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Abstract
Increased use of remotely sensed data is a key strategy adopted by the Forest 
Inventory and Analysis Program. However, multiple sensor technologies require 
complex sampling units and sampling designs. The Recursive Restriction 
Estimator (RRE) accommodates this complexity. It is a design-consistent Empirical 
Best Linear Unbiased Prediction for the state-vector, which contains all suffi cient 
statistics for the sampled population. RRE reduces a complex estimator into a 
sequence of simpler estimators. Also included are model-based pseudo-estimators 
and multivariate Taylor series approximations for covariance matrices. Together, 
these provide a unifi ed approach to detailed estimation in large, complex sample 
surveys.
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Introduction
The USDA Forest Service, Research and Development branch, through its 

Forest Inventory and Analysis (FIA) program, is committed to delivering cur-
rent, consistent, and credible information about the status, condition, and trends 
of America’s forests (Gillespie 1999; Van Deusen and others 1999; Smith 2002; 
Bechtold and Scott 2005; McRoberts 2005; Patterson and Reams 2005; Reams 
and others 2005; Scott and others 2005). The FIA strategic plan for 2007 to 2011 
(USDA Forest Service 2007) charts the course for continuous improvement in 
the near term. The FIA plan details plans to utilize the latest technologies to ac-
quire data through remote sensing, fi eld activities, primary forest product studies, 
utilization studies, and landowner surveys. FIA plans to elevate its emphasis on 
remote sensing and fi eld data to analyze the location, status, and trends in land 
use, land cover, and fragmentation.

The 2007 FIA strategic plan identifi es opportunities to expand its service to 
the nation after full implementation of the base FIA program, which is described 
in its 1998 strategic plan (USDA Forest Service 1998). Development and imple-
mentation of these opportunities are not included in the current or target funding 
for FIA. However, FIA can provide the leadership necessary to pursue these op-
portunities through research and development, innovation, strategic partnerships, 
and cost sharing with other programs.

One key opportunity is to increase the role of remote sensing to improve cost 
effectiveness and data quality. One of many options might include a shift in FIA 
investments toward observations with remotely sensed data. However, verifi ca-
tion of remotely sensed data with suffi cient fi eld data remains essential. A shift 
toward more remotely sensed observations is most compelling in the Interior 
West, interior Alaska, and other regions with forests dominated by open cano-
pies, lower levels of stocking, and lower productivity. FIA leadership envisions 
using high-resolution, remotely sensed imagery and light detection and rang-
ing (LiDAR) technology. Other sensors include Moderate Resolution Imaging 
Spectro-radiometer (MODIS) with 250-m pixels (Justice and others 2002), 
Landsat (30-m pixels), and IKONOS satellites (1-m pixels). Lower-resolution 
satellite data, such as MODIS and Landsat, are suitable for synoptic, wall-to-
wall, full-coverage, thematic mapping. Sampling is needed for higher resolution, 
remotely sensed data such as IKONOS, small-footprint LiDAR, and large-scale 
aerial photography.

Another key opportunity is to enhance support to the National Forest System 
(NFS) within the U.S. Forest Service. FIA could extend its sampling grid of fi eld 
plots to all NFS lands, not just to those that meet the defi nition of forest. This 
expansion would also require an inventory compilation package be developed 
for NFS business needs, including mid-level vegetation map products. This is 
consistent with the FIA guiding principle to develop inventory methods and new 
techniques that will assist NFS in meeting the requirements of the National Forest 
Management Act. Remote sensing might reduce the cost of this ambitious strategy.

A remote sensing module might support other opportunities for FIA service. A 
rapid assessment capacity could be developed within FIA to provide emergency 
surveys of resource impacts within days or weeks following a major environmen-
tal disturbance such as a wildfi re, storm, hurricane, or sudden insect or disease 
outbreak (Van Deusen and others 1999).

Urban trees and forests affect quality of life of urban populations, which 
constitute approximately 80 percent of the U.S. population. Urban forestry is es-
pecially important to states with increasing populations. However, the FIA system 
does not include urban forests. A systematic approach to collecting and reporting 
data on status and trends of trees and forests in urban settings is another strate-
gic opportunity. The FIA sample frame could be expanded to urban settings. The 
Federal role would best remain at the strategic scale, but an FIA system could 
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serve as a platform for institutions to intensify to the individual city level. In prin-
ciple, remote sensing technologies could contribute to a cost effective solution in 
urban settings.

FIA has the opportunity to help build a national rangeland inventory. The 2002 
House Interior Appropriations Committee report (USDA Forest Service 2007) 
included language directing the Secretaries of Agriculture and the Interior to col-
laborate in implementing a rangeland monitoring system. There is an ongoing 
effort to explore this opportunity in partnership with the USDA Forest Service’s 
National Forest System, the USDA Natural Resources Conservation Service’s 
National Resources Inventory, and the USDI Bureau of Land Management. 
Remote sensing technologies offer a potential contribution to cost-effective im-
plementation. The feasibility of this major undertaking might be improved with 
remotely sensed data. This too is an FIA strategic priority (USDA Forest Service 
2007).

FIA also has the strategic opportunity to monitor wildlife habitat to mitigate 
concerns about management actions on species viability. However, standard FIA 
indicators, plot size, and measurements protocols can miss important habitat fea-
tures. The geographic scale of a habitat feature for many wildlife species might 
not match the scale of an FIA fi eld plot. Enhancements or embellishments might 
be necessary to the traditional FIA design and processing procedures. Synoptic 
remote sensing methods might produce geospatial data on certain habitat fea-
tures with suffi cient accuracy. Other habitat features require higher resolution 
observations that are feasible with a sample of large-scale aerial imagery or small-
footprint LiDAR data that cover sampling units 5 acres to 2500 acres in size. 
Holthausen and others (2005) provide a detailed assessment of strategic monitor-
ing of wildlife populations that could be linked to the FIA program.

There is another strategic opportunity to conduct strategic-level monitoring of 
status and trends on all treed land. Indicators could be developed for ecosystem 
health, biodiversity, carbon sequestration, wildlife corridors and habitat, narrow 
riparian features, windrows, and agroforestry stands. Some indicators might be 
reliably measured with high-resolution remote sensing technologies.

Integrating new technologies is critical to the effi cient implementation of the 
FIA program (Van Deusen and others 1999). One focus of the 2007 FIA strategic 
plan is to build technology partnerships with other national programs that pro-
duce data related to FIA objectives. These national programs include: National 
Resources Inventory conducted by the USDA Natural Resources Conservation 
Service; the Multi-Resolution Land Characterization Consortium and its National 
Land Cover Data products, which are coordinated by the USGS Earth Resources 
Observation and Science Center; the GAP Analysis Program by the USGS 
Biological Resources Division; NASA; and NOAA (USDA Forest Service 2007). 
Most opportunities for improved technologies involve sharing costs and logisti-
cal burdens to use remotely sensed data from satellites and low-altitude aircraft 
more effi ciently and effectively in order to facilitate broad-scale applications of 
Geographical Information Systems.

FIA plans to increase capacity to conduct research and development on tech-
niques that improve how data are collected, analyzed, and disseminated (USDA 
Forest Service 2007). Potential research areas include improved sampling and 
estimation procedures, better linkages to small-area or tactical assessments, de-
velopment of improved geospatial analytical tools, and better mechanisms for 
making data and results available to the public. The highest priorities are to im-
prove effi ciency of FIA, expand the scope of FIA, and develop new product lines 
that demonstrate value added to FIA. An emphasis on national techniques will 
increase FIA involvement in internally directed extramural research that will in-
crease the knowledge and uses of FIA data.

Accomplishing these strategic FIA objectives will likely require statistical 
estimators that combine annual time-series of FIA fi eld data with separate time-
series of remotely sensed data from different sensors with different resolutions 
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in order to estimate status, trends, and location by class for land use/land cover/
fragmentation change analysis (de Gruijter and others 2006). This report is one 
attempt to advance these programmatic objectives. It describes a suite of statisti-
cal estimation methods that accommodate complexities inherent to using diverse 
remote sensing technologies. It is a unifi ed and cohesive approach to estimation. 
These methods rely upon the extensive literature on Kalman fi ltering, and they 
build upon recent developments by Knottnerus (2003) that are closely related to 
the static Kalman fi lter.

Outline
This paper is organized as follows. The section “Stratifi cation in FIA” includes 

the limitations of FIA’s post-stratifi cation estimator. The next section, “Recursive 
Restriction Estimator (RRE)”, introduces the core estimation concepts used 
throughout this report. This section illustrates the algebraic identity between the 
Generalized Least Squares survey estimator and the Kalman fi lter. These concepts 
are applied with Recursive Restriction Estimation in complex sampling designs 
using the following examples.

The fi rst example is “Two-Phase Sampling for Continuous Variables with a 
Sample at Phase 1”. It considers the case of a large sample of points that are mea-
sured with high-resolution remote sensing at Phase 1 (P1) and a small sub-sample 
of these points that are measured by a fi eld crew. It is similar to FIA methods used 
in the 1960s to 1990s. This example does not include pre-stratifi cation, but it does 
apply to the case of double-sampling for stratifi cation with equal inclusion prob-
abilities among strata. This example illustrates estimation in state-space with the 
static Kalman fi lter, although it requires only a single recursion of the RE object, 
which is a special case of RRE.

The second example is “Two-Phase Sampling for Continuous Variables with a 
Census at Phase 1”. Rather than a sample of points at Phase 1, this example uses 
one or more censuses of remotely sensed pixels at Phase 1. A special case of this 
design is used by FIA throughout the United States. However, this FIA estima-
tor, which uses temporally indifferent post-stratifi cation, captures only a portion 
of the available auxiliary pixel data (see “Stratifi cation In FIA,”). RRE is a more 
capable alternative. Computation of optimal RRE weights requires inversion of a 
covariance matrix, which is the partition of the sample covariance matrix for the 
auxiliary variables. However, whenever the auxiliary data at the population level 
are known constants, this covariance matrix is singular or ill-conditioned, and the 
inversion is infeasible. This example introduces one form of RRE that solves this 
numerical problem. The vector of census constraints, which contains the exact 
population totals for all auxiliary variables, is processed recursively, one element 
at a time. The RRE sequentially applies the scalar inverse of the sample variance 
for each auxiliary variable rather than attempt an infeasible matrix inversion. This 
section also demonstrates RRE is equivalent to optimal calibration.

The third example is “Three-Phase Sampling for Continuous Variables”. It 
starts with the previous example and then adds a third phase, which is an equal-
probability sub-sample of the Phase 2 (P2) sample. This example is directly 
relevant to the FIA design that includes the Phase 3 (P3) Forest Health Monitoring 
plots. It uses all remotely sensed data and the Phase 2 fi eld measurements to im-
prove population estimates for the Phase 3 variables. Sequential RRE is a simple 
solution to this otherwise complex estimation problem. Simplicity is achieved by 
fi rst using RRE with the remotely sensed data to improve population estimates of 
variables that are measured with FIA Phase 2 fi eld protocol. In the next step, the 
RRE object combines the results of the fi rst step with the Phase 3 sub-sample. 
This two-step process is an example of a different type of recursion. The pri-
mary purpose is to simplify the estimator rather than solve numerical problems. 
However, the dimensions of the multivariate vectors can become large, posing 
numerical risks and other problems. This example includes a sub-optimal RRE 
alternative that uses smaller matrix dimensions to be more numerically robust in.
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The fourth example is “Single-Phase Sampling for Continuous Variables 
with Cluster Plots”. This section introduces an RRE for experimental designs 
such as the FIA Nevada Photo-based Inventory Pilot (NPIP) study. NPIP uses a 
50-acre photo-plot, which is a cluster of 49 points that are measured with a sample 
of high-resolution aerial photography. One of these 49 points is the center of a 
standard FIA Phase 2 fi eld plot. RRE uses the sample of photo-interpreted mea-
surements to improve precision of population estimates from the sample of Phase 
2 fi eld measurements. The previous examples consider remotely sensed data from 
independent samples at the different phases. That type of independence does not 
exist when remotely sensed and fi eld measurements are made within the same 
cluster plot in this two-stage design.

The fi fth example is “Two-Phase Sampling for Continuous Variables with 
Cluster Plots”. This is based on the previous NPIP example with the addition of 
a large, independent sample of 50-acre cluster plots. This large Phase 1 sample 
is measured with photo-interpretation of the same type of high-resolution aerial 
photography; there are no fi eld measurements made within this Phase 1 sample of 
cluster plots. Furthermore, this example includes wall-to-wall, full-coverage data 
from spaceborne sensors. RRE is a simple solution to this complex design.

All of the examples assume the remotely sensed data are continuous variables. 
Each continuous variable is represented by a single element in a multivariate 
vector. The section “Categorical Variables” expands the scope of RRE. A poly-
chotomous variable with C categories may be readily transformed into a vector 
of C dichotomous variables and then used directly with the estimators in previous 
sections. Rather than a single element for a continuous variable, there will be C 
elements for a categorical variable. If there are two polychotomous categorical 
variables, then a C1-by-C2 contingency table of cross-classifi cations is possible. 
Each of the C1×C2 dichotomous cross-classifi cations would require a separate 
vector element. This can produce vectors and covariance matrices with large di-
mensions, which often lead to numerical problems. Sub-optimal alternatives are 
discussed.

The section “Robust Numerics” briefl y covers the subject of numerical round-
off error and the need for robust algorithms. U-D factorization, which uses the 
modifi ed Gram-Schmidt orthogonalization, is an example. Optimal sample 
survey estimation is hindered by numerical problems that have been solved by 
engineering statisticians. The Kalman fi ltering literature offers an abundance of 
reliable solutions

FIA relies on “expansion factors” to simplify post-stratifi ed estimation in FIA’s 
large database. FIA expansion factors are analogous to calibration weights, which, 
likewise, are widely used in large government survey programs to conveniently 
improve statistical effi ciency with auxiliary information. FIA expansion factors 
and calibration weights modify the design weights for each Primary Sampling 
Unit (PSU) to incorporate the auxiliary data, such as the population census of pre-
dictions for remotely sensed pixels. The section “Optimal PSU Expansion Values 
for Each FIA Plot” develops analogous methods for the RRE. This method as-
signs a vector of expansion values to each PSU. The RRE expansion vector for 
each PSU uses the auxiliary data specifi cally observed for that PSU. The sum of 
RRE expansion values for each PSU in the sampled population will exactly equal 
the estimated vector of population totals from the RRE. The RRE covariance ma-
trix is similarly expressed as the sum of expansion value vector cross-products at 
the PSU level. This solves problems with the FIA database that are identifi ed by 
Scott and others (2005). Further development is needed for FIA plot expansion 
factors from RRE algorithms.

The section “Multivariate Vector of FIA Study Variables” describes the core 
variables being estimated by FIA. In principle, all these variables can be si-
multaneously estimated with RRE. Multivariate FIA response variables enable 
pseudo-estimators for other FIA statistics in later sections. However, it is always 
possible to estimate one study variable at a time, which is the situation in FIA.
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The section “Multivariate Vector of Auxiliary Variables” briefl y covers the 
different types of remotely sensed and geospatial variables that might improve 
precision of FIA statistics. RRE can simply accommodate the complex sampling 
designs required to utilize auxiliary information from these diverse technologies.

Next, a series of examples illustrate various pseudo-estimators. These are 
transformations of vector estimate from a design-based estimator. They depend 
upon multivariate estimation and are not generally feasible with the usual uni-
variate estimators. The section “Linear, Small-Area, Synthetic Estimator with 
Census Predictors” is an example of a multivariate transformation for small-area 
estimation with inverse calibration (Tenenbein 1972; Brown 1982). The example 
uses a complex version of the NPIP design (discussed in “Single-Phase Sampling 
for Continuous Variables with Cluster Plots”), which uses a small sample of 50-
acre photo-plots that surround a 1-acre FIA fi eld plot, a large sample of 50-acre 
photo-plots that do not include a fi eld plot, and wall-to-wall remotely sensed data. 
However, the same pseudo-estimation methods apply to any RRE estimate and 
its covariance matrix. The small areas in this example are individual 6000-acre 
FIA hexagons, which FIA uses for national-scale geospatial presentations. These 
pseudo-estimators are consistent in that the sum of small-area estimates over all 
small areas equals the RRE estimates for the total population. This would support 
a geospatial presentation database based on FIA hexagons.

The section “Non-Linear Pseudo-Estimators” covers more examples that are 
relevant to FIA. Computation of these non-linear transformations is straight-
forward. However, the estimator for the associated covariance matrix requires 
multivariate Taylor-series transformations. The sub-section “Product Estimator: 
Missing Data Imputation” is a simple example in which the fi rst-order Taylor-
series produces an exact model-based estimator for the covariance matrix. The 
example uses model-based imputation of FIA biomass accretion estimates for 
lands that are too dangerous to measure by a fi eld crew and for private lands for 
which the landowner has denied legal trespass to an FIA fi eld crew. The example 
assumes classifi cations of wall-to-wall pixels from a spaceborne sensor are avail-
able for all lands. These remotely sensed data serve as predictors of the missing 
FIA fi eld measurements. The model assumes that the expected biomass accretion 
for each remotely sensed category is independent from the missing data status. 
Given these model assumptions, it readily produces variance estimates for popu-
lation totals that include both the sampling and estimation errors for the measured 
sampling units and prediction error from the model for missing data.

The sub-section “Ratio Pseudo-Estimator: Volume per Estimated Unit Area of 
Forest Cover” considers the ratio operator, which is a more complex non-linear 
transformation. The example is estimation of wood volume per forested acre. The 
pseudo-estimator is the population estimate of total wood volume divided by the 
estimated total area of forest. The covariance matrix for this pseudo-estimator 
uses the fi rst-order Taylor-series approximation. The sub-section “Recursive 
Object-Oriented Simplifi cation of Taylor-Series Approximations” presents 
several techniques that simplify derivation of multivariate Taylor-series approxi-
mations for covariance matrices. The sub-section “A Model-Based Estimator for 
Small-Domain Predictions” is a more complex example of multivariate pseudo-
estimators that combines both linear and non-linear transformations. It uses the 
Taylor-series simplifi cations given in the previous sub-sections. The example uses 
unbiased estimates of tree volume with expensive measurements of upper-stem 
diameters on a small sub-sample of FIA Phase 2 fi eld plots. It assumes inexpen-
sive volume estimates for Phase 2 plots are biased by volume equations that are fi t 
to historical data, which no longer represent the current sampled population. This 
is a form of calibration in which an expensive, unbiased estimate from a small 
sample is empirically used to correct for measurement bias in a less-expensive 
estimate from a large sample. The calibration is performed for many small-do-
mains. The sum of estimates for all domains is consistent with the estimate for the 
population total. The sub-section “Second-Order Taylor-Series Approximation to 
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Assess Bias” considers the error in fi rst-order Taylor-series approximations by 
computing the second-order approximation. Recursive methods presented in pre-
vious sub-sections simplify derivation of the second-order approximation.

The fi nal sections depart from mathematical statistics and concentrate on ap-
plication topics. The section “Accuracy and Registration of Remotely Sensed 
Data” explores the degree of association required between the study variables and 
the remotely sensed auxiliary variables. The “Discussion” covers the following 
topics: the advantages of RRE compared to post-stratifi cation, Risk management 
with complex sampling designs, and seminal literature. “Future Research and 
Development” briefl y discusses the next steps needed to implement RRE confi -
dently with the FIA database. “Conclusions” follows.

Stratifi cation in FIA
FIA is a pioneer in the use of remotely sensed data for stratifi cation to im-

prove effi ciency of its statistical products (e.g., Bickford and others 1963). Today, 
this is exclusively accomplished with the post-stratifi cation statistical estimator 
(Scott and others 2005). FIA applies post-stratifi cation with full-coverage, re-
motely sensed thematic maps of forest versus non-forest cover produced with 
wall-to-wall Landsat data (e.g., Hoppus and Lister 2002; Nelson and others 2007). 
Hansen and Wendt (2000) and McRoberts and others (2002) further stratify based 
on edge conditions between the following remotely sensed classifi cations of for-
est and non-forest: forest, forest edge, non-forest edge, and non-forest. McRoberts 
(2006) uses a related approach with four strata that are based on predictions of 
the proportion forest area in each Landsat pixel from a logistic regression model. 
These stratifi ers separate heterogeneous edge conditions from more homogeneous 
conditions within the interior of stands. Most stratifi cation schemes help isolate 
many of the most serious classifi cation errors that are caused by misregistration 
between FIA plots and their corresponding pixels. A relatively small frequency of 
misclassifi cation errors can degrade the statistical effi ciencies offered by remote 
sensing (Czaplewski and Patterson 2001, 2003).

Certain FIA areal summary statistics are constrained to match administrative 
records for geopolitical entities. These include Census Bureau statistics for total 
area of each county, regardless of terrestrial land cover, and the area of signifi cant 
water bodies by county. Areal constraints used by FIA also include major land 
ownership categories. FIA cross-classifi es remotely sensed pixel data and these 
administrative areal statistics, and this merged cross-classifi cation is applied with 
the post-stratifi cation estimator to impose areal control. The result is numerous 
strata, many of which have very small samples of FIA sample plots. Stratifi cation 
is best used to reduce variance in sample estimates. However, FIA also uses strati-
fi cation to impose areal control for administrative statistics. Areal control does 
not necessarily produce variance reduction. Stratifi cation for areal control and 
remotely sensed data produces numerous small strata that contain few FIA plots.

Prior to 1999, FIA would survey all fi eld plots in a state, produce statistical and 
analytical reports, and then move to the next state in the regional survey sequence. 
Each state was re-surveyed every 7 to 15 years (Gillespie 2000). FIA documents 
cite this as a periodic survey. These periodic surveys served the states well shortly 
after the full survey was completed. However, confi dence in the data decreased 
as the data aged more than fi ve years (American Forest Council 1992:1-15). The 
Agricultural Research Extension and Education Reform Act of 1998 directed all 
FIA units to change these statewide periodic systems into a nationally consistent 
annual survey system (Gillespie 1999). Beginning in 1999, FIA responded to this 
Congressional direction by systematically subdividing its sampling frame into 5 
to 10 separate panels. Each panel includes 10 to 20 percent systematic sample of 
all FIA fi eld plots in each state. Ideally, a single panel is fully measured during a 
single year (Van Deusen 2002). However, this subsampling frequency introduces 
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an unintended consequence—it further aggravates problems that are inherent with 
detailed stratifi cation and very small, within-stratum sample sizes.

One solution to the relatively small sample size in each annual FIA panel is 
to merge fi eld data from multiple years. A time-series of panel measurements 
is treated as though it was measured during a single year. Post-stratifi cation 
uses a single set of remotely sensed images (Bechtold and Scott 2005) rather 
than an annual time-series of remotely sensed data. However, changes in plot 
conditions between acquisition of the remotely sensed data and the most recent 
fi eld measurements are not distinguishable from prediction errors with remotely 
sensed data. This type of disagreement between fi eld data and remotely sensed 
classifi cations will reduce the statistical effi ciency from stratifi cation. The loss in 
effi ciency will be rapid as the agreement deteriorates (Czaplewski and Patterson 
2001, 2003), regardless of the cause (i.e., classifi cation error versus change in 
land cover). This means that the value of remotely sensed data slowly diminishes 
in dynamic landscapes, which are exactly the types of domains that often have the 
greatest need for current monitoring data. These same areas could benefi t the most 
from remotely sensed data if the limits from post-stratifi cation can be mitigated.

Inaccurate variance estimates can be common for strata that have rare or com-
mon attributes. For example, if all plots sampled in a forest stratum are truly 
forest, then the estimated variance for forest cover will be zero in that stratum. 
Even though the stratum has some non-forest cover, the stratum estimate for non-
forest area would be zero with zero variance. Likewise, if a particular condition 
exists in a stratum but not in the sample for that stratum, then the sample survey 
estimate will be zero with zero estimated sampling error. This is known as a sam-
pling zero in the analysis of contingency tables. The frequency of this type of error 
in realized variance estimates increases as the number of strata increases because 
within-stratum sample sizes become small (e.g., 4≤nh≤10), as recommended by 
Scott and others (2005). Seminal references recommend larger sample sizes (e.g., 
20≤nh; Särndal and others 1992:251, 267; de Gruijter and others 2006:118).

Stratifi cation on remotely sensed data for both variance reduction and areal 
control has another undesirable consequence. FIA fi eld plots frequently straddle 
stratum boundaries, which compromises the assumed independence of sampling 
errors among strata in the post-stratifi cation estimator (Hahn and others 1995; 
Bechtold and Scott 2005). FIA treats a single plot that straddles multiple strata 
as if it is partially included in each stratum. The plot expansion factors are used 
to account for “mixed-condition” plots (Scott and others 2005). This means that 
the variance estimators FIA uses assume that this departure from underlying sta-
tistical assumptions of stratifi cation does not cause substantial bias in variance 
estimators. Van Deusen (2005) found that these “variance estimates will often be 
optimistic when weighted estimators are applied to arbitrary population subsets.” 
Scott and others (2005) reported that “FIA is evaluating the frequency of plots 
that straddle NFS boundaries and may switch to the ratio-of-means estimators 
described by Zarnoch and Bechtold (2000), if necessary.”

The following example attempts to clarify the current situation. Auxiliary 
variables are available from different sources of remotely sensed and geospatial 
data. The post-stratifi cation estimator used by FIA (Scott and others 2005) re-
quires cross-classifi cation of multiple sources of categorical auxiliary data (Zhang 
2000). For example, consider two such sources: (1) a detailed thematic map of 
fi ve forest types that uses remotely sensed data; and (2) a map of fi ve ecoregions, 
each of which is associated with different components of potential natural veg-
etation (Bailey 2004). Cross-classifi cation produces 25 potential strata. Further, 
assume there are 1000 FIA fi eld plots (i.e., a typical FIA inventory unit), of which 
100 are measured each year in a single panel. If only one of the potential sources 
of auxiliary data is used for post-stratifi cation, which has fi ve categories, then 
there would be an average of (100/5) = 20 FIA plots in each stratum. If both 
sources of auxiliary data are used in post-stratifi cation, there would be an average 
of [(100/5)/5] = 4 FIA plots in each cross-classifi ed stratum. Twenty FIA plots 
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might be suffi cient for estimating conditions in a single stratum, but fi ve FIA 
plots might not be suffi cient for reliably estimating conditions in a single cross-
classifi ed stratum. Because the number of strata is limited by the FIA sample 
size, the number of categories created through cross-classifi cation is also limited. 
Inevitably, different cross-classifi ed categories must be merged, or some thematic 
information must be ignored, in order to create strata with suffi cient sample sizes. 
Furthermore, stratifi cation reduces the information in continuous remotely sensed 
data into categorical values (Mandallaz 2008:89). For example, remotely sensed 
data can predict continuous variables that are correlated with relevant variables, 
such as total biomass, but some of that remotely sensed information is lost when 
categorized into an ordinal variable.

Recursive Restriction Estimator (RRE)
The Recursive Restriction Esti mator (RRE) refers to the sequential application 

of the Restriction Estimator (RE), in which the RE output from one recursion is 
used as input to the next recursion. RRE is a special case of the Kalman fi lter, 
namely the static Kalman fi lter. The Kalman fi lter was originally developed as 
a multivariate time-series estimator for dynamic stochastic systems. In contrast, 
the static Kalman fi lter is not used for time-series applications. Rather, it is used 
here to estimate more precisely a vector of population totals at one point in time, 
which is considered the static “state” of the system. The Kalman fi lter, either in a 
time-series or static application, is a sequential recursive estimator in multivariate 
state-space.

Pollock (2003) reviews the history of recursive estimation. Gauss originally 
published the concept of recursive least squares during 1821 to 1826. Gauss refers 
to augmentation with new observations, which is essentially recursive least-
squares estimation. Recursive estimation was rediscovered by Kalman (1960) and 
Kalman and Bucy (1961), which soon spawned the vast amount of literature on 
the Kalman fi lter. Kalman and Bucy cast recursive estimation into the state-space 
model with time-varying parameters, which complicates the mathematics but ex-
pands the applications.

Knottnerus (2003) provides a detailed treatise on estimation for complex 
sample surveys. His unifying “standard sampling model” uses Pythagorean re-
gression, and he demonstrates the intimate connection between Pythagorean 
regression and the Kalman fi lter. Knottnerus further illuminates the relationships 
among regression theory, systems theory, and sampling theory. Similar con-
nections in more applied settings are made by Czaplewski and others (1988), 
Czaplewski (1989, 1990, 1996, 1999, 2000, 2001, in prep.[b]), and Czaplewski 
and Thompson (2009).

State-Space
State-space is a mathematical model of a stochastic process.  The state-space 

concept of the Kalman fi lter originated in electrical engineering for applications 
in astronautical navigation systems (Jazwinski 1970). It has been extended to a 
large number of different stochastic processes, including those that evolve over 
both time and space (Wikle and Cressie 1999). Harvey and Todd (1983) equate 
state-space to “structural” or “unobserved components” time-series models. In 
the context of probability sampling, the stochastic structure is defi ned by the 
probability distributions of the various random sampling and measurement er-
rors (Särndal and others 1992:21, 515, 538, 606; Knottnerus 2003:11). The U.S. 
Bureau of Labor Statistics has used the state-space perspective for two decades in 
longitudinal panel surveys (Tiller 1992; Pfeffermann and Tiller 2006).

Kalman (1960) used the state-space paradigm to describe a dynamic stochastic 
system: “The fundamental concept is the notion of the state. By this is meant, 
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intuitively, some quantitative information (a set of numbers, a function, etc.) 
which is the least amount of data one has to know about the past behavior of the 
system in order to predict its future behavior.” Jazwinski (1970) defi nes the state-
space as a family of random variables or vectors. The state-vector is described 
by Maybeck (1979:26, 112) as “the set of n variables, the values of which are 
suffi cient to describe the system … completely.” State-space is “memoryless” 
in the sense that the state at time t fully contains all suffi cient information about 
the past (Kalman and others 1969); it is not necessary to store past information. 
Otherwise, the dimensions of the estimation problem would be larger, as in most 
other time-series models.

In the context of the static Kalman fi lter, the state-space of the multivariate 
time-invariant system contains all relevant quantitative information, namely the 
population parameters, about a sampled population. In a simple design, the state-
space, or the vector of population parameters, includes the primary study variables. 
In a complex sampling design, the state-space is enlarged to include complex 
auxiliary parameters at the population or domain levels. Auxiliary variables are 
generally inexpensive, correlated to some degree with the study variables, and, 
therefore, available to improve estimates of the study variable (Särndal and others 
1992:220, 304, 397).

In the methods that follow, the state-space does not explicitly include indi-
vidual population elements, sampling units, or inclusion probabilities, although 
those essential concepts in sample surveys are used for unbiased, design-based 
estimation of a state-vector and its covariance matrix during execution of the RE 
(Sugden and Smith 2002; Knottnerus 2003:357). The sequential processing of 
time-series information in the dynamic Kalman fi lter is replaced in the static 
Kalman fi lter with sequential processing of information from different compo-
nents of a complex sample survey, such as different stages or phases. Because the 
Kalman fi lter is memoryless, the static Kalman fi lter need not store all auxiliary 
information as it sequentially processes individual components of a complex sam-
ple survey. This reduces the dimensions of the sequential multivariate estimator.

