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Abstract
 A measure of the degree of departure of a landscape from its range of historical conditions can 
provide a means for prioritizing and planning areas for restoration treatments. There are few statistics 
or indices that provide a quantitative context for measuring departure across landscapes. This study 
evaluated a set of five similarity indices commonly used in vegetation community ecology (Sorenson’s 
Index, Chord Distance, Morisita’s Index, Euclidean Distance, and Similarity Ratio) for application in 
estimating landscape departure (where departure = 1 – similarity). This involved comparing composi-
tion (vegetation type by area) of a set of reference landscapes to the compositions of 1,000 simulated 
historical landscapes. Stochastic simulation modeling was used to create a diverse set of synthetic 
reference and historical landscapes for departure index evaluation. Five reference landscapes were 
created to represent various degrees of expected departure from historical conditions. Both reference 
and historical landscapes were created to contain four important factors that could potentially influ-
ence departure calculation: (1) number of classes defining landscape composition, (2) dominance of 
the classes, (3) variability of area with the classes, and (4) temporal autocorrelation. We found that 
most evaluated indices are useful but not optimal for calculating departure. The Sorenson’s Index 
appeared to perform the best with consistent and precise behavior across the ranges of the four 
treatments. The number of classes used to describe vegetation had the strongest influence on index 
performance; landscape composition defined by few classes had the least accurate, most imprecise, 
and most highly variable departure estimates. While results from this study show the utility of similarity 
indices in evaluating departure, it is also evident that a new set of statistics are needed to provide a 
more comprehensive analysis of departure for future applications.

Keywords: ecosystem management, similarity indices, landscape ecology, historical ecology, 
 historical range and variability, HRV, neutral landscapes



Research Summary

 The relatively new concept of Historical Range and 
Variability (HRV) provides a spatial and temporal founda-
tion for developing benchmark conditions for evaluating 
difference in today’s landscape, and HRV also brings an 
understanding of past spatial and temporal ecological 
variability into ecosystem management. However, an 
important limitation in the application of HRV is the lack 
of comprehensive analysis techniques to compare the 
multi-observational historical time series landscape data 
with the one observation of contemporary conditions. A 
comprehensive measure is needed for computing depar-
ture of current landscape conditions from the historical 
conditions. 
 The objective of this study was to evaluate a set of five 
similarity indices commonly used in vegetation community 
ecology (Sorenson’s Index, Chord Distance, Morisita’s 
Index, Euclidean Distance, and Similarity Ratio) for ap-
plication in estimating landscape departure. This involved 
comparing landscape composition (vegetation type by 
area) of reference landscapes that represents current 
conditions to the compositions of 1,000 simulated histori-
cal neutral landscapes. Stochastic simulation modeling 
was used to create a diverse set of synthetic reference 
and historical landscapes for departure index evaluation. 
Five reference landscapes were created to represent 

various degrees of expected departure from historical 
conditions. Both reference and historical landscapes 
were created to reflect four important factors that may 
potentially influence departure calculation: (1) number of 
classes defining landscape composition, (2) dominance 
of the classes, (3) variability of area with the classes, and 
(4) temporal autocorrelation. 
 We found that:

•	 Most similarity indices are useful but not optimal 
for calculating departure. 

•	 The Sorenson’s Index appeared to perform the 
best for HRV comparisons with consistent and 
precise behavior across the ranges of the four 
treatments. 

•	 The number of classes had the strongest influence 
on performance of most indices with landscapes 
that were described by few vegetation classes 
had the least accurate, most imprecise, and most 
highly variable departure estimates. 

•	 Temporal autocorrelation had the least effect on 
the behavior of the departure index. 

 Results from this study show that similarity indices, 
especially Sorensen’s Index, can be used to evaluate 
departure, but it is also evident that a new set of statistics 
are needed to provide a more comprehensive analysis 
of departure for future applications.
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Introduction

	 The	 era	 of	 ecosystem	 management	 ushered	 in	 the	
concept	 that	 land	 should	 be	managed	 as	 a	whole	 by	
considering	all	organisms,	and	their	pattern,	abundance,	
and	connectivity	of	 their	habitats,	 and	 the	ecological	
processes	that	influence	these	organisms	on	the	land-
scape	(Bourgeron	and	Jensen	1994;	Crow	and	Gustafson	
1997;	Kaufmann	and	others	1994).	But,	to	effectively	
plan,	 design,	 and	 implement	 ecosystem	management	
treatments,	managers	required	benchmarks	or	reference	
conditions	to	fully	represent	functional	ecosystems	or	
landscapes	(Cissel	and	others	1994;	Laughlin	and	others	
2004;	Swanson	and	others	1994).	Today’s	landscape	con-
ditions	can	be	evaluated	against	benchmark	conditions	
to	determine	status,	detect	change,	and	design	effective	
treatments	to	provide	society	with	sustainable	and	valuable	
resources	while	also	returning	declining	ecosystems	to	a	
more	healthy	and	resilient	condition	(Egan	and	Howell	2001;	
Hessburg	and	others	1999;	Swetnam	and	others	1999).	It	is	
also	critical	that	these	benchmark	conditions	represent	
the	dynamic	character	of	ecosystems	and	landscape	as	
they	vary	over	time	and	space	(Morgan	and	others	1994;	
Swanson	and	others	1994).
	 The	relatively	new	concept	of	Historical	Range	and	
Variability	(HRV)	was	introduced	to	provide	a	spatial	
and	 temporal	 foundation	 for	 developing	 benchmark	
conditions	and	 to	bring	understanding	of	past	 spatial	
and	 temporal	 ecological	 variability	 into	 ecosystem	
management	(Landres	and	others	1999;	Swetnam	and	
others	1999).	HRV	can	be	used	to	plan	and	implement	
possible	 treatments	 to	 improve	 ecosystem	health	 and	
integrity	by	assuming	that	recent	historical	variation	repre-
sents	the	broad	envelope	of	conditions	that	supports	resilient	
and	self-organizing	 landscapes	 (Harrod	and	others	1999;	
Hessburg	and	others	1999).	One	major	use	of	HRV	in	land	
management	involves	comparing	a	time	series	of	his-
torical	landscape	conditions	(benchmark)	to	the	current	

