031 F 6 KLIKAK 3296 Y REG YELLOW 13.8 41.0 Y Y ALONE 118 9 KUKAK 300 6/5/89 265 . 266 ¥ REG YELLOW 17.6 48.5 ۷ Y **WITH 119** 119 M 12 KUKAK 800 6/5/89 46 93 R NONE NONE 17.7 50.0 ¥ Y **WITH 118** 120 F 7 HALLO 400 6/5/89 256 260 Y REG YELLOW 14.5 W/122 41.5 Y ۲ 121 3* 350 6/5/89 2638 2685 1Ú HALLO R CANVAS RED 13.6 39.0 Y ¥ ALONE 122 R 3 HALLO 200 6/5/89 61 2640 R RED 15.5 CANVAS 43.0 ۳ Y ALONE 11 350 6/5/89 3039 3050 123 F HALLO ۲ REG YELLOW 15.0 40.0 Y W/120 24 124 400 8* KUKAK 6/5/89 3051 3029 REHOVED . Y N/A MA MA H W/MALE 24 125 M 8 KINAK 500 6/6/89 2644 2669 R NONE 16.5 NONE 49.0 ¥ Y ALONE 126 F 5 NISSAK 300 6/6/89 257 259 Y 15.6 REG WHITE 44.5 Y ¥ W/MALE 127 . 3* HISSAK 225 6/6/89 3003 3030 YELLOW 18.7 Y CANVAS 49.5 ¥ ۲ ALONE 128 15 HI SSAK 350 . 6/6/89 3285 3028 Y YELLOW 14.5 REG 39.5 ۲ 9/101 M 129 F 16 440 MISSAK 6/6/89 267 272 ۲ REG LINK 12.5 35.5 Y ۲ W/222 130 F 10 **MISSAK** 300 6/6/89 3210 3041 Y REG UNK 16.5 47.5 Y W/101

• .

Radio

Collar

Table 1. Brown beer cepture dets, Ketmai Coest, 1989.

Table 1. (cont.)

			Capture		Capture	Ear	Tags		Radio Collar	Coller Fleg	Per	Cent	Sem		
•	Sex	Age	Location	Weight	Date	Left	Right	C.	Туре	Color	NB	PCV	Nair	Feces	Comments
31	F	9	CAPE GULL	350	6/6/89	3057	3096	Y	CANVAS	NONE	10.2	29.0	Y	¥	ALONE
32	F	11	KAFLIA	375	6/6/89	3038	3021	Y	REG	NONE	15.9	44.0	Y	¥	W/MALE
33	F	7	KULIAK	430	6/6/89	271	251	¥	BLACK	YELLOW	16.7	45.5	Y	Y	ALONE
34	F	4	KUKAK	200	6/6/89	3280	3069	¥	CANVAS	NONE	13.9	39.0	Y	Y	ALONE
35	F	6	CAPE GULL	325	6/6/89	100	3014	Y	CANVAS	YELLOW	16.3	47.0	Y	M	W/201
36	F	8	SHIKSHAK	400	6/13/89	3073	3035	Y	NONE	YELLOW	14.6	45.0	Y	Y	W/201
27	F		NISSAK	375	5/21/90	RECAPTURE			REG	NONE	17	50	Y	N	ALONE
35	F		CAPE QULL	325	5/19/90	RECAPTURE	E		REG	NONE 7	13.8	36.4	Y	H	ALONE
37	Ħ	15	KUKAK	950	5/19/90	345	346	R	GLUE		MA	NA	Y	*	ALONE
38	H	13	KUKAK	550	5/19/90	303	205	R	GLUE		15.5	45.7	Y		ALONE
39	H	4	KUKAK	250	5/19/90	211	306	R	GLUE		15	44.2	Y	M	ALONE
40	н.	8	KUKAK		5/19/90	207	222	R	CANVAS	ORANGE	15.3	42	Y		ALONE
41	H	25	KUKAK	850	5/19/90	327777		R	GLUE		16	47.5	Y		ALONE
42	N	15			5/19/90	181	197	¥	GLUE		15	41.5	Y	N	ALONE
43	F	26		300	5/19/90	185	177	Y	REG	WHITE	14.8	44.1	Y	N	W/292
44	H	3			5/19/90	307	309	R	CANVAS	RED	15	43.6	Y	N	ALONE
45	F	11		325	5/19/90	183	396	Y	REG	WHITE	16.7	48.3	7	M	W/#146
46	N.	17		950	5/19/90	201	202	R	GLUE		11	29.1	Y		W/#145
47	. M	11	AMALIK	750	5/20/90	394	388	R	CANVAS	ORANGE	13.3	7777	Y	H	ALONE
48	F	6	AMALIK	275	5/20/90	156	151	Y	HEAVCAN	WITE	13	36	Y	×	ALONE
149	M	15	KAFLIA	750	5/20/90	341	333	R	GLUE		10.5	26	Y		ALONE
50	M	14	CAPE GULL	950	5/20/90	304	31177		GLUE		18	45	Ŷ	N	ALONE
51	F	3	KAFL 1A	250	5/20/90	393	383	Y	CANVAS	WHITE	14.5	45.8	Y	N	ALONE
52	H	18		1000	5/20/90	221	301	R	GLUE		NA	NA	Y	M	ALONE
53	Ħ	8	CAPE GULL	550	5/20/90	219	220	R	GLUE	7777	14	41.7	۲	M	ALONE
54	F	18		325	5/20/90	400	176	Y	REG	WHITE	NA	NA	· ¥	N -	4/18 2 OR 3
55	M	2	N OF KULIAK	225	5/20/90	334	332	R	CANVAS	RED	13.3	37.4	۲	N	ALONE
56	×	19	KAFLIA	850	5/20/90	225	215	R	GLUE		14.5	35.3	Y	M	UNCAP. FEMALE
57	H	8	KINAL	450	5/20/90	314	313	R	CANVAS	RED	14	47.8	¥	N	UNCAP. SMALL FEMAL
58	H	4		250	5/20/90	316	319	R	CANVAS	RED	13.5	7777	¥	N	ALONE
59	F	11	KULIAK	275	5/20/90	397	180	Y	REG	WHITE	14.8	45.1	Y	M	W/101

.

10.04

The is an interim or and downtry. Don pre-motion, acusts, invicated, and conductors are subject to colory. Swelter or pressuraços to content the Emission member Section, Asses Department of Law terms raing.

- Statute

Table 1. (cont.)

subject.

			Capture		Capture	E	ar Tags		Radio Collar	Coller Fleg	Per	Cent	Sanc	oles	
10	Sex	Age	•	Veight	Date	Left	Right	C*	Туре	Color	H8		Nair	Feces	Comments
160		18	, , , , , , , , , , , , , , , , , , ,		5/20/90	31	29	Y	REG	WHITE	14.3	28.4	7	M	W/182
161		9		300	5/21/90	46	36	Y	REG	WHITE	15.5	50	Y	N	W/282 OR 3
162	N	4	KINAK	400	5/21/90	370	365	R	CANVAS	RED	17	51.7	Y	N	W #163
163	F	4	KINAK		5/21/90	420	409	Y	NEAV CAN	WHITE	15	41.4	Y	N	W #162
164	F	4		*300	5/21/90	392	394	W	HEAV CAN	WITE	16.5	50.9	Y	N	W/1 SUB AD
165	N	11			5/21/90	213	214	R	GLUE		14.5	43.1	Y		ALONE
167	н	2		175	5/21/90	340	343		GLUE		14	46.6	۲	N	KILLED BY ANOTHER BEAR
168	F	3	KINAK		5/21/90	26	27	Y	CANVAS	7777	12.5	34.5	Y	N	W/1 SUB ADULT
169	F	12		375	5/21/90	176	416	Y	WHITEREG	WHITE	17.3	51.7	Y		W/192
170	M	8			5/21/90	355	351		GLUE		15.5	44.8	Y	H.	MALE HEARBY
171		20		500	5/21/90	041	033	Y	REG	WHITE	16.4	49.1	¥	N	ALONE
172	F	9			5/21/90	049	045	¥	REG	WHITE	15	44.8	Y	N	W/201
173	F	12		400	5/21/90	158	174	¥	REG	MITE	14.5	44	Y	N	W/202
174	F	15	HIDDEN NARBOR		5/21/90	408	407	Y	REG	WITE	16	49.1	Y		W/#175 BECHAROF 09-84
175	N	9		750	5/21/90	391	376	R	GLUE		NA	NA	Y	×	W/#174
176	M	12		575	5/22/90	352	359	R	HEAV CAN	ORANGE	18.5	47	Y	×	ALONE
177		6		325*	5/22/90	187	190	Y	GLUE/CAN	MA	15.8	44.8	Y	N	ALONE
178		20	KUKAK	450	6/12/90	270	268	Y	REG	NONE	MA	SERA ONL	YY	N	W/281

.

.

* eer teg color: ywyellow, r=red

This is an interim of denit document. Dota programmetria, analysis, incorporation, and conclusions are subject to conserve francism and encouraged to conserve the construct forecan, Alaska Department of Law before subley.

í.

This is an interim or simil downment. Data procentation, analysm, interpretation, and constantions are actived to interpretation, and ancourteged to convert the Deptermental Dector, Anaka Department of Lew budget calling.

Ì

ACE

Table 2. Statue of marked brown bears during density estimation on Katmai coast, 1990. Data on group size referes to females with dependent young; other types of groups are indicated as (p) for breeding peir or (s) for apparent siblings.