Recursive Estimation
Meinhold and Singpurwalla (1983) describe the recursive process  as “the 

evolution of a series of regression functions, each having a potentially different 
intercept and regression coeffi cient; the evolution stems from a learning process 
involving all the data.” The dynamic Kalman fi lter is a recursive estimator that 
uses two prior vector estimates: (1) a model-based estimate of the current state-
vector based on the best estimate at the previous time step; and (2) a current 
direct measurement (e.g., design-based sample estimate of population totals) for 
a linear transformation of the same state-vector. The Kalman fi lter combines both 
estimates into a more precise estimate of the current state-vector using a mul-
tivariate composite estimator. Assuming unbiased measurements of the current 
state-vector, unbiased estimators for the state-vector at the previous time period, 
and unbiased model predictions of the current state based on the previous state, 
the Kalman fi lter removes all information available from the current time and 
all previous time steps. Given these assumptions, the remaining random residual 
estimation errors are “white noise” and are independent of all previous estima-
tion errors (Knottnerus 2003:311). The recursion process is repeated at the next 
time step as the state of the stochastic system changes and new measurements 
of the system become available. There is no need to process any past informa-
tion beyond the previous time step because the Kalman fi lter estimate contains 
all previous information. In other words, the Kalman fi lter is memoryless in that 
it propagates all suffi cient statistics for the problem conditional on the realized 
independent observations.

The Kalman fi lter is seldom applied in sample surveys. Contributions by 
Knottnerus (2003), Knottnerus and van Duin (2006), Sõstra (2007), and Sõstra 
and Traat (2009) are among the few exceptions. More often, the application of 
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the Kalman fi lter is in the context of time-series estimation with longitudinal pan-
el surveys (e.g., Harvey 1978; Tam 1987; Tiller 1992; Jones 1993; Frees 2004; 
Oud 2004; de Gruijter and others 2006; Pfeffermann and Tiller 2006). These au-
thors use models at the level of individual population elements or sampling units. 
However, state-space perspective (e.g., Rosenbrock and MacFarlane 1972) is 
equally valid. For example, Czaplewski and Thompson (2009) estimate the state 
of a large forest with the state-vector defi ned as the number of trees in several 
different condition categories within the entire sampled population. Individual 
sampling units in a probability survey are used in the measurement vector as esti-
mates of these population parameters, but otherwise, they do not explicitly appear 
in the time-series model within the Kalman fi lter.

The Basic Idea
The Merriam-Webster Dictionary defi nes a recursion process as the “succes-

si o n of elements (as numbers or functions) by operation on one or more preceding 
elements according to a rule or formula involving a fi nite number of steps.” In 
the context of RRE, the recursion starts with exactly two elements, called objects 
here, of a complex survey design. For example, consider FIA research on the 
Nevada Photo-based Inventory Pilot Study (Frescino and others 2009a), in which 
a sample of high-resolution aerial photography is added to the existing design of 
FIA Phase 2 fi eld samples and the wall-to-wall, full-coverage census of Landsat 
satellite pixels.

• The Phase 1 Object is a relatively large probability sample of PSUs. Each PSU 
is measured with two protocols: (1) remotely sensed vector measurements from 
a spaceborne, earth-observing satellite sensor and (2) vector measurements 
based on photo-interpretation of a sample of high-resolution aerial photography. 
The spaceborne sensor protocol is inexpensive, but it contains considerable 
measurement error relative to photo-interpretation. However, measurements 
from the spaceborne sensor are correlated to some degree with more accurate 
photo-interpreted measurements. Standard, design-based methods produce 
sample survey estimates for the vector of population totals and its covariance 
matrix. This is used as the state vector in the Kalman fi lter, which is discussed 
in more detail below. The state-vector includes a partition for the variables 
measured with the spaceborne sensor protocol. The remaining partition 
contains the variables measured with the photo-interpretation protocol. The 
covariance matrix includes a diagonal partition for the covariances among 
variables measured with the spaceborne protocol and another diagonal 
partition for variables measured with photo-interpretation. The remaining off-
diagonal partition contains the estimated sample cross-covariances among the 
population estimates for the spaceborne and photo-interpreted variables.

• The “Census Object” is based on 30- by 30-m pixels, each of which is 
measured with the same spaceborne sensor protocol as in Phase 1. The photo-
interpretation protocol in Phase 1 is not used in the census. This is a true census 
because the set of remotely sensed pixels fully covers the entire sampled 
population. Enumeration of the spaceborne measurements for each and every 
pixel in the sampled population produces a vector constant of population totals 
for variables measured with the spaceborne protocol. The covariance matrix 
for the population totals exactly equals zero because there are no sampling 
errors. This vector constant contains the auxiliary information, and it is called 
the measurement vector in the Kalman fi lter.

• The RE combines the measurement vector from the Census Object with the 
state-vector from the Phase 1 Object. Depending on the magnitude of the 
off-diagonal cross-covariances among the spaceborne and photo-interpreted 
variables from the Phase 1 sample, the RE population estimate for the photo-
interpreted variables will be more precise than the corresponding design-based 
estimates from the Phase 1 Object alone. This is a design-based calibration 
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estimator, which is discussed in the section “Relationship to an Optimal 
Sample Survey Estimator.”

• The RE vector estimate contains a partition that corresponds to the 
spaceborne variables. That partition will exactly equal the measurement 
vector from the remotely sensed census. Its corresponding partition in 
the RE covariance matrix is exactly zero. The remotely sensed census 
statistics essentially constrain the RE estimator. (See Knottnerus 
2003:Chapter 12 on the General Restriction Estimator) The RE estimate 
for the photo-interpreted variables contains all information contributed 
by the correlation with the spaceborne variables. Therefore, the partitions 
for the spaceborne variables may be deleted from further consideration. 
The remaining partition of improved population estimates for the photo-
interpreted variables is redefi ned as the measurement vector in the 
second recursive process, which follows.

So ends the fi rst recursion. Now, an example of the second recursive 
process, in which the RE results from the fi rst recursion are combined with 
another independent design object:

• The Phase 2 Object is a probability sample of PSUs with a relatively small 
sample size. Each Phase 2 PSU is measured with two protocols: (1) the 
same photo-interpretation of high-resolution aerial photography used in 
Phase 1 (above) and (2) expensive, on-the-ground vector measurements 
made by FIA fi eld crews. Measurements from the photo interpretation 
are reasonably well correlated with certain fi eld measurements. FIA uses 
these fi eld measurements as the minimum acceptable protocol for data 
quality of its statistical tables. As with the Phase 1 object above, standard 
design-based methods produce a sample survey estimate for the vector 
of population totals and its covariance matrix from Phase 2. This is used 
as the new defi nition of the state-vector during this second recursion. 
The off-diagonal partition of its covariance matrix contains the estimated 
sample cross-covariances among the population estimates for photo-
interpreted and FIA fi eld variables from the small Phase 2 sample.

• The Composite Object is identical to the partition of RRE vector estimate 
from the fi rst recursion that corresponds to the photo-interpreted variables. 
Its covariance matrix is the corresponding partition from the outcome 
of the fi rst recursion. Because the Composite Object fully incorporates 
all relevant information from the census in the fi rst recursion, the size 
of this covariance matrix is smaller than the corresponding partition in 
the design-based Phase 1 estimate. The Composite vector estimate is 
redefi ned as the measurement vector for this second recursion. It does 
not contain any elements for variables measured with the FIA fi eld 
protocol in Phase 2.

• The RE combines the measurement vector from the Composite Object 
with the state-vector from the Phase 2 Object. Because the off-diagonal 
cross-covariances among the photo-interpreted and fi eld variables from 
the Phase 2 sample are non-zero, RRE population estimates for the 
FIA fi eld variables will be more precise than the corresponding design-
based estimates from the Phase 2 Object alone. The RRE partition that 
corresponds to the photo-interpreted variables is less precise in the fi rst 
recursion relative to the outcome of the second recursion because the 
latter gains strength from the Phase 2 sample. The remaining partition 
that corresponds to the FIA fi eld variables contains all information 
available from the Census, Phase 1, and Phase 2 objects. Unless needed 
for other purposes, the partition for the photo-interpreted variables may 
be discarded because all relevant information has been fi ltered out and 
incorporated into RRE for the partitions corresponding to the FIA fi eld 
variables.
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Therefore, the design-consistent Empirical Best Linear Unbiased Estimator 
(EBLUE) of population estimates for the FIA fi eld variables is achieved through 
two recursive steps. The census of remotely sensed spaceborne measurements 
improves the population estimates for the photo-interpreted variables in the fi rst 
recursion. The second recursion uses these improved estimates results to further 
improve population estimates for the FIA fi eld variables. The recursive method 
separates the complexity of the sampling design into simpler objects that are 
sequentially combined with RRE. As briefl y discussed in the following section 
“Relationship to an Optimal Sample Survey Estimator,” RRE is also a multivari-
ate recursive calibration estimator in state-space.

Now, the focus shifts to the details of the composite estimator. The univariate 
composite estimator is a conditionally unbiased statistical method that combines 
a weighted sum of two separate, previously calculated statistical estimates into a 
single, more effi cient estimate (e.g., Cochran 1977:346, 355). The more precise 
of the two previously calculated estimates is weighted more heavily. The scalar 
weights are computed to produce an approximately minimum variance estimator. 
The less familiar Restriction Estimator (RE) combines two previously calculated 
vector estimates, which need not have equal dimensions, with a matrix of optimal 
weights computed with the estimated covariance matrix for each vector estimate. 
In the context of multilevel sampling, the composite estimator is used to com-
bine estimates sequentially from the various sampling phases or stages. Sampling 
units are segregated into independent samples for each phase or stage (Magnussen 
2003, including references to Card 1982; Cochran 1977; Tenenbein 1972), and 
the multivariate composite estimator is used to combine pairs of stages, phases, 
censuses, or prior composite estimates into a more effi cient estimate of the vari-
ables of interest. But fi rst, the univariate composite estimator will be used as an 
introduction to the more complex multivariate composite estimator.

The Univariate Composite Estimator
The univariate composite estimator is well known in sample survey applica-

tions, such as sampling over time, small-area estimation, and adaptive sampling 
(e.g., Särndal and others 1992:371; Schreuder and others 1993:321; Binder and 
Hidiroglou 1988:190; Valliant and others 2000:400; De Gruijter and others 
2006:226; Gregoire and Valentine 2007:388). Czaplewski and Thompson (2009) 
provide a tutorial description of the univariate Kalman fi lter in the context of 
time-series data that assists intuitive understanding. The univariate composite es-
timator is presented here with notation that is a slight modifi cation of Särndal and 
others (1992:371).

Assume tX and tZ are two unbiased estimators of the same univariate population 
total t for the sampled population (e.g., total woody biomass or total forest area). 
As an example, consider two independent estimates from simple random sample 
1 (s = 1) and an independent simple random sample 2 (s = 2):
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Let the linear combination of the two estimators be the weighted (i.e., constant 
“k,” 0<k<1) sum o f the two prior estimates. From Särndal and others (1992:Eq. 
9.9.3), the composite estimator is defi ned as tRE is:
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The variance estimator for the composite estimate (Särndal and others 1992:Eq. 
9.9.4) in Eq. 2 is:
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where C is the scalar cross-covariance among the random errors from the two 
estimators. Because the tw o samples are independent in this example, C = 0, and:
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The unbiased minimum variance univariate composite estimator is achieved with 
the following k weighting constant (Bierman 1977):
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If the two estimates of tX and tZ are independent, then C = 0 and Eq. 4 simplifi es to:
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(See Cochr an (1977:346), Maybeck (1979:12-14), and De Gruijter and oth-
ers (2006:226).) Relatively large deviations from the optimal scalar weight (k) 
in Eq. 5 do not substantially degrade the effi ciency of the composite estimator 
(Schaible 1978). Therefore, a sub-optimal weight computed from sample esti-
mates of the variances is expected to perform well in most univariate cases:
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The theoretical estimator in Eq. 5 is the Best Linear Unbiased Estimator (BLUE). 
The applied estimator in Eq. 6 is a sub-optimal Empirical Best Linear Unbiased 
Estimator (EBLUE) (Militino and others 2008). Because both estimators tX and tZ 
are design-consistent, their weighted sum is also design-consistent.

As seen from Eq. 6, the univariate composite estimator weights each indepen-
dent estimate inversely proportional to its relative variances. The most precise 
estimate (least variance) receives the greatest weight, although the less precise 
estimate does receive a positive weight.

If the fi rst estimator is twice as precise as the second (i.e., ( ) ( )/2V t V tz=x
t t ) 

and each estimator is mutually independent, then the fi rst estimate will be weight-
ed more heavily (Eq. 6) by a factor of k = (2/3), while the second estimate, which 
is less precise, will receive the lesser weight of (1 - k) = (1/3):
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The estimated variance for the resulting composite estimate (Eqs. 3 and 6) would 
be less than the variance of either independent estimate by itself (Eq. 7).

As another example, if both estimators are independent and equally precise 
(i.e., ( ) ( )V t V t=x z

t t ), then each estimate receives an equal weight of k = 0.5. The 
composite estimate would have an estimated variance that is one-half of either 
independent estimate by itself (Eqs. 3 and 6).

The Restriction Estimator (RE) Object
The Restriction Estimator (RE) is a generalization of the univariate estimator 

in Eqs. 2 to 6. The RE is also a special case of the static Kalman fi lter (Maybeck 
1979:114; Gregoire and Walters 1988; Czaplewski 2000). RE is a “static linear 
model” in the terminology of Maybeck (1977:114). It is a special case of the 
Kalman fi lter in Eqs. 9 through 12. Like the Kalman fi lter, RRE is: (1) a recursive 
formulation of the Bayes estimator (e.g., Jazwinski 1970:145; Maybeck 1979:205), 
(2) the minimum mean square error predictor (e.g., Jazwinski 1970:149; Maybeck 
1977:232), and (3) a maximum likelihood estimator when joint densities are all 
Gaussian (e.g., Jazwinski 1970:207; Maybeck 1977:234). Duncan and Horn 
(1972), Diderrich (1985), Gregoire and Walters (1988), and Piepho and Ogutu 
(2007) demonstrate the close relationship between the Kalman fi lter and Theil and 
Goldberger’s (1961) mixed estimator. As a special case of the Kalman fi lter, RRE 
is an iterative least-squares approach to estimation (Jazwinski 1970:276; Bierman 
1977). Based on a matrix inversion lemma employed by earlier authors, Diderrich 
(1985) and Czaplewski (2001) illustrate the algebraic equivalency between the 
generalized least squares estimator and the composite estimator in this context 
(Householder 1964; Maybeck 1979:213). Knottnerus (2003:315, 326) uses the 



USDA Forest Service RMRS-GTR-239.  2010. 15

perspective of Pythagorean regression and the matrix inversion lemma to make 
the strong connection between the Kalman fi lter and estimators for complex sam-
ple surveys. This includes constraints on the estimands. De Gruijter and others 
(2006) give a more contemporaneous exposition on the Kalman fi lter in the con-
text of sampling in time and space for monitoring of natural resources. Because 
the sample survey applications considered here are temporally static, the terms 
“RRE” and “static Kalman fi lter” are used synonymously.

The following illustration uses the seminal work by Maybeck (1979) on 
the Kalman fi lter as an introduction to RE. Blending the notation of Maybeck 
(1979:246-247) with that of Särndal and others (1992:Appendix A), the stochastic 
model for two multivariate design-based sample matrix estimates as:
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where tXY(1) is the (qX + qY)-by-1 state-vector of population totals for the qX auxil-
iary variables (X) and qY s tudy variables (Y), and tZ(1) is the qZ-by-1 measurement 
vector of population totals from a linear transformation (matrix constant H) of 
population parameters for all measurement protocols for variables X and Y. The 
state-vector tXY(1) and measurement vector tZ(1) (Eq. 8) may have different dimen-
sions (i.e., qXY ≠ qZ) or the same dimensions (i.e., qXY = qZ). The RE (below) will 
combine vector estimates of tXY(1) and tZ(1) into a more precise, minimum-variance 
estimate of the full (qX + qY)-by-1 state-vector . This structure follows that used 
by Knottnerus (2003:335) for the regression estimator as a partitioned restriction 
estimator.

The notation in Eq. 8 follows: εW is the qXY-by-1 vector of random estimation 
errors with qXY-by-qXY covariance matrix ; H is the qZ-by-qXY matrix of known 
constants that identify the linear transformation of tXY(1) that produces tZ(1); εZ is the 
qZ-by-1 vector of random estimation errors for the sample estimate of the auxil-
iary variables with qZ-by-qZ covariance matrix ; and  is qXY-by-qZ cross-covariance 
matrix between εW and εZ.

Translation of remaining notation used by Maybeck (1979:246-247) in Eq. 
8 follows: the time-series transition matrices Φ = G = I (i.e., qXY-by-qXY identity 
matrix); the qXY-by-qXY covariance matrices P(0) = 0 (i.e., the zero matrix) and 
[P(1) = ΦP(0)Φ́ + GQ(1)Ǵ = Q(1)]; and the input control vector B×u = 0 (i.e., 
qXY-by-1 zero vector). Given the abbreviated stochastic model in Eq. 8, the mini-
mum variance composite estimator follows equations 5-115 through 5-117 for 
the Kalman fi lter in Maybeck (1979:247). Notation starts with that of Maybeck 
(1979) and is followed with equivalent notation that is a facsimile of Särndal and 
others (1992).

The qXY-by-qZ gain matrix K, which is a matrix extension of the univariate 
weighting constant k in Eq. 4 (Maybeck 1979:Eq. 5-115), is:
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Use of estimated covariances in Eq. 9 does not affect the asymptotic variance 
(Knottnerus 2003:336).

Using the gain matrix K in Eq. 9, the RE (Maybeck 1979:Eq. 5-116) is:

 

( )RE
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XY Z XY

X X
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Y Y
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t t
K t H

t t

,  (10)

The gain matrix K is the matrix of approximately optimal weights on the 
residual difference between the Phase 1 and Phase 2 population estimates for 
the auxiliary variables. See Knottnerus (2003:335-357) for a comparison of the 
Kalman fi lter with the minimum variance regression estimator.

Eq. 10 is the multivariate extension of the univariate composite estimator in 
Eq. 2. The corresponding covariance matrix (Maybeck 1979:Eq. 5-117) is:
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which is the multivariate extension of the univariate composite estimator in Eq. 
3. (The covariance matrix in Eq. 11 is expressed in a more familiar form in the 
next section.)

Special cases of the RE are algebraically identical to optimal sample survey 
estimators, as shown in the next section for two-phase sampling. More general 
expressions of the RE may be applied to more complex designs, such as two-stage 
sampling. Examples include “Single-Phase Sampling for Continuous Variables 
with Cluster Plots”. The sequential application of the RRE addresses even more 
complex designs. One example is “Two-Phase Sampling for Continuous Variables 
with Cluster Plots”, which uses photo-interpretation and sub-sampling for fi eld 
measurements for a small sample of cluster plots, photo-interpretation (without 
fi eld measurements) for a large independent sample of cluster plots, and a census 
of pixels from a spaceborne sensor. Furthermore, because RRE is a special case of 
the Kalman fi lter, the methods that follow are compatible with time-series estima-
tors for longitudinal surveys.

Relationship to an Optimal Sample Survey Estimator
While the structure of the covariance matrix estimator in Eq. 11 is familiar 

in the Kalman fi ltering literature, it is much less familiar in the sample survey 
literature. The major exception is Knottnerus (2003). He simplifi es estimators 
for complex sample survey designs through the Pythagorean regression form of 
Generalized Least Squares regression. Chapter 2.8 in Knottnerus’ book demon-
strates that Pythagorean regression is algebraically equivalent to the static Kalman 
fi lter.

A special case of the RE Eq. 11 is algebraically identical to the minimum 
variance Generalized Least Squares regression estimator in the sample survey 
literature. Let the vector tZ be estimated from a Phase 1 sample or census. Let vec-
tor tXY be estimated from an independent Phase 2 sample. Assume the fi rst qX-by-1 
partition of the state vector tXY represents the population totals for the auxiliary 
variables (tX) and the remaining qY-by-1 partition represents the population totals 
for the study variables (tY). Furthermore, Let the vectors tZ and tX represent the 
same remotely sensed auxiliary variables (i.e., tZ = tX), the only difference being 
that tZ is estimated from the Phase 1 sample and tX is estimated from the Phase 2 
sample; therefore, H = [I | 0] in Eqs. 9 through 11. Furthermore, C(1) = 0 in Eqs. 9 
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through 11 because the Phase 1 and Phase 2 samples are independent. Thus, Eqs. 
9 through 11 simplify to:
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where
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After combining Eqs. 9 and 13, the qXY-by-qZ gain matrix of optimal weights 
equals:
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The equations for the matrix K  in Eq. 14 a nd the covariance matrix estimator  in 
Eq. 12 may be combined as follows:
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Because th e objective is to improve estimates of the study variables with the 
auxiliary variables, our ultimate interest is limited t o the partition of the vector 
estimate in Eq. 15 that corresponds to the study variables (tY).



18 USDA Forest Service RMRS-GTR-239.  2010.

 

RE RE

1

1

1

ˆ ˆ

ˆ ˆ ˆˆ ˆ ˆ
ˆ

ˆ ˆ
ˆ

ˆ ˆ ˆˆ ˆ ˆ ˆ,

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ,

Y

X X Z

X
Z X

Y

Y X X Z

Y Y X X Z Z X

t 0 I t

V t V t V t
t

0 I 0 I t t
t

C t t V t V t

t C t t V t V t t t

 
 (16)

Like Eq. 16, the equations for the weighting matrix K and the covariance ma-
trix estimator  in Eq. 12 may be combined.
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The partition of Eq. 17 that corresponds to the study variables is:
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The expression of the RE covariance matrix for the study va r iables in Eq. 18, 
which is a special case of RE, is algebraically identica l to the optimal calibration 
estimator. Because both estimators tXY and tZ in Eq. 8 are design-consistent, the 
weighted sum of those estimators with RRE in Eq. 10 is also design-consistent 
(Fuller 2009:117).

RRE for Complex Sampling Designs: The Basic Idea Revisited
The presentation above demonstrates the relative simplicity of RE as an opti-

mal multivariate estimator. The next example is a Census Object produced with a 
spaceborne remote sensing protocol, a Phase 1 Object that features photo-interpre-
tation of high-resolution sample imagery for a large sample, and a smaller Phase 
2 sample of FIA fi eld measurements. This example uses sequential application of 
the RE, which is termed the recursive RE (RRE). The following exposition is in-
tended to explain this application further in simple, heuristic terms. Mathematical 
details follow in later sections.

Complex surveys can include two or more multiphase and/or multistage mod-
ules, among others (Magnussen 2003). An example of these modules in the forest 
health monitoring portion of FIA includes: (1) auxiliary census data from remote 
sensing and administrative records at Phase 1; (2) measurements of fi eld plots at 
FIA Phase 2; and (3) more expensive measurements of forest health on a rela-
tively small Phase 3 sub-sample of Phase 2 fi eld plots.

RRE may be applied to multilevel sampling in a sequential recursive fashion 
(Bierman 1977) by combining two modules (e.g., H in Eq. 8) at a time until all 
modules are used in the fi nal sample survey estimate. The sequential recursive 
character of RRE is analogous to object-oriented programming. RRE combines 
two, and only two, objects at a time. An object might be a vector constant from 
a population census, a population vector estimate from a single sample phase or 
stage, or the vector output from a previously executed object. RRE receives two 
input objects. In Kalman fi lter terms, one object is the full state-vector, and the 
other is the measurement vector. The vector dimensions of each module can vary, 
but every pair of modules in an object are related through a linear transformation 
with known constants (e.g., H in Eq. 8). In the following, the linear transforma-
tion is an indicator matrix composed of zeros and ones that maps the state-vector 
onto the measurement vector. RRE optimally combines these two vectors (Eq. 
10) into a more precise estimate of the full population vector. The output vector is 
then available as one of the two input objects into the next RRE recursion.

The sequential recursive concept has precedence in more traditional approach-
es to estimation in complex sample surveys. (See Särndal and others (1992:148) 
for an example with three-stage sampling.) Again, using the FIA forest health 
monitoring example, RRE might start by combining the estimates from Phase 1 
and 2 objects. The outcome is more effi cient estimates of the variables measured 
at Phase 2. Then, the composite estimate for Phase 2 variables could be combined 
with the estimates based on the forest health monitoring variables that are mea-
sured with the small Phase 3 sample. The result is a second composite estimate 
that sequentially assimilates relevant information from all three phases.

If the correlations and associations are suffi ciently strong among the fi eld mea-
surements from Phase 2 and Phase 3, then the relatively precise Phase 2 estimates 
will improve the precision from the sparse sample at Phase 3. Furthermore, if the 
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correlations and associations are suffi ciently strong between the remotely sensed 
measurements at Phase 1 and the fi eld measurements at Phase 2, then the remotely 
sensed auxiliary data will improve the estimation precision for variables that use 
the Phase 2 protocols, which, in turn, will improve the estimation precision for 
the forest health monitoring variables collected at Phase 3. Because the RRE is 
a special case of the Kalman fi lter, the fi nal composite estimate is optimal in the 
sense of minimum variance and EBLUE, and it would be the maximum likeli-
hood estimate if all multivariate sampling errors are Gaussian (Jazwinski 1970; 
Maybeck 1977). The fi nal composite estimates of forest health variables incorpo-
rate all gains in effi ciency available from the remotely sensed data from Phase 1 
and the fi eld data from Phase 2.

Depending on how the estimation problem is formulated, RRE can constrain 
linear combinations of estimates to equal known constants from one or more 
auxiliary sources (Czaplewski in prep.[b]). Examples of such constants include a 
census of remotely sensed pixel values that completely cover the sampled popu-
lation, including the prevalence of each category or the total of each remotely 
sensed, continuous variable in the population. Other examples include census 
statistics on population totals from offi cial administrative records such as areal 
extent of geopolitical units (e.g., counties and National Forests) and large water 
bodies (e.g., “Census water”). This feature qualifi es RRE as a calibration estimator 
(Estevao and Särndal 2004; Särndal 2007). Furthermore, RRE can directly apply 
inequality constraints (Doran 1997; Simon and Chia 2002) such as a population 
total that must be greater than or equal to zero, namely, non-negative. In addition, 
depending on how the estimation problem is formulated, RRE can combine aux-
iliary statistical estimates of unknown population constants from multiple phases 
and/or stages of probability sampling. If estimators for multivariate, multilevel 
sampling can be recast into the structure of a recursive Kalman fi lter, then the 50 
years of theory and practice with the Kalman fi lter can be immediately transferred 
to estimation in complex sample survey designs.

Next, specifi c designs, which are not intended to be exhaustive, are considered 
in more detail. Table 1 is a short guide to the mathematical notation, which is 
somewhat deep in order to consistently cover diverse elements within a variety 
of complex sampling designs. These examples are followed by other applications 
that use the fi nal results from RRE to make other types of estimates, such as small-
area, synthetic estimators and model-based estimators for missing data. Some of 
these examples use non-linear transformations of population vector estimates, 
and multivariate Taylor series are used to estimate their covariance matrices. A 
recursive sequential object-oriented approach simplifi es fi rst- and second-order 
Taylor series approximations for transformations that use addition, subtraction, 
multiplication, and division operators.

Two-Phase Sampling for Continuous Variables with a 
Sample at Phase 1

This section recasts the generalized presentation of RRE (Eqs. 9 through 11) 
into an example that is more explicitly relevant to multilevel sample surveys, 
namely, a special case of two-phase sampling, in which: (1) a simple random 
sample of the Phase 1 object is measured with a multivariate, remotely sensed 
protocol (e.g., photo-interpretation of sample aerial photography, denoted M = 1); 
and (2) a second independent, simple random sub-sample of the Phase 1 object 
(i.e., Phase 2 sample) that is further measured with a multivariate fi eld proto-
col, denoted M = 2, in addition to the multivariate photo-interpretation protocol 
(M = 1). Also, this section provides more specifi c details from the perspective of 
probability sampling (e.g., Särndal and others 1992; Knottnerus 2003; de Gruijter 
and others 2006).
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Every ith and jth sampling unit from the Phase 1 or Phase 2 sample in this ex-
ample is considered an infi nitesimally small point, and both protocols (M = 1 and 
M = 2) measure each sample point from a small point support region in the im-
mediate vicinity of that sample point. This uses the perspective of de Gruijter and 
others (2006:74-75) for sampling continuous populations in space, such as for-
ests, in which the “target universe … (is) an infi nitely large population of possible 
sampling locations, and the distinction between sampling with replacement and 
sampling without replacement is immaterial. … (Any) correlations between ob-
servations (caused by non-replacement) are negligible in this context, as are fi nite 
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population corrections.” The infi nite-population perspective is simpler (Mandallaz 
2008:61) and arguably more natural for continuous spatial populations. FIA shares 
this same perspective (Scott and others 2005). It is this independent and invariant 
perspective of de Gruijter and others that justifi es treatment of the large Phase 1 
sample as independent of the smaller Phase 2 sample. This differs from the per-
spective in fi nite population sampling, in which the Phase 2 sample is considered 
a probability sub-sample of the Phase 1 sample, which is not independent and not 
necessarily invariant (e.g., Särndal and others 1992:Chapter 9).

Phase 1
Phase 1 is a simple random point sample (s = 1) from a spatial population 

with an infi nite number of points but of known area A. The sample size (ns=1) is 
large relative to Phase 2 (below). A small support-region (de Gruijter and others 
2006:74-75) for each sample point i is measured with the Phase 1 protocol (e.g., 
photo-interpretation), which is denoted with the M = 1 subscript. The multivariate 
sample survey estimates are denoted by the qM=1-by-1 vectors and qM=1-by-qM=1 
covariance matrix:
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where the constant A in Eq. 19 is the known size of the sampled population (e.g., 
25 million acres), the qM=1-by-1 vector [y] represents qM=1 photo-interpreted vari-
ables, and the qM=1-by-1 vector [t] represents the corresponding qM=1 population 
totals.

For example, photo-interpreters inexpensively apply the M = 1 measurement 
protocol to a 1-acre support-region for each point in the large Phase 1 sample. The 
support-region covers an area approximately equivalent in size to one sub-plot 
in the four-point cluster plot used FIA fi eld measurements (Bechtold and Scott 
2005). The support-region is centered on the sample point. The number of photo-
interpreted variables may be numerous (e.g., 5<qM=1<1000), and they may be a 
mixture of both binary and continuous measurements.