landscape	condition	to	detect	change	and	trend	(Keane	
and	others	2009).	While	easily	understood,	the	concept	
of	HRV	can	be	difficult	to	implement	due	to	scale,	data,	
and	analysis	limitations	(Keane	and	others	2009;	Wong	
and	Iverson	2004).	Another	important	limitation	in	the	
application	of	HRV	is	the	lack	of	comprehensive	analysis	
techniques	to	compare	the	multi-observational	historical	
time	series	landscape	data	with	the	one	observation	of	
contemporary	landscape	conditions	(Keane	and	others	
2009;	Steele	and	others	2006).
	 There	are	few	statistical	or	ecological	analysis	tech-
niques	that	perform	well	across	the	temporal	and	spatial	
scales	of	most	HRV	landscape	analyses	(Landres	and	oth-
ers	1999).	Many	HRV	studies	compare	landscape	compo-
sition	(vegetation	type	by	area)	using	indices	of	departure	
that	are	comparable	to	the	similarity	indices	commonly	
employed	in	community	ecology	to	qualitatively	evaluate	
differences	in	species	composition	across	sample	plots	
(Huhta	 1979;	 Mueller-Dombois	 and	 Ellenberg	 1974;	
Wolda	1981).	Similarity	is	often	computed	as	an	index	
or	number	between	zero	(dissimilar)	and	one	(identical),	
and	in	this	paper,	we	define	the	converse	of	similarity	as	
departure	(in	other	words,	departure	=	1	–	similarity).	
Sorenson’s	index,	for	example,	was	used	by	Hann	(2004)	
as	a	measure	to	compute	landscape	departure	and	fire	
regime	condition	class	and	by	Keane	and	others	(2008)	
to	determine	changes	in	landscape	composition	HRV	
caused	by	climate	change.	Holsinger	and	others	(2006)	
used	 a	 variation	 of	 the	 Sorenson’s	 index	 to	 compute	
departure	 for	 the	 LANDFIRE	 project.	 Alternatively,	
Steele	 and	others	 (2006)	used	a	 statistical	 regression	
technique	to	compute	a	landscape	departure	measure	
with	 a	 test	 of	 significance,	 but	 this	measure	 did	 not	
perform	well	across	large	regions	because	the	range	of	
departure	statistics	was	quite	small	making	it	difficult	
to	identify	subtle	differences.
	 Community	ecology-based	indices	of	departure	have	
been	used	for	HRV	analyses,	but	several	problems	have	
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been	encountered.	Keane	and	others	(2008)	found	that	
departure	 measures	 based	 on	 similarity	 indices	 are	
highly	influenced	by	the	number	of	classes	used	to	de-
scribe	landscape	composition,	and	they	are	insensitive	
to	subtle,	yet	important,	changes	in	landscape	composi-
tion.	Major	landscape	changes	can	occur,	but	important	
disturbance	effects	were	offset	by	successional	changes	
over	space,	thereby	resulting	in	minor	changes	in	the	
departure	 statistic.	Moreover,	 there	 are	 ranges	of	 the	
departure	index	(close	to	zero	and	one)	that	are	rarely	
encountered.	The	inherent	variability	of	classes	in	the	
time	series,	along	with	their	temporal	autocorrelation	
(degree	to	which	previous	landscape	conditions	influ-
ence	future	 landscape	conditions),	can	also	 influence	
the	comparison	of	departure	measures.
	 The	challenge,	 then,	 is	 to	identify	a	comprehensive	
measure	for	computing	departure	of	current	landscape	
conditions	from	the	historical	time	series	of	past	condi-
tions.	This	measure	should	perform	well	regardless	of	
how	many	mapping	units	(landscape	classes)	are	used,	
how	the	area	is	distributed	across	these	classes,	and	how	
correlated	these	classes	are	across	time	and	space.	This	
is	 complicated	 by	 the	 fact	 that	 land	managers	 desire	
simple	measures	that	are	easy	to	calculate,	understand,	
and	 interpret,	 yet	 are	 still	 scientifically	 credible	 for	
describing	departure	from	historical	conditions	(Hann	
2004).	 The	 objectives	 of	 this	 study	were	 to	 evaluate	
the	performance	of	the	community	ecology	similarity	
indices	for	computing	departure	from	historical	condi-
tions	and	to	examine	how	these	metrics	are	influenced	
by	 various	 landscape	 characteristics.	 Ultimately,	 the	
goal	of	this	study	was	to	determine	an	optimum	mea-
sure	of	departure	that	can	be	used	in	HRV	applications	
for	mapping	departure	across	large	regions	(Steele	and	
others	2006).	This	study	did	not	attempt	to	develop	new	
departure	indices;	instead,	it	evaluated	existing	similarity	
measures	developed	in	the	field	of	community	ecology	
(Mueller-Dombois	 and	Ellenberg	 1974;	Wolda	 1981).	
Because	of	this,	the	findings	from	this	study	could	also	
be	applied	to	vegetation	classification	and	community	
similarity	analysis.

Background

	 In	this	study,	the	landscape	is	an	area	of	any	size	or	
resolution	that	is	composed	of	unique	areas	of	homo-
geneous	ecological	conditions.	Each	unique	area	is	as-
signed	a	class	or	category	that	describes	a	compositional	
characteristic	that	is	usually	specific	to	the	objective	of	
the	landscape	mapping	effort.	The	class	often	represents	

a	species	dominance	classification	category,	such	as	a	
cover	type.	Landscape composition	is	the	area	or	percent	
area	covered	by	each	class	across	the	landscape.	HRV	
analysis	involves	the	comparison	of	one	observation	of	
the	landscape	composition	(area	by	class)	for	the	current	
landscape	with	 the	historical landscape time series 
represented	 by numerous	 sequential	 observations	 of	
historical	landscape	compositions	(fig.	1).	In	this	study,	
we	 refer	 to	 the	 reference	 landscape	 as	 a	 landscape	
that	represents	current	conditions,	but	we	have	altered	
these	current	conditions	to	represent	various	degrees	of	
departure.	Departure	is	calculated	by	comparing	the	
areas	 occupied	by	 the	 landscape	 composition	 classes	
common	to	both	the	reference	landscape	averaged	across	
all	the	instances	in	the	historical	landscape	time	series.	
The	term	departure index refers	to	the	metric	used	to	
calculate	departure	from	historical	and	 it	 is	 typically	
the	opposite	of	similarity.
	 Many	types	of	similarity	indices	are	used	in	community	
ecological	analyses	with	mixed	success	(Bloom	1981;	
Faith	and	others	1987;	Kobayashi	1987;	Mueller-Dombois	

Figure 1—An illustration of the HRV for landscape com-
position for a 50,000 ha landscape in southwestern Montana 
(Keane and others 2008) showing an example of the historical 
range of landscape composition on a Montana USA landscape 
using five cover types, the average proportion area occupied 
by each of the five types over the simulation run, and the 
composition of the current landscape, which contains only 
open tall Douglas-fir. 



3USDA Forest Service Res. Pap. RMRS-RP-83. 2011

and	Ellenberg	1974;	Orloci	1967).	We	assessed	a	number	
of	common	similarity	indices	(see	“Methods”	section)	
and	selected	five	commonly	used	ecological	indices	to	
evaluate	in	this	study.	These	indices	have	been	used	in	
many	vegetation	classification	and	plant	diversity	studies	
(Gauch	1982;	Ghent	1963;	Wolda	1981):

 1. Sorenson’s Index	(SI)	is	calculated	using	the	fol-
lowing	formula:

	
ii

ii

ch

chMin
SI

),(2
 	 (1)

where	hi	 refers	 to	 the	area	 (m
2)	of	 the	historical	

reference	class	within	the	landscape,	ci	is	the	area	
(m2)	of	the	same	class	on	the	current	landscape,	i	
is	class	index	number,	and	Min	is	a	function	that	
picks	the	minimum	of	two	values.	Since	SI	is	an	
index	of	similarity,	it	was	inversed	as	SI	=	1	–	SI	
to	obtain	departure.

 2. Morisita’s Index	 (MI)	 is	modified	 from	Horn	
(1966)	and	is	calculated	with	the	following	formula:
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where	hi	 refers	 to	 the	area	 (m
2)	of	 the	historical	

reference	class	i	within	the	landscape,	ci	is	the	area	
(m2)	of	the	same	class	on	the	current	landscape,	and	
i	is	class	index	number.	Again,	MI	is	actually	an	
index	of	similarity	so	it	was	inversed	as	MI	=	1	–	MI	
to	obtain	the	MI	departure	index.

 3. Similarity Ratio	(SR)	emphasizes	the	differences	
using	the	square	of	the	products	in	the	following	
formula:
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where	hici is	 the	product	of	 the	areas	of	 the	his-
torical	 and	 current	 landscape	 for	 class	 i.	Again,	
we	subtracted	the	SR	from	1.0	to	get	a	departure.

 4. Chord Distance	(CD)	 is	calculated	with	the	fol-
lowing	formula	from	Faith	and	others	(1987):
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where	i, j, k	are	the	class	index	numbers.	We	rescaled	
the	CD	range	from	zero	to	√2	to	zero	to	1.0,	and	
then	subtracted	from	1.0	to	get	departure.