			YOU	WG	:		REP. 1	(6/3	3	:	REP.	2 (6/5)	:		REP.3	(4/6)	:	REP.4	(6/7)	:		:		:		:		:		:	FIRAL
			INT.	EST			ancu	7		:	GINC	XIP		:		GROUI	•	:	CINCUL	P	:		:		: (•	1	X :	:	x	:	TANLLY
D		AGE	#0.	AGE	1	STAT	r. 812	E 960	917	: 81	AT. 81	[ZK]	8 2.EM 7	:	STAT	. 8124	SEENT	: STAT	. 8128	SEEN?	':	OUT	:	IM	; 8 81		: 1	*	: 58		:	STATUS
04	7				:	X #				: 18				:	1#			: 18			:			•	:		: 1	00	:	•	:	,
			1		-	1#	17			: 18		17		:	18	17		: 18	17		:			4				00	-			WAD HALE OF 6
	7				:	1#	(2)	YI		: 18	1			:	18			: 18			:		:	4	: 1			00		15	:	
111	7		2	3	:	1#	17			: 18	1 1	17		:	1#	17		: 19	17		:		1	4	:			00		0	:	WAD MALE ON 6
113			3		:	10	4			: 18	j (•		:	18	4		: 1#	4		:	0	:		:			00				W/3 COY ON 6/8
114			2	1	:	IN	3	Y	1	: 18	1 1)		:	IN	3		: 18	3		:		:	4	: 1			00	-			W/2 8 1 GE 6/8
117			1	•	;	18	2			: 18	1 1	2		:	1.	2	YES	: 18	2	YES	:	0	Ŧ	٠			: 1		: 5	0		W/1 COT ON 6/7
110	7				:	1#				: 18	1			:	1#			: 10			:		:		:		: 1		:	0	:	
120			1	3	:	10	2			: 19	1	2	YES	1 1	18	2	TES	: 18	(P)	YES	:	0	:	٠	: 1		: 1		; 7	5	:	W/AD MALE OF 6
121	26				;	OUT				: 00	π			1	out			: 001	r		:	4	1	٠	1		:	•	: 80	虞	:	
123			3	•	:	OUT				: 00	T			:	ovt			: 001	r		1	٠		٠	1		:	•	:		:	
26					:	1#				: 18	i (f	P) -	TES	:	t#			: 18			:	•		4	: 1	Ł	: 1	80 -	: 2	5	:	
127					:	18				: 18	J			:	10			: 18			:	۲	I	4	:		: 1		:	•	:	
120					1	1#	(2)	T		: 18	J			:	IM			: 10			:		1	٠	: 1	1	: 1		: 2	5	:	
129			2	3	:	18	17			: 18	1	17		t	18	17		: 10	17		:	٠	2	4	:	ſ	: Þ	•• :	: '	•	:	ALONE ON 7/11
130			1	2	:	1#	2			: 1#	1	t		:	10	2		: 18	2		:	٠		4	:	î	: Þ		1	•	:	W/1 @ 1 OH 6/8
138			1	۲	:	1#	2			: 18	1	t		:	10	2		: 1H	2		t	٠	1	٠	1	1	1 1 /	90 ;	: 1	•	:	W/1 CON ON 6/12
133	•	I	LOST	001	:	18	1	Y		: 18	i d	Ð	YES	:	18			: 18			1	٠	1	4	: 1	1 :	: 1(10 ;	; 54	•	:	ALONE BY 6/3
134					:	1.				: 18	i			:	IM			: 18			:	۲	1	4	t	1	: 10	90 ;	ı (•	:	
135	7		2	2	:	11	17			: 18	((22	TES	:	IN.	(?)	YES	: 10			:	۲	1	4	: 1	1 1	i 1 6	10 ;	: 51	0	:	W/AD HALE OF 4/
136					:	OUT				: 00	T			: (OUT	**		: OVT			:	4	:	۲	:	;	:	• ;	: EN	R -	:	
139					:	21				: 18			YES	:	11		TES	: 18		YES	:	•	:	4	: 3	, t	: 26	10 :	: 7!	5 :	:	
140	H				1	11				: 18	1			:	I M			: 18		YES	:	0	t	4	: 1		: 16	10 ;	2!	5	:	
143			2	2	;	10	17			: 10	(1	?)	YES	:	11			: IM			1	٠	1	4	r 1	. :	- 16	10 z	25	3 ;	: 1	WAD MALE ON 6/
144	H					11				: 18				:				: 18			÷	٠	ł	4	:	1	10	HD ;	¢	•	:	
145						1#				: IM				:		-		1 IN		•	:	٠	ŧ	4	1	1	10	1 (M	0	D :	:	
146	H					IM				: 1#		2	YES		11	(P)	YZS	: 18	(2)	YES	:	٥	:	4	: 3	1	19	10 :	75	3 :	:	
147						OUT				; 00					OUT		44	: OUT			:	4	:	0	:	:		• :		t :	:	
148					:	10				: 10				:	1 #			: 18			:	0	:	4	:	:	34	10 :	0) :	:	

Table 2. Cont.

i

		YOU		:	-	27.1 (2001)	(6/3)	:		UZP.2 GROUP	(6/5)	:		GROUP	(6/6)	:		REP.4 GROUP	(6/7)			:		-		-	1	•		-	FINAL FAMILY
	SEX	 						1				: 8			SEEN?	;	STAT			:	OUT	1			-			-		•	STATUS
51					IM				IN			: 1				•	1#				0	•	4			• 1	00		0		
53	H			-	18				11				DROPI	ED			DROP	PED					2				100		0		
54 54		1	2	-	1#	2			18	2		: 1		2	YES			2		:	-	-	-	-			100	-		•	TOGETHER 6/6
55	H	-	-		1#	-			1#	-		: 1		-			1.	-		:	-		4				100	-	•	-	
17					IN			:	I	(2)	YES	: 1				:	IM			:	0	:		:				-	25	-	
	H			1	IN			:	18			: 1		(?)	YES	:	1#			:	0	1	4	:	1	: 1	00	1	25	:	
		1	1	:	1#	2	TER	:	IN	2	YES	1	[#	2		:	18	2	•		0		٨		2	1	100	1	50	1	
1		2	2	:	1#	17		:	IN	17		: 1		17		:	1#	17		:	0	:	٩	:		: 1	00	:	0	:	SHED BY 6/27
2	N			;	18			:	IM		YES	: 1	L M			:	11			:	0	:	4	:	1	: 1	100	:	25	:	
13	7			:	20			:	18			: 1				:	IN			:	0	:	4	:		: 1	100	:	0	:	
64	7	1	з	:	1#	17		:	11	17		: 1	t M	1	YES	:	18			:	0	:	4	:	1	: 1	.00	:	25	:	ALONE ON 6/6
55	H			:	IN			:	1#			: 1				:	IN	(?)	YES	:	0	:	4	:	1	: 1	00	:	25	:	
68	7			;	IN	(5)	YES	:	1#	(P)	YES	: 1		(P)	YES	:	10	(₽)	YES	:	0	1	4	:	4	: 1	j 0e ;	: 1	00	:	
9		1	2	;	IH.	2	YES	:	11	27		: 1	L#	27		:	IN	21		r	٠	z	4	:	1	: 1	.00 :	:	25	:	UNICIDANE
n				:	11			1	XH.			: 1	LH			:	IM	(P)	YES	:	٠	\$	4	:	1	: 1	.00 ;	ĩ	25	:	
72		2	1	1	11	3		:	18	3		1 1		3	YES	:	18	3	YES	:	•	1	4	:	2	: 1	.00 :	I	50	:	W/2 81 CH 6/23
73		2	2	:	IN	3		:	1#	3		: 1		3	YES	:	18	3		:	0	:	4	:	1	: 1	.00 ;	:	25	:	W/2 8 2 08 6/2
74	7			:	1M			:	IM			1 I	[#	(₽)	TES	:	18												25		
17	-			:	IN			:	1#			: 1			YES	:	18			:		1	4	\$	1	1 1	.06	:	25	:	
																		T	OTALS		16		174			•	1.6		23.0	ł	

-

A Triffe 19 an Interim or densi document. Date preservicion, ex. Luye's, insupretation, and concetations are subject to anonge, fundere are encompact to controp the Enviro strength decelor, encompact to controp the Enviro. Strength decelor, encompact to controp the Enviro.

.

Table 3. Summary of observations of brown bears during brown bear density estimate on Katmai Coast, June 1990. "Independent bears" excludes offspring, of what ever age, still with thier mothers.

REPLICATION	1	2	3	4	MEAN	MIN.	мах
larked bears present, all ages				**************************************	8- 42 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1		
(most likely number)	62	62	61	60	61.3	60	62
ndependent marked bears present							
Marked bears seen	44	44	43	43	43.5	43	44
All ages	11	13	20	12	14.0		
Independent	7	11	13	9	10.0	7	13
nmarked bears seen, all ages	80	100	121	99	100.0	80	121
No. cubs-of-year	0	4	4	7	3.8	0	7
No. "yearlings	12	19	10	1	10.5	1	19
No. older than "ylgs."	68	77	107	91	85.8	107	68
No. independent	64	72	88	79	75.8	64	88
otal marked and unmarked bears s	een						
No. all ages	91	113	138	111	113.3	91	138
No. independent	71	83	101	88	85.8	71	101
lightability, independent marked	bears						
No. inside area	44	44	43	43	43.5	43	44
No. seen	7	11	13	9	10.0	7	13
tseen	15.9	25.0	30.2	20.9	23.0	16.3	29.5

(A) Party

ກາງ is an interfar or dans dowiment. Dan promotion, ແມ່ງເອົາ, ໂດຍເກາຍແຫ່ງລາ, and connection, ແມ່ງເອົາ, ໂດຍເກາຍແຫ່ງລາ, and connectinged to correct the Earlin themes **Section**, mucultudied to correct the Earlin themes **Section**, and the section of Law Europe chang.

~	-0		_	
Meater Dupartment of Law Subme change	stroutened is assignt the listist yrant. Certain	STATISTICS BE MELICA & STATIST . TANKE DO	provincetory, and one	This is an interim or sint document
the second	ST H	1	100	s
Ŧ	2	õ	200	a
ž	3	66 12	Ş	- *
200	8	3	bo	ġ.
3	3	Ę,	52	3
א די	5	2	Ş.	2
R A	ě.	Ŧ	5	÷
Ę	1	*	Ţ	4
1	3	ŝ.	and providence	8
Ē	í~} ∰		ž.	
à	Ż	?	22	1
	8	Ĩ	3	7
	8	4	N d	
	Ş	3	å	2

Table. 4 Log-rank test calculations comparing survival (excluding hunting mortality) of radio-collared adult female (>2 yr. old) brown bears a	t
Katmmi coast (1989-91) and Black Lake (1988-91), Alaska.	

		Ket	mai		llock Lake	in director i citatination comune aggrega.					
• • • •	No. at risk	No. deaths	Survival	No. et risk	No. desths	Survival	No. at risk	No. deaths	Expected value		
Dates	(r0j)	(d0j)		(r1j)	(d1j)	-10	(in) 	(dj)	E(d1j)e	var(d1j)b	var(d1j)
1 Nay-15 Nay	45	0	1.0000	π	0	1.0000	122	0	0.000	0.000	0.000
16 Nay-23 Hay	64	0	1.0000	π	0	1.0000	141	0	0.000	0.000	0.000
24 May-31 Nay	64	1.	0.9844	88	1	0.9666	152	2	1.158	0.488	0.481
1 Jun-7 Jun	84	0	0.9844	115	1	0.9600	199	1	0.578	0.244	0.243
8 Jun-15 Jun	84	0	0.9844	127	1	0.9723	211	1	0.602	0.240	0.238
16 Jun-23 Jun	85	0	0.9844	131	0	0.9723	216	0	0.000	0.000	0.000
24 Jun-30 Jun	84	0	0.96440	130	0	0.9723	214	0	0.000	0.000	0.000
1 Jul-31 Jul	82	2	0.9604	130	3	0.9499	212	5	3.066	1.186	1.158
1 Aug-31 Aug	76	1	0.9477	127	0	0.9499	203	1	0.626	0.234	0.233
1 Sep-30 Sep	72	0	0.9477	127	0	0.9499	199	0	0,000	0.000	0.000
1 Oct-31 Oct	46	0	0.9477	125	1	0.9423	171	1	0.731	0.197	0.195
1 Nov-30 Apr	44	0	0.9477	119	1	0.9344	163	1	0.730	0.197	0.196
Total		4			8			12	7.490	2.785	2.745

B E(d1j)=djr1j/rj
b Var(d1j)=djr1jr0j/rj2
c Var(d1j)=djr1jr0j(rj-dj)/rj2(rj-1)

		Ket	mei		Black Lake					
	No. at	No. of	Survival	******	No. at	No. of	Survival			
feer	Risk	Deaths	Estimote	95X CI	Risk	Deaths	Estimate	95 % CI		
1968				dela ser a la seconda sense en el contra de transfer de se en en esta de la seconda de la seconda de se en est	28	2	0.93	0.83-1.00		
1989	23	0	1.00	1.00-1.00	38	3	0.92	0.79.1.00		
1990	38	2	0.95	0.86-1.00	32	2	0.93	0.83-1.00		
1991	27	2	0.92	0.79-1.00	40	1	0.98	0.92-1.00		

1

Table 5. Population and density estimates for brown bears in Katmai Hatl. Perk coastal study ares using the bear-days etimator.