Different remotely sensed categorical variables need not be cross-classifi ed into 
a single categorical variable as with stratifi cation (see “Categorical Variables”). 
Polychotomous categorical variables with k categories (k>2) are converted into 
(k) binary variables (e.g., de Gruijter and others 2006:69). Furthermore, binary 
variables need not be mutually exclusive or exhaustive. In addition, if the sup-
port-region straddles multiple categorical conditions, then the corresponding 0-1 
binary variables easily become continuous variables (bounded by 0 and 1) that 
represent the proportion of the support-region included in each binary category.

Phase 2
Phase 2 is an independent simple random sample (s = 2) that is measured with 

both the inexpensive M = 1 protocol (remote sensing) and the expensive M = 2 
protocol (fi eld measurements). The qM=2-by-1 vector [yM=2]i in Eq. 20 represents 
these qM=2 variables. The Phase 2 sample size (ns=2) is small relative to the Phase 
1 sample (ns=2<<ns=1).
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Let the Phase 2 estimates be the (qM=1 + qM=2)-by-1 vectors and covariance 
matrix (qM=1 + qM=2)-by-(qM=1 + qM=2):
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The last term in Eq. 20 defi nes a partition of the sample covariance matrix. 
C in the partitioned covariance matrix denotes the qM=2-by-qM=1 cross - covariance 
sub-matrix between the qM=2 estimated populations totals measured with the 
M = 2 protocol and the qM=1 variables measured with the M = 1 protocol from the 
Phase 2 sample.

The M = 2 protocol represents the standard FIA Phase 2 fi eld protocol, which 
results in standardized measurements of tree and stand characteristics within the 
1/6-acre support-region. The support-region in the Phase 2 sample is centered on 
sub-plot 1 in the standard FIA fi eld plot, and the support-region is composed of 
all four 1/24-acre FIA sub-plots (Bechtold and Scott 2005:29). The M = 1 proto-
col (i.e., photo-interpretation) used in the Phase 2 sample is exactly as described 
above under Phase 1, including the 1-acre support-region approximately centered 
on the same sample point used in the M = 2 protocol. As will be demonstrated, 
improvements in statistical effi ciency with two-phase sampling depend upon 
the degree of covariance between variables measured with expensive and less-
expensive protocols (e.g., fi eld data and remote sensing). Therefore, it is impor-
tant that the M = 1 protocol be applied to the same site as the M = 2 protocol, 
which requires minimization of registration errors between remotely sensed mea-
surements and fi eld measurements.

Recursive Restriction Estimator (RRE)
The Recursive Restriction Estimator (RRE) offers one means to combine the 

independent estimators from Phase 1 (Eq. 19) and Phase 2 (Eq. 20) into a more 
effi cient estimator. This is accomplished by structuring the estimation problem 
in the context of the static multivariate Kalman fi lter. This is the key concept 
in simplifying the estimation problem in complex sample designs. Because the 
statistical properties of the Kalman fi lter are well understood, at least in certain 
disciplines, and because the fi lter is fully developed as an optimal linear estimator, 
the sample survey problem is largely solved by recasting it as a discrete multi-
variate stochastic process (Särndal 1992:21) using the Kalman fi lter as a static 
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linear model (Maybeck 1979: Section 3.11) and then applying well-developed 
results for the Kalman fi lter to readily solve the problem. Much of that recasting 
has already been performed as an antecedent to Eqs. 9 through 12. The remaining 
steps follow.

First, the Phase 1 and Phase 2 samples are independent by defi nition; hence, 
C(1) = 0, and the special case of the Kalman fi lter in Eq. 12 applies.

Second, consider state-vector in the Kalman fi lter. In the case of two-phase 
sampling, state-vector may be defi ned as the population totals for all variables of 
interest from both the M = 1 protocol (photo-interpretation) and the M = 2 pro-
tocol (FIA fi eld data). In this case, n in Maybeck’s defi nition of the state-vector 
equals (qM=1 + qM=2). In the context of the current section, the state-vector tX(1) in 
Eq. 12 is estimated from Phase 2 sample (s = 2) and the estimators in Eq. 20.

Third, defi ne the measurement vector tZ(1) in Eq. 12 as the estimated population 
totals for the remotely sensed variables from the Phase 1 sample (s = 1), with the 
corresponding estimators given in Eq. 19.

Fourth, a linear model must be defi ned that describes how the measurement 
vector tZ(1) relates to the state-vector tX(1) in Eq. 12. This model is given in Eq. 
8 as tZ(1) = H tX(1), where H is a conformable matrix of known constants. In the 
current context, H is simply a matrix of ones and zeros that extracts the Phase 2 
estimated totals of the photo-interrelated variables (M = 1 protocol) from the full 
state-vector and its corresponding partition from the covariance matrix for the full 
state-vector.

In summary, these steps yield a multivariate estimator for the special case of 
two-phase sampling considered here that is structured as the Kalman fi lter in 
Eq. 12:
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Here, the H matrix has dimensions qM=1-by-(qM=1 + qM=2). The cross-covariance 
matrix  in Eq. 21 because the Phase 1 sample is, by design in this exam ple, inde-
pendent of the Phase 2 sample. From Eqs. 12, 19, 20, and 21, RRE (Kalman fi lter) 
that combines estimates from the Phase 1 (s = 1) and Phase 2 (s = 2) samples, 
denoted s = {1,2}, is:
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Equation 22 is a multivariate extension to the familiar univariate composite 
estimator in Eq. 2. In the current context, and using the partitions of t he Phase 2 
covariance matrix in Eq. 20, the (qM=1 + qM=2)-by-qM=1 weighting matrix K (Eqs. 
12 and 22) may be expressed as:

 

[ ]( )

[ ]( ) [ ]( ) [ ]( ){ }
[ ] [ ]( ) [ ]( ) [ ]( ){ }+

+=

+′′=

−

=======

−

======

−

==

==

=

==

=

1

11M21M21M2M

1

11M21M21M

1

11M

22M

1M

22M

1M

ˆˆˆˆˆ,ˆˆ
ˆˆˆˆˆˆ

ˆˆ
ˆ
ˆˆ

ˆ
ˆˆ

sss

sss

s
ss

tVtVttC
tVtVtV

tVH
t
tVHH

t
tVK

 

 (23)

Equation 23 is the multivariate extension of the scalar weight in the univariate 
composite estimator (Eqs. 3 and 4). Equation 23 might not be numerically stable, 
and it is very important to use more numerically stable methods that are reviewed 
in the section “Robust Numerics.”

The partition of the covariance matrix between the Phase 1 and Phase 2 estima-
tors used in Eq. 23 is defi ned in Eq. 20. Combining Eqs. 22 and 23:
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and the covariance matrix estimator for the vector estimate in Eq. 24 is:
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RRE in Eqs. 22 to 25 improves estimates for remotely sensed variables (pro-
tocol M = 1) in addition to the variables measured in the fi eld (protocol M = 2). 
However, the typical purpose of the Phase 1 sample is variance reduction for the 
population estimates from the Phase 2 sample and the M = 2 measurement pro-
tocol. The estimates of variables measured with the M = 1 protocol might not be 
relevant after their role in variance reduction is met. Only those sub-matrices in 
Eqs. 20 through 25 that apply to the Phase 2 protocol (M = 2) might be needed. 
Those qM=2-dimensional partitions are readily extracted from the vector of esti-
mated population totals and its estimated covariance matrix as follows:
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Because the regression estimator and RRE are both minimum variance linear 
predictors, it is no surprise that Eq. 26 has a multivariate structure somewhat 
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analogous to the univariate regression estimator (e.g., Cochran 1977:Section 7.3). 
Knottnerus (2003:356) developed the same estimator from the perspective of the 
conditional restriction estimator.

The effi ciency of two-phase sampling depends on the linear relationship be-
tween the variables measured with the M = 1 protocol (e.g., photo-interpretation) 
and the variables measured with the M = 2 protocol (e.g., FIA fi eld data). The 
strength of this relationship is quantifi ed from the Phase 2 sample estimate of the 
cross-covariance matrix C in Eq. 26. If there is little or no correlation between the 
M = 1 and M = 2 variables, then C~0, and the composite estimate of the M = 2 
variables in Eq. 26 equals that of the Phase 2 sample (s = 2) alone (Eq. 20). This 
means that the Phase 1 sample of M = 1 variables would produce little or no gain 
in statistical effi ciency for estimating the M = 2 variables. However, if the cross-
covariance matrix C is relatively large, and the covariance matrix for population 
totals from the M = 1 measurements in Phase 1 (s = 1) are relatively small, then 
the composite variance in Eq. 24 can be substantially less than the covariance 
matrix for the Phase 2 sample alone (Eq. 20).

The next example is a minor modifi cation of the above example. Rather than 
a sample of points at Phase 1, the next example uses a full-coverage census of 
remotely sensed pixels at Phase 1.

Two-Phase Sampling for Continuous Variables with a 
Census at Phase 1

Multivariate two-phase sampling with a sample at Phase 1 (previously dis-
cussed) is clos ely related to the two-phase sampling that uses a census at Phase 1, 
which is the subject of this section. The following example is an alternative to the 
situation in FIA, where remotely sensed Landsat data are used with a post-stratifi -
cation estimator. Czaplewski (in prep.[b]) considers this example in substantially 
more detail and includes a discussion on the equivalence of RRE to direct design-
based calibration estimators in sample surveys (Estevao and Särndal 2004) that 
are nearly design-unbiased (Särndal 2007).

In order to conform to notation in more complex examples that follow, let the 
census of pixels be denoted s = U, indicating that the sample is the complete set 
of pixels that completely cover the sampled population U. The remote sensing 
protocol used to measure each pixel is denoted by M = 0. If Phase 1 in the previ-
ous example was a census rather than a sample, then [ ]t 1M s 1= =

t  would exactly 
equal tM=1, and the covariance matrix for Phase 1 would be the qM=1-by-qM=1 zero 
matrix (i.e., ([ ] )tV 0=1 1M s= =

t ). In the following example, the Phase 1 sample 
s = 1 is replaced by the s = U census, and the M = 1 photo-interpretation protocol 
is replaced by the M = 0 spaceborne sensor protocol for all pixels in the sampled 
population. Therefore, [ ] , ([ ] )t t tV 0= =0 0 0M s U M M s U= = = = =

t t , and Eqs. 22 
to 25 evolve into:
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where
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The Phase 1 census in Eq. 27 is denoted by s = U, and the measurement protocol 
used for the full-coverage satellite data is denoted by M = 0 rather than the Phase 
1 protocol M = 1. This minor shift in nomenclature for the “M” protocol facilitates 
more complex estimators that follow. It is assumed that ([ ] )V t 0M s 2= =

t  is full 
rank, i.e., the matrix inverse is feasible for the partition of the sample covariance 
matrix that corresponds to the census variables. Knottnerus (2003:330, 333) uses 
this same approach, which is called a regression model with linear restrictions on 
the regression coeffi cients, in the Restriction Estimator.

The partition of RE corresponding to the auxiliary census will exactly equal 
the vector census constant [tM=0]s=U:
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Likewise, the corresponding partition of the RE covariance matrix equals zero, 
with zero cross-covariance for the off-diagonal partition.
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Because it is the s tudy variables that are of primary interest and not the auxiliary 
variables, the partitions of the RE for the study variables are extracted from Eqs. 
28 and 29 as:
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Simon and Chia (2002) prove that the RE in Eqs. 27, 28, and 30 satisfi es the vector 
constraint [ ] [ ]t t t!=0 { , 2} 0 2M s U M M s0= = = = =

t t ; is unbiased (i.e., [ ]E t 2M =
t s 

= {U, 2} = tM = 2); has a smaller error covariance than the unconstrained sample 
survey vector estimator (e.g., trace ( [ ] )V t #2 { , }M s U 2= =

t t  trace ( [ ] )V t s 2=2M =
t t ; 

and is the BLUE. Czaplewski (in prep.[b]) further demonstrates that the diagonal 
partition of the covariance matrix for the variables in Eq. 16 is R = 0, and the off-
diagonal cross-correlation matrix partition between the study variables and the 
auxiliary census variables is exactly zero, i.e., ([ ],[ ])C t t 0=2 0 ( ,2)M M s U= = =

t t t . 
In effect, the auxiliary census vector acts as a constraint on RE. Exact agreement 
with the census vector is imposed by the RE without post-stratifi cation. The es-
timated covariance matrix in Eq. 30 is unbiased (conditional upon the sample), 
and it is not an approximation, as with post-stratifi cation (e.g., Cochran 1977:135; 
Särndal and others 1992:266; Scott and others 2005).

The RE partition in Eq. 30 contains all the relevant information available in 
the auxiliary census variables, and the information provided by those census vari-
ables is unnecessary for any subsequent recursions with the RRE. In other words, 
the RE has fi ltered out all relevant information in these census auxiliary variables. 
As discussed in the previous section, the effi ciency of this sampling design and 
its estimator (Eq. 30) remains dependent upon the correlations and associations 
between the remotely sensed satellite measurements (M = 0) and the FIA fi eld 
measurements (M = 2).

Recall that the covariance matrix ([ ] )V t 0M s 2= =
t t  in Eq. 27 is assumed 

to be full rank. However, because the sum of all elements in vector estimate 
1[ ] At =0 2M s= =
t , its covariance matrix is positive-semidefi nite and not full 

rank. At least one of the census constraints is redundant.
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Numerically Stable Algorithm
Equation 27 is infeasible because the inverse of the covariance matrix 

([ ] )V t 0M s 2= =
t t  is not full rank whenever the auxiliary vector contains propor-

tions or totals for a dichotomous transformation of a polychotomous categorical 
variable. In more general terms, the Kalman fi lter is notoriously vulnerable to 
numerical round-off errors as the measurement error covariance matrix becomes 
small, especially as recursions accumulate. The challenges posed by numerical 
errors to optimal estimation, including RRE, and practical solutions are discussed 
in the section “Robust Numerics”.

In the special case of a measurement vector of known census constants, as in 
this section, a slightly different algorithm applies a vector of equality constraints 
that is numerically robust, even with a positive-semidefi nite covariance matrix 
(Simon and Chia 2002). Because the constraints are a vector of known census 
constants tM=0, i.e., V(tM=0) = 0, they are mutually independent, and each ith scalar 
census value (tM=0)i of the qM=0-by-1 constraint vector tM=0 may be applied sepa-
rately in a sequential recursive procedure.

Let hi be the 1-by-(qM=0 + qM=2) vector containing row i of the qM=0-by-(qM=0 + 
qM=2) measurement matrix H in Eq. 27. The estimator that sequentially applies all 
qM=0 constraints, i = {1,2,…, qM=0}, is defi ned as:
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where
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where
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ki is the (qM=0 + qM=2)-by-1 column vector of optimal (EBLUE) weights, and (tM=0)i 
is the ith element of the census constraint vector [tM=0]. The fi nal RRE after qM=0 
recursions through Eqs. 31, 32, and 33 equals:
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The fi nal RRE for the qM=2-by-1 vector of population estimates for the qM=2 study 
variables equals the linear transformations of Eqs. 34 and 35 with the qM=2-by-
(qM=0 + qM=2) indicator matrix Hy = [0|I]:
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Each ith recursion (Eqs. 31 to 33) has an associated scalar residual difference 
between the auxiliary census total (tM=0)I This residual may be standardized with 
its estimate variance:
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If all assumptions are correct, then ri in Eq. 38 is expected to have a zero mean 
with unit variance. If its realized value is inconsistent with this expectation (e.g., 
ri is larger than two standard deviation units [ri<-2 or ri>2]), then one or more as-
sumptions are suspect. It is also possible that a rare extreme value for the sample 
estimate of the ith auxiliary variable was observed by chance. This may be most 
common for categorical auxiliary variables that are rare in the population. One ad 
hoc rule would be to omit the ith auxiliary variable with a relatively large residual 
(e.g., |ri|>2) from the RRE. This rule would provide some insurance against over-
zealous application of remotely sensed and other geospatial auxiliary data, which 
often can be cross-classifi ed in numerous ways, especially when intersected with 
geopolitical boundaries (e.g., states, counties, and National Forests).

The fi nal (qM=0)
th recursion of the RRE in Eqs. 31 to 33 might be affected by the 

sequence 1 ≤ i ≤ qM=0, in which the scalar census auxiliary variables are applied. 
This might be especially true if the ad hoc rule above is used to censor certain 
scalar auxiliary variables that have unexpectedly large residuals (Eq. 38). The fi rst 
set of auxiliary variables might be geopolitical boundaries so that areal summaries 
of population estimates agree with the known area of each geopolitical entity. The 
next set might be common and important remotely sensed classifi cations, such as 
a binary forest/non-forest classifi cation for each pixel. All pixels under this binary 
auxiliary variable might be cross-classifi ed by geopolitical boundaries. The aux-
iliary variables with the largest extent might be applied fi rst. Similar to methods 
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used by Statistics Sweden (Särndal and Lundström 2008), some sort of stepwise 
approach might fi rst apply those auxiliary variables that are most effective in in-
creasing the precision of FIA study variables. Further research is warranted.

When census constants are imposed as constraints, the sequential algorithm 
in Eqs. 31 to 37 are numerically more effi cient than the usual algorithm in Eq. 
30 (Maybeck 1979:375; Grewal and Andrews 2001:226). At least as important, 
the sequential algorithm in Eqs. 31 to 37 is more easily implemented in database 
software because it replaces a single matrix inversion with a sequence of qM=0 
scalar inverses. Matrix algebra software is not required, which makes implemen-
tation more feasible within database software used by government programs like 
FIA. Regardless, all computations and data storage should use double precision 
numerics to reduce insidious round-off errors. The sequential algorithm does not 
eliminate redundant measurements; therefore, it adds no new information. Rather, 
it simply accommodates redundancies and avoids matrix inversion through a con-
venient and robust numerical solution.

RRE as the Optimal Linear Calibration Estimator
The seminal paper by Deville and Särndal (1992) signaled the emergence 

of calibration estimators in the sample survey literature as a means to improve 
effi ciency with auxiliary data. The calibration estimator can achieve the same effi -
ciency with a smaller sample size as the Horvitz-Thompson estimator. Therefore, 
the calibration estimator is relevant to small-area estimation where small sample 
sizes limit estimation precision. In their paper, titled Borrowing Strength is Not 
the Best Technique Within a Wide Class of Design-Consistent Domain Estimators, 
Estevao and Särndal (2004) consider direct estimators of small-domain param-
eters with fi xed auxiliary census information. Other than their fi nite-population 
perspective, this is exactly the subject of this section.

If the number of PSUs in a domain is suffi ciently large, then direct domain (or 
sub-population) estimators are feasible. Direct domain estimators make use of 
the study variable, that is, the variable of interest, and auxiliary variables that are 
solely within the domain (Rao 2005). (Indirect estimators, which borrow strength 
from outside the domain, are considered under “Non-Linear Pseudo-Estimators” 
below.) Estevao and Särndal (2004) conclude “for a fi xed set of auxiliary infor-
mation, the minimum asymptotic design-based variance is obtained with a direct 
estimator, derived by calibration rather than by regression fi tting … and any esti-
mator in the class that attempts to borrow strength is less precise.”

This conclusion appears to include a different type of small-domain composite 
estimator, which combines an indirect synthetic model-based estimate with the 
direct design-based estimator for the small-domain. The objective is to reduce the 
inherent risk of bias with the model-based synthetic estimator. Examples of this 
approach include Lui and Cumberland (1991), Longford (1999), Fuller and Rao 
(2001), and Francisco (2003). However, based on the cited fi ndings of Estevao 
and Särndal (2004), this type of composite estimator is not given further attention 
in the remainder of this report.

In the class of direct domain estimators considered by Estevao and Särndal 
(2004:657), the asymptotically optimal estimator of a scalar study variable yd+ 
from the sample s in domain d is given (with their notation) as:
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where

 

UU d ⊆  Domain d of the finite population U = {1,…,k,…,N} 
UU C ⊆  Calibration group C within the finite population U = {1,…,k,…,N} 

skyy kdkdk ∈= :δ  The observed scalar value of the study variable for PSU k in sample s 
in domain d ( dk = 1 for k, a member of Ud = 0, otherwise) 

∈
⊕ =

sk
dkkd yay πˆ  Horvitz-Thompson (HT) estimator of the domain total for scalar study 

variable in domain d 
kka π1=  Sampling weight (i.e., expansion factor) for PSU k 

Ckx  J-by-1 vector of auxiliary information for PSU k in calibration group C 
(i.e., population control group) 

+Cx  J-by-1 vector of auxiliary information in calibration group C 

∈
⊕ =

sk
dkkd a xx πˆ  HT estimator of the domain total for the J-by-1 vector of auxiliary 

information in domain d, where [ ] +⊕ = Cd xx πˆE  

Equation 39 may be rewritten as:

                                              ( ) ( )ππ ⊕+

−

⊕+ −′+= dCCCddd yy xxVC xx ˆˆˆˆˆ
1

 
where 

( ) ′−=
∈ ∈sk sl

CkClkllkC aaa xxV x
ˆ  

HT estimator for the J-by-J non-singular covariance 
matrix for the vector of estimated totals for the auxiliary 
variables in calibration group C (Särndal and others 
1992:43, 188) 

( )−=
∈ ∈sk sl

dkClkllkyCd yaaa xC x
ˆ  

HT estimator for the J-by-1 cross-covariance vector for 
the estimated totals for the vector of auxiliary variables x 
in calibration group C and the scalar study variable y in 
domain d (Särndal and others 1992:43, 188) 

 (40)

Equation 40 can be expressed in a different matrix expression, in which the di-
mensions are enlarged from J to (J + 1) to form:
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where the J-by-(J+1) indicator matrix H = [I|0].With further algebraic embellish-
ment, Eq. 41 equals:
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Equation 42 is algebraically identical to the RE for the state-vector in Eq. 27, ex-
cept the study variable is a scalar (y) rather than a vector (tM=2) and:

 

[ ] 20M
ˆˆ ==⊕ = sd tx π  

Sample survey estimate of the domain totals for 
the vector of auxiliary variables 

[ ] Usd ==+ = 0Mtx  Known census statistics for the domain totals for 
the vector of auxiliary variables 

[ ] [ ] 22M22M
ˆˆˆ ====⊕ == ssd ty tπ  Sample survey estimate of the scalar domain total 

for the study variable 

22M

0M

ˆ
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ˆ
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==

=

⊕

⊕ =
sd

d

ty
tx

π

π  The [(J + 1) = (qM=0 + qM=2)]-by-1 column vector of 
sample survey estimates   

[ ] { }2,2M
ˆˆ Usdy ==+ = t  

The scalar calibration estimate of the study 
variable in domain d, which is exactly equal to the 
RRE estimate 

Therefore, the RRE is algebraically identical to the optimal direct calibration 
estimator for domain d in which the domain total (e.g., a census) is known ex-
actly without error for one or more auxiliary variables (e.g., Ud = U) for one or 
more calibration groups (Estevao and Särndal 2004:649), and the domain mem-
bership for each sampled unit is known without classifi cation error. The domain 
census constants “must not be out-of-date, erroneous total” (Estevao and Särndal 
2004:650).

With a univariate study variable (y) and a numerically stable inverse covari-
ance matrix, the results from the RE in Eqs. 27 or 39 may be represented as a 
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system of calibration weights, wk = akgk, for each sampled PSU = k (Estevao and 
Särndal 2004:651). Using the notation of (Estevao and Särndal 2004:651, 657),
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1ˆˆ π  (43)

These will be the optimal calibration weights for a single study variable, 
e.g., (ydk)a, but they are sub-optimal for any other study variable, e.g., ( ydk ) b, ex-
cept in the rare case in which their cross-covariance matrices are identical, e.g., 
( ) ( )C C=Cdxy a Cdxy b
t t . Otherwise, each study variable requires a different system 

of optimal scalar calibration weights from Eq. 43. The section “Optimal PSU 
Expansion Values” develops a vector system of expansion values that is optimal 
for each study variable in the RRE state vector [y].

One simpler ad hoc method for a single scalar calibration weight wk with a 
vector of L study variables [y] is a linear transformation with a 1-by-L matrix for 
the fi rst principal component from a Principal Component Analysis on all PSUs 

sk ∈ , yielding a scalar study variable (ydk)PC=1 unique to each PSU. This scalar 
variable, which would contain much of the information available in a multivari-
ate variable of interest, would be used solely to compute the calibration weight 
in Eq. 43.

There is a fundamental problem with the calibration estimator, regardless of 
the chosen study variable of interest. Estevao and Särndal (2004:657) make the 
following observation regarding the optimal calibration estimator: “In estimation 
for the whole population U, the asymptotically optimal estimator has been care-
fully examined in, for example, Casady and Valliant (1993), Montanari (1998, 
2000), and Montanari and Ranalli (2002). It is known to be unstable, especially 
for designs more complex than SRS. Here we encounter the asymptotically op-
timal estimator in the context of domain estimation. The discussion in the cited 
references is relevant here too. … A prudent approach is to use … (a sub-optimal 
sampling weight) … in all cases.”

As frequently recognized throughout this report, the RE, i.e., the static Kalman 
fi lter, is vulnerable to numerical errors, especially if the domain totals for the 
auxiliary variables (e.g., xd+ = [tM = 0]s = U ) are known with perfect or high preci-
sion. Similarly recognized are the numerical solutions that are well developed in 
the engineering literature on the Kalman fi lter. When the familiar calibration and 
regression estimators for complex sample surveys are seen from a different per-
spective, i.e., as special cases of the static Kalman fi lter, then numerical solutions 
instantly become available from 50 years of engineering experience. Equations 
31 to 37 are examples.

In the current context, a census of vector constants for geopolitical domains, 
such as the areas of counties and public lands, are available from administrative 
records. Each sampled PSU is known to be a member of one of these domains. 
Such constraints not only assure summaries of statistical estimates are consis-
tent with these widely known administrative records, but it is possible they can 
improve accuracy of sample survey estimates for other study variables (e.g., 
Van Deusen 2005). In addition, remotely sensed auxiliary census variables 
might further improve effi ciency of the estimators for the study variables within 
a calibration group, which may be identical to a study domain. This might uti-
lize multiple sets of overlapping or non-exhaustive domains, namely, complex 
auxiliary information (Estevao and Särndal 2006). Examples include domains 
based on polychotomous classifi cations of ecoregions, ecofl oristic zones, climatic 
zones, land forms, landscape types, and land ownership maps. They may also 
include classifi cations of land cover and forest conditions with remotely sensed 
data. The recursive algorithm in Eqs. 31 to 37 can be sequentially applied to each 
set of independent census domains. This fortunate attribute of RRE further per-
mits off-line optimization of prediction models for each individual dichotomous 
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category of any polychotomous variable, which is familiar practice with remotely 
sensed predictor variables and software. Improvements through remote sensing 
techniques should, in principle, improve statistical accuracy of population and 
domain estimates. The various sets of independent calibration groups can be more 
broadly defi ned than domains of study, which can assure suffi cient sample size 
within each group (Lehtonen and others 2003). They need not be cross-classifi ed, 
which reduces the problem of very small-domains that contain too few PSUs for 
direct domain estimation. Additional research is needed to best use the very de-
tailed auxiliary data possible with airborne and spaceborne sensors. For example, 
which auxiliary variables provide the most gain in statistical precision for FIA 
study variables without undo risks to numerical stability?

Three-Phase Sampling for Continuous Variables
Three-phase sampling “can be a very effective design for the estimation of 

regional and national forest cover type frequencies … with data gathered in each 
phase at  a different resolution (scale)” (Magnussen 2003). Extension to three or 
more sampling phases is expedited by the sequential approach inherent to estima-
tion within the RRE. For example, consider a three-phase design that starts with a 
census of satellite pixels (s = U) that is measured with M = 0 remote sensing pro-
tocol. The next phase is photo-interpretation of a large simple random sample of 
points that is measured with both the M = 1 photo-interpretation protocol and the 
M = 0 remote sensing protocol. The fi nal phase is a small, simple random sample 
of points measured with the M = 2 FIA fi eld protocol in addition to the M = 0 and 
M = 1 protocols. This example duplicates much of the previous section on “Two-
Phase Sampling for Continuous Variables with a Census at Phase 1”. However, 
the purpose of the current section is to demonstrate more fully the sequential ap-
plication of the RRE to more complex sample survey designs.

The fi rst step is a design-based estimate for population totals with the M = 0 
remote sensing protocol and the M = 1 photo-interpretation protocol from the 
Phase 1 sample (s = 1). The (qM=0 + qM=1)-by-1 vector estimate and its (qM=0 + qM=1)-
by-(qM=0 + qM=1) covariance matrix are:
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The sample covariance matrix in Eq. 44 uses the census values for the population 
means from the M = 0 remote sensing protocol (Eq. 48), rather than the corre-
sponding estimates from the Phase 1 sample, to improve the estimated variances 
and covariances.

The second step is a design-based estimate for population totals with the M = 0 
remote sensing protocol, the M = 1 photo-interpretation protocol, and the M = 2 
FIA fi eld data protocol from the small Phase 2 sample (s = 2). The (qM=0 + qM=1 
+ qM=2)-by-1 vector estimate and its (qM=0 + qM=1 + qM=2)-by-(qM=0 + qM=1 + qM=2) 
covariance matrix are:
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The sample covariance matrix in Eq. 45 uses the census values for the popula-
tion means from the M = 0 remote sensing protocol and a composite estimate of 
the M = 1 means from the Phase 1 and 2 samples, rather than the corresponding 
estimates from the Phase 2 sample alone, to improve the estimated variances and 
covariances. The fi nal term in Eq. 45 defi nes a matrix partition of the sample 
covariance matrix.

The third step combines the (qM=0 + qM=1)-by-1 Phase 1 estimate (Eq. 44, s = 1) 
with the (qM=0 + qM=1 + qM=2)-by-1 Phase 2 estimate (s = 2, Eq. 45) with RRE, simi-
lar to Eq. 24. The notation corresponding to the Kalman fi lter in Eq. 12 is:
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The H matrix has dimensions (qM=0 + qM=1)-by-(qM=0 + qM=1 + qM=2). From Eqs. 12 
and 46, the composite estimator is:
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The composite estimator, denoted s = (1,2) in Eq. 47, is the minimum variance 
estimate of population totals for variables measured with all three protocols (re-
motely sensed satellite data, photo-interpreted data  and fi eld data) given the large 
Phase 1 sample and the smaller Phase 2 sample but not the census of remotely 
sensed data. Equation 47 might not be numerically stable, and it is very important 
to use numerically more stable methods that are reviewed in the section “Robust 
Numerics.” The fi rst three steps are analogous to the sequential approach used by 
Magnussen (2003).

The fourth step is to enumerate the qM=0-by-1 vector population totals for the 
variables measured with M = 0 (remote sensing) from the census of remotely 
sensed pixels in the full-coverage satellite imagery:
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The qM=0-by-qM=0 covariance matrix in Eq. 48 is the zero matrix because census 
totals are known exactly.

