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Foreword

The U.S. Geological Survey (USGS) is committed to providing the Nation with credible scientific 
information that helps to enhance and protect the overall quality of life and that facilitates 
effective management of water, biological, energy, and mineral resources (http://www.usgs.
gov/). Information on the Nation’s water resources is critical to ensuring long-term availability 
of water that is safe for drinking and recreation and is suitable for industry, irrigation, and fish 
and wildlife. Population growth and increasing demands for water make the availability of that 
water, measured in terms of quantity and quality, even more essential to the long-term sustain-
ability of our communities and ecosystems.

The USGS implemented the National Water-Quality Assessment (NAWQA) Program in 1991 
to support national, regional, State, and local information needs and decisions related to 
water-quality management and policy (http://water.usgs.gov/nawqa). The NAWQA Program is 
designed to answer: What is the condition of our Nation’s streams and groundwater? How are 
conditions changing over time? How do natural features and human activities affect the qual-
ity of streams and groundwater, and where are those effects most pronounced? By combining 
information on water chemistry, physical characteristics, stream habitat, and aquatic life, the 
NAWQA Program aims to provide science-based insights for current and emerging water issues 
and priorities. From 1991 to 2001, the NAWQA Program completed interdisciplinary assessments 
and established a baseline understanding of water-quality conditions in 51 of the Nation’s river 
basins and aquifers, referred to as Study Units (http://water.usgs.gov/nawqa/studyu.html). 

National and regional assessments are ongoing in the second decade (2001–2012) of the 
NAWQA Program as 42 of the 51 Study Units are selectively reassessed. These assessments 
extend the findings in the Study Units by determining water-quality status and trends at sites 
that have been consistently monitored for more than a decade, and filling critical gaps in 
characterizing the quality of surface water and groundwater. For example, increased emphasis 
has been placed on assessing the quality of source water and finished water associated with 
many of the Nation’s largest community water systems. During the second decade, NAWQA is 
addressing five national priority topics that build an understanding of how natural features and 
human activities affect water quality, and establish links between sources of contaminants, 
the transport of those contaminants through the hydrologic system, and the potential effects of 
contaminants on humans and aquatic ecosystems. Included are studies on the fate of agricul-
tural chemicals, effects of urbanization on stream ecosystems, bioaccumulation of mercury in 
stream ecosystems, effects of nutrient enrichment on aquatic ecosystems, and transport of con-
taminants to public-supply wells. In addition, national syntheses of information on pesticides, 
volatile organic compounds (VOCs), nutrients, selected trace elements, and aquatic ecology  
are continuing. 

The USGS aims to disseminate credible, timely, and relevant science information to address 
practical and effective water-resource management and strategies that protect and restore 
water quality. We hope this NAWQA publication will provide you with insights and information 
to meet your needs, and will foster increased citizen awareness and involvement in the protec-
tion and restoration of our Nation’s waters. 
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The USGS recognizes that a national assessment by a single program cannot address all water-
resource issues of interest. External coordination at all levels is critical for cost-effective man-
agement, regulation, and conservation of our Nation’s water resources. The NAWQA Program, 
therefore, depends on advice and information from other agencies—Federal, State, regional, 
interstate, Tribal, and local—as well as nongovernmental organizations, industry, academia, and 
other stakeholder groups. Your assistance and suggestions are greatly appreciated.

       Matthew C. Larsen 
       Associate Director for Water
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Abstract
Multilevel hierarchical modeling methodology has been 

developed for use in ecological data analysis. The effect 
of urbanization on stream macroinvertebrate communities 
was measured across a gradient of basins in each of nine 
metropolitan regions across the conterminous United States. 
The hierarchical nature of this dataset was harnessed in a 
multi-tiered model structure, predicting both invertebrate 
response at the basin scale and differences in invertebrate 
response at the region scale. Ordination site scores, total taxa 
richness, Ephemeroptera, Plecoptera, Trichoptera (EPT) taxa 
richness, and richness-weighted mean tolerance of organisms 
at a site were used to describe invertebrate responses. Percent-
age of urban land cover was used as a basin-level predictor 
variable. Regional mean precipitation, air temperature, and 
antecedent agriculture were used as region-level predictor 
variables. Multilevel hierarchical models were fit to both 
levels of data simultaneously, borrowing statistical strength 
from the complete dataset to reduce uncertainty in regional 
coefficient estimates. Additionally, whereas non-hierarchical 
regressions were only able to show differing relations between 
invertebrate responses and urban intensity separately for each 
region, the multilevel hierarchical regressions were able to 
explain and quantify those differences within a single model. 
In this way, this modeling approach directly establishes the 
importance of antecedent agricultural conditions in masking 
the response of invertebrates to urbanization in metropolitan 
regions such as Milwaukee–Green Bay, Wisconsin; Denver, 
Colorado; and Dallas–Fort Worth, Texas. Also, these models 
show that regions with high precipitation, such as Atlanta, 
Georgia; Birmingham, Alabama; and Portland, Oregon, 
start out with better regional background conditions of 

invertebrates prior to urbanization but experience faster 
negative rates of change with urbanization. Ultimately, this 
urbanization-invertebrate response example is used to detail 
the multilevel hierarchical construction methodology, showing 
how the result is a set of models that are both statistically more 
rigorous and ecologically more interpretable than simple linear 
regression models.

Introduction
Stream ecosystems are increasingly affected by urban 

development associated with human population growth 
(Booth and Jackson, 1997; Paul and Meyer, 2001; Walsh 
and others, 2001; Tate and others, 2005; Walsh and others, 
2005). Deforestation destroys riparian buffer zones and leads 
to declines in canopy cover, changes in energy inputs, and 
increases in water temperatures (Waite and Carpenter, 2000; 
Jacobson, 2001; Sprague and others, 2006). Residential and 
industrial development introduces human waste, pesticides, 
and industrial chemicals into the water and sediment (Hall 
and Anderson, 1988; Pitt and others, 1995; Van Metre and 
others, 2000; Mahler and others, 2005; Gilliom and others, 
2006). Impervious surfaces reduce rainfall infiltration, 
increase surface runoff, and alter the frequency and magnitude 
of peak and base flows (Klein, 1979; Poff and others, 1997; 
U.S. Environmental Protection Agency, 1997; Finkenbine and 
others, 2000; Konrad and Booth, 2002; McMahon and others, 
2003; Roy and others, 2005). Altering the hydrology changes 
channel morphology, degrades aquatic habitats (Winterbourn 
and Townsend, 1991), and increases sedimentation rates 
(Wolman and Schick, 1967; Trimble, 1997; Sponseller and 
others, 2001; Roy and others, 2003b). Changes in land cover, 
hydrology, and impervious surface also affect stream tempera-
ture (Sinokrot and Stefan, 1993; LeBlanc and others, 1997; 
Paul and Meyer, 2001). Collectively, these and other changes 
in the physical and chemical environment have been associ-
ated with degraded invertebrate assemblages in many urban 
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areas (Klein, 1979; Jones and Clark, 1987; Schueler and Galli, 
1992; Lenat and Crawford, 1994; Yoder and Rankin, 1996; 
Horner and others, 1997; Kemp and Spotila, 1997; Kennen, 
1999; Yoder and others, 1999; Beasley and Kneale, 2002; 
Huryn and others, 2002; Kennen and Ayers, 2002; Morley and 
Karr, 2002; Morse and others, 2003; Ourso and Frenzel, 2003; 
Roy and others, 2003a; Vølstad and others, 2003; Fitzpatrick 
and others, 2004; Brown and Vivas, 2005).

In 1999, the U.S. Geological Survey (USGS) initiated 
a series of urban stream studies (Effects of Urbanization on 
Stream Ecosystems, EUSE) as part of the National Water-
Quality Assessment (NAWQA) Program. The EUSE studies 
are based on a common study design (McMahon and Cuffney, 
2000; Coles and others, 2004; Cuffney and others, 2005; Tate 
and others, 2005) and consistent measures of urban intensity 
(Cuffney and Falcone, 2008) and sample-collection and 
processing methods (Fitzpatrick and others, 1998; Moulton 
and others, 2002). Nine major metropolitan regions—Boston, 
MA (BOS); Raleigh, NC (RAL); Atlanta, GA (ATL); Birming-
ham, AL (BIR); Milwaukee–Green Bay, WI (MGB); Denver, 
CO (DEN); Dallas–Fort Worth, TX (DFW); Salt Lake City, 
UT (SLC); and Portland, OR (POR) (fig. 1)—were chosen to 
represent the effects of urbanization in regions of the country 
that differ in potential natural vegetation, air temperature, 
precipitation, basin relief, elevation, and basin slope (table 1). 
Each metropolitan region represents a geographically exten-
sive region that includes numerous cities and towns in addition 
to the one for which it is named. EUSE studies have been used 
to describe the effects of urbanization on fish (Brown and 
others, 2009), benthic macroinvertebrates (Cuffney and others, 
in press), algae (Coles and others, 2009), habitat (Faith A. 
Fitzpatrick, U.S. Geological Survey, written commun., 2009), 
and water chemistry (Sprague and others, 2007). 

Purpose and Scope

The purpose of this report is to develop and document an 
innovative multilevel hierarchical modeling framework that 
can be used to describe the response of benthic macroinverte-
brates to urbanization (percentage of basin area in developed 
land, URB) and climatic factors (precipitation and air 
temperature) within and across the nine metropolitan regions 
that are included in the EUSE studies. The scope of benthic 
invertebrate response is limited to four assemblage metrics: 
nonmetric multidimensional scaling first axis ordination 
basin scores (NMDS1), total taxa richness (RICH), combined 
richness of Ephemeroptera, Plecoptera, and Trichoptera 
(EPTRICH), and richness-weighted mean tolerance of taxa at 
a basin (RICHTOL). The derivation of the models developed 
in this study involves:
1. Description and analysis of the selected response vari-

ables along with the considered predictor variables,

2. Description of the methodology used to develop and 
assess the multilevel hierarchical models linking inverte-
brate assemblage responses to URB, precipitation, and  
air temperature,

3. Development of multilevel hierarchical models that 
combine both local (basin) and regional variables within 
the model structure to predict the response of invertebrate 
assemblages to increased urbanization,

4. Assessment of interactions between urbanization,  
climate, and the condition of stream benthic  
invertebrate assemblages,

Figure 1. Locations of the nine metropolitan regions for which benthic macroinvertebrate 
responses to urbanization were modeled. [White circles indicate East regions; black circles 
indicate Central regions (high antecedent agriculture); white diamonds indicate West regions]
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5. Comparison of the results generated by the different 
models and the metrics used to characterize invertebrate 
responses, and

6. Identification of the main constraints associated with the 
modeling methodology, selected computational execution 
techniques, and model formulation.

The multilevel hierarchical models described in this 
report link invertebrate responses to urbanization and impor-
tant climate parameters (precipitation and air temperature) 
within each metropolitan region while simultaneously explain-
ing differences in the rates at which invertebrate assemblages 
respond to urbanization across the nine metropolitan regions. 
These models, in combination with the four invertebrate 
response metrics, are used to identify appropriate predictor 
variables and invertebrate metrics for describing changes in 
the condition of the invertebrate assemblages. Demonstration 
of the utility of the multilevel hierarchical models will serve as 
a template for modeling the response of other biological indi-
cators (fish and algal assemblages) to increased urbanization.

This report does not incorporate a thorough analysis of all 
possible region-level influences. The selection of invertebrate 
response and environmental variables was guided by previous 
analysis (Cuffney and others, in press). Of all EUSE data col-
lected, it is possible that there are other region-level variables 
(such as chemical concentrations, elevations, and many more) 
that account for differences between regions in intercept and 
slope. The focus of this report project is the development of 
analytical statistical methodology and does not incorporate a 
thorough scientific analysis to determine all possible factors 
at which scales affect species composition, abundance, and 
richness in stream ecosystems. The ecological community 
effects predicted from urbanization indicators are broad and 
hard to generalize. Because there are many different species 
of macroinvertebrates, all potentially affected by different 
influences, finding predictor variables that apply to the entire 

aquatic assemblage is challenging. The goal of this research 
effort is to introduce a new way of looking at urbanization-
effects modeling data, to explain why this modeling approach 
makes sense in this context, to show exactly how to fit these 
types of models (including providing R code in the Appendix), 
and to demonstrate how to interpret the results ecologically. 
Ultimately, the multilevel hierarchical models can be used  
to describe and quantify ecologically relevant relations  
and can become a useful tool for ecological data analysis  
and interpretation.

Methods

The nine urban studies were conducted using a common 
study design (McMahon and Cuffney 2000; Coles and others 
2004; Cuffney and others 2005; Tate and others 2005) that 
used nationally available Geographic Information System 
(GIS) variables (Falcone and others 2007) to define a popula-
tion of candidate basins (typically basins drained by second to 
third order streams) from which 28–30 basins were selected 
to represent a gradient of urbanization within each region. 
Local and national GIS variables that represented the natural 
environmental setting (for example, ecoregion, climate, 
elevation, stream size) were used to minimize the effects of 
environmental variability by dividing candidate basins into 
groups with relatively homogenous environmental features. 
Urban intensity was defined for each candidate basin by com-
bining housing density, percentage of basin area in developed 
land cover, and road density into an index (metropolitan area 
national urban intensity index, MA-NUII) scaled to range 
from 0 (little or no urban) to 100 (maximum urban) within 
each metropolitan region (Cuffney and Falcone, 2008). Once 
groups of basins with relatively homogeneous environmental 
features were defined, 28–30 basins were selected to represent 
the gradient of urbanization in each metropolitan region. 

Table 1. Major environmental characteristics of the nine metropolitan regions. 

[%, percentage; °C, degrees Celsius; cm, centimeter; MA-NUII, metropolitan area national urban intensity index]

Metropolitan region
Antecedent 

agricultural land 
covera (%)

Mean annual 
air temperature 

(°C)

Mean annual  
precipitation  

(cm)

Number of  
candidate  

basins

Number of basins 
in EUSE study

Atlanta, GA (ATL) 17.4 16.3 133.5 116 30
Birmingham, AL (BIR) 15.0 16.0 146.8 854 28
Boston, MA (BOS) 10.3 8.7 123.2 76 30
Denver, CO (DEN) 88.0 9.2 43 204 28
Dallas–Fort Worth, TX (DFW) 81.7 18.3 104.2 166 28
Milwaukee–Green Bay, WI (MGB) 79.4 7.6 85.5 56 30
Portland, OR (POR) 16.9 10.8 152.8 148 28
Raleigh, NC (RAL) 24.4 14.9 119.2 871 30
Salt Lake City, UT (SLC) 12.2 9.7 68 9 30

a Antecedent agricultural land cover combines row crop and grazing lands at candidate basins with MA-NUII ≤ 10.
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This spatially distributed sampling network was intended 
to represent changes in urbanization through time (that is, 
substitute space for time).

Conditions in each basin were verified by field reconnais-
sance. If conditions in a basin deviated substantially from what 
was expected, based on the GIS data (for example, substantial 
new development that was not present on the GIS coverage), 
or if a sampling reach (150-meter [m] stream section at the 
outflow of the basin) was disturbed by local-scale effects (for 
example, channelization, road or building construction), an 
alternate basin from the same group or a group with similar 
natural environmental characteristics was selected to represent 
the same level of urban intensity. The BOS, BIR, and SLC 
metropolitan regions were studied during 1999–2000; ATL, 
DEN, and RAL were studied during 2002–2003; and DFW, 
MGB, and POR were studied during 2003–2004. Details of 
the study designs are discussed in Coles and others (2004), 
Cuffney and others (2005), and Tate and others (2005). 

The SLC design differed from the other metropolitan 
regions in that many of the basins were nested, one within 
another. This modification was necessary because of the 
small number of streams that are present in SLC and was 
only possible because urban development in the SLC basins 
has progressed upstream over time, which ensures that urban 
intensity increases downstream. The SLC landscape character-
izations were restricted to the portions of the basins that were 
located in the Central Basin and Range ecoregion (Omernik, 
1987). Portions in the Wasatch and Uinta Mountains ecoregion 
were excluded because no urban development has occurred in 
this area, and the biology and geomorphology of the streams 
in this ecoregion are different from the Central Basin and 
Range ecoregion. Large reservoirs in DEN constituted major 
discontinuities that effectively isolated the upper and lower 
portions of many of the candidate basins. Consequently, 
landscape characterizations in DEN were restricted to the 
portions of the basins that were below the major reservoirs.

Data Collection

All data used in this modeling effort were collected as 
part of the EUSE studies. Of all measured EUSE variables, 
this report specifically includes analysis of only benthic 
macroinvertebrate data, land-cover data, and climate data. 

Benthic Macroinvertebrate Data
The NAWQA Program sampling protocols were used to 

collect benthic macroinvertebrates over a 1–4 week period 
during summer low base flows (Cuffney and others [1993] 
was used for BOS, BIR, and SLC; Moulton and others [2002] 
was used for ATL, DEN, DFW, MGB, POR, and RAL). Five 
quantitative richest targeted habitat (RTH) samples were 
collected from five riffles in each sampling reach using a Slack 
Sampler (1.25 square meters [m2] total area sampled) except 
in ATL, DFW, and one SLC basin (Kays Creek at Layton, 

UT) where woody snags were sampled (1.4 m2 mean snag 
area sampled) because riffles were not available. Samples 
were preserved in 10-percent buffered formalin and sent to 
the USGS National Water Quality Laboratory in Denver, CO, 
for taxa identification and enumeration (Moulton and others, 
2000). The USGS Invertebrate Data Analysis System (IDAS; 
Cuffney, 2003) was used to resolve taxonomic ambiguities and 
calculate assemblage metrics and diversity measures. Ambigu-
ous taxa (Cuffney, 2003) were resolved independently for 
each metropolitan region by distributing ambiguous parents 
among children (DPAC-Ck) for quantitative samples and 
deleting ambiguous parents (RPKC-C) for qualitative samples. 
These options have been shown to be suitable for analyzing 
responses along urban gradients (Cuffney and others, 2007). 
Invertebrate attribute data (tolerances and functional groups) 
were optimized for four regions of the country—mid-Atlantic 
(BOS), southeast (ATL, BIR, RAL, DFW), midwest (MGB), 
and northwest (DEN, SLC, POR) on the basis of the attributes 
compiled by Cuffney (2003). Quantitative richest targeted 
habitat data (RTH) were converted to densities (number per 
square meter) prior to resolving ambiguous taxa and calculat-
ing assemblage metrics.

Land-Cover Data
Land-cover data for ATL, BOS, BIR, RAL, and SLC 

were based on the National Land Cover Data 2001 (NLCD01) 
dataset (U.S. Geological Survey, 2005). Land-cover data for 
POR were derived (Falcone and others, 2007) by using the 
NLCD01 class structure to process data from the National 
Oceanic and Atmospheric Administration (NOAA) Coastal 
Change Analysis Program (National Oceanic and Atmospheric 
Administration, 2005). NOAA land-cover classes were 
recoded to match the NLCD01 classes. Land-cover data for 
DEN, DFW, and MGB were derived using identical methods 
and protocols as the NLCD01 program (Falcone and Pearson, 
2006). The 16 NLCD01 land-cover classes (U.S. Geological 
Survey, 2005) were aggregated into eight Anderson Level I 
classes. For example, “deciduous forest,” “evergreen forest,” 
and “mixed forest” were aggregated into “forest” (Anderson 
and others, 1976) because the broader Level I classes were 
deemed to be more reliable than the Level II classes (Falcone 
and others, 2007).

Climate Data
Mean monthly precipitation (in centimeters) and air 

temperature (in degrees Celsius) were derived for each of the 
candidate drainage basins on the basis of 1-kilometer (km) 
resolution (Daymet, 2005) model data. These data represented 
18-year (1980–1997) temperature and precipitation means 
obtained from terrain-adjusted daily climatological observa-
tions (Falcone and others, 2007). Region-level mean annual 
temperature and mean annual precipitation were obtained by 
averaging the annual temperature and annual precipitation for 
the candidate basins in each metropolitan region.
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Data Summary

The dataset for the EUSE studies includes variables that 
characterize the biological, chemical, and physical conditions 
of 261 basins located in nine metropolitan regions. In this 
section, the variables that were analyzed are discussed, 
including six urbanization indicators that delineate census 
and infrastructure, four assemblage metrics of benthic 
macroinvertebrates, six land-cover variables, two climate 
parameters (ambient air temperature and precipitation), along 
with two fragmentation and one basin size variables. These 
variables were grouped into four main categories: (1) urban-
ization measures, (2) macroinvertebrate response variables, 
(3) land-cover types, and (4) scale-dependent variables. In 
addition to summarizing the characteristics of the variables of 
primary concern, this section spans preliminary analyses, such 
as simple regressions of these variables, to offer a rationale for 
the methodology selected and variables incorporated in further 
analysis using multilevel hierarchical regression models.

Urbanization Measures

The process of urbanization is a complex, multidimen-
sional, and dynamic process that is difficult to quantitatively 
define. As such, it is often hard to identify a suitable indicator 
that is capable of adequately characterizing the degree of 
urban development in a region. Several studies have used 
impervious surface area to represent urban gradients and their 
effects on stream biota. The degree of imperviousness was 
shown to affect the stream ecosystem by altering the hydrol-
ogy and geomorphology of the stream. More frequent and 
larger floods, increased peak flows (and reduced base flow), 
and an acceleration of bed and bank erosion were observed 
to occur with increases in impervious surfaces (Klein, 1979; 
Schueler, 1994; Finkenbine and others, 2000; Walsh and 
others, 2001; Morse and others, 2003). However, Karr and 
Chu (2000) showed that imperviousness was not capable of 
explaining other crucial influences of urbanization, such as 
loss of the riparian cover. 

Recent studies (Morley and Karr, 2002; Alberti and oth-
ers, 2007; Horwitz and others, 2008) have used the percentage 
of urban area in a basin to determine urbanization effects on 
stream ecology, while others have tried to use population 
density (Jones and Clark, 1987), building density, and paved 
road density (Bolstad and Swank, 1997) to describe the effects 
of urbanization on the condition of stream biota. Given the 
heterogeneity of urbanization processes and the diversity of 
background conditions at each site, finding a single urbaniza-
tion surrogate that clearly correlates with effects on aquatic 
systems is challenging. The EUSE studies addressed this chal-
lenge by combining the percentage of developed land in the 
basin with road density and housing unit density to develop 
indices that describe urban intensity (Cuffney and Falcone, 
2008). These indices were scaled to represent urbanization in 
each metropolitan region (metropolitan area national urban 

intensity index, MA-NUII) as well as nationally (national 
urban intensity index, NUII). The NUII scaling compensates 
for differences in the rates at which the urbanization variables 
change among metropolitan regions as a function of popula-
tion density. That is, the NUII accounts for the effects of basin 
and regional scales on the measurement of urban intensity, 
whereas the MA-NUII does not. 

In this study, six potential urbanization measures were 
analyzed: national urban intensity index (NUII), percentage 
of urban area (URB), densities of housing units (HU), popula-
tion density (POP), road density (RD), and percentage of 
impervious surface area (IS). The NUII represents the degree 
of urbanization across all nine metropolitan regions with a 
value of zero describing non-urban areas and 100 representing 
fully urbanized areas. Figure 2 presents box plots of the six 
urbanization measures that were analyzed for each of the 
nine regions. The figure clearly shows that SLC exhibited the 
strongest intensity of urban development, while DFW showed 
the lowest mean values of urbanization. 

The six urbanization measures are highly correlated 
(table 2; fig. 3), so a single measure was used to describe the 
level of urbanization. Percentage of urban area (fig. 2B) was 
selected as the candidate urbanization surrogate because it has 
the broadest coverage along the urban intensity gradient, and it 
is easy to monitor and simple to portray to urban planners and 
decisionmakers. Even though the NUII integrates the other 
five measures of urbanization, either directly (URB, HU, RD) 
or indirectly through high correlation with URB (r = 0.93 for 
URB and IS; r = 0.95 for POP and URB), NUII was not used 
to represent urban intensity because the scaling of this index 
already incorporates the multilevel (basin and region) effects 
that are the objective of multilevel hierarchical regression.