								Normal									
iat is	nata for	bears of	all agas					approx.			Dinom	al Approx	R. CI	DEX611	TY (PER	DENSIT	r (PER
		nl(marke	m2(merks	m2(total	Deily	Sight-	₩º (est.	951 CI for		IX (PER	Est. 1	no. bear	trange 66	100	Okm ²)	1000	4 ²)
lay	DATE	present)	seen)	soon)	L-P	ability	No. beers	#*=+/ -	1000km ²	1009m1 ²	LOHER	UPPER	I of est.	LONER	UPPER	LONER	UPPER
1	6/3/90	62	11	91	482.0	0.177	482.0	220.3	534.8	1385.3	301.0	1001.6	145.4	334.0	1111.4	128.9	429.1
1	6/3/90	62	13	113	512.0	0,210	512.0	165.1	568.1	1471.5	364.7	806.2	86.2	494.7	894.6	156.3	345.4
	6/6/98	61	20	141	418.2	0.328	476.4	111.9	528,6	1369.1	368.4	654.6	60.1	408.8	726.4	157.8	280.5
•	6/7/90	60	12	111	524.5	8.200	492.8	104.1	546.9	1416.4	394.1	650.9	52.1	437.4	722.3	168.9	278.9
			avaula	tive I -		22.857											
			meen d	iaily L-P-	404.19)			537.3	1391.6							
					-												
Rat i	ante fer	independe	nt bears	SE-	20.55 luded a		with their (mothers)									
L eti	mate for	independe	mt beers				with their (Normal			Binon	el Ampro	a . Cl	DENSI	TY (PPR	DEEST	
E eti	mate for	-		emly (exc	luded a	foring		Normal approx.	DERSI	Ty (PER		el Appro			TY (PER IOka ²)	DERSII	
Esti day	ante for DATE	nl(merks present)	n2 (narki		luded a	foring	₩° (est.	Normal		TY (PER 1 1000mi ²		no, bear	z.Cl srango as I of ast,	100	TY (PER IGkm ²) UPPER		2mi ²)
		nl (merks	n2 (narki	emly (exc em2(total	luded a Deily	ffopring Sight-	₩° (est.	Normal approx. 952 CI for			Est.	no, bear	a cange as	100 LONER	(Gikm ²)	100	mi ²)
day 	DATE	nl(merks present)	n2 (mark)	emly (exc m2(totel seem)	luded a Deily L-P	flopring Sight- ability	Nº (est. No. bears	Hormal approx. 952 CI for H*=+/-	100 0km	¹ 1000mi ²	Est.	NO. DOAL	I of est.	100 LONER	UPPER	100 LOHER	Dani ²) UPPE
day 1	DATE 6/3/90	nl(merks present) 44	n2 (mark) nom) 7	enly (exc n n2(totel seen) 71	Deily L-P 404.0	Sight- ability 0.159	N* (est. No. bears 404.0	Normal approx. 952 CI for N°~+/- 224.2	1000km ² 440.3	1000mi ²	Est. LONER 228.3	no, beaz UPPER 1003.7	211.7	100 LONER 253.5	Nikm ²) UPPER 1202.6	100 LOMER 97.9 105.7	Dmi ²) UPPE 464.1 266.1
day 1 2	DATE 6/3/90 6/3/90	nl (morks present) 44 44	n2 (mark) nom) 7 11	enly (exc n n2(tots1 seen) 71 83	ludod a Deily L-P 404.6 314.8	Sight- ability 0.139 0.230	H* (est. No. bears 404.0 362.5	Hormal approx. 952 CI for H***/- 226.2 132.2	1000km ⁴ 440.3 402.3	1161.1 1041.9	Est. LONER 228.3 246.6	no. beaz UPPER 1003.7 621.5	211.7 103.4	106 LONER 253.5 273.7	IGkm ²) UPPER 1202.6 689.6	100 LOMER 97.9 105.7	Dmi ²) UPPE 464.1 246.1 222.1
day 1 2 3	DATE 6/3/90 6/5/90	n1(morks present) 44 44 43	n2 (marks soon) 7 11 13 9	enly (erc an2(total seen) 71 83 161	luded a Daily L-P 404.6 314.6 319.6 390.6	Sight- ability 0.139 0.230 0.302	H* (est. Ho. bests 404.0 362.3 351.7	Normal approx. 952 CI for N=+/- 226.2 132.2 97.8	1000km ⁴ 448.3 402.3 398.2	1000mi ² 1161.1 1041.9 1010.7	Est. 10000 220.3 246.6 259.8	no. beaz UPPER 1043.7 621.5 519.2	211.7 103.4 73.8	106 LONER 253.5 273.7 288.2	00km ²) UPPER 1202.6 669.6 576.2	100 LONER 97.9 105.7 111.3	urre

88- 28.29

		nl (merks	m2(marks	n2(total	Daily	Sight-	; #• {+st.	approx. 951 CI for	DENSI	FY (PER		il Appro	X. CI Frange as		l¥ (PER Okm ²)		l'Y (PER Gml ²)
day	DATE	present)	600B)	seen)	L-P	ability	No. bears	#*** */~	100 0k // ²	1000mi ²	LONER	UPPER	I of est.	LONER	UPPER	LOWER	UPPEI
1	6/3/90	52	8	76	452.4	0.154	452.4	240.6	502.1	1300.3	264.1	1115.9	100.3	293.0	1238.2	113.1	478.1
2	6/3/90	52	12	87	365.9	0.231	414.5	145.0	459.9	1191.3	287.3	687.8			763.2		
3	6/6/90	51	17	126	365.9	0.333	399.2	101.7	443.0	1147.4	302.1	567.1			629.3		
4	6/7/90	50	9	76	583.9	0.180	427.1	99.6,	473.9	1227.4	331.5	563.0	58.9				
			GLARA	lative I-		22.439		•									
			(84 A)	deily L-I	-422.04	۱			468.3	1212.9							
				8Z-	29.50	ł											

The la se leaven of devic document, Data prawnerform, acculyste, interpretation, and sensol-alone are subject to oncerve. Subdets are encouraged to concerve the Smith membra Becelon, Abable Caparment of Law burve calling.

ACE 30016119

, e

.	ffancim	g atill wi	s with a their					Approx.			Binome	1 Approx.	CI	Datas 1	TY (PER	DEMOT	TT (25
	-	al (marks a				Sight-	H* (est.	951 CI for	DEMS I	TY (PER	Est. m	o. bears		100	Okm ²)	100	hat ²)
day	DATE	present)	800M)	800B)	L-P	sbility	No. beeza	H+-+/-	1000km ²	1000mi ²	LONER	UPPER	I of est.	LONER	UPPER	LONER	UPPE
1	6/3/90	73	11	91	566.3	0.151	566.3	263.2	628.4	1627.6	354.4	1179.3	145.7	393.2	1308.6	151.0	505.3
2	6/5/90	71	13	113	505.3	0.183	594.0	194.8	659.1	1707.1	423.5	936.3	86,3	478.0	1038.9	101.5	401.1
3	6/6/90	69	20	141	472.3	0.298	540.1	131.4	608.2	1575.3	424.1	753.7	60.1	470.6	836.4	101.7	322.9
4	6/7/96	68	12	111	593.5	0.176	565.0	121.6	626.9	1623.8	452.1	746.5	52.1	501.6	828.4	193.7	319.6
•		Cumu I	Lative I	•		19.929											
		-	deily L-	- 2	554.35	i			615.1	1593.2							
			5E-		24.10	1											
									×								
-	imato fe h thair		cs with (nin imm	suber	of offep	ing still	Hormel appress.	×		21mcm	1. Approx.	CI	DENSI	TY (PER	DENSI	TT (PI
-									DENSI	TY (PRA		bl Approx. 10. bears	CI Fange es		TY (PER Oku ²)		TT (PI Imi ²)
-	h their	methers	n2(morks	n2(tots	l Deily		H* (est.	аррган.	Dibis I 1000km ²	• • • • • • • • • •							lm(²)
w1.4	b their DATE	nsthers nl(merks) present)	n2 (morks seen)	n2(tota)	L-P	Sight- ability	S* (est. So. bears	eppres. 95% CI for H ^{eme} /-	100 0km²	1000m1 ²	Est. 1 LOMER	D. bears UPPER	range as I of ast,	100 LCMER	Oku ²) VPPER	100 LONER	UP98
ulti day 	h thair BATE 6/3/90	mothers n1(merks) present) 60	n2(morks soan) 11	n2(tots) nom) 91	L Deily L-P 466.7	Sight- ability 0.103	H* (est. Bo, bears 466.7	eppress. 95% CI for H***/- 212.5	1000km ² 517.6	1000m1 ² 1341.2	Est. u LOMER 291.3	Denre UPPER	range as I of ast, 145.3	100 LOMER 323.2	0km ²) UPPER 1075.6	100 LONER 124.0	0m4. ²) 47995
uri ti day 1 2	6/3/90	mothers nl(merks) present) 60 60	n2(morts seen) 11 13	n2(tota) nom) 91 113	L Deily L-P 466.7 495.7	Sight- ability	S* (est. So. bears	eppress. 95% CI for N==+/- 212.5 159.2	1000km ² 517.6 549.9	1000m1 ²	Est. 1 LCMER 291.3 352.9	D. bears UPPER	range as 2 of ast, 145.3 66.2	100 LOMER 323.2 391.6	Okm ²) UPPER 1075.6 665.8	100 LONER 124.0 151.2	415.3
ulti day 	6/3/90 6/5/90	mothers n1(merks) present) 60	n2(morks soan) 11	n2(tots) nom) 91	L Deily L-P 466.7	81ght- ebility 0.103 0.217	H* (ost. Bo. bears 466.7 495.6	eppress. 95% CI for H***/- 212.5	1000km ² 517.6	1000mi ² 1341.2 1424.3	Est. u LOMER 291.3	969.3 760.2	range as I of ast, 145.3	100 LOMER 323.2	0km ²) UPPER 1075.6	100 LONER 124.0 151.2 152.7	415.3 271.4
unt ti day 1 2 3	6/3/90	methers n1(merks) present) 60 60 59 58	n2(morts seen) 11 13 20	91 113 141	L Deily L-P 466.7 495.7 404.7	Bight- ebility 0.103 0.217 0.339	H* (ost. Bo. bears 466.7 495.6 461.0	eppress. 95% CI for N==+/- 212.5 159.2 107.7	1000km ² 517.6 549.9 511.5	1000mi ² 1341.2 1424.3 1324.9	Eet. n LOMER 291.3 352.9 356.4	969.3 760.2 633.4	renge as I of ast. 145.3 66.2 60.1	100 LOHER 323.2 391.6 395.5	0km ²) UPPER 1075.6 665.6 702.9	100 LONER 124.0 151.2 152.7	415.3
unt ti day 1 2 3	6/3/90 6/5/90	nothers n1 (merks) present) 60 60 59 50 cum	n2(morks sem) 11 13 20 12	91 113 141 113	L Deily L-P 466.7 495.7 404.7	Bight- chility 0,103 0,207 0,207 23,629	H* (ost. Bo. bears 466.7 495.6 461.0	eppress. 95% CI for N==+/- 212.5 159.2 107.7	1000km ² 517.6 549.9 511.5	1000mi ² 1341.2 1424.3 1324.9	Eet. n LOMER 291.3 352.9 356.4	969.3 760.2 633.4	renge as I of ast. 145.3 66.2 60.1	100 LOHER 323.2 391.6 395.5	0km ²) UPPER 1075.6 665.6 702.9	100 LONER 124.0 151.2 152.7	415.3 334.3 271.4

4

Table 6. Estimate of brown bear density using the bear-days estimator and maximum and minimum numbers of offspring still with their mothers.

Ĩ

Table 6. (cont.)