The fi fth step is to combine the (qM=0 + qM=1 + qM=2)-by-1 composite estimate 
from the Phase 1 and Phase 2 samples, denoted s = (1,2) in Eq. 47, with the qM=0-
by-1 census vector, denoted s = U in Eq. 48, again, similar to Eq. 24. The notation 
corresponding to the Kalman fi lter in Eq. 12 is:
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 (49)

The H matrix has dimensions qM=0-by-(qM=0 + qM=1 + qM=2). From Eqs. 12 and 49, 
the composite estimator is:
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The composite estimator in Eq. 47, denoted s = (U,1,2), is the minimum vari-
ance estimator given the Phase 1 and Phase 2 samples and the census of remotely 
sensed pixel data. Equations 44 to 50 may be expanded, as in Eqs. 20 to 27, to 
reveal analogies between RRE and more traditional univariate regression estima-
tors (e.g., Särndal and others 1992). Again, numerically stable, but algebraically 
equivalent methods must be used to apply Eq. 50. These methods are discussed in 
the section “Robust Numerics.”
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The fi nal step is to extract the portions of the composite estimator in Eq. 47 
that contain the estimated population totals for variables measured with the FIA 
fi eld protocol (M = 2):
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A similar sequential process (Eqs. 44 to 51) may be used with four or more 
phases. Knottnerus (2003:359) uses the same approach to complex designs. The 
dimensions of the vectors and covariance matrices will increase because the 
estimates for all protocols are required until the very last step in the estimation se-
quence. The sequential process may also be used with multiple sources of census 
data, such as areas by geopolitical categories (e.g., counties and land ownership 
types) or other full-coverage, remotely sensed data (e.g., classifi cations of pixel 
data from the MODIS satellite and stand management geospatial information sys-
tem independently produced by a National Forest). Knottnerus (2003:364) and 
Czaplewski (in prep.[b]) give more details.

A Potentially More Robust but Less Effi cient Estimator
A potentially more robust but less effi cient estimator for a multiphase design 

is possible by reducing the matrix dimensions at each of the sequential steps de-
scrib e d earlier in this section. Magnussen (2003) found that RRE, when applied to 
three-phase sampling of categorical variables, is not necessarily robust and con-
sistent compared with a sub-optimal sequential estimator. Performance of RRE 
decreases as the multivariate dimensions become large relative to sample sizes. 
Dimensions may be decreased by sequentially considering only those variables 
shared by two levels at one time in the multilevel sampling design. For example, 
consider the three-phase estimator in Eqs. 44 to 51 that requires covariance matri-
ces with dimensions of (qM=0 + qM=1 + qM=2)-by-(qM=0 + qM=1 + qM=2). A description 
of the following recursions is offered in prose form above (“The Basic Idea”).

The RRE that combines the fi rst two sampling phases (Eqs. 44 to 47) can be 
modifi ed to produce a (qM=0 + qM=1)-by-1 vector estimate of population totals for 
the qM=1 photo-interpreted (M = 1) variables.
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Incorporating the structure of Eq. 52 into RRE (Eq. 12) yields the fi rst step in the 
alternative sequential approach:
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Numerically reliable algorithms must be used to apply Eq. 53, and these methods 
are briefl y covered in the section “Robust Numerics”.

Since the population totals for the qM=0 variables from the M = 0 census of sat-
ellite pixels are constants that are exactly known a priori by defi nition, they may 
be deleted from Eq. 53 in subsequent steps:
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Equation 54 is an estimate of population totals for variables measured with the 
M = 1 photo-interpretation protocol that is made more precise than the M = 0 cen-
sus of classifi ed satellite pixels. This fi rst sequence invo lves covariance matrices 
with dimensions (qM=0 + qM=1)-by-(qM=0 + qM=1) in Eq. 53 rather than (qM=0 + qM=1 + 
qM=2)-by-(qM=0 + qM=1 + qM=2) in Eqs. 44 to 51.

The Phase 2 sample vector estimate, with dimension (qM=1 + qM=2), and the 
suffi cient qM=1-dimensional statistics from Eq. 54 are inputs to the next sequential 
step:
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Incorporating the structure of Eq. 55 into RRE (Eq. 12) yields the fi nal step in the 
alternative sequential approach:
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Numerically stable methods, which are covered in the section “Robust Numerics,” 
must be used with Eq. 56.

Equations 52 to 56 start with a combination of the Phase 1 census (s = U) 
and the Phase 2 photo-interpreted sample (s = 1) and then a combination of this 
multivariate result (denoted s = U,1) with the Phase 3 sample (s = 2) to produce 
the fi nal estimate (denoted s = U,1,2). The sequence could be reversed, starting 
with a combination of Phase 2 (s = 1) and Phase 3 (s = 2) and then combining the 
composite vector estimate (s = 1,2) with the Phase 1 census of classifi ed pixels 
(s = U). In the absence of numerical errors, the results should be identical, regard-
less of the particular sequence.

The three-phase estimator in Eq. 51 differs from the alternative estimator in Eq. 
56, the latter of which uses matrices with smaller dimensions. Magnussen (2003) 
posited that smaller dimensions improve consistency and robustness of the three-
phase estimator, although the estimator might be less effi cient. Improvements to 
robustness require sacrifi cing sample data on variables measured with the satel-
lite protocol (M = 0) with the third-phase sample (s = 2). The sample size at the 
third phase is typically small, and the sacrifi ce might have little practical sig-
nifi cance, especially if it proves more robust. However, the concerns reported by 
Magnussen might be partially caused by numerical errors that are inherent to any 
digital computer with fi nite word length. This is a well-known hazard with the 
Kalman fi lter, especially when known constants (e.g., census of classifi ed satellite 
pixels or administrative records that completely cover the sampled population) 
are incorporated. There is abundant engineering literature on more numerically 
robust solutions to the Kalman fi lter estimator and, hence, RRE. Solutions most 
often involve the matrix square roots of the covariance matrices and orthogonal 
transformations that substitute simultaneous multivariate solutions with sequen-
tial univariate solutions. Maybeck (1979:Chapter 7) provides a concise overview 
of these methods, and Bierman (1977) devotes an entire book to the subject. The 
hazard exists for any RRE applied to large, multilevel, multivariate sampling de-
signs. This subject is briefl y discussed in the section “Robust Numerics.”
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Single-Phase-Sampling for Continuous Variables with 
Cluster Plots

The multiphase designs considered until this point presuppose that the sepa-
rate phases are composed of independent samples. However, this supposition is 
invalid for other feasible designs. One such case is the single-stage cluster de-
sign (Särndal 1992:125, 304), which is also termed trakt sampling (Mandallaz 
2008:53). This special case of cluster sampling is considered from the perspectives 
of an infi nite population, point sampling, and multiple collocated support-regions 
for each sample point. An example is modeled after the Nevada Photo-based 
Inventory Pilot (NPIP), which is an FIA initiative under its 2007 strategic plan 
(Frescino and others 2009a; Frescino and others 2009b) and is briefl y described 
in the “Introduction”.

Start with a simple random point-sample s of a continuous population in space. 
Each sample point j is centered on an FIA fi eld plot. Each sample point is mea-
sured with a relatively inexpensive protocol (M = 1), namely photo-interpretation 
of high-resolution aerial photography, and the relatively expensive FIA fi eld pro-
tocol (M = 2). The M = 1 protocol, and the support-region to which it is applied, 
are described as an example for Eq. 19. The qM=1-by-1 vector [y M=1]1,j represents 
qM=1 photo-interpreted variables at the sample point j. The M = 2 protocol and 
support-region are described as an example for Eq. 20. The qM=2-by-1 vector 
[y M=2]j represents qM=2 continuous variables measured by an FIA fi eld crew at 
sample point j.

So far, this exactly describes the Phase 2 sample in the previous section on 
two-phase sampling. However, two-phase sampling assumes a large independent 
Phase 1 sample that is measured solely with the M = 1 protocol (e.g., photo-
interpretation). In this section, the Phase 1 portion is omitted and is replaced with 
a related design based on a cluster plot. The primary motivation behind cluster 
plots is to increase the number of photo-interpreted measurements with little extra 
incremental cost.

For example, let each sample point j in sample s be circumscribed by a rela-
tively large but proximate support-region. This large support-region supplements 
the much smaller support-region described in the previous paragraph. In the NPIP 
example, the large support-region is 50 acres, and it is measured with photo-
interpretation (M = 1) of nj = 49 points that are systematically distributed over the 
50-acre support-region. The protocol used for each point (i, j), i = {1,2,…,49} 
in cluster plot j exactly matches the M = 1 protocol described in the previous 
paragraph. In fact, one of the 49 points, defi ned as i = (1, j), is at the center of the 
50-acre support-region, and it is identical to the jth sample point in the previous 
paragraph.

The qM=2-by-1 vector mean of measurements from the nj = 49 points in the 
large support-region is another quantitative descriptor of the sample point j. It is 
denoted as protocol M = 1C, which refers to application of the M = 1 protocol to 
a large support-region, which may be considered a cluster plot:
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Had the problem been modeled as a fi nite population with two-stage sampling, 
then the points (i, j) would be considered “second-stage sampling units” (Särndal 
and others 1992:125).

The objective is to improve the estimated population totals for the M = 2 
variables with the estimated population totals for the M = 1 variables. In fi ne-
grained, heterogeneous landscapes at the scale of the large support-region, the 
estimated population totals for photo-interpreted variables measured with the 
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M = 1 protocol should be more precise with the large support-region (Eq. 57) 
compared to the single M = 1 measurement at the center of the support-region, 
namely, sample point (1, j). The primary value of the M = 1 and M = 2 variables 
measured at sample point (1, j) is estimation of qM=2-by-qM=1 sample cross-
covariance matrix between the fi eld (M = 2) and photo-interpreted (M = 1) 
variables. If the cross-covariances are relatively large and the qM=1-by-1 vector 
estimate of the population totals for the photo-interpreted variables is relatively 
precise, then the qM=2-by-1 vector estimate of the population totals for the FIA 
fi eld variables will be more precise.

Start with the (2×qM=1 + qM=2)-by-1 design-based vector estimator for all vari-
ables measured at the point sample s and its (2×qM=1 + qM=2)-by-(2×qM=1 + qM=2) 
sample covariance matrix:
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 (58)

The last two terms in Eq. 58 defi ne partitions of the sample covariance matrix. 
This estimator for the sample covariance matrix ignores heteroscedasticity among 
cluster plots, which simplifi es variance estimates (e.g., Särndal 1992:153). This 
simplifi cation is the norm with FIA estimators (Scott and others 2005).

Next, use the more complete version of the Kalman fi lter in Eqs. 9 through 11 
that accommodates non-zero covariances between the state- and measurement-
vectors. The following maps the correspondence among notation in Eq. 58 and 
Eqs. 9 through 11, and the remainder of this section.
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The H matrix in Eq. 59 has dimensions qM=1-by-(qM=1 + qM=2). By substitution of 
the equalities in Eq. 59 into Eq. 9, the (qM=1 + qM=2)-by-qM=1 Kalman gain matrix 
K equals:
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 (60)

Numerically reliable algorithms must be used to apply Eq. 60, and these methods 
are briefl y covered in the section “Robust Numerics”.

From Eqs. 10, 59, and 60, the (qM=1 + qM=2)-by-1 vector estimate of population 
totals and its covariance matrix for all photo-interpreted (M = 1) and FIA fi eld 
variables (M = 2), denoted M = (1,1C), is:
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Equations 58 to 61 may be expanded, as in Eqs. 20 to 27, to reveal analogies 
between RRE and more traditional univariate regression estimators (e.g., Särndal 
and others 1992).

The example in Eq. 61 uses the M = 1C photo-interpretation protocol, which 
is identical to the M = 1 protocol applied to sample point (1, j), except that the 
M = 1C protocol is the mean of the nj point samples within the large support-
region (i.e., cluster plot). In addition, other remote sensing protocols for measur-
ing the large support-region are possible. Examples include MODIS satellite data 
(Frescino and others 2009b), with 15- to 60-acre pixels; earth-orbiting satellite 
Light Detection and Ranging (LiDAR) laser data; and airborne LiDAR data. If 
these supplemental measurements from other sensors are correlated with photo-
interpretations, then they will improve the precision of estimated population totals 
for the photo-interpreted variables, which, in turn, will increase precision of the 
estimated population totals for the M = 2 FIA fi eld variables.

Two-Phase Sampling for Continuous Variables with 
Cluster Plots

The fi nal example considered here is relevant to the vision expressed in the FIA 
Strategic Plan (USDA Forest Service 2007). The following example uses full-
coverage pixel data from a spaceborne sensor (protocol M = 0); a large sample 
of relatively inexpensive, 50-acre cluster plots measured with the M = 1 photo-
interpretation protocol (in addition to the M = 0 protocol); and a small sample of 
50-acre cluster plots that are fully measured with the M = 1 photo-interpretation 
protocol with a single 1/6-acre FIA plot within the 50-acre cluster plot measured 
with the M = 2 FIA fi eld protocol. Spaceborne sensor data (M = 0 protocol) exists 
for the small sample of cluster plots that contain an FIA fi eld plot; however, those 
M = 0 data are not used so as to reduce state-vector dimensions, avoid numerical 
problems, and avoid sampling zeros. This is similar to the non-optimal, but more 
robust, approach used in the example of “Three-Phase Sampling for Continuous 
Variables”.

The following example is set in the Interior West and interior portions of Alaska 
in the United States where, in the absence of major disturbance events, ambient 
stand dynamics (tree growth, regeneration, and mortality) are relatively slow and 
predictable. These changes can only be reliably measured with fi eld observations, 
such as the FIA fi eld protocol, although photo-interpretation of time-series of 
high-resolution aerial photography can provide valuable auxiliary data. However, 
rapid and substantial changes in forest conditions over large areas of forest land 
are caused by land management treatments, changes in land use, and episodic tree 
mortality from insects, diseases, wildfi res and other agents. These disturbance-
related changes can be reliably, although not perfectly, measured with interpre-
tation of multitemporal, high-resolution aerial photography that is accurately 
registered to a large permanent photo-plot (e.g., a 50-acre cluster plot). This situ-
ation is the motivation for NPIP (Frescino and others 2009a; Frescino and others 
2009b), which is led by the Interior West Forest Inventory and Analysis program. 
The FIA study by Lister and others (2009) has some similarities. The following 
example uses inexpensive large photo-plots to improve statistical effi ciency with 
Landsat auxiliary data and increase the sample size of 50-acre photo-plots in order 
to improve estimates of change. Accurate and effi cient monitoring of changes in 
land cover and land use is a short-term priority for FIA research and development.
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Assume each permanent, 1-acre FIA fi eld plot, with sampling intensity of 
1 plot per 6000 acres, is circumscribed by 50-acre cluster plot. Each cluster 
plot is measured through photo-interpretation (M = 1) of a systematic sample of 
49 points. Every year, an interpenetrating, 15-percent sub-sample of these cluster 
plots is imaged with high-resolution aerial photography and measured with the 
M = 1 protocol. Each year, an independent, 5-percent sub-sample is measured 
with both the FIA fi eld protocol (M = 2) and the M = 1 protocol with new, high-
resolution aerial photography. This sums to 20 percent of all FIA plots measured 
each year, which fully complies with the authorities legislated in 1998 Farm Bill 
(USDA Forest Service 1998). In this hypothetical example, every FIA fi eld plot, 
forested and otherwise, is measured once every fi ve years with high-resolution 
aerial photography (M = 1 protocol), although every forested plot is measured 
only once every 20 years by FIA fi eld crews (M = 2 protocol). For purposes of 
estimation with new data from a single year, the Phase 1 sample includes that 
15 percent of all sample points that are imaged during the year with aerial pho-
tography alone and measured with the M = 1 protocol, and the Phase 2 sample 
includes that 5 percent of all sample points measured during that same year with 
both interpretation of aerial photography (M = 1 protocol) and FIA fi eld crews 
(M = 2 protocol).

Each sample point j in the Phase 1 and Phase 2 samples is associated with a 
unique county and ownership category, and the resulting vector of binary indica-
tor variables is denoted [yM=0]i=1,, where the i = 1 subscript signifi es point 1 of the 
49 points in the 50-acre cluster plot, which is located at the center-point of the 
1/6-acre FIA fi eld plot and the center of the 50-acre cluster plot. Finally, multispec-
tral measurements from spaceborne sensors and other full-coverage geospatial 
census data are used to predict vegetation characteristics for each pixel that covers 
the sampled population (M = 0). These pixels may be registered to each of the 49 
individual points in the 50-acre cluster plot, or summaries of the pixel values for 
that cluster plot.

The sample of large photo-plots in this example offers additional opportunities 
to improve empirical models that predict forest characteristics using full-cover-
age, remotely sensed data from earth-observing satellites. Compared to 1/6-acre 
FIA fi eld plots, large photo-plots are more accurately registered to spaceborne 
sensors, such as those aboard the Landsat and Aqua earth-orbiting satellites. The 
spatial scales of 30-m (0.2-acre) or 250-m (16-acre) satellite pixels are more com-
patible with 50-acre photo-plots than the cluster of four 1/24-acre FIA subplots in 
the FIA fi eld plot. Compatibility of scale affects success of prediction models that 
use remotely sensed data (Xu and others 2009). Accurate registration between sat-
ellite imagery and training data is important for fi tting accurate prediction models 
(Pontius 2000; Verbyla and Boles 2000; Carmel and others 2001; Halme and 
Tomppo 2001; Czaplewski and Patterson 2003; Czaplewski 2005; Ashok and oth-
ers 2007; McRoberts 2010). For example, Frescino and others (2009b) improved 
predictions of forest characteristics, at least to a modest degree, with 15-acre 
MODIS pixels by fi tting models with photo-interpretation of 50-acre photo-plots 
in Nevada rather than measurements of FIA fi eld plots. Registration accuracy also 
affects the strength of the cross-covariances among variables measured with dif-
ferent fi eld and remote sensing protocols, hence, the gains in statistical effi ciency 
that are possible with complex sampling designs. Therefore, a modifi ed M = 1C 
protocol is defi ned as the aggregate sum of M = 1 photo-interpreted measurements 
for each of the 49 points in the 50-acre photo-plot.
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Sequential application of RRE provides a suitable estimator for this complex 
example. First, compute the Phase 1 sample estimator as:
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This requires registration of 30-m Landsat pixels to the entire 50-acre photo-plot 
but not any of the 49 individual, photo-interpreted points. Measurements of the 
250 Landsat pixels that cover the 50-acre photo-plot are summed into a single 
M = 0 measurement for each PSU. Likewise, photo-interpreted measurements for 
each of the 49 points in a 50-acre photo-plot are summed to a single measurement 
(M = 1C) of the entire photo-plot. Recall that this Phase 1 estimate uses the annual 
15 percent interpenetrating sub-sample of all FIA plots.

Second, compute the Phase 2 sample estimator from the 5 percent annual 
sub-sample:
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This estimate includes the M = 0 and M = 1C measurements for the entire 50-
acre photo-plot, the M = 1 photo-interpretations for each of the 49 points in each 
50-acre photo-plot, and the M = 2 measurement of the 1/6-acre FIA fi eld plot at 
the center of the 50-acre photo-plot.
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Third, apply the composite estimator that combines the vector estimates from 
the Phase 1 sample (Eq. 62) and the Phase 2 sample (Eq. 63). The primary purpose 
is to improve the estimated population totals for the photo-interpreted (M = 1) 
variables and the geopolitical areal variables (M = 0) by combining the Phase 1 
and Phase 2 sample estimators, although this will also improve estimates of those 
FIA fi eld variables (M = 2) that are correlated with remotely sensed and geopoliti-
cal variables. The notation corresponding to the Kalman fi lter in Eq. 12 is:
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The H matrix has dimensions (qM=0 + qM=1)-by-(qM=0 + 2×qM=1 + qM=2). From 
Eqs. 12 and 64, the composite estimator is:
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Fourth, apply the estimator for cluster plots, similar to Eq. 61, except use 
the composite estimate from equation Eq. 65 rather than the sample estimate 
of the same vector of population totals from Eq. 58. The purpose is to improve 
estimat ed population totals for photo-interpreted variables by combining the photo-
interpreted measurements made at the sample point (M = 1, i = 1) and the mean 
of the photo-interpreted measurements made for the surrounding cluster plot 
(M = 1C, i = 1,2,…,nj), where nj = 49 in this example. The notation corresponding 
to the Kalman fi lter in Eq. 12 is:
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The H matrix in Eq. 66 has dimensions qM=1-by-( qM=0 + qM=1 + qM=2). From Eqs. 9 
through 11 and Eq. 66, the composite estimator is:
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Numerically reliable algorithms must be used to apply Eq. 67. These methods are 
briefl y covered in the section “Robust Numerics”.
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Fifth, use RRE to constrain the vector estimate of population totals for areal 
variables to exactly match the census totals for geopolitical variables (e.g., area 
by county and ownership type), which are exactly known from administrative 
records (Särndal and others 1992:230). The notation corresponding to the Kalman 
fi lter in Eq. 12 is:
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The H matrix in Eq. 68 has dimensions qM=0-by-(qM=0 + qM=1 + qM=2). From Eqs. 12 
and 68, the composite estimator is:

 

                
( )
[ ] ( )

[ ]

[ ]
( )
[ ]

−+=

=
==

=

=

==

=
==

=

=

=
==

=

=

C1,1M
2,12M

1M

0M

0M

C1,1M
2,12M

1M

0M

C1,1M
2,1,2M

1M

0M

ˆ
ˆ
ˆ

ˆ
ˆ
ˆ

ˆ
ˆ

s

Us

sUs t
t
t

HtK
t
t
t

t
t
t

 

( )
[ ]

( )
[ ]

( )
[ ]C1,1M

2,12M

1M

0M

C1,1M
2,12M

1M

0M

C1,1M
2,1,2M

1M

0M

ˆ
ˆ
ˆ

ˆ
ˆ
ˆ
ˆ

ˆ
ˆ
ˆ
ˆ

ˆ

=
==

=

=

=
==

=

=

=
==

=

=

−=

ssUs t
t
t

VHK
t
t
t

V
t
t
t

V  

                  
( )
[ ] ( )

[ ]

′′=

−

=
==

=

=

=
==

=

=

1

C1,1M
2,12M

1M

0M

C1,1M
2,12M

1M

0M

ˆ
ˆ
ˆ

ˆ
ˆ
ˆˆ H

t
t
t

VHH
t
t
t

VK

ss

 

 (69)

Equations 62 to 69 may be expanded, as in Eqs. 20 to 27, to reveal analogies 
between RRE and more traditional univariate  regression estimators (e.g., Särndal 
and others 1992).

Numerically reliable algorithms must be used in these various steps. These 
methods are briefl y covered in Eqs. 31 to 37 for a census of auxiliary data and, 
more generally, in the section “Robust Numerics”.

Finally, extract the matrix partitions in Eq. 69 that represent the estimated pop-
ulation totals for the variables measured with the FIA fi eld protocol M = 2.
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This example actually incorporates dual, two-phase sampling designs. One 
is the Phase 1 sample of cluster plots that are measured solely with photo-
interpretation (M = 1C) and classifi ed by county and ownership type (M = 0), 
which is given in Eq. 62. Phase 1 in the second two-phase design uses the ad-
ministrative records for area by county and ownership type (M = 0), which is 
considered an exact census. Because of Eq. 69, the sum of all areal variables (e.g., 
area by land cover and forest type) in Eq. 70 within an ownership-type and within 
a county will exactly equal the administrative census statistics for that land area. 
Sequential application of RRE permits designs that use a variety of overlapping 
sampling phases and stages and different types of collocated support-regions that 
are treated as cluster plots.

The section titled “Multivariate Vector of Auxiliary Variables” describes the 
numerous types of remotely sensed auxiliary data that may be accommodated 
in this type of complex design with cluster plots, sub-sampling, and censuses of 
the sampled population. The next section covers some mathematical features of 
those auxiliary data that are part of a classifi cation system of categorical discrete 
variables.

Categorical Variables
All estimators considered above assume the predictor variables are continu-

ous, such as remotely sensed estimates of standing wood volume. However, 
remote sensing variables may be discrete, such as predictions of forest type and 
la nd cover type categories. In addition, many FIA variables are discrete, such as 
categories of various forest conditions. The units of measure on these discrete 
variables are generally “proportion of the population,” which ranges between 0 
and 1. Equivalently, the units might be hectares or acres, which range between 0 
and the total area of the population.

The estimators above can directly accommodate any categorical variable as an 
auxiliary predictor variable, a population variable, or both. Any polychotomous 
categorical variable with c categories may be transformed into c binary dichoto-
mous variables (e.g., de Gruijter and others 2006:69; Knottnerus 2003:130; Zhang 
2000). Within the estimators already presented, these dichotomous variables may 
be included as sub-vectors, along with continuous variables in the yM=0’ vector. 
Likewise, CM=2’ categories in the FIA fi eld protocol M = 2’ may be converted 
into CM=2’ dichotomous variables, and these may be inserted as sub-vectors in the 
yM=2’ measurement vector. The resulting RRE will retain their minimum variance 
property. However, the statistical effi ciency of estimates might be improved by 
capturing the CM=0’×CM=2’ cross-classifi cation of categorical protocols M = 0’ and 
M = 2’. Otherwise, the estimators above only include the CM=0’ + CM=2’ margins of 
this cross-classifi cation in yM=0’ and yM=2’. This enhancement is considered here.
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For an FIA variable and a remotely sensed variable that are both polychoto-
mous categorical variables, a contingency table can be built that includes statistics 
for the cross-classifi cation by these two protocols. If both categorical variables 
have equivalent classifi cation systems, then CM=0’ = CM=2’, and the resulting square 
C M=0’×CM=2’ contingency is directly related to an error matrix or confusion matrix 
in the remote sensing literature (Story and Congalton 1986).

In contrast, the classifi cation systems for the M = 0’ (e.g., spaceborne remote 
sensing) and M = 2’ (e.g., FIA) protocols can differ in the number of catego-
ries and their defi nitions. The cross-classifi cation with both protocols yields a 
CM=0’×CM=2’ contingency table. Gallego and Bamps (2008) use the term “fi ne scale 
profi les” for the resulting rectangular contingency table to avoid misinterpretation 
as an error or confusion matrix in the remote sensing lexicon. Card (1982) and 
Czaplewski and Catts (1992) demonstrate that such a contingency table is the ba-
sis for multivariate inverse calibration (Tenenbein 1972; Brown 1982; Czaplewski 
and Catts 1992) or direct calibration (Dymond 1992; Gallego and Bamps 2008).

It is possible to imbed this contingency table within any of the above estimators 
for complex sampling designs. Joint classifi cation probabilities are estimated by 
augmenting the M = 2’ measurement vector with the cross-classifi cation with both 
the remotely sensed (M = 0’) and fi eld (M = 2’) protocols. This simply requires re-
structuring the CM=0’×CM=2’ elements in the cross-classifi cation contingency table 
as the (CM=0’×CM=2’)-by-1 sub-vector of [yM=2’]i for sample unit i in Eqs. 20, 45, 56, 
58, or 63.

Czaplewski (in prep.[b]) provides a detailed example of this application, in 
which census statistics from full-coverage, remotely sensed data serve as con-
straints (Simon and Chia 2002). He offers solutions to numerical round-off 
errors that can cause unreliable results. There are also well-developed alterna-
tives to numerical hazards, such as U-D factorization (Bierman 1977; Maybeck 
1979:Chapter 7). Numerical problems are not always apparent from the fi nal 
results, and numerical errors can exceed random estimation errors (Bierman 
1977), which obviates the gains in statistical effi ciency with the Kalman fi lter. 
It is strongly recommended that the numerically robust methods presented by 
Maybeck and Bierman be used as standard procedure.

The inclusion of the contingency table for all cross-classifi cations can create 
a large number of state variables. For example, if there are 12 categories in the 
fi eld protocol and 17 categories in the remote sensing protocol, 204 variables 
must be estimated. However, only one margin of the contingency table might be 
required for FIA statistical reports, such as the estimated areas for each of the 12 
categories classifi ed with the fi eld protocol. The remaining 192 variables are a 
nuisance in some sense. The Schmidt-Kalman fi lter is an alternative (Jazwinski 
1970; Grewal and Andrews 2001). The Schmidt-Kalman fi lter does not specifi -
cally estimate the nuisance variables, thus reducing the dimensions of the vector 
estimates. However, this advantage is gained at a cost. The solution is not neces-
sarily optimal, and estimates of the desired state variables might not be as effi cient 
as a fi lter that directly estimates all nuisance variables. In the special case of mul-
tiphase sampling with a homogeneous PSU where each PSU can be classifi ed into 
one and only one category in each classifi cation system, the margins of the contin-
gency table are suffi cient statistics for constrained RRE (Czaplewski in prep.[b]).

There are well-developed alternatives available that apply constraints upon the 
Kalman fi lter solution (Doran 1997; Simon and Chia 2002). See the thorough 
and modern reviews by Gupta and Hauser (2007) and Gupta (2008) for linear 
equality constraints that might be imposed so that the estimated total for the re-
motely sensed categorical variables exactly equals the census totals. Also, it is 
possible with numerous rare categories that some estimated population totals will 
be negative. The likely cause is application of classifi cation systems that are too 
detailed relative to the sample size. One pragmatic solution is to collapse the 
detail of a hierarchical classifi cation system to be more realistic given limited 
sample sizes. Another alternative is application of inequality constraints that force 
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relevant estimated state variables to be non-negative. Doran (1997), Simon and 
Chia (2002), Knottnerus (2003:352), Gupta and Hauser (2007) and Gupta (2008) 
provide a useful introduction to these estimators.

Robust Numerics
As repeatedly discussed above, numerical precision of the multivariate estima-

tor merits special attention. Numerical precision is a function of the word length 
for a digital computer, and it is often referred to as round-off error. The subtrac-
tion operator, when applied to two large numbers or matrices, is especially prone 
to signifi cant round-off error. The vector residual in Eq. 10 is an example. Also, 
matrix inversion is problematic for an ill-conditioned covariance matrix, as in Eq. 
9 for the gain matrix K. The covariance matrix in Eq. 9 will be ill-conditioned 
whenever sub-sets of auxiliary variables are highly codependent. The dichoto-
mous transformation of a polychotomous, remotely sensed categorical variable is 
a common example.

For example, Knottnerus (2003:236) found that small errors in decomposition 
of the Horvitz-Thompson estimator can invoke large errors in variance estimates. 
Estevao and Särndal (2004:657) warn that the calibration estimator is numerically 
unstable, especially for designs more complex than Simple Random Sampling. 
Magnussen (2003) found that RRE, when applied to three-phase sampling of 
categorical variables, is not necessarily robust and consistent compared with a 
sub-optimal sequential estimator. Magnussen posited that numerical stability can 
be improved if multivariate dimensions are decreased by sequentially considering 
only those variables shared by two levels at one time in the multilevel sampling 
design. For example, the three-phase estimator in Eqs. 44 to 51 requires covari-
ance matrices with dimensions of (qM=0 + qM=1 + qM=2)-by-(qM=0 + qM=1 + qM=2) at 
all sequential steps, where qM=i denotes the number of variables estimated with 
protocol M = i. The alternative three-phase estimator in Eqs. 52 to 56 involves 
dimensions of (qM=0 + qM=1)-by-(qM=0 + qM=1) at one step and (qM=1 + qM=2)-by-(qM=1 
+ qM=2) at another step. This requires modest sacrifi ce of statistical effi ciency 
because it ignores the M = 0 measurements available for the small Phase 3 sub-
sample, but the sacrifi ce is rewarded with improved robustness and consistency. 
This same strategy applies to any sampling design that employs three or more 
phases, stages, or measurement protocols within a cluster plot.