Macroinvertebrate Response Variables
In this report, benthic macroinvertebrate community 

metrics were used to represent the response of stream biota 
to urban stressors. Macroinvertebrates are omnipresent in 
streams and show wider variety as compared to fish. Macro-
invertebrates also tend to better integrate conditions over time 
due to their relative immobility (Lammert and Allan, 1999). 
Several metrics describing macroinvertebrate assemblages 
were analyzed in comparison with a full range of human 
disturbances represented by urban gradients across the nine 
defined regions and their corresponding basins. 

Previous analyses have indicated that richness metrics 
are more reliable indicators of urbanization than abundance 
metrics (Cuffney and others, in press). As such, two richness 
metrics, total taxa richness (RICH) and EPT taxa richness 
(EPTRICH), are included as response variables in the current 
study. Both RICH and EPTRICH are commonly used mac-
roinvertebrate parameters (Wallace and others, 1996). RICH 
measures the number of taxa of macroinvertebrates found in 
a sample, while EPTRICH measures the number of taxa in 
the orders Ephemeroptera (mayflies), Plecoptera (stoneflies), 
and Trichoptera (caddisflies) found in a sample (Barbour and 
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Figure 2. Box plots of urbanization measures: (A) NUII, national urban intensity index; (B) URB, percent urban area; (C) HU, housing 
unit density; (D) POP, population density; (E) RD, road density; (F) IS, percent impervious surface area in the drainage basin. A horizontal 
dashed line represents the overall mean value across the nine regions.
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Table 2. Spearman rank correlation coefficients for urbanization measures. 

[NUII, national urban intensity index; URB, percent urban area in the drainage basin; HU, density of housing units; POP, 
population density; RD, road density; IS, mean percent impervious surface in the drainage basin]

NUII URB HU POP RD IS

NUII 1.00

URB 0.97 1.00

HU 0.97 0.94 1.00

POP 0.97 0.94 0.99 1.00

RD 0.97 0.94 0.94 0.95 1.00

IS 0.97 0.96 0.96 0.96 0.95 1.00

Figure 3. Histograms and scatterplots of urbanization measures. [NUII, national urban intensity index; URB, percent 
urban area; HU, housing unit density (units/km2); POP, population density (people/km2); RD, road density (km of road/km2); 
IS, percent impervious surface area in the drainage basin] 
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others, 1999). The number of taxa, both RICH and EPTRICH, 
tends to decrease as the condition of the aquatic system 
degrades (Barbour and others, 1999). Although both metrics 
tend to decrease as perturbation proceeds, EPTRICH has been 
known to be more useful than RICH in terms of evaluating 
water quality, as EPT insect orders are not only indicative 
of stream disturbances, but also easy to identify and apply 
(Wallace and others, 1996). Although all mayfly, stonefly, 
and caddisfly species are found in streams under various 
conditions, they are likely to be most abundant in clean waters 
often with high levels of dissolved oxygen. Thus, increasing 
EPTRICH is indicative of increasing diversity of intolerant 
macroinvertebrate species, which suggests healthier aquatic 
environments. In a previous study, Roy and others (2003b) 
examined 30 basins in the Etowah River basin in Georgia. 
They found that RICH ranged between 21 and 62 with a 
mean value of 43, while EPTRICH ranged between 3 and 31 
with a mean value of 16. The current EUSE study showed 

comparable results with regard to taxa richness, whereby 
RICH ranged between 17 and 60 with a mean value of 32 
(fig. 4B), and EPTRICH ranged between 0 and 26 with a 
mean value of 8 (fig. 4C). Results from this study also 
showed that richness, particularly EPTRICH, was strongly 
affected by urbanization.

In addition to the richness measures, a multivariate and 
a tolerance measure were examined as response variables. 
First axis ordination sample scores (NMDS1), a multivariate 
measure, were derived using nonmetric multidimensional 
scaling (NMDS; Clarke and Gorley, 2001) of quantitative 
richest targeted habitat (RTH) invertebrate samples. Separate 
ordination analyses were conducted for each metropolitan 
region using fourth-root transformed abundance data and 
Bray-Curtis similarities. First axis site scores (NMDS1) 
were used to represent responses to urbanization as this axis 
was most closely associated with changes in urban intensity. 
NMDS is a data reduction technique that locates sites along 

Figure 4. Box plots of macroinvertebrate response variables: (A) NMDS1 (first axis adjusted nonmetric multidimensional scaling 
site score), (B) RICH (total taxa richness), (C) EPTRICH (combined richness of Ephemeroptera, Plecoptera, and Trichoptera orders), 
(D) RICHTOL (richness-weighted tolerance). A horizontal dashed line represents the overall mean value across the nine regions.
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axes that represent latent variables. That is, the process of 
ordination condenses information found in measures of 
species abundance into hypothetical variables (ordination 
axes) that utilize the correlation structure within the dataset to 
convey the same amount of information using fewer variables. 
The positions of sites along the axis are proportional to the 
similarity among the assemblages with sites with similar 
assemblages located close to one another and sites with 
dissimilar assemblages located far apart. While the relative 
positions of sites along the axes are important, the actual 
site scores are relatively arbitrary, that is, how they relate 
(increase or decrease) to an explanatory variable (URB) is 
immaterial unless the response can be tied to a known biologi-
cal response, such as EPTRICH (decreases with increasing 
urbanization). Consequently, the NMDS1 scores were adjusted 
by either subtracting each value from the maximum score, if 
the scores decreased with decreasing EPTRICH, or subtracting 
the minimum score from each value, if the scores increased 
with decreasing EPTRICH (Cuffney and others, 2005). This 
rescaling produced adjusted NMDS1 scores that decreased 
as EPTRICH decreased and ranged from a maximum value 
at minimum urban intensity to zero at maximum urban 
intensity without affecting the relations among sites or the 
range of scores in each region. The resulting first axis adjusted 
ordination score (NMDS1) can be interpreted as a measure of 
“ecological distance” in species composition between sample 
basins. Basins with similar macroinvertebrate populations 
have similar NMDS1 values while basins with different 
species have dissimilar NMDS1 values. High NMDS1 values 
correlate with high EPT taxa richness and vice versa. Ordina-
tion plots (axes 1 and 2) were also examined for outliers 
that might obscure the structure of the data. One such outlier 
(station 41365910437001, Bear Creek above Little Bear Creek 
near Phillips, WY) was removed from the Denver dataset. 
This basin was large (459 km2) with very little developed land 
(< 2% of basin area) that was not comparable to other basins. 
Subsequent ordination analyses and modeling efforts excluded 
this site. NMDS1 ranged between 0 and 3.8 (fig. 4A), with 
higher ordination scores representing more dissimilar aquatic 
assemblages across the sample basins. 

Furthermore, a tolerance measure, richness-based 
tolerance (RICHTOL), was selected as a macroinvertebrate 
response variable (Barbour and others, 1999; Cuffney, 2003; 
North Carolina Department of Environment and Natural 
Resources, 2006). RICHTOL reflects the richness-weighted 
mean tolerance of taxa found at a sampled basin. The calcu-
lated RICHTOL metric for each basin is derived based on the 
tolerance values that were reported by the U.S. Environmental 
Protection Agency (U.S. Environmental Protection Agency, 
1997; Barbour and others, 1999) and North Carolina Depart-
ment of Environment and Natural Resources (NCDENR) 
(2006). Invertebrate tolerances are scaled from 0 to 10 
(fig. 4D) with the most intolerant species receiving a score 
of 0 and the most tolerant assigned a score of 10. RICHTOL 
behaves differently from the other response variables 
(NMDS1, EPTRICH, and RICH) in response to increasing 

disturbance. While NMDS1, EPTRICH, and RICH are 
expected to decrease with increased urbanization, RICHTOL 
is expected to increase (fig. 5; table 3) as fragile species are 
lost in favor of more hardy macroinvertebrates that are able to 
persist in disturbed environments.

EPTRICH shows strong correlations (r = 0.67 – 0.73 
in absolute values) with the other response variables when 
all nine regions are combined (table 3), which is expected 
because EPTRICH shares certain attributes with the other 
variables: EPTRICH is a subset of RICH, it was used as a 
reference to calibrate NMDS1 values, and both EPTRICH and 
RICHTOL represent tolerance differences among groups of 
macroinvertebrates. In contrast, RICH, NMDS1, and RICH-
TOL exhibit moderate correlations (0.36 – 0.56 in absolute 
values) with each other (table 3). Because of regional differ-
ences affecting invertebrate response, correlations between 
invertebrate metrics are even greater within regions.

Land-Cover Types
Land-cover data from the National Land Cover Dataset 

2001 (NLCD01) were reclassified into six main types (Falcone 
and Pearson, 2006d): urban (NLCD2), agriculture (NLCD7 
and NLCD8), forest (NLCD4 and NLCD5), water (NLCD1), 
wetlands (NLCD9), and barren (NLCD3). Each land-cover 
type is expressed as a percentage of the total basin area. The 
NLCD01 reclassification was conducted by redefining the 
agricultural areas as those that include croplands, pastures, and 
grasslands, while the forest class was reclassified to include 
both forests and shrub lands. The focus in this study is on 
analyzing the effects that urbanization and agricultural land 
cover have on the stream macroinvertebrate communities. 
The decision to include agriculture alongside urbanization as 
a predictor of stream ecosystem health stems from previous 
studies that have shown that agricultural practices destabilize 
stream banks, affect flow regimes, increase temperature, and 
impair ambient water quality (Lenat and Crawford, 1994; 
Richards and Host, 1994; Roth and others, 1996; Wichert 
and Rapport, 1998; Walser and Bart, 1999; Wang and others, 
2000; Booth and others, 2002). Current agricultural land 
cover is greater in the Midwest (DEN, DFW, and MGB) than 
in the East and West (ATL, BIR, BOS, POR, RAL, and STL; 
fig. 6). Forest land cover is not used in the current analysis as 
it is highly correlated (negatively) with the sum of urban and 
agricultural land coverage, as expected both from the logic of 
land-use patterns and from the use of percentage data, which 
sums to 100 for each basin. 

Diverse types of land cover, including cropland, pastures, 
and forests, have been developed into urban landscapes 
(McDonnell and Pickett, 1990; Booth and Jackson, 1997). A 
number of findings indicate decisive contribution of past land-
use activity to the health of terrestrial or aquatic ecosystems 
(Moscrip and Montgomery, 1997; Foster and others, 2003). 
Specifically, Harding and others (1998) found cumulative 
degradation of aquatic diversity caused by long-term past 
agricultural activities, irrespective of mitigation efforts. 
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Table 3. Spearman rank correlation coefficients for macroinvertebrate response 
variables. 

[NMDS1, first axis adjusted nonmetric multidimensional scaling site score; RICH, total taxa richness; 
EPTRICH, combined richness of Ephemeroptera, Plecoptera, and Trichoptera orders; RICHTOL, richness-
weighted tolerance]

NMDS1 RICH EPTRICH RICHTOL

NMDS1 1.00

RICH 0.56 1.00

EPTRICH 0.67 0.69 1.00

RICHTOL –0.54 –0.36 –0.73 1.00

Figure 5. Histograms and scatterplots of macroinvertebrate response variables. [NMDS1, first axis adjusted 
nonmetric multidimensional scaling site score; RICH, total taxa richness; EPTRICH, combined richness of 
Ephemeroptera, Plecoptera, and Trichoptera orders; RICHTOL, richness-weighted tolerance]  
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To investigate the effects of previous land use, the 
degree of agricultural land present in each region prior to 
urbanization was estimated. This antecedent agriculture 
(AG) was determined by calculating the mean percentage of 
basin area in NLCD classes 7 (grasslands) and 8 (crop and 
pasture lands) for non-urbanized basins (MA-NUII ≤ 10) in 
each metropolitan region. Grasslands were included in the 
estimation of antecedent agriculture because these areas are 
used extensively for livestock grazing. AG was calculated 
from the complete population of candidate basins from which 
the 28–30 study basins were selected. This approach provided 
a more extensive characterization of antecedent agricultural 
condition though the AG values obtained this way were very 
similar to AG calculated from the study basins only. MA-NUII 
was used to define non-urbanized basins because it is the index 
upon which the urbanization gradients are defined in each 
metropolitan region. Performing these calculations is a way 
to describe past agricultural activity in these regions in the 
absence of readily available past records of land cover prior 
to urbanization. This approach follows the work of Fitzpatrick 
and others (2004) who also used spatial variability to substi-
tute for temporal changes. In this approach, mean agricultural 
land-cover data in non-urbanized basins at each region are 
extracted and used as a surrogate for representing conditions 
prior to the onset of urbanization. As a result of this calcula-
tion (table 4; fig. 7), the nine study regions can be divided 
into two main categories: regions with agriculture-dominated 
antecedent land cover (DEN, DFW, and MGB) and regions 
with non-agriculture-dominant antecedent land cover (mainly 
forested lands; ATL, BIR, BOS, POR, RAL, and STL). These 
AG categories mirror patterns of current agricultural land 
cover (fig. 6).

Scale-Dependent Variables

It is well known that physical processes operating at 
different spatial scales result in varied responses of stream 
ecosystems. Nonetheless, most previous studies address 
neither the scaling issues nor the multilevel hierarchical nature 
of the problem at hand. Moreover, previous studies circumvent 
the issue of scale by separating the effects at the region and 
basin levels from the effects at the local, riparian buffer level 
(Hunsaker and Levine, 1995; Lammert and Allan, 1999; 
Morley and Karr, 2002; Strayer and others, 2003; Cuffney and 
others, 2005; Alberti and others, 2007). In the current study, an 
attempt was made to incorporate basin-level predictors with 
spatially larger scale (region level) variables in order to pres-
ent a more thorough multiscale explanation of macroinverte-
brate responses to urbanization and agricultural disturbances. 

Basin Scale
In addition to the percentage of urban land cover at the 

basin level, several other basin-level variables were examined 
as plausible candidates for improving understanding of the 
response of stream ecosystems to the effects of increased 
urbanization at the basin level. Basin size has been used in 
several previous studies on the subject, whereby the size 
of a basin has been shown to affect the stream response by 
changing the physical environment of the stream (Johnson 
and others, 1995; Strayer and others, 2003). Nevertheless, 
basin size has been shown to be a poor predictor of macroin-
vertebrate assemblage variability (Morley and Karr, 2002). 
In the current study, basin size is not an important parameter 
to include in the models given that the design of the EUSE 

Figure 6. Box plot of the percentage of current agriculture (NLCD7 and NLCD8) in each region. 
[A horizontal dashed line represents the overall mean value across the nine regions]

80

60

40

20

0

SL
C

RA
L

PO
R

M
GB

DF
W

DE
N

BO
S

BI
R

AT
L

P
E

R
C

E
N

T 
A

G
R

IC
U

LT
U

R
E

 (N
LC

D
7 

+ 
N

LC
D

8)

Outlier more than 1.5 times
  interquartile range

EXPLANATION

Most extreme data point, which
  is no more than 1.5 times
  interquartile range

Most extreme data point, which
  is no more than 1.5 times
  interquartile range

75th percentile

25th percentile

Median



12  Multilevel Hierarchical Modeling of Benthic Macroinvertebrates to Urbanization in Nine Metropolitan Regions

Table 4. Antecedent agriculture (AG)a of each region for non-urbanized 
basins.

[UCL, upper 95% confidence limit; LCL, lower 95% confidence limit; N, number of sample 
basins; MA-NUII, metropolitan area national urban intensity index]

UCL LCL Mean N

ATL 19.5 15.4 17.4 116

BIR 16.0 14.1 15.0 854

BOS 11.7 9.0 10.3 76

DEN 90.9 85.1 88.0 204

DFW 82.8 80.5 81.7 166

MGB 81.4 77.2 79.3 56

POR 18.2 15.5 16.9 148

RAL 25.3 23.5 24.4 871

SLC 19.8 4.6 12.2 9
a AG, mean percentage of basin area in NLCD classes 7 (grasslands) and 8 (crop and 

pasture lands) (MA-NUII ≤ 10) in each metropolitan region.

Figure 7. Estimates of the percentage of antecedent agriculture (AG) in each region. [AG is 
NLCD7 and NLCD8 for basins with metropolitan area national urban intensity index (MA-NUII)  
< 10 (N=9 to 871). A horizontal dashed line represents the overall mean value across the  
nine regions]
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study controlled for basin size by 
selecting basins in the nine regions 
that have relatively homogeneous 
environmental settings, including 
stream size (fig. 8). 

Additional basin-scale 
variables that were considered 
for this study include land-cover 
fragmentation variables, such 
as patch density, largest patch 
index, and mean patch area. The 
land-cover fragmentation variables 
that showed strong correlations 
with macroinvertebrate responses 
also were strongly correlated with 
other basin-scale measures of land 
cover, such as percentage of basin 
area in developed land. Therefore, 
land-cover fragmentation variables 
are not included in the models. 

Regional Scale
Three regional scale 

parameters are considered as 
suitable surrogates for regional scale processes that may 
affect the response of macroinvertebrate communities to 
increased urbanization. These parameters include ambient 
air temperature, annual precipitation, and percentage of 
antecedent agricultural land cover (as discussed in a previous 
section). Both mean annual precipitation (fig. 9A) and mean 
annual ambient air temperature (fig. 9B) differ among the nine 
regions as the within-region variances are smaller than the 
between-region variances. As expected, annual precipitations 

are higher in coastal regions (ATL, BIR, BOS, POR, and 
RAL), whereas annual temperatures are higher in southern 
regions (ATL, BIR, DFW, and RAL). The variations in 
precipitation and temperature between regions may define 
and govern the patterns and structure of stream ecosystems 
at the regional scale by affecting the macroinvertebrates 
communities (different communities prefer different ambient 
conditions) along with the riparian and basin vegetation (forest 
as opposed to grass and shrub lands), energy inputs, channel 
shading, water temperatures, water chemistry, and hydrology. 

Figure 8. Box plot of drainage basin area in each region. [A horizontal dashed line represents 
the overall mean value across the nine regions] 

Figure 9. Box plots of (A) mean annual precipitation and (B) mean annual ambient air temperature for the period from 1980 to 1997 in 
each region. [A horizontal dashed line represents the overall mean value across the nine regions] 
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Specifically, temperature is known to have a role in determin-
ing large-scale distributions of invertebrates independent of 
urbanization (Sweeney and Vannote, 1978), and the movement 
of precipitation through the ecosystem is known to be affected 
by urbanization (Walsh and others, 2005). However, at the 
regional scale, an annual mean temperature metric averaged 
over annual temporal variation may result in a less accurate 
description of regional climate differences relative to a 
cumulative precipitation metric. 

Technique: Multilevel Hierarchical Models

A multilevel hierarchical model is a statistical modeling 
approach that allows the simultaneous analysis of hierarchi-
cally structured data, for example, data collected at multiple 
spatial scales, such as basin-level land cover and region-level 
precipitation. Higher-level variables can be derived indepen-
dently or by aggregating properties of lower-level variables 
(for example, averaging air temperatures at basins within 
a region to obtain region-level mean temperature). Unlike 
commonly used linear models, multilevel hierarchical models 
provide a natural framework in which to examine relations 
between response variables and explanatory variables that 
have a hierarchical arrangement. In other words, multilevel 
hierarchical models can be used to identify the effects of 
group-level variables on individual level outcomes. Multilevel 
hierarchical models are more statistically efficient than con-
ventional regression models, which must use dummy variables 
and interactions terms in multiple linear or generalized linear 
regression models in order to represent multi-tiered effects.

Without multilevel hierarchical model capabilities, 
regression parameters for multiple groups of similar data can 
be calculated assuming all groups are different (unpooled) 
or all groups are the same (completely pooled). Group-level 
parameters in multilevel hierarchical models, however, are 
calculated by partially pooling estimates from only the group 
of interest (unpooled—separate analyses of each region) 
with estimates from the entire dataset across all groups 
(completely pooled—analyses for all regions combined). Both 
component estimates are weighted by group sample size and 
variation within and between groups (regions). For instance, 
the multilevel hierarchical mean estimate for a given group 
(region) j is estimated as follows (Gelman and Hill, 2006):

2 2

2 2

1

ˆ ,
1

j
j all

ymultilevel
j

j

y

n
y y

n




 


 

+

≈
+

where
 

 ˆ multilevel
j  is the partially pooled, multilevel hierarchical 

mean estimate for group (region) j,
 jy  is the unpooled mean from group (region) j,
 ally  is the completely pooled mean for all 

groups (regions),
 jn  is the sample size of group (region) j,
 2

y  is the within-group (region) variance, and 
 2

  is the between-group (region) variance.

In this way, partially pooled mean estimates experience 
shrinkage toward the completely pooled mean. That is, relative 
to unpooled means, partially pooled mean estimates are 
weighted toward the overall completely pooled mean. Level 
of shrinkage depends on sample size relative to within- and 
between-group variance. The multilevel hierarchical mean 
estimate ˆ multilevel

j  is close to the complete pooling mean (that 
is, greater shrinkage) when the region-level variation  
( )2

y  and sample size ( )jn  are small, whereas the estimate 
is close to a no-pooling mean (that is, less shrinkage) when 
between-region variance ( )2

  and sample size are large. This 
means that, unlike classical regression models, multilevel 
hierarchical regression models can estimate model parameters 
even when sample sizes in some groups are very low. This is 
accomplished by borrowing strength from completely pooled 
estimates to reduce high variance in unpooled estimates 
from small sized groups. When there is high certainty in a 
group-level estimate, however, due to a large sample and large 
differences between groups, multilevel model estimates do not 
vary greatly from unpooled group estimates.

The multilevel hierarchical model framework can be 
illustrated by assuming that 30 basin-level samples of an 
ecological response (ECO) and urban condition (URB) are 
measured in each of three regions (A, B, and C). The three 

(1)
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Figure 10. Multilevel hierarchical modeling framework without group-level predictors. Within each region (A, B, C), ecological 
response (ECO) is modeled as a linear function of urban land cover (URB) as shown in eq. 5 where ECO is yij and URB is xij. Across 
regions, basin-level intercepts (red) and slopes (blue) for regions A, B, and C are modeled jointly as a bivariate normal distribution 
with a constant mean vector as defined by eq. 6 and depicted marginally for (D) intercept and (E) slope. 
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sets of basin-level data can each be modeled such that ECO 
response is a linear function of URB predictor within each 
region (figs. 10A–C). However, instead of modeling the 
three regions separately as three independent regressions, a 
multilevel hierarchical model can be constructed by constrain-
ing model parameters to be part of a higher tier region-level 
distribution of parameters. Conceptually, the three intercepts 
for Region A, B, and C regressions are not independent but 
belong to a distribution of intercepts (fig. 10D). Similarly, the 
three slopes for Region A, B, and C regressions belong to a 
distribution of slopes (fig. 10E). Statistically, intercept and 
slope variability is represented by a joint bivariate normal 
distribution that accounts for the correlation between intercept 
and slope. Figure 10 shows only the univariate distribution of 
intercept at mean slope (fig. 10D) and the univariate distribu-
tion of slope at mean intercept (fig. 10E). If there are no 
region-level variables available to explain differences between 
regions, then the distribution of intercepts and slopes would 
be centered on a constant mean pair. This model structure can 
be represented statistically as follows. At the basin level, the 
following three distributions describe the top three graphs 
(figs. 10A–C): 

2
=A =AN( x ,  ),  for  = 1,..., 30 samplesij j j ij yy i  +

2
=B =BN( ,  ),  for  = 1,..., 30 samplesij j j ij yy x i  +

2
=C =CN( ,  ),  for  = 1,..., 30 samples,ij j j ij yy x i  +

where
 i is the basin index,
 j is the region index,
 ijx  is the urban predictor variable, URB 

(basin level),
 ijy  is the ecological response variable, ECO 

(basin level),
 Aj =  is the estimated intercept for the Region A 

regression (region level),
 Bj =  is the estimated intercept for the Region B 

regression (region level),
 Cj =  is the estimated intercept for the Region C 

regression (region level),
 Aj =  is the estimated slope for the Region A 

regression (region level),
 Bj =  is the estimated slope for the Region B 

regression (region level),
 Cj =  is the estimated slope for the Region C 

regression (region level), and 

 
2
y  is the within-region variance in ecological 

response.