Estimate for bears >2.0 with maximum number of offepring still Normal approx. Binomel Approx. CI DENSITY (PER with their mothers DENSITY (PER H* (est. 951 CI for 1000km²) ml(marks m2(marks m2(total Daily Sight-DENSITY (PER Est. no. bears 1000m(²) 1000km² 1000m1² L-P ability No. bears #***/-LOHER UPPER 1 of est. LONER UPPER LONER UPPER eeen) day DATE present) seen) 0.129 538.0 290.7 597.0 1546.2 314.9 1330.5 100.8 349.4 1476.3 76 530.0 134.9 570.0 6/3/90 62 . 1 THE ST 337.0 606.9 0.200 485.6 172.9 538.9 1395.7 96.8 89 421.3 374.0 2 6/5/90 60 12 895.3 144.4 345.7 120.6 17 126 415.3 8.293 463.3 514.1 1331.5 350.9 658.6 66.4 3 6/6/90 58 309.3 730.8 150.3 282.2 573.2 8.158 493.5 117.3 547.6 1418.2 6/7/99 57 9 -303.2 674.1 58.9 425.3 748.0 164.2 268.8 cumulative I -19.489 interior, 486.95 540.3 1399.5 mean daily L-P-34.90 22whet strainers, Data in interpretation, and to relation foundation are to found in works Suckey, w Evenue using. Satimate for bears >2.0 with minimum number of offepring still Hormal арргох. DEMBITY (PER Binomel Approx. CI with their mothers DENSITY (PER ml(marks m2(marks m2(total Daily Sight-Hª (est. 951 Cl for DENSITY (PER Est. no. bears 1000km²) **Z0040 00** 1000m1²) 1000km² 20m+/-1000m12 ability No. bears LOHER L-P UPPER. day DATE present) seem) seen) I of out. LOHER UPPER LONGER UPPER 6/3/90 50 . 76 435.3 0.160 435.3 230.6 483.1 1251.1 253.9 1073.0 188.1 241.8 1190.6 1 108.8 459.7 398.7 138.8 2 6/5/90 50 12 89 352.1 8.240 442.4 1145.8 276.2 661.4 96.6 304.5 733.9 110.4 283.4 6/6/96 49 17 126 351.0 8.347 383.9 97.2 426.0 1103.3 66.4 3 290.4 545.2 322.3 683.0 124.4 233.6 98 484.1 0.188 410.5 95.2 455.5 1179.7 6/7/99 48 9 318.6 568.3 58.9 353.5 621.7 136.5 240.0 23.350 sumulative I 405.82 450.3 1166.3 daily 1-1-

.

1

.

AC m 30016121

-

82-

20.29

presidention, scalysk, condensions and subject a attractinger bit concess the Assess Dependent of Las

9 E F Ę

Table 7. Comparison density estimates from Black Lake Alanka using the bear-days estimator.

								Normal								
Ber	te en	all 4644						approx.			Binomel Approx.	CI	DENSIT	Y (PER	DEMBIT	Y (PER
		al (mer	ks m2(mark	s n2(tote	1 Deily	Sight-	#* (est.	951 CI for		TY (MR	Est. mo. bears	Tenge as	100	litar ²)	100	mi ²)
da)	DAT	t prese	L) som)	seen)	L-7	ability	No. bears	¥*=+/-	1000km ²	1000 mi ²	LONER UPPER	I of est.	LONER	UPPER	LONER	UPPE
1	5/24	68	19	83	288.8	0.279	288.80	91.174	237.779	615.37	203.47 472.88	93.29	167.5	389.3	433.9	1005.4
2	5/34	67	41	97	157.7	0,612	201.27	30,369	165.713	420.86	145,73 254,72	44.21	136.4	209.7	353.4	543.2
3	5/31	65	30	98	209.0	0.462	205.08	25.490	168.853	436.99	174.43 247.74	35.75	143.6	204.0	372.0	528.3
4	5/31	63	34	132	242.2	8.540	216.76	22.936	178.464	461.87	188.18 254.55	30.62	154.9	209.6	401.3	542.6
5	6/1-	3 61	21	100	283.6	0.344	227.30	23.067	187.144	484.33	199.02 263.95	28,57	163.9	217.3	424.4	562.9
	6/4	59	22	96	252.8	0.373	231.07	22.237	190.249	492.36	203.94 265,64	26.70	167.9	218.7	434.9	566.5
			muletive :	z =		43.603										
		. 80	m daily L	- 20	239,8	2			196,79	509.30						
₹			88	-	18.3	5										
a								Normal								
3	aak La	ka indapa	ndent bear	s only				APPEOX.			Binomal Approx.	CI	DENS 1	TY (PER	DENSI	TY (PE
]]]	aak La	•			1 Daily	Sight-	Nº (ost. 1	••	DENSI	IY (PER	Binomal Approx. Est. no. bears	CI Tange as		TY (PER 0km ²)		TY (PE Dm.1 ²)
3 81.		al(ma	ndent beer kem2(merk st) eem)	s n2(tote	1 Deily L-P	Sight- ability	Nº (est. 1 No, bears	••		FY (PER 1000m1 ²						Dat ² }
	y DA1	pl(ma E prose	kom2(mark st) ocen)	s n2(tote			-	SI CI for			Est. no. bears	range as	100	Okm ²)	100 LOHER	UPPE
£ 1	y DA1 3/1	nl(ma E prose	ko m2 (merk	s n2(tota seen)	L-7	ability	No. bears	SI CI for #***/-	1000km ²	1000m1 ²	Est. no. bears LOMER UPPER	Tange as I of est.	100 LONER	Okm ²) UPPER	109	Dat 2) UPPER 806.5
	y DA1	Bl(ma E prese 8 41 8 43	to m2(mark st) ecom) 	s n2(tota seen) 	L-P 180.0	ability 8,268	No. bears	051 CI for H+++/- 76.579	1000km ² 154.787	1000m1 ² 400.59	Est. no. bears LOMER UPPER 120.20 370.23	range as I of est, 137.25	100 LONER 99.0	Okm ²) UPPER 311.4	100 LONER 236.3	UPPE
	y DA1 5/2 5/2	nl(ma E prose 8 41 8 43 1 42	ts m2(merk st) eem) 11 	s n2(tote som) 	L-P 100.0 110.7	ability 8.268 8.301	No. bears 188.00 134.19)51 CI for #***/- 76.579 27.111	1000km ² 154.787 112.129	1000m1 ² 409.59 299.19	Est. no. bears LONER UPPER 120.20 370.23 103.90 107.75	range as X of est, 137.25 60.10	100 LOHER 99.0 87.2	Okm ²) UPPER 311.4 154.6	100 LONER 236.3 225.0	Dm.1 ²) UPPE 006.3 400.4
	5/2 5/2 5/2	n1(ma E prese 41 41 43 41 42 11 41	its m2(mork st) eem) 11 25 19	s n2(tote som) 53 65 50	L-P 100.0 110.7 125.9	ability 8,268 8,301 8,432	No. bears	74.579 27.111 21.474	1600km ² 154.787 112.129 169.691	1000m1 ² 400.59 290.19 284.40	Est. no. bears LOMER UPPER 120.20 370.23 105.90 107.75 100.64 171.50	range as X of est, 137.25 60.10 47.10	100 LOHER 99.0 87.2 89.4	Okm ²) UPPER 311.4 154.6 141.2	100 LONER 256.3 225.8 231.7	Dm.1 ²) UPPEI 806 . 3 400 . 4 365 . 7
£ 1	y DA1 3/1 3/1 3/1 3/1	B1(ma) E prose A 41 A 43 1 43 1 43 1 43 1 43 39	te m2(merk st) com) 11 25 19 21	s n2(tota som) 53 65 58 83	L-2 180.0 110.7 125.9 139.4	ability 8,268 8,301 8,432 8,512	No. bears 198.00 136.19 133.47 141.57	74.579 27.111 21.474 19.433	1000km ² 154.707 112.129 109.091 116.550	1000m1 ² 400.59 290.19 204.40 301.65	Est. no. bears LOMER UPPER 120.20 370.23 105.90 107.75 100.64 171.50 110.27 174.91	Tange as X of est. 137.25 60.10 47.10 40.00	100 LOHER 99.0 87.2 89.4 97.4	Okm ²) UPPER 311.4 154.6 141.2 144.0	100 LONER 256.3 225.8 231.7 252.8	006.5 400.4 365.7 373.0
	7 DA1 5/3 5/3 5/3 5/3 5/3 6/3	B1(ma E prose 8 41 9 43 1 42 1 41 -3 39 37	to m2(merk st) com) 11 25 19 21 15	s n2(tote som) 53 63 58 83 61 61	L-P 180.0 110.7 125.9 139.4 154.8	ability 0.260 0.301 0.432 0.312 0.303	No. bears 166.00 134.19 133.47 141.57 144.25	76.579 27.111 21.474 19.433 10.483	1000km ² 154,787 112,129 109,891 116,558 118,766	1000mi ² 400.59 290.19 284.40 301.65 307.37	Lower UPPER 120.20 370.23 103.90 107.75 100.64 171.50 110.27 174.91 122.10 174.07	range as X of est, 137.25 60.10 47.10 40.00 36.53	100 LOHER 97.0 87.2 89.4 97.4 108.6	Okm ²) UPPER 311.4 154.6 141.2 144.0 144.0	100 LOHER 256.3 225.8 231.7 253.8 269.5	004.3 400.4 365.7 373.6 372.9
	7 DA1 5/3 5/3 5/3 5/3 5/3 6/3	B1(ma E prose 4 41 4 43 1 42 1 41 -3 39 37 c	to m2(merk st) ecom) 11 25 19 21 15 14	s n2(tota som) 	L-P 180.0 110.7 125.9 139.4 154.8	<pre>ebility 0.260 0.301 0.432 0.512 0.305 0.376 43.210</pre>	No. bears 166.00 134.19 133.47 141.57 144.25	76.579 27.111 21.474 19.433 10.483	1000km ² 154,707 112,129 109,091 116,550 116,766 120,525	1000mi ² 400.59 290.19 284.40 301.65 307.37	Lower UPPER 120.20 370.23 103.90 107.75 100.64 171.50 110.27 174.91 122.10 174.07	range as X of est, 137.25 60.10 47.10 40.00 36.53	100 LOHER 97.0 87.2 89.4 97.4 108.6	Okm ²) UPPER 311.4 154.6 141.2 144.0 144.0	100 LOHER 256.3 225.8 231.7 253.8 269.5	004.3 400.4 365.7 373.6 372.9
	7 DA1 5/3 5/3 5/3 5/3 5/3 6/3	B1(ma E prose 4 41 4 43 1 42 1 41 -3 39 37 c	ko m2(merk st) com) 11 25 19 21 15 14 mulative	s m2(tota som) 53 65 58 83 61 61 1 = ,-P-	L-P 100.0 110.7 125.9 159.4 154.0 156.1	ability 0.260 0.301 0.432 0.512 0.305 0.370 43.210 0	No. bears 166.00 134.19 133.47 141.57 144.25	76.579 27.111 21.474 19.433 10.483	1000km ² 154,707 112,129 109,091 116,550 116,766 120,525	1000m1 ² 400.59 290.19 204.40 301.65 307.37 311.92	Lower UPPER 120.20 370.23 103.90 107.75 100.64 171.50 110.27 174.91 122.10 174.07	range as X of est, 137.25 60.10 47.10 40.00 36.53	100 LOHER 97.0 87.2 89.4 97.4 108.6	Okm ²) UPPER 311.4 154.6 141.2 144.0 144.0	100 LOHER 256.3 225.8 231.7 253.8 269.5	004.3 400.4 365.7 373.6 372.9
	7 DA1 5/3 5/3 5/3 5/3 5/3 6/3	B1(ma E prose 4 41 4 43 1 42 1 41 -3 39 37 c	to m2(merk st) com) 11 25 19 21 15 14 mulative m daily L	s m2(tota som) 53 65 58 83 61 61 1 = ,-P-	L-P 100.0 110.7 125.9 139.4 154.6 156.1 149.0	ability 0.260 0.301 0.432 0.512 0.305 0.370 43.210 0	No. bears 166.00 134.19 133.47 141.57 144.25	76.579 27.111 21.474 19.433 10.483	1000km ² 154,707 112,129 109,091 116,550 116,766 120,525	1000m1 ² 400.59 290.19 204.40 301.65 307.37 311.92	Lower UPPER 120.20 370.23 103.90 107.75 100.64 171.50 110.27 174.91 122.10 174.07	range as X of est, 137.25 60.10 47.10 40.00 36.53	100 LOHER 97.0 87.2 89.4 97.4 108.6	Okm ²) UPPER 311.4 154.6 141.2 144.0 144.0	100 LOHER 256.3 225.8 231.7 253.8 269.5	004.3 400.4 345.7 373.6 372.9
	7 BA1 5/2 5/2 5/2 5/2 6/2 6/2	B1(ma E prese 4 41 6 43 1 42 1 41 -3 39 37 c	to m2(merk st) com) 11 25 19 21 15 14 mulative m daily L	s m2(tota som) 53 65 58 63 61 61 1 - 	L-P 166.0 110.7 125.9 159.4 154.0 154.1 149.0 10.1	ability 0.260 0.301 0.432 0.312 0.303 0.370 43.216 0 5	No. bears 166.00 134.19 133.47 141.57 144.25	76.579 27.111 21.474 19.433 10.483 17.751	1000km ² 154,707 112,129 109,091 116,550 116,766 120,525	1000m1 ² 400.59 290.19 204.40 301.65 307.37 311.92	Lower UPPER 120.20 370.23 103.90 107.75 100.64 171.50 110.27 174.91 122.10 174.07	range as X of est, 137.25 60.10 47.10 40.00 36.53	100 LOHER 97.0 87.2 89.4 97.4 108.6	Okm ²) UPPER 311.4 154.6 141.2 144.0 144.0 144.2	100 LCHER 256.3 225.8 231.7 253.3 269.5 267.8	006.3 UPPEI 006.3 400.4 365.7 373.0 373.4
	7 BA1 5/2 5/2 5/2 5/2 6/2 6/2	B1(ma E prose 4 41 4 43 1 42 1 42 1 41 -3 39 37 C ma sha, number	to m2(mark st) ecom) 11 25 19 21 15 14 amulativo nm daily L	s n2(tota seen) 53 65 58 63 61 61 1 = ,-P= ;=	L-P 100.0 110.7 125.9 159.4 154.0 154.0 156.1 149.0 10.1	ability 0.240 0.301 0.432 0.312 0.303 0.370 43.210 0 5	No. bears 166.00 134.19 133.47 141.57 144.25	74.579 27.111 21.474 19.433 10.483 17.751	1000km ² 154,707 112,129 109,091 116,550 110,766 120,525 122,673	1000m1 ² 400.59 290.19 204.40 301.65 307.37 311.92	Est. no. bears LCMER UPPER 120.20 370.23 103.90 107.75 100.64 171.50 110.27 174.91 122.10 174.07 125.23 175.10	range as X of est. 137.25 60.10 47.10 40.00 34.53 34.06	100 LCHER 97.0 87.2 89.4 97.4 108.6 103.1	Okm ²) UPPER 311.4 154.6 141.2 144.0 144.0 144.2	100 LCHER 256.3 225.8 231.7 253.8 269.5 267.8	UPPER 006.3 400.4 365.7 373.0 373.0 373.4

