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Abstract
	 A measure of the degree of departure of a landscape from its range of historical conditions can 
provide a means for prioritizing and planning areas for restoration treatments. There are few statistics 
or indices that provide a quantitative context for measuring departure across landscapes. This study 
evaluated a set of five similarity indices commonly used in vegetation community ecology (Sorenson’s 
Index, Chord Distance, Morisita’s Index, Euclidean Distance, and Similarity Ratio) for application in 
estimating landscape departure (where departure = 1 – similarity). This involved comparing composi-
tion (vegetation type by area) of a set of reference landscapes to the compositions of 1,000 simulated 
historical landscapes. Stochastic simulation modeling was used to create a diverse set of synthetic 
reference and historical landscapes for departure index evaluation. Five reference landscapes were 
created to represent various degrees of expected departure from historical conditions. Both reference 
and historical landscapes were created to contain four important factors that could potentially influ-
ence departure calculation: (1) number of classes defining landscape composition, (2) dominance of 
the classes, (3) variability of area with the classes, and (4) temporal autocorrelation. We found that 
most evaluated indices are useful but not optimal for calculating departure. The Sorenson’s Index 
appeared to perform the best with consistent and precise behavior across the ranges of the four 
treatments. The number of classes used to describe vegetation had the strongest influence on index 
performance; landscape composition defined by few classes had the least accurate, most imprecise, 
and most highly variable departure estimates. While results from this study show the utility of similarity 
indices in evaluating departure, it is also evident that a new set of statistics are needed to provide a 
more comprehensive analysis of departure for future applications.

Keywords:	ecosystem management, similarity indices, landscape ecology, historical ecology, 
historical range and variability, HRV, neutral landscapes



Research Summary

	 The relatively new concept of Historical Range and 
Variability (HRV) provides a spatial and temporal founda-
tion for developing benchmark conditions for evaluating 
difference in today’s landscape, and HRV also brings an 
understanding of past spatial and temporal ecological 
variability into ecosystem management. However, an 
important limitation in the application of HRV is the lack 
of comprehensive analysis techniques to compare the 
multi-observational historical time series landscape data 
with the one observation of contemporary conditions. A 
comprehensive measure is needed for computing depar-
ture of current landscape conditions from the historical 
conditions. 
	 The objective of this study was to evaluate a set of five 
similarity indices commonly used in vegetation community 
ecology (Sorenson’s Index, Chord Distance, Morisita’s 
Index, Euclidean Distance, and Similarity Ratio) for ap-
plication in estimating landscape departure. This involved 
comparing landscape composition (vegetation type by 
area) of reference landscapes that represents current 
conditions to the compositions of 1,000 simulated histori-
cal neutral landscapes. Stochastic simulation modeling 
was used to create a diverse set of synthetic reference 
and historical landscapes for departure index evaluation. 
Five reference landscapes were created to represent 

various degrees of expected departure from historical 
conditions. Both reference and historical landscapes 
were created to reflect four important factors that may 
potentially influence departure calculation: (1) number of 
classes defining landscape composition, (2) dominance 
of the classes, (3) variability of area with the classes, and 
(4) temporal autocorrelation. 
	 We found that:

•	 Most similarity indices are useful but not optimal 
for calculating departure. 

•	 The Sorenson’s Index appeared to perform the 
best for HRV comparisons with consistent and 
precise behavior across the ranges of the four 
treatments. 

•	 The number of classes had the strongest influence 
on performance of most indices with landscapes 
that were described by few vegetation classes 
had the least accurate, most imprecise, and most 
highly variable departure estimates. 

•	 Temporal autocorrelation had the least effect on 
the behavior of the departure index. 

	 Results from this study show that similarity indices, 
especially Sorensen’s Index, can be used to evaluate 
departure, but it is also evident that a new set of statistics 
are needed to provide a more comprehensive analysis 
of departure for future applications.
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Introduction

	 The era of ecosystem management ushered in the 
concept that land should be managed as a whole by 
considering all organisms, and their pattern, abundance, 
and connectivity of their habitats, and the ecological 
processes that influence these organisms on the land-
scape (Bourgeron and Jensen 1994; Crow and Gustafson 
1997; Kaufmann and others 1994). But, to effectively 
plan, design, and implement ecosystem management 
treatments, managers required benchmarks or reference 
conditions to fully represent functional ecosystems or 
landscapes (Cissel and others 1994; Laughlin and others 
2004; Swanson and others 1994). Today’s landscape con-
ditions can be evaluated against benchmark conditions 
to determine status, detect change, and design effective 
treatments to provide society with sustainable and valuable 
resources while also returning declining ecosystems to a 
more healthy and resilient condition (Egan and Howell 2001; 
Hessburg and others 1999; Swetnam and others 1999). It is 
also critical that these benchmark conditions represent 
the dynamic character of ecosystems and landscape as 
they vary over time and space (Morgan and others 1994; 
Swanson and others 1994).
	 The relatively new concept of Historical Range and 
Variability (HRV) was introduced to provide a spatial 
and temporal foundation for developing benchmark 
conditions and to bring understanding of past spatial 
and temporal ecological variability into ecosystem 
management (Landres and others 1999; Swetnam and 
others 1999). HRV can be used to plan and implement 
possible treatments to improve ecosystem health and 
integrity by assuming that recent historical variation repre-
sents the broad envelope of conditions that supports resilient 
and self-organizing landscapes (Harrod and others 1999; 
Hessburg and others 1999). One major use of HRV in land 
management involves comparing a time series of his-
torical landscape conditions (benchmark) to the current 