However, an additional solution is possible. Numerical issues with the multi-
variate Kalman fi lter are well known and extensively studied as components of 
the divergence problem. Bierman (1977) devotes an entire book to the subject. 
Maybeck’s (1979) Chapter 7 is a succinct and thorough coverage of the subject. 
Comprehensive references on the applied Kalman fi lter all deal with this issue 
(e.g., Grewal and Andrews 2001; Bar-Shalom and others 2001; Chui and Chen 
2009). The reliability of the Kalman fi lter is also vulnerable to spurious observa-
tions, outliers, or inaccurate models (Guttman and Lin 1995).

For example, inversion of a qM=1-by-qM=1 covariance matrix is required in Eq. 
26. The dimensions of this covariance matrix may become large with three or 
more sampling phases or stages; detailed, remotely sensed census data; and areal 
constraints based on geopolitical domains. (Dimensions required in this matrix in-
version are unaffected by the dimensions of the variables measured with the M = 2 
protocol, i.e., FIA fi eld data.) More seriously, the covariance matrix for auxiliary 
variables can be singular, making the matrix inversion infeasible (Särndal and 
others 1992:241). In especially pathological cases, the magnitude of numerical 
round-off errors can become large relative to the magnitude of random estimation 
errors (Bierman 1977:1).

Bierman (1977:22) cites one ad hoc method to detect signifi cant numeri-
cal errors: solve the system of matrix equations with single-precision numerics 
(e.g., 32-bit), and then solve it again with double-precision (e.g., 64-bit). If the 
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differences in the vector results are of pragmatic signifi cance, then numerical er-
rors are a problem that must be addressed.

In the early days of Kalman fi ltering, when 8-bit computers were state-of-the-
art, numerous solutions to these numerical challenges were devised. The square 
root transformation of a covariance matrix has about twice the numerical pre-
cision compared to matrix operations with untransformed covariance matrices 
(Bierman 1977:91), which may be further improved with more numerically 
precise digital computers (e.g., double-precision with 64-bit processors versus 
8-bit) and orthogonal transformations such as the Cholesky decomposition, the 
Householder orthogonal transformation, the Givens orthogonal transformation, 
and the Gram-Schmidt orthogonalization. One especially effective solution is the 
U-D factorization method, which is a modifi ed Gram-Schmidt orthogonaliza-
tion (Bierman 1977:148). Stengel (1986:357), Grewal and Andrews (2001) and 
Bar-Shalom and others (2001) also discuss U-D factorization and its derivation. 
The Square Root Information Filter (SRIF) is another alternative that surpass-
es the U-D factorization in some applications (Bierman 1977:69). Knottnerus 
(2003:281) shows the relationship between the numerically stable Gram-Schmidt 
orthogonalization and augmented regression (Blundell and Robin 1999) in recur-
sive applications.

Most Kalman fi ltering algorithms based on these numerically robust methods 
orthogonalize the vector of auxiliary population totals with a linear transforma-
tion, such as the inverse square root of the corresponding covariance matrix. The 
resulting vector of transformed auxiliary statistics for the population is expected 
to have a unit covariance matrix, meaning each element of the transformed vector 
has zero covariance with all other elements of the transformed vector. Therefore, 
each element of the transformed auxiliary vector may be separately applied to 
improve precision of estimated population totals for the FIA study variables. The 
fi nal vector estimate incorporates all elements of the transformed auxiliary vector 
after all elements are processed in this sequence of recursions.

Boggs and others (1995) note that these types of algorithms are 
not very widely used, because of the erroneous perception that 
these factorization techniques are too complicated compared to the 
conventional (Kalman fi lter), use too much computer storage, and 
involve too much computation. This (incorrect) perception is due 
in large part: (1) to an incomplete understanding … of algorithms 
that are heavily dependent on advanced numerical analysis (Golub 
and Van Loan 1996, Lawson and Hanson 1974), and (2) on the use 
of ineffi cient computer … implementations (to process state-vectors 
with) … up to a few thousand variables (Jiang and Ghil 1993).

Boggs and others (1995) expect that Bierman’s SRIF offers even further improve-
ments. Furthermore, these methods are amenable to implementation in database 
software without the need for matrix algebra software. Implementation in cor-
porate database software is convenient for a large production statistical program 
such as FIA (McRoberts and others 2004).

In unpublished Monte Carlo simulations by the author, the U-D factorization 
has been fast and very successful in the numerical sense, with covariance matrices 
having qM=1 = 200 remotely sensed and geopolitical census variables, even with-
out specialized matrix algebra software. This confi rms that even larger problems 
might be numerically feasible and robust. Czaplewski (in prep.[b]) presents other 
numerically robust yet simple methods with auxiliary census variables.

Czaplewski (in prep.[a]) applies the Kalman fi lter as a time-series estimator 
for FIA panel data (Patterson and Reams 2005). The multivariate innovation se-
quence is associated with a time-series of covariance matrices. These must be 
inverted to compute the multivariate weights (i.e., Kalman gain matrices) that 
combine the vector of expected observations with the realized observations. The 
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covariance matrices are severely rank-defi cient, and many full-rank covariance 
matrices remain ill conditioned.

Simon and Chia (2002) provide stable methods suitable for auxiliary constants 
such as a census of pixels from full-coverage “wall-to-wall” spaceborne sensors 
(e.g., Landsat, SPOT, IRS, and MODIS); these methods apply to both continuous 
and categorical predictions from remotely sensed data. Some variables are non-
negative by defi nition (e.g., biomass must have a value greater than or equal to 
zero), but it is possible that the static Kalman fi lter can produce infeasible nega-
tive estimates, even with stable numerics. This problem is more common with 
rare attributes (e.g., forest clearings caused by small fi res or clearcuts). Doran 
(1997), Simon and Chia (2002), and Knottnerus (2003:379) offer relevant in-
equality constaints that can eliminate infeasible results.

Czaplewski (in prep.[a]) successfully implements the dynamic Kalman fi l-
ter under these adverse conditions. He uses the LDL’ square root fi lter given by 
Bar-Shalom and others (2001:308-317). The LDL’ factorization uses the Linear 
Algebra PACKage (LAPACK) routine for the LU decomposition (Anderson 
and others 1999), which is a freely available FORTRAN 90 routine applicable 
to singular covariance matrices. Results from the LU decomposition are further 
factored into the LDL’ structure with methods given by Golub and Van Loan 
(1996: algorithm 4.1.2) for a symmetric nonsingular matrix. Any singular covari-
ance matrix is pivoted so that the fi rst diagonal partition is nonsingular and well 
conditioned. The remaining partition of the covariance matrix represents nearly 
redundant information that is simply omitted from the Kalman update estimator. 
The pivoting algorithm retains any portion of the innovation covariance matrix 
directly corresponding to state-variables that are associated with auxiliary ob-
servations. The remainder of the pivot priorites use LAPACK output. The LDL’ 
square root fi lter requires orthogonalization of the observation matrix. This is 
done with the inverse square root of the covariance matrix for the auxiliary vari-
ables using Method 2 in Higham (2002:263).

The estimators given above, and many more related estimators that are en-
visioned for future research, are merely abstract matrix equations at this point. 
Important details such as numerical stability require further research and develop-
ment before these methods can be confi dentially incorporated into a government 
statistics program.

Optimal PSU Expansion Values for Each FIA Plot
Scott and others (2005:65) review the historical use of expansion factors in 

FIA.
When periodic inventories and fl at fi les were the FIA standards, it 
was convenient to calculate a small set of expansion factors by which 
individual plot-level or tree-level observations could be converted 
to their population level equivalents. This allowed population 
totals to be obtained via summation, which greatly simplifi ed the 
estimation process. Expansion factors were popular with external 
FIA clients, many of whom used this concept to build their own 
processing systems. The tradeoff for such simplicity is that the use 
of expansion factors precludes the ability to calculate variances. At 
best, the variances of estimators derived from expanded values can 
only be approximated, and these approximations are known to be 
poor (Alegria and Scott 1991). Expansion factors are less practical 
with panelized inventory systems, which are designed to increase 
analytical fl exibility by allowing panels to be combined in a variety 
of ways. Each different panel combination produces a unique set 
of expansion factors, rendering expansion factors associated with 
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panel systems less stable than those produced by periodic systems. 
The use of expansion factors is discouraged because they prohibit 
accurate variance estimation and they no longer have the advantage of 
simplicity. However, there is still a demand for them, and it may take 
a while to convert processing systems to the estimation procedures 
specifi ed in this chapter. Therefore, FIA will continue to offer 
expansion factors until a demand is no longer apparent.

Calibration weights (Deville and Särndal 1992) are similar to FIA plot ex-
pansion factors. Calibration weights are a modifi cation of the design weights 
(i.e., inverse of inclusion probability for each sampled PSU). The modifi cation 
incorporates external information available from the auxiliary data, such as the 
population census of predictions for remotely sensed pixels. Estevao and Särndal 
(2006) discuss calibration weights as a convenient means to improve statistical 
effi ciency with auxiliary information. FIA expansion factors serve the same role 
with post-stratifi cation. FIA uses the temporally indifferent estimator (Patterson 
and Reams 2005), which facilitates the use of expansion factors in FIA databases.

The following demonstrates how the results from RRE for complex designs 
may be expressed as expansion values, much like the expansion factors tradition-
ally used by FIA and calibration weights used in other surveys. Future research 
will investigate dependable methods that use dynamic expansion values with the 
Kalman fi lter.

Let the equal-probability, infi nite-population, design-based, multivariate, 
single-phase estimator for the vector of auxiliary variables (x) and study variables 
(y) be the design-weighted sum of observations for each sampled unit k (i.e., FIA 
plot) in the equal-probability sample s(XY) (i.e., the set of sampled FIA plots):
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where n(XY) is the sample size of FIA plots in sample s(XY), A is the total acres in 
the sampled population, and both xk and yk have units of measure such that the 
values per unit area are consistent with the units of A (e.g., 1 acre for a single-
condition category in FIA plot k and volume per acre f or wood volume mea-
surements in plot k). The estimated covariance matrix for the population vector 
estimate in Eq. 71 is defi ned as:
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Further, assume that comparable remotely sensed auxiliary data are available 
from a large independent probability sample s(Z):
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where X and Z share exactly the same measurement protocol, i.e., xi = zi. If the 
auxiliary data are available for a census of remotely sensed pixels for the entire 
 sampled population, then the population totals for the vector of auxiliary data are 
known exactly as  without sampling or enumeration error, i.e., 

[ ] 0tV z =t t .

Expansion Values for FIA Population Estimates
Based on Eq. 16, the optimal RRE given this vector of auxiliary variables has 

the general structure:
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where the matrix of RRE optimal weights in Eq. 75 is defi ned as the qY-by-qX
matrix W:
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Substituting Eq. 71 into Eq. 75:
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where the qY-by-1 vector “expansion value” fk for the kth PSU is:
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By defi nition, the qY-by-1 vector sum of expansion values in Eq. 76 for all nXY 
PSUs will exactly agree with t he optimal RE vector estimate for the sampled 
population, thus allowing generic inference (Opsomer and others 2007). The vec-
tor of expansion values for the kth PSU is the sum of the design-weighted qY-by-1 
vector measurement of the kth PSU (AT/nXY)yk plus the optimally weighted qX-by-1 
residual vector difference between the auxiliary data for the kth PSU and its cor-
responding population mean, namely .This is similar in 
structure to Knottnerus’ (2003:395) minimum variance weighting procedure for 
univariate study variables.

The vector of optimal expansion values fk for each sampling unit k in Eq. 76 
has different numerical properties than the scalar expansion factor (AT /n)yk in 
Eq. 71. Unlike the traditional FIA expansion factor, optimal expansion values 
for a sampling unit can have negative elements, although this can be rare or non-
existent. Furthermore, expansion values for forest characteristics (e.g., wood 
volume and forest type) may be non-zero for an FIA plot that is classifi ed as 
non-forest in the fi eld. FIA uses a single multiplicative volume expansion factor 
for all measurements associated with wood volume, such as volume for different 
tree species, tree sizes, and tree conditions. This includes current volume and 
components of volume change (e.g., growth, regeneration, mortality, removals). 
However, the second term in Eq. 76 is an additive adjustment, not a multiplicative 
adjustment. To emulate fully the traditional use of expansion factors by FIA, ad 
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hoc procedures might be necessary to apply these optimal expansion values from 
RRE. For example, merchantable wood volume measurements across all tally 
trees within PSU k might be summed into a single element in the yk measurement 
vector for plot k. If so, then a single element of fk is the expansion value that ap-
plies to volume measurements for all tally trees in sampling unit k, regardless of 
species, size, or condition. That value would need to be prorated to each category 
of wood volume measurement.

Expansion Values for FIA Variance Estimates
The previous section conveniently expressed RRE results as expansion vec-

tors for each PSU. Likewise, the RRE covariance matrix for the population totals 
for both the auxiliary and study variables may be expressed as the sum of values 
for each FIA PSU (e.g., Knottnerus 2003:220, 236). This provides further conve-
niences in database procedures.

First, combine Eqs. 12 and 72. The resulting covariance matrix equals:
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Extracting the partitions in Eq. 77 specifi c to the study variables Y and defi ning a 
new vector gk for the kth FIA fi eld plot:
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where
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and the sample size of FIA fi eld plots nXY is suffi ciently large such that (nXY-1)≈n
XY

. 
The vector gk for the kth FIA fi eld plot in Eq. 78 may be rearranged such that:
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Substituting Eqs. 14 and 75 into Eq. 79, using TZ At̂  as a more precise esti-
mate of the population mean vector for the auxiliary variables than , and then 
combing with Eq. 76:
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Replacing Eq. 80 into Eq. 78:
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Thus, Eq. 81 expresses the RE covariance matrix for the vector of estimated 
population totals for the FIA study variables as the sum over all FIA PSUs of 
the cross-product of a vector specifi c to each PSU (gk). That vector equals the 
residual difference between the vector of expansion values for the RE for the kth 
PSU (fk) (Eq. 76) and the mean design-based vector of expansion values over all 
nXY sampled PSUs.

Further Research
Equations 76 and 81 demonstrate that the optimal RRE population estimates 

and variances for FIA variables may be estimated with a vector of plot-level 
expansion values. Those expansion values use the design-based weights, the design-
consistent approximately optimal RRE weights, the observed study variables (yk), 
and the auxiliary variables (xk) for each sampled PSU k. Unlike traditional FIA 
expansion factors, which cannot be used to estimate variances with post-stratifi -
cation (Scott and others 2005:65), the RRE expansion values may be conveniently 
used in a database environment for FIA core tables and related variance estima-
tion. Furthermore, the memoryless quality of the RRE produces expansion values 
that fully capture all information available in a prior set of ancillary remotely 
sensed data. Thereafter, those remotely sensed data may be (fi guratively) dis-
carded after they are processed by the RRE because they are no longer needed 
for subsequent estimates. This quality is expected to greatly simplify process-
ing, application, and documentation of dynamic expansion values by FIA as new 
time-series of remotely sensed auxiliary data and FIA fi eld data become available. 
However, these weights are based on heuristics, not formal theory. Knottnerus 
(2003:395) develops similar weights from the perspective of Pythagorean regres-
sion, which might be further simplifi ed with the matrix inversion lemma. Further 
investigation is needed to gain confi dence in the reliability, numerical stability, 
and processing simplicity of this approach to variance estimation.

Similarly, results from the numerically stable algorithm for use with auxiliary 
census data (Eqs. 34 and 35) may be captured as expansion values at the PSU 
level. However, these expansion values would need to be revised at each indi-
vidual ith recursion. Until the end of the recursive sequence, PSU-level expansion 
values would be necessary for the auxiliary variables in addition to the FIA study 
variables. The auxiliary variables may be removed from the state vector after 
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all relevant information in those auxiliary variables is fi ltered out with the RRE. 
Future research will extend PSU-level expansion values for RE (Eqs. 76 and 81) 
to the more general case of RRE. The section “Robust Numerics” describes more 
general methods to assure numerical stability. It is not yet known how these re-
sults can be represented as expansion values at the PSU level.

These results are obtained by treating the sub-optimal matrix of weights K as 
fi xed, which leads to a vector of expansion values for each PSU k that are addi-
tive shifts relative to the original direct estimators. This ad hoc approach is fully 
design-consistent when applied to the entire population, but its statistical proper-
ties are unknown when applied to small areas. Furthermore, it deviates from more 
traditional approaches (e.g., Särndal and others 1992) in which a single scalar 
regression or calibration weight is applied to all variables measured for a sampled 
PSU. An alternative might explicitly recognize that the optimal K is estimated. 
The estimator in Eq. 76 may be recast as a linear combination of the vector mea-
surements for each sampled PSU k (yk) with the yk appearing in the estimated 
covariance term in Eq. 77. If that is feasible, then the vector of expansion values 
for each PSU may be replaced by a scalar expansion weight. This would conform 
to traditional regression estimation. However, the resulting scalar weight is not 
necessarily optimal for all study variables, and, in extreme cases, it might be less 
effi cient than the original direct estimator that does not use any auxiliary informa-
tion (Lundström and Särndal 1999).

Multivariate Vector of FIA Study Variables
The M = 2 protocol produces accurate FIA fi eld measurements (e.g., tree di-

ameter and tree height) that are further transformed into other relevant FIA study 
variables (e.g., tree volume and tree biomass). These variables characterize forest 
structure and composition in terms of tree species, size, wood volume, and bio-
mass; rates of tree volume growth, mortality, and removals; ownership of private 
lands and stewardship responsibilities for public lands; and other indicators of 
forest conditions, health, risks, and hazards (Gillespie 1999). Table 2 summarizes 
these variables in more detail. These variables are cross-classifi ed in multiple 
ways to create detailed FIA core statistical tables (e.g., Reams and McCollum 
2000; Smith 2002).

In all of the examples above, the y vector contains the FIA core variables that 
describe the current population totals tY, or state, of the population. The y vector 
also includes variables that describe the change over time in those same variables, 
i.e., the change in the state of the population. Thus, a dynamic Kalman fi lter can 
include effi cient estimates of changes over time in the sampled population, while 
retaining its memoryless qualities to simplify data management.

Population sub-groups are defi ned by FIA as forest condition classes (e.g., as-
pen sawtimber stands) with detailed estimates of tree characteristics within each 
condition class (e.g., tree species by various categories of tree size). As a conse-
quence, the number of parameters can increase 500-fold or more for populations 
at the scale of a state (e.g., Pennsylvania, which is approximately 28 million acres 
in size).

There may be literally thousands of such variables, depending on the degree 
of compartmentalization of continuous variables by discrete condition catego-
ries, the degree of cross-classifi cation of nominal categorical variables, and the 
number of population groups. For numerical reasons, it is assumed that some 
simplifi cation of the estimation problem reduces the dimension qM=2 of the study 
variables in vector y such that 5<qM=2<5000. At the other extreme, the RRE may 
be structured as a univariate estimator, where each scalar study variable is sepa-
rately estimated, one at a time, i.e., qM=2 = 1. This latter univariate approach is used 
in the vast majority of sample survey literature. It is also used by FIA (Scottand 
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others 2005). Future research will investigate the advantages and limitations of 
the multivariate approach, including accurate estimation of large covariance ma-
trices with methods suitable to a production survey system.

Multivariate Vector of Auxiliary Variables
Särndal and others (1992:220, 304, 397) defi ne auxiliary variables to “covary 

with the study variable and thus carry information about the study variable. Such 
covariation is used advantageously in the regression estimator … (to explain the 

Stand- or site-level conditions 
Number of 
categories Tree-level conditionsa Number of 

categories 
Land useb,c  

5 
Tree speciesd 

331 

Broad forest typesb,d 
29 

Tree size (DBH) 2-inch 
classes 

Detailed forest typesd 
136 

Tree damage 
10 

Stage of stand developmentb 
4 

Tree quality, value 
5 

Stand densityb,e 
5 

Wood volume 
continuous 

Stand originb 
2 

Growth in wood volume 
continuous 

Land ownership  
10  

Stand age 
9  

Stand productivity 
7  

Number of trees per acre b,f 
continuous  

Wood volume per acre b,f 
continuous  

Volume growth per acref 
continuous  

Volume mortality per acre b,f  
continuous  

Volume removals per acre b,f 
continuous  

 
a FIA measures many other indicators that describe landscapes, habitats, non-tree vegetation, etc. 
b Photo-interpretations and photogrammetric measurements with high-resolution imagery are well correlated with 

these field measurements (Aldrich 1979). The correlation is much lower with satellite data and high-altitude (low-
resolution) aerial photography.  

c Includes timberland, other forest land, protected forest, non-forest land, and water. 
d Any single geographic region of the United States has only 20 to 40 percent of these national categories. 
e Includes overstocked, fully stocked, understocked, and non-stocked. 
f Totals are produced for thousands of permutations of different tree and forest categories. 

 

Table 2. Summary of variables measured directly or indirectly with FIA fi eld protocol (Czaplewski 1999).
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variable of interest, especially) … as a means of offsetting the scarcity of the 
sample data in small domains.” The associations among auxiliary variables (e.g., 
remotely sensed data) and the study variables (e.g., FIA fi eld measurements and 
transformations) need to be suffi ciently strong. Särndal and others (1992:250) 
recommend correlations among continuous predictor and response variables be at 
least 0.5 or greater. For nominal categorical variables, Czaplewski and Patterson 
(2003) recommend agreements of at least 70 percent or greater.

The principle objective of this paper is to offer highly fl exible statistical ap-
proaches capable of using multiple types of remotely sensed data (Czaplewski 
in prep.[b]) to improve statistical estimates and cost-effectiveness of FIA. These 
remote sensing technologies include:

• digital processing of multispectral optical Earth-observing satellite sensors, 
such as Landsat, with 30-m pixels;

• hyper-spectral optical Earth-observing satellite sensors, such as MODIS, with 
250-m to 1000-m pixel resolution (e.g., Huete and others 2002; Tian and others 
2002; Zhan and others 2002; Brown and others 2006; Achard and others 2007);

• LiDAR laser sensors, both airborne and spaceborne; and
• manual interpretation of aerial photography of various scales and resolutions.

All these technologies are briefl y discussed here.

Digital Processing of Multispectral Landsat Data
Digital processing of multispectral Landsat data with 30-m pixel resolution 

has broad-scale applications in extensive monitoring of forest cover. The follow-
ing is a partial list of the literature that assesses these applications: Horler and 
Ahern 1986; Bauer and others 1994; Cohen and others 1995, 2001; Trotter and 
others 1997; Wynne and Carter 1997; Holmgren and Thuresson 1998; Katila and 
Tomppo 2001; and Lefsky and others 2001. The relatively high spatial resolution 
of these data often permits registration to a support-region at the scale of a 1-acre 
FIA plot, although larger support-regions can also be useful.

The Landsat (M = 0) protocol may include continuous variables, such as re-
motely sensed estimates of biomass; discrete categorical variables, such as forest 
conditions classes; or model predictions of any measurement made by FIA fi eld 
crews with the M = 2 protocol. The model might be parametric, such as with lo-
gistic regressions that predict probability of forest cover with optical satellite data 
as the predictors (e.g., McRoberts and Liknes 2005); might be non-parametric, 
such as with the classifi cation and regression tree method (e.g., Breiman and oth-
ers 1984; Block and others 2008) with a univariate response variable; or may have 
multivariate response variables, including k-nearest neighbor regression (e.g., 
Katila and Tomppo 2001).

Multispectral data for a Landsat scene, with an effective area of approximately 
150 by 150 km, contains about 25 million Landsat pixels. They can be grouped 
into 4- by 4-pixel Landsat support-regions (3.6 acres or about 1.6 million pixel 
groups) that can be reasonably registered to the 1-acre support-region defi ned 
by the FIA fi eld plot (Czaplewski 2005). The average state in the United States 
requires seven Landsat scenes to cover the state completely. Other geospatial data 
such as descriptors of biophysicial and landscape features are merged with the 
multispectral Landsat data as potential predictor variables (Blackard and others 
2008).

The average state has about 7000 FIA plots, of which about 2000 have forest 
cover. In the annual FIA panel system (Patterson and Reams 2005), 200 to 400 
of these forested plots are grouped into a single panel that is measured during 
a single year. Data from these registered elements are used to train models that 
predict the FIA fi eld measurements for each Landsat pixel. Remotely sensed and 
geospatial data are the predictor variables. The resulting predictions are desig-
nated as the M = 0 protocol.
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Because RRE requires that polychotomous classifi cation systems be trans-
formed into multiple dichotomous variables, the classifi cation categories do not 
necessarily need to be mutually exclusive. For example, classifi cation of pixels 
into an aspen type can be independent from classifi cation of pixels into a cot-
tonwood type. The classifi ers can be independently optimized for each category 
(Czaplewski and Patterson 2001, 2003). A single pixel might be classifi ed into 
more than one category (both aspen and cottonwood) if spectral signatures for 
land cover types overlap to some degree. Also, the classifi cation categories do not 
need to be complete. For example, some spectrally perplexing pixels might not 
be classifi ed into any dichotomous category. One example is pixels obscured by 
clouds or cloud shadows. One limitation is that each category must cover a suf-
fi cient number of more accurately measured FIA fi eld plots.

Landsat data currently support production of annual thematic maps that de-
tect major changes in land cover. Such changes tend to be relatively rare at the 
landscape-scale, and the relatively sparse sample of FIA plots, by themselves, 
might not produce suffi ciently accurate estimates of the attributes of the changed 
sub-population (Lister and others 2009). The wall-to-wall Landsat coverage can 
improve areal estimates for rare features. These changes in land cover are usu-
ally important in inventory and monitoring analyses. Therefore, incorporation of 
annual remotely sensed change detection information can be vital to the rele-
vance of any monitoring system (Czaplewski 1999; Czaplewski and others 2005). 
However, the estimators might have to be applied to very large geographic areas, 
perhaps even to multiple states, in order to capture a suffi cient sample size of FIA 
fi eld plots.

Both RRE and post-stratifi cation estimators assume the auxiliary variables 
are independent of the random errors from the sample of PSUs. However, those 
same PSUs are often used as training data to fi t supervised classifi ers or regres-
sion models that predict land characteristics (i.e., a thematic map) with remotely 
sensed and other geospatial data as predictor variables. This connection breaks 
the assumed independence. A different sample would produce a slightly different 
thematic map. It is commonly assumed that this dependence is small, and it can 
be ignored. Breidt and Opsomer (2008) provide weak support for this assumption. 
However, it is not necessary if these geospatial variables are directly used without 
fi tting a prediction model. For example, unsupervised classifi cation of multispec-
tral data from Landsat does not require training data, and the results provide truly 
independent nominal auxiliary data. Other relevant geospatial variables may be 
combined with the Landsat data, such as terrain and climate maps. Independent 
continuous auxiliary variables are also available. The Normalized Difference 
Vegetation Index (NDVI) is an example (Tucker 1979). NDVI is defi ned as the 
difference of the red and infrared radiances divided by their sum. It partially nor-
malizes for differences in solar zenith angle and atmospheric conditions. NDVI is 
correlated with green biomass density, which is further correlated with tree stock-
ing and wood volume. No training data are necessary to defi ne NDVI; therefore, 
NDVI is independent of FIA fi eld plots. However, the census of pixel values for 
NDVI could directly serve as auxiliary data to improve population estimates for 
forest biomass and wood volume.

Geopolitical Domains of Study
FIA uses geopolitical domains of study (Särndal and others 1992:5) such 

as counties separated by major types of land ownership or stewardship. 
Administrative records are used to defi ne the total area of each domain, and each 
area is defi ned as an exact constant that is known without error, i.e., a true census. 
FIA currently uses post-stratifi cation to constrain its areal statistical estimates to 
agree exactly with certain administrative records. This often leads to numerous 
strata, many of which have small sample sizes, especially under the annual panel 
system employed by FIA. As an alternative, RRE may be confi gured to impose 
the same statistics as fi xed constraints.
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Domains of study may be represented in a linear model by “dummy variables” 
that have the value zero if the element is not a member of the intended popula-
tion group (Särndal and others 1992:260), which, in the context of multivariate 
estimation, are represented in vector form (Särndal and others 1992:171). This is 
exactly analogous to a census of remotely sensed pixels in the previous section.

Photo-Interpretation and Photogrammetry
Photo-interpretation or photogrammetry is used to estimate continuous vari-

ables such as total wood volume in the point support-region by major groups of tree 
species and tree size classes, separated by living versus dead trees (e.g., Aldrich 
1979; Lund and others 1997; Czaplewski in prep.[b]). Photo-interpretation has 
an important role in FIA (Catts and others 1987; Oswald 1988; Czaplewski and 
Catts 1992; Frayer and Furnival 1999; Coulston 2008; Frescino and others 2009a; 
Lister and others 2009). Photo-interpretation of high-resolution aerial photogra-
phy can be accurate for broad characteristics of forest stands and individual trees. 
However, photo-interpretation and photogrammetry are too expensive for wall-
to-wall full-coverage of the large populations. Likewise, full-coverage acquisition 
of high-resolution and current aerial photography is prohibitively expensive. 
Therefore, a sample of photo-plots is usually acquired and measured, typically 
with cluster plots in a multistage sampling design (e.g., Nusser and others 1998; 
Czaplewski 1999; Magnussen and others 2000; Gillis and others 2005; Lister and 
others 2009). Because the support-region (de Gruijter and others 2006:74-75) for 
each sample point is a well-defi ned area, measurements of all continuous vari-
ables can be expressed on a per unit area basis.

Other photo-interpreted variables may be nominal categories such as classi-
fi cation of each sampled support-region into one of 5 to 10 different types of 
land cover (e.g., forest, woodland, shrubland, grassland, cropland, barren lands, 
and water). Another type of photo-interpreted categorization might be predomi-
nant land use (e.g., timberland, grazing lands, reserves, parks and recreational 
areas, wildland-urban interface, urban lands, and transportation and utility cor-
ridors). Forest cover may be further classifi ed through photo-interpretation by 
broad stand type (e.g., ponderosa pine, lodgepole pine, Douglas fi r, spruce-fi r, and 
cottonwood) and stage of stand development (e.g., seedling/sapling, poletimber, 
sawtimber, and over-mature sawtimber). The support-region for photo-
interpretation of a nominal category might be the point itself (although a small 
surrounding area is necessary for context) where the measurement is binary; that 
is, point i is interpreted as belonging to category a, i.e., yi,a = 1, or not, i.e., yi,a = 0.