.

ż

122

5/20

5/30

5/31

5/31

6/4

6/1-3

45

43

1

2

3

4

5

6

52 19 69 51 31 81 23 75 49 24 **99** 47

18

14

cumulative I -

mean daily L-P-

143.540 371.48

151.905 393.13

126.349 326.99

127.965 331.17

136.316 352.79

139.298 368.50

141.031 367.06

131.25 297.82

124.16 199,15

129.95 192.14

141.13 199.00

145.85 200.33

149.53 202.00

108.1 245.2

116.2 163.8

164.0

164.9

102.2

107.0

120.1

279.9

158.2 277.1 409.7

311.0

123.1 166.4 318.9 430.9

301.0

244.8 424.7

635.1

424.4

427.2

90.29

48.87

40.01

34.95

32.20

30.51

nn.

76

66

8.365

0.608

0.469

0.511

8.400

44.948

195.5 0.326

184.50

153.46

155.42

165.57

169.19

172.26

52.911

24.311

20.773

19.495

18.776

18.579

184.5

132.3

157.3

191.0

105.4

174.34

.....

This is an interim or denic downmant. Dots

-

Westwinking army the succession and succession and succession of Lincoln Petersen estimates and confidence interval based on sampling mean any set of a stand of the set of the

ê

•

-	rs of al	Linges, m	ost likel	ly number	of mai	ke prese	nt			958 CI			951 CI POR	951 CI POR	958 CI POR
		n1 (merke	m2(marks	a2(tota)	Deily	mean of i	k 1-e^(mbar+)	i) Sampla	951CI-	as I of	Density	Density	HO. OF BEARS	NO./1000km ²	30./1000ml ³
iny	DATE	present)	seen)	seen)	L-P	L-Po	(eq. 13)	Verience	+/-	ESTIMATE	#/1000km ²	\$/1000m1 ²	LONER UPPER	LOWER UPPER	LONER WITTER
								(oq. 2)							
*******	6/3/90	62		91	482.0	482.0	1.0000				534.85	1385.25			
:	6/5/90	62	13	113	512.8	497.0	1.0000	450.00	190.59	76.7	551.49	1428.36	306.4 687:6	340.00 762.98	131.28 294.59
1	6/6/90	61	20	141	418.2	478.7	1.0000	2292.81	118.96	50.5	522.36	1352.91	351.8 589.7	390.36 654.36	150.72 252.45
•	6/7/78	60	12	111	524.5	484.2	1.0009	2251.95	75.50	31.2	537.28	1391.56	408.7 559.7	453.50 621.06	175.10 239.79
Linde		beers on	ly, most	likely s	unbez (e marks ;	present.								
	-		•••	÷		-	-			951 CI			951 CI POR	951 CI POR	958 CI POR
		n1(merke	m2(merta	a2(tota)	Daily	mean of	k1-e"(-mber	1)Sample	951CI-	as I of	Density	Density	NO. OF BEARS	NO./1000km ²	#0./1000mi ²
iey	DATE	present)	8000)	(000	L-P	L-Pe	-	Variance	+/-	ESTIMATE	#/1000km ²	#/1000m12	LOHER UPPER	LOHER UPPER	LONER WETER
•		•		•				(og. 2)							
	6/3/90	44	7	71	404.0	404.0	0.9997				448.29	1161.00			
2	6/5/90	44	11	83	314.0	359.0	1.0000	4050.00	571.77	318.5	398.36	1031.76	-212.8 930.8	1032.02	-91.16 398.77
3	6/6/90	43	13	101	319.6	345.9	1.0000	2543.20	125.29	72.4	383.76	993.98	220.6 471.1	244.75 522.80	94.50 201.85
4	6/7/90	43	•	88	390.6	357.0	1.0000	2195.95	74.56	41.8	396.19	1026.13	282.5 431.6	313.46 478.92	121.03 104.91
lea	ra > 2 a	aly, most	likely m	nabor of	merks	present				931 CI			951 CI POR	95% CI POR	951 CI POR
		al(merks	až (merke	al(total	Deily	lo men	kl-a^(-mbar	1) Sample	*51CI-	as 1 of	Density	Density	NO. OF MEARS	80./1000km ²	10./1000mi ²
lay	DATE	present)	600M)	800D)	L-P	L-Ps	[eq. 13]	Verience	+/-	ESTIMATE	#/1000km ²	#/1000m1 ²	LONER SPIER	LOHER UPPER	LONGE UPPER
		•					••••	(og. 2)	·						
1	6/3/90	33	8	76	452.4	452.4	0.9999				302,03	1300.31	<u></u>		······································
2	6/3/90	52	12	89	365.9	409.2	1.0000	3742.97	549.67	248.7	454.05	1175.90	-140.5 950.9		-60.19 410.00
3	6/6/90	51	17	126	365.9	394.8	1,0000	2496.30	124.13	62.9	438,83	1134.51	270.4 518.9	300.30 575.77	115.95 222.30
•	6/7/98	50	•	96	503.9	422.0	1.0000	4642.52	108.40	51.4	468.31	1212.93	313.6 330.4	348.02 588.68	134.37 227.24
leai	n of al	1 agas, M								951 CI			951 CI POR	951 CI POR	951 CI POR
			m2(merks	n2(total	Deily	nom of	kl-e^(mber+)) Sample	951CI-	as 1 of	Density	Density	NO. OF BEARS	80./1000km ²	80,/1000mi ²
iay	DATE	present)	seen)	896h)	L-P	L-Pe	(eq. 13)	Variance (eq. 2)	+/-	ESTIMATE	#/1000km ²	#/1000mi ²	LOHER UPPER	LOHER UPPER	LOMER UPPER
	6/3/96	73	11	91	566.3	566.3	1.0000			·····	628.43	1627.62			
2	6/5/90	71	13	113	585.3	575.8	1.0000	179.60	120.40	41.8	638,94	1654.86	455.4 496.2	505.34 772,55	195.11 298.20
3	4/4/90	69	20	141	472.3	541.3	1.0000	3658.91	150.27	\$5.5	600.67	1355.73	391.0 691.6	433.92 767,42	
•	6/7/90	48	12	111	593.5	554.4	1.0000	3119.82	88.85	32.1	615.13	1593.20	465.5 643.2	516.54 713,73	199.43 275.57

able & (cont.)