landscape condition to detect change and trend (Keane 
and others 2009). While easily understood, the concept 
of HRV can be difficult to implement due to scale, data, 
and analysis limitations (Keane and others 2009; Wong 
and Iverson 2004). Another important limitation in the 
application of HRV is the lack of comprehensive analysis 
techniques to compare the multi-observational historical 
time series landscape data with the one observation of 
contemporary landscape conditions (Keane and others 
2009; Steele and others 2006).
	 There are few statistical or ecological analysis tech-
niques that perform well across the temporal and spatial 
scales of most HRV landscape analyses (Landres and oth-
ers 1999). Many HRV studies compare landscape compo-
sition (vegetation type by area) using indices of departure 
that are comparable to the similarity indices commonly 
employed in community ecology to qualitatively evaluate 
differences in species composition across sample plots 
(Huhta 1979; Mueller-Dombois and Ellenberg 1974; 
Wolda 1981). Similarity is often computed as an index 
or number between zero (dissimilar) and one (identical), 
and in this paper, we define the converse of similarity as 
departure (in other words, departure = 1 – similarity). 
Sorenson’s index, for example, was used by Hann (2004) 
as a measure to compute landscape departure and fire 
regime condition class and by Keane and others (2008) 
to determine changes in landscape composition HRV 
caused by climate change. Holsinger and others (2006) 
used a variation of the Sorenson’s index to compute 
departure for the LANDFIRE project. Alternatively, 
Steele and others (2006) used a statistical regression 
technique to compute a landscape departure measure 
with a test of significance, but this measure did not 
perform well across large regions because the range of 
departure statistics was quite small making it difficult 
to identify subtle differences.
	 Community ecology-based indices of departure have 
been used for HRV analyses, but several problems have 
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been encountered. Keane and others (2008) found that 
departure measures based on similarity indices are 
highly influenced by the number of classes used to de-
scribe landscape composition, and they are insensitive 
to subtle, yet important, changes in landscape composi-
tion. Major landscape changes can occur, but important 
disturbance effects were offset by successional changes 
over space, thereby resulting in minor changes in the 
departure statistic. Moreover, there are ranges of the 
departure index (close to zero and one) that are rarely 
encountered. The inherent variability of classes in the 
time series, along with their temporal autocorrelation 
(degree to which previous landscape conditions influ-
ence future landscape conditions), can also influence 
the comparison of departure measures.
	 The challenge, then, is to identify a comprehensive 
measure for computing departure of current landscape 
conditions from the historical time series of past condi-
tions. This measure should perform well regardless of 
how many mapping units (landscape classes) are used, 
how the area is distributed across these classes, and how 
correlated these classes are across time and space. This 
is complicated by the fact that land managers desire 
simple measures that are easy to calculate, understand, 
and interpret, yet are still scientifically credible for 
describing departure from historical conditions (Hann 
2004). The objectives of this study were to evaluate 
the performance of the community ecology similarity 
indices for computing departure from historical condi-
tions and to examine how these metrics are influenced 
by various landscape characteristics. Ultimately, the 
goal of this study was to determine an optimum mea-
sure of departure that can be used in HRV applications 
for mapping departure across large regions (Steele and 
others 2006). This study did not attempt to develop new 
departure indices; instead, it evaluated existing similarity 
measures developed in the field of community ecology 
(Mueller-Dombois and Ellenberg 1974; Wolda 1981). 
Because of this, the findings from this study could also 
be applied to vegetation classification and community 
similarity analysis.

Background

	 In this study, the landscape is an area of any size or 
resolution that is composed of unique areas of homo-
geneous ecological conditions. Each unique area is as-
signed a class or category that describes a compositional 
characteristic that is usually specific to the objective of 
the landscape mapping effort. The class often represents 

a species dominance classification category, such as a 
cover type. Landscape composition is the area or percent 
area covered by each class across the landscape. HRV 
analysis involves the comparison of one observation of 
the landscape composition (area by class) for the current 
landscape with the historical landscape time series 
represented by numerous sequential observations of 
historical landscape compositions (fig. 1). In this study, 
we refer to the reference landscape as a landscape 
that represents current conditions, but we have altered 
these current conditions to represent various degrees of 
departure. Departure is calculated by comparing the 
areas occupied by the landscape composition classes 
common to both the reference landscape averaged across 
all the instances in the historical landscape time series. 
The term departure index refers to the metric used to 
calculate departure from historical and it is typically 
the opposite of similarity.
	 Many types of similarity indices are used in community 
ecological analyses with mixed success (Bloom 1981; 
Faith and others 1987; Kobayashi 1987; Mueller-Dombois 

Figure 1—An illustration of the HRV for landscape com-
position for a 50,000 ha landscape in southwestern Montana 
(Keane and others 2008) showing an example of the historical 
range of landscape composition on a Montana USA landscape 
using five cover types, the average proportion area occupied 
by each of the five types over the simulation run, and the 
composition of the current landscape, which contains only 
open tall Douglas-fir. 
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and Ellenberg 1974; Orloci 1967). We assessed a number 
of common similarity indices (see “Methods” section) 
and selected five commonly used ecological indices to 
evaluate in this study. These indices have been used in 
many vegetation classification and plant diversity studies 
(Gauch 1982; Ghent 1963; Wolda 1981):

	 1.	Sorenson’s Index (SI) is calculated using the fol-
lowing formula:

	
ii

ii

ch

chMin
SI

),(2
 	 (1)

where hi refers to the area (m
2) of the historical 

reference class within the landscape, ci is the area 
(m2) of the same class on the current landscape, i 
is class index number, and Min is a function that 
picks the minimum of two values. Since SI is an 
index of similarity, it was inversed as SI = 1 – SI 
to obtain departure.

	 2.	Morisita’s Index (MI) is modified from Horn 
(1966) and is calculated with the following formula:
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where hi refers to the area (m
2) of the historical 

reference class i within the landscape, ci is the area 
(m2) of the same class on the current landscape, and 
i is class index number. Again, MI is actually an 
index of similarity so it was inversed as MI = 1 – MI 
to obtain the MI departure index.