This also can be written in a compressed form as:

2N( ,  ),  for  = 1,..., 30 samples 

and =A, B, C regions,
ij j j ij yy x i

j

  +

where the index j is used to represent the three different 
regional slopes and intercepts.

At the region level, the following distribution describes 
the bottom two graphs (figs. 10D, E):
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where
 j  is the estimated intercept for the Region j 

regression (region level);
 j  is the estimated slope for the Region j 

regression (region level);
 µα  is the mean of region-level intercepts, 

=A =B =C,  ,  and ;j j j  

 µβ  is the mean of region-level slopes, 
=A =B =C,  ,  and ;j j j  

 2
  is between-region variance in intercept;

 2
  is between-region variance in slope; and

   is correlation of model coefficients αj and βj. 

This model indicates that the three regional intercepts and 
three regional slopes are random draws from a bivariate nor-
mal distribution of intercepts and slopes where intercepts are 
centered on µα  and slopes are centered on µβ .

In addition to just being able to represent different groups 
as related at a higher tier, a greater strength of the multilevel 
model structure is the ability to actually explain differences 
between these groups by incorporating a group-level predictor 
variable. If such region-level (group-level) information is 
available, intercepts and slopes can be modeled as a function 
of a region-level variable (figs. 11D, E). In this case, the 
means of the joint distribution are not constant as discussed 
above but change depending on the value of the region-level 
variable. Ideally, higher region-level intercepts can be 
attributed to higher values of region-level variables (such as 
Region A) and low intercepts to low values of region-level 
variables (such as Region B). This would imply a relation 
between the region-level variable and ecological response 
at zero urbanization (intercept); for example, baseline 
ecological response could be higher for regions with more 
precipitation. Intercepts and slopes can each be modeled with 
a different region-level variable or variables within the same 
model structure. 

(4)

(3)

(2)

(5)

(6)
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Figure 11. Multilevel hierarchical modeling framework with group-level predictors. Within each region (A, B, C), ecological 
response (ECO) is modeled as a linear function of urban land cover (URB) as shown in eq. 5 where ECO is yij and URB is xij. Across 
regions, intercepts (red) and slopes (blue) for regions A, B, and C are modeled jointly as a function of one or more group-level 
predictor(s) at the regional level as defined by eq. 7 and depicted marginally for (D) intercept and (E) slope.
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The basin-level model structure for a hierarchical 
multilevel model incorporating region-level variables is 
statistically identical to the basin-level model structure shown 
above for a model without region-level variables. At the region 
level, however, the following distribution describes the bottom 
two graphs in Figure 11D and E instead:

2
0 1

20 1

   ,  ,
   

for =A, B, C regions,  

j j

j j

G
N G

j

    
     

    
     

  +        +        


where
 j  is the estimated intercept for the Region j 

regression (region level),
 j  is the estimated slope for the Region j 

regression (region level),
 jG  is the group/region predictor variable for the 

intercept (region level),
 jG  is the group/region predictor variable for the 

slope (region level),
 0 1 0 1,  ,  ,  and         are region-level intercepts and slopes 

describing the relation between a region-
level predictor and αj and βj,

 2
  is between-region variance in intercept,

 2
  is between-region variance in slope, and

   is correlation of model coefficients αj and βj. 

Model Structure
The multilevel hierarchical models used to analyze the 

effects of urbanization on stream benthic macroinvertebrate 
assemblages for the nine EUSE metropolitan regions 
incorporate predictor variables at two levels, basin (URB land 
cover) and region (antecedent agricultural land cover, AG; 
mean annual precipitation, PRECIP; and mean annual air 
temperature, TEMP). The combination of one basin-level and 
three region-level predictor variables produced eight models 
to evaluate (table 5). Separate models were constructed for the 
four different macroinvertebrate response indicators (NMDS1, 
RICH, EPTRICH, and RICHTOL). Two different multilevel 
hierarchical model forms, linear and Poisson, are used to 
characterize the different response variables. Linear multilevel 
hierarchical models are constructed for the continuous 
variables NMDS1 and RICHTOL, whereas Poisson general-
ized linear multilevel hierarchical models are developed for 
RICH and EPTRICH because those variables were collected 
as count variables and follow the discrete Poisson distribution. 

Table 5. Delineation of variables included in the eight multilevel hierarchical models per response variable.  

[Model structure templates are presented in the Model Structure section of the report. URB, percentage of urban area in the drainage basin; 
PRECIP, mean cumulative annual precipitation; TEMP, mean annual ambient air temperature; AG, mean percentage of basin area in row crop 
agriculture and grazing lands for non-urbanized basins (MA-NUII < 10)]

Model structure
Basin-level 

predictor
Region-level predictor(s)

Basin intercept predictor(s) Basin slope predictor(s)

Model 1 Template 1 URB none none
Model 2 Template 2 URB PRECIP PRECIP
Model 3 Template 2 URB TEMP TEMP
Model 4 Template 2 URB TEMP PRECIP
Model 5 Template 2 URB Continuous AG Continuous AG
Model 6 Template 3 URB PRECIP and Categorical AG  PRECIP and Categorical AG  
Model 7 Template 3 URB TEMP and Categorical AG  TEMP and Categorical AG  
Model 8 Template 3 URB TEMP and Categorical AG  PRECIP and Categorical AG  

(7)
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The linear multilevel hierarchal models were developed 
using the following three template structures.

Template 1. Model 1 (no region-level predictor):

2N( ,  )ij j j ij yy x  +

2

2
   ,  ,

   
j

j
N   

   

   
    

                  


where
           i=1,……, ~30 basins within each region,
           j=1,……, 9 regions,
 ijy  is basin-level ecological response of benthic 

macroinvertebrates (for NMDS1 or 
RICHTOL),

 ijx  is basin-level urban land-cover percentage 
(URB),

 j  is region-level intercept (the estimated 
invertebrate response at URB=0),

 j  is region-level slope (the estimated change in 
invertebrate response per unit change in 
URB),

 2
y  is within-region variance in invertebrate 

response,
 µα  and µβ  are means of region-level intercepts and 

slopes, respectively,

 2
  is between-region variance in intercept,

 2
  is between-region variance in slope, and

   is correlation of model coefficients. 
 
The intercept (αj) and slope (βj) are allowed to vary by 

region in order to account for the difference of urbanization 
effect among regions. Instead of region-level information on 
regional differences, intercept (αj) and slope (βj) are modeled 
as a joint bivariate normal distribution centered on a vector of 
constant means µ µα β and ( ) . The error term ( )2

y  represents 
variation within regions, including the measurement error and 
natural variation in invertebrate response metrics at a basin, 
and variation between basins beyond what is explained by 
the urbanization indicator (URB). The errors 2

  and 2
  

represent unexplained variation between regions. The term 
ρ accounts for the correlation between αj and βj, as typically 
increasing intercept is associated with decreasing slope and 
vice versa.

Template 2. Models 2–5 (one continuous variable region-level 
predictor):

( )2N ,  ij j j ij yy x  +

2
0 1
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j j
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  +        +        


where
           i=1,……, ~30 basins within each region,
           j=1,……, 9 regions,
 ijy  is basin-level ecological response of benthic 

macroinvertebrates (for NMDS1 or 
RICHTOL),

 ijx  is basin-level urban land cover percentage 
(URB),

 j  is region-level intercept (the estimated 
invertebrate response at URB=0),

 j  is region-level slope (the estimated change in 
invertebrate response per unit change in 
URB),

 2
y  is within-region variance in invertebrate 

response,
  and j jP P   are region-level conditions (such as PRECIP, 

TEMP, or AG as a percentage) predicting 
intercept and slope, respectively,

0 1 0 1,  ,  ,  and         are hyperparameter intercepts and 
slopes describing the relation between a 
region-level predictor and αj and βj,

 2
  is between-region variance in intercept,

 2
  is between-region variance in slope, and

   is correlation of model coefficients αj and βj. 
 
The intercept (αj) and slope (βj) are still allowed to 

vary by region, however, in this second template structure; 
intercept (αj) and slope (βj), are each modeled as a linear 
function of a region-level predictor. Instead of centering on 
a constant vector of means as in Model 1, in Models 2–5 
intercept (αj) and slope (βj) are modeled as a joint bivariate 
normal distribution centered on a different mean vector for 
each region. These means are predicted from the values of 
continuous variables jP  and jP  in each region. In Model 2, 

jP  = jP  = PRECIP, in Model 3, jP  = jP  = TEMP, in 
Model 4, jP  = TEMP and jP  = PRECIP, and in Model 5, 

jP  = jP  = AG (continuous form). The error term 2
y  still 

represents variation within regions. The errors 2
  and 2

  in 
Models 2–5 represent variation between regions, beyond what 
is explained by the region-level predictors. The term ρ again 
accounts for the correlation between αj and βj.

(11)
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AG percentages for the nine regions take on values 
either <30% or >70%. Therefore, AG can also be represented 
categorically as either low or high. This categorical AG vari-
able can be incorporated into the model structure as follows:

Template 3. Models 6–8 (two region-level predictors: one 
continuous variable and one categorical variable):

( )2N ,  ij j j ij yy x  +
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where
           i=1,……, ~30 basins within each region,
           j=1,……, 9 regions, 
          k=0 for low levels of AG and k=1 for high levels of AG,
 ijy  is basin-level ecological response of benthic 

macroinvertebrates (for NMDS1 or 
RICHTOL),

 ijx  is basin-level urban land cover percentage 
(URB),

 j  is region-level intercept (the estimated 
invertebrate response at URB=0),

 j  is region-level slope (the estimated change in 
invertebrate response per unit change  
in URB),

 2
y  is within-region variance in invertebrate 

response,
  and j jP P   are region-level conditions (such as PRECIP 

or TEMP) predicting intercept and slope, 
respectively,

0 1 0 1,  ,  ,  and         are hyperparameter intercepts and 
slopes describing the relation between a 
region-level predictor and αj and βj,

  and j j    are effects of region on intercept and slope, 
respectively,

  and k k    are effects of AG group on intercept and 
slope, respectively,

 2
j  is between-region variance of the regional 

effect on intercept,
 2

j  is between-region variance of the regional 
effect on slope,

 j  is correlation of model coefficients j  
and j ,

 2
k  is between-AG group variance of the AG 

effect on intercept,
 2

k  is between-AG group variance of the AG 
effect on slope, and

 k  is correlation of model coefficients k  
and k .

In this third template, intercept (αj) and slope (βj) vary 
by region and by AG category (low or high). The intercept 
(αj) and slope (βj) are again modeled as a joint bivariate 
normal distribution centered on a different mean vector for 
each region-AG group combination. Intercept and slope are 
predicted from the sum of a linear regression with continuous 
variables jP  and jP , a region effect term and an AG effect 
term. In Model 6, jP  = jP  = PRECIP, in Model 7, jP  
= jP  = TEMP, and in Model 8, jP  = TEMP and jP  = 
PRECIP. The region-varying components of the intercept and 
slope, j  and j , respectively, are modeled as a bivariate 
normal distribution with the prior centered on zero, and with 

2
j  and 2

j  accounting for between-region variance of 
the regional effect on intercept and slope, respectively. The 
AG-varying components of the intercept and slope, k  and 

k , respectively, are also modeled as a bivariate normal 
distribution with the prior centered on zero, and with 2

k  and 
2

k  accounting for between-AG group variance of the AG 
effect on intercept and slope, respectively. The error term 2

y  
still represents variation within regions. Finally, the terms j  
and k  account for the correlation between regional effects 
on slope and intercept and AG effects on slope and intercept, 
respectively.

In this template, the influence of AG is modeled as a 
grouping factor. But because there are only two AG groups, it 
may not be the most appropriate model structure to evaluate 
using the lmer fitting function (Gelman and Hill, 2006). 
Model structure may be computationally appropriate as 
well as more intuitively interpretable if the influence of AG 
in modeled as a numeric predictor instead of as a grouping 
factor. This alternate model structure could incorporate both 
continuous and categorical regional predictors in the following 
manner (representing the effect of AG, in R output terminol-
ogy, as a “fixed” effect rather than a “random” effect as in the 
structure above):

( )2N ,  ij j j ij yy x  +

where
           i=1,……, ~30 basins within each region,
           j=1,……, 9 regions, 
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 ijy  is basin-level ecological response of benthic 
macroinvertebrates (for NMDS1 or 
RICHTOL),

 ijx  is basin-level urban land cover percentage 
(URB),

 j  is region-level intercept (the estimated 
invertebrate response at URB=0),

 j  is region-level slope (the estimated change 
in invertebrate response per unit change  
in URB),

 2
y  is within-region variance in invertebrate 

response,
  and j jP P   are region-level conditions (such as PRECIP 

or TEMP) predicting intercept and slope, 
respectively,

0 1 0 1,  ,  ,  and         are hyperparameter intercepts and 
slopes describing the relation between a 
region-level predictor and αj and βj,

  and AG AG    are effects of AG predictor on 
hyperparameter intercept and slope, 
respectively

 AG is 0 for high AG values and 1 for low AG 
values,

 2
  is between-region-and-AG-group variance 

in intercepts around their mean, 
0 1 j AGP     + + ,

 2
  is between-region-and-AG-group 

variance in slopes around their mean, 
0 1 j AGP     + + , and

   is correlation of model coefficients αj and βj.

However, this reparameterization shows no significant 
difference on model results and conclusions, likely because of 
the large difference between AG groups, a difference which 
is explained by the model regardless of specific parameteriza-
tion. Therefore, the first model Template 3 parameterization is 
utilized in this report.

These three template structures are modified to accom-
modate the count response variables of RICH and EPTRICH 
by fitting a basin-level Poisson-distributed generalized linear 
model with a log link function in place of the basin-level 
normally-distributed linear model used for NMDS1 and 
RICHTOL. The normal distribution for yij in each of the three 
templates is replaced by the following equations:

( )Poissonij ijy 

log ,e ij j j ijx  = +

where
           i=1,……, ~30 basins within each region,
           j=1,……, 9 regions, 
 ijy  is basin-level ecological response of 

benthic macroinvertebrates (for RICH or 
EPTRICH),

 ijx  is basin-level urban land cover percentage 
(URB),

 j  is region-level intercept (the estimated 
invertebrate response at URB=0),

 j  is region-level slope (the estimated change in 
invertebrate response per unit change in 
URB), and

 ij  is the Poisson distribution parameter specific 
to a basin within a region.

Thus, the ecological count response variable yij is 
modeled as Poisson distributed around parameter ij , the 
logarithm of which is a linear function of xij. This amended 
model structure adjusts the skewness of the count data distri-
butions as well as prevents negative predicted values. There 
is no variance parameter for the Poisson basin-level models 
because Poisson distribution variance equals the distribution 
mean and, therefore, changes as the mean changes (as opposed 
to normal distribution variance which is modeled as a constant 

2
y  at the basin level for NMDS1 and RICHTOL response 

variables). The regression coefficient αj now represents the log 
of the mean ecological response at URB=0, and the regression 
coefficient βj now represents the expected change in the log of 
the mean ecological response per unit change in the predictor 
xij. The region-level tier of the Poisson multilevel hierarchical 
models remain the same as the region-level tier of the linear 
multilevel hierarchical models. 

These multilevel hierarchical models, thus, provide a 
systematic structure to fit the individual measurements and 
to account for variation among the nine regions. Based on 
the above model frameworks, the multilevel hierarchical 
models are developed in eight steps by adding environmental 
predictors at the individual and region levels. All models 
are compared to a model using no region-level predictors 
(Model 1). PRECIP and TEMP are used as continuous region-
level predictors alone (Models 2 and 3) or in combination 
(Model 4). Antecedent agriculture (AG) is used as a continu-
ous region-level predictor alone (Model 5) or as a categorical 
variable in addition to a PRECIP or TEMP predictor to further 
divide regions into groups of high and low antecedent agri-
culture land cover (Models 6, 7, and 8). Interaction between 
group-level variables is not included in the models.

Model Fitting
Linear and Poisson multilevel hierarchical models are 

fit using the functions lmer (linear mixed-effect model) and 
glmer (generalized linear mixed-effect model), respectively, 
from the lme4 package in R statistical program, version 2.7.1, 
released on June 23, 2008 (R 2008). The lmer and glmer 
functions use the sparse matrix and Laplace approximation 
methods to estimate the crossed random effects, which are 
reflected in the model parameters. Model coefficient estimates 
are calculated by fitting all coefficients simultaneously to basin 
and region level data and reporting the maximum likelihood 
estimate of each coefficient. The lmer and glmer functions 
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are expected to be robust and resilient in dealing with various 
types of model structure and data because of the advanced 
algorithms incorporated in these functions.

Hierarchical model output is created and translated into 
coefficients as described below, using Model 2 as an example. 
An lmer model output object is created using the following 
code in R:

> M2 <- lmer(ECO ~ URB + PRECIP + 
URB:PRECIP + (1+URB|REGION)

The desired basin-level response variable (ECO) is modeled as 
a function of the basin-level predictor (URB), the region-level 
predictor (PRECIP), and the interaction between URB and 
PRECIP. The final term of the model allows basin-level inter-
cept (as indicated in the code by ‘1’) and slope (as indicated 
in the code by ‘URB’) to change between regions (REGION). 
This model code will produce output coefficients for each 
regional regression equation in the following format: 

ECO = c0 + c1*URB + c2*PRECIP + c3*URB*PRECIP 

These coefficients from R output can be rearranged as follows 
to show the desired basin-level linear regression predicting 
ECO from URB, including the effect of precipitation:

ECO = (c0 + c2*PRECIP) + (c1 + c3*PRECIP)*URB

Then, Model 2 intercept, 

αj = c0 + c2*PRECIP 

And Model 2 slope with URB, 

βj = c1 + c3*PRECIP 

Intercepts and slopes are calculated this way for each region. 
This calculation procedure applies to intercept and slope coef-
ficients for Models 2–5. Model 1 has no region-level predictor 
term and, therefore, coefficients are simply c0 for intercept 
and c1 for slope.

Models 6–8 add a second categorical predictor. Using 
Model 6 as an example, an lmer model output object is 
created using the following code in R:

> M6 <- lmer(ECO ~ URB + PRECIP + 
URB:PRECIP +(1+URB|REGION)+(1+URB|AG)

The desired basin-level response variable (ECO) is modeled as 
a function of the basin-level predictor (URB), the region-level 
continuous predictor (PRECIP), and the interaction between 
URB and PRECIP. The (1+URB|REGION) term of the model 
allows basin-level intercept (1) and slope (URB) to change 
between regions (REG) and the (1+URB|AG) term allows 
basin-level intercept (1) and slope (URB) to change between 
the two antecedent agriculture groups. This model code will 

produce output coefficients for each regional regression equa-
tion in the following format:

ECO = c0 + c1*URB + c2*PRECIP + c3*URB*PRECIP

where coefficients are changing not only by region but also by 
AG group.

Rearranging again into:

ECO = (c0 + c2*PRECIP) + (c1 + c3*PRECIP)*URB

this time c0 is composed of c0_mean + c0_REG +c0_AG, 
and c1 is composed of c1_mean + c1_REG +c1_AG. The R 
syntax calls c0_mean a “fixed effect” and c0_REG and c0_AG 
“random effects,” although the terms fixed and random are 
relative. Then, Model 6 intercept,

αj = c0_mean + c0_REG +c0_AG + c2*PRECIP 

And Model 2 slope with URB,

βj = c1_mean + c1_REG +c1_AG + c3*PRECIP 

Intercepts and slopes are calculated this way for each region. 
This calculation procedure applies to intercept and slope coef-
ficients for Models 6–8. 

If Models 6–8 are parameterized with the influence of AG 
as a numeric predictor instead of as a grouping factor, R code 
would look like the following:

> M6.2 <- lmer(ECO ~ URB + PRECIP + AG + 
URB:PRECIP + URB:AG +(1+URB|REGION)

where the desired basin-level response variable (ECO) is mod-
eled directly as a function of the basin-level predictor (URB), 
the region-level continuous predictor (PRECIP), the interac-
tion between URB and PRECIP, and the region-level categori-
cal predictor (AG), and the interaction between URB and 
AG. Here, the (1+URB|REGION) term of the model allows 
basin-level intercept (1) and slope (URB) to change between 
regions (REG), but this time the intercept and slope estimates 
incorporate both PRECIP and AG effects directly. R output 
now reports coefficients in the format:

ECO = c0 + c1*URB + c2*PRECIP + c3*URB*PRECIP 
+c4*AG +c5*URB*AG

where AG effect coefficients are now reported directly in 
output as “fixed effects.”

Rearranging into regional slope-intercept form, 

ECO = (c0 + c2*PRECIP + c4*AG) + (c1 + c3*PRECIP 
+c5*AG)*URB (29)
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Model 6.2 intercept can then be calculated directly from “fixed 
effects” by 

αj = c0 + c2*PRECIP + c4*AG

And Model 6.2 slope with URB,

 βj = c1 + c3*PRECIP + c5*AG

Again, constructing models in R in this way (M6.2) results in 
nearly identical conclusions to models constructed as M6 code 
above and, therefore, M6 format analysis is reported for all 
Models 6–8 in this report.

Model results are summarized graphically by plotting 
each set of nine αj estimates and nine βj estimates against 
their respective region-level predictor variable values. 
Average trend lines (eqs 11 and 13) are drawn using 0  
and 1  coefficients as the region-level intercept and slope, 
respectively, predicting αj estimates from region-level predic-
tor (for example, PRECIP), and 0  and 1  coefficients as 
the region-level intercept and slope, respectively, predicting βj 
estimates from region-level predictor. Error bars representing 
one standard deviation are drawn on each αj and βj estimate 
(see Appendix for detailed R code).

A Deviance Information Criterion (DIC) is used for 
evaluating and comparing the eight multilevel hierarchical 
models for each response variable. This criterion has been 
developed specifically for comparing hierarchical multilevel 
model results. It quantitatively evaluates a model by balancing 
better fitness to the data with less complexity of the model 
structure. Lower DIC values indicate better model fit.  
DIC cannot be compared between response variables, as it  
is a relative and not absolute measure (Spiegelhalter and 
others, 2002).

Model Limitations
This preliminary analysis uses the R command lmer 

(and its generalized linear corollary, glmer) to calculate 
multilevel hierarchical model results. To conserve computa-
tional power, this command reports only the peaks of posterior 
distributions of the coefficients and does not use prior distribu-
tions. Even though the updated version of R (R–2.7.1; released 
on June 23, 2008) improves the performance of hierarchical 
multilevel regression models by offering more robust and 
flexible algorithms, several drawbacks were discovered to 
using the lmer and glmer functions to approximate a fully 
Bayesian analysis. 

For example, the lmer and glmer functions occasion-
ally produce errors due to difficult matrix inversions and 
then do not converge on parameter estimates. One possible 
cause of such errors is that certain constraints on estimated 
variance-covariance matrix—which is positive-definite and 
symmetric—might be violated. This type of error can possibly 
be resolved by centering the predictor or by increasing the 
number of groups in the grouping factor. However, these 
solutions cannot be applied in the current study because 

the centering transformation restricts interpretability of the 
regression plots along the predictor-axis. Also, increasing the 
number of groups in the categorical agricultural predictor is 
not an option because AG is distributed only at high and low 
values. More importantly, regardless of whether the error is 
resolved or not, the reliability of resultant coefficients as well 
as variance components cannot be confirmed because the 
running algorithms of glmer (and lmer) are not accessible 
at the R user level. Thus, introducing Bayesian inference using 
WinBugs appears to be necessary in further studies in order 
to more explicitly comprehend the factors of uncertainty in 
model parameters. Using the lmer and glmer functions in 
primary analysis enabled quicker running of simple introduc-
tory models to choose initial responding variables and easily 
plot results.

In order to work around the problem of convergence, 
decimal fractions for URB (fraction urban land cover) are 
used instead of percentages during model fitting, and all other 
variables are used in their natural scale. The only remaining 
questionable results involve RICH Models 6 and 7, where, 
when parameterized in this manner, variance between high 
and low AG groups is calculated to be zero. However, non-
zero variance calculation can be coerced by using URB as 
a percentage, not a fraction, and standardizing precipitation 
as PRECIP divided by two standard deviations of PRECIP. 
Neither method gives overt errors in R, but it is not clear 
which method produces better estimates. Philosophically, it is 
unacceptable for model convergence on estimates of intercept, 
slope, and variance parameters to depend on variable scaling. 
These different results are likely due to variations in numerical 
approximation algorithms causing the reporting of different 
results for different variable scales. This is a potential problem 
for any estimates not calculated analytically. In the current 
study, the method using fractional URB to be consistent with 
the parameterization of the rest of the models is shown.  
A potential parameterization to try to solve this problem  
may involve fitting models with AG as a direct categorical 
regression variable instead of a group divider as it is  
currently modeled.

Alternately, the convergence problems may be exacer-
bated by the effect of the small number of groups involved 
in this analysis (nine for precipitation, temperature, and 
percentage of antecedent agriculture and two for categorical 
antecedent agriculture) on the numerical estimation algorithm. 
For small groups, the lmer function does not estimate vari-
ance well and, hence, is unable to converge on posterior peaks 
of coefficients. An algorithm with more flexible computations 
is required to ensure accurate calculation of model parameters. 
In addition to causing computational problems, small group 
sample size statistically leads to low confidence and high 
uncertainty in region-level predictors.

Finally, as mentioned above, lmer does not allow the 
incorporation of prior information into the model specification; 
therefore, models solved with lmer are not fully Bayesian. 
Solutions calculated by lmer essentially are identical to those 
calculated by using a Markov Chain Monte Carlo (MCMC) 
method using non-informative prior distributions. For the 
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purposes of this report, prior information is not yet available 
for parameters that are being estimated; however, once the 
information becomes available, a different analysis method 
will need to be used in order to incorporate prior information. 
Relative to fully Bayesian approaches, it is not clear exactly 
how lmer is calculating model estimates. Distributions and 
parameters are not defined explicitly nor is it evident how 
model format accounts for all variables and interrelations. For 
all these reasons, in subsequent post-preliminary analyses, 
multilevel hierarchical analysis on the EUSE dataset should 
be performed using WInBUGS software, a program designed 
to implement MCMC simulation analysis to the solution of 
Bayesian systems and problems.

Predicting and Understanding Effects 
of Urbanization 

Prior to conducting multilevel hierarchal modeling, land 
cover data was explored to understand trends associated with 
agricultural land use as the impacts of this use may confound 
or compound impacts of urbanization. Subsequently, multi-
level hierarchal model results are presented and interpreted.

Preliminary Land Cover Analysis

In this study, the nine regions can be divided into 
currently agriculture-dominant (DEN, DFW, and MGB) and 
non-agriculture-dominant (ATL, BIR, BOS, POR, RAL, and 
STL) groups (fig. 6). These two groups divided by current 
agricultural practices match those established for previous 
AG practices (fig. 7). Generally, urbanization appears to have 
greater negative effects in the non-agriculture-dominant group 
as evidenced by significant, negative slopes for unpooled 
regressions of ecological response across URB only for ATL, 
BIR, BOS, POR, RAL, and STL (table 6). Despite the known 
assumption that agricultural activities degrade stream ecosys-
tems, unpooled linear regression slopes did not show a clear 
pattern of decrease in ecological response with increasing 
agricultural land cover (table 7). In fact, NMDS1, RICH, and 
EPTRICH tend to increase (have positive slope) and RICH-
TOL tends to decrease (have negative slope) with increasing 
agricultural land cover in the majority of regions, although 
interpreting regression coefficients across agricultural land 
cover may not be appropriate because of the limited range of 
agricultural land cover in many of the regions (fig. 6). 

In the non-agriculture-dominant group, these results can 
be attributed to the distribution of the percentage of forest 

Table 6. Summary of unpooled regressions between URB (percent urban land cover) and invertebrate response 
variables based on 243 equivalent degrees of freedom. 

[For NMDS1 and RICHTOL, simple linear regression was used, and for RICH and EPTRICH, simple Poisson regression was used; * indi-
cates values significant at P<0.05; ** indicates values significant at P<0.001. NMDS1, first axis adjusted nonmetric multidimensional scal-
ing site score; RICH, total taxa richness; EPTRICH, combined richness of Ephemeroptera, Plecoptera, and Trichoptera orders; RICHTOL, 
richness-weighted mean tolerance of taxa at a basin]

Response Region Intercept Slope Response Region Intercept Slope

NMDS1 ATL 2.814**  –0.030** RICH ATL 3.792**   –0.006**
BIR 2.418**  –0.023** BIR 3.578**   –0.003*
BOS 2.557**  –0.036** BOS 3.938**   –0.015**
DEN 0.822**   0.005 DEN 3.504**   –0.002
DFW 2.120**  –0.010* DFW 3.500**   –0.002
MGB 1.886**  –0.007* MGB 3.452**   –0.003*
POR 2.685**  –0.018** POR 3.473**   –0.002*
RAL 2.908**  –0.021** RAL 3.644**   –0.005**
SLC 2.495**  –0.018** SLC 3.712**   –0.006**

EPTRICH ATL 2.753**  –0.019** RICHTOL ATL 5.221**    0.018**
BIR 2.654**  –0.015** BIR 4.555**    0.021**
BOS 3.044**  –0.028** BOS 4.048**    0.031**
DEN 1.803**   0.000 DEN 6.033**    0.002
DFW 1.924**  –0.003 DFW 6.937**   –0.001
MGB 1.992**  –0.006* MGB 5.360**    0.004
POR 2.548**  –0.017** POR 4.367**    0.020**
RAL 2.489**  –0.016** RAL 5.144**    0.016**
SLC 2.834**  –0.018** SLC 3.931**    0.028**
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associated with the corresponding percentage of agriculture 
(fig. 12); that is, in ATL, BIR, BOS, and RAL, responses are 
likely to increase with increasing percentage of agriculture 
(table 7), not because agricultural practices yield positive 
effects on invertebrate communities, but more convincingly 
because percentage of agriculture is positively related to 
percentage of forest (fig. 12, ATL, BIR, BOS, and RAL 
graphs), whereas it is negatively associated with urbanization 
(fig. 13, ATL, BIR, BOS, and RAL graphs). Conversely, 
in POR and SLC, invertebrate communities show mostly 
insignificant responses to increasing percentage of agriculture 
(table 7), because there is more variation in the relations 
between percentage of agriculture and forest and urban land 
cover (figs. 12 and 13, POR and SLC graphs). 

In contrast to the non-agriculture-dominant group, 
the agriculture-dominant group generally involves small 
percentages of forest (fig. 12); thus, agricultural land cover is 
nearly the inverse of urban land cover (fig. 13). The noticeable 
common feature in this agriculture-dominant group is that the 
assemblage metrics already reach low levels (or high levels 
in the case of RICHTOL) at the low range of both the urban 
and agricultural gradients (see intercepts in tables 6 and 7); 
accordingly, the rate of change in the responses along the 
gradients are relatively small or not detectable (see slopes in 
tables 6 and 7). However, in this group, low percentages of 
agriculture (or high urbanization) correspond consistently to 
the low levels of response, while high percentages of agricul-
ture (or low urbanization) correspond to more variability in the 
responses (fig. 14), agreeing with results of previous studies 
(Wang and others, 2000). 

Table 7. Summary of regressions between percentage of agriculture land-cover (NLDC7 and NLDC8) and 
invertebrate response variables based on 243 equivalent degrees of freedom. 

[For NMDS1 and RICHTOL, simple linear regression was used, and for RICH and EPTRICH, simple Poisson regression was used;  
* indicates values significant at P<0.05; ** indicates values significant at P<0.001. NMDS1, first axis adjusted nonmetric multidimensional 
scaling site score; RICH, total taxa richness; EPTRICH, combined richness of Ephemeroptera, Plecoptera, and Trichoptera orders; RICH-
TOL, richness-weighted mean tolerance of taxa at a basin]

Response Region Intercept Slope Response Region Intercept Slope

NMDS1 ATL 1.020**    0.049** RICH ATL 3.352**   0.014**
BIR 0.850**    0.054** BIR 3.391**   0.006
BOS 0.444    0.185** BOS 3.200**   0.060**
DEN 1.340**   –0.006 DEN 3.354**   0.001
DFW 1.240**    0.011* DFW 3.383**   0.001
MGB 1.402**    0.005 MGB 3.198**   0.002*
POR 2.309**   –0.010 POR 3.461**  –0.002
RAL 1.113**    0.056** RAL 3.205**   0.014**
SLC 1.359**    0.012 SLC 3.345**   0.004

EPTRICH ATL 1.672**    0.031** RICHTOL ATL 6.334**  –0.033*
BIR 1.708**    0.031** BIR 5.988**  –0.049**
BOS 1.759**    0.106** BOS 5.852**  –0.158**
DEN 1.795**    0.000 DEN 6.142**  –0.001
DFW 1.705**    0.002 DFW 6.785**   0.002
MGB 1.539**    0.004 MGB 5.512**  –0.001
POR 2.434**   –0.015** POR 4.715**   0.013
RAL 1.230**    0.039** RAL 6.472**  –0.041**
SLC 1.908**   –0.004 SLC 5.713**  –0.013
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Figure 12. Scatterplots of the percentage of agriculture (NLCD7 and NLCD8) compared to the percentage of forest (NLCD4 
and NLCD5) for each region.
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Figure 13. Scatterplots of the percentage of urban (NLCD2) compared to the percentage of agriculture (NLCD7 and NLCD8) 
for each region. [The filled squares represent the basins where percent forest (NLCD4 and NLCD5) is less than or equal to 33, 
the triangles represent the basins where percent forest (NLCD4 and NLCD5) is between 33 and 67, and the crosses represent 
the basins where percent forest (NLCD4 and NLCD5) is greater than or equal to 67]
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Figure 14. Scatterplots of the percentage of agriculture (NLCD7 and NLCD8) compared to macroinvertebrate response 
variables (NMDS1, RICH, EPTRICH, and RICHTOL) for agriculture-dominant regions.
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Model Summary (Model Results)

Eight different multilevel hierarchical models of the form 
described in the Methods section, with varying region-level 
intercept and slope predictors, are fit to NMDS1, RICH, 
EPTRICH, and RICHTOL data from nine different regions. 
Deviance information criteria (DIC) are calculated (table 8) as 
a measure of goodness of fit across the eight models for each 
response variable. At the basin level, NMDS1 and RICHTOL 
models predict a continuous response from a continuous URB 
predictor using a linear regression, and RICH and EPTRICH 
models predict a discrete response from a continuous URB 
predictor using a generalized linear regression (Poisson data 
distribution with log link function). These regressions are 
defined by a set of nine region-level intercepts (αj) and nine 
slopes (βj), as well as a measure of average within-region 
variance ( )2

y  for the linear regressions. 
The region-level slopes and intercepts themselves belong 

to a higher tier distribution either centered on a constant 
pair of means (µ µα β and , Model 1), predicted from a 
linear regression with a region-level variable (Models 2–5), 

or predicted from linear regressions with two region-level 
variables (Models 6–8). Each higher tier regression is defined 
by a hyperparameter intercept predicting region-level inter-
cepts ( )0 , a hyperparameter slope predicting region-level 
intercepts ( )1 , between-region variance in intercept ( )2

 , 
a hyperparameter intercept predicting region-level slopes  
( )0 , a hyperparameter slope predicting region-level 
slopes ( )1 , and between-region variance in slope ( )2

 . For 
the two region-level variable models, an additional term (δ) 
is added to hyperparameter intercept estimates to account for 
high (k=1) or low (k=0) antecedent agriculture. (See Model 
Structure section for model templates with coefficients.) 
Region-level annual precipitation and temperature are used as 
continuous variables (Models 2–4 and 6–8) , and region-level 
antecedent agricultural percentage is used as both a continuous 
(Model 5) and categorical variable (Models 6–8). When fit in 
R using the lmer or glmer commands, all models converge 
on peak values of posterior distributions of coefficients, 
calculated numerically using maximum likelihood estimation. 
Model coefficients are presented in tables 9–20. Model graphs 
are presented in figures 15–46.

Table 8. Deviance information criteria (DIC) for the eight different multilevel hierarchical models per response variable. 

[NMDS1, first axis adjusted nonmetric multidimensional scaling site score; RICH, total taxa richness; EPTRICH, combined richness of Ephemeroptera, 
Plecoptera, and Trichoptera orders; RICHTOL, richness-weighted mean tolerance of taxa at a basin. See table 5 (p. 18) for model definitions]

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8

NMDS1 499.5 472.8 489.9 484.0 462.2 471.4 479.5 474.4
RICH 344.8 344.3 339.9 337.7 339.9 344.3 339.9 336.5
EPTRICH 356.9 351.8 356.8 353.7 334.9 345.7 347.1 345.6
RICHTOL 443.4 425.1 425.3 412.7 402.1 417.8 410.4 404.1
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Table 9. Intercept (α) and slope (β) coefficient estimates, representing background condition prior to urbanization 
and rate of change with urbanization, respectively, and variance coefficient estimates ( )2 2 2,  ,  y     for invertebrate 
response NMDS1 Model 1, unpooled model, and completely pooled model.  

[N/A, not applicable because there are no α or β distributions for the unpooled and completely pooled models. Model 1 has only higher tier 
constant mean predictors ( µ µα β and ) and no group-level predictors, unpooled model addresses each region separately, and completely 
pooled model combines all regions]

Model 1 (Partially pooled) Unpooled Completely pooled

αj βj αunpooled βunpooled
2
ys α β

ATL 2.73 –2.80 2.81 –3.07 0.159 2.32 –1.60
BIR 2.42 –2.24 2.42 –2.31 0.238
BOS 2.50 –3.03 2.56 –3.57 0.144
DEN 1.83 –0.74 1.67 –0.49 0.590
DFW 2.15 –1.09 2.12 –0.97 0.575
MGB 1.95 –0.84 1.89 –0.71 0.539
POR 2.63 –1.84 2.69 –1.84 0.442
RAL 2.76 –1.97 2.91 –2.10 0.193
SLC 2.44 –1.69 2.50 –1.76 0.384

2
y 0.360 Separate values for each j; see above 0.445

µα 2.378 N/A N/A

µβ –1.805 N/A N/A

2
 0.139 N/A N/A

2
 0.794 N/A N/A

Model 1: No Region-Level Predictor
In Model 1, each response variable is modeled hier-

archically from basin-level URB without any region-level 
predictors, allowing the intercept and slope to vary by region 
around constant means. In order to provide a benchmark for 
comparison, non-multilevel hierarchical linear regression 
models are also calculated. Completely pooled models are 
constructed by fitting a linear regression or generalized linear 
regression to data from all nine regions simultaneously while 
unpooled models are constructed by fitting a linear regression 
or generalized linear regression to each region independently. 
The results from these simple completely pooled and separate 
unpooled models are compared with Model l to understand 
how a hierarchical multilevel model bridges the gap between 
information obtained from these two modeling extremes. 

NMDS1, RICH, and EPTRICH generally decrease 
with increasing urbanization while RICHTOL increases with 
increasing urbanization. These trends support the notion that 
the expansion of urban developed area co-occurred with 
detrimental effects on macroinvertebrate assemblages. While 
complete pooling of all nine regions summarize the aggregate 
pattern of decline with urbanization for each response, 

unpooled models show that original conditions and response 
rates differ between regions.

For NMDS1, the negative trend of decreasing NMDS1 
values with increasing urban land cover in complete pooling 
of all nine regions (fig. 15, dashed line) shows substantial 
scatter (table 9, 2

y = 0.445). When each region is modeled 
separately (fig. 15, black line), the unpooled regression models 
for POR, RAL, and SLC are similar to the completely pooled 
model. The unpooled models for ATL, BIR, and BOS have 
steeper slopes than the completely pooled, and the unpooled 
slopes of DFW, MGB, and DEN are statistically not different 
from zero. That is, the urbanization effects in POR, RAL, and 
SLC are close to the nine-region average, the effects in ATL, 
BIR, and BOS are above average (NMDS1 responds more to 
increasing urbanization than average), and the effects in DFW, 
MGB, and DEN are below average (NMDS1 responds less to 
increasing urbanization than average). Additionally, baseline 
NMDS1 values at no urbanization (intercepts) for unpooled 
models in BIR, BOS, DFW, and SLC are similar to completely 
pooled un-urbanized baseline. However, ATL, POR, and RAL 
appear to have higher NMDS1 values at no urbanization than 
overall average, while DEN and MGB have lower values at no 
urbanization than average. 
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Figure 15. Scatterplots of NMDS1 compared to URB for each region with complete pooling, no pooling, and Model 1: No 
region-level predictors (eqs. 8 and 9, Template 1). [Dashed line, complete pooling; black line, no pooling; green line, Model 1 
multilevel hierarchical partial pooling. NMDS1, nonmetric multidimensional scaling first axis ordination basin scores; URB, 
percentage of basin area in developed land]
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Negative relations between RICH and percentage of 
urban land area in all nine regions (fig. 16; table 10) show 
between and within region variability, as well. Urbanization 
effects also vary among the nine regions with different 
intercepts and slope rates. The unpooled rate of change in total 

richness with urbanization appears near average (completely 
pooled) for BIR, RAL, and SLC; below average in DEN, 
DFW, MGB, and POR; and above average in ATL. BOS, 
however, stands out as showing a substantially faster degrad-
ing of RICH compared to other regions. 

Table 10. Intercept (α) and slope (β) coefficient estimates, representing background condition prior to urbanization and 
rate of change with urbanization, respectively, and variance coefficient estimates ( )2 2 2,  ,  y     for invertebrate response 
RICH Model 1, unpooled model, and completely pooled model. 

[N/A, not applicable because data variance is equal to the mean parameter (λ) in Poisson models and, therefore, changes with changing λj, 
and there are no α or β distributions for the unpooled and completely pooled models. Model 1 has only higher tier constant mean predictors 
( µ µα β and ) and no group-level predictors, unpooled model addresses each region separately, and completely pooled model combines all 
regions]

Model 1 (Partially pooled) Unpooled Completely pooled

αj βj αunpooled βunpooled
α β

ATL 3.78 –0.68 3.79 –0.62 3.62 –0.44
BIR 3.58 –0.31 3.58 –0.28
BOS 3.91 –1.26 3.94 –1.51
DEN 3.51 –0.19 3.50 –0.16
DFW 3.51 –0.19 3.50 –0.17
MGB 3.48 –0.27 3.45 –0.29
POR 3.49 –0.24 3.47 –0.24
RAL 3.64 –0.50 3.64 –0.50
SLC 3.68 –0.55 3.71 –0.59

2
y N/A N/A N/A

µα 3.618 N/A N/A

µβ –0.467 N/A N/A

2
 0.022 N/A N/A

2
 0.116 N/A N/A
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Figure 16. Scatterplots of RICH compared to URB for each region with complete pooling, no pooling, and Model 1: No 
region-level predictors (eqs. 8 and 9, Template 1). [Dashed line, complete pooling; black line, no pooling; green line, Model 1 
multilevel hierarchical partial pooling. RICH, total taxa richness; URB, percentage of basin area in developed land]
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Declining EPTRICH response to urbanization appears 
to have slightly less variability than RICH (fig. 17; table 11) 
but, again, no-pooling models reveal the varying response 
of EPTRICH among the regions to increasing urbanization. 
While the intercepts and slopes of BIR, POR, and RAL 
approximately overlay the overall averages, ATL, BOS, and 
SLC show higher intercepts and steeper slopes than overall 

averages. Conversely, DEN, DFW, and MGB show lower 
intercepts and less steep slopes than overall averages, meaning 
that EPTRICH in these regions might be already reduced prior 
to urbanization, and thus, the metric in these regions does  
not sensitively respond to increasing urbanization as in the  
other regions.

Table 11. Intercept (α) and slope (β) coefficient estimates, representing background condition prior to urbanization and 
rate of change with urbanization, respectively, and variance coefficient estimates ( )2 2 2,  ,  y     for invertebrate response 
EPTRICH Model 1, unpooled model, and completely pooled model. 

[N/A, not applicable because data variance is equal to the mean parameter (λ) in Poisson models and, therefore, changes with changing λj, and 
there are no α or β distributions for the unpooled and completely pooled models. Model 1 has only higher tier constant mean predictors 
( µ µα β and ) and no group-level predictors, unpooled model addresses each region separately, and completely pooled model combines all 
regions]

Model 1 (Partially pooled) Unpooled Completely pooled

αj βj αunpooled βunpooled
α β

ATL 2.74 –1.86 2.75 –1.92 2.48 –1.32

BIR 2.65 –1.69 2.65 –1.50
BOS 2.99 –2.35 3.04 –2.78
DEN 1.86 –0.22 1.80 –0.04
DFW 1.95 –0.41 1.92 –0.34
MGB 2.03 –0.56 1.99 –0.65
POR 2.54 –1.50 2.55 –1.65
RAL 2.50 –1.44 2.49 –1.57
SLC 2.74 –1.84 2.80 –1.80

2
y N/A N/A N/A

µα 2.442 N/A N/A

µβ –1.313 N/A N/A

2
 0.154 N/A N/A

2
 0.524 N/A N/A
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Figure 17. Scatterplots of EPTRICH compared to URB for each region with complete pooling, no pooling, and Model 1: No 
region-level predictors (eqs. 8 and 9, Template 1). [Dashed line, complete pooling; black line, no pooling; green line, Model 1 
multilevel hierarchical partial pooling. EPTRICH, combined richness of Ephemeroptera, Plecoptera, and Trichoptera orders; 
URB, percentage of basin area in developed land]
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Finally, the complete pooling of RICHTOL across all 
nine regions (fig. 18, dashed line) shows a pattern opposite 
the other three metrics. While total richness, EPT richness, 
and ordination scores scaled to EPT richness decrease with 
urbanization, richness-weighted tolerance generally increases 
with increasing urban land cover. Overall, this pattern shows 
considerable scatter (table 12, 2

y = 0.704), greater than that 
for NMDS1. Modeled individually, POR, MGB, and SLC 
have the greatest within-region variability in RICHTOL 
response to urban land cover (table 12, 2

y = 0.555, 0.389, 
0.354, respectively). The unpooled regressions (fig. 18, black 
line) match the slope of the completely pooled model fairly 
well in BIR, ATL, RAL, and POR but exhibit steeper slopes 
than the slope of the completely pooled model for BOS and 
SLC and flatter slopes than those calculated in the completely 
pooled model for MGB, DFW, and DEN. This means that 
the RICHTOL in BOS and SLC responds more drastically 
to increasing urbanization than the overall average, while in 
MGB, DFW, and DEN the rate at which RICHTOL increases 
is less affected by increases in urbanization as compared to the 
overall average. 

Multilevel hierarchical Model 1 combines data from an 
individual region with the overall trend from the nine regions 
to calculate partially pooled estimates of intercept (αj) and 
slope (βj) for each region, as well as estimates of within-region 
variance in invertebrate response ( )2

y , between-region 

variance in intercept ( )2
 , and between-region variance in 

slope ( )2
  for each of the four ecological response models. 

As in the simple linear regressions, the multilevel hierarchical 
model intercept represents the estimated value of the ecologi-
cal metric at zero urbanization, and the slope represents the 
rate of change of the ecological metric with urbanization. 
However, the difference is that multilevel hierarchical model 
estimates are calculated taking into account both the regional 
data and the overall data across all regions. These partially 
pooled αj and βj values are, therefore, shrunk toward the 
overall mean. For example, the estimated Model 1 NMDS1 αj 
value for ATL (2.73, table 9) is a partial pooling of intercept 
information from the unpooled NMDS1 ATL model (2.81, 
table 9) and intercept information from the overall completely 
pooled NMDS1 model (2.32, table 9).

By assigning multilevel hierarchical structure to the data, 
individual region estimates borrow strength from the entire 
dataset and decrease the biasing influence of group sample 
size. In this analysis, all of the nine regions have approxi-
mately equal sample sizes (28–30). Also, between-region 
variance is generally greater than within-region variance, 
meaning that the pattern of ecological response to urbanization 
varies substantially from region to region for each response 
variable. Therefore, unpooled regressions have greater weight 
than the completely pooled regression on partially pooled 
estimates. This is why, although the partially pooled multilevel 

Table 12. Intercept (α) and slope (β) coefficient estimates, representing background condition prior to urbanization and 
rate of change with urbanization, respectively, and variance coefficient estimates ( )2 2 2,  ,  y     for invertebrate response 
RICHTOL Model 1, unpooled model, and completely pooled model.  

[N/A, not applicable because there are no α or β distributions for the unpooled and completely pooled models. Model 1 has only higher tier con-
stant mean predictors ( µ µα β and ) and no group-level predictors, unpooled model addresses each region separately, and completely pooled 
model combines all regions]

Model 1 (Partially pooled) Unpooled Completely pooled

αj βj αunpooled βunpooled
2
ys α β

ATL 5.26 1.60 5.22 1.75 0.122 5.20 1.22
BIR 4.58 2.13 4.55 2.11 0.231
BOS 4.12 2.75 4.05 3.05 0.187
DEN 5.98 0.21 6.03 0.16 0.226
DFW 6.92 –0.16 6.94 –0.06 0.282
MGB 5.32 0.59 5.36 0.35 0.389
POR 4.37 2.12 4.37 1.98 0.555
RAL 5.15 1.55 5.14 1.57 0.131
SLC 4.01 2.60 3.93 2.83 0.354

2
y 0.275 Separate values for each j; see above 0.704

µα 5.079 N/A N/A

µβ 1.482 N/A N/A

2
 0.916 N/A N/A

2
 1.169 N/A N/A



Predicting and Understanding Effects of Urbanization   37

Figure 18. Scatterplots of RICHTOL compared to URB for each region with complete pooling, no pooling, and Model 1: No 
region-level predictors (eqs. 8 and 9, Template 1). [Dashed line, complete pooling; black line, no pooling; green line, Model 1 
multilevel hierarchical partial pooling. RICHTOL, richness-weighted mean tolerance of taxa at a basin; URB, percentage of 
basin area in developed land] 
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hierarchical models (figs. 15–18, green lines, for NMDS1, 
RICH, EPTRICH, and RICHTOL, respectively) technically 
lie between their respective completely pooled and separate 
unpooled regressions for each region (figs. 15–18, dashed and 
black lines, for NMDS1, RICH, EPTRICH, and RICHTOL, 
respectively), they do not appear to differ significantly from 
results obtained by separate unpooled regressions. This trend 
holds for Models 2–8 and, therefore, the visual model results 
at the basin level are not depicted for the remaining models. 
Since Model 1 imposes a higher tier distribution structure on 
the data by assuming that slopes and intercepts for the nine 
regions are drawn from the same distribution, residual vari-
ance decreases for the linear multilevel hierarchical models  
( 2

y = 0.360 and 0.275, for NMDS1 and RICHTOL, table 9 
and table 12, respectively) relative to the completely pooled 
models ( 2

y = 0.445 and 0.704, for NMDS1 and RICHTOL, 
table 9 and table 12, respectively) which has no higher tier 
structure requirement. Poisson model variance is not held 
constant by definition and, therefore, the same comparison 
cannot be made for RICH and EPTRICH.

Because it does not incorporate region-level data, 
Model 1 assumes that slopes and intercepts for regions are 
exchangeable and are drawn from the same distribution 
centered on a constant, µ. When region-level variables are 
available, however, differences in slope and intercept between 
regions are no longer random. These differences can now be 
explained by differences in region-level variable values, as 
shown below. In this way, multilevel hierarchical analysis 
incorporates data measured at different scales into the same 
model and enables multilevel hierarchical models to harness 
greater interpretive power than simple single-tier regression. 

Model 2: PRECIP Region-Level Predictor

Unlike Model 1, Models 2–8 assume that differences 
between regions in response to urbanization are not random 
but mediated by physical environmental factors. Model 2 
uses the differences in annual precipitation between the nine 
regions to account for differences in regional intercept and 
slope. Partially pooled estimates of intercept (αj) and slope 
(βj) for each region, within-region variance in invertebrate 
response ( )2

y , between-region variance in intercept 
( )2

 , and between-region variance in slope ( )2
  are again 

calculated for each of the four ecological response models. In 
addition, Model 2 estimates region-level intercepts and slopes  
( )0 1 0 1,  ,  ,  and         which describe the relation between 
the regional precipitation predictor and αj and βj. This means 
that in Model 2, 2

  and 2
  now describe variation of 

estimated intercepts and slopes around a higher tier regression 
line, instead of variation around a constant mean as in Model 
1. Incorporating a regional, explanatory variable into intercept 
and slope estimation results in better model fit for all four 
response variables, as measured by lower DIC for Model 2 
(and all subsequent Models) relative to Model 1 (table 8). 

When precipitation is included as a region-level predic-
tor, NMDS1 (fig. 19; table 13), RICH (fig. 20; table 14), and 
EPTRICH (fig. 21; table 15) intercepts increase with increas-
ing precipitation and their slopes become more negative with 
increasing precipitation. Conversely, RICHTOL intercepts 
decrease with increasing precipitation and slopes become 
more steeply positive with increasing precipitation (fig. 22; 
table 16). This finding means that precipitation affects both 
baseline pre-urbanization conditions and rate of change in 
ecological condition with urbanization. 

Because NMDS1 scores are scaled such that they 
decrease from a maximum value at minimum urban intensity 
to zero at maximum urban intensity, the intercept provides a 
measure of the approximate extent to which the assemblages  
at minimum and maximum urbanization (URB) differ. 
Regions with little precipitation have lower intercepts than 
do regions with higher precipitation (fig. 19A). Consequently, 
the amount of change that can occur over the urbanization 
gradient is lower in regions with lower precipitation. This  
finding is also reflected in the slopes (fig. 19B), which are 
higher in regions with higher precipitation and lower in 
regions with lower precipitation. That is, given a minimum 
possible low NMDS1 value of zero, higher NMDS1 starting 
values have more parameter space in which to fall. This 
correlation between intercept and slope is addressed with the  
ρ model coefficient term.

RICH and EPTRICH metrics are absolute, not scaled, 
measures of total and EPT taxa richness. Higher precipitation 
is also associated with greater total richness and greater EPT 
richness at zero urbanization, although both relations look 
considerably more scattered than NMDS1 Model 2. This 
greater initial richness results in more negative rates of change 
of richness with urbanization at high precipitation, and lower 
initial richness at low precipitation results in the opposite 
(less negative rates of change of richness with urbanization). 
RICHTOL metrics are richness weighted and defined on a 
scale of 0 to 10. However, RICHTOL values in the EUSE 
dataset range from only 4 to 7, showing that typical macroin-
vertebrate communities were neither completely tolerant nor 
completely intolerant. Following expected response direction 
of the previous three variables, higher precipitation was 
associated with lower richness-weighted tolerance and steeper 
increase in tolerance with urbanization. Similar to NMDS1, 
RICHTOL intercepts and slopes also show inverse correlation, 
lending ecological credence to observed patterns.

Therefore, in addition to response shapes derived from 
statistical consequences, Model 2 is scientifically interpretable. 
In general, macroinvertebrate condition metrics appear to be 
worse in dry regions with little precipitation and better in wet 
regions with greater precipitation prior to urbanization. This 
can be interpreted to mean that wet regions are likely associ-
ated with greater indicators of healthier stream macroinver-
tebrate communities than dry regions in the absence of urban 
land cover. Precipitation also appears to speed up the decline 
of macroinvertebrate communities with urbanization.
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Table 13. Regional intercept (α
j
) and slope (β

j
) coefficient estimates, representing regional background condition prior to 

urbanization and regional rate of change with urbanization, respectively, hyperparameter intercept and slope coefficient estimates 
( 0 1 0 1,  ,  ,  and        ), and variance coefficient estimates ( )2 2 2,  ,  y      for invertebrate response NMDS1 Models 2–5.  

[See table 5 (p. 18) for model definitions]

Model 2 Model 3 Model 4 Model 5

αj βj αj βj αj βj αj βj

ATL 2.71 –2.77 2.76 –2.86 2.73 –2.77 2.60 –2.44
BIR 2.55 –2.49 2.44 –2.30 2.43 –2.29 2.59 –2.60
BOS 2.49 –3.06 2.49 –3.09 2.44 –3.02 2.50 –3.07
DEN 1.72 –0.56 1.80 –0.70 1.80 –0.69 1.83 –0.75
DFW 2.18 –1.16 2.18 –1.10 2.19 –1.11 1.98 –0.68
MGB 1.98 –0.88 1.92 –0.80 1.94 –0.85 1.96 –0.85
POR 2.71 –1.98 2.61 –1.81 2.64 –1.91 2.75 –2.08
RAL 2.69 –1.86 2.78 –1.98 2.81 –2.01 2.69 –1.83
SLC 2.19 –1.32 2.39 –1.632 2.42 –1.65 2.78 –2.24

2
y 0.360 0.359 0.359 0.359

0 1.407 1.901 1.948 2.818

1 0.009 0.0383 0.035 –0.011

0 0.240 –1.199 –0.836 –2.784

1 –0.019 –0.049 –0.009 0.024

2
 0.046 0.139 0.134 0.016
2
 0.436 0.922 0.551 0.108

Figure 19. NMDS1 multilevel hierarchical Model 2: Region-level precipitation predictor for (A) intercept and (B) slope. Within each 
region, NMDS1 (first axis adjusted nonmetric multidimensional scaling site score) is modeled as a linear function of URB (percent urban 
land cover) as shown in eq. 10 (Template 2, basin level). Across regions, intercepts (A) and slopes (B) are modeled as a function of 
regional precipitation as shown in eq. 11 (Template 2, region level). 
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Figure 20. RICH multilevel hierarchical Model 2: Region-level precipitation predictor for (A) intercept and (B) slope. Within each 
region, RICH (total taxa richness) is modeled as a log-linear function of URB (percent urban land cover) as shown in eqs. 18 and 19 
(Template 2, basin level). Across regions, intercepts (A) and slopes (B) are modeled as a function of regional precipitation as shown in 
eq. 11 (Template 2, region level). 

Table 14. Regional intercept (α
j
) and slope (β

j
) coefficient estimates, representing regional background condition prior to 

urbanization and regional rate of change with urbanization, respectively, hyperparameter intercept and slope coefficient 
estimates ( 0 1 0 1,  ,  ,  and        ), and variance coefficient estimates ( )2 2 2,  ,  y      for invertebrate response RICH 
Models 2–5.  

[N/A, not applicable because data variance is equal to the mean parameter (λ) in Poisson models and, therefore, changes with changing λj. See 
table 5 (p. 18) for model definitions]

Model 2 Model 3 Model 4 Model 5

αj βj αj βj αj βj αj βj

ATL 3.78 –0.69 3.78 –0.68 3.79 –0.75 3.78 –0.68
BIR 3.58 –0.32 3.58 –0.29 3.58 –0.34 3.60 –0.34
BOS 3.91 –1.26 3.90 –1.25 3.90 –1.19 3.90 –1.25
DEN 3.50 –0.18 3.49 –0.21 3.50 –0.19 3.49 –0.15
DFW 3.51 –0.19 3.52 –0.13 3.53 –0.09 3.49 –0.18
MGB 3.48 –0.27 3.48 –0.29 3.47 –0.26 3.47 –0.26
POR 3.50 –0.25 3.49 –0.24 3.48 –0.29 3.51 –0.27
RAL 3.64 –0.50 3.65 –0.50 3.66 –0.50 3.65 –0.51
SLC 3.67 –0.53 3.64 –0.52 3.64 –0.53 3.70 –0.58

2
y N/A N/A N/A N/A

0 3.510 3.602 3.442 3.742

1 0.001 0.001 0.014 –0.003

0 –0.226 –0.723 –0.273 –0.718

1 –0.002 0.021 –0.002 0.006
2
 0.020 0.021 0.023 0.012
2
 0.111 0.111 0.104 0.075
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Figure 21. EPTRICH multilevel hierarchical Model 2: Region-level precipitation predictor for (A) intercept and (B) slope. Within each 
region, EPTRICH (combined richness of Ephemeroptera, Plecoptera, and Trichoptera orders) is modeled as a log-linear function of 
URB (percent urban land cover) as shown in eqs. 18 and 19 (Template 2, basin level). Across regions, intercepts (A) and slopes (B) are 
modeled as a function of regional precipitation as shown in eq. 11 (Template 2, region level). 

Table 15. Regional intercept (α
j
) and slope (β

j
) coefficient estimates, representing regional background condition prior to 

urbanization and regional rate of change with urbanization, respectively, hyperparameter intercept and slope coefficient 
estimates ( 0 1 0 1,  ,  ,  and        ), and variance coefficient estimates ( )2 2 2,  ,  y      for invertebrate response EPTRICH 
Models 2–5.

[N/A, not applicable because data variance is equal to the mean parameter (λ) in Poisson models and, therefore, changes with changing λj. See 
table 5 (p. 18) for model definitions]

Model 2 Model 3 Model 4 Model 5

αj βj αj βj αj βj αj βj

ATL 2.75 –1.91 2.74 –1.84 2.74 –1.83 2.73 –1.84
BIR 2.69 –1.85 2.65 –1.67 2.68 –1.80 2.70 –1.75
BOS 2.99 –2.30 3.00 –2.37 3.00 –2.40 2.94 –2.28
DEN 1.83 –0.12 1.85 –0.23 1.86 –0.17 1.80 –0.15
DFW 1.96 –0.50 1.95 –0.38 1.95 –0.37 1.91 –0.36
MGB 2.02 –0.55 2.03 –0.58 2.01 –0.64 1.97 –0.48
POR 2.56 –1.64 2.54 –1.51 2.55 –1.73 2.63 –1.60
RAL 2.50 –1.45 2.50 –1.43 2.49 –1.40 2.59 –1.55
SLC 2.72 –1.70 2.74 –1.84 2.78 –1.79 2.75 –1.86

2
y N/A N/A N/A N/A

0 1.729 2.444 2.269 2.926

1 0.007 0.000 0.014 –0.012

0 0.165 –1.373 –0.886 –2.183

1 –0.014 0.005 –0.004 0.023
2
 0.105 0.154 0.162 0.008
2
 0.307 0.530 0.442 0.041
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Figure 22. RICHTOL multilevel hierarchical Model 2: Region-level precipitation predictor for (A) intercept and (B) slope. Within each 
region, RICHTOL (richness-weighted mean tolerance of taxa at a basin) is modeled as a linear function of URB (percent urban land 
cover) as shown in eq. 10 (Template 2, basin level). Across regions, intercepts (A) and slopes (B) are modeled as a function of regional 
precipitation as shown in eq. 11 (Template 2, region level).

Table 16. Regional intercept (α
j
) and slope (β

j
) coefficient estimates, representing regional background condition prior to 

urbanization and regional rate of change with urbanization, respectively, hyperparameter intercept and slope coefficient 
estimates ( 0 1 0 1,  ,  ,  and        ), and variance coefficient estimates ( )2 2 2,  ,  y      for invertebrate response RICHTOL 
Models 2–5.

[See table 5 (p. 18) for model definitions]

Model 2 Model 3 Model 4 Model 5

αj βj αj βj αj βj αj βj

ATL 5.25 1.60 5.25 1.63 5.26 1.55 5.17 1.87
BIR 4.55 2.13 4.53 2.32 4.52 2.41 4.53 2.19
BOS 4.11 2.75 4.16 2.41 4.21 2.05 4.19 2.43
DEN 6.01 0.21 6.01 0.14 5.99 0.21 6.10 0.00
DFW 6.92 –0.16 6.93 –0.19 6.92 –0.22 6.94 –0.22
MGB 5.32 0.59 5.32 0.62 5.32 0.67 5.35 0.50
POR 4.35 2.12 4.36 2.12 4.38 1.93 4.31 2.25
RAL 5.15 1.55 5.15 1.58 5.15 1.60 5.04 1.78
SLC 4.06 2.60 4.03 2.62 4.00 2.71 4.19 2.39

2
y 0.274 0.275 0.278 0.272

0 6.032 3.786 3.937 4.171

1 –0.009 0.104 0.092 0.024

0 0.078 1.989 1.962 2.656

1 0.013 –0.042 –0.005 –0.031
2
 0.924 0.850 0.745 0.275
2
 1.088 1.263 1.245 0.049
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Model 3: TEMP Region-Level Predictor

Model 3 replaces annual precipitation with annual 
temperature as a region-level intercept and slope predictor. 
Model format and coefficient interpretations are identical to 
Model 2, exchanging TEMP for PRECIP. In contrast to models 
including precipitation, only NMDS1 and RICHTOL appear 
to respond to temperature, while RICH and EPTRICH, for the 
most part, do not.

For NMDS1, Model 3 goodness of model fit evaluated 
visually and quantitatively (DIC = 489.9, table 8) is less than 
the fit of Model 2 (DIC = 472.8, table 8). Nonetheless, there 
is still a fairly strong increase in intercept with increasing 
temperature (fig. 23A; table 13) and increase in negative slope 
steepness with increasing temperature (fig. 23B; table 13). 
Decline in NMDS1 with urbanization (in all regions except 
DEN) appears to happen faster in regions with warmer 
temperatures. The negative relation of slope with temperature 
is not very strong, and regions such as BOS, DEN, and DFW 
do not follow this pattern closely.

Temperature does not appear to have any effect on RICH 
prior to urbanization (fig. 24A; table 14). Total richness prior 
to urbanization appears to vary randomly across both colder 
regions (such as SLC and MGB) and warmer regions (such as 
ATL and DFW). Somewhat of a pattern with temperature is 
observed under urbanization conditions. There appears to be 
less decline in total richness per unit change of urbanization 

with warmer temperature (fig. 24B), which implies that 
warmer climate is more optimal for high total macroinver-
tebrate richness. However, this response to temperature is 
driven largely by a BOS outlier, which has an estimated 
slope substantially more negative than the remaining regions 
and also the second coldest annual temperature. Without the 
BOS point, it appears that slope estimates vary randomly 
with temperature, as well. Therefore, it is surprising that DIC 
assigns better model fit to Model 3 (DIC = 339.9, table 8) than 
to Model 2 (DIC = 344.3, table 8) for RICH data. It is not 
clear why this occurs.

For EPTRICH, adding a region-level predictor did not 
significantly reduce the DIC (356.8, table 8), nor significantly 
improve the accuracy in estimating coefficients at region  
level ( 2

 = 0.154 and 2
 = 0.524 for Model 1 [table 11] 

relative to 
2
 = 0.105 and 2

 = 0.307 for Model 2 and 
2
 = 0.154 and 2

 = 0.530 for Model 3 [table 15]). In fact, 
adding a region-level predictor actually slightly increased the 
unexplained region-level variance for Model 3 slope. One 
potential reason of this result could be the similar sample 
sizes (27 to 30) among regions, which minimizes the level of 
pooling effect toward the overall mean, thus also minimizing 
the degree of modifying 2

 and 2
 , which is usually done 

through partial pooling. Another possibility could be that 
2
  and 2

  increase because adding a region-level predictor 
actually unveils the hidden variation among regions by 
explaining correlation between the basin-level variable (URB) 

Figure 23. NMDS1 multilevel hierarchical Model 3: Region-level temperature predictor for (A) intercept and (B) slope. Within each 
region, NMDS1 (first axis adjusted nonmetric multidimensional scaling site score) is modeled as a linear function of URB (percent urban 
land cover) as shown in eq. 10 (Template 2, basin level). Across regions, intercepts (A) and slopes (B) are modeled as a function of 
regional temperature as shown in eq. 11 (Template 2, region level).
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and region-level errors ( )2 2 and     (Gelman and Hill 2006). 
Nonetheless, a region-level predictor still improves the model 
with regard to interpretability of region-level variations. 
Estimated intercepts and slopes do not show any significant 
tendency (of increasing or decreasing) along with changes in 
annual mean temperature (fig. 25). This result indicates that 
influential factors other than temperature likely determine the 
response of EPTRICH at the region-level. One of the potential 
factors might be the level of agricultural activities at each 
region because the regions that deviated from the others, by 
having lower intercepts and higher slopes, are the agriculture-
dominant group (DEN, MGB, DFW; see Preliminary Land 
Cover Analysis section).

For RICHTOL, Model 3 seems to fit (DIC = 425.3, 
table 8) the data as well as Model 2 (DIC = 425.1, table 8). 
Nonetheless, in Model 3 the intercept increases with 

increasing temperature (fig. 26A; table 16), while the positive 
slope on urban development tends to decrease with increasing 
temperatures (fig. 26B; table 16). Prior to urbanization, 
it appears that there are more tolerant species in warmer 
regions. And the positive relation between RICHTOL and 
urban development dampens slightly as regional mean annual 
ambient temperature increases. This could mean that warmer 
regions initially start with more hardy species and as such they 
have less opportunity to gain even more hardy species with 
increasing urbanization. This dampening of the slope with 
increased temperature does not seem to be strong for regions 
such as MGB and DEN, which have flat slopes despite low 
mean temperatures. Again, it appears that high-agriculture 
regions (DEN, DFW, MGB) form a response group pattern 
visually separate from the remaining regions.

Figure 24. RICH multilevel hierarchical Model 3: Region-level temperature predictor for (A) intercept and (B) slope. Within each region, 
RICH (total taxa richness) is modeled as a log-linear function of URB (percent urban land cover) as shown in eqs. 18 and 19 (Template 2, 
basin level). Across regions, intercepts (A) and slopes (B) are modeled as a function of regional temperature as shown in eq. 11 
(Template 2, region level).
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Figure 25. EPTRICH multilevel hierarchical Model 3: Region-level temperature predictor for (A) intercept and (B) slope. Within each 
region, EPTRICH (combined richness of Ephemeroptera, Plecoptera, and Trichoptera orders) is modeled as a log-linear function of 
URB (percent urban land cover) as shown in eqs. 18 and 19 (Template 2, basin level). Across regions, intercepts (A) and slopes (B) are 
modeled as a function of regional temperature as shown in eq. 11 (Template 2, region level).

Figure 26. RICHTOL multilevel hierarchical Model 3: Region-level temperature predictor for (A) intercept and (B) slope. Within each 
region, RICHTOL (richness-weighted mean tolerance of taxa at a basin) is modeled as a linear function of URB (percent urban land 
cover) as shown in eq. 10 (Template 2, basin level). Across regions, intercepts (A) and slopes (B) are modeled as a function of regional 
temperature as shown in eq. 11 (Template 2, region level).
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Model 4: PRECIP and TEMP Region-Level 
Predictors

Model 4 combines the most scientifically plausible 
climate region-level predictors into one model where intercept 
varies with temperature, and slope varies with precipitation. 
The intent is to account for the possibility that temperature 
governs the baseline ecological response at pre-urbanization, 
while precipitation governs the rate of change in ecological 
response with urban development. In this model, partially 
pooled estimates of basin-level intercept (αj) are modeled at 
the region level as a linear function of TEMP using region-
level intercept, 0 , and region-level slope, 1 . Meanwhile, 
partially pooled estimates of basin-level slope (βj) are modeled 
as a linear function of PRECIP using region-level intercept, 

0 , and region-level slope, 1 . Coefficients 2
  and 

2
  then represent between-region variance in intercept as 

predicted by TEMP and between-region variance in slope as 
predicted by PRECIP, respectively.

For NMDS1, patterns of intercept increase with tem-
perature (fig. 27A; table 13) and negative slope decrease with 
precipitation (fig. 27B; table 13) do not change substantially 
from those in Models 3 and 2, respectively. Quantitatively, 
goodness of Model 4 fit (DIC = 484.0, table 8) lies between 
that of Model 2 (DIC = 472.8, table 8) and Model 3  
(DIC = 489.9, table 8). Scientifically, this model supports 
the assumption that temperature affects baseline macroin-
vertebrate species condition in regions with no urban land 
cover while precipitation affects the rate of change in species 
condition with increasing urbanization. However, the DIC 
value of this model also suggests that, although temperature 
is capable of explaining differences in NMDS1 intercepts, 
perhaps precipitation explains these differences better.

For RICH, annual precipitation appears to increase the 
steepness of negative slope whether intercept is modeled with 
temperature (fig. 28B; table 14) or precipitation (fig. 20B). 
However, a relation between temperature and intercept is only 
evident when slope is modeled with precipitation (fig. 28A) 
but not when both slope and intercept are modeled with 
temperature (fig. 24A). This may mean that when variability in 
slope is better accounted for by precipitation, then temperature 
can explain variability in intercept. Otherwise, temperature 

is not able to explain differences in intercepts. Directionally, 
RICH Model 4 suggests that warmer temperature may be a 
driving force for greater richness of macroinvertebrates on 
un-urbanized land when higher precipitation is explaining 
faster macroinvertebrate richness decline with urbanization.

EPTRICH Model 4 shows a slight improvement in the 
capacity of temperature to explain regional differences in 
intercept (fig. 29A) compared to EPTRICH Model 3 
(fig. 25A). Intercept increases minimally with temperature 
when slope is modeled with precipitation; however, between-
region variation in intercept increases from Model 3  
( 2

  = 0.162 relative to 0.154, table 15). In contrast, the ability 
of precipitation to predict differences in slopes is diminished 
when intercept is modeled with temperature (fig. 29B) instead 
of with precipitation as in Model 2 (fig. 21B). Nonetheless, 
slopes continue to become more negative with increasing 
precipitation although less so. Deviations of the agriculture-
dominant group (DEN, DFW, MGB) from the others are still 
distinguishable. Therefore, the effect of agriculture is expected 
to overrule either temperature or precipitation in terms of 
predicting the behavior of EPTRICH. 

For RICHTOL, the overall pattern of intercept increasing 
with temperature in Model 4 (fig. 30A) does not change 
substantially from the pattern observed in Model 3 (fig. 26A). 
However, the pattern of increasing slopes with increasing 
precipitation seen in Model 2 (fig. 22B) is reversed in direction 
(fig. 30B). When intercept is modeled with temperature instead 
of precipitation, RICHTOL slopes decrease instead of increase 
with precipitation. However, greater between-region variance 
in slope is observed for Model 4 ( 2

  = 1.245, table 16) 
than for Model 2 ( 2

  = 1.088 , table 16). Decrease in BOS 
estimated slope from Model 2 to Model 4 appears to have 
influenced the reversal in relation of slopes with precipitation. 
Even though quantitatively the goodness of fit for Model 4 
(DIC = 412.7, table 8) is better than that of Models 2 and 
3, the presence of high leverage points tends to skew the 
expected line. The lmer procedure does not allow for the 
ability to fix this problem. Scientifically, this model suggests 
that temperature is not well related to baseline macroinverte-
brate species tolerance in regions with no urban land cover, 
while precipitation may either increase or decrease the rate of 
change in RICHTOL with increasing urbanization.
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Figure 27. NMDS1 multilevel hierarchical Model 4: Region-level temperature predictor for (A) intercept and region-level precipitation 
predictor for (B) slope. Within each region, NMDS1 (first axis adjusted nonmetric multidimensional scaling site score) is modeled as 
a linear function of URB (percent urban land cover) as shown in eq. 10 (Template 2, basin level). Across regions, intercepts (A) are 
modeled as a function of regional temperature and slopes (B) are modeled as a function of regional precipitation as shown in eq. 11 
(Template 2, region level).

Figure 28. RICH multilevel hierarchical Model 4: Region-level temperature predictor for (A) intercept and region-level precipitation 
predictor for (B) slope. Within each region, RICH (total taxa richness) is modeled as a log-linear function of URB (percent urban land 
cover) as shown in eqs. 18 and 19 (Template 2, basin level). Across regions, intercepts (A) are modeled as a function of regional 
temperature and slopes (B) are modeled as a function of regional precipitation as shown in eq. 11 (Template 2, region level).
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Figure 29. EPTRICH multilevel hierarchical Model 4: Region-level temperature predictor for (A) intercept and region-level precipitation 
predictor for (B) slope. Within each region, EPTRICH (combined richness of Ephemeroptera, Plecoptera, and Trichoptera orders) is 
modeled as a log-linear function of URB (percent urban land cover) as shown in eqs. 18 and 19 (Template 2, basin level). Across regions, 
intercepts (A) are modeled as a function of regional temperature and slopes (B) are modeled as a function of regional precipitation as 
shown in eq. 11 (Template 2, region level).

Figure 30. RICHTOL multilevel hierarchical Model 4: Region-level temperature predictor for (A) intercept and region-level precipitation 
predictor for (B) slope. Within each region, RICHTOL (richness-weighted mean tolerance of taxa at a basin) is modeled as a linear 
function of URB (percent urban land cover) as shown in eq. 10 (Template 2, basin level). Across regions, intercepts (A) are modeled as 
a function of regional temperature and slopes (B) are modeled as a function of regional precipitation as shown in eq. 11 (Template 2, 
region level).
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Model 5: AG (Continuous) Region-Level Predictor 
Region-level antecedent agriculture and pasture land 

cover percentage are used to predict intercept and slope in 
Model 5. This region-level variable attempts to describe the 
amount of agricultural land use in drainage basins with low 
urban land use, as a surrogate for type of land cover in a 
region prior to urbanization of its drainage basins (in other 
words, antecedent agricultural land cover). Despite the use 
of a continuous variable format, antecedent agricultural land 
use in the nine regions is not distributed continuously but 
rather divides the regions into two major groups: one with 
low antecedent agriculture land cover (BOS, SLC, BIR, POR, 
ATL, RAL all <30 percent) and one with high antecedent 
agriculture land cover (DFW, MGB, DEN all >70 percent). 
In the previous models, DEN, DFW, and MGB intercepts and 
slopes often form a cluster separate from the six other regions. 
This pattern can now be accounted for by incorporating the 
antecedent agriculture variable. Coefficients are the same as in 
Models 2–4 and now represent slopes, intercepts, and vari-
ances as predicted by region-level antecedent agriculture. 

Model 5 has the best quantitative fit of all tested 
models for all four ecological response variables, but this is 
likely due to the statistical implications of predicting a line 
with essentially two points. The distribution of antecedent 
agricultural land cover (AG) is also interesting from a national 
context. That is, how representative are these data in terms of 
the antecedent conditions from which cities are developing? 
Are there examples of cities that are developing in areas of 
40–70 percent agriculture, or are cities converting lands that 
are either primarily in forest or intensive agriculture? The 
NAWQA Program has data from three other metropolitan 
regions that were not part of the EUSE studies (Anchorage, 
AK; Chicago, IL; and Seattle, WA) that fall into the existing 
pattern: Anchorage, forest; Chicago, high agriculture; and 
Seattle, forest.

This division into two groups clearly shows that regions 
with low antecedent agriculture have high intercepts, and 

regions with high antecedent agriculture have low intercepts 
for NMDS1 (fig. 31A; table 13), RICH (fig. 32A; table 14), 
and EPTRICH (fig. 33A; table 15). RICHTOL, just as clearly, 
has low intercepts at low antecedent agriculture, and high 
intercepts for high antecedent agriculture (fig. 34A; table 16). 
This means that, at zero urbanization, ecological communities 
living on land that was previously agricultural are more 
degraded than communities in areas that were not agricultural 
in the past. Agricultural activities, therefore, appear to degrade 
macroinvertebrate assemblages, even if there is no urbaniza-
tion effect. High antecedent agriculture land use in DFW, 
MGB, and DEN leads to lower ordination scores, lower total 
and EPT richness, and higher tolerances in these regions prior 
to urbanization. 

Regions with low antecedent agriculture also have steeper 
negative slopes than regions with high antecedent agriculture 
for NMDS1 (fig. 31B), RICH (fig. 32B), and EPTRICH 
(fig. 33B) and steeper positive slopes for RICHTOL (fig. 34B). 
Rate of change of each of these four macroinvertebrate 
measures is closer to zero in regions with high antecedent 
agriculture. Since ecological communities in regions with a lot 
of previously converted agricultural land have already been 
disturbed, there is little further decline in macroinvertebrate 
response compared to regions with less disturbed pre- 
urbanization land cover. That is, the same amount of urbaniza-
tion has a greater effect in regions with low antecedent 
agriculture than in regions with high antecedent agriculture. 
Model 5 has the best quantitative fit of all tested models for 
three of the four response variables (DIC = 462.2, 334.9, 402.1 
for NMDS1, EPTRICH, and RICHTOL, respectively, table 8), 
but this is likely due to the statistical implications of predicting 
a line with essentially two points. Regardless of the degree of 
fitness, this model strongly supports the idea speculated in the 
previous models that past agricultural practices determine the 
patterns of change in macroinvertebrate measures associated 
with urbanization. These model results imply that the effect  
of urbanization on stream ecosystems should not be analyzed 
in isolation. 
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Figure 31. NMDS1 multilevel hierarchical Model 5: Region-level antecedent agriculture percent predictor for (A) intercept and 
(B) slope. Within each region, NMDS1 (first axis adjusted nonmetric multidimensional scaling site score) is modeled as a linear function 
of URB (percent urban land cover) as shown in eq. 10 (Template 2, basin level). Across regions, intercepts (A) and slopes (B) are 
modeled as a function of antecedent agriculture as shown in eq. 11 (Template 2, region level).

Figure 32. RICH multilevel hierarchical Model 5: Region-level antecedent agriculture percent predictor for (A) intercept and (B) slope. 
Within each region, RICH (total taxa richness) is modeled as a log-linear function of URB (percent urban land cover) as shown in eqs. 18 
and 19 (Template 2, basin level). Across regions, intercepts (A) and slopes (B) are modeled as a function of antecedent agriculture as 
shown in eq. 11 (Template 2, region level).
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Figure 33. EPTRICH multilevel hierarchical Model 5: Region-level antecedent agriculture percent predictor for (A) intercept and 
(B) slope. Within each region, EPTRICH (combined richness of Ephemeroptera, Plecoptera, and Trichoptera orders) is modeled as a 
log-linear function of URB (percent urban land cover) as shown in eqs. 18 and 19 (Template 2, basin level). Across regions, intercepts  
(A) and slopes (B) are modeled as a function of antecedent agriculture as shown in eq. 11 (Template 2, region level).

Figure 34. RICHTOL multilevel hierarchical Model 5: Region-level antecedent agriculture percent predictor for (A) intercept and 
(B) slope. Within each region, RICHTOL (richness-weighted mean tolerance of taxa at a basin) is modeled as a linear function of URB 
(percent urban land cover) as shown in eq. 10 (Template 2, basin level). Across regions, intercepts (A) and slopes (B) are modeled as a 
function of antecedent agriculture as shown in eq. 11 (Template 2, region level).
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Model 6: AG (Categorical) and PRECIP Region-
Level Predictors

The continuous AG variable naturally divides the regions 
into two groups (figs. 35–38), which disrupts linear regression 
assumptions concerning coverage across the whole range of 
possible predictor variable values. Therefore, in Model 6, 
antecedent agriculture percentage is converted into a categori-
cal high or low antecedent agriculture predictor. Region-level 
precipitation is also included as an additional region-level pre-
dictor of intercept and slope. Model 6, then, fits the ecological 
response data to a non-nested model, which incorporates two 
different levels of grouping: region and antecedent agricultural 
category. This model structure examines the dependence of 
ecological responses on percentage of urban land cover at the 
basin level and annual mean precipitation at the region level, 
conditional on the levels of region and antecedent agriculture. 
The antecedent agriculture category is not allowed to interact 
with precipitation because region sample size (n = 9) is not 
large enough to support this estimation accurately. Coefficients 
αj and βj now represent the PRECIP component of the region-
level intercept and slope, while αk and βk represent the AG 
component of the region-level intercept and slope. Together  
αj + αk and βj + βk represent the total of the region-level 
intercept and slope terms. Higher tier region-level regression 
parameters, 0 1 0 1,  ,  ,  and        , still describe only the 
relation between region-level predictors αj and βj and PRECIP. 
And variances are modeled using 2

y  for within-region 
variance in invertebrate response, 2

  for between-region 
variance in intercept, 2

  for between-region variance in 
slope, and 2

k  for between-category (AG) variance in slope 
and intercept. 

For NMDS1 and EPTRICH, regions with low antecedent 
agriculture (figs. 35A and 37A, blue lines; tables 17 and 18) 
continue to have estimated intercepts greater than regions 
with high antecedent agriculture (figs. 35A and 37A, red lines) 
across all values of annual precipitation. Also, as shown 
previously, slope is steeper for regions with low antecedent 
agriculture (figs. 35B and 37B, blue lines) than for regions 
with high antecedent agriculture (figs. 35B and 37B, red 
lines). Low and high antecedent agriculture trend lines are 
parallel because Model 6 does not incorporate interaction 
between antecedent agriculture and precipitation. Similarly, 
RICHTOL intercepts continue to be lower for regions with 

low antecedent agriculture (fig. 38A, blue line) and higher for 
regions with high antecedent agriculture (fig. 38A, red line) 
across all values of annual precipitation. RICHTOL slopes are 
higher for regions with low antecedent agriculture (fig. 38B, 
blue line) than for regions with high antecedent agriculture 
(fig. 38B, red line). 

NMDS1 intercept still increases with increasing pre-
cipitation (fig. 35A) and negative slope becomes steeper with 
increasing precipitation (fig. 35B) in Model 6 compared to 
Model 2 (fig. 19); however, when categorical AG is introduced 
into the model, relations of EPTRICH and RICHTOL with 
precipitation change. Precipitation no longer has an increasing 
effect on EPTRICH intercept (fig. 21A) and a decreasing effect 
on EPTRICH negative slope (fig. 21B) when AG is included, 
instead little relation is shown between either intercept 
(fig. 37A) or slope (fig. 37B) and precipitation. Precipitation’s 
decreasing effect on RICHTOL intercept (fig. 22A) and 
increasing effect on RICHTOL slope (fig. 22B) are actually 
reversed when AG is included (fig. 38). Model 6 shows that 
antecedent agriculture is an important categorical predictor 
of regional differences in ordination scores, indicator species 
richness and richness-weighted tolerance pre-urbanization 
condition, and rate of change with urbanization, in some cases 
even influencing the effect of precipitation. 

For NMDS1, EPTRICH, and RICHTOL, despite having 
less favorable measures of fit (DIC = 471.4, 345.7, and 417.8, 
respectively, table 8) than Model 5 (DIC = 462.2, 334.9, and, 
402.1, respectively, table 8), Model 6 visually appears to 
describe the data well. This is likely because Model 6 accounts 
for two major region-level influences on differences between 
basin-level models. Both antecedent agriculture levels and 
annual precipitation affect how different regions respond to 
urbanization and account for region differences in baseline 
invertebrate assemblage conditions. As these region-level vari-
ables affect separate system elements (land use and climate), it 
is important to evaluate the influence of both simultaneously. 
This reasoning is quantitatively supported as inclusion of an 
agricultural predictor to the precipitation model improves 
model fit to the data for NMDS1, EPTRICH, and RICHTOL 
(DIC decreases from 472.8, 351.8, and 425.1, respectively, for 
Model 2 to 471.4, 345.7, and 417.8, respectively, for Model 6, 
table 8). 
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Figure 35. NMDS1 multilevel hierarchical Model 6: Region-level precipitation predictor and categorical antecedent agriculture 
(AG) predictor (red: high AG; blue: low AG) for (A) intercept and (B) slope. Within each region, NMDS1 (first axis adjusted nonmetric 
multidimensional scaling site score) is modeled as a linear function of URB (percent urban land cover) as shown in eq. 12 (Template 3, 
basin level). Across regions, intercepts (A) and slopes (B) are modeled as a function of regional precipitation and categorical 
antecedent agriculture as shown in eqs. 13, 14, and 15 (Template 3, region level)

Figure 36. RICH multilevel hierarchical Model 6: Region-level precipitation predictor and categorical antecedent agriculture (AG) 
predictor (red: high AG; blue: low AG) for (A) intercept and (B) slope. Within each region, RICH (total taxa richness) is modeled as a 
log-linear function of URB (percent urban land cover) as shown in eqs. 18 and 19 (Template 3, basin level). Across regions, intercepts  
(A) and slopes (B) are modeled as a function of regional precipitation and categorical antecedent agriculture as shown in eqs. 13, 14, 
and 15 (Template 3, region level)
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Figure 37. EPTRICH multilevel hierarchical Model 6: Region-level precipitation predictor and categorical antecedent agriculture 
(AG) predictor (red: high AG; blue: low AG) for (A) intercept and (B) slope. Within each region, EPTRICH (combined richness of 
Ephemeroptera, Plecoptera, and Trichoptera orders) is modeled as a log-linear function of URB (percent urban land cover) as shown in 
eqs. 18 and 19 (Template 3, basin level). Across regions, intercepts (A) and slopes (B) are modeled as a function of regional precipitation 
and categorical antecedent agriculture as shown in eqs. 13, 14, and 15 (Template 3, region level)

Figure 38. RICHTOL multilevel hierarchical Model 6: Region-level precipitation predictor and categorical antecedent agriculture (AG) 
predictor (red: high AG; blue: low AG) for (A) intercept and (B) slope. Within each region, RICHTOL (richness-weighted mean tolerance of taxa 
at a basin) is modeled as a linear function of URB (percent urban land cover) as shown in eq. 12 (Template 3, basin level). Across regions, 
intercepts (A) and slopes (B) are modeled as a function of regional precipitation and categorical antecedent agriculture as shown in eqs. 13, 
14, and 15 (Template 3, region level)
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Table 17. Regional intercept (α
j
) and slope (β

j
) coefficient estimates, representing regional 

background condition prior to urbanization and regional rate of change with urbanization, respectively, 
hyperparameter intercept and slope coefficient estimates ( 0 1 0 1,  ,  ,  and k k          + + ), and 
variance coefficient estimates ( )2 2 2,  ,  y      for invertebrate response NMDS1 Models 6–8.  

[See table 5 (p. 18) for model definitions]

Model 6 Model 7 Model 8

αj βj αj βj αj βj

ATL 2.63 –2.54 2.70 –2.70 2.69 –2.66
BIR 2.66 –2.72 2.69 –2.74 2.68 –2.75
BOS 2.48 –3.03 2.44 –2.94 2.42 –2.92
DEN 1.78 –0.65 1.85 –0.79 1.83 –0.73
DFW 2.04 –0.84 2.10 –0.94 2.10 –0.93
MGB 1.95 –0.83 1.83 –0.62 1.84 –0.67
POR 2.79 –2.16 2.66 –1.90 2.69 –2.01
RAL 2.69 –1.85 2.77 –1.97 2.77 –1.96
SLC 2.46 –1.74 2.61 –1.97 2.59 –1.9

2
y 0.358 0.356 0.356

0 k  + highAG (k=1): 1.652
lowAG (k=0): 2.191

highAG (k=1): 1.616
lowAG (k=0): 2.307

highAG (k=1): 1.609
lowAG (k=0): 2.298

1 0.003 0.026 0.027

0 k  + highAG (k=1): –0.210
lowAG (k=0): –1.426

highAG (k=1): –0.497
lowAG (k=0): –2.057

highAG (k=1): –0.326
lowAG (k=0): –1.661

1 –0.007 –0.025 –0.006

2


Region (  j): 0.006
AG (k): 0.157

Region (  j): 0.004
AG (k): 0.245

Region (  j): 0.006
AG (k): 0.244

2


Region (  j): 0.169
AG (k): 0.797

Region (  j): 0.187
AG (k): 1.248

Region (  j): 0.162
AG (k): 0.918
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Table 18. Regional intercept (α
j
) and slope (β

j
) coefficient estimates, representing regional 

background condition prior to urbanization and regional rate of change with urbanization, respectively, 
hyperparameter intercept and slope coefficient estimates ( 0 1 0 1,  ,  ,  and k k          + + ), 
and variance coefficient estimates ( )2 2 2,  ,  y      for invertebrate response EPTRICH Models 6–8.

[N/A, not applicable because data variance is equal to the mean parameter (λ) in Poisson models and, therefore, changes 
with changing λj. See table 5 (p. 18) for model definitions]

Model 6 Model 7 Model 8

αj βj αj βj αj βj

ATL 2.74 –1.91 2.72 –1.81 2.75 –1.89 
BIR 2.68 –1.84 2.66 –1.69 2.69 –1.84 
BOS 2.96 –2.29 2.97 –2.29 2.97 –2.33 
DEN 1.87 –0.17 1.88 –0.27 1.85 –0.15 
DFW 1.92 –0.45 1.90 –0.30 1.93 –0.43 
MGB 1.98 –0.51 2.00 –0.52 1.98 –0.53 
POR 2.58 –1.66 2.59 –1.59 2.58 –1.70 
RAL 2.58 –1.55 2.57 –1.53 2.57 –1.53 
SLC 2.77 –1.78 2.76 –1.88 2.76 –1.76

2
y N/A N/A N/A

0 k  + highAG (k=1): 1.963
lowAG (k=0): 2.756

highAG (k=1): 2.095
lowAG (k=0): 2.877

highAG (k=1): 1.883
lowAG (k=0): 2.651

1 0.000 –0.014 0.005

0 k  + highAG (k=1): –0.228
lowAG (k=0): –1.546

highAG (k=1): –0.715
lowAG (k=0): –2.141

highAG (k=1): –0.137
lowAG (k=0): –1.408

1 –0.002 0.028 –0.003

2


Region (  j): 0.022
AG (k): 0.162

Region (  j): 0.019
AG (k): 0.158

Region (  j): 0.025
AG (k): 0.154

2


Region (  j): 0.077
AG (k): 0.450

Region (  j): 0.067
AG (k): 0.527

Region (  j): 0.085
AG (k): 0.421
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RICH intercept and slope estimates, on the other 
hand, have zero variance between high and low AG groups 
(fig. 36; table 19). This means RICH Model 6 calculates no 
differences in the number of taxa supported by regions with 
low antecedent agricultural land use and regions with high 
antecedent agricultural land use pre-urbanization or in rate 
of change in taxa with urbanization. Therefore, with no AG 
influence, the effect of precipitation mirrors the results of 
RICH Model 2 (fig. 20), and DIC does not differ between 
Model 6 and Model 2 (table 8). Looking at RICH Model 5 
relative to Model 5 for the other three response variables, 
low AG intercepts vary substantially across the range of all 
intercept estimates more for RICH (fig. 32A) than for NMDS1 
(fig. 31A), EPTRICH (fig. 33A), and RICHTOL (fig. 34A). 
Also, with the exception of BOS, differences between high 
AG and low AG slopes are not great (fig. 32B). In RICH 
Model 6, these patterns are translated into no clear differentia-
tion between high and low AG estimates as distributions for 
the two groups overlap across intercept (fig. 36A) and slope 

(fig. 36B) values. Intercepts of high AG regions are low and 
slopes are flatter but so are intercepts and slopes of POR and 
BIR, indicating that the influence of PRECIP on taxa richness 
may be greater than the influence of antecedent agriculture. 

This lack of variation between high and low AG groups 
is calculated using URB as a fraction and unscaled PRECIP 
variables in the R lmer command. If variables are rescaled 
to URB as a percentage and PRECIP rescaled by dividing 
by two standard deviations of PRECIP, then regions in the 
low antecedent agricultural land use support more taxa at 
zero urbanization and have steeper negative slopes than do 
regions with high antecedent agricultural land use (ecologi-
cally similar to trends observed for NMDS1, EPTRICH, and 
RICHTOL), and response to PRECIP looks nearly flat (similar 
to EPTRICH Model 6). This change in results depending on 
variable scaling showcases one of the drawbacks of lmer, 
because it appears that rescaling has a non-negligible effect on 
numerical estimation results.

Table 19. Regional intercept (α
j
) and slope (β

j
) coefficient estimates, representing regional 

background condition prior to urbanization and regional rate of change with urbanization, respectively, 
hyperparameter intercept and slope coefficient estimates ( 0 1 0 1,  ,  ,  and k k          + + ), 
and variance coefficient estimates ( )2 2 2,  ,  y      for invertebrate response RICH Models 6–8.  

[N/A, not applicable because data variance is equal to the mean parameter (λ) in Poisson models and, therefore, changes 
with changing λj. See table 5 (p. 18) for model definitions]

Model 6 Model 7 Model 8

αj βj αj βj αj βj

ATL 3.78 –0.69 3.78 –0.68 3.78 –0.75
BIR 3.58 –0.32 3.59 –0.31 3.59 –0.34
BOS 3.90 –1.26 3.90 –1.25 3.90 –1.24
DEN 3.50 –0.18 3.49 –0.19 3.48 –0.17
DFW 3.50 –0.19 3.51 –0.13 3.52 –0.12
MGB 3.47 –0.27 3.47 –0.28 3.46 –0.27
POR 3.50 –0.26 3.50 –0.25 3.49 –0.29
RAL 3.65 –0.51 3.66 –0.50 3.68 –0.51
SLC 3.69 –0.57 3.65 –0.53 3.67 –0.54

2
y N/A N/A N/A

0 k  + highAG (k=1): 3.510
lowAG (k=0): 3.510

highAG (k=1): 3.602
lowAG (k=0): 3.602

highAG (k=1): 3.353
lowAG (k=0): 3.501

1 0.001 0.001 0.014

0 k  + highAG (k=1): –0.226
lowAG (k=0): –0.226

highAG (k=1): –0.723
lowAG (k=0): –0.723

highAG (k=1): –0.058
lowAG (k=0): –0.295

1 –0.002 0.021 –0.002

2


Region (  j): 0.020
AG (k): 0.000

Region (  j): 0.021
AG (k): 0.000

Region (  j): 0.018
AG (k): 0.007

2


Region (  j): 0.111
AG (k): 0.000

Region (  j): 0.111
AG (k): 0.000

Region (  j): 0.094
AG (k): 0.018
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Model 7: AG (Categorical) and TEMP Region-
Level Predictors

Model 7 substitutes the region-level temperature predic-
tor for the region-level precipitation predictor, retaining the 
categorical antecedent agriculture predictor (figs. 39–42). 
Again, conditional on the two non-nested levels of region and 
antecedent agriculture, this model examines the dependence of 
ecological responses on percentage of urban land cover at the 
basin level and annual mean temperature at the region level 
without accounting for interaction between the two group-
level predictors. Coefficients remain the same as Model 6, 
substituting TEMP for PRECIP.

Similar to Model 6, the effect of antecedent agriculture 
is evident and consistent for NMDS1, EPTRICH, and 
RICHTOL. Regions with low antecedent agriculture have 
higher intercepts (figs. 39A and 41A, blue lines; tables 17 
and 18) and steeper negative slopes (figs. 39B and 41B, blue 
lines; tables 17 and 18) than regions with high antecedent 
agriculture (figs. 39 and 41, red lines; tables 17 and 18) across 
all values of annual temperature for NMDS1 and EPTRICH, 
while, for RICHTOL, regions with low antecedent agriculture 
have lower intercepts (fig. 42A, blue lines; table 20) and 
steeper positive slopes (fig. 42B, blue lines; table 20) than 
regions with high antecedent agriculture (fig. 42, red lines; 
table 20) across all values of annual temperature. Again, the 
two antecedent agriculture trend lines are parallel because 
Model 7 does not incorporate interaction between antecedent 
agriculture and temperature. 

NMDS1 intercepts continue to increase with increas-
ing temperature (fig. 39A), and slopes continue to steepen 
negatively with increasing temperature (fig. 39B). Model 7 
quantitative fit (DIC = 479.5, table 8) is not as good as 
Model 6 (DIC = 471.4, table 8), similar to how Model 2 fit 
with precipitation (DIC = 472.8, table 8) exceeded Model 3 
fit with temperature (DIC = 489.9, table 8) prior to inclusion 
of an agricultural predictor. Despite lower DIC for Model 6 
than for Model 7, the addition of the agricultural predictor to 
the temperature model offers valuable interpretation improve-
ments. In Model 3, the deviations of regions, which did not 
appear to show a linear pattern with intercept and outliers 
with slope, can now be explained with categorical antecedent 
agriculture. Before antecedent agriculture was introduced, 
DEN, MGB, and DFW had lower intercepts (fig. 23A) and less 
negative slopes (fig. 23B) than regression lines with tempera-
ture. Antecedent agricultural land use explains this pattern. 

Analysis by visual inspection is supported quantitatively. 
Accounting for agriculture improves the originally poorer 
fit of the temperature model (DIC decreases from 489.9 for 
Model 3 to 479.5 for Model 7, table 8). 

For EPTRICH, when the effect of low or high antecedent 
agriculture is additionally considered as a grouping factor, an 
effect of temperature is evident within each group (fig. 41) 
as compared to Model 3 (fig. 25) which showed no effect 
of temperature on all regions together. As with NMDS1, 
observed differences in intercepts and slopes relative to 
temperature are finally explained and quantified by antecedent 
agriculture. Within each AG group, intercept now decreases 
and slope flattens with increasing annual temperature. 
However, interpreting the regression results at the region level 
becomes more difficult when the nine regions are divided into 
two groups because region-level regressions are performed 
with merely three to six data points each. As for NMDS1, 
model fit improves with inclusion of an antecedent agriculture 
predictor (DIC = 356.8 for Model 3 and 347.1 for Model 7, 
table 8).

Unlike the direction of effect reversal caused by addition 
of AG to the RICHTOL precipitation model, RICHTOL 
intercepts continue to increase with increasing temperature 
(fig. 42A) and slopes continue to decrease in magnitude with 
increasing temperature (fig. 42B) as they did prior to the 
inclusion of AG. Quantitative fit (DIC = 410.4, table 8) is 
better than all previous models except Model 5 (DIC = 402.1, 
table 8). The addition of the agricultural predictor is also able 
to visually explain intercept and slope differences better than 
the model using a temperature predictor alone. DEN, MGB, 
and DFW had higher intercepts (fig. 26A) and lower slopes 
(fig. 26B) than the region-level temperature regression lines 
in Model 3. In Model 6, these differences are explained by 
differences in antecedent agriculture.

Again, RICH Model 7 calculates no differences between 
response patterns for regions with high as opposed to low 
antecedent agriculture (fig. 40; table 19). Intercept does not 
appear to vary with temperature (fig. 40A), but slope flattens 
slightly with increasing temperature (fig. 40B). As the variance 
between antecedent agriculture levels is zero, this pattern is 
essentially mathematically identical to RICH Model 3 (fig. 24) 
with minor numerical approximation error differences in coef-
ficients. DIC between RICH Model 3 and Model 7 is identical 
(table 8). Previous discussion for RICH Model 6 involving 
intercept and slope distribution overlap and lmer limitations 
applies for RICH Model 7, as well.
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Figure 39. NMDS1 multilevel hierarchical Model 7: Region-level temperature predictor and categorical antecedent agriculture 
(AG) predictor (red: high AG; blue: low AG) for (A) intercept and (B) slope. Within each region, NMDS1 (first axis adjusted nonmetric 
multidimensional scaling site score) is modeled as a linear function of URB (percent urban land cover) as shown in eq. 12 (Template 3, 
basin level). Across regions, intercepts (A) and slopes (B) are modeled as a function of regional temperature and categorical antecedent 
agriculture as shown in eqs. 13, 14, and 15 (Template 3, region level)

Figure 40. RICH multilevel hierarchical Model 7: Region-level temperature predictor and categorical antecedent agriculture (AG) 
predictor (red: high AG; blue: low AG) for (A) intercept and (B) slope. Within each region, RICH (total taxa richness) is modeled as a 
log-linear function of URB (percent urban land cover) as shown in eqs. 18 and 19 (Template 3, basin level). Across regions, intercepts  
(A) and slopes (B) are modeled as a function of regional temperature and categorical antecedent agriculture as shown in eqs. 13, 14, 
and 15 (Template 3, region level)
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Figure 41. EPTRICH multilevel hierarchical Model 7: Region-level temperature predictor and categorical antecedent agriculture 
(AG) predictor (red: high AG; blue: low AG) for (A) intercept and (B) slope. Within each region, EPTRICH (combined richness of 
Ephemeroptera, Plecoptera, and Trichoptera orders) is modeled as a log-linear function of URB (percent urban land cover) as shown in 
eqs. 18 and 19 (Template 3, basin level). Across regions, intercepts (A) and slopes (B) are modeled as a function of regional temperature 
and categorical antecedent agriculture as shown in eqs. 13, 14, and 15 (Template 3, region level)

Figure 42. RICHTOL multilevel hierarchical Model 7: Region-level temperature predictor and categorical antecedent agriculture (AG) 
predictor (red: high AG; blue: low AG) for (A) intercept and (B) slope. Within each region, RICHTOL (richness-weighted mean tolerance 
of taxa at a basin) is modeled as a linear function of URB (percent urban land cover) as shown in eq. 12 (Template 3, basin level). Across 
regions, intercepts (A) and slopes (B) are modeled as a function of regional temperature (in degrees Celsius) and categorical antecedent 
agriculture as shown in eqs. 13, 14, and 15 (Template 3, region level)
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Table 20. Regional intercept (α
j
) and slope (β

j
) coefficient estimates, representing regional background 

condition prior to urbanization and regional rate of change with urbanization, respectively, hyperparameter 
intercept and slope coefficient estimates ( 0 1 0 1,  ,  ,  and k k          + + ), and variance coefficient 
estimates ( )2 2 2,  ,  y      for invertebrate response RICHTOL Models 6–8.  

[See table 5 (p. 18) for model definitions]

Model 6 Model 7 Model 8

αj βj αj βj αj βj

ATL 5.20 1.75 5.18 1.79 5.17 1.80
BIR 4.59 2.03 4.69 1.97 4.61 2.19
BOS 4.22 2.31 4.17 2.40 4.23 2.01
DEN 5.97 0.32 5.94 0.28 5.96 0.27
DFW 6.97 –0.39 6.98 –0.33 6.92 –0.14
MGB 5.35 0.50 5.36 0.51 5.41 0.34
POR 4.35 2.13 4.31 2.24 4.39 1.87
RAL 4.99 1.89 4.98 1.87 4.98 1.94
SLC 4.08 2.56 4.19 2.37 4.11 2.56

2
y 0.275 0.275 0.276

0 k  + highAG (k=1): 5.547
lowAG (k=0): 3.721

highAG (k=1): 4.570
lowAG (k=0): 2.943

highAG (k=1): 4.881
lowAG (k=0): 3.276

1 0.007 0.129 0.103

0 k  + highAG (k=1): 0.686
lowAG (k=0): 2.964

highAG (k=1): 1.036
lowAG (k=0): 3.057

highAG (k=1): 0.663
lowAG (k=0): 2.850

1 –0.007 –0.075 –0.006

2


Region (  j): 0.306
AG (k): 1.713

Region (  j): 0.044
AG (k): 1.339

Region (  j): 0.063
AG (k): 1.306

2


Region (  j): 0.089
AG (k): 2.667

Region (  j): 0.015
AG (k): 2.065

Region (  j): 0.049
AG (k): 2.424
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Model 8: AG (Categorical), PRECIP, and TEMP 
Region-Level Predictors

Model 8 combines a region-level temperature predictor 
for the intercept with a region-level precipitation predictor for 
the slope and continues to include the categorical antecedent 
agriculture predictor for both without interaction. Coefficients 
and model structure are identical to Models 6 and 7 with 
intercept terms predicted by temperature and slope terms 
predicted by precipitation.

NMDS1 results (fig. 43; table 17) duplicate those 
of Model 7 for intercept (fig. 39A) and Model 6 for slope 
(fig. 35B), with quantitative fit between those for Models 6 
and 7 (DIC = 474.4 relative to DIC = 471.4 for Model 6 and 
DIC = 479.5 for Model 7, table 8). This means intercept 
increased with temperature and negative slope became 
more negative with precipitation. Fit improved from that of 
Model 4 (DIC = 484.0 , table 8) with the addition of categori-
cal agriculture but was not better than the fit for Model 6, 
which used only region-level precipitation and categorical 
agriculture. Therefore, it appears that region-level precipita-
tion describes baseline NMDS1 condition at zero urbanization 
more accurately than region-level temperature. This may be 
because an annual mean temperature measure averages over 
temporal variation resulting in more uncertainty and less 
descriptive power than a measure of cumulative precipitation. 
High antecedent agriculture continued to correlate with lower 
intercepts and flatter slopes with a large predictive distinction 
between high and low antecedent agriculture groups.

For RICH, Model 8 was the only model that was able 
to differentiate between high and low AG in the presence of 
an additional continuous physical predictor variable. As in 
Model 5, high antecedent agriculture was associated with 
lower average intercepts (fig. 44A) and flatter average slopes 
(fig. 44B). However, visually, there did not appear to be a large 
distinction between the two AG groups, with much observed 
overlap and small between-agriculture-group variance  
( 2

  = 0.007 and 2
  = 0.018, table 19). Similar patterns 

of intercept increase with temperature and negative slope 
decrease with precipitation were observed in Model 8 as in 
Model 4 (fig. 28), accompanied by slight DIC improvement 
with the addition of AG (from 337.7 for Model 4 to 336.5 for 
Model 8, table 8). 

For EPTRICH, when the effect of low or high antecedent 
agriculture is additionally considered as a grouping factor, 
the effects of both temperature and precipitation do not 
change from Model 4 (fig. 29). That is, within each group, the 
intercept slightly increases with increasing annual temperature 
(fig. 45A) and the negative slope decreases further with 
increasing precipitation (fig. 45B). Additionally, the group 
of high antecedent agriculture (DEN, DFW, and MGB) has 
lower intercept and higher slope on average. As a result, 
this additional grouping improves the quantitative fitness of 
Model 8 (DIC = 345.6, table 8) over EPTRICH Model 4  
(DIC = 353.7, table 8). 

Similar to NMDS1, RICHTOL results (fig. 46; table 20) 
duplicate those of Model 7 for intercept and Model 6 for slope, 
with quantitative fit between those for Models 6 and 7  
(DIC = 404.1 relative to DIC = 417.8 for Model 6 and 
DIC = 410.4 for Model 7, table 8). Direction of change in 
intercepts and slopes with temperature and precipitation was 
the same as in Model 4 (fig. 30), with intercept increasing 
with temperature (fig. 46A) and slope becoming less positive 
with precipitation (fig. 46B). Both high and low AG groups 
followed these trends with high AG regions tending to have 
higher tolerance and flatter slopes. As AG helped explain 
differences in intercepts and slopes, model fit improved over 
that of Model 4 (DIC = 412.7, table 8).

Model Interpretation
Precipitation, air temperature and antecedent agricultural 

were all found to affect the response of macroinvertebrates to 
urbanization in different ways.

Effect of Precipitation
NMDS1, RICH, and EPTRICH exhibit the same 

pattern of increasing intercept with precipitation. Logically, 
RICHTOL responds oppositely with decreasing intercept 
across precipitation. This means that, in general, ecological 
condition before urbanization was found to improve with 
precipitation. This makes sense ecologically because it shows 
that, at zero urbanization, regions with higher annual rainfall 
have greater baseline abundance and richness than regions 
with less rain. That is, there is a greater amount and diversity 
of organisms in wet climates as opposed to dry climates. 
Since organisms require water to live, this result is well 
supported by biology. At zero urbanization, regions with an 
abundance of annual rain also have lower richness-weighted 
tolerance values than regions with less rain. This means, when 
there is an abundance of rain, less tolerant organisms can 
survive but when there is less rain, even at zero urbanization, 
organisms that are more tolerant (hardy) will thrive. In drier 
regions, baseline sites have more tolerant organisms without 
even considering the effect of urbanization. Additionally, 
precipitation is correlated with vegetation. In order for forests 
to exist, a certain amount of precipitation is needed. Regions 
with higher precipitation tend to be more heavily forested than 
regions with lower precipitation, which tend to be dominated 
by grass- or shrublands. Forested regions are more conducive 
to supporting a diverse assemblage of invertebrates because 
they moderate extremes in air and water temperatures, reduce 
extremes in streamflow, reduce erosion and sedimentation, 
support more diverse and stable habitats, incorporate fewer 
sources of chemical contamination, and provide more variable 
and sustainable food sources. Therefore, higher precipitation 
almost always corresponded to higher adjusted ordination 
score, richness, and EPT richness and lower tolerance at  
zero urbanization.
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Figure 43. NMDS1 multilevel hierarchical Model 8: Region-level temperature and categorical antecedent agriculture (AG) predictors 
(red: high AG; blue: low AG) for (A) intercept and region-level precipitation and categorical antecedent agriculture predictors for 
(B) slope. Within each region, NMDS1 (first axis adjusted nonmetric multidimensional scaling site score) is modeled as a linear function 
of URB (percent urban land cover) as shown in eq. 12 (Template 3, basin level). Across regions, intercepts (A) are modeled as a function 
of regional temperature and categorical antecedent agriculture and slopes (B) are modeled as a function of regional precipitation and 
categorical antecedent agriculture as shown in eqs. 13, 14, and 15 (Template 3, region level)

Figure 44. RICH multilevel hierarchical Model 8: Region-level temperature and categorical antecedent agriculture (AG) predictors (red: 
high AG; blue: low AG) for (A) intercept and region-level precipitation and categorical antecedent agriculture predictors for (B) slope. 
Within each region, RICH (total taxa richness) is modeled as a log-linear function of URB (percent urban land cover) as shown in eqs. 18 
and 19 (Template 3, basin level). Across regions, intercepts (A) are modeled as a function of regional temperature and categorical 
antecedent agriculture and slopes (B) are modeled as a function of regional precipitation and categorical antecedent agriculture as 
shown in eqs. 13, 14, and 15 (Template 3, region level)
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Figure 45. EPTRICH multilevel hierarchical Model 8: Region-level temperature and categorical antecedent agriculture (AG) predictors 
(red: high AG; blue: low AG) for (A) intercept and region-level precipitation and categorical antecedent agriculture predictors for 
(B) slope. Within each region, EPTRICH (combined richness of Ephemeroptera, Plecoptera, and Trichoptera orders) is modeled as a 
log-linear function of URB (percent urban land cover) as shown in eqs. 18 and 19 (Template 3, basin level). Across regions, intercepts  
(A) are modeled as a function of regional temperature and categorical antecedent agriculture and slopes (B) are modeled as a function 
of regional precipitation and categorical antecedent agriculture as shown in eqs. 13, 14, and 15 (Template 3, region level)

Figure 46. RICHTOL multilevel hierarchical Model 8: Region-level temperature and categorical antecedent agriculture (AG) predictors 
(red: high AG; blue: low AG) for (A) intercept and region-level precipitation and categorical antecedent agriculture predictors for 
(B) slope. Within each region, RICHTOL (richness-weighted mean tolerance of taxa at a basin) is modeled as a linear function of URB 
(percent urban land cover) as shown in eq. 12 (Template 3, basin level). Across regions, intercepts (A) are modeled as a function of 
regional temperature and categorical antecedent agriculture and slopes (B) are modeled as a function of regional precipitation and 
categorical antecedent agriculture as shown in eqs. 13, 14, and 15 (Template 3, region level)
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The few exceptions to this pattern in intercepts occurred 
when categorical antecedent agriculture (AG) was added to the 
models, after which EPTRICH intercept no longer responded 
to precipitation, and RICHTOL intercept actually increased 
with increasing precipitation. Even though EPTRICH intercept 
increases with precipitation when modeled alone (fig. 21A), 
EPTRICH pre-urbanization condition is likely more affected 
by antecedent agriculture levels than by precipitation, thereby 
reducing the explanative capacity of precipitation once AG is 
included in the model (fig. 37A). Additionally, regions with 
high AG tend to have low precipitation, which may confound 
the two predictors. SLC, in contrast, has low AG and low 
precipitation. In fact, the unusually low intercept of this SLC 
outlier, combined with generally high model variability and 
low region sample size, may be causing the apparent reversal 
of the RICHTOL intercept pattern with precipitation after the 
inclusion of AG (figs. 38A–42A).

NMDS1, RICH, and EPTRICH also exhibit the same pat-
tern of decreasing (negative) slope with precipitation. RICH-
TOL again responds oppositely with increasing (positive) 
slope with precipitation (although only when intercept was 
also modeled with precipitation). This means that measures of 
ecological condition decline faster with increasing urbaniza-
tion (have more negative slopes) in regions with more rain 
than in regions with less rain. That is, regions with an abun-
dance of rainfall experience more drastic ecological disruption 
than dry regions for the same amount of urbanization. This 
result is likely because more rain ensures that the byproducts 
of urbanization (sediment, chemicals, pollutants) run off into 
the streams, therefore decreasing ecosystem quality more for 
the same amount of urbanization. Increased precipitation also 
exacerbates the effect of urbanization by way of changes in 
hydrology. When a region has an abundance of rain, urbaniza-
tion can affect flow through less infiltration, less groundwater 
flow, faster transfer to stream channels through drains, higher 
and shorter duration high flows, lower and longer duration low 
flows, less available aquatic habitat, and numerous changes in 
channel shape and incision. In places where rainfall is less, the 
same amount of urbanization causes less ecosystem damage 
and, hence, has a (negative) slope of smaller absolute value 
with urbanization. Most slopes of change in tolerance with 
urbanization are positive (urbanization is related to macroin-
vertebrate communities of higher tolerance) and increase as 
precipitation increases. This is for the same reason—in regions 
where there is an abundance of rain, tolerance increases faster 
with urbanization than in regions that have less rain. 

When antecedent agriculture is included in the model 
(figs. 38B, 46B) or when intercept is modeled with temperature 
instead of precipitation (fig. 30B), RICHTOL slope instead 
decreases with precipitation. This result could be due to the 
fact that the influence of antecedent agriculture is overriding 
the effect of precipitation. Even though AG is not explicitly 
included in the model with temperature-predicted intercept, it 
is clear that the regions with high AG form a separate group 
from the rest of the low AG regions, potentially obscuring 
a precipitation driver. A similar decreasing of precipitation 

influence can be seen for EPTRICH when the addition of an 
AG predictor flattens the relation between EPTRICH slope 
with urbanization and precipitation (fig. 37B) compared to the 
precipitation slope model without AG (fig. 21B).

Effect of Temperature

The relation of ecological condition with temperature is 
not clear from this modeling effort. NMDS1 and RICHTOL 
intercepts both increase with increasing temperature (although 
with significant variability) while RICH and EPTRICH 
intercepts do not vary systematically with temperature. When 
slope is predicted by precipitation alone or precipitation 
and antecedent agriculture, RICH and EPTRICH intercepts 
increase slightly with temperature (but, again, with variabil-
ity). It appears that there may be an optimal temperature range 
for some macroinvertebrate responses (regions with median 
average temperature values tend to have highest NMDS1 and 
EPTRICH intercepts) above and below which pre-urbanization 
ecological condition declines because it is either too hot or too 
cold to produce maximum community population health. 

This final interpretation is supported by biology. 
Invertebrates are known to have thermal optima where their 
growth, survival, and fecundity are at their peak (Sweeney 
and Vannote, 1978). Theoretically, regions with low annual 
temperatures have less thermal variability and would probably 
support fewer taxa. Regions such as RAL, ATL, and BIR 
have warm summer periods and cool winter periods so they 
can support both warm and cool adapted species. However, 
there is too much variability in the temperature models to 
unequivocally decipher this pattern in these data. Contrary to 
original assumptions, model results show that precipitation 
more clearly and consistently explains differences in regional 
macroinvertebrate conditions prior to urbanization. Perhaps 
a linear relation is not the best model form to use to capture 
the effect of temperature. Using an annual temperature mean 
may capture seasonal temperature variation that could be 
driving ecological response differences, resulting in a time 
scale mismatch problem. Alternately, perhaps the perceived 
explanatory power of precipitation is spurred by its correlation 
with antecedent agriculture.

A consistent relation between temperature and rate of 
urbanization for the four ecological measures does not appear 
to exist. NMDS1 slope becomes more negative with increas-
ing temperature, while RICH slopes becomes less negative 
and EPTRICH slope does not change with temperature. 
RICHTOL slope with urbanization becomes less positive with 
temperature. This means warmer temperatures are increasing 
the effect of urbanization for NMDS1, decreasing the effect 
of urbanization for RICH and RICHTOL, and not affecting 
EPTRICH. These relations, again, are not clear and involve 
scatter. Qualitatively, it seems like precipitation also has a 
tighter relation with slope than temperature. It makes sense 
logically that precipitation would have more direct effects on 
urbanization than temperature. Urbanization in cold places is 
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likely similar to urbanization in warm places, while urbaniza-
tion in wet places is different from urbanization in dry places. 
When AG is included as a slope predictor with temperature 
for most measures (figs. 39B, 41B, 42B), it is clear that 
AG explains more than temperature does for all ecological 
responses except EPTRICH (fig. 40B).

Effect of Antecedent Agriculture

Ecological condition prior to urbanization is consistently 
poorer for regions with high antecedent agricultural activity 
than regions with low antecedent agriculture. NDMS1, 
RICH, and EPTRICH intercepts decrease with AG, and 
RICHTOL intercepts increase with AG when AG is modeled 
either continuously or categorically. This result is intuitive. 
As agricultural land was already disturbed from a natural 
state prior to urbanization, ecological communities living in 
past agricultural areas are more degraded than communities 
in past non-agricultural areas even at zero urbanization. If 
previous agricultural activity changed the macroinvertebrate 
community composition to include more pollutant-resistant 
species, ordination would be able to readily detect this shift 
in assemblage structure and the shift would also likely be 
reflected in lower richness and EPT richness and higher 
richness-weighted tolerance. 

 When AG is modeled continuously, RICH intercepts 
have high variability for the low antecedent agriculture 
group (fig. 32A). This large range of intercept values for all 
regions having low AG likely contributes to the fact that both 
precipitation and temperature mask the effect of agriculture 
when RICH is modeled with both an environmental and AG 
influence (figs. 36A and 40A). This masking does not occur 
for any other response variable. Also, low intercepts for DEN, 
DFW, and MGB match better with the precipitation pattern 
(all three high-agriculture regions happen to have lower 
precipitation values, so they are close to each other on the 
precipitation axis) than with the temperature pattern (MGB 
and DEN have low temperature and DFW has high tempera-
ture, so their similar, low intercepts are not near each other on 
the temperature axis). This distribution of precipitation values 
could possibly be making it look like precipitation is a better 
predictor than temperature, when really the important predic-
tor is antecedent agriculture.

Similarly, rate of decline in ecological condition with 
urbanization is consistently faster for regions with low 
antecedent agriculture. That is, all macroinvertebrate measures 
show slopes closer to zero (less negative slopes for NMDS1, 
RICH, and EPTRICH, and less positive slopes for RICHTOL) 
for regions with high AG parameterized both continuously 
and categorically. Agricultural disturbance dampens the effect 
of urban disturbance on macroinvertebrates. Since ecological 
communities in regions with a lot of previously converted 
agricultural land have already been disturbed, there is little 
further decline in macroinvertebrate response with urbaniza-
tion compared to regions where urbanization starts with less 
disturbed land cover. This pattern is likely observed because 

the macroinvertebrates living in areas with a lot of antecedent 
agriculture have already been degraded by the effects of 
agriculture and are, therefore, less influenced by further  
human activity.

As with intercept, this pattern of slope change with AG 
does not appear to be as strong when ecological condition is 
measured using total taxa richness. Slopes for POR and BIR 
are estimated as low (close to zero) as average slopes for the 
high AG group (fig. 32B) and, therefore, a categorical AG 
predictor is not able to distinguish differences in overall slope 
trend between regions with high and low AG when precipita-
tion and temperature predictors are included (figs. 36B 
and 40B). Even when the slope dampening effect of high 
agriculture is observed when temperature predicts intercept 
and precipitation predicts slope (fig. 44B), slopes of POR and 
BIR continue to overlap with those of DEN, DFW, and MGB. 
Past agricultural activity may not affect total richness as much 
as it affects abundance-based ordination scores, EPTRICH  
and RICHTOL. 

Conclusions
A multilevel hierarchical modeling approach is an appro-

priate means of describing the multiple tiers of EUSE data 
statistically and ecologically because it allows discernment of 
relations between responses and predictors at multiple scales. 
The connections between urbanization and ecosystem status 
at the basin level are clearer if modeled in a framework that 
accounts for region-level effects, which change the nature of 
the relation between URB and macroinvertebrate community 
response in different regions. In this way, the understanding 
of both the basin- and region-scale effects of urbanization on 
aquatic macroinvertebrate species abundance can be increased, 
and previously unexplained regional differences in response to 
urbanization can be quantified.

General Ecological Trends
Observed changes in intercepts and slopes with region-

level predictors are ecologically interpretable. Intercepts 
represent macroinvertebrate condition at zero urbanization, 
in other words, before urbanization and its effects take place. 
In general, this baseline macroinvertebrate condition prior 
to urbanization is found to be better across all four metrics 
in locations with high rainfall and low previous agriculture. 
That is, regions with high cumulative annual precipitation 
and low antecedent agriculture exhibited invertebrate metric 
values generally considered indicators of healthy streams 
such as high diversity (RICH), high amounts of sensitive 
taxa (EPTRICH and NMDS1 scaled to EPTRICH), and low 
richness-weighted mean tolerance (RICHTOL). These same 
high rain and low antecedent agriculture regions were also 
associated with faster decline of macroinvertebrate com-
munities with urbanization, as measured by steeper slopes 
of change in invertebrate metrics for the same amount of 
increasing urbanization.
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Temperature alone has no consistent effect on mac-
roinvertebrate pre-urban condition or on rate of response 
to urbanization. However, when modeled with antecedent 
agriculture, cold regions show better baseline conditions prior 
to urbanization but faster decline with urbanization when 
combined with low previous agriculture. These multilevel 
hierarchical models demonstrate that the effects of urbaniza-
tion are influenced by both natural (rain, temperature) and 
human factors (antecedent agriculture). To effectively quantify 
the effects of these different factors, it is important to model 
their influences at the appropriate scales, as well as to incorpo-
rate the simultaneous influences of multiple factors. 

Utility of Modeling Methodology

The multilevel hierarchical model structure is a natural 
framework for analyzing data with hierarchical arrangement. 
As part of the EUSE study, such data were collected by 
measuring variables across basins within a region as well as 
higher tier variables across regions. Applying this modeling 
methodology to sets of variables measured at different 
levels located in nested tiers creates better understanding of 
the relation between predictors and responses at multiple 
scales. As opposed to calculating basin-level coefficients 
separately for each region, modeling these data hierarchically 
decreases model uncertainty by borrowing strength from the 
entire dataset (rather than just one region at a time) when 
calculating region specific model coefficients. Alternately, 
using a multilevel hierarchical model is more statistically 
efficient than attempting to account for regional differences 
non-hierarchically using dummy variables. Once multilevel 
hierarchical models are fit to the hierarchical EUSE dataset, 
they provide a means of making predictions about ecological 
effects for regions where there are region-level predictor 
measures but no basin-level measures. This type of inference 
is accomplished by predicting basin-level intercept and slope 
estimates for a new region from the higher tier inter-region 
coefficients and error terms. Model users are unable to make 
such predictions with non-multilevel individual region models, 
which require availability of data at the basin level in order to 
establish regression relations.

Measures of Model Fit

It is difficult to establish a quantitative measure of model 
fit for multilevel hierarchical models with varying parameters 
and forms. Deviance Information Criterion (DIC) attempts to 
quantify the balance between predictive benefits of additional 
variables and drawbacks of overparameterization, but DIC 
values between different model structures are not comparable. 
Additionally, DIC does not capture the scientific validity 
or plausibility of a model, and certain statistical principles 
may influence the relative magnitude of DIC (Spiegelhalter 
and others, 2002). For example, of the eight models tested, 
the model with the smallest DIC for all response variables 

is Model 5, the model that uses a continuous measure of 
antecedent agriculture percentage. However, it is not clear that 
Model 5 offers the best fit to the data. The reason quantitative 
fit of Model 5 is evaluated so highly is because antecedent 
agriculture of the nine regions clusters around two groups so 
that, at the region level, linear regressions are essentially fit 
to two points, resulting in low estimates of variance. In terms 
of interpretability, Model 5 is not necessarily the most useful 
model because there is no sample information for agriculture 
values between the two groups, and it is unclear whether this 
tight linear relation exists across the entire range of possible 
antecedent agriculture percentages.

Variable Limitations

Despite producing reasonable models that link 
urbanization effects to macroinvertebrate response, the use of 
RICHTOL as a measure to represent the ecosystem condition 
has two main limitations. The first being that RICHTOL is 
not a truly continuous variable as it is defined to vary only 
between 0 and 10. In theory, this limitation can be fixed 
through adopting the logit transformation on the variable. 
However, in this case, the logit transformation does not help 
since most values are centered in the middle of the range and 
as such the transformation complicates the interpretability of 
the response variable while slightly increasing the spread of 
the data. Possible limitations of RICH and EPTRICH include 
over-summarization of ecological condition and difficulty of 
communicating Poisson (count based) regression models  
and results.

Variables that condense and combine a large amount of 
information into a few measures (for example, NMDS1 or 
NUII) may not be the most appropriate to use, both in model-
ing patterns and in explaining or understanding what variables 
mean on their own and in relation to other variables. Adjusted 
ordination score (NMDS1) does not unambiguously represent 
macroinvertebrate assemblage data. Ordination is a multivari-
ate method that is designed to summarize the relations among 
sites based on the similarity (or dissimilarity) among the 
assemblages. Ordination is a data reduction technique that 
reduces the dimensionality of the data to typically two or 
three dimensions while retaining as much of the structure in 
the original multidimensional data as possible. Conceptually, 
the dimensions of the ordination (ordination axes) can be 
associated with derived environmental gradients that capture 
the major axes of variability (that is, assemblage change) 
in the datasets. Sites are located along these axes such that 
sites with similar assemblages are located close together and 
dissimilar sites are located far apart. Consequently, the relative 
position of sites along the ordination axes has ecological 
meaning in that it represents degree of ecological community 
difference. The ordination axis explaining this difference 
can then be attributed to an environmental change such as 
urbanization. The relative distances among sites can then be 
interpreted as responses to urbanization by plotting ordination 
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scores against an explanatory variable such as urban intensity. 
Ordination analysis would appear to be an ideal method of 
analyzing responses along an urbanization gradient since 
these methods are designed to detect assemblage changes 
along potential explanatory gradients. However, there are a 
number of problems associated with ordination that make it 
difficult to use ordination results in multilevel analyses and to 
communicate ordination results to water-resource managers. 
Despite producing models with interpretable effects on 
macroinvertebrate abundance, it is not clear that NMDS1 is 
the best measure to represent ecosystem condition. 

The calculation of ordination score obfuscates the details 
of actual ecological condition found in the original data. 
Complex matrix manipulation does not identify which basins 
are grouped in which ways. For basins with similar NMDS1 
values, it is not clear which species these basins have in com-
mon nor is it clear exactly how similarities change for basins 
with dissimilar NMDS1 values. For example, what if two 
basins have different amounts of different species (dissimilar 
macroinvertebrate assemblages) but both basins represent a 
poor ecological condition? It is possible that the two basins 
would be far apart in ordination space yet they each represent 
a negative effect of urbanization. Unadjusted ordination scores 
are directionless prior to chosen interpretation; they are only 
a measure of relative assemblage change. Ordination axes 
are only latent variables that account for variability in the 
original data. Counter to intuition, increasing or decreasing 
ordination score values have no absolute meaning until 
assigned by adjustment relative to another variable. But, how 
can an adjusted unidirectional continuous axis then be used 
to describe ecological response if there may be multiple but 
different ways to be ecologically unhealthy? 

Ordination analysis also requires cumbersome recalcula-
tion of all values every time a basin is added to or removed 
from a dataset, making the measure impractical and incon-
sistent within regions. Removal of one data point should not 
have an effect on the response value of a different data point. 
While NMDS1 site scores are related to relative measures 
of assemblage similarity the actual units of measure are not 
clearly defined, consequently it is not known whether they 
follow a linear, logarithmic, or other kind of systematic scale. 
That is, there is no simple definition of what an NMDS1 value 
means. This ambiguity makes changes in NMDS1 difficult to 
communicate to both scientists and environmental managers. 

Perhaps of greatest relevance to multilevel modeling is 
the question of whether ordination scores derived indepen-
dently for different metropolitan regions are ecologically 
comparable among metropolitan regions. That is, does a 
change from 0.5 to 1.5 units on the ordination axis in BOS 
have the same meaning for POR? The consistency of vari-
able definition between regions is important for multilevel 
modeling because the logic of complete pooling relies on it. 
The interpretation reliability between regions is complicated 
by the rescaling required to place ordination in a consistent 
ecological context. For example, in this study, the ordinations 
were rescaled so that the first site axis scores decreased with 

increasing urbanization and ranged from a maximum value at 
minimum urbanization to zero at maximum urbanization. This 
rescaling eliminated negative numbers and preserved the range 
of the original ordination scores and the distances among 
sites. Rescaling the axis scores in this manner facilitates 
comparability among metropolitan regions by preserving the 
relative distances among sites and the differences in the range 
of ordination scores among metropolitan regions. However, 
an NMDS1 of 2 in BOS still does not have the exact same 
meaning in terms of macroinvertebrate assemblage status as 
an NMDS1 of 2 in POR. Hence comparing the two regions 
on the same scale of NMDS1 values is not entirely valid. 
This inconsistency presents theoretical objections to pooling 
NMDS1 values between regions as part of the hierarchical 
modeling calculations as the actual numbers mean different 
things in different regions. 

The comparability of NMDS1 multilevel response 
models to models based on more straight forward assemblage 
response metrics (EPTRICH, RICHTOL) provides empirical 
evidence that the independently derived ordination scores 
captured regional scale differences in the change in inverte-
brate assemblages across the urbanization gradient. While 
the ordinations provided ecologically meaningful results that 
incorporate data from the entire assemblage, the complexity 
of calculation, theoretical considerations, and the difficulty of 
explaining what ordination scores represent make this a less 
attractive response variable than metrics that emphasize only 
a portion of the assemblage (EPTRICH) or only one aspect 
of the assemblage (RICHTOL). Ordination is a valuable tool 
for analyzing assemblages, and it is only through the use of 
these more powerful tools that confidence can be gained in the 
presentation of the more simple metrics. But for the reasons 
listed above, directly measurable total richness, EPT richness, 
and richness-weighted tolerance may be better metrics to use 
to quantify stream ecosystem macroinvertebrate assemblages. 
Although NMDS has data summarizing advantages that met-
rics lack, the data analysis tools must fit the analysis methods, 
and it is not clear that ordination scores are an appropriate 
response variable to use in inter-region hierarchical modeling. 

A similar problem with information condensation exists 
for the National Urban Intensity Index (NUII) predictor 
metric. The NUII predictor is an artificially scaled amalgama-
tion of multiple covarying variables that have been scaled 
to account for regional differences in the rates at which the 
component variables (housing density, road density, percent-
age developed land) change across metropolitan regions. A 
benefit of combining covarying variables from different data 
sources is to prevent possible errors in one data source from 
biasing the whole index. Multimetric measures such as NUII 
are commonly used in bioassessment for this reason. However, 
there is no statistical strength in combining multiple covarying 
variables because no new information is gained. Additionally, 
because NUII combines many different measures into one 
score, it is hard to define explicitly what that score represents. 
There is no definition, for example, for what a NUII of 30 
means. Similar to NMDS1, NUII is calculated and calibrated 
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per dataset so a NUII value cannot be measured on its own. 
Instead, a NUII value is dependent on the range of data in the 
dataset, and the entire set of NUII values has to be recalculated 
for every new data point. Therefore, NUII is not a clear, 
consistent, and unchanging measurement. Additionally, from 
a multilevel modeling standpoint, NUII already attempts to 
incorporate regional differences, though in a more primitive 
manner than multilevel modeling. Because of this, using NUII 
as a predictor in multilevel models may, in fact, confound 
regional and basin influences. It is statistically and intuitively 
more appropriate to directly account for regional differences 
at a higher tier in the multilevel models than to indirectly 
attempt to do so using NUII as a lower tier predictor. For these 
reasons, percentage of urban land cover was chosen over NUII 
as the basin-level predictor variable in this analysis.

Metrics should be simple, consistent, measurable, and 
usable. Metrics should be easy to obtain and easy for mangers 
to understand them in environmental models and decisions. 
Ultimately, neither NMDS1 nor NUII fulfill these criteria. 

Future Directions

The next immediate model building step in this research 
is the implementation of WinBUGS fully Bayesian methodol-
ogy to replace lmer convergence problems, incorporate prior 
information, and report distributions of model coefficients 
rather than just point estimates. Once methodology is 
upgraded, more specific and management orientated model 
drivers can be developed by incorporating other basin-level 
and region-level predictor variables, including alternate urban-
ization indicators resulting from the decomposition of NUII. 
This modeling approach can also be expanded to evaluate the 
effect of urbanization on algae and fish assemblages. Using 
region-level coefficients, ecological effects can be predicted 
in regions for which only region-level predictor measures 
exist and compared to future real world measurements (for 
example, datasets to be collected in Chicago, Anchorage, and 
Seattle). Development and implementation of quantitative 
model evaluation and verification criteria are essential in order 
to be able to judge the quality of results.
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Appendix

R Code for Results and Analysis

#Analysis section of USGS report

library(arm)

dataDIR <- “z:/EUSE/Data”

## the data

EUSE <- read.csv(paste(dataDIR,”EUSE_USGSReportData.csv”, sep=”/”), header=T)     

attach(EUSE)

n<-9

REGION.name <- as.vector(REGION)   #length(REGION.name)=261 (datapoints)-no 
Denver outlier

uniqREGION <- unique(REGION.name)

REGIONprecip<-tapply(AnnMeanP,REGION,mean)

REGIONtemp<-tapply(AnnMeanT,REGION,mean)

REGIONbackag<-rep(NA,n)

P.NLCD78<-P.NLCD7+P.NLCD8

for (i in 1:9){

  REGIONbackag[i]<-mean(P.NLCD78[REGION.UII<=10&REGIONindex==i])

}

REGIONbackag.cat<-rep(NA,n)

for (i in 1:9){

if (REGIONbackag[i]<=50){

  REGIONbackag.cat[i]<-0

  } else {

  REGIONbackag.cat[i]<-1

  }

}
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## the models

#set urban predictor

URB<-P.NLCD2/100

#set eco response variable-- pick one and uncomment it

#REGULAR LINEAR REGRESSION

#ECO<-NMDS1; ECO.name<-”NMDS1”

#ECO<-RICHTOL; ECO.name<-”RICHTOL”

#POISSON GENERALIZED LINEAR REGRESSION

ECO<-RICH; ECO.name<-”RICH”

#ECO<-EPTRICH; ECO.name<-”EPTRICH”

##########################################################

## REGULAR LINEAR REGRESSION-- NMDS1 and RICHTOL

#complete pooling

lm.pooled <- lm(ECO ~ URB)      #one slope and one intercept

#no pooling (separate slopes and intercepts)

ab.hat.unpooled <- array (NA, c(n,2))

for (j in 1:n){

  lm.unpooled <- lm (ECO ~ URB, subset=(REGIONindex==j))       #9 (separate) 
slopes and 9 (separate) intercepts

  ab.hat.unpooled[j,] <- summary(lm.unpooled)$coef[,1]

}

#partial pooling- varying intercept and slope by group

#MODEL 1:  no group-level predictor

M1 <- lmer(ECO ~ URB + (1+URB|REGION))
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#MODEL 2:  precip group-level predictor

M2 <- lmer(ECO ~ URB + REGIONprecip[REGION] + URB:REGIONprecip[REGION]+(1+URB|
REGION))

#MODEL 3:  temp group-level predictor

M3 <- lmer(ECO ~ URB + REGIONtemp[REGION] + URB:REGIONtemp[REGION]+(1+URB|REGI
ON))

#MODEL 4:  temp group-level predictor for intercept; precip predictor for 
slope

M4 <- lmer(ECO ~ URB + REGIONtemp[REGION] + URB:REGIONprecip[REGION]+(1+URB|RE
GION))

#MODEL 5:  antecedent ag+past group-level predictor

M5 <- lmer(ECO ~ URB + REGIONbackag[REGION] + URB:REGIONbackag[REGION]+(1+URB|
REGION))

#MODEL 6:  categorical ag, precip group-level predictor

M6 <- lmer(ECO ~ URB + REGIONprecip[REGION] + URB:REGIONprecip[REGION]+(1+URB|
REGION)+(1+URB|REGIONbackag.cat[REGION]))

#MODEL 7:  categorical ag, temp group-level predictor

M7 <- lmer(ECO ~ URB + REGIONtemp[REGION] + URB:REGIONtemp[REGION]+(1+URB|REGI
ON)+(1+URB|REGIONbackag.cat[REGION]))

#MODEL 8:  categorical ag, temp group-level predictor for intercept; precip 
predictor for slope

M8 <- lmer(ECO ~ URB + REGIONtemp[REGION] + URB:REGIONprecip[REGION]+(1+URB|RE
GION)+(1+URB|REGIONbackag.cat[REGION]))

##########################################################

## GENERALIZED (POISSON) LINEAR REGRESSION-- RICH and EPTRICH

#complete pooling
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lm.pooled <- glm (ECO ~ URB,family=poisson)      

#one slope and one intercept

#no pooling (separate slopes and intercepts)

ab.hat.unpooled <- array (NA, c(n,2))

for (j in 1:n){

lm.unpooled <- glm (ECO ~ URB, subset=(REGIONindex==j),family=poisson)       

#9 (separate) slopes and 9 (separate) intercepts

  ab.hat.unpooled[j,] <- summary(lm.unpooled)$coef[,1]

}

#partial pooling- varying intercept and slope by group

#MODEL 1:  no group-level predictor

M1 <- glmer(ECO ~ URB + (1+URB|REGION),family=poisson)

#MODEL 2:  precip group-level predictor

M2 <- glmer(ECO ~ URB + REGIONprecip[REGION] + URB:REGIONprecip[REGION]+(1+URB
|REGION),family=poisson)

#MODEL 3:  temp group-level predictor

M3 <- glmer(ECO ~ URB + REGIONtemp[REGION] + URB:REGIONtemp[REGION]+(1+URB|REG
ION),family=poisson)

#MODEL 4:  temp group-level predictor for intercept; precip predictor for 
slope

M4 <- glmer(ECO ~ URB + REGIONtemp[REGION] + URB:REGIONprecip[REGION]+(1+URB|R
EGION),family=poisson)

#MODEL 5:  antecedent ag+past group-level predictor

M5 <- glmer(ECO ~ URB + REGIONbackag[REGION] + URB:REGIONbackag[REGION]+(1+URB
|REGION),family=poisson)

#MODEL 6:  categorical ag, precip group-level predictor
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M6 <- glmer(ECO ~ URB + REGIONprecip[REGION] + URB:REGIONprecip[REGION]+(1+URB
|REGION)+(1+URB|REGIONbackag.cat[REGION]),family=poisson)

#MODEL 7:  categorical ag, temp group-level predictor

M7 <- glmer(ECO ~ URB + REGIONtemp[REGION] + URB:REGIONtemp[REGION]+(1+URB|REG
ION)+(1+URB|REGIONbackag.cat[REGION]),family=poisson)

#MODEL 8:  categorical ag, temp group-level predictor for intercept; precip 
predictor for slope

M8 <- glmer(ECO ~ URB + REGIONtemp[REGION] + URB:REGIONprecip[REGION]+(1+URB|R
EGION)+(1+URB|REGIONbackag.cat[REGION]),family=poisson)

##########################################################

#MODEL COEFFICIENTS--can use for all ECO response variables, one at a time

a.hat.M1 <- coef(M1)$REGION[,1]

b.hat.M1 <- coef(M1)$REGION[,2]

a.hat.M2 <- coef(M2)$REGION[,1] + coef(M2)$REGION[,3]*REGIONprecip

b.hat.M2 <- coef(M2)$REGION[,2] + coef(M2)$REGION[,4]*REGIONprecip

a.se.M2 <- se.ranef(M2)$REGION[,1]

b.se.M2 <- se.ranef(M2)$REGION[,2]

a.hat.M3 <- coef(M3)$REGION[,1] + coef(M3