.

iey DATE y	nl(marks : present)	a2(merks t												
	present)			•		k1-0"(-mbar+	1)Sample	958CI-	as X of	Density	Demoity	NO. OF SEARS	#0./1000km ²	#0./1000m1 ²
		seen)	seen)	L-P	L-Pe	[eq. 13]	Variance	+/-	ESTIMATE	#/1000km ²	#/1000mi ²	LONER UPPER	LONER UPPER	LONER UPPER
							(eq. 2)							
1 6/3/90	62	•	76	538.0	538.0	0,9999				596.99	1546.20	144414-9-9-9		
2 6/3/90	60	12	89	421.3	479,7	1.0000	6808.55	741.35	309.1	532.24	1378,51	-261.7 1221.0	*** 1354.87	-112.12 523,12
3 6/6/98	50	17	126	415.3	456.2	1.0000	4785.70	171.66	75.0	508.43	1316.84	286.3 630.1	317.73 699.14	122.67 269.94
4 6/7/90	57	•	98	573.2	486.9	1.0000	6496.99	128.24	52.7	540,34	1399.47	358.7 615.2	398.03 682.64	153.68 263.57
tears of all	ages, MI	NIMIN MUR	BER OF	-	RESENT				951 CI			951 CI POR	951 CI POR	951 CI POR
						k1-o"(mber+1) Sample	958CI-	as I of	Density	Demaity	NO. OF BEARS	NO. / 1000km ²	80./1000al ²
day BATE	procent)	seen)	seen)	1P	L-Pa	fog. 133	Veriense	+/-	SETIMATE	#/1000km ²	#/1000ml ²	LONIA UPPER	LOWER UPPER	LONGR UPPER
						•	(og. 2)							
1 6/3/90	60	11	91	466.7	466.7	1.0000				517.83	1341.19			
2 6/5/90	******	- 3513	113	495.7	481.2	1.0000	421.88	184.54	76.7	533,95	1382.93	296.7 665.7	329.18 736,72	127.09 265.21
3 6/6/98	59	20	141	404.7	455.7	1.0000	2140.48	115.47	50.7	505,66	1309,66	340.2 571.2		145.76 244.71
4 6/7/96	50	12	111	507.3	468.6	1.0000	2106.20	73,02	31.2	519,98	1346.74	395.6 541.6		149.48 232.85
Boars >2.8 a	miy, MINI		er of H	ANCE PRI	sent				931 CI			95X CI POR	951 CI POR	951 CI POR
	a) (marke					kl-e*(-mbar+	1) Sample	958CI-	as I of	Density	Density	NO. OF BEARS	80./1000km ²	80./1000nt ²
day BAIR	scenst)		seen)	L-P	L-Pa	(eg. 13)	Variance	+/-	ESTIMATE	#/1000km ²	#/1000m1 ²	LONER UPPER	LOHER UPPER	LONGE UPPER
	•	-				-	(og. 2)							
1 6/3/90	50	•	76	435.3	435.3	8.9999				483.86	1251.13			
2 6/5/90	50	12	89	352.1	393.7	1.0000	3465.81	528,92	268.7	436.87	1131.50	-135.2 922.6	*** 1023.79	-37.93 395.29
3 6/6/90	49	17	126	351.8	379.7	1,0000	2310.00	119.63	43.0	421.36	1091.33	260.1 499.4	200.61 554.11	
4 6/7/90	48	•	98	484.1	405.8	1.0000	4269.23	103.95	51.2	450.32	1166.32	301.9 509.8	334.96 565.67	

A C E	•
30016124	This is an interim or simil discomment. Data presemblishin, exception, intercented on, and conclusions are addient to only on. Exception or emonumaged to control the Environment Section, Alsexa Department of Law Lerung ciling.

٠.

ŧ

.

• •

	TL	Population estimate	Lower 951 CI	Upper 95% CI	Density (#/1000km ²)	Lower 931 CI	Upper 951 CI	Density (#/1000m1 ²)	Lower 95X CI	Upper 952 CI
Bears of all agas	62	513.0	405	627	570.1	449.4	695.8	1476.7	1164.0	1002.0
Independent bears	44	308.3	292	493	430.9	324.0	547.1	1116.0	839.2	1416.9
Bears >2.8	52	473.3	341	568	525.2	378.4	630.3	1360.3	980.0	1632.4

Table 9. Brown bear population and density estimates in Katmai Hatl. Fork using a binomial extension to the maximum liklihood estimator of White and Garrott (1990) (White in prop.). Data based on most likely number of marks present when date of weaming was uncertain.

.

.

This is an interior or derict dimanners, Dete per any formations, the signature in the new contraction of the second Contentione are subject to orthogon to debre det Pricouragoo to control the grown transited Gention. Aracka Department of Law Lonve colory.

.

	FO	R NUMBER OF B	EARS:	FOR	DENSITY (NO./	1000KM ²):	1 DIFFERENCE
	EST.	LOWER CI	UPPER CI	EST.	LOWER CI	UPPER CI	FROM BEST EST.
BRID-D	AYS ESTI						
ALL BE							
MIN.	477	381	630	529	423	699	-3.2
BEST	493	394	651	547	437	722	
MAX.	565	452	747	627	502	829	14.6
BEARS	> 2.0				·		
MIN.	411	319	560	456	354	621	-3.7
BEST	427	332	583	474	368	647	
MAX.	494	383	674	548	425	748	15.7
	TNOOTN	DEMEDCEN FORTS					
		PETERSEN ESTIP	AIVA				
ALL BE	eaks						
MIN.	468	395	541	519	438	600	-3.3
BEST	484	409	560	537	453	621	
MAX.	554	465	643	615	516	713	14.5
					i		
BEARS	> 2.0						
MIN.	406	302	510	451	335	566	-3.8
BEST	422	314	530	468	348	589	
MAX.	584	456	712	648	506	790	38.4
	~ .			••			

Table 10. Katmai estimates with variable number of offspring still with marked mothers when date of weaning was uncertain.

.

ACE 30016126

This is an interim or deal document. Data provintion, accepte, interpretector, and conclusions are subject to catches. Fullow dra encouraged to control its Anviet creative Becton, Assess Department of Law betwee citing.

Catalog # 6536 Summary of GERG Analytical Methods for U. S. Fish and Wildlife

The sediment samples were freeze-dried and extracted in a Soxhlet extraction apparatus. A flow diagram of the procedure is attached. Briefly, the freeze-dried sediment samples were homogenized and a 10-gram sample was weighed into the extraction thimble. Surrogate standards and methylene chloride were added and the samples extracted for 12 hrs. The extracts were treated with copper to remove sulfur and were purified by silica/alumina column chromatography (MacLeod et al., 1985; Brooks et al., 1989) to isolate the aliphatic and aromatic/pesticide/PCB fractions.

The tissue samples were extracted by the NOAA Status and Trends Method (MacLeod et al., 1985) with minor revisions (Brooks et al., 1989; Wade et al., 1988). A flow diagram of the procedure is attached. Briefly, the tissue samples were homogenized with a Teckmar Tissumizer. A 1 to 10-gram sample (wet weight) was extracted with the Teckmar Tissumizer by adding surrogate standards, Na₂SO₄, and methylene chloride in a centrifuge tube. The tissue extracts were purified by silica/alumina column chromatography to isolate the aliphatic and PAH/pesticide/PCB fractions. The PAH/pesticide/PCB fraction was further purified by HPLC in order to remove interfering lipids.

The quantitative analyses were performed by capillary gas chromatography (CGC) with a flame ionization detector for aliphatic hydrocarbons, CGC with electron capture detector for pesticides and PCB's, and a mass spectrometer detector in the SIM mode for aromatic hydrocarbons (Wade *et al.*, 1988).

REFERENCES

۰.

- Brooks, J.M., T. L. Wade, E. L. Atlas, M. C. Kennicutt II, B. J. Presley, R. R. Fay, E. N. Powell, and G. Wolff (1989) Analysis of Bivalves and Sediments for Organic Chemicals and Trace Elements. Third Annual Report for NOAA's National Status and Trends Program, Contract 50-DGNC-5-00262.
- MacLeod, W.D., D. W. Brown, A. J. Friedman, D.G. Burrow, O. Mayes, R.W. Pearce, C.A. Wigren, and R. G. Bogar (1985) Standard Analytical Procedures of the NOAA National Analytical Facility 1985-1986. <u>Extractable Toxic Organic Compounds</u>. 2nd Ed. U.S. Department of Commerce, NOAA/NMFS. NOAA Tech. Memo. NMFS F/NWC-92.
- Wade, T.L., E. L. Atlas, J. M. Brooks, M. C. Kennicutt II, R. G. Fox, J. Sericano, B. Garcia, and D. DeFreitas (1983) NOAA Gulf of Mexico Status and Trends Program: Trace Organic Contaminant Distribution in Sediments and Oysters. Estuaries, 11, 171-179.

This is an interim or densi downment. Data preprintion, scalpar, interpretation, and constraions are subject to reprice Evolution are anocuraged to control the State, interpret Bacton, Alaska Experiment of Law Levins Lidng.

SUMMARY TABLE

ł

۰,

HYDROCARBON ANALYSIS OF BROWN BEAR FECAL SAMPLES

ID ,	SPECIES	5 -	DA	TE	COL	LO	CAI	r 	OIL
27500	BRBE	05	5/2	5/	89	BLA	ск	L	NO
27501	BRBE			-	89	BLA		Ĺ	NO
27502	BRBE				89	BLA			NO
			•	•					
27503	BRBE				89	KATI			NO
27504	BRBE				89	KATI			NO
27505	BRBE				89	KATI			NO
27506	BRBE				89	KATI			NO
27507	BRBE				89	KAT			NO
27508	BRBE				89	KATA		-	NO
27509	BRBE		/0			KAT			NO
27510	BRBE		/0			KAT			NO
27511	BRBE		/0			KATN			NO
-2 3562 - 27513	BRBE		/0			KAT			YES
	BRBE				89	KATN KATN			NO NO
27514	BRBE BRBE				89	KATN			NO
27515 27516	BRBE		/0			KATI			NO
~ 27517	BRBE		/0			KATN			YES
< 27518	BRBE		/0			KATN			YES
27519	BRBE		/0			KATN			NO
2/319	DNDG		, .	-/		110144	4114	•	no
27520	BRBE	05	/2	2/	89	BLAC	CK	L	NO
27521	BRBE	05	/2	2/	89	BLAC	CK	L	NO
27522	BRBE		12			BLAC	CK	L	NO
27523	BRBE	05	/2	2/	89	BLAC	CK	L	NO
27524	BRBE		/2			BLAC	CK	L	NO
27525	BRBE		/2			BLAC		L	NO
27526	BRBE		/2			BLAC		L	NO
27527	BRBE		/2			BLAC		L	NO
27528	BRBE		/2			BLAC		L	NO
27529	BRBE		/2			BLA		L	NO
27530	BRBE		/2			BLAC		L	NO
27531	BRBE		/2			BLAC		L	NO
27532	BRBE		/2	- · ·		BLAC		L	NO
27533	BRBE		/2			BLAC		L T	NO
27534	BRBE		/2			BLAC			NO
27535	BRBE		/2			BLAC		L L	NO NO
27536 .	BRBE		/2			BLAC		L	NO
27537	BRBE BRBE		5/2			BLAC		L	NO
27538 2753 9	BRBE		/2			BLAC			NO
21339	DRUU	•••		- /	•		-41	-	
27540	BRBE				89	KATN			NO
27541	BRBE	06	10	1/	89	KATN	AI	•	NO
27542	BRBE	06	10	1/	89	KAT			NO
27543	BRBE		5/0			KAT			NO
27544	BRBE				89	KATI			NO
27545	BRBE				89	KATI			NO
27546	BRBE				89	KATI			NO
27547	BRBE				89	KAT			NO
27548	BRBE				89	KATI			NO
	BRBE	06	>/ 0	<u>/ + ر</u>	89	KATI	161	-	YES

The is an interim of dark droutment. Date the substantiant of dark droutment. And publication and substant of anti-anconditional and substant of anti-an-anencountry of the anti-anti-anti-anantionary of the anti-anti-anti-anantionary of the anti-anti-anti-anantionary of the anti-anti-anti-anti-anantionary of the anti-anti-anti-anti-an-

 ϕ_{22}

۰.

ACE 30016128

.