	 3.	Similarity Ratio (SR) emphasizes the differences 
using the square of the products in the following 
formula:
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where hici is the product of the areas of the his-
torical and current landscape for class i. Again, 
we subtracted the SR from 1.0 to get a departure.

	 4.	Chord Distance (CD) is calculated with the fol-
lowing formula from Faith and others (1987):
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where i, j, k are the class index numbers. We rescaled 
the CD range from zero to √2 to zero to 1.0, and 
then subtracted from 1.0 to get departure.

	 5.	Euclidean Distance (ED) is much like the SR using 
the squares of the historical and current landscape 
areas but the index emphasizes the differences 
between the two areas as taken from Ludwig and 
Reynolds (1988):

	 22
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	 This paper deals only with departure in landscape 
composition (area by landscape class) at the landscape 
level, but it is important to mention that departure can 
be calculated for many attributes across many scales. 
Landscape structural attributes, such as contagion, patch 
density, and largest patch index, can also be used as the 
response variables to determine departure. It is also pos-
sible to determine departure for stand attributes such as 
basal area, tree density, and timber volume. However, 
this paper deals only with landscape composition be-
cause it is used most by managers (Hann 2004; Keane 
and others 2006) and it is a complex landscape attribute 
composed of many descriptor variables (area by class) 
whose values all sum to the area of the landscape.

Methods

	 We explored the suitability of the above measures for 
evaluating departure using simulation modeling where 
synthetic historical time series and synthetic reference 
conditions were created for a partially nested factorial 
statistical design using a model we built called TSG (Time 
Series Generator) (fig. 2). In summary, the TSG model 
created the historical time series of 1,000 landscapes and 
it also created the set of five reference conditions each 
with four unique characteristics that were considered 
factors in our simulation experimental design: (1) number 
classes, (2) dominance distribution, (3) class variability, 
and (4) autocorrelation. The five synthetic reference 
landscapes were designed to represent increasing de-
grees of departure (expressed as a delta statistic) from 
the historical time series. We stochastically created an 
historical landscape time series of 100 landscapes and 
then replicated this process ten times to obtain 1,000 
observations (historical landscapes). We also reduced 
the historical time series into a simplified set of maps 
using three synthesis techniques. Since the area of the 
landscape remains constant over time, we relativized all 
class areas to sum to 1.0. It is important to note that the 
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Figure 2—Tasks involved in this simulation experiment where synthetic historical time series are created us-
ing five factors using the TSG model and compared against a set of four reference conditions that represent 
degrees of departure from historical conditions.  Five departure indices are used to perform the comparison.  
The behavior of these departure indices are evaluated across all factors and reference conditions. See table 
1 for symbol definitions and simulation details.

historical time series really doesn’t represent historical 
conditions; we used stochastic simulation models to 
create neutral landscapes with the properties that we 
wish to evaluate (factors in our experimental design). 
We named them “historical time series” to be consistent 
with terminology in HRV analysis, but these are not 
historical landscapes.

Model Description

	 The TSG model was designed to stochastically generate 
landscape composition time series with known statistical 
properties to facilitate objective comparison and evalu-
ation of different measures of departure. Our modeling 
approach reflects a set of design criteria emphasizing 
simplicity, flexibility, and computational feasibility. 
Landscape compositional time series may extend for 
centuries or millennia, and may exhibit temporal auto-
correlation over various time scales. Depending on the 
detail with which the landscape composition is described, 
the number of vegetation classes over time may range 
from few to many. In real ecological systems, classes 
of vegetation may interact over time and space with a 
diversity of biophysical factors (e.g., climate, disturbance, 
soils) to create complex landscapes. To explicitly model 
these interactions mathematically would have required 
an extensive mechanistic process modeling, requiring 

a large number of inputs and computational resources. 
As our purpose was to compare the various measures 
of departure across a wide spectrum of straightforward 
comparison cases, we decided to simulate the landscape 
composition time series as a set of independent series 
and then assemble them into synthetic landscape time 
series.
	 Each simulated landscape composition time series is 
described by (1) a series length (total number of years 
for which time series are to be generated), (2) lag length 
(maximum length in time over which lagged correlations 
will be considered), and (3) number of classes that repre-
sent vegetation states. These three factors were selected 
based on the results of a previous study in landscape 
departure (Keane and others 2008). For each class, we 
specified three parameters, which, when used together, 
provided a great deal of flexibility and allowed for the 
generation of a wide range of landscape composition 
time series across classes. The first parameter, TCORR 
or temporal correlation, controls the temporal autocor-
relation within the series for a class and is described by 
an ACF (AutoCorrelation Factor) value that ranges from 
zero (no autocorrelation) to one (highly correlated in 
time). The second parameter, PDOM or percent domi-
nant, sets the target dominance, or the degree to which 
a landscape is dominated by a few classes. PDOM is 
defined as the expected mean proportion of total land-
scape area occupied by a given class over the length of 



5USDA Forest Service Res. Pap. RMRS-RP-83. 2011

the time series. Since these are proportions, the sum 
of the PDOM parameter values across all classes for a 
given simulated landscape composition time series must 
be equal to 1.0. The third parameter, CVAR or class 
variation controls the amount of variability in the time 
series for that class and it is scaled from 0.3 to 1.2 in this 
study based on analyses of other mapped landscapes.
	 The simulation of a landscape composition time series 
consists of two steps: (1) the generation of autocor-
related series creates independent autocorrelated time 
series for each class and (2) the series modification 
that rescales those independent classes to conform to 
the PDOM and CVAR parameters, and relativizes all 
classes such that they represent proportions of total 
landscape area by class for each point in time.

	 Generation of autocorrelated series—For each 
class, an independent, stationary, autocorrelated time 
series is generated using the ACF parameter. The ACF 
parameter sets the slope of a simple exponential decay 
function of the form:
	 r(t) = e(–λt)	 (6)

where r(t) is the correlation coefficient between the 
value at a given point and the value at lag time t, and λ 
is the ACF parameter. This exponential decay function 
represents the coefficients of a theoretical autocorrelation 
function (ACF). Higher values of ACF result in a lower 
correlation, while lower values maintain correlation over 
a longer period of time. This theoretical autocorrelation 
function is then used to generate an autoregressive series 
of the specified length following a process that has been 
used extensively since the late 1960s (Box and Jenkins 
1990). Given an autocorrelation function ρ(k) = ρk for 
k = 1, ... , m, an autoregression function can be obtained 
in the following way:

	 Let 

1......
..1......
..1....

..1

....1

1

1

211

11

m

m

m

mP  	 (7)

	 And let 

m

m
..
1

  

	 And 

m

m
..
1

  

Then the equation

	 ϕ = P
m

–1ρ
m
	 (8)

will satisfy the autoregressive process:
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random shock with variance 
2
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of the output will reflect the character and structure of 
the autocorrelation function used as input as follows:

	 σ σ ρ ϕ ρ ϕ ρ ϕa z m m
2 2

1 1 2 21= − − − −.. 	 (10)

The autocorrelated series for a given vegetation class 
(Equation 8) is then arranged as a set of linear equa-
tions that are solved through a process of Lower-Upper 
decomposition followed by forward and then backward 
substitution using standard numerical routines (Press 
and others 2002).
	 Series modification—Once all of the independent 
series of each class have been generated according to 
the process described above, the series are modified 
so they can represent landscape composition across all 
vegetation classes. The values for each series are rescaled 
to the range [L, H], with the following relation:

	 X
mod

=
X −m( ) H − L( )

M −m( )
+ L 	 (11)

where X is the unmodified series values, Xmod is the 
modified series, m is the minimum value of the unmodi-
fied series and M is the maximum of the unmodified 
series, and
	 L = D – DV	 (12)

	 H = D + DV	 (13)
where D is the PDOM input parameter and V is the 
CVAR parameter. Finally, each class value for each 
year is divided by the sum over all classes for that year 
to ensure that they sum to 100 percent of the total area.

Simulation Experiment

	 The goal of this simulation experiment was to compare 
the behavior of departure indices across a wide range of 
conditions of historical time series and reference land-
scapes with known statistical properties to determine 
if any index is superior and if any of the indices have 
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undesirable qualities that may influence the interpreta-
tion of HRV departure results (Keane and others 2002, 
2008). Initially, we wanted to take an ANOVA (Analysis 
of Variance) approach and conduct a fully nested facto-
rial experiment using extensive simulations from the 
TSG model, but preliminary results revealed that, while 
the departure indices differed across all treatments, the 
small number of treatments within a factor (less than 5 
treatments) did not provide sufficient detail to effectively 
evaluate the behavior of each index across the full range 
of possible historical and reference conditions. Therefore, 
we re-designed our experiment so that a wide range of 
values (treatments) for each factor were simulated with 
TSG to determine critical thresholds in departure index 

behaviors. Because there were so many treatments that 
spanned the full range of behaviors, it was difficult to 
simulate all factor-treatment combinations with the TSG 
model. Therefore, we simulated the range of values for 
one factor while holding all other factors to a base case 
(noted in underlined bold in table 1) and then used one-
way ANOVA to evaluate differences among treatments 
by factor.
	 We also wanted to include a number of other similarity 
indices in the evaluation, but results from an extensive 
preliminary analysis revealed that some similarity in-
dices had virtually identical results, while others had 
obvious undesirable behaviors across a minor subset 
of the important factors mentioned above. The Jaccard 

Table 1—Factors evaluated for testing the response of departure indices to several historic time series and reference conditions. 
Values in italics and underlined are those held constant while varying a different factor (base condition).

Factor
Levels

1 2 3 4 5 6 7 8 9 10 11 12 13 14

HRV landscape composition factors

NCLASS-
number of 
classes

10 20 30 40 50 60 70 80 90 100 200 300 400 500

PDOM -
Percent 
dominant

10 20 30 40 50 60 70 80 90 — — — — —

TCORR-
ACF slope 0.00005 0.0005 0.001 0.002 0.004 0.01 0.016 0.032 0.064 0.1 — — — —

CVAR-
Time series 
variability

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 — — — —

Time series synthesis methods

TSSM- 
Time series 
synthesis 
methoda

YTY AAY MMY QTY — — — — — — — — — —

Reference conditions

DELTA- 
degree of 
departure 
from 
historical

0.2 0.4 0.6 0.8 1.0 — — — — — — — — —

Departure Indices

Departure 
indicesb SI MI SR CD ED — — — — — — — — —

aTime series synthesis methods are defined as the comparison of the reference condition to (1) all instances in the historical time series and an 
average departure is computed (YTY-year to year); (2) one synthetic historical landscape that is the average of all classes across all landscapes in 
the historical time series (AAY); (3) two historical landscapes that are the minimum and the maximum, respectively, of each class in the historical 
series (MMY); and (4) one synthetic historical landscape created from the 90% quantile of class area (QTY).

bDeparture indices are computed from the following similarity indexes: SI-Sorenson’s Index, MI-Morista’s Index, SR-Similarity Ratio, CD-Chord 
Distance, and ED-Euclidean Distance.
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(Mueller-Dombois and Ellenberg 1974) and Gleason 
(Huhta 1979) indices, for example, performed poorly in 
nearly all cases, while the FRCC (Hann 2004) index was 
acceptable, but was highly correlated to the Sorenson’s 
index. Therefore, we reduced the number of indices to 
the set of five discussed above (table 1).

	 Historical time series factors—We had previously 
identified four factors that commonly influence the 
calculation of current landscape composition depar-
ture from historical conditions (table 1) (Keane and 
others 2008). The number of classes (NCLASS) used 
to describe the landscape composition (cover types, 
for example) is influential in departure calculations 
because major changes in departure are difficult to 
detect when a large number of classes are used (Keane 
and others 2008). To test this, we varied the number 
of classes from 10 to 500 to encompass the full range 
of possible mapping units that are used to describe 
landscapes. Percent dominance (PDOM) describes 
the percent of the number of classes that are dominant 
in a time series. We define dominant as comprising at 
least 80 percent of the landscape area. For example, 10 
percent dominance for 10 classes would mean that one 
class comprises 80 percent of the landscape while the 
remaining 20 percent of the area is spread over the other 
nine classes.
	 Class variability (CVAR) was used to explore the 
effect of the variation within classes on departure cal-
culations. In TSG, the variance depends on the percent 
dominance (PDOM) value where the PDOM value is 
multiplied by the CVAR value (in this study 0.2 < CVAR 
< 1.2; table 1) to compute a range around the historical 
mean (area in a class + PDOM*CVAR*area). Low CVAR 
values (<0.5) indicate low variability in class fluctuations 
across sequential landscapes, while high CVAR values 
(>0.8) represent a significant increase in the noise in the 
HRV time series. Temporal autocorrelation (TCORR 
as represented by ACF parameter) is also an important 
factor because departure may be difficult to detect in 
landscape time series that are strongly autocorrelated 
in time. The TSG program uses the ACF (see “Model 
Description” section) to create time series with low to 
high degrees of autocorrelation (0.0 to 0.3, respectively). 
We simulated several landscapes with the LANDSUM 
landscape simulation model (Keane and others 2006) 
to identify reasonable ranges of ACF values and found 
that the simulated time series ACF value ranges from 
0.00002 (uncorrelated) to 0.1 (somewhat correlated) 
(table 1).

	 We also included another analysis to evaluate the time 
series synthesis method (TSSM). Historical time series 
of landscape compositions can be summarized in a 
number of ways to simplify departure calculations. The 
most obvious and common method involves no synthesis 
at all where each landscape in the time series is compared 
to the reference, and in our simulation experiment, this 
Year-to-Year (YTY) calculation computes departure 
by comparing each historical map in the series to the 
reference map, and then averages all departures across 
every comparison in the historical time series (1,000 
comparisons in this study). While the YTY approach is 
the most intuitive and provides the greatest detail in the 
HRV analysis, it is sometimes impractical because, in 
an operational setting, it requires that digital maps for 
each time step in the historical series be stored for each 
landscape, requiring extensive disk space. To minimize 
computer storage, simplify computational demands for 
large regions, and provide a simple and easy historical 
reference for managers (Hann 2004), we created three 
simplified historical time series that may have applica-
tion in landscape management. An average historical 
year (AAY) was created by averaging the area for each 
class across all instances in the historical time series to 
create one average historical condition to compare with 
the reference. We also reduced the time series to two 
instances by taking the minimum area for each class 
across all years in the series and the maximum area 
for each class in the series to create two observations 
in the “time series.” We then averaged departure across 
both the minimum and maximum years (MMY). Last, 
we took the 90 percentile of class area over all years 
(QTY) to create one historical year to compare with 
the reference. This study concentrated on the base case 
of YTY (average across all historical combinations) for 
the evaluation analysis, but we also report results on the 
effectiveness of reducing historical time series.

	 Reference landscapes—The reference condition 
in this study represents the condition of the cur-
rent landscapes in the calculation of departure from 
HRV. Reference conditions that are highly disparate 
from the historical time series test the magnitude of 
departure that the index can capture, while similar 
reference and historical conditions test the sensitivity 
of the index. In this study, we created a series of five 
different reference conditions that spans a range of 
departure from the set of historical time series condi-
tions (fig. 2). The degree of departure is represented 
by a parameter called DELTA (a number ranging from 
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0 to 1) that describes the proportion of area in a refer-
ence landscape class that will be shifted away from 
the average historical value for that class. A value of 
1.0 would mean maximum departure or 100 percent of 
the area for each reference class is in a different class 
than the historical time series average. Five reference 
conditions were created using DELTA values from 
0.2 (minimum expected departure) to 1.0 (maximum 
expected departure) in 0.2 increments (Table 1).

	 Analysis—The response variables in this analysis 
are values of the five departure indices (SI, MI, CI, 
SR, EI) for each of the 10 replicates for the four factors 
(NCLASS, CVAR, PDOM, TCORR) across all treat-
ment levels per factor, compared to all five reference 
(DELTA) conditions. We stratified this analysis into two 
phases. The first phase involved using the TSG program 
to simulate 1,000 historical landscapes to create the set of 
ten historical time series. We ran TSG for all treatments 
within a factor while holding all other factors at the base 
case (table 1). We then performed ANOVA techniques 
to detect differences between treatments (NCLASS, 
PDOM, CVAR, TCORR) but not differences across 
factors (values of treatments) for only the YTY time 
series synthesis method (YTY or year to year involves 
averaging departures computed by comparing a refer-
ence condition to each landscape in the ten historical 
time series). In the second phase, we conducted the same 
simulations across the remaining time series analysis 
methods (AAY, MMY, QTY) (fig. 2). Again, ANOVA 
was used to test differences across treatments.
	 As mentioned, we used ANOVA techniques to deter-
mine significance across treatments within the factors, 
but index performance was mostly evaluated based on 
visual inspection of the box and whisker plots of the 
simulation results using the following criteria:

	 1.	Low and consistent levels of variability across 
replicates (boxes small and same size).

	 2.	Consistent behavior across the range of factor values; 
no decreasing or increasing trends.

	 3.	Distance from expected departure. We expected 
a certain departure value based on the specified 
DELTA value input for each reference condition, 
and included this value as a line on all box plot 
graphs.

4.	 Similar behavior across all values of DELTA. The 
properties of the variance across replicates as de-
scribed in 1 and 2 above should be the same across 
all departure reference sets.

An ideal index would have low replicate variability (small 
boxes and whiskers) and the replicate mean would be 
identical to the expected departure.

Results

	 This study illustrated that there is a wide variety of 
behaviors for all departure indices across all types of 
historical time series and reference conditions for the 
YTY time series synthesis technique (other synthesis 
methods will be discussed in the last part of this sec-
tion). We first discuss the behavior of departure indices 
using the averaging synthesis method (YTY) from a 
qualitative perspective and in the context of a statistical 
evaluation using ANOVA.

Time Series Synthesis Method  
YTY Base Case

	 The Sorenson’s Index (SI) performed well across 
a wide range of classes (NCLASS) regardless of the 
degree of departure in the five reference sets (fig. 3a). 
There was little variability in this index across the full 
range of number of classes (10-500 classes). However, 
at low class numbers (10-30), the variability seemed to 
increase and the ability of the index to detect departure 
decreased (greater distance from the expected departure 
line). SI also performed well across most levels of percent 
dominance (PDOM), except when reference and histori-
cal conditions were highly departed (high DELTA) even 
though there were significant differences across most 
levels of expected departure (see asterisks in fig. 3b). 
When DELTA was high (high expected departure), 
the SI performed well, even when the landscape was 
dominated by a few classes (10-30% dominance), but 
performance decreased as landscape area was evenly 
distributed across all classes because both variability 
across replicates (bigger boxes and whiskers) and dis-
tance from expected departure increased. SI also seemed 
unaffected by the inherent variability (CVAR) in the 
historical time series (fig. 3c). In general, when there 
was higher departure (DELTA near 1.0), SI was more 
variable, less precise, and less accurate (distance from 
expected departure increases); however, when expected 
departure was low (DELTA <0.5), SI had low variability 
and consistent behavior across all levels of variability. 
Temporal autocorrelation (TCORR) appeared to have 
little effect on SI performance, except maybe when the 
similarity of reference and historical landscapes was 
low (DELTA >0.6; fig. 3d).
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Figure 3—Sorenson’s Index (SI) performance as a departure measure.  Box and whisker plots of 10 replicates of 100 historical 
landscapes were compared to five reference landscapes that represent similar (DELTA = 0.2) to highly departed (DELTA = 1.0) refer-
ence conditions. We evaluated four factors: (a) number of classes, (b) percent dominance, (c) variability of classes, and (d) temporal 
autocorrelation. In the boxplots, the lower boundary of each box is the first quartile (25th percentile), the upper boundary is the 
third quartile (75th percentile), and the line within the box represents the median of the distribution. The upper and lower whiskers 
represent the 10th and 90th percentile and the dots below and above the whiskers represent outlying values. Asterisks within each 
plot indicate significant differences in the Departure Index across all treatments at the 0.05 (*), 0.01 (**), and 0.001 (***) levels.
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	 The Morisita Index (MI) was quite sensitive to 
NCLASS with values farther from expected departure 
when there were fewer classes (less than 30) at high ex-
pected departures (DELTA >0.8), or when there were a 
high number of classes (greater than 50) at low expected 
departures (DELTA <0.6) (fig. 4a). As with SI, the dif-
ferences in MI across all classes were highly significant 
(three asterisks in fig. 4a). MI seemed completely inef-
fectual at describing departure as NCLASS increased 
for reference conditions that were similar to historical 
conditions. However, MI performed well when expected 
reference departure was high (DELTA >0.8) with low 
replicate variability (except for lowest NCLASS) and 
consistent behavior across all classes. The level of class 
dominance (PDOM) in the HRV time series had little 
effect on MI behavior except at high expected depar-
ture reference conditions with high variability across 
replicates. There was reduced replicate variability and 
consistent MI behavior across all levels of dominance 
when expected reference departure reference conditions 
were low (DELTA <0.2) (fig. 4b). The same findings 
were true across the levels of class variability (CVAR) 
with MI values lower than expected and more variable 
across levels of PDOM and CVAR (fig. 4c). MI behavior 
seemed consistent across all levels of class variability, 
but the replicate variability (box and whisker ranges) 
increased when references were dissimilar to historical 
conditions (DELTA >0.8). As with SI, temporal autocor-
relation did not seem to affect MI results (fig. 4d).
	 The Similarity Ratio (SR) had a mixed performance 
across most factors (fig. 5). SR performance was espe-
cially poor when the number of classes and the degree 
of similarity between reference and historical were 
high (DELTA <0.5). Replicate variability was high and 
somewhat variable when NCLASS was low (less than 
60) and reference-historical landscapes were similar 
(DELTA <0.4) (fig. 5a). SR appeared to perform well 
across all levels of PDOM when reference-historical simi-
larity was high, but when expected departure was high 
(DELTA >0.5), replicate variability was high, distance 
from expected departure increased, and overall behavior 
was inconsistent (fig. 5b). Class variability (CVAR) and 
temporal autocorrelation (TCORR) had the same effect 
on SR with dissimilar reference-historical comparisons 
(DELTA >0.5) having greater replicate variability, less 
accuracy (farther from expected departure line), and less 
precision (inconsistent behavior) (figs. 5c,d).
	 Chord Distance (CD) had the same mixed performance 
as SR for nearly every factor (fig. 6). CD performance 

was poor when NCLASS was high (>50) and the degree 
of similarity between reference and historical was great 
(DELTA <0.5) because the replicate variability was 
high and inconsistent, especially when NCLASS was 
low (<100) (fig. 6a). CD performance was mixed across 
most levels of PDOM with high replicate variability and 
imprecise behavior, except when reference-historical 
similarly was high (DELTA <0.5), when the CD be-
havior stabilized and became highly consistent and 
somewhat accurate (fig. 6b). Class variability (CVAR) 
effects on CD were strongest when DELTA was high 
(when reference-to-historical landscapes are dissimilar) 
with CD becoming more variable and inconsistent (fig. 
6c). Temporal autocorrelation had the least effect on CD 
with only the least departed landscapes fostering the 
best CD behaviors (fig. 6d).
	 The last index, Euclidean Distance (ED), had only 
marginally better performance than CD or SR (fig. 7). 
The effect of the number of classes on ED was especially 
pronounced when DELTA was low (minimal expected 
departure from historical conditions) as the distance 
from expected departure line dramatically increased with 
increasing number of classes (fig. 7a), but when DELTA 
was high, ED performed well except when there were 
a low number of classes (<10). As with the last three 
indices, the ED behavior is highly inconsistent across 
the gradient of dominance (PDOM) and class variabil-
ity (CVAR) with distance from the expected departure 
line and replicate variance quite variable (figs. 7b, c). 
Again, temporal autocorrelation didn’t seem to affect 
ED behavior as much as the similarity of the reference-
historical conditions (fig. 7d) with the most consistent 
ED behavior occurring when expected departures were 
low.

Other Time Series Synthesis  
Methods (AAY, MMY, QTY)

	 Simplifying the historical time series by comparing one 
or two historical conditions to one reference condition 
instead of calculating a departure for each landscape in 
the historical time series is probably more desirable for 
land managers, but this may create greater uncertainty 
and more inaccurate HRV evaluations. In this section, 
we present results of the remaining time series synthesis 
methods, but only for the Sorenson’s Index (SI) since it 
performed the best, and only for two reference condi-
tions (highly similar where DELTA = 0.2 and highly 
departed where DELTA = 1.0).
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Figure 4—Morista’s Index (MI) performance as a departure measure.  Box and whisker plots of 10 replicates of 100 historical land-
scapes were compared to five reference landscapes that represent similar (DELTA = 0.2) to highly departed (DELTA = 1.0) reference 
conditions. We evaluated four factors: (a) number of classes, (b) percent dominance, (c) variability of classes, and (d) temporal 
autocorrelation. In the boxplots, the lower boundary of each box is the first quartile (25th percentile), the upper boundary is the 
third quartile (75th percentile), and the line within the box represents the median of the distribution.  The upper and lower whiskers 
represent the 10th and 90th percentile and the dots below and above the whiskers represent outlying values. Asterisks within each 
plot indicate significant differences in the Departure Index across all treatments at the 0.05 (*), 0.01 (**), and 0.001 (***) levels.
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Figure 5—Similarity Ratio (SR) performance as a departure measure.  Box and whisker plots of 10 replicates of 100 historical land-
scapes were compared to five reference landscapes that represent similar (DELTA = 0.2) to highly departed (DELTA = 1.0) reference 
conditions. We evaluated four factors: (a) number of classes, (b) percent dominance, (c) variability of classes, and (d) temporal 
autocorrelation. In the boxplots, the lower boundary of each box is the first quartile (25th percentile), the upper boundary is the 
third quartile (75th percentile), and the line within the box represents the median of the distribution. The upper and lower whiskers 
represent the 10th and 90th percentile and the dots below and above the whiskers represent outlying values.  Asterisks within each 
plot indicate significant differences in the Departure Index across all treatments at the 0.05 (*), 0.01 (**), and 0.001 (***) levels.
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Figure 6—Chord Distance (SR) performance as a departure measure. Box and whisker plots of 10 replicates of 100 historical land-
scapes were compared to five reference landscapes that represent similar (DELTA = 0.2) to highly departed (DELTA = 1.0) reference 
conditions. We evaluated four factors: (a) number of classes, (b) percent dominance, (c) variability of classes, and (d) temporal 
autocorrelation.  In the boxplots, the lower boundary of each box is the first quartile (25th percentile), the upper boundary is the 
third quartile (75th percentile), and the line within the box represents the median of the distribution. The upper and lower whiskers 
represent the 10th and 90th percentile and the dots below and above the whiskers represent outlying values. Asterisks within each 
plot indicate significant differences in the Departure Index across all treatments at the 0.05 (*), 0.01 (**), and 0.001 (***) levels.
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Figure 7—Euclidean Distance (ED) performance as a departure measure.  Box and whisker plots of 10 replicates of 100 histori-
cal landscapes were compared to five reference landscapes that represent similar (DELTA = 0.2) to highly departed (DELTA = 
1.0) reference conditions. We evaluated four factors: (a) number of classes, (b) percent dominance, (c) variability of classes, 
and (d) temporal autocorrelation. In the boxplots, the lower boundary of each box is the first quartile (25th percentile), the upper 
boundary is the third quartile (75th percentile), and the line within the box represents the median of the distribution. The upper 
and lower whiskers represent the 10th and 90th percentile and the dots below and above the whiskers represent outlying values.  
Asterisks within each plot indicate significant differences in the Departure Index across all treatments at the 0.05 (*), 0.01 (**), 
and 0.001 (***) levels.
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Figure 8—Performance of Sorenson’s Index for the four time series synthesis methods when reference landscapes are similar to 
historical conditions (expected departure low; DELTA = 0.2).  Results for the average departure calculation across all years (YTY) 
is shown in (a) while the time series synthesis methods reduced the 1,000 historical landscapes into three simplified series: (b) 
average across all years (AAY), (c) a minimum and maximum values across all year, and (d) the 90th percentile value across all 
years.  Box and whisker plots of 10 replicates and the lower boundary of each box is the first quartile (25th percentile), the upper 
boundary is the third quartile (75th percentile), and the line within the box represents the median of the distribution.  The upper 
and lower whiskers represent the 10th and 90th percentile and the dots below and above the whiskers represent outlying values.  
Asterisks within each plot indicate significant differences in SI across all treatments at the 0.05 (*), 0.01 (**), and 0.001 (***) levels.
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	 In general, the synthesis methods did not affect the 
behavior of SI across the four factors (fig. 8) for the 
similar reference-historical conditions (DELTA = 0.2), 
but the variability across replicates (box size) did de-
crease. The AAY method (average historical landscape) 
seemed to have nearly the same result as our detailed 
base case YTY method. The MMY method was the 
least desirable with some major shifts in behavior for 
NCLASS and PDOM. The QTY method seems to yield 
acceptable results but this method should only be used 
when degrees of departure must be integrated into the 
HRV analysis in the context of the stated management 
objective.
	 None of the synthesis methods produced acceptable 
results when the reference landscape was highly departed 
from the historical representation (DELTA=1.0) (fig. 9). 
Acceptable behavior occurred for the AAY method when 
class numbers were high (greater than 50 classes) and 
percent dominates were low (less than 10 percent; 10 
percent landscape classes have 80 percent of the area). All 
synthesis methods performed poorly across all levels of 
class variability and temporal autocorrelation with high 
variability, high expected departure, and inconsistent 
behaviors (fig. 9).

Discussion

	 While most of the vegetation community ecology based 
departure indices evaluated in this study performed 
acceptably for determining departure from HRV, none 
of them seemed to contain the optimum qualities for 
comprehensive assessments of departure across all pos-
sible landscape conditions. Those indices that performed 
well for one factor (number of classes, for example), 
performed poorly for other factors (percent dominance, 
for example). The Sorenson’s Index (SI) appeared to 
perform the best in this study when it was qualitatively 
compared with the other indices using a qualitative 
scale of 1 to 5; the SI score is more than 10 above all 
other indices (table 2). SI was least affected by the four 
simulated factors but it still had unacceptable behavior 
when the number of classes was low and the expected 
departures were high. While many studies have used 
the Sorenson’s Index or some variant with acceptable 
results (Holsinger and others 2006; Keane and others 
2008; Wimberly and others 2000), it appears that the 
simplest landscapes (low number of classes, few classes 
dominate, low variability) yield the most suspect results, 
especially when reference conditions are similar to the 
historical time series. This is also true for all the other 
evaluated indices.

	 The synthesis of an extensive historical time series 
of landscape maps into simplified historical references 
(average, minimum-maximum, and 90th percentile) 
did not create the high degree of uncertainty that we 
expected (greater replicate variability). Instead, it ap-
pears that reducing historical time series could be a viable 
option for land managers who cannot store or manage 
large historical data sets. This is especially important as 
more land managers obtain their HRV time series from 
simulation modeling (Keane and others 2002; Nonaka 
and Spies 2005; Wimberly and others 2000) because 
models can produce extensive outputs of simulated 
historical conditions. However, these synthesis options 
could result in less variability in the historical record 
that may make it difficult to detect subtle changes in the 
reference landscape. While we advocate that the entire 
historical time series be used to determine departure, 
we recognize that the average historical landscape may 
also be a useful alternative for computing departure.
	 One situation that was not explored in this study is 
when classes that did not exist in the historical reference 
conditions were present in the current conditions or vice 
versa. Today’s landscapes are highly departed from 
historical conditions partially because of increases in 
exotic plant communities, which were absent on histori-
cal landscapes. This important phenomenon (addition of 
new classes) could also affect the behavior of similarity 
indices. A related unevaluated situation is the extinction 
of an historical class or the absence of a class in the 
reference landscape (missing classes). The main effect 
of these additional factors on departure measures may 
be to increase variability across replicates.
	 The departure indexes used in this study have many 
limitations that influence their use and interpretation 
in HRV landscape analyses. First, these indices only 
describe the magnitude and trend of change at the land-
scape level and do not incorporate geographical change 
in their derivation. Decreases in class area in one por-
tion of the landscape may be offset by increases in that 
class in another portion resulting in no net change and 
a stable departure index, yet there may be a great deal 
of change at finer scales. Second, inherent landscape 
properties, such as topography, soils, and climate, may 
restrict the magnitude of change making it difficult to 
evaluate the range of change for unique landscapes across 
large geographical regions (Hessburg and others 1999). 
For example, natural fuel barriers, such as scree fields 
and rocklands, might restrict fire spread in some land-
scapes, resulting in relatively small changes in landscape 
composition. The large number of historical observa-
tions (1,000 in this study) needed to compute a stable 
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Figure 9—Performance of Sorenson’s Index for the four time series synthesis methods when reference landscapes are highly 
departed from historical conditions (expected departure high; DELTA = 1.0). Results for the average departure calculation 
across all years (YTY) is shown in (a) while the time series synthesis methods reduced the 1,000 historical landscapes into 
three simplified series: (b) average across all years (AAY), c) a minimum and maximum values across all year, and (c) the 
90th percentile value across all years. Box and whisker plots of 10 replicates and the lower boundary of each box is the first 
quartile (25th percentile), the upper boundary is the third quartile (75th percentile), and the line within the box represents 
the median of the distribution. The upper and lower whiskers represent the 10th and 90th percentile and the dots below 
and above the whiskers represent outlying values. Asterisks within each plot indicate significant differences for SI across all 
treatments at the 0.05 (*), 0.01 (**), and 0.001 (***) levels.
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departure index may restrict the creation of the HRV 
time series to only using simulation modeling, rather 
than using historical maps and data. The resolution and 
extent of the analysis landscape can also influence the 
range and variability of compositional classes thereby 
limiting departure estimation (Keane and Karau 2006). 
It is often difficult to detect departure when landscapes 
are large and their resolution is fine.
	 Results of this study illustrate the great need for the 
development of new, more comprehensive metrics for 
examining landscape departure (Barrett and others 
2006; Steele and others 2006). These new metrics 
should perform well across the factors used in this study, 
but they should also contain the following attributes: 
(1) easily understood and interpreted by land manage-
ment, (2) statistical tests for significance, (3) utility for 
other purposes, (4) sensitive to subtle differences across 
landscapes, (5) contain the ability to incorporate geo-
graphic change in departure estimation, and (6) easily 
computed by hand or with computer. In the meantime, it 
appears that the community ecology similarity indices, 
especially SI, can be useful for estimating landscape 
departure from historical conditions.
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