Photo-interpreted measurements need not necessarily have the same units as 
fi eld measurements. For example, photo-interpretations of average tree height 
and crown density and their product in a 1-acre support-region can have a strong 
linear correlation with fi eld measurements of wood volume from a collocated 
1/6-acre FIA fi eld plot. Such a correlation would produce gains in statistical ef-
fi ciency, even though wood volume is not being directly photo-interpreted (see 
sub-matrix C in Eq. 26).

Photo-interpretation of high-resolution aerial photography can be used as pre-
liminary reconnaissance to determine if a plot meets the defi nition of stocked 
forest (Frescino and others 2009b; Goeking and Liknes 2009). Field costs can be 
substantially reduced if fi eld crews do not have to visit non-forest plots. However, 
errors in photo-interpretation can bias population estimates (Martinussen and oth-
ers 2008). Methods similar to those in Eqs. 91 to 99 might be suitable to overcome 
this bias with a design-consistent approach; therefore, any photo-interpreted vari-
ables used as pre-fi eld reconnaissance could be a component in the appropriate 
measurement vectors (Eq. 8).

A photo-interpreter might be very confi dent of an interpretation in some situ-
ations and less confi dent in other situations. Photo-interpreted variables that 
characterize the support-region might be separated into several variables based on 
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the degree of certainty of the interpreter. For example, a 0-1 binary variable for 
a particular forest type can be cross-classifi ed by a 0-1 binary “dummy” variable 
for confi dence in an interpretation, which would produce four remotely sensed bi-
nary variables: Forest Type A with high confi dence; Forest Type A with moderate 
confi dence; not Forest Type A with high confi dence; and not Forest Type A with 
moderate confi dence. Likewise, accuracy can vary among different photo-inter-
preters, and dummy variables could separate remotely sensed data into categories 
of higher and lower quality.

The most severe effects of misregistration between support-regions for remote-
ly sensed and fi eld protocols can be at the boundaries between different forest 
conditions, or within fi ne-grained, spatially heterogeneous stands. Misregistration 
effects are fewer within interior of homogeneous stands. These different situa-
tions in measurement errors can be identifi ed during the measurement processes 
(Zhu and others 2000) and made available in the estimation step. Even better, 
fi eld crews can accurately locate the sample point on aerial photographs while 
in the fi eld. If photo-interpreters subsequently apply the remote sensing protocol 
centered on the same point on the aerial photograph, then registration accuracy 
can be greatly improved, and the extra effort would be rewarded with increased 
statistical effi ciency. The key principle is to avoid corrupting remotely sensed data 
that are accurate with a relatively small amount of remotely sensed data that are 
not accurate. The effi ciency offered by remotely sensed data decreases rapidly as 
accuracy declines (Czaplewski and Patterson 2001, 2003).

Differences can be considerable in classifi cation and measurement accuracy 
among photo-interpreters. If multiple interpreters with widely different skill 
levels produce the remotely sensed measurements, then there might be some ad-
vantages in treating the measurements by each interpreter as a separate variable. 
A randomization process of assigning photo-plots to individual interpreters might 
have some advantages worth consideration.

LiDAR Laser Technology
LiDAR laser technology provides measurements that can be well correlated 

with tree biomass and wood volume (e.g., Means and others 1999; Brandtberg 
and others 2003; Popescu and others 2003; Zimble and others 2003; Sun and 
others 2008; Nelson and others 2009b). A dimensionless index based on char-
acteristics of LiDAR laser pulses and returns, which might not have the units of 
wood volume, might still be well correlated with fi eld measurements of wood vol-
ume and biomass density. Gains in effi ciency depend on strong linear correlations 
and associations between remote sensing and fi eld data. These linear relationships 
are quantifi ed by the sample cross-covariance matrix between the remotely sensed 
and fi eld measurements (e.g., sub-matrix C in Eq. 26).

Synthetic Aperture Radar Technology (SAR)
Synthetic aperture radar technology (SAR) also offers promise in providing 

measurements that are reasonably correlated with forest inventory and monitoring 
fi eld data, especially in geographic areas prone to chronic cloud cover that ob-
scures remotely sensed data from optical sensors (Pope and others 1994), which 
includes many tropical and boreal forest ecosystems. Ranson and Sun (1994) 
found correlations of approximately 0.8 between biomass and airborne SAR sen-
sor data for a boreal study area. Success often requires extensive ground-truth 
measurements to build empirical models between forest biomass and SAR back-
scatter, although there are alternatives (Ranson and Guoqing 1997). Ranson and 
Sun (1997) report similar results for spaceborne SAR data. However, RRE can 
directly use SAR metrics without an external biomass model. Accuracy will im-
prove if the SAR metrics are suffi ciently well correlated with fi eld measurements 
of biomass and other similar variables.
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Linear, Small-Area, Synthetic Estimator with Census 
Predictors

Matrix functions of multivariate estimates provide opportunities to construct 
model-based estimators for other applications. Estimation for small areas with 
known precision is an excellent example (e.g., Schreuder and others 1993:Chapter 
8.1; Rao 2003:Chapter 1). Many analyses focus on small portions of a sampled 
population, also known as small domains (e.g., Särndal and others 1992:408) or 
small areas (e.g., Rao 2003). As with other large government statistical programs, 
FIA is constantly investigating methods to provide more reliable estimates for 
small geographic areas (e.g., USDA Forest Service 2007; Morin and others 2009; 
Magnussen and others 2009; Roesch 2009).

If the domain is a suffi ciently sampled sub-population, then design-consistent 
methods, such as those presented above, are applicable. Inevitably, many areas 
are so small that they do not contain a suffi cient number of samples to make reli-
able, design-consistent estimates. One solution available in forest inventory and 
monitoring is relying on full-coverage, remotely sensed pixel data from space-
borne sensors and other geospatial databases (Haslett and Jones 2005). Parametric 
and non-parametric regression models use such data to predict forest character-
istics for each and every pixel in the satellite imagery (see “Digital Processing 
of Multispectral Landsat Data”). Statistical enumeration of all multivariate pixel 
predictions within the small area can provide useful predictor data. However, pre-
diction models and the sum of all predictions within the small area can be biased, 
the degree and direction of the bias can be unknown, and the magnitude of the 
bias can be large (Bauer and others 1978; Card 1982; Chrisman 1983; Houston 
and Hall 1984; Hay 1988; Czaplewski 1992; Gallego 2004; Gallego and Bamps 
2008; Iles 2010; Magnusen and others 2010; McRoberts 2010). Also, the sta-
tistical reliability of the predictions, which may be quantifi ed with a covariance 
matrix, may be unknown.

If the small area includes a suffi cient number of sample plots that are measured 
with suffi ciently accurate protocols, then an unbiased difference or ratio estimator 
(e.g., Särndal and others 1992:Chapter 6) provides a direct estimator of the cova-
riance matrix, which gauges statistical reliability. Baffetta and others (2009) apply 
this approach in the context of a National Forest inventory. Calibration estimates 
are also relevant (see p. 32).

If the sample size is insuffi cient within a small area, then indirect synthetic es-
timation, which is “simply the sum of predicted values,” is an alternative (Särndal 
and others 1992:399). McRoberts and others (2007) and McRoberts (2008) 
provide examples relevant to forest inventories. Synthetic estimators are model-
based by defi nition. Model-based estimators can be effi cient, but they are biased 
if the model assumptions are inaccurate (Schreuder and others 1993:Chapter 6.3; 
Lehtonen and others 2003). The risk can be substantial because validation of 
model assumptions is rarely feasible (Estevao and Särndal 2004). For example, 
Blackard and others (2008) found that their non-parametric regression-tree model 
tended to underestimate biomass for test plots that had unusually high amounts of 
biomass and overestimate biomass for test plots that had unusually low amounts 
of biomass. Similar trends might be expected with k-nearest neighbor (kNN) non-
parametric regression. This is evidence for conditional bias. If the distribution of 
pixel-level biomass within a small area differs from the population-level distribu-
tion, then the synthetic estimator will likely be biased for that small area.

The following example is a model-based, multivariate, synthetic estima-
tor. It accomplishes the same objectives as those considered by McRoberts and 
others (2007), but it uses fewer assumptions and a much simpler model. The 
example uses a complex design of two-phase sampling with cluster plots: a cen-
sus of full-coverage pixel data from spaceborne sensors and other geospatial 
datasets; a sample of high-resolution, remotely sensed data from airborne sensors for 
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50-acre cluster plots; and a sub-sample of 1-acre fi eld plots that are collocated 
within the cluster plots (see Eqs. 62 to 70). This design is similar to that used in 
the FIA NPIP study (Frescino and others 2009a). However, the synthetic estimator 
in this example may be applied with any of the sampling designs and population 
estimators of the types covered on 21 through 53 pp.

Visualize an area that is very small with too few samples for a reliable, design-
consistent estimate. One relevant case study is the 6000-acre hexagon used by 
FIA for its systematic sampling frame (Reams and others 2005). Each of the ap-
proximately 360,000 hexagons in this national sampling frame has a single FIA 
fi eld plot, and only about 30 percent of those plots have forest cover. The same 
hexagons are also used for geospatial presentations and analyses (e.g., Wilson and 
Ibes 2005; Lowe and Cieszewski 2005).

In this example, multispectral measurements from the MODIS sensor (e.g., 
Cohen 2003) are predictors in geospatial models that estimate forest area and 
biomass for each 15-acre MODIS pixel in a full-coverage pixel database (e.g., 
Blackard and others 2008). The remotely sensed predictions for approximately 40 
MODIS pixels are summarized for each collocated 6000-acre hexagon, and the 
resulting summary statistics are input into the hexagon database. Further, assume 
that the hexagons are grouped into ecoregions (Bailey 1995). Summary results for 
a 10,000,000-acre hypothetical ecoregion are given in Table 3.

 Population estimates with 
FIA protocol (M = 2)  

Spaceborne protocol (M = 0) Forest cover Non-forest 
cover 

Population 
total 

Forest cover (acres) 2,850,000 150,000 3,000,000
Non-forest cover (acres) 600,000 5,400,000 6,000,000
Boundary (edge) area (acres) 450,000 550,000 1,000,000

Total area 3,900,000 6,100,000 10,000,000

   

Area (acres) by joint classification with spaceborne (M = 0) and 
FIA (M = 2) protocols 

Estimated 
calibration 
coefficient

Forest cover (M = 0) 
Forest cover (M = 2) 2,850,000 3,000,000 0.95
Non-forest cover (M = 2) 150,000 0.05

Non-forest cover (M = 0) 
Forest cover (M = 2) 600,000 6,000,000 0.10
Non-forest cover (M = 2) 5,400,000 0.90

Boundary (edge) area (M = 0) 
Forest cover (M = 2) 450,000 1,000,000 0.45
Non-forest cover (M = 2) 550,000 0.55
  10,000,000  

    

 FIA protocol 
(M = 2) 

Spaceborne 
protocol (M 

= 0) 
 

Forest biomass (dry tons) 220,000,000 200,000,000 1.10

Table 3. Population-level estimates of forest area and biomass from full-coverage, remotely 
sensed data from spaceborne sensors (protocol M = 0) and sample of fi eld data (protocol 
M = 2).
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Because of misclassifi cation bias and other systematic prediction errors, 
broad-scale predictions of forest area and biomass (e.g., ecoregion estimates) 
with the remotely sensed data will disagree with those from the unbiased sample 
survey estimator. Table 3 provides an example with a 10,000,000-acre hypotheti-
cal ecoregion. The remotely sensed data predicts 3,000,000 acres of forest cover 
plus an additional 1,000,000 acres of heterogeneous edge conditions. These are 
partially forested and non-forested, whereas the unbiased sample survey estimator 
predicts 3,900,000 acres of total forest cover.

The remotely sensed area estimates may be calibrated (e.g., Czaplewski and 
Catts 1992) with data from an unbiased estimator. Table 3 provides a simple 
example of the inverse multivariate calibration model (Brown 1982), which is 
also labeled direct calibration (Dymond 1992; Gallego and Bamps 2008). Of the 
3,000,000 acres predicted with remotely sensed data to be forest cover, an esti-
mated 95 percent is truly forest, and the remaining 5 percent is non-forest. Table 
3 includes estimates of calibration coeffi cients for other cover conditions, in ad-
dition to biomass estimates. This may also be considered a form of multivariate 
synthetic estimation; see Särndal and others (1992:399) for a brief introduction to 
univariate synthetic estimation.

In matrix notation, the calibration coeffi cients (b) and their estimated covari-
ance matrix are computed as:
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The non-zero elements in matrix A in Eq. 82 are known constants because they 
are summary statistics from the full census of remotely sensed pixels within the 
ecoregion. Therefore, they are a straightforward linear function of the vector esti-
mate t and its covariance matrix.
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The following small-area estimator relies on the model that assumes the asso-
ciation between remotely sensed estimates and design-consistent sample survey 
estimates is linear and identical for all 1667 of the 6000-acre hexagons within the 
10,000,000-acre ecoregion. Under this model, the calibration coeffi cients from 
Table 2 and Eq. 82 may be applied to the remotely sensed census statistics for any 
small area within the 10,000,000-acre ecoregion. Examples for two 6000-acre 
hexagons are given in Table 4. The model predictions and their joint covariance 
matrix for all 1667 hexagons within the ecoregion may be simultaneously ex-
pressed in matrix notation as:
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The structure of Eq. 83 produces a covariance matrix for the propagated predic-
tion errors for estimated parameters among all 1667 hexagons. In principle, this 
could directly produce covariance matrices for any linear function of statistics 
from multiple hexagons, such as the sum of estimates for all hexagons that meet 
certain selection c riteria. This capability would further enhance the value of a 
hexagon database for rapid assessments with diverse, small-domain estimates.

Finally, this example may be expanded to be more relevant to FIA. Further, 
assume that a full-coverage geospatial database is composed of pixel data. It con-
tains predictions of the forest composition of each pixel. The kNN model, which 
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is a form of multivariate non-parametric regression (Härdle 1990), is used to pre-
dict all FIA plot-level variables for each and every pixel (Katila and Tomppo 
2001; McRoberts and Tomppo 2007). When used as a model-based estimator for 
population totals, it is biased or, at least, the kNN estimator cannot be shown to be 
design-unbiased. However, there are design-based and model-assisted estimators 
of population totals that can be shown to be design-consistent. These estimators 
can include the same pixel census data within the multilevel sampling design.

Unlike categorical variables, the univariate, small-area estimator for a continu-
ous variable can be based upon the simple ratio between the population estimate 
made with data from the fi eld measurements (protocol M = 2) and population 
estimate made with the kNN model that uses spaceborne, remotely sensed data 
(protocol M = 0). The model in this estimator is simply this ratio multiplied by 
the total of pixel-level, remotely sensed predictions for a small area (e.g., Särndal 
and others 1992:399). The result is a synthetic estimate of the small-area total 
made with the M = 2 fi eld protocol. This is a model-based estimator, in which it 
is assumed that the true ratio for every small area is identical to the ratio for the 
entire population. In the special case of the kNN non-parametric regression, the 
prediction with remotely sensed data protocol (M = 0) and the variable measured 
with the fi eld protocol (M = 2) have identical defi nitions and units of measure. 
The ratio may be considered a calibration coeffi cient that proportionally scales the 
remotely sensed estimates to agree exactly with the unbiased design-consistent 
estimates at the population level. Univariate estimators for different continuous 
variables are readily assembled into a multivariate estimator, an example of which 
is illustrated with Eq. 83 and Table 3.

The multivariate synthetic estimator for a categorical variable is more complex, 
although it is related to the simpler case of continuous variables. The categorical 
model assumes that the misclassifi cation error process is identical for all pixels or, 
at least, over all possible small areas. Rather than a single coeffi cient for calibrat-
ing a continuous variable, the sample survey estimator produces a contingency 
table of joint classifi cation probabilities for each category, with one classifi er 
based on remotely sensed data (M = 0) and the other based on fi eld protocol 
(M = 2). The model transforms this contingency table into probabilities condi-
tional on the remotely sensed classifi er (e.g., Eq. 82), much like a probability 
transition matrix. Population estimates used to parameterize this model require 
observations with both the remotely sensed protocol (M = 0) and the fi eld protocol 
(M = 2).

Small-area census with spaceborne protocol (M 
= 0) 

Small-area estimates with FIA protocol (M = 2)
Forest cover Non-forest cover 

Hexagon = 1   
Forest cover (acres)     4,000  0.95 3,800  0.05 200 

Non-forest cover (acres)     1,500  0.10 150  0.90 1,350 
Boundary (edge) area (acres)        500  0.45 225  0.55         275 

6,000      4,175   1,825 

 M = 0 M = 2  
Forest biomass (dry tons) 400,000 1.10  440,000   

Hexagon = q   
Forest cover (acres)    800 0.95 760  0.05 40 

Non-forest cover (acres)     4,200 0.10 420  0.90 3,780 
Boundary (edge) area (acres)     1,000 0.45 450  0.55         550 

6,000      1,630   4,370 

 M = 0  M = 2   
Forest biomass (dry tons) 20,000 1.10   22,000   

Table 4. Example of inverse calibration model applied to two small-areas.
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Joint classifi cation probabilities are estimated by augmenting the M = 2 
measurement vector containing the cross-classifi cation with both the remotely 
sensed (M = 0) and fi eld (M = 2) protocols. For example, assume there are 26 
categories of land use and land cover types include: lodgepole pine, Engelmann 
spruce, Douglas-fi r, ponderosa pine, western hardwoods, woodland, sagebrush, 
grassland, barren rock, alpine tundra, riparian areas, wetlands, standing water, 
urban zones, and transportation corridors. Also assume each type of forest cover 
is separated into large, medium, small, and non-stocked categories that describe  
stand size. In the special case of the current example, the kNN remote sensing 
protocol (M = 0) and the fi eld protocol (M = 2) can classify every support-region 
based on this 26-category classifi cation system. For each and every pixel, the M = 
0 measurement vector (Eq. 8) contains a segment with 26 elements that represents 
the remotely sensed classifi cation:
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In the current example, the M = 0 remotely sensed measurement vector (Eq. 8) 
segment in Eq. 84 is used in the sample survey steps (Eqs. 62 and 63) and in all 
sequential steps in the estimator for population totals (Eqs. 64 to 69).

The corresponding measurement vector for the M = 2 fi eld protocol must in-
clude the joint classifi cations with  both the remote sensing (M = 0) and fi eld 
(M = 2) protocols.
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Because there are 26 categories of forest and land cover in this example, there 
will be 26×26 = 676 elements in the M = 2 measurement vector [yM=2]j (see Eq. 8) 
that estimate the 26-by-26 contingency table of joint classifi cation probabilities. 
Equation 85 is used in the Phase 2 estimator (Eq. 63). The sequential estima-
tors in Eqs. 64 to 6 9 are intended to improve the accuracy of the estimated joint 
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classifi cation with photo-interpretation of high-resolution aerial photography and 
cluster plots (M = 1 and M = 1C).

The fi nal estimates of the joint classifi cation probabilities are transformed into 
conditional transition probabilities, as in Eq. 82, for use in multivariate synthetic 
estimators for small areas (Eq. 83). However, the estimated population totals do 
not require small-area estimation or joint classifi cation probabilities. In order to 
estimate the areas for each type of forest and land cover in the full population, the 
statistics used for joint probabilities are collapsed into the fi eld protocol (M = 2) 
by summing over the joint probabilities cross-classifi ed with the remotely sensed 
protocol (M = 0). Let 1 be a 1-by-26 row vector with all elements equal to 1. The 
estimated population totals for each of the 26 forest and land cover types with the 
FIA protocol (M = 2) is:
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In the current example, the inner partition of the indicator matrix in Eq. 86 would 
be a 26-by-676 matrix that collapses the M = 0 and M = 2 joint classifi cation totals 
into the population totals for the 26 categories of land and forest cover types based 
on the fi eld protocol (M = 2) alone.

To accommodate small-area estimation, the structure of the multivariate esti-
mator remains unchanged for continuous variables (e.g., biomass variable in Eq. 
82). However, the dimensions increase multiplicatively for categorical variables 
as the number of categories increases (e.g., Eq. 85). This increase can be large 
with detailed classifi cation systems. In the current example, 26 categories of land 
use and land cover require 26×26 = 676 variables to estimate the conditional 
probabilities of a point being classifi ed with the fi eld protocol (M = 2) as one of 
the 26 categories, given that the remote sensing protocol (M = 0) classifi ed it into 
one of the 26 categories. Even though most numerical problems with the Kalman 
fi lter are associated with the auxiliary measurement vector (Eq. 8), a large state-
vector (Eq. 8) can introduce additional numerical problems. However, cells in an 
estimated contingency table whose estimated values equal zero, some of which 
are sampling zeros (e.g., Agresti 2007:54), can be removed from the multivariate 
estimators. The number of zero cells that need not be estimated depends on the 
detail classifi cation system relative to the sample size of points classifi ed with the 
FIA fi eld protocol (M = 2). The number also depends on the accuracy of the M = 0 
classifi cations relative to the M = 2 classifi cations. As classifi cation accuracy in-
creases, more observations are concentrated on the diagonal of the contingency 
table, which represent probabilities of correct classifi cation. Figure 1 provides an 
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example. It uses the current example and realistic assumptions for the accuracies 
and misclassifi cation probabilities for the 26 categories of land cover and land 
use. If the average classifi cation accuracy is about 70 percent and there are 8000 
FIA plots in the population, then about 70 percent (676×0.70~500) of the cells 
are expected to have non-zero values that must be estimated from the sample. If 
cells that occur rarely are grouped together in a logical fashion, then the number 
of cells that must be estimated decreases to 30 to 50 percent of the total cells (i.e., 
estimates are required for about 200 to 350 of the 676 total cells). Using Figure 
1 with 90 percent accuracy and 1000 FIA plots in the population, only about 15 
percent of the cells (676×0.15~100) would require sample estimates. Figure 1 is 
merely a realistic example that is intended to illustrate a specifi c case, and it does 
not necessarily apply to other cases. Any of these simplifi cations of the multivari-
ate estimator would require restructuring the indicator matrix in Eq. 86.

Because of different management regimes, assume the M = 0 versus M = 2 
classifi cation probabilities are different within two different land ownerships, e.g., 
private versus public lands. The nominal number of categories would increase to 
(26×26)×2 = 1352. However, many of these additional cells will have values of 
zero because the sample size of FIA plots would not change, and the sample size 
within each land ownership category would decrease. Therefore, the number of 
cells requiring sample estimates might not increase dramatically because the fre-
quency of sampling zeros would also increase. The detail of the calibration model 
for categorical variables will be limited by the sample size of FIA fi eld plots, even 
for geographically large populations with thousands of FIA plots. Furthermore, 
auxiliary categorical data might include certain cross-classifi cations that do not 
accurately distinguish among cells in a cross-classifi cation contingency table. 
Those cells may be merged to reduce dimensions further. Research is needed to 
automate such a process.

RRE as a Synthetic Small-Area Estimator
Synthetic estimation in this section is primarily used as an example of a linear 

function of a vector estimate. For example, the RRE could be used to constrain 
a population-level vector estimate to agree with the auxiliary information for a 
small area. Again, using the complex RRE for the NPIP example, extract the parti-
tions that include the full-coverage, spaceborne, remotely sensed variables (M = 0 
protocol) and the FIA fi eld measurements (M = 2 protocol) from Eq. 69.

Figure 1. Example of reduction 
in dimensions of 26-by-
26 contingency table after 
removing cells with values 
equal to zero and after 
grouping rare cells.
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Let [tM=0]k be the vector sum of all pixel values in small area k.

 

( )
[ ]

[ ] [ ]
( )
[ ]

( )
[ ]

[ ]
( )
[ ]

( )
[ ]

[ ]
( )
[ ]

=

−=

−+=

−

=
==

=

=
==

=

=
==

=

=
==

=

=

=

=
==

=
=

=
==

=

=

=

0
I

t
t

V0I
0
I

t
t

VK

t
t

V0IK
t
t

V
t
t

V

t
t0ItK

t
t

t
t

1

C1,1M
2,12M

0M

C1,1M
2,12M

0M

C1,1M
2,12M

0M

C1,1M
2,12M

0M

2M

0M

C1,1M
2,12M

0M
0M

C1,1M
2,12M

0M

2M

0M

ˆ
ˆ

ˆ
ˆ

ˆ
ˆ

ˆ
ˆ

ˆ
ˆ

ˆ
ˆ

ˆ
ˆ

ˆ

ss

ssk

s
k

sk

 (88)

Equation 88 is merely an algebraic operator that constrains a vector esti-
mate. The vector difference between the known totals of the auxiliary data for 
the small area and the estimated population totals for the same auxiliary data 
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 will be large, which is uncommon in the 
intended application of RE. No claims are made regarding its statistical properties 
or numerical robustness. Alternative methods with the Generalized Restriction 
Estimator for consistent small-domain estimation exist (Sõstra and Traat 2009). 
The performance of the RE in this atypical context requires further investigation.

Non-Linear Pseudo-Estimators
Like the linear transformation covered in the previous section, non-linear trans-

formations are often required. Such transformations are generally straightforward 
for estimation of population parameters or small-area statistics. However, they are 
not straightforward in variance estimation. An example is estimated wood volume 
per unit area of forest, where both total wood volume (t1) and total forest area 
(t2) are estimates, and their ratio is a non-linear transformation. The population 
estimate of a non-linear transformation is computed in the obvious, straight-
forward way, but the variance of the transformation typically requires a Taylor-
series approximation with complex sampling designs (Tepping 1968; Woodruff 
1971; Krewski and Rao 1981; Wolter 2007).

Särndal and others (1992:173-174, 205-207) term these sorts of non-linear 
transformations pseudo-estimators. Using their notation, defi ne the non-linear 
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function as θ = f(t1,…, tq). Defi ne the pseudo-estimator and its Taylor-series linear 
approximation as:
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where:
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Cochran (1977:319) expounds on the value of this Taylor-series method for ap-
proximate variance estimators that use the vector estimate of population totals, 
which is denoted as the 1-by-q vector t in the following.

Using matrix calculus (Deutsch 1965:Chapter 6; Stengel 1986:33; Schott 
2005:Chapter 9; Wolter 2007:Chapter 6), the fi rst-order lin ear Taylor-series ap-
proximation of a pseudo-estimator has the following general form:
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The values of the aj terms depend on the application. Examples follow.

Product Estimator: Missing Data Imputation
The product estimator is a useful and simple non-linear transformation. A 

model-based pseudo-estimator that accommodates missing data is used here as 
an example of the product function of multivariate estimates for two random vec-
tors. Th is example presupposes that a small portion of FIA fi eld plots cannot be 
mea sured because they are on private lands for which the landowner denies access 
to FIA fi eld crews. The study question in this example is “What is the estimated 
total biomass accretion rate on all private lands for which access was, or would 
be, denied by the landowner?” Research related to this application is a high prior-
ity in FIA short-term research and development.

Biomass accretion at a sample point is determined by re-measuring permanent plots 
in the fi eld. These re-measurements are missing for “denied access” lands because the 
fi eld crews are not permitted to measure the sample point. However, a model-based 
estimate of total biomass accretion can be made for all inaccessible lands.
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The statistical model in this example assumes biomass accretion per unit area 
per year is the same for both accessible and inaccessible lands that are classifi ed 
as “forest” with remote sensing. In the form of prose, the model estimates biomass 
accretion on inaccessible lands as the product of [total area of such lands] times 
the [accretion per unit area of similar accessible lands].

This example utilizes a complex design that combines spaceborne remote 
sensing technologies (protocol M = 0) and a census of pixels at Phase 1 (s = U) 
and the same remote sensing plus FIA fi eld data (protocols M = 1 and M = 2, 
respectively) at Phase 2 (s = 2). The outcome is the two-phase vector estimate, 
similar to Eqs. 24 to 27, where the covariance matrix for Phase 1 exactly equals a 
qM=1-by-qM=1 zero matrix.

This example assumes all remotely sensed pixels are classifi ed with the M = 1 
protocol into likely “forest” and “non-forest” categories. The total areas of the 
population within each category (denoted Af and Anf, respectively) are constants 
that are known without error through census of all pixels that cover the pop-
ulation. The remotely sensed “forest” and “non-forest” classifi cations (M = 1) 
include some portion of pixel-level classifi cation errors relative to fi eld measure-
ments with the M = 2 protocol, but the census of pixel classifi cations contain no 
sampling error.

It is further assumed that the Phase 2 measurements (M = 2) include cross-
classifi cation of landowner accessibility and remotely sensed classifi cation of 
“forest” cover for each Phase 2 sampling unit. Therefore, a sample estimate is 
available for total area of inaccessible lands that are classifi ed with remotely sens-
ing into the “forest” the category.

The exact area within the population that is classifi ed as “forest” with the 
M = 1 remote sensing protocol from the Phase 1 census of pixels (s = U) is:
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The estimated area of “denied access” in the entire population (t1) is assumed to be 
a single element of the vector estimate. It is extracted by the linear transformation:
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where the 1-by-qM=2 indicator matrix (h1)f is composed of zero elements, except 
the one element (equal to 1) for denied access conditions (M = 2) that are catego-
rized as forest cover with the re mote sensing protocol (M = 1).

The total biomass accretion for the “access granted” segment of the popula-
tion, which is estimated from the “access granted” fi eld plots, is assumed to be a 
single element of the vector estimate, and it is extracted from the vector estimate 
with the linear transformation:
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where the 1-by-qM=2 indicator matrix (h2)f in Eq. 93 is composed of zero elements, 
except the one element (equal to 1) for “granted access” conditions (M = 2) that 
are categorized as forest cover with the remote sensing protocol (M = 1) for each 
sample plot in the Phase 2 sample (s = 2).
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The desired population parameter is the total biomass accretion from lands that 
are expec ted to have “denied access” and that are classifi ed as “forest” cover with 
the spaceborne sensor (M = 1). The presumed model is the product of the [area 
of “denied assess” in the population that is imperfectly classifi ed as forest with 
remote sensing] times [the biomass accretion per unit area of “granted access” in 
“forest” cover as classifi ed with the remote sensing]:
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The pseudo-estimator for the population parameter in Eq. 94 is a constant (Eq. 91) 
times the product of two population estimates:
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This model is similar to that of Martinussen and others (2008) for forest area esti-
mates in presence of non-random missing observations.

The product of two estimates in Eq. 95 is a non-linear function for which the 
pseudo-estimator uses the fi rst-order T aylor-series approximation for the variance 
estimator. The partial fi rst derivatives of the non-linear function in Eq. 94 are:
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From Eqs. 89, 90, and 96, the fi rst-order Taylor-series approximation of the non-
linear pseudo-estimator is:
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As in Eq. 102, the approximation in Eq. 97 yields an approximate variance esti-
mator for the scalar pseudo-estimator:
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Equation 98 is an unbiased variance estimator for the linear transformation in 
Eq. 97, which is accepted as reasonable for the desired non-linear transformation 
in Eq. 95. The second- and higher-order derivatives in Eq. 96 equal zero, i.e., 
R = 0 in Eq. 91. This is the case for all product functions. Therefore, the fi rst-
order Taylor-series for the product pseudo-estimator is exact in Eq. 98. It is not 
an approximation. However, in order to calculate the derivatives a1 and a2 in 
Eq. 96, the imperfect estimates in Eqs. 94 and 93 are required. Regardless, the 
pseudo-estimator for biomass accretion domain should not use the approximation 
in Eq. 97 but rather the direct product in Eq. 95.

The variance equation for the pseudo-estimator (Eq. 98) may be combined 
with linear transformations of the vector estimator. For example, “What is the 
estimated biomass accretion for the entire population, regardless of its accessibil-
ity condition and its remotely sensed land cover classifi cation?” The answer (θ) 
is the sum of the total estimated accretion from the following four elements in the 
vector estimate: (1) two-phase, design-consistent estimate of accretion based on 
direct fi eld re-measurements of “granted access” plots that have remotely sensed 
classifi cation of “forest” (Eq. 93); (2) two-phase, design-consistent estimate of 
accretion based on direct fi eld re-measurement of “granted access” plots that have 
remotely sensed classifi cation of “non-forest” (similar to Eq. 93); (3) two-phase, 
model-based estimate of accretion from “denied access” plots that have remotely 
sensed classifi cation of “forest” (Eqs. 95 and 98); and (4) two-phase, model-
based estimate of accretion from “denied access” plots that have remotely sensed 
classifi cation of “non-forest” (similar to Eqs. 95 and 98). The estimated scalar 
parameter and its variance are:
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where
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and the nf subscript in Eq. 99 denotes the sub-population identifi ed as “non-forest” 
with the remotely sensed data, analogous to the f subscript in Eqs. 91 through 98.

Although not developed here, this approach to missing data may be enhanced 
with high-resolution aerial photography, which was previously identifi ed as the 
M = 1 protocol. This could combine the model-based estimate (Eqs. 91 to 99) 
with a design-based estimate of photo-interpreted variables for the missing-data 
domain. Multivariate estimation facilitates full consideration of the dependencies 
between predictor and response variables. In addition, it would be convenient to 
express this estimator as expansion values (e.g., Lundström and Särndal 1999). 
These enhancements require future research and development.
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Ratio Pseudo-Estimator: Volume per Estimated Unit Area of 
Forest Cover

The ratio is a common, non-linear transformation. For example, consider the 
ratio of two estimated population totals, such as the ratio of total wood volume (t1) 
to total forest area (t2), namely, the estimated wood volume per unit area of forest. 
From Eqs. 89 and 90:
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The multivariate Taylor series linear approximation is simply:
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 (101)

This simple calculus is easily applied to the variance estimator for the  pseudo-
estimator in Eq. 101:
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As a verifi cation exercise, the Taylor-series approximation agrees with the 
results offered by Särndal and others (1992) in their Eq. 5.6.10. Algebraically 
manipulating Eq. 102:
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In practice, the pseudo-estimator is computed directly from the non-linear 
transformation. For example, the pseudo-estimator for the ratio of total wood vol-
ume (t1) to total forest area (t2) from Eq. 100 should be:
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The variance estimator in Eq. 102 is actually a conditionally unbiased estima-
tor of the linear transformation in Eq. 101. It is only an approximation when used 
as a variance estimator for the non-linear transformation in Eq. 100. Regardless, 
the pseudo-estimator for the desired population parameter should use the exact 
non-linear transformation in Eq. 100, with the Taylor-series approximation in 
Eqs. 101 and 102 used only for the associated variance and covariance estimates.

Recursive Object-Oriented Simplifi cation of Taylor-Series 
Approximations

The methods given above for pseudo-estimators greatly facilitate constructi on 
of complex, multivariate, linear Taylor approximations. These can be daunting 
when dealing directly with the variance estimator, but are relatively easy when 
applied directly to the pseudo-estimator (e.g., Särndal and others 1992:205). 
In general, the method is object-oriented in that it disassembles a complex 
pseudo-estimator into small components that are recursively combined into the 
fi nal Taylor series function.

For example, consider the product estimator for missing data on p. 77. Equation 
94 defi nes the pseudo-estimator of the population total for biomass accretion on 
private lands that cannot be measured directly because of denied access, which is 
repeated here:
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The recursive process combines the objects in the complex Taylor series approxi-
mation in the following sequence:
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1. The estimated area of “denied access” in the entire population (t1) is estimated 
with the linear transformation in Eq. 92, resulting in an indicator vector of 
zeros and ones.

2. The total biomass accretion for the “access granted” segment of the population 
(t2)f is estimated with the linear transformation in Eq. 93, resulting in an 
indicator vector of zeros and ones.

3. The census area imperfectly classifi ed as “forest” cover (Af) is computed with 
Eq. 57.

4. These two row vectors from steps 1 and 2 are stacked to form a 2-by-(qM=1 + 
qM=2) indicator matrix.

5. This indicator matrix is multiplied by the 1-by-2 vector containing estimates of 
(t1) and (t2)f from steps 1 and 2.

6. The resulting 1-by-(qM=1 + qM=2) vector is multiplied by the scalar inverse of the 
remotely sensed census of forest cover in the target population from step 3.
The fi nal 1-by-(qM=1 + qM=2) vector from step 6 is available for the linear Taylor 

series approximation for the variance of the pseudo-estimator in Eq. 94. This re-
cursive process is continued in Eq. 99 to accommodate an even more complicated 
pseudo-estimator for the entire target population. Although not fully shown, the 
complex ratio pseudo-estimator in Eq. 101 is similarly developed as a recursive 
process. These procedures are readily applied to non-linear transformations of 
large numbers of elements in a vector of estimated population parameters and its 
estimated covariance matrix. The following is an example.

Returning to the example of total wood volume per unit forest area, assume 
that total wood volume in the vector estimate is distributed among multiple ele-
ments that segregate wood volume by tree species groups, and total forest area 
in the vector estimate is distributed among multiple elements that segregate 
forest area by forest type groups. Given a q-by-1 vector estimate of t, the pseudo-
estimator is simply the [sum of all estimated volume over all tree species groups = 
t1] divided by the [sum of all area estimates for each forest type group = t2]:
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Both h1 and h2 in Eq. 104 are 1-by-q row vectors. The Taylor-series approximation 
of this pseudo-estimator is derived from Eq. 89 as:
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where
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With modest algebra, the 1-by-q row vector a in Eq. 105 may be expressed as:
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The simple expression in Eq. 106 yields a valid Taylor-series  variance approxi-
mation for any scalar statistic that is the ratio of two scalar linear tra nsformations 
of t, i.e., (h1t)/ (h2t), where the elements of h1 and h2 may be any real number such 
that h2t≠0, even if the same element of t has a non-zero coeffi cient in both the 
numerator and denominator of this ratio statistic.

The following derivation of Eq. 106 is offered as another example of a simpli-
fi ed approach to Taylor-series approximations. First, collapse the q-by-1 vector 
estimate of t into a 2-by-1 vector, where the fi rst vector element is the sum of all 
elements in the t vector that are in the numerator of the pseudo-estimator, and 
the second vector element is the sum of all elements in the t vector that are in the 
denominator of the pseudo-estimator.
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Then, treat the resulting 2-by-1 vector in Eq. 107 as the ratio of two scalar es-
timates in Eqs. 101 and 102 and Eq. 5.6.10 in Särndal and others (1992). The 
outcome is simply:
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 (108)

which validates Eq. 106.
The Taylor-series approximation may be stacked to recursively construct more 

complex pseudo-estimators (Wolter 2007:244). For example, the estimated dif-
ference between total volume per unit area of forest type A compared to forest 
type B is:
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The corresponding fi rst-order Taylor-series linear approximation of the variance 
for the scalar difference in Eq. 109 is easily derived with the help of E q. 106 from 
the q-by-1 vector estimate of t and its estimated q-by-q covariance matrix with 
the 1-by-q vector a as:

 ( ) ( )[ ]atVa ′= ˆˆˆ θV  
 (110)

where
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Equation 110 may be rewritten as:
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where
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Equation 111 agrees with Wolter’s (2007:Eq. 6.9.3) results. Again, the covariance 
matrix may be the fi nal results from the sequential application of RRE in any of 
the complex designs above. The estimators in Eqs. 109 and 110 might serve in 
a test-of-hypothesis regarding signifi cant differences in volume per unit area of 
forest type A compared to forest type B.

While the procedures above require tedious application of simple matrix al-
gebra, the tedium would be far more onerous with scalar algebra conducted on 
the full non-linear transformation, especially if applied directly to the covariance 
matrix with double summations. The scalar operators of addition, subtraction, 
multiplication, and inverse are considered above. Power functions are not, but 
these should not be too daunting in a recursive process. Furthermore, except for 
division, the second-order terms of the Taylor series are zero for these opera-
tors. Therefore, this recursive process could be used to generate more simply the 
second-order Taylor series approximation for any scalar pseudo-estimator that 
uses these four operators.

A Model-Based Estimator for Small-Domain Predictions
The next example uses a moderately intensive sample of relatively “less-

expensive” fi eld measurements of tree volume and a sparse sub-sample of 
“more-expensive” volume measurements. The “less-expensive” protocol includes 
systematically biased measurement errors, while the “more-expensive” protocol 
has unbiased measurement errors. Model-based predictions are applied to small 
domains, many of which do not have suffi cient sample sizes for reliable direct 
estimates with the unbiased, “more-expensive” measurements of individual tree 
volumes.

Suppose a three-phase sampling design (e.g., Eqs. 44 to 51) employs inex-
pensive airborne photo-interpretation techniques (protocol M = 1), including 
photogrammetric estimates of stand volume; FIA fi eld data (protocol M = 2), in-
cluding relatively “less-expensive” measurements of tree diameter at breast height 
(DBH) and regional tree-volume equations, and a very precise “more-expensive” 
fi eld protocol (M = 3), including upper stem diameter measurements made with 
ground-based laser instruments. Protocol M = 1 is applied to a very large Phase 1 
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sample (s = 1) of photo-interpreted sampling units. Protocols M = 1 and M = 2 are 
applied to all points in the moderate-intensity Phase 2 sample (s = 2). Protocols 
M = 1, M = 2, and M = 3 are applied to all points in the sparse Phase 3 sample 
(s = 3). The outcome is the three-phase vector estimate similar to Eq. 50.

The “more-expensive” M = 3 fi eld protocol very accurately measures upper 
stem diameters and total tree heights of individual standing trees (e.g., Williams 
and others 1999). These physical measurements are inputs to a sophisticated stem 
profi le model (e.g., Flewelling and others 2000) that provides accurate and un-
biased estimates of wood volume for individual standing trees. Because these 
measurements are very expensive, they are only available for the sparse sample of 
Phase 3 (s = 3) plots, although correlations among variables measured at Phase 1 
and Phase 2 improve overall precision in the three-phase sampling design.

As in Eq. 20, the vector of remotely sensed variables for each point i in the 
Phase 1 sample is composed of:
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where
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The vector of remotely sensed and fi eld variables for each point i in the Phase 2 
sample is defi ned in Eq. 113 as:
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where
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Finally, the vector of remotely sensed, “less-expensive” fi eld variables, and 
“more-expensive” fi eld variables for each point i in the Phase 3 sample is defi ned 
in Eq. 114 as:

 

( )

( )

( )
( )

( )[ ]
( )=∈

=

=

=

=
==

=

=

=

=

=

=

=

=

=

==
3

3M

2M

1M

3
33,2,1M

3M

3M

3M

3M1

2M

1M

3M

2M

1M

ˆ
sj

i
s

s

iU

Dq

Di

D

i

n
A

I

I

I

D

y
y
y

t

y
y

y

y
y
y

y
y
y

 (114)

where
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RRE is sequentially used to combine the independent estimates from the three 
phases of sampling, as in Eqs. 44 to 51.

Defi ne the scalar t1 as the population total for tree volume measured with the 
M = 3 protocol, a scalar estimate for which is extracted from the fi nal RRE vector 
estimate (e.g., Eq. 50) with the 1-by-qM=3 indicator matrix h1 in Eq. 115:
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The M = 2 fi eld protocol includes “less-expensive” estimates of individual tree 
volumes that use measurements of DBH, ocular estimates of tree heights, and 
regional volume equati ons that were fi t to off-frame convenience sample of his-
torical data. Hypothetically, assume this M = 2 protocol produces biased estimates 
of individual tree volume at both the population and small-domain levels. In these 
situations, biases of 10 percent or more are possible, especially for domains that 
are small relative to the geographic scope of the database that was used to fi t the 
regional volume equation. The vector estimate from the Phase 2 sample includes 
separate elements for the total volume in each of qD domains, such as counties 
(Särndal and others 1992:220, 304, 397), as measured with the M = 2 protocol. 
The sampling error at Phase 2 is suffi ciently small to make reliable tree volume 
estimates for each of qD small domains. However, these estimates are biased be-
cause the “less-expensive” tree volume measurements (M = 2) are biased.
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The vector partition with estimated total tree volumes for each of the qD do-
mains, which are measured with the M = 2 protocol, is isolated from the overall 
RRE vector estimate (Eq. 50) with the qD-by-qM=2 indicator matrix H3:
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In this example, all elements in the conformable indicator matrix H3 equal zero 
except for each of the qD elements that corresponds to the volume estimate made 
with the M = 2 protocol, in which case the element of H3 equals 1. Assume for 
notational convenience that these qD elements are contiguous in the vector esti-
mate; thus, the elements equal to 1 in indicator matrix H3 are an identity matrix 
partition (I) in Eq. 116.

Defi ne the sum of all elements in the t3 vector as the sum of all estimated do-
main volumes with the M = 2 protocol as t2:
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The scalar t2 in Eq. 117 equals the total tree volume in the entire population as 
measured with the biased M = 2 protocol. This scalar estimate is isolated from 
RRE vector estimate ( E q. 50) with the 1-by-qM=3 indicator matrix h2. All elements 
of the conformable row vector h2 in Eq. 117 equal zero except for any of the qD 
elements corresponding to estimated total tree volume made with the M = 2 pro-
tocol for a domain; each of these latter elements equals 1 in h2. For convenience 
of notation, these qD elements are contiguous in RRE vector estimate (Eq. 50).

The objective is an unbiased, model-based prediction of the total volume for 
each of the qD small domains using the biased estimates of total volume, which are 
based on the “less-expensive” M = 2 protocol. The model assumes that the bias 
of the M = 2 protocol relative to the M = 3 protocol, which is observed directly 
from the Phase 3 sample (s = 3), is constant for all domains. The resulting vector 
pseudo-estimator is defi ned for each of the qD domains as:
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This model in Eq. 118 is similar to a synthetic estimator for small domains (Särndal 
and others 1992:410), which often provides exceptionally precise estimates, but it 
can induce consid erable estimation bias if the model is inaccurate. The latter is a 
substantial risk because there is often no empirical evidence to judge the accuracy 
of the model.
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The two scalar estimates (t1 and t2) and the qD-by-1 column vector estimate (t3) 
in Eq. 118 equal the linear matrix function (Eqs. 115 to 117):
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The model in Eq. 118 is the basis for a non-linear pseudo-estimator of total vol-
ume in each of the qD domains (i.e., elements of qD-by-1 column vector θ) based 
on the “more-expensive” M = 3 tree measurement protocol.

Row i for the vector model in Eq. 118 is:
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The partial fi rst derivatives for the function in Eq. 120, evaluated at the estimated 
values, are:
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From Eqs. 89, 90, and 121, the fi rst-order Taylor-series approximation of the non-
linear pseudo-estimator in Eq. 120 is:
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Expanding Eqs. 118 to 122 for each domain into the 1-by-qD ve ctor of model-
based estimates of total volume θD for each of the qD domains:
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where A in Eq. 123 is the qD-by-(qD + 2) mat rix of coeffi cients from the Taylor-
series approximation and the defi nitions in Eq. 119:
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Equations 123 and 124 yield an approximate estimat or (Eq. 125) of the covari-
ance matrix for the vector pseudo-estimator of unbiased volume estimates for 
each domain (D = d) in the population :
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Straightforward, though tedious, matrix algebra demonstrates that the popula-
tion estimate, and the sum of all elements in the Taylor-series approximation of 
its covariance matrix, for the sum of model-based predicted volumes over all 
domains estimates equals the direct estimate of the population volume with the 
M = 3 protocol:
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Therefore, the vector of model-based volume estimates θD for domain D, which 
uses the estimators in Eqs. 118 and 125, is consistent at the population level with 
the corresponding direct estimate (t1), which uses the unbiased M = 3 measure-
ment protocol. The biases in model-based, domain-level variance and covariance 
estimates, which are caused by the remainders from the fi rst-order Taylor-series 
approximation, sum to zero when domain-level estimates are summed into pop-
ulation-level estimates. This supports generic inference (Opsomer and others 
2007). However, this analysis does not demonstrate that the model-based estima-
tor is unbiased at the domain level.

Finally, the covariance matrix for the model-based volume estimates, which 
is defi ned from Eqs. 124 and 125, and the population estimates for the remaining 
variables measured with the M = 2 protocol equal:
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In this way, the model-based domain estimates (θD) may be merged with the direct 
estimates (tM=2) for subsequent analyses and further application of other linear 
or non-linear pseudo-estimators (e.g., volume per forested acre with the M = 3 
protocol for each domain).

This approach might be useful in other FIA applications. For example, esti-
mates of wood volume cull are needed. Cull is defi ned by Helms (1998) as “parts 
of logs deducted … from gross timber volume because of defects. … in a standing 
(live) tree, the cull expressed as a percent of the tree’s gross volume is termed the 
cull factor.” Direct measurement of the cull factor often requires destructive sam-
pling, which is not conducted on a permanent FIA sample plot. Rather, estimates 
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of the cull factor are made external to the FIA sampling frame, and prediction 
equations are constructed to estimate the cull factor for on-frame sample trees 
based on the standard FIA non-destructive fi eld protocol. If the destructive mea-
surements come from a probability sample, then the methods in this section are 
relevant. These methods do not produce a PSU weight for individual sample trees 
from the Phase 2 FIA sample. This is an advantage because it avoids the curious 
situation where the exact same cull factor is used for a large number of sample 
trees. This does not necessarily produce more accurate population estimates, but 
it does avoid anomalous results in the FIA database.

Second-Order Taylor-Series Approximation to Assess Bias
The covariance matrix for non-linear pseudo-estimators can be biased by 

the fi rst-order Taylor-series approximation because the second-order and higher 
terms in the expansion are treated as zeros (Ahmed and Al-Khasawneh 2005). In 
other words, the remainder R in Eq. 91 is assumed to be negligibly small, even 
though this assumption is rarely tested. The reason for ignoring the second-order 
terms is that the derivation of the covariance matrix estimator is perceived as too 
daunting, and the magnitude of the Taylor-series remainder beyond the fi rst-order 
approximation is perceived to be small with no practical signifi cance. Both per-
ceptions might be inaccurate. This section explores a type of recursive method 
that simplifi es derivation of the second-order Taylor-series approximation to as-
sess the degree of bias in a fi rst-order approximation. If the bias is unacceptably 
large, then the same methods yield the less biased second-order estimator for the 
covariance matrix.

For example, continue the relatively complex case of model-based, small-
domain volume estimation in Eqs. 115 to 125. Using the methods of Deutsch 
(1965:Chapter 6) and Särndal and others (1992:173-174, 205-207, 499), the sec-
ond-order Taylor-series approximation is:
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are evaluated at

 mdmd

kdkd

jdjd

idid

tt

tt

tt

tt

tt

==

==

==

==

=

=

=

=

=

ˆ

ˆ

ˆ

ˆ

1̂1

 

The second-order partial derivatives in Eq. 127, analogous to Eq. 121, are:
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where the remaining partial derivatives from Eq. 127 equal zero and do not appear 
in Eq. 128. Combining terms in Eqs. 127 and 128, the terms that are part of the 
second-order Taylor-series expansion are:
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As in Eqs. 123 to 125, Eq. 129 may be expressed in matrix format for domains 
i = 1,…,qD as:
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An empirical estimate of the covariance matrix in Eq. 130 is possible from 
the sample by adding the appropriate product transformations to form the second 
partition (Ahmed and Al-Khasawneh 2005). In this example, let the V subscript 
denote a volume measurement applicable to either the “less-expensive” M = 2 
protocol or the “more-expensive” M = 3 protocol, with the domain indicator vari-
able Ii defi ned in Eqs. 113 and 114. Equation 131 augments the Phase 2 (s = 2) 
estimator (Eq. 113) and Phase 3 (s = 3) estimator (Eq. 114), with the additional 
variables necessary to apply the second-order Taylor-series linear approximation 
in Eq. 130:
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Figure 2. Accuracy required from a 
remotely sensed, binary variable for 
gains in precision from stratifi cation 
(Czaplewski and Patterson 2003). 
Gains use the metric of design effect 
(Särndal and others 1992:54) with a 
design effect of 0.25 for “Excellent,” 
0.50 for “Substantial,” 0.67 for 
“Moderate,” and 0.75 for “Minimal.” 
The required accuracy is highest 
for common categories and lowest 
for rare categories. For example, 
a “Substantial” gain in precision 
requires an accuracy of 77 percent 
if the prevalence of a category is 
20 percent of the population, but it 
requires 94 percent accuracy if the 
prevalence is 80 percent (Czaplewski 
and Patterson 2003:Table 2).
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Therefore, the variances of quadratic terms in Eq. 130, such as 2 3
ˆ ˆt̂⎡ ⎤⎣ ⎦V t , may 

be estimated from the realized sample with Eq. 131. However, this may lead to 
multivariate estimators of high dimension, which can cause numerical problems. 
Therefore, second-order Taylor-series approximations might be more suitable to 
occasional assessments of the accuracy of fi rst-order Taylor-series approxima-
tions rather than daily application in production settings.

Recall that the fi rst major partition of the matrices in Eq. 130 is from the fi rst-
order Taylor-series approximation (Eqs. 120 to 125), and the second partition is 
from the second order approximation (Eqs. 127 to 129). If the covariance matrix 
for the model-based estimates V[θD] with both fi rst- and second-order partitions 
(Eqs. 130 and 131) is approximately the same magnitude (e.g., trace of the co-
variance matrix) as the covariance matrix without the second-order partitions 
(Eq. 125), then there is evidence that the bias from the fi rst-order approximation 
is relatively small, and more confi dence may be placed in the simpler fi rst-order 
approximation. Otherwise, the more complex approximation in Eq. 130 is avail-
able in empirical applications, assuming that the extra (2qD + 1) dimensions of the 
estimated vector and its covariance matrix allow numerically feasible and stable 
results. Equation 130 may provide alternative insights into the magnitude of the 
bias in the fi rst-order Taylor-series approximation of the covariance matrix if re-
alistic assumptions are possible for the relative magnitudes of the second-order 
terms. Of course, all of this assumes that the third- and higher-order terms in the 
Taylor-series are negligibly small.

In addition to the Taylor-series method, Wolter (2007:Chapter 9) evaluates 
alternative estimators of the covariance matrix, including the random group 
method, the balanced half sample method (pseudo-replication), the jackknife 
method, the method of generalized variance functions, and the bootstrap method. 
All these methods generally have identical asymptotic properties, so the concern 
is with smaller sample sizes. No one estimator is the most accurate or best overall. 
However, Wolter (2007:363-365) concludes that the

Taylor-series method is good, perhaps best in some circumstances, 
in terms of the (mean squared error) and bias criteria, but (other 
methods) are preferable form the point of view of confi dence 
interval coverage probabilities. … The (Taylor-series) method can 
generally accommodate any survey estimator (that is a non-linear 
transformation of the population vector estimate), which includes 
most statistics used in survey sampling practice. It may be diffi cult to 
apply for very complex (transformations), but such statistics do not 
often occur in practice. … The (Taylor-series) method can deal with 
any sample design for which an estimator or the covariance matrix 
can be given.

Accuracy and Registration of Remotely Sensed Data
The success of the statistical estimators presented above depends on the 

strength of the associations among the remotely sensed auxiliary variables and 
the study variables. Czaplewski and Patterson (2001, 2003) investigated the gains 
in statistical effi ciency as a function of classifi cation accuracy for categorical vari-
ables that are used for stratifi cation (Figure 2). These guidelines are extrapolated 
through heuristics to RRE and model-based estimators.

The required accuracy is highest for common categories and lowest for rare 
categories. For example, a substantial gain in statistical effi ciency requires an ac-
curacy of 77 percent if the prevalence of a category is 20 percent of the population, 
but 94 percent accuracy is required if the prevalence is 80 percent (Czaplewski 
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and Patterson 2003:Table 2). In detailed classifi cation systems with many differ-
ent categories, most categories are relatively rare (e.g., prevalence less than 10 
percent).

Because RRE can accommodate categorical variables that are not mutually 
exclusive and classifi cation systems that are not exhaustive or complete, classifi -
cation algorithms for remotely sensed data may be separately optimized for each 
category. For example, a separate dichotomous thematic map may be optimized 
for each individual category of land cover (e.g., predominantly deciduous forest, 
predominantly coniferous forest, and mixed forest), which can increase statistical 
effi ciency with remotely sensed data (King 2002). Certain spectral conditions, 
such as cloud shadows, need not be classifi ed into any category of land cover. This 
would avoid dilution of accurate predictions with inaccurate predictions.

Czaplewski and Patterson (2001) consider the effects of misclassifi cation er-
ror caused by changes in land cover and land use between the acquisition date of 
the remotely sensed data and the measurement date for the fi eld data. The loss 
in statistical effi ciency is rapid as the agreement deteriorates (Czaplewski and 
Patterson 2001, 2003; Fattorini and others 2004), regardless of the cause, be it 
either misclassifi cation error or change in land cover. This is especially true in 
dynamic landscapes, which are the domains that often have the greatest demand 
for current monitoring data (Smith 2002; USDA Forest Service 2007).

It is feasible to frequently monitor major changes in land cover with space-
borne sensor data (e.g., Healey and others 2005; Sader and others 2005), and these 
measurements might substantially improve statistical reliability (e.g., Czaplewski 
1999). One might use the post-stratifi cation estimator, but this uses cross-
classifi cation of annual, remotely sensed data with relatively rare land cover chang-
es, along with remotely sensed data on more static forest conditions. Extensive 
cross-classifi cation produces many small strata with few PSUs, especially with 
annual panel designs. Hence, FIA uses post-stratifi cation solely in the context of 
the temporally indifferent estimator (Patterson and Reams 2005), which is not 
amiable to use of remotely sensed estimates of changes in forest cover. Therefore, 
the post-stratifi cation estimator constrains the potential for using relatively in-
expensive time-series of spaceborne, remotely sensed data to improve statistical 
reliability. For example, Van Deusen (2005) recommends that a single thematic 
map is best with post-stratifi cation and time-invariant panel estimators. However, 
RRE can combine remotely sensed data with panel data from the same year with-
out cross-classifi cation over multiple years. Hence, RRE is more amenable to true 
annual estimation in panel designs that have a time-series of remotely sensed data. 
In this sense, RRE is much like regression estimation, in which categorical aux-
iliary data are treated as dichotomous predictor variables rather than strata. RRE 
does use linear models that might unintentionally introduce model bias. Future 
research should be designed to evaluate the magnitude of the potential bias and 
investigate diagnostic tools that detect model bias.

For univariate continuous variables, Särndal and others (1992:250) dem-
onstrate that, under certain assumptions, the correlation between a univariate 
predictor variable and a univariate population parameter must be 0.5 or higher for 
the ratio estimator to be more effi cient than the Horvitz and Thompson estimator. 
With very high correlations, e.g., 0.95, the gain in effi ciency with the difference 
estimator is eight-fold (Särndal and others 1992:224). However, similar guidance 
for multivariate predictors with multiple responses is less well known, and further 
research is required in the context of FIA applications.

Misregistration between sites measured in the fi eld and measured with remote 
sensing will degrade associations among remotely sensed and fi eld data, espe-
cially in heterogeneous, fi ne-grained landscapes (McRoberts 2010). Halme and 
Tomppo (2001), Czaplewski (2005), Magnussen (2007), and Nelson and others 
(2009) offer methods to improve registration accuracy between Landsat pixel data 
and fi eld plots.
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Discussion
This report presents the static Kalman fi lter and multivariate pseudo-estimators 

as a fully integrated and consistent approach to statistical estimation in the FIA 
program. The Kalman fi lter is a sophist icated mathematical tool for performing 
estimation and prediction when data are observed sequentially. In typical applica-
tions of the dynamic Kalman fi lter, this sequence generally follows a time-series. 
However, in the case of RRE, which is equivalent to the static Kalman fi lter, the 
sequence is defi ned as levels in a hierarchy of data collection. At its roots, Kalman 
fi ltering is closely related to Best Linear Unbiased Prediction (BLUP), hence it 
relies on correlations between variables observed at the different levels to per-
form predictions. Because the variances and covariances are not observed, they 
are replaced by estimated moments, so that the resulting estimation approach is 
Empirical BLUP (EBLUP).

Calibration estimators, which include generalized regression estimators 
(GREG) as a special case, are widely used in large government sample sur-
veys to gain effi ciency and reduce nonresponse bias (Deville and Särndal 1992; 
Lundström and Särndal 1999). However, Lundström and Särndal caution

In some surveys, there is an abundance of auxiliary information, so 
that a selection of the most relevant variables would have to precede 
the start of the calibration process. We do not necessarily recommend 
that the totality of the information be used. To blindly add auxiliary 
information, over and beyond a set of crucial variables, might do 
more harm than good. These problems are indicated in Nascimento 
Silva and Skinner (1997) and Lundström (1997). The selection of an 
‘optimal’ set of auxiliary variables is thus not a trivial problem, and 
will in many cases require the judgment of an experienced survey 
statistician.

Calibration uses a sub-optimal transformation of multivariate auxiliary infor-
mation that is invariant for each study variable. Certain auxiliary variables might 
be well correlated with some study variables but poorly correlated with other 
study variables. In order to follow the advice of Lundström and Särndal fully, the 
set of core auxiliary variables must be well correlated with each study variable. 
This requires prudent intervention by an experienced survey statistician.

In contrast, RRE automatically produces optimal linear weights tailored to 
each survey variable. If an auxiliary variable is not well correlated with a spe-
cifi c study variable, then it receives little weight. If the same auxiliary variable 
is highly correlated with a different study variable, then it is heavily weighted. 
In the worst case, if a certain auxiliary variable is not well correlated with any 
study variable, it never receives much weight. This integral weighting is achieved 
through the optimal properties of the RRE, without routine maintenance by an 
experienced survey statistician. Compared to calibration estimators, RRE is ex-
pected to be more robust in the routine production of FIA sample survey statistics, 
especially if correlations signifi cantly vary over time between FIA study variables 
and different remotely sensed auxiliary variables.

The statistical estimation methods given in this report accommodate a wide 
range of estimation scenarios, including multiphase and multistage designs, cali-
bration, nonlinear estimation, and small-area estimation. All of these scenarios use 
a fully integrated paradigm, which is particularly attractive for a large, multifac-
eted sample survey. Furthermore, the Kalman fi lter is a mature fi eld of statistics, 
and RRE is a special case of the Kalman fi lter. Solutions to associated numerical 
hazards are well developed. In addition, the Kalman fi lter is a well-established 
time-series estimator. The combination of the static Kalman fi lter (i.e., RRE) for 
remotely sensed data with the dynamic Kalman fi lter for the time-series of FIA 
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panel data is a unifi ed and consistent solution to a complex sample survey design 
in FIA.

Limitations of the post-stratifi cation estimator
RRE has potential advantages compared to post-stratifi cation used by FIA. 

RRE correctly accommodates support-regions for sample points (e.g., FIA plots) 
that straddle strata boundaries (e.g., remotely sensed stand conditions and geo-
political units, such as counties and ownerships) because RRE does not require 
independent strata to utilize categorical census variables. Similar to a linear cali-
bration estimator or generalized regression estimator (Zhang 2000), RRE treats 
these variables as dichotomous auxiliary variables. This is similar to regression 
estimation, in which categorical auxiliary data are treated as dichotomous predic-
tor variables rather than strata.

RRE might be less vulnerable to sampling zeros (e.g., Agresti 1984:54), empty 
sample post-strata (Zhang 2000), and small, within-stratum sample sizes. These 
problems can be addressed through merging strata with small sample sizes into 
similar strata with larger sample sizes. However, this not only reduces statistical 
effi ciency, it is also inappropriate for inference unless the stratum means are ex-
pected to be equal (Cochran 1977:134; Särndal and others 1992:411; Knottnerus 
2003:169). In a citation to Jagers (1986), Zhang (2000) observes that “post-
stratifi ed estimation that ignores the empty sample post-strata is downward biased 
for non-negative (study-variables).” In contrast, RRE can use the full sample size 
of annual fi eld plots for a sampled population (e.g., a state with 1000 FIA sample 
points measured each year) in order to utilize auxiliary data, rather than partition 
the full sample into numerous small and pseudo-independent strata (e.g., counties 
separated into major land ownership categories and remotely sensed categories, 
with as few as four sample points per stratum). In this sense, RRE is similar to 
a linear calibration estimator or generalized regression estimator (Zhang 2000).

RRE can separately use many different census variables (e.g., separate clas-
sifi cations of land cover, land use, forest type, stand development, and multiple 
sources, such as several independent land cover maps produced by different agen-
cies or programs, possibly with different legends). Furthermore, there is no need 
to segment continuous variables (e.g., predicted biomass) into ordinal categories, 
as in stratifi cation. Moreover, there is no need to cross-classify all such categori-
cal variables into a single, detailed classifi cation system, which is necessary to 
apply post-stratifi cation. This also reduces problems with small sample sizes in 
v ery detailed strata. More important, it opens the door to more complete use of 
available remotely sensed auxiliary variables.

Problems associated with the post-stratifi cation estimator are avoided with 
RRE. This is also true with GREG and calibration estimators, which are much 
less constrained than the post-stratifi cation estimator. With RRE, GREG, and 
calibration estimators, the strata used with post-stratifi cation estimator are simply 
replaced with dichotomous categorical predictor variables. The amount and detail 
of the auxiliary variables is adjusted relative to the available sample size with any 
of these estimators. Compared to the calibration estimator, RRE and the regres-
sion estimators are less vulnerable to poorly correlated auxiliary variables. The 
RRE has advantages over all these alternatives. RRE can combine data from many 
different sources and at different scales within a prediction-based framework. In 
doing so, a number of previously disparate estimation problems are unifi ed, such 
as small-area estimation, domain estimation, and calibration (Opsomer, personal 
communication). This unifi ed approach harmonizes the broad array of estimates 
produced by FIA.

Multivariate estimates
The vast majority of statistical literature in sample surveys deals with esti-

mates of univariate population parameters. However, large government statistical 
programs, like FIA, estimate thousands of variables from the same sample. This 
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has been successfully accomplished with repetitive application of univariate 
estimators (e.g., Scott and others 2005). However, simultaneous estimation of 
multiple population variables is necessary to estimate the covariance matrix for 
multivariate estimates. This covariance matrix is an integral component to the 
pseudo-estimators in Eqs. 89 to 131 above, which are used to estimate covariance 
matrices for rates, ratios, proportions, and products. They also serve at the core 
of variance estimators that accommodate missing data and small-area estimation 
with certain model-based approaches. They are even capable of variance estima-
tion in the context of standard linear programming applications from operations 
research (Knottnerus 2003:354). Therefore, RRE is relevant to core needs in pro-
grams like FIA.

Independence among sampling phases
RRE assumes that all phases in a multiphase design are mutually independent. 

However, often times one phase is a sub-sample of another phase. Recall that the 
estimators assume an infi nite population, and the joint inclusion probabilities are 
zero among any units in the realized sample. Even if the population is assumed to 
be fi nite, the joint inclusion probabilities are very small whenever the sampling 
fraction is small, in which case multiple phases may be considered “almost-inde-
pendent” (Knottnerus 2003:258, 262). This condition is true for FIA. If the fi nite 
population model is used with a large sampling fraction, then Eq. 9 may be used 
with the non-null cross-covariance matrix C between different phases, an esti-
mator for which is given by Knottnerus (2003:316, 375, 389). Similar methods 
(Knottnerus 2003:392) might be used to combine different annual panels in FIA.

Risk management with complex sampling designs
The traditional FIA system uses a very simple sampling design: simple sys-

tematic sampling with equal selection probabilities and the post-stratifi cation 
estimator. However, more complex sampling designs are needed to fully accom-
modate multiple remote sensing technologies. Databases need embellishment. 
New estimators must be assimilated into the information management system. 
This complexity is accompanied by risk, but risks can be managed.

In general, RRE equals the design-based estimator Xt̂  plus an adjustment 
(e.g., Eqs. 2, 12, 22, and 132). The adjustment vector is the matrix-weighted (K) 

difference between the more precise ancillary vector estimate Zt̂ of a partition of 
the population vector and the relatively less precise estimate of a larger partition 
of the population vector, or the full population vector, from a more detailed stage 
or phase . In a recursive application of RRE, multiple adjustment vectors 
are generated. These may be grouped into a single term. The following is a ge-
neric representation of RRE after the jth recursion:
where
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Therefore, RRE can be readily separated into two additive terms: (1) the 
traditional FIA design-based vector estimate  for a single panel without 
post-stratifi cation, and (2) a vector of adjustments (tadj)j that improve statis tical 
effi ciency through the recursive fi ltering of all auxiliary information. Even the 
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RRE and calibration weights in Eq. 43 at the PSU level are conveniently factored 
into the sum of two terms: the simple, design-based π expanded value (i.e., ak in 
Särndal and others 1992:43), and a term that fully captures the residual difference 
between the simple π estimator and the more effi cient RRE estimator. This struc-
ture might reduce the complexities of temporally dynamic state-space estimates 
or plot expansion factors. If there are concerns with the reliability of FIA esti-
mates that use auxiliary, remotely sensed information, then the adjustment term 
may be simply omitted, leaving only a design-based π panel estimate based on the 
simple random sample of FIA plots in that panel.

Furthermore, (tadj)j equals the residual difference between the simple FIA 
panel estimate and RRE that contains all auxiliary information. If the size of 
(tadj)j is large relative to its covariance matrix, then there is empirical evidence of 
an anomaly that requires investigation. This form of quality assurance should be 
an integral part of the FIA data processing procedures.

Non-sampling errors are always a concern in any large government survey. 
They include measurement and numerical round-off errors and mistakes in data 
transcription, computer programming, and sampling frame construction. Non-
sampling errors can introduce unrecognized bias into estimators of population 
totals and variance estimators. FIA already uses extensive edits to detect certain 
measurement and transcription errors. FIA also conducts thorough tests of com-
puter programs and algorithms. Analyses of residuals that are discussed above can 
further reduce risk of more subtle biases for some variables (Francisco 2003:71; 
Estevao and Särndal 2006). For example, Knottnerus (2003:255) uses a runs test 
that might be applied to residuals for study variables that are sorted on their cor-
responding residuals for auxiliary variables.

Design-based and design-consistent estimators are the least risky. These 
include estimators previously used by FIA for decadal periodic surveys and 
estimators for a single panel of annual FIA data¹. RREs in Eqs. 21 to 70 are 
design-consistent, similar to ratio and regression estimators. These introduce little 
incremental risk if implementation and auxiliary estimates are reliable. Residual 
analyses further mitigate any remaining risk.

The small-area, missing data, and prediction estimators in Eqs. 82 to 131 are 
model-based methods. They assure internal consistency to maintain credibility. 
However, these are more risky because they depend upon the reliability of the 
model (Schreuder and others 1993). Furthermore, they are used to compensate for 
small sample sizes, which limits the power of residual analyses to detect model 
prediction bias and non-sampling errors. These latter risks are unavoidable. They 
are part of the cost of maximizing the utility of expensive fi eld data to estimate 
small segments of the sampled population. These risks should be clearly commu-
nicated to users of such estimates.

FIA already improves data quality through external reviews of new statistical 
reports by State Forest Service agencies and other external users. This requires 
routine intervention by FIA staff. RRE might increase the amount of quality assur-
ance procedures conducted by FIA staff. Some of this could require the expertise 
a senior statistician. These procedures include residual analyses, diagnosis of the 
cause for suspicious residuals, and elimination of the source of any anomalies. 
Some unexpectedly large residuals might be caused by bias in model predictions. 
Other suspicious residuals might be caused by non-random errors, such as sys-
tematic errors in computer programs or data collection. Residual analyses could 
be automated and made more user friendly for FIA staff.

1 Scott and others (2005) treat segments of a single FIA fi eld plot that contains multiple stratifi cation conditions as 
independent in the variance estimator for a single panel. They acknowledge that this will bias the variance estimator, but 
they assume the bias is inconsequential. This assumption might be considered model-based. FIA estimators, which use 
the moving average or temporally indifferent estimator (Patterson and Reams 2005) to combine multiple panels, might 
also be considered model-based. They are unbiased for the model that assumes a static population among panels. FIA 
uses volume equations that predict tree volume based on measurements of DBH and tree height. These models are fi t to 
historical, off-frame, purposive samples of trees. Therefore, FIA volume estimates are model-based.
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Concerns may arise about the data quality of remotely sensed auxiliary infor-
mation. If left unattended, measurement bias in auxiliary data can propagate into 
bias in population estimates. Coulston (2008) provides an example that involves 
FIA’s Phase 1 photo-interpretation. Other concerns may arise during analysis 
of RRE residuals. In the worst case, RRE auxiliary adjustments, i.e., the  
term in [ ] from Eq. 132, may be omitted. This leaves the purely de-
sign-based estimate, i.e., , which is the least risky. This retreat from the RRE 
estimator obviates risks to data quality caused by anomalies with the remotely 
sensed or other geospatial sources of auxiliary data, although it also foregoes any 
gains in effi ciency through RRE. The sequential, object-oriented nature of RRE 
readily permits retention of reliable auxiliary data sets and omission of suspect 
sets.

Seminal Literature
The RRE estimators used in this report are special cases of the Kalman fi l-

ter, which originated and matured within the discipline of aerospace engineering 
during the 1960s and 1970s. The original applications were primarily for as-
tronavigation in the Apollo lunar mission and the Mariner interplanetary space 
probes. The astrionics of that era used 8-bit digital processors, which are primitive 
by today’s 32- and 64-bit standards. Astronautical navigation systems assimilate 
time-series of imperfect predictions from linearized astrophysical models plus 
“noisy” measurements from diverse sensor arrays. Aerospace engineers devel-
oped model-based statistical estimators to process this multivariate time-series 
of stochastic inputs to produce estimates of spacecraft location and trajectory. 
Mission success demanded effi cient and unbiased statistical estimators with ac-
curate covariance matrices from the model-based approach. The consequences of 
failure were unpleasant, such as reports on the evening news and Congressional 
inquiries, or truly tragic in the case of manned space exploration.

Statisticians addressed these challenges through theoretical and applied 
techniques, including the Kalman fi lter and numerical analysis. One comprehen-
sive and rigorous treatise is Peter Maybeck’s (1979) book, Stochastic Models, 
Estimation, and Control. Maybeck covers relevant mathematical statistics, prob-
ability theory, linear time-series models, and numerically robust variations of the 
Kalman fi lter.

Another contemporaneous source is Gerald J. Bierman’s (1977) book, 
Factorization Methods for Discrete Sequential Estimation. Bierman provides 
a concise description of the mathematical statistics that relates the Kalman fi l-
ter to linear models that are more familiar to statisticians who are not involved 
with aerospace engineering. More importantly, Bierman thoroughly covers the 
problem of divergence, solutions to which are critically important to successful 
applications of the Kalman fi lter. Aerospace engineers use the term divergence 
when their navigation system misdirects a missile, spacecraft, or aircraft to miss 
the target. Statisticians consider the same phenomenon as an unrecognized bias 
in a model-based estimator. The source of the bias is often misspecifi cation of 
the model, and Bierman covers embellishments of the Kalman fi lter that estimate 
biases caused by inaccurate or incomplete models or parameters. Divergence may 
also be caused by numerical errors, and Bierman develops numerically robust 
versions of the Kalman fi lter that remain important in applications to spacecraft 
navigation (e.g., Garcia-Yarnoz and others 2006).

Andrew Jazwinski’s (1970) treatise, Stochastic Processes and Filtering Theory, 
is another key reference. He tends to cover the detailed mathematic statistics in 
more depth than Bierman and Maybeck, but the latter authors provide a more use-
ful perspective for applications.

None of these three seminal references, which are in Academic Press’s series 
on Mathematics in Science and Engineering, seem to be well recognized in the 
sample survey literature. Anyone interested in applications of RRE or the Kalman 
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fi lter to complex sample surveys would be well served by thoroughly studying 
these references.

More current references are available. Kalman Filtering: Theory and Practice 
Using MATLAB by Grewal and Andrews (2001) is a comprehensive and concise 
reference. It includes computer code for numerous algorithms. The 2001 com-
prehensive treatise by Yaakov Bar-Shalom, Xiao-Rong Li, and Thiagalingam 
Kirubarajan covers material relevant to sample survey estimation with RRE, de-
spite its application-oriented title, Estimation with Applications to Tracking and 
Navigation: Theory Algorithms and Software. Charles K. Chui and Guanrong 
Chen’s (2009) heavily cited treatise Kalman Filtering with Real-Time Applications 
is an excellent source for theoretical and applied details.

Knottnerus’ (2003) book, Sample Survey Theory: Some Pythagorean 
Perspectives, makes the fi rst direct connection between the static Kalman fi lter 
and Pythagorean regression. He uses the latter as the basis for his standard sam-
pling model as a unifying approach to estimation for complex sample surveys. 
Knottnerus (2003:50) shows how the recursive methods from the Kalman fi lter 
can use “additional information … (to improve) an initial estimate or, in gen-
eral, how the estimator from the previous step can be improved by using new 
information.” Knottnerus also incorporates auxiliary information as constraints. 
However, Knottnerus does not use the state space model, which I frequently use 
to further simply complex estimators, and Knottnerus does not emphasize impor-
tance of numerical risks and residual analysis.

Finally, many of Knottnerus’ sample survey concepts are derived from Särndal 
and others’ (1992) book, Model Assisted Survey Sampling. While the authors use 
fi nite population sampling theory in their book, it remains infl uential to this re-
port, in which the infi nite population perspective is used.

Future Research and Development
The estimators introduced above are merely examples of many types of com-

plex sampling designs that may be accommodated with sequential application of 
RREs and subsequent non-linear, multivariate pseudo-estimators. These exampl es 
represent basic modules that may be assembled in various ways to incorporate 
complex sample survey data generated by diverse remote sensing technologies 
and administrative census statistics. Some of the more obvious opportunities will 
be touched upon here. These may be the subject of future research.

The two-phase design with cluster plots (Eqs. 62 to 70) may be expanded to 
include remotely sensed predictions of continuous and categorical variables from 
full-coverage, wall-to-wall Landsat data (i.e., M = 0 and s = U). Multivariate 
predictions for an individual pixel, or a small window of pixels covering a support-
region (Czaplewski 2005; McRoberts 2010), can be registered to the location of 
the FIA plot that is also measured with the photo-interpretation protocol (M = 1). 
Census statistics from all pixels could improve estimated population totals from 
the photo-interpretation and FIA fi eld protocols.

Summary statistics from a larger support-region of contiguous Landsat pixels 
can be matched with summary statistics from a photo-interpreted cluster plot. 
Then, census statistics from Landsat could improve estimated population totals 
for variables photo-interpreted over the cluster plots, which, in turn, could im-
prove estimated population totals from the FIA fi eld protocol. Likewise, remotely 
sensed measurements and predictions from coarser-resolution satellites, such as 
MODIS, could be assimilated at the scale of a larger support-region, analogous 
to a cluster plot that is also measured with a sample or local census of photo-
interpreted observations. A similar approach might be best for spaceborne LiDAR 
data if they can be registered to a relatively large cluster plot (e.g., 25 to 1000 
acres) with suffi cient accuracy, but those data cannot be adequately registered to 
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the relatively small support-regions (e.g., 0.05 to 1 acre) for photo-interpretation 
or FIA fi eld measurements.

A Phase 2 sub-sample of airborne LiDAR data could be registered to photo-
interpreted data and FIA fi eld data, and a much larger Phase 1 sample of airborne 
LiDAR data could be used to improve estimates of forest biomass. Or airborne 
LiDAR could be acquired for a relatively large support-region (cluster plot), in-
cluding the FIA plot as a sub-set, and used like the photo-interpreted data for a 
cluster plot in Eqs. 57 to 61. Other design modules might include collocating 
samples of spaceborne and airborne LiDAR data, which might be facilitated by 
collocated, high-resolution aerial photography that support other remote sensing 
protocols. The model-based methods in Eqs. 115 to 125 can use the association 
between spaceborne and airborne LiDAR data at the population level to improve 
precision of estimates for small domains.

Knottnerus (2003:325) uses RRE to assure logical correspondence among 
study variables. For example, the difference in the areas of forest cover at two dif-
ferent times should agree with a separate estimate of the annual net rate of change 
in forest extent. Mandallaz (2008:188) calls this time additivity. Knottnerus and 
van Duin (2006) cover recursive restriction methods to assure additivity among 
complex statistical tables. Another example is the difference between estimates 
of timber removals from FIA fi eld plots and estimates of timber consumption 
from the independent FIA Timber Products Output (TPO) survey (Smith 2002). 
The state vector in a Kalman fi lter might be confi gured to achieve these types 
of compatibilities. This will likely involve non-null cross-covariances C among 
estimates of the state vector and a separate measurement vector, which may be 
accommodated with the gain matrix K in Eq. 9. The variance estimate for external 
estimates, such as TPO, might be problematic; sub-optimal methods might be ap-
propriate (e.g., Knottnerus 2003:334).

FIA fi eld data may be missing because of denied access to private lands or un-
safe fi eld conditions. These areas are in the target population, but not the sampled 
population. In addition, an FIA fi eld plot might not exist in certain known, rare, 
analytically important conditions, such as the area of a county with state-man-
aged public lands, or lands enrolled in the USDA Conservation Reserve Program. 
Such conditions are part of the sampled population, but they represent sampling 
zeros. These anomalies might be addressed through purely model-based pseudo-
estimators for missing fi eld data (e.g., Eqs. 91 to 99). Estimates for missing-data 
domains might be improved with photo-interpretation of high-resolution aerial 
photography that covers FIA plots that are not measured because of denied access 
or hazardous fi eld conditions. It might be possible to join together one or more 
model-based estimators for missing data and the design-based estimator for the 
remainder of the target population. Other complex estimators might be possible 
through other methods developed in this paper and elsewhere (e.g., Särndal and 
Lundström 2008). Further study should assess feasibility.

There are different approaches to small-area estimation. Inverse calibration in 
Eqs. 82 to 86 and RE in Eq. 88 are examples of different alternatives. While the 
literature in small-area estimation is large, very little of it covers opportunities 
offered by the multivariate vector response in RRE. Further research is needed, 
which might lead to improvements in internal consistency and variance estimators 
that combine design-based estimates for the sampled population and model-based 
estimates for the target population that cannot be sampled.

In all cases, it is important to use numerically stable methods with RRE. The 
special case of RRE as a calibration estimator is considered by Czaplewski (in 
prep.[b]). Bierman’s (1977) factorization methods use and preserve triangular 
square roots of the covariance matrices, which would reduce storage requirements 
and numerical errors in a database. Bierman’s UD decomposition is a modifi ed 
form of the Gram-Schmidt orthogonalization. These methods generally replace 
matrix inverses with element-by-element scalar division. A matrix language is not 
necessary. Numerical studies are required to understand better the dimensions of 
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the matrix equations that can be reliably processed with a digital computer. Future 
development should consider implementation of these powerful algorithms in 
database software, such as Oracle™, which should facilitate transfer of related 
research to the FIA production environment.

Robust RRE requires an accurate estimate of the covariance matrix. However, 
the sample covariance matrix is not necessarily an accurate estimator whenever 
the number of variables is large relative to the sample size (Ledoit and Wolf 2004). 
Dimensions for the auxiliary variables increase multiplicatively with cross-clas-
sifi cation of polychotomous categorical variables. However, cross-classifi cation 
might not substantively increase statistical effi ciency with remotely sensed, 
auxiliary data (Czaplewski in prep.[b]). Furthermore, covariance shrinking can 
improve reliability of Kalman fi ltering with high-dimension state vectors (Furrer 
and Bengtsson 2007) and other applications that face similar challenges (e.g., 
Schafer and Strimmer 2005; Bickel and Levina 2008). Ledoit and Wolf (2003) 
provide a relatively straightforward algorithm. Furthermore, orthogonalization 
and factorization methods (e.g., Bierman 1997) might mitigate impacts of estima-
tion error with these covariance matrices. Monitoring of residuals might detect 
consequences of imprecise estimates of the covariance matrix. Further research 
can reveal the best compromise between reliability of RRE and the detail of re-
motely sensed, auxiliary data and FIA study variables that are incorporated into 
the state vector.

Prudent applications of RRE strongly depend upon analyses of recursive re-
siduals, which are called the innovation sequence in the Kalman fi lter literature. 
Additional research is required for residual analyses in the context of the recur-
sive static Kalman fi lter as applied to complex sample surveys, such as FIA. This 
research might be facilitated with the robust methods with census data and oth-
er numerically stable methods. These methods sequentially apply orthogonally 
transformed auxiliary variables one at a time. Each has a corresponding variance 
estimate, which can standardize the scalar residual difference between the aux-
iliary measurement datum and its estimate from the state vector. Standardized 
residuals that are unexpectedly large offer a powerful diagnostic. The auxiliary 
variable associated with a large residual may be omitted from the fi nal RRE. 
Further study is needed to determine the order in which scalar auxiliary variables 
enter the RRE. There might be opportunities to use a stepwise approach to this 
order to improve estimates of FIA study variables and avoid over-zealous applica-
tion of remotely sensed auxiliary variables (Eq. 38).

FIA statistical reports can be more conveniently produced with a vector of 
unique RRE expansion values for each individual PSU (see “Optimal PSU 
Expansion Valuesfor Each FIA Plot”). The section “Robust Numerics” also intro-
duces practical methods to mitigate numerical errors inherent with RE. In order 
to ensure numerical stability of matrix inversions, these methods decompose the 
problematic covariance matrix for the estimates of the auxiliary data. The result 
is an upper triangular and diagonal matrix. This structure differs from the as-
sumptions used for the expansion values in Eqs. 76 and 81. Further research is 
needed to express the results from robust RRE as plot expansion values. In addi-
tion, it would be convenient from the analysis perspective to express results from 
pseudo-estimators as expansion values (see “A Model-Based Estimator for Small-
Domain Predictions”). This too requires further research.

As an alternative, Sõstra and Traat (2009) use Knottnerus’ RRE to derive 
simpler scalar weights that depend solely on the auxiliary variables; the same 
scalar weight applies to all study variables measured at a sampled PSU. These 
weights are sub-optimal, meaning they do not replicate the minimum variance lin-
ear estimator. However, scalar weights are more compatible with the current FIA 
database, which uses scalar expansion factors for area and volume. Additional 
research would evaluate the compromise between statistical effi ciency and data-
base convenience.
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Further research is needed to develop fully the equivalency of the RRE with 
complex sample survey estimators that are available in the statistical literature 
(e.g., Eqs. 39 to 43). This will better defi ne the statistical properties of the RRE in 
the context of sample survey estimators, and it might suggest algebraic identities 
that allow the RRE to be better expressed as analytical sampling weights (e.g., Eq. 
43). The view of complex sample survey estimation from the perspective of the 
RRE and the Kalman fi lter might pave the way for rapid development of relatively 
simple survey estimators.

RRE applies the static Kalman fi lter to complex sampling designs for data 
gathered at one point in time. The Kalman fi lter is most often applied to dynamic 
systems that change over time. Therefore, the Kalman fi lter provides a unifi ed 
approach to processing complex sample survey panel data. Future research will 
study the Kalman fi lter as a recursive, object-oriented approach to assimilating the 
time-series of FIA fi eld data, both the Phase 2 and Phase 3 sub-samples for for-
est health monitoring, with multiple asynchronous time-series of remotely sensed 
data from different sensors.

Future research should focus on the object-oriented approaches of recursive 
estimation for population parameters and recursive Taylor series approximations 
for variance estimation. Not only will these approaches simplify complex estima-
tion problems, they might also facilitate adaptation of estimators, software, and 
databases to future remote sensing and other technologies, while minimizing im-
pact on database maintenance and development.

Conclusions
By an Act of Congress (Gillespie 1999), FIA began the transition from a state-

by-state, decadal, periodic survey to an annual panel survey in all states. The 
transition is nearly complete. The only limitation is a modest increase in annual 
funding. The current statistical methods used with FIA panel data are essentially 
identical to those used for the FIA period surveys in the 1950s to 1990s. The 
most current data for PSUs from different panels, which are measured in differ-
ent years, are treated as though they were measured at the same instant, hence the 
term temporally indifferent estimation (Patterson and Reams 2005). Effi ciency 
is improved with post-stratifi cation based on remotely sensed classifi cations of 
forest and non-forest cover at one point in time. The next era of FIA will build 
on this foundation by more fully incorporating different types of remotely sensed 
data (USDA Forest Service 2007). In anticipation of this corporate strategy, reli-
able and practical statistical methods must be developed and thoroughly tested in 
the near future so that they can be confi dently incorporated into FIA production 
procedures.

This report is merely an initial step needed to satisfy this requirement. It rep-
resents one possible blueprint for a consistent and unifi ed statistical engine within 
the FIA production system for national statistics on forest ecosystems. It por-
trays a design intended to be a reliable, adaptable, cohesive, and comprehensive 
mathematical system for improving FIA estimates with diverse, remote sensing 
technologies. The same mathematical paradigm is directly extendable to time-se-
ries of FIA panel data. Future research must rigorously test this integrated design. 
There are viable alternatives under development (e.g., Roesch 1999, 2008). Future 
research will need to compare alternatives to the current FIA methods.

Use of complex, remotely sensed data requires a more complex statistical 
system. Introduction of additional statistical complexity into an already complex 
production system incurs some risk. Comprehensive pilot tests are critical before 
implementation is attempted. Numerous pilot studies have already investigated 
innovative uses of remotely sensed data relevant to FIA (Czaplewski in prep.[b]). 
These have involved challenges in acquisition and use of remotely sensed data. 
Database management has also presented demanding challenges. Development 
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of the necessary statistical estimators has been especially elusive in these pilot 
studies because statistical complexities are inseparably associated with the tech-
nologies and logistics of remote sensing. No amount of innovation in remote 
sensing has full value to FIA statistical products until statistically combined with 
fi eld data to form better population estimates. The statistical estimators introduced 
above appear capable of accommodating many types of remotely sensed data. 
However, they must be thoroughly tested with realistic numerical datasets and 
published in a journal with suffi cient statistical expertise in the peer-review and 
editorial processes.

Post-stratifi cation is a common and simple approach in large government sur-
vey programs of natural resources, such as FIA (Mandallaz 2008). Its results are 
conveniently captured in the large FIA database (McRoberts and others 2004) 
with relative ease, and it poses no extraordinary risk. However, its potential for 
improving population estimates with remotely sensed data is limited. RRE is more 
complex, but it can improve accuracy and effi ciency by assimilating larger quanti-
ties of auxiliary remotely sensed information. This might reduce the sample size 
needed to achieve a minimum accuracy criterion. A decision to convert from post-
stratifi cation to RRE depends on the compromise among implementation costs, 
risks, effi ciency, accuracy, and long-term cost savings. The decision is reversible. 
If the costs of implementation and risk management with RRE are unacceptable 
in FIA, then RRE might remain an attractive choice for special analytical studies 
whenever extra accuracy merits extra effort.

RRE offers opportunities to improve detailed sample survey products with re-
motely sensed and other geospatial auxiliary data known as complex auxiliary 
information (Estevao and Särndal 2006). However, judicious applications require 
attention to numerical problems and monitoring for other anomalies. Otherwise, 
results are not necessarily reliable. These problems are not well recognized in 
the sample survey literature, which might explain the paucity of survey applica-
tions that use RRE, especially given widespread popularity of the closely related 
Kalman fi lter in engineering, econometrics, atmospheric sciences, and physical 
oceanography.

Given existing and emerging remote sensing technologies, each with their own 
unique capabilities and limitations, and the inherent complexity of large statistical 
monitoring programs with diverse objectives, design modules may be added and 
removed in the FIA sampling and estimation processes. New types of relatively 
inexpensive, remotely sensed measurements can be used to improve precision 
and effi ciency of estimates made with FIA fi eld data. The value of all these com-
plex design modules depends on strong empirical correlations and associations 
between measurements made with different protocols, different support-regions 
(e.g., cluster plots), the incremental cost of adding these modules, and support 
from a fl exible information management system that can readily process and dis-
tribute statistical estimates.

RRE is a powerful solution to diffi cult sample survey problems. It separates a 
large complex sampling design into small modules, each of which is more easily 
addressed. These modules are sequentially reassembled into more effi cient and 
accurate population estimates. RRE offers the opportunity to consider complex 
sampling designs that would otherwise be too intimidating. The dynamic Kalman 
fi lter further extends closely related opportunities with the time-series of FIA 
panel data. Särndal (2007) hypothesizes that calibration estimation might offer 
the potential to “generalize earlier theories or approaches.” Based on the insights 
offered in this report, RRE might provide an even more complete foundation to 
make further advances in complex sample survey estimation.
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