٩,

1----

INVEST#:	•			1	
10:	27549	27500	27501	27502	27503
LABSAMNO:	N7799	N7801	N7803	x7805	¥7807
Alkanes and					
Isoprenoids	Conc DS GLAL	Conc DB QUAL	Conc DE QUAL	Conc DB QUAL	Conc DE QUA
UNIT:	ng/g	ng/s	ng/g	ng/s	ng/g
C10	4.68	10.98	3.38	11.00	0.00
C11	0.00	0.00	0.95	0.00	0.00
C12	22,10	2.34	4.01	29.89	1.06
C13	8,04	0.90	2.53	7.67	4.25
C14	11,30	9.54	2.85	11.00	7.65
C15	62.02	23.85	1.69	26.67	5.95
C16	30.75	39.24	9.61	19,44	22.22
C17	29,40	34.00	2.40	37.50	18.00
PRISTANE	13.90	4.60	0.50	24.00	5.70
C18	19.20	18.40	4.00	26.10	8.70
PHYTANE	3.60	3.40	18.70	11.60	19.90
C19	56.90	64.80	2.90	3.70	23.20
C20	65,10	59.10	15.10	74.80	56.30
C21	472.30	1359.00	381.50	316.50	710.30
C22	113,40	92.30	37.90	32.90	31.90
c23	969.20	940.57	720.72	701.09	569.14
C24	108.20	61.83	64.50	87.57	36.43
C25	1695.30	1579.00	2998.51	2995.60	1497.25
C26	80,10	37.06	52.10	60.17	35.40
C27	1865.30	1240.25	1367.43	1126.95	1387.01
C28	195.50	56.65	31.50	174.55	12.57
c 29	4756.00	1344.11	181.72	562.48	522.79
C30	391.10	70.16	7.20	117.60	9.60
c3 1	7304.10	559.67	84.30	321.80	365.50
c32	117.20	18.84	1.90	70.30	1.20
c33	975.70	182.76	91.20	365.30	394.00
C34	191,40	84.22	114.00	15.00	140.30
TOT ALKANES	19561.8	7897.6	6203.1	7231.2	5886.3
UNIT:	uĝ/s	ug/s	ug/g	ug/g	ug/g
UCH	20.3	12.9	18.7	1.5	1.7
Surrogate Recov			<u></u>		
C12ALKD:	76.61	79.66	87.86	69.13	84.66
C20ALKD:	71.97	66.13	85.59	70.86	83.02
C24ALID:	476.78 N	110.59	105.17	77.17	104.99
C30ALKD:	254,96 M	94.13	205.41 H	241.01 M	262.04 M

This is an interior or denity documents. Uses of the proversition, accurately in the proversition, and to be proversition, and contractions are built fool to minimary. Number are encourtaged to exclore the Estimate Laplace, between or Law During and the provesting.

.

κ.

ويعامدن

LABNAME: GERG/TANU

DATE: 11-Feb-91

٠

LAS APPROVAL: Thomas ackin

ACE 30016129

ſ

INVEST#:	•				
10:	27509	27510	27511	27512	27513
LABSANNO:	N7819	¥7821	N7823	N7825	¥7827
Alkanes and					
Isoprenoids	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUK
UNIT:	ng/g	ng/g	ng/g	ng/g	ng/g
C10	0.00	4.40	20.18	13.08	0.00
C11	5.83	1.57	3.68	4.08	3.05
C12	38.50	5.76	6.41	5.52	27.81
C13	19.91	8.06	16.74	10.44	3.84
C14	33.11	7.12	16.14	17.40	11.53
C15	591.36	367.64	40.24	36.84	9.95
C16	34.76	37.57	222.22	75.60	43.30
C17	54.20	10.90	46.40	36.40	18.40
PRISTANE	33.90	1.90	3.60	56.30	2.40
C18	16.30	1.70	3:00	20.50	13.20
PHYTANE	2.30	2.70	37.10	20.80	25.10
C19	672.80	23.40	14.40	49.30	7.20
C20	146.50	30.90	43.90	27.70	51.10
C21	2878.70	541.60	1086.80	771.50	1605.80
C22	195.40	35.20	71.20	30.60	57.40
C23	1746.99	569.63	1170.24	143.28	1244.90
C24	154.70	39.13	128.15	53.98	70.58
C25	1792.41	735.37	2909.47	428.51	3192.64
C26	110.20	32.97	215.60	43.33	59.58
c27	8327.71	1424.33	3155.92	300.15	1422.14
C28	344.47	91.31	376.77	42.21	80.63
c29	3114.22	5428.92	3776.22	516.18	432.10
C30	228.10	350,10	205.76	165.60	319.02
C31	1514.90	3891.90	2045.03	749.18	1146.21
C32	46.70	139.40	78.13	104.30	90.87
C33	496.20	147.50	396.91	460.44	791.70
c34	397.40	39.00	92.00	121.55	223.08
TOT ALKANES	22997.6	13970.0	16182.2	4304.8	10953.5
UNIT:	ug/g	ug/y	ug/g	ug/g	ug/g
UCH	72.8	31.8	189.6	70.3	68.4
Surrogate Recov					
C12ALKD:	82.15	65.13	91.59	84.13	81.54
C20ALKD:	83.36	62.87	100.29	95.13	85.03
CZ4ALKD:	117.70	67.24	100.20	99.25	97.84
C30ALKD:	260.22 M	142.35 N	81.84	41.81 H	25.98 M

The is on interim or deal documents preservation. British documents corrections in straight documents interim to skink a straight frage these Decomments of Law During Lingue Decom

κ.

-202014-1

LABRAME: GERG/TANU

DATE: 11-Feb-91

.

LAS APPROVAL: Thomas Jackion

NATIONAL RESOURCE DAMAGE ASSESSMENT - ALIPHATIC HYDROCARBON DATA - CATALOG # 6536

INVEST#:	×				
ID:	27514	27515	27516	27517	27518
ABSAMO:	N7829	H7831	N7833	N7835	N7837
Alkanes and					
Isoprenoids	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QU/1
JNIT:	ng/g	ng/g	ng/g	ng/g	ng/g
:10	2.64	3.17	1.77	0.00	4.42
:11	3.16	5.00	4.09	101.98	6.46
:12	37.42	4.51	2.87	15.66	4.76
:13	11.46	16.83	12.37	58.39	1.13
:14	9.22	11.34	8.39	21.42	25.38
:15	70.89	56.96	12.70	199.35	108.20
:16	15.81	18.78	29.81	562.56	114.20
:17	64.10	18.10	25.10	190.66	155.20
RISTANE	157.50	9.30	9.40	420.03	104.40
:18	45.10	6.60	7.40	35.76	133.50
HYTANE	2.80	4.40	3.20	142.80	52.30
:19	912.10	20.60	25.90	949.41	444.60
20	168.40	27.20	24.00	707.76	207.50
21	1661.30	929.30	615.10	5334.62	2060.80
22	83.70	43.40	34.50	590.80	328.00
23	1076.75	1067.85	721.13	11443.54	5418.12
24	110.45	72.52	52.00	543.97	298.05
25	296.67	2772.95	2256.01	3590.36	1945.47
26	137.50	65.73	84.13	1142.44	532.18
:27	6174.14	2187.85	1594.35	28522.63	11920.42
:28	287.79	191.96	136.91	8.56	636.36
:29	934.50	1761.24	990.71	5682 .79	4166.60
:30	146.77	148.82	87.76	120.98	380.59
31	248.64	1547.94	1388.23	1923.26	8585.03
32	209.92	13.76	155.18	529.73	280.74
33	128.21	1000.67	1962.48	219.11	1464.12
:34	2552.43	62.18	284.35	176.53	298.38
OT ALKANES	15549.4	12069.0	10529.8	63235.1	39676.8
INIT:	ug/g	ug/y	ug/g	ug/g	ug/g
JCH	76.5	102.2	110.2	1526.6	107.5
Surrogate Recov					
12ALID:	67.43	82.85	83.49	126.40	87.70
20ALID:	87.88	99.95	91.18	124.20	98.28
24ALKD:	90.83	87.94	87.19	133.50	98.44
30ALKD:	56.71	103.19	77.85	135.40	89.71

٠

This is an interior of dark downment. Data proprietation, arealised, brackmant, back concervious are subject to brander to executing to brack the direct strenge Beckon, successing to brack the direct strenge Beckon, Austral Dapartment of Law burke school.

ι.

LABRANE: GERG/TANU

DATE: 11-Feb-91

Thomas Jackson LAS APPROVAL:

NATIONAL RESOURCE DAMAGE ASSESSMENT - ARONATIC HYDROCARBON DATA - CATALOG # 6536

INVEST#:					
10:	27549	27500	27501	27502	27503
LABSAMNO:	N7799	N7801	N7803	N7805	¥7807
UNIT:	ng/g	ng/g	ne/s	ne/s	ng/g
PNA Analyte	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc D8 QUAL	Conc DB QUA
NAPHTHALENE	11.90	10.22	5.47	1.69	0.94
C1-NAPHTHALENES	1.93	1.35	1.23	2.95	1.63
C2-NAPHTHALENES	5.34	0.00	11.20	0.00	0.00
C3-NAPHTHALENES	5.86	0.00	0.00	0.00	0.00
C4-NAPHTKALENES	0.00	0.00	0.00	0.00	0.00
BIPHENYL	16.38	4.71	1.66	1.26	0.78
ACENAPHTHYLENE	0.06	0.52	0.15	0.35	0.27
ACENAPHTHENE	0.72	0.23	0.14	0.40	0.17
FLUORENE	0,39	0.27	0.14	0.56	0.28
C1-FLUORENES	0.00	0.00	0.00	0.00	0.00
C2-FLUORENES	0.00	0.00	0.00	0.00	0.00
C3-FLUORENES	0.00	0.00	0.00	0.00	0.00
PHENANTHRENE	2.54	0.98	0.48	1.67	1.13
ANTHRACENE	0.16	0.07	0.02	0.29	0.05
C1-PHEN_ANTHR	4,80	0.00	0.00	0.00	0.00
C2-PHEN_ANTHR	8.10	0.00	0.00	0.00	0.00
C3-PHEN_ANTHR	0.00	0.00	0.00	0.00	0.00
CG-PHEN_ANTHR	0.00	0.00	0.00	0.00	0.00
DIBENZOTHIO	0.77	0.28	0.06	0.34	0.12
C1-DIBEN	2.81	0.00	0.00	0.00	0.0đ
C2-D1BEN	4.67	0.00	0.00	0.00	0.00
C3-DIBEN	5.94	0.00	0.00	0.00	0.00
FLUORANTHENE	0.83	0.11	0.09	0.57	0.16
PYRENE	1.51	0.21	0.20	0.64	0.31
C1-FLUORAN_PYR	0.00	0.00	0.00	0.00	0.00
BENGANTHRACENE	0.21	0.03	0.02	0.25	0.08
CHRYSENE	0.71	0.08	0.03	0.25	0.08
C1-CHRYSENES	0.00	0.00	0.00	0.00	0.00
C2-CHRYSENES	0.00	0.00	0.00	0.00	0.00
C3 - CHRYSENES	0,00	0.00	0.00	0.00	0.00
C4-CHRYSENES	0.00	0.00	0.00	0.00	0.00
BENGFLUORAN	0.06	0.10	0.04	0.41	0,11
BENKFLUORAN	0.10	0.14	0.12	0.23	0.34
BENePYRENE	14.20	6.69	3.70	6.51	6.93
BENAPYRENE	0.25	0.15	0.77	0.37	0.16
PERYLENE	0.21	0.04	0.03	0.38	0.10
1123cdPYREWE	0.56	0.46	0.92	0.51	0.36
OBANANTHRA	11.59	79.64 H	42.95 H	9.39	8.09
BghiPERYLENE	0.28	0.11	1.38	0.37	0.28

.

٤.

LABNAME: GERG/TANU

DATE: 11-Feb-91

LAS APPROVAL: Thomas Jockion

ACE 30016132

NATIONAL RESOURCE DAMAGE / SSESSMENT	-	ARCHATIC	HYDROCARSON	DATA	(CONT)-	CATALOG (# 65 36

!

.