 5. Euclidean Distance	(ED)	is	much	like	the	SR	using	
the	squares	of	the	historical	and	current	landscape	
areas	 but	 the	 index	 emphasizes	 the	 differences	
between	the	two	areas	as	taken	from	Ludwig	and	
Reynolds	(1988):
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	 This	 paper	 deals	 only	with	 departure	 in	 landscape	
composition	(area	by	landscape	class)	at	the	landscape	
level,	but	it	is	important	to	mention	that	departure	can	
be	calculated	for	many	attributes	across	many	scales.	
Landscape	structural	attributes,	such	as	contagion,	patch	
density,	and	largest	patch	index,	can	also	be	used	as	the	
response	variables	to	determine	departure.	It	is	also	pos-
sible	to	determine	departure	for	stand	attributes	such	as	
basal	area,	tree	density,	and	timber	volume.	However,	
this	paper	deals	only	with	landscape	composition	be-
cause	it	is	used	most	by	managers	(Hann	2004;	Keane	
and	others	2006)	and	it	is	a	complex	landscape	attribute	
composed	of	many	descriptor	variables	(area	by	class)	
whose	values	all	sum	to	the	area	of	the	landscape.

Methods

	 We	explored	the	suitability	of	the	above	measures	for	
evaluating	departure	using	simulation	modeling	where	
synthetic	historical	time	series	and	synthetic	reference	
conditions	were	created	for	a	partially	nested	factorial	
statistical	design	using	a	model	we	built	called	TSG	(Time	
Series	Generator)	(fig.	2).	In	summary,	the	TSG	model	
created	the	historical	time	series	of	1,000	landscapes	and	
it	also	created	the	set	of	five	reference	conditions	each	
with	four	unique	characteristics	 that	were	considered	
factors	in	our	simulation	experimental	design:	(1)	number	
classes,	(2)	dominance	distribution,	(3)	class	variability,	
and	 (4)	 autocorrelation.	 The	 five	 synthetic	 reference	
landscapes	were	designed	 to	 represent	 increasing	de-
grees	of	departure	(expressed	as	a	delta	statistic)	from	
the	historical	time	series.	We	stochastically	created	an	
historical	landscape	time	series	of	100	landscapes	and	
then	replicated	this	process	ten	times	to	obtain	1,000	
observations	(historical	landscapes).	We	also	reduced	
the	historical	time	series	into	a	simplified	set	of	maps	
using	three	synthesis	techniques.	Since	the	area	of	the	
landscape	remains	constant	over	time,	we	relativized	all	
class	areas	to	sum	to	1.0.	It	is	important	to	note	that	the	
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Figure 2—Tasks involved in this simulation experiment where synthetic historical time series are created us-
ing five factors using the TSG model and compared against a set of four reference conditions that represent 
degrees of departure from historical conditions.  Five departure indices are used to perform the comparison.  
The behavior of these departure indices are evaluated across all factors and reference conditions. See table 
1 for symbol definitions and simulation details.

historical	time	series	really	doesn’t	represent	historical	
conditions;	 we	 used	 stochastic	 simulation	 models	 to	
create	neutral	 landscapes	with	 the	properties	 that	we	
wish	to	evaluate	(factors	in	our	experimental	design).	
We	named	them	“historical	time	series”	to	be	consistent	
with	 terminology	 in	HRV	analysis,	 but	 these	are	not	
historical	landscapes.

Model Description

	 The	TSG	model	was	designed	to	stochastically	generate	
landscape	composition	time	series	with	known	statistical	
properties	to	facilitate	objective	comparison	and	evalu-
ation	of	different	measures	of	departure.	Our	modeling	
approach	reflects	a	set	of	design	criteria	emphasizing	
simplicity,	 flexibility,	 and	 computational	 feasibility.	
Landscape	 compositional	 time	 series	may	 extend	 for	
centuries	or	millennia,	and	may	exhibit	temporal	auto-
correlation	over	various	time	scales.	Depending	on	the	
detail	with	which	the	landscape	composition	is	described,	
the	number	of	vegetation	classes	over	time	may	range	
from	few	to	many.	In	real	ecological	systems,	classes	
of	vegetation	may	interact	over	time	and	space	with	a	
diversity	of	biophysical	factors	(e.g.,	climate,	disturbance,	
soils)	to	create	complex	landscapes.	To	explicitly	model	
these	interactions	mathematically	would	have	required	
an	extensive	mechanistic	process	modeling,	requiring	

a	large	number	of	inputs	and	computational	resources.	
As	our	purpose	was	to	compare	the	various	measures	
of	departure	across	a	wide	spectrum	of	straightforward	
comparison	cases,	we	decided	to	simulate	the	landscape	
composition	time	series	as	a	set	of	independent	series	
and	then	assemble	them	into	synthetic	landscape	time	
series.
	 Each	simulated	landscape	composition	time	series	is	
described	by	(1)	a	series	length	(total	number	of	years	
for	which	time	series	are	to	be	generated),	(2)	lag	length	
(maximum	length	in	time	over	which	lagged	correlations	
will	be	considered),	and	(3)	number	of	classes	that	repre-
sent	vegetation	states.	These	three	factors	were	selected	
based	on	the	results	of	a	previous	study	in	landscape	
departure	(Keane	and	others	2008).	For	each	class,	we	
specified	three	parameters,	which,	when	used	together,	
provided	a	great	deal	of	flexibility	and	allowed	for	the	
generation	of	a	wide	 range	of	 landscape	composition	
time	series	across	classes.	The	first	parameter,	TCORR	
or	temporal	correlation,	controls	the	temporal	autocor-
relation	within	the	series	for	a	class	and	is	described	by	
an	ACF	(AutoCorrelation	Factor)	value	that	ranges	from	
zero	 (no	autocorrelation)	 to	one	(highly	correlated	 in	
time).	The	second	parameter,	PDOM	or	percent	domi-
nant,	sets	the	target	dominance,	or	the	degree	to	which	
a	landscape	is	dominated	by	a	few	classes.	PDOM	is	
defined	as	the	expected	mean	proportion	of	total	land-
scape	area	occupied	by	a	given	class	over	the	length	of	
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the	 time	series.	Since	 these	are	proportions,	 the	 sum	
of	the	PDOM	parameter	values	across	all	classes	for	a	
given	simulated	landscape	composition	time	series	must	
be	equal	 to	1.0.	The	 third	parameter,	CVAR	or	class	
variation	controls	the	amount	of	variability	in	the	time	
series	for	that	class	and	it	is	scaled	from	0.3	to	1.2	in	this	
study	based	on	analyses	of	other	mapped	landscapes.
	 The	simulation	of	a	landscape	composition	time	series	
consists	of	 two	steps:	 (1)	 the	generation of	autocor-
related series	creates	independent	autocorrelated	time	
series	 for	 each	class	 and	 (2)	 the	 series modification 
that rescales	those	independent	classes	to	conform	to	
the	PDOM	and	CVAR	parameters,	and	relativizes	all	
classes	 such	 that	 they	 represent	 proportions	 of	 total	
landscape	area	by	class	for	each	point	in	time.

	 Generation of autocorrelated series—For	 each	
class,	an	 independent,	 stationary,	autocorrelated	 time	
series	is	generated	using	the	ACF	parameter.	The	ACF	
parameter	sets	the	slope	of	a	simple	exponential	decay	
function	of	the	form:
	 r(t) = e(–λt)	 (6)

where	 r(t)	 is	 the	 correlation	 coefficient	 between	 the	
value	at	a	given	point	and	the	value	at	lag	time	t,	and	λ 
is	the	ACF	parameter.	This	exponential	decay	function	
represents	the	coefficients	of	a	theoretical	autocorrelation	
function	(ACF).	Higher	values	of	ACF	result	in	a	lower	
correlation,	while	lower	values	maintain	correlation	over	
a	longer	period	of	time.	This	theoretical	autocorrelation	
function	is	then	used	to	generate	an	autoregressive	series	
of	the	specified	length	following	a	process	that	has	been	
used	extensively	since	the	late	1960s	(Box	and	Jenkins	
1990).	Given	an	autocorrelation	function	ρ(k)	=	ρk	for	
k	=	1,	...	,	m,	an	autoregression	function	can	be	obtained	
in	the	following	way:

	 Let	
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will	satisfy	the	autoregressive	process:

	 2
22110 .. app     	 (9)

Thus tmtmttt azzzz ..2211  where	 at	 is	 a	

random	shock	with	variance	
2
a  ,	in	which	the	variance	

of	the	output	will	reflect	the	character	and	structure	of	
the	autocorrelation	function	used	as	input	as	follows:

 σ σ ρ ϕ ρ ϕ ρ ϕa z m m
2 2

1 1 2 21= − − − −..  (10)

The	autocorrelated	series	for	a	given	vegetation	class	
(Equation	8)	is	then	arranged	as	a	set	of	linear	equa-
tions	that	are	solved	through	a	process	of	Lower-Upper	
decomposition	followed	by	forward	and	then	backward	
substitution	using	standard	numerical	 routines	 (Press	
and	others	2002).
	 Series modification—Once	 all	 of	 the	 independent	
series	of	each	class	have	been	generated	according	to	
the	 process	 described	 above,	 the	 series	 are	modified	
so	they	can	represent	landscape	composition	across	all	
vegetation	classes.	The	values	for	each	series	are	rescaled	
to	the	range	[L,	H],	with	the	following	relation:

	 X
mod

=
X −m( ) H − L( )

M −m( )
+ L 	 (11)

where	X	 is	 the	unmodified	 series	values,	Xmod	 is	 the	
modified	series,	m	is	the	minimum	value	of	the	unmodi-
fied	series	and	M	is	the	maximum	of	the	unmodified	
series,	and
	 L = D – DV	 (12)

	 H = D + DV	 (13)
where	D	 is	 the	PDOM	 input	 parameter	 and	V	 is	 the	
CVAR	 parameter.	 Finally,	 each	 class	 value	 for	 each	
year	is	divided	by	the	sum	over	all	classes	for	that	year	
to	ensure	that	they	sum	to	100	percent	of	the	total	area.

Simulation Experiment

	 The	goal	of	this	simulation	experiment	was	to	compare	
the	behavior	of	departure	indices	across	a	wide	range	of	
conditions	of	historical	time	series	and	reference	land-
scapes	with	known	statistical	properties	to	determine	
if	any	index	is	superior	and	if	any	of	the	indices	have	
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undesirable	qualities	that	may	influence	the	interpreta-
tion	of	HRV	departure	results	(Keane	and	others	2002,	
2008).	Initially,	we	wanted	to	take	an	ANOVA	(Analysis	
of	Variance)	approach	and	conduct	a	fully	nested	facto-
rial	 experiment	 using	 extensive	 simulations	 from	 the	
TSG	model,	but	preliminary	results	revealed	that,	while	
the	departure	indices	differed	across	all	treatments,	the	
small	number	of	treatments	within	a	factor	(less	than	5	
treatments)	did	not	provide	sufficient	detail	to	effectively	
evaluate	the	behavior	of	each	index	across	the	full	range	
of	possible	historical	and	reference	conditions.	Therefore,	
we	re-designed	our	experiment	so	that	a	wide	range	of	
values	(treatments)	for	each	factor	were	simulated	with	
TSG	to	determine	critical	thresholds	in	departure	index	

behaviors.	Because	there	were	so	many	treatments	that	
spanned	the	full	range	of	behaviors,	it	was	difficult	to	
simulate	all	factor-treatment	combinations	with	the	TSG	
model.	Therefore,	we	simulated	the	range	of	values	for	
one	factor	while	holding	all	other	factors	to	a	base	case	
(noted	in	underlined	bold	in	table	1)	and	then	used	one-
way	ANOVA	to	evaluate	differences	among	treatments	
by	factor.
	 We	also	wanted	to	include	a	number	of	other	similarity	
indices	in	the	evaluation,	but	results	from	an	extensive	
preliminary	analysis	revealed	that	some	similarity	in-
dices	had	virtually	identical	results,	while	others	had	
obvious	 undesirable	 behaviors	 across	 a	minor	 subset	
of	the	important	factors	mentioned	above.	The	Jaccard	

Table 1—Factors evaluated for testing the response of departure indices to several historic time series and reference conditions. 
Values in italics and underlined are those held constant while varying a different factor (base condition).

Factor
Levels

1 2 3 4 5 6 7 8 9 10 11 12 13 14

HRV landscape composition factors

NCLASS-
number of 
classes

10 20 30 40 50 60 70 80 90 100 200 300 400 500

PDOM -
Percent 
dominant

10 20 30 40 50 60 70 80 90 — — — — —

TCORR-
ACF slope 0.00005 0.0005 0.001 0.002 0.004 0.01 0.016 0.032 0.064 0.1 — — — —

CVAR-
Time series 
variability

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 — — — —

Time series synthesis methods

TSSM- 
Time series 
synthesis 
methoda

YTY AAY MMY QTY — — — — — — — — — —

Reference conditions

DELTA- 
degree of 
departure 
from 
historical

0.2 0.4 0.6 0.8 1.0 — — — — — — — — —

Departure Indices

Departure 
indicesb SI MI SR CD ED — — — — — — — — —

aTime series synthesis methods are defined as the comparison of the reference condition to (1) all instances in the historical time series and an 
average departure is computed (YTY-year to year); (2) one synthetic historical landscape that is the average of all classes across all landscapes in 
the historical time series (AAY); (3) two historical landscapes that are the minimum and the maximum, respectively, of each class in the historical 
series (MMY); and (4) one synthetic historical landscape created from the 90% quantile of class area (QTY).

bDeparture indices are computed from the following similarity indexes: SI-Sorenson’s Index, MI-Morista’s Index, SR-Similarity Ratio, CD-Chord 
Distance, and ED-Euclidean Distance.
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(Mueller-Dombois	 and	 Ellenberg	 1974)	 and	 Gleason	
(Huhta	1979)	indices,	for	example,	performed	poorly	in	
nearly	all	cases,	while	the	FRCC	(Hann	2004)	index	was	
acceptable,	but	was	highly	correlated	to	the	Sorenson’s	
index.	Therefore,	we	reduced	the	number	of	indices	to	
the	set	of	five	discussed	above	(table	1).

 Historical time series factors—We	had	previously	
identified	 four	 factors	 that	 commonly	 influence	 the	
calculation	 of	 current	 landscape	 composition	 depar-
ture	 from	 historical	 conditions	 (table	 1)	 (Keane	 and	
others	2008).	The	number of classes	(NCLASS)	used	
to	 describe	 the	 landscape	 composition	 (cover	 types,	
for	example)	is	influential	in	departure	calculations	
because	 major	 changes	 in	 departure	 are	 difficult	 to	
detect	when	a	large	number	of	classes	are	used	(Keane	
and	others	2008).	To	 test	 this,	we	varied	 the	number	
of	classes	from	10	to	500	to	encompass	the	full	range	
of	 possible	 mapping	 units	 that	 are	 used	 to	 describe	
landscapes.	 Percent dominance	 (PDOM)	 describes	
the	percent	of	the	number	of	classes	that	are	dominant	
in	a	time	series.	We	define	dominant	as	comprising	at	
least	80	percent	of	the	landscape	area.	For	example,	10	
percent	dominance	for	10	classes	would	mean	that	one	
class	comprises	80	percent	of	the	landscape	while	the	
remaining	20	percent	of	the	area	is	spread	over	the	other	
nine	classes.
	 Class variability	 (CVAR)	was	used	 to	 explore	 the	
effect	of	the	variation	within	classes	on	departure	cal-
culations.	In	TSG,	the	variance	depends	on	the	percent	
dominance	(PDOM)	value	where	the	PDOM	value	is	
multiplied	by	the	CVAR	value	(in	this	study	0.2	<	CVAR	
<	1.2;	table	1)	to	compute	a	range	around	the	historical	
mean	(area	in	a	class	+	PDOM*CVAR*area).	Low	CVAR	
values	(<0.5)	indicate	low	variability	in	class	fluctuations	
across	sequential	landscapes,	while	high	CVAR	values	
(>0.8)	represent	a	significant	increase	in	the	noise	in	the	
HRV	time	series.	Temporal autocorrelation	(TCORR	
as	represented	by	ACF	parameter)	is	also	an	important	
factor	because	departure	may	be	difficult	to	detect	in	
landscape	time	series	that	are	strongly	autocorrelated	
in	time.	The	TSG	program	uses	the	ACF	(see	“Model	
Description”	section)	to	create	time	series	with	low	to	
high	degrees	of	autocorrelation	(0.0	to	0.3,	respectively).	
We	simulated	several	landscapes	with	the	LANDSUM	
landscape	simulation	model	(Keane	and	others	2006)	
to	identify	reasonable	ranges	of	ACF	values	and	found	
that	the	simulated	time	series	ACF	value	ranges	from	
0.00002	 (uncorrelated)	 to	 0.1	 (somewhat	 correlated)	
(table	1).

	 We	also	included	another	analysis	to	evaluate	the	time 
series synthesis method	(TSSM).	Historical	time	series	
of	landscape	compositions	can	be	summarized	in	a	
number	of	ways	to	simplify	departure	calculations.	The	
most	obvious	and	common	method	involves	no	synthesis	
at	all	where	each	landscape	in	the	time	series	is	compared	
to	the	reference,	and	in	our	simulation	experiment,	this	
Year-to-Year	 (YTY)	 calculation	 computes	 departure	
by	comparing	each	historical	map	in	the	series	to	the	
reference	map,	and	then	averages	all	departures	across	
every	comparison	 in	 the	historical	 time	series	 (1,000	
comparisons	in	this	study).	While	the	YTY	approach	is	
the	most	intuitive	and	provides	the	greatest	detail	in	the	
HRV	analysis,	it	is	sometimes	impractical	because,	in	
an	operational	setting,	it	requires	that	digital	maps	for	
each	time	step	in	the	historical	series	be	stored	for	each	
landscape,	requiring	extensive	disk	space.	To	minimize	
computer	storage,	simplify	computational	demands	for	
large	regions,	and	provide	a	simple	and	easy	historical	
reference	for	managers	(Hann	2004),	we	created	three	
simplified	historical	time	series	that	may	have	applica-
tion	 in	 landscape	management.	An	average	historical	
year	(AAY)	was	created	by	averaging	the	area	for	each	
class	across	all	instances	in	the	historical	time	series	to	
create	one	average	historical	condition	to	compare	with	
the	reference.	We	also	reduced	the	time	series	to	two	
instances	by	taking	the	minimum	area	for	each	class	
across	 all	 years	 in	 the	 series	 and	 the	maximum	area	
for	each	class	in	the	series	to	create	two	observations	
in	the	“time	series.”	We	then	averaged	departure	across	
both	the	minimum	and	maximum	years	(MMY).	Last,	
we	took	the	90	percentile	of	class	area	over	all	years	
(QTY)	 to	create	one	historical	year	 to	compare	with	
the	reference.	This	study	concentrated	on	the	base	case	
of	YTY	(average	across	all	historical	combinations)	for	
the	evaluation	analysis,	but	we	also	report	results	on	the	
effectiveness	of	reducing	historical	time	series.

 Reference landscapes—The	 reference	 condition	
in	 this	 study	 represents	 the	 condition	 of	 the	 cur-
rent	landscapes	in	the	calculation	of	departure	from	
HRV.	Reference	conditions	that	are	highly	disparate	
from	the	historical	time	series	test	the	magnitude	of	
departure	 that	 the	 index	can	capture,	while	similar	
reference	and	historical	conditions	test	the	sensitivity	
of	the	index.	In	this	study,	we	created	a	series	of	five	
different	reference	conditions	 that	spans	a	range	of	
departure	from	the	set	of	historical	time	series	condi-
tions	(fig.	2).	The	degree	of	departure	is	represented	
by	a	parameter	called	DELTA	(a	number	ranging	from	
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0	to	1)	that	describes	the	proportion	of	area	in	a	refer-
ence	landscape	class	that	will	be	shifted	away	from	
the	average	historical	value	for	that	class.	A	value	of	
1.0	would	mean	maximum	departure	or	100	percent	of	
the	area	for	each	reference	class	is	in	a	different	class	
than	the	historical	time	series	average.	Five	reference	
conditions	were	 created	using	DELTA	values	 from	
0.2	(minimum	expected	departure)	to	1.0	(maximum	
expected	departure)	in	0.2	increments	(Table	1).

	 Analysis—The	 response	 variables	 in	 this	 analysis	
are	 values	 of	 the	 five	 departure	 indices	 (SI,	MI,	CI,	
SR,	EI)	for	each	of	the	10	replicates	for	the	four	factors	
(NCLASS,	CVAR,	PDOM,	TCORR)	across	all	 treat-
ment	 levels	per	factor,	compared	to	all	five	reference	
(DELTA)	conditions.	We	stratified	this	analysis	into	two	
phases.	The	first	phase	involved	using	the	TSG	program	
to	simulate	1,000	historical	landscapes	to	create	the	set	of	
ten	historical	time	series.	We	ran	TSG	for	all	treatments	
within	a	factor	while	holding	all	other	factors	at	the	base	
case	(table	1).	We	then	performed	ANOVA	techniques	
to	 detect	 differences	 between	 treatments	 (NCLASS,	
PDOM,	 CVAR,	 TCORR)	 but	 not	 differences	 across	
factors	 (values	of	 treatments)	 for	only	 the	YTY	 time	
series	synthesis	method	(YTY	or	year	to	year	involves	
averaging	departures	computed	by	comparing	a	refer-
ence	condition	to	each	landscape	in	the	ten	historical	
time	series).	In	the	second	phase,	we	conducted	the	same	
simulations	across	the	remaining	time	series	analysis	
methods	(AAY,	MMY,	QTY)	(fig.	2).	Again,	ANOVA	
was	used	to	test	differences	across	treatments.
	 As	mentioned,	we	used	ANOVA	techniques	to	deter-
mine	significance	across	treatments	within	the	factors,	
but	index	performance	was	mostly	evaluated	based	on	
visual	 inspection	of	 the	box	and	whisker	plots	of	 the	
simulation	results	using	the	following	criteria:

	 1.	Low	 and	 consistent	 levels	 of	 variability	 across	
replicates	(boxes	small	and	same	size).

	 2.	Consistent	behavior	across	the	range	of	factor	values;	
no	decreasing	or	increasing	trends.

	 3.	Distance	 from	 expected	 departure.	We	 expected	
a	certain	departure	value	based	on	 the	 specified	
DELTA	value	input	for	each	reference	condition,	
and	 included	 this	value	as	 a	 line	on	all	box	plot	
graphs.

4.	 Similar	behavior	across	all	values	of	DELTA.	The	
properties	of	the	variance	across	replicates	as	de-
scribed	in	1	and	2	above	should	be	the	same	across	
all	departure	reference	sets.

An	ideal	index	would	have	low	replicate	variability	(small	
boxes	and	whiskers)	and	the	replicate	mean	would	be	
identical	to	the	expected	departure.

Results

	 This	study	illustrated	that	there	is	a	wide	variety	of	
behaviors	for	all	departure	indices	across	all	types	of	
historical	time	series	and	reference	conditions	for	the	
YTY	time	series	synthesis	 technique	(other	synthesis	
methods	will	be	discussed	in	the	last	part	of	this	sec-
tion).	We	first	discuss	the	behavior	of	departure	indices	
using	 the	 averaging	 synthesis	method	 (YTY)	 from	a	
qualitative	perspective	and	in	the	context	of	a	statistical	
evaluation	using	ANOVA.

Time Series Synthesis Method  
YTY Base Case

	 The	 Sorenson’s	 Index	 (SI)	 performed	 well	 across	
a	wide	 range	 of	 classes	 (NCLASS)	 regardless	 of	 the	
degree	of	departure	in	the	five	reference	sets	(fig.	3a).	
There	was	little	variability	in	this	index	across	the	full	
range	of	number	of	classes	(10-500	classes).	However,	
at	low	class	numbers	(10-30),	the	variability	seemed	to	
increase	and	the	ability	of	the	index	to	detect	departure	
decreased	(greater	distance	from	the	expected	departure	
line).	SI	also	performed	well	across	most	levels	of	percent	
dominance	(PDOM),	except	when	reference	and	histori-
cal	conditions	were	highly	departed	(high	DELTA)	even	
though	there	were	significant	differences	across	most	
levels	of	expected	departure	(see	asterisks	in	fig.	3b).	
When	 DELTA	 was	 high	 (high	 expected	 departure),	
the	SI	performed	well,	even	when	 the	 landscape	was	
dominated	by	a	few	classes	(10-30%	dominance),	but	
performance	decreased	as	 landscape	area	was	evenly	
distributed	across	all	classes	because	both	variability	
across	replicates	(bigger	boxes	and	whiskers)	and	dis-
tance	from	expected	departure	increased.	SI	also	seemed	
unaffected	by	 the	 inherent	variability	 (CVAR)	 in	 the	
historical	time	series	(fig.	3c).	In	general,	when	there	
was	higher	departure	(DELTA	near	1.0),	SI	was	more	
variable,	less	precise,	and	less	accurate	(distance	from	
expected	departure	increases);	however,	when	expected	
departure	was	low	(DELTA	<0.5),	SI	had	low	variability	
and	consistent	behavior	across	all	levels	of	variability.	
Temporal	autocorrelation	(TCORR)	appeared	to	have	
little	effect	on	SI	performance,	except	maybe	when	the	
similarity	 of	 reference	 and	historical	 landscapes	was	
low	(DELTA	>0.6;	fig.	3d).
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Figure 3—Sorenson’s Index (SI) performance as a departure measure.  Box and whisker plots of 10 replicates of 100 historical 
landscapes were compared to five reference landscapes that represent similar (DELTA = 0.2) to highly departed (DELTA = 1.0) refer-
ence conditions. We evaluated four factors: (a) number of classes, (b) percent dominance, (c) variability of classes, and (d) temporal 
autocorrelation. In the boxplots, the lower boundary of each box is the first quartile (25th percentile), the upper boundary is the 
third quartile (75th percentile), and the line within the box represents the median of the distribution. The upper and lower whiskers 
represent the 10th and 90th percentile and the dots below and above the whiskers represent outlying values. Asterisks within each 
plot indicate significant differences in the Departure Index across all treatments at the 0.05 (*), 0.01 (**), and 0.001 (***) levels.
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	 The	 Morisita	 Index	 (MI)	 was	 quite	 sensitive	 to	
NCLASS	with	values	farther	from	expected	departure	
when	there	were	fewer	classes	(less	than	30)	at	high	ex-
pected	departures	(DELTA	>0.8),	or	when	there	were	a	
high	number	of	classes	(greater	than	50)	at	low	expected	
departures	(DELTA	<0.6)	(fig.	4a).	As	with	SI,	the	dif-
ferences	in	MI	across	all	classes	were	highly	significant	
(three	asterisks	in	fig.	4a).	MI	seemed	completely	inef-
fectual	at	describing	departure	as	NCLASS	increased	
for	reference	conditions	that	were	similar	to	historical	
conditions.	However,	MI	performed	well	when	expected	
reference	departure	was	high	(DELTA	>0.8)	with	low	
replicate	variability	 (except	 for	 lowest	NCLASS)	and	
consistent	behavior	across	all	classes.	The	level	of	class	
dominance	(PDOM)	in	the	HRV	time	series	had	little	
effect	on	MI	behavior	except	at	high	expected	depar-
ture	 reference	conditions	with	high	variability	across	
replicates.	There	was	reduced	replicate	variability	and	
consistent	MI	behavior	across	all	levels	of	dominance	
when	expected	reference	departure	reference	conditions	
were	 low	(DELTA	<0.2)	(fig.	4b).	The	same	findings	
were	true	across	the	levels	of	class	variability	(CVAR)	
with	MI	values	lower	than	expected	and	more	variable	
across	levels	of	PDOM	and	CVAR	(fig.	4c).	MI	behavior	
seemed	consistent	across	all	levels	of	class	variability,	
but	 the	replicate	variability	(box	and	whisker	ranges)	
increased	when	references	were	dissimilar	to	historical	
conditions	(DELTA	>0.8).	As	with	SI,	temporal	autocor-
relation	did	not	seem	to	affect	MI	results	(fig.	4d).
	 The	Similarity	Ratio	(SR)	had	a	mixed	performance	
across	most	factors	(fig.	5).	SR	performance	was	espe-
cially	poor	when	the	number	of	classes	and	the	degree	
of	 similarity	 between	 reference	 and	 historical	 were	
high	(DELTA	<0.5).	Replicate	variability	was	high	and	
somewhat	variable	when	NCLASS	was	low	(less	than	
60)	 and	 reference-historical	 landscapes	 were	 similar	
(DELTA	<0.4)	(fig.	5a).	SR	appeared	to	perform	well	
across	all	levels	of	PDOM	when	reference-historical	simi-
larity	was	high,	but	when	expected	departure	was	high	
(DELTA	>0.5),	replicate	variability	was	high,	distance	
from	expected	departure	increased,	and	overall	behavior	
was	inconsistent	(fig.	5b).	Class	variability	(CVAR)	and	
temporal	autocorrelation	(TCORR)	had	the	same	effect	
on	SR	with	dissimilar	reference-historical	comparisons	
(DELTA	>0.5)	having	greater	replicate	variability,	less	
accuracy	(farther	from	expected	departure	line),	and	less	
precision	(inconsistent	behavior)	(figs.	5c,d).
	 Chord	Distance	(CD)	had	the	same	mixed	performance	
as	SR	for	nearly	every	factor	(fig.	6).	CD	performance	

was	poor	when	NCLASS	was	high	(>50)	and	the	degree	
of	similarity	between	reference	and	historical	was	great	
(DELTA	 <0.5)	 because	 the	 replicate	 variability	 was	
high	and	inconsistent,	especially	when	NCLASS	was	
low	(<100)	(fig.	6a).	CD	performance	was	mixed	across	
most	levels	of	PDOM	with	high	replicate	variability	and	
imprecise	 behavior,	 except	 when	 reference-historical	
similarly	was	high	 (DELTA	<0.5),	when	 the	CD	be-
havior	 stabilized	 and	 became	 highly	 consistent	 and	
somewhat	accurate	(fig.	6b).	Class	variability	(CVAR)	
effects	on	CD	were	strongest	when	DELTA	was	high	
(when	reference-to-historical	landscapes	are	dissimilar)	
with	CD	becoming	more	variable	and	inconsistent	(fig.	
6c).	Temporal	autocorrelation	had	the	least	effect	on	CD	
with	only	 the	 least	departed	 landscapes	 fostering	 the	
best	CD	behaviors	(fig.	6d).
	 The	 last	 index,	Euclidean	Distance	 (ED),	 had	only	
marginally	better	performance	than	CD	or	SR	(fig.	7).	
The	effect	of	the	number	of	classes	on	ED	was	especially	
pronounced	when	DELTA	was	low	(minimal	expected	
departure	 from	 historical	 conditions)	 as	 the	 distance	
from	expected	departure	line	dramatically	increased	with	
increasing	number	of	classes	(fig.	7a),	but	when	DELTA	
was	high,	ED	performed	well	except	when	there	were	
a	 low	number	of	classes	(<10).	As	with	 the	 last	 three	
indices,	the	ED	behavior	is	highly	inconsistent	across	
the	gradient	of	dominance	(PDOM)	and	class	variabil-
ity	(CVAR)	with	distance	from	the	expected	departure	
line	and	replicate	variance	quite	variable	(figs.	7b,	c).	
Again,	temporal	autocorrelation	didn’t	seem	to	affect	
ED	behavior	as	much	as	the	similarity	of	the	reference-
historical	conditions	(fig.	7d)	with	the	most	consistent	
ED	behavior	occurring	when	expected	departures	were	
low.

Other Time Series Synthesis  
Methods (AAY, MMY, QTY)

	 Simplifying	the	historical	time	series	by	comparing	one	
or	two	historical	conditions	to	one	reference	condition	
instead	of	calculating	a	departure	for	each	landscape	in	
the	historical	time	series	is	probably	more	desirable	for	
land	managers,	but	this	may	create	greater	uncertainty	
and	more	inaccurate	HRV	evaluations.	In	this	section,	
we	present	results	of	the	remaining	time	series	synthesis	
methods,	but	only	for	the	Sorenson’s	Index	(SI)	since	it	
performed	the	best,	and	only	for	two	reference	condi-
tions	(highly	similar	where	DELTA	=	0.2	and	highly	
departed	where	DELTA	=	1.0).
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Figure 4—Morista’s Index (MI) performance as a departure measure.  Box and whisker plots of 10 replicates of 100 historical land-
scapes were compared to five reference landscapes that represent similar (DELTA = 0.2) to highly departed (DELTA = 1.0) reference 
conditions. We evaluated four factors: (a) number of classes, (b) percent dominance, (c) variability of classes, and (d) temporal 
autocorrelation. In the boxplots, the lower boundary of each box is the first quartile (25th percentile), the upper boundary is the 
third quartile (75th percentile), and the line within the box represents the median of the distribution.  The upper and lower whiskers 
represent the 10th and 90th percentile and the dots below and above the whiskers represent outlying values. Asterisks within each 
plot indicate significant differences in the Departure Index across all treatments at the 0.05 (*), 0.01 (**), and 0.001 (***) levels.
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Figure 5—Similarity Ratio (SR) performance as a departure measure.  Box and whisker plots of 10 replicates of 100 historical land-
scapes were compared to five reference landscapes that represent similar (DELTA = 0.2) to highly departed (DELTA = 1.0) reference 
conditions. We evaluated four factors: (a) number of classes, (b) percent dominance, (c) variability of classes, and (d) temporal 
autocorrelation. In the boxplots, the lower boundary of each box is the first quartile (25th percentile), the upper boundary is the 
third quartile (75th percentile), and the line within the box represents the median of the distribution. The upper and lower whiskers 
represent the 10th and 90th percentile and the dots below and above the whiskers represent outlying values.  Asterisks within each 
plot indicate significant differences in the Departure Index across all treatments at the 0.05 (*), 0.01 (**), and 0.001 (***) levels.
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Figure 6—Chord Distance (SR) performance as a departure measure. Box and whisker plots of 10 replicates of 100 historical land-
scapes were compared to five reference landscapes that represent similar (DELTA = 0.2) to highly departed (DELTA = 1.0) reference 
conditions. We evaluated four factors: (a) number of classes, (b) percent dominance, (c) variability of classes, and (d) temporal 
autocorrelation.  In the boxplots, the lower boundary of each box is the first quartile (25th percentile), the upper boundary is the 
third quartile (75th percentile), and the line within the box represents the median of the distribution. The upper and lower whiskers 
represent the 10th and 90th percentile and the dots below and above the whiskers represent outlying values. Asterisks within each 
plot indicate significant differences in the Departure Index across all treatments at the 0.05 (*), 0.01 (**), and 0.001 (***) levels.
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Figure 7—Euclidean Distance (ED) performance as a departure measure.  Box and whisker plots of 10 replicates of 100 histori-
cal landscapes were compared to five reference landscapes that represent similar (DELTA = 0.2) to highly departed (DELTA = 
1.0) reference conditions. We evaluated four factors: (a) number of classes, (b) percent dominance, (c) variability of classes, 
and (d) temporal autocorrelation. In the boxplots, the lower boundary of each box is the first quartile (25th percentile), the upper 
boundary is the third quartile (75th percentile), and the line within the box represents the median of the distribution. The upper 
and lower whiskers represent the 10th and 90th percentile and the dots below and above the whiskers represent outlying values.  
Asterisks within each plot indicate significant differences in the Departure Index across all treatments at the 0.05 (*), 0.01 (**), 
and 0.001 (***) levels.
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Figure 8—Performance of Sorenson’s Index for the four time series synthesis methods when reference landscapes are similar to 
historical conditions (expected departure low; DELTA = 0.2).  Results for the average departure calculation across all years (YTY) 
is shown in (a) while the time series synthesis methods reduced the 1,000 historical landscapes into three simplified series: (b) 
average across all years (AAY), (c) a minimum and maximum values across all year, and (d) the 90th percentile value across all 
years.  Box and whisker plots of 10 replicates and the lower boundary of each box is the first quartile (25th percentile), the upper 
boundary is the third quartile (75th percentile), and the line within the box represents the median of the distribution.  The upper 
and lower whiskers represent the 10th and 90th percentile and the dots below and above the whiskers represent outlying values.  
Asterisks within each plot indicate significant differences in SI across all treatments at the 0.05 (*), 0.01 (**), and 0.001 (***) levels.
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	 In	general,	the	synthesis	methods	did	not	affect	the	
behavior	of	SI	 across	 the	 four	 factors	 (fig.	 8)	 for	 the	
similar	reference-historical	conditions	(DELTA	=	0.2),	
but	the	variability	across	replicates	(box	size)	did	de-
crease.	The	AAY	method	(average	historical	landscape)	
seemed	to	have	nearly	the	same	result	as	our	detailed	
base	 case	YTY	method.	The	MMY	method	was	 the	
least	desirable	with	some	major	shifts	in	behavior	for	
NCLASS	and	PDOM.	The	QTY	method	seems	to	yield	
acceptable	results	but	this	method	should	only	be	used	
when	degrees	of	departure	must	be	integrated	into	the	
HRV	analysis	in	the	context	of	the	stated	management	
objective.
	 None	of	the	synthesis	methods	produced	acceptable	
results	when	the	reference	landscape	was	highly	departed	
from	the	historical	representation	(DELTA=1.0)	(fig.	9).	
Acceptable	behavior	occurred	for	the	AAY	method	when	
class	numbers	were	high	(greater	than	50	classes)	and	
percent	dominates	were	low	(less	than	10	percent;	10	
percent	landscape	classes	have	80	percent	of	the	area).	All	
synthesis	methods	performed	poorly	across	all	levels	of	
class	variability	and	temporal	autocorrelation	with	high	
variability,	high	expected	departure,	and	 inconsistent	
behaviors	(fig.	9).

Discussion

	 While	most	of	the	vegetation	community	ecology	based	
departure	 indices	 evaluated	 in	 this	 study	 performed	
acceptably	for	determining	departure	from	HRV,	none	
of	 them	seemed	to	contain	 the	optimum	qualities	for	
comprehensive	assessments	of	departure	across	all	pos-
sible	landscape	conditions.	Those	indices	that	performed	
well	 for	 one	 factor	 (number	 of	 classes,	 for	 example),	
performed	poorly	for	other	factors	(percent	dominance,	
for	 example).	 The	 Sorenson’s	 Index	 (SI)	 appeared	 to	
perform	the	best	in	this	study	when	it	was	qualitatively	
compared	 with	 the	 other	 indices	 using	 a	 qualitative	
scale	of	1	to	5;	the	SI	score	is	more	than	10	above	all	
other	indices	(table	2).	SI	was	least	affected	by	the	four	
simulated	factors	but	it	still	had	unacceptable	behavior	
when	the	number	of	classes	was	low	and	the	expected	
departures	were	high.	While	many	studies	have	used	
the	Sorenson’s	Index	or	some	variant	with	acceptable	
results	(Holsinger	and	others	2006;	Keane	and	others	
2008;	Wimberly	and	others	2000),	it	appears	that	the	
simplest	landscapes	(low	number	of	classes,	few	classes	
dominate,	low	variability)	yield	the	most	suspect	results,	
especially	when	reference	conditions	are	similar	to	the	
historical	time	series.	This	is	also	true	for	all	the	other	
evaluated	indices.

	 The	synthesis	of	an	extensive	historical	 time	series	
of	landscape	maps	into	simplified	historical	references	
(average,	 minimum-maximum,	 and	 90th	 percentile)	
did	not	create	the	high	degree	of	uncertainty	that	we	
	expected	(greater	replicate	variability).	Instead,	it	ap-
pears	that	reducing	historical	time	series	could	be	a	viable	
option	for	land	managers	who	cannot	store	or	manage	
large	historical	data	sets.	This	is	especially	important	as	
more	land	managers	obtain	their	HRV	time	series	from	
simulation	modeling	(Keane	and	others	2002;	Nonaka	
and	Spies	2005;	Wimberly	and	others	2000)	because	
models	 can	 produce	 extensive	 outputs	 of	 simulated	
historical	conditions.	However,	these	synthesis	options	
could	result	in	less	variability	in	the	historical	record	
that	may	make	it	difficult	to	detect	subtle	changes	in	the	
reference	landscape.	While	we	advocate	that	the	entire	
historical	time	series	be	used	to	determine	departure,	
we	recognize	that	the	average	historical	landscape	may	
also	be	a	useful	alternative	for	computing	departure.
	 One	situation	that	was	not	explored	in	this	study	is	
when	classes	that	did	not	exist	in	the	historical	reference	
conditions	were	present	in	the	current	conditions	or	vice	
versa.	 Today’s	 landscapes	 are	 highly	 departed	 from	
historical	conditions	partially	because	of	increases	in	
exotic	plant	communities,	which	were	absent	on	histori-
cal	landscapes.	This	important	phenomenon	(addition	of	
new	classes)	could	also	affect	the	behavior	of	similarity	
indices.	A	related	unevaluated	situation	is	the	extinction	
of	an	historical	class	or	 the	absence	of	a	class	 in	 the	
reference	landscape	(missing	classes).	The	main	effect	
of	these	additional	factors	on	departure	measures	may	
be	to	increase	variability	across	replicates.
	 The	departure	indexes	used	in	this	study	have	many	
limitations	 that	 influence	their	use	and	interpretation	
in	HRV	 landscape	analyses.	First,	 these	 indices	only	
describe	the	magnitude	and	trend	of	change	at	the	land-
scape	level	and	do	not	incorporate	geographical	change	
in	their	derivation.	Decreases	in	class	area	in	one	por-
tion	of	the	landscape	may	be	offset	by	increases	in	that	
class	in	another	portion	resulting	in	no	net	change	and	
a	stable	departure	index,	yet	there	may	be	a	great	deal	
of	change	at	finer	scales.	Second,	 inherent	 landscape	
properties,	such	as	topography,	soils,	and	climate,	may	
restrict	the	magnitude	of	change	making	it	difficult	to	
evaluate	the	range	of	change	for	unique	landscapes	across	
large	geographical	regions	(Hessburg	and	others	1999).	
For	example,	natural	fuel	barriers,	such	as	scree	fields	
and	rocklands,	might	restrict	fire	spread	in	some	land-
scapes,	resulting	in	relatively	small	changes	in	landscape	
composition.	The	large	number	of	historical	observa-
tions	(1,000	in	this	study)	needed	to	compute	a	stable	
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Figure 9—Performance of Sorenson’s Index for the four time series synthesis methods when reference landscapes are highly 
departed from historical conditions (expected departure high; DELTA = 1.0). Results for the average departure calculation 
across all years (YTY) is shown in (a) while the time series synthesis methods reduced the 1,000 historical landscapes into 
three simplified series: (b) average across all years (AAY), c) a minimum and maximum values across all year, and (c) the 
90th percentile value across all years. Box and whisker plots of 10 replicates and the lower boundary of each box is the first 
quartile (25th percentile), the upper boundary is the third quartile (75th percentile), and the line within the box represents 
the median of the distribution. The upper and lower whiskers represent the 10th and 90th percentile and the dots below 
and above the whiskers represent outlying values. Asterisks within each plot indicate significant differences for SI across all 
treatments at the 0.05 (*), 0.01 (**), and 0.001 (***) levels.
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departure	index	may	restrict	the	creation	of	the	HRV	
time	series	 to	only	using	simulation	modeling,	rather	
than	using	historical	maps	and	data.	The	resolution	and	
extent	of	the	analysis	landscape	can	also	influence	the	
range	and	variability	of	compositional	classes	thereby	
limiting	departure	estimation	(Keane	and	Karau	2006).	
It	is	often	difficult	to	detect	departure	when	landscapes	
are	large	and	their	resolution	is	fine.
	 Results	of	this	study	illustrate	the	great	need	for	the	
development	of	new,	more	comprehensive	metrics	for	
examining	 landscape	 departure	 (Barrett	 and	 others	
2006;	 Steele	 and	 others	 2006).	 These	 new	 metrics	
should	perform	well	across	the	factors	used	in	this	study,	
but	 they	should	also	contain	 the	 following	attributes:	
(1)	easily	understood	and	interpreted	by	land	manage-
ment,	(2)	statistical	tests	for	significance,	(3)	utility	for	
other	purposes,	(4)	sensitive	to	subtle	differences	across	
landscapes,	(5)	contain	the	ability	to	incorporate	geo-
graphic	change	in	departure	estimation,	and	(6)	easily	
computed	by	hand	or	with	computer.	In	the	meantime,	it	
appears	that	the	community	ecology	similarity	indices,	
especially	SI,	 can	be	useful	 for	estimating	 landscape	
departure	from	historical	conditions.
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