INVEST#:					•
10:	27549	27500	27501	27502	27503
LABSAMNO:	N7799	N7801	N7803	N7805	N7807
UNIT:	ng/g	ng/g	ng/g	ng/g	ng/g
Analyte (Cont)	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QLM.
2-METHYLNAPH	0.99	0.75	0.47	1.39	0.76
1-METHYLNAPH	0.94	0.60	0.76	1.56	0.87
2,6-DIMETHNAPH	3.69	0.40	14.10	0.77	0.48
2,3,5-TRIMETHNAPH	1.05	0.43	0.29	0.90	0.48
1-METHYLPHEN	0.89	0.39	0.08	0.72	0.27
Surrogate Recoveri	18				
KAPHOS:	62.33	67.21	73.34	68.93	78.11
ACEND10:	70.50	73.79	80.98	80.53	97.51
PHEND10:	61.80	67.87	72.88	67.40	82.99
CHRYD12:	83.25	101.08	137.81	93.80	109.33
PERYD12:	42.50	44.76	45.80	44.84	31.52

hekion thomas LAS APPROVAL:

LABNAME: GERG/TAMU

.

۰.

50¹-000

DATE: 11-Feb-91

÷

NATIONAL RESOURCE DAMAGE ASSESSMENT - AROMATIC HYDROCARBON DATA - CATALOG # 6536

INVEST#:		•		•	
10:	27509	27510	27511	27512	27513
LABSANNO:	N7819	¥7821	N7823	N7825	N7827
UNIT:	ng/8	na/s	ng/s	ne/e	ng/g
PNA Anelyte	Conc DE GUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUA
NAPHTHALENE	2.25	1.24	1.83	1.52	1.72
C1-NAPHTHALENES	4.58	2.69	4.53	3.28	3.04
C2-NAPHTNALENES	7.02	11.08	8.26	5.04	5.68
C3-NAPHTHALENES	8.33	5.36	8.30	7.41	5.06
C4-NAPHTHALENES	5.86	3.40	6.40	5.72	3.86
BIPHENYL	1.83	1.19	1.23	1.23	1.29
ACENAPHTHYLENE	0.03	0.58	0.84	0.26	0.32
ACENAPHTHENE	5.97	0.12	0.59	0.43	0.15
FLUORENE	0.28	0.18	0.49	0.38	0.32
C1-FLUORENES	0.00	0.00	0.00	0.00	0.00
C2-FLUORENES	0.00	0,00	0.00	0.00	0.00
C3-FLUORENES	0.00	0.00	0.00	0.00	0.00
PHENANTHRENE	1.68	1.46	1.66	1.98	1.40
ANTHRACENE	0.13	0.10	0.14	0.09	0.13
C1-PHEN_ANTHR	0.00	0.00	0.00	4.38	0.00
C2-PHEN_ANTHR	0.00	0.00	0.00	7.00	0.00
C3-PHEN_ANTHR	0.00	0.00	0.00	3.82	0.00
C4-PHEN_ANTHR	0.00	0.00	0.00	3.25	0.00
DIBENZOTHIO	0.13	0.14	0.21	0.37	0.14
C1-DISEN	0.00	0.00	0.00	1.93	0.09.
CZ-DISEN	0.00	0.00	0.00	3.75	0.00
C3-DISEN	0.00	0.00	0.00	3.35	0.00
FLUORANTHENE	0.30	0.35	1.56	0.40	0.21
PYRENE	0.55	0.61	1.81	0,48	0.23
C1-FLUORAN_PYR	0.00	0.00	0.00	0.00	0.00
BENBANTHRACENE	0.20	0.02	0.09	0.09	0.07
CHRYSENE	0.20	0.15	0.08	0.70	0.10
C1-CHRYSENES	0.00	0.00	0.00	0.00	0.00
C2-CHRYSENES	0.00	0.00	0.00	0.00	0.00
C3-CHRYSENES	0.00	0.00	0.00	0.00	0.00
C4-CHRYSENES	0.00	0.00	0.00	0.00	0.00
SENDFLUORAN	0.26	0.21	0.12	0.26	0.12
BENKFLUORAN	0.67	0.42	0.15	0.47	0.44
BENGPYRENE	15.67	15.81	11.99	9.53	10.33
BENAPYRENE	0.49	1.05	0.49	0.38	0.36
PERYLENE	0.26	0.10	0.06	0.34	0.14
123cdPYRENE	2.44	6.95	8.45	2.81	0.34
SahANTHRA	141.39 H	360.31 M	152.77 N	21.84	8.46
Igh i PERYLEXE	0.32	3.16	0.10	0.45	0.20

•

This is an interim or don't document. Data proximition, analysis, interpretation, and conversions are subject to online. Fundame are incluraged to control the Environmental Section, Araaka Capariment of Law batter citing.

۱.

LABNAME: GERG/TANU

DATE: 11-Feb-91

LAS APPROVAL: Thomas rekson

NATIONAL RESOURCE DAMAGE ASSESSMENT - AROMATIC HYDROCARBON DATA (CONT)- CATALOG # 6536

+ - ···

.

LNVEST#: 10 : LABSANNO :	27509 117819	27510 N7821	27511 x7823	27512 x7825	27513 N7827
UNIT: Analyte (Cont)	ng/g Conc DB QUAL	ng/g Conc DS QUAL	ng/g Conc DB QUAL	ng/s Conc DB QUAL	ng/g Cone DB QUAL
2-METHYLNAPH	2.07	1.15	2.33	1.60	1.47
1-HETHYLNAPH	2.51	1.54	2.20	1.68	1.57
2,6-DIMETHNAPN	2.13	8.80	2.21	1.86	2.47
2,3,5-TRIMETHNAPH	1.07	0.56	1.30	1.26	0. 86
1-METHYLPMEN	0.74	0.21	0.81	0.62	0.38
Surrogate Recoveri					
NAPHOS:	68.93	47.31	74.31	81.20	73.51
ACEND10:	87.43	64.89	99.78	92.59	87.52
PHEND10:	75.63	52.30	91.28	85.28	81.33
CHRYD12:	96.45	65.04	109.79 M	91.82	114.46
PERYD12:	79.14	52.61	143.45 H	38.31	34.76

This is an implier or deal document. Deta plannument, an dyste, intermetation, and concernions are subject to promise fundaments (meauraged to pointer the Envire timetal Geolian, Alaska Departments of Law batting rading.

LASHANE: GERG/TANU

٤.,

DATE: 11-Feb-91

Jacker LAS APPROVAL: Themas

ACE 30016135

NATIONAL RESOURCE DAMAGE ASSESSMENT - AROMATIC HYDROCARBON DATA - CATALOG # 6536

INVEST#:					
10:	27514	27515	27516	27517	27518
LABSANNO:	N7829	N7831	N7833	#7835	N7837
UNIT:	r e/s	ng/g	ng/g	ng/g	ng/g
PNA Anelyte	Canc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUA
NAPHTHALENE	1.54	8.09	1.45	25.83	6.64
C1-NAPHTHALENES	2.22	9.93	2.20	15.88	6.38
C2-NAPHTHALENES	0.00	0.00	0.00	0.00	0.00
C3-NAPHTHALENES	0.00	0.00	0.00	0.00	12.77
CA-NAPHTHALENES	0.00	0.00	0.00	0.00	15.74
DIPHENYL	0.80	14.52	0.74	3.76	5.50
ACENAPHTHYLENE	0.39	0.25	0.07	1.38	0.16
ACENAPHTHENE	0.43	0.70	0.19	2.96	0.18
FLUCRENE	0.46	0.49	0.28	3.15	0.63
C1-FLUORENES	9.60	0.00	0.00	0.00	0.00
C2-FLUORENES	0.00	0.00	0.00	0.00	0.00
C3-FLUORENES	0.00	0.00	0.00	0.00	0.00
PHENANTHRENE	0.92	3.23	0.69	46.40	6.48
ANTHRACENE	0.42	0.54	0.04	3.29	0.28
C1-PHEN_ANTHR	0.00	0.00	0.00	29.77	19.42
C2-PHEN_ANTHR	9.00	0.00	0.00	35.08	26.48
C3-PHEN_ANTHR	9.00	0.00	0.00	34.34	18.42
C4-PHEN_ANTHR	0.00	0.00	0.00	0.00	9.51
DISENZOTHIO	0.45	0.45	0.08	2.29	2.86
C1-DIBEN	0.00	0.00	0.00	0.00	10.67
C2-DIBEN	0.00	0.00	0.00	28.92	18.32
C3-DISEN	9.00	0.00	0.00	39.58	18.35
FLUORANTHENE	0.56	0.18	0.20	26.20	0.44
PYRENE	0.55 0.00	0.41 0.00	0.29 0.00	18.41 ອ້.00	0.69
C1-FLUORAN_PYR	0.41	0.21	0.05		0.00
BENGANTHRACENE	0.48	0.21	0.13	1.84 7.70	0.23
CHRYSENE	0.00	0.00	0.00	0.00	2.21
C1-CHRYSENES	0.00	0.00	0.00	0.00	3.43
C2-CHRYSENES	0.00	0.00	0.00	0.00	4.16
C3-CHRYSENES	0.00	0.00	0.00	0.00	0.00 0.00
C4-CHRYSENES		0.06	0.02	4,45	
SENDFLUORAN	0.28				0.24
BENKFLUORAN	0.31	0.26	0.66	4.43	0.57
BENePYRENE	2.12	2.76	2.10	3.22	5.46
BENAPYRENE	0.48	0.77	1.03	9.43	0.18
PERYLENE	0.45	0.07	0.09	1.13	0.15
1123cdPYREME	0.30	0.07	0.06	1.26	0.08
DBahANTKRA	0.40	0.28	0.28	2.73	0.11
SghiPERYLENE	0.62	0.06	9.06	1.67	0.28

This is an intrafer or shell document. Data provincient, acclystic interpretation, and onrokentoris are subtrain to contract. Subdate are encouraged to contract the Environ Trandate are subcursed to contract the Environ Transtal Bertion, Asadis Department of Law barity colog.

۰.

LABNAME: GERG/TANU

DATE: 11-Feb-91

.

Jackson LAS APPROVAL: Thom

ACE 30016136

NATIONAL RESOURCE DAMAGE ASSESSMENT - AROMATIC HYDROCARBON DATA (CONT) - CATALOG # 653	HATIONAL		ASSESSMENT	•	AROMATIC	HYDROCARBON	DATA	(CONT)-	CATALOG	# 653	6
--	----------	--	------------	---	----------	-------------	------	---------	---------	-------	---

1

INVEST#:						
10:	27514	27515	27516	27517	27518 N7837	
LASSANNO:	N7829	N7831	x7833	¥7835		
UNIT:	ng/\$	ng/s	ne/e	ng/g	ng/g	
Analyte (Cont)	Conc DB QUAL	Conc DS QUAL	Conc DS QUAL	Conc DB QUAL	Conc DE QUA	
2-METHYLNAPH	1.09	2.7/	1.22	11.03	2.27	
1-METHYLNAPH	1.13	7.16	0.96	4.85	4.11	
2,6-DIMETHNAPN	0.89	0.81	0.65	7.96	1.06	
2,3,5-TRIMETHNAPH	0.79	0.49	0.74	6.76	3.26	
1-METHYLPHEN	0.70	0.59	0.20	5.68	5.32	
Surrogate Recoveri						
NAPHO8:	78.82	96.56	98.44	97.50	98.97	
ACEND10:	88.01	101.32	98.42	99.87	99.21	
PHEND10:	74.67	80.60	82.88	81.74	90.37	
CHRYD12:	69.81	99.36	91.03	95.19	91.60	
PERTD12:	68.47	69.41	73.09	71.25	74.75	

This is an interim or sind document. Dots preservation, analysis, internetation, and over a constant of the service function on a service of the service among the second second second of the service among second second of the service called.

ACE 30016137- S

LABRANE: GERG/TANU

ι.

DATE: 11-Feb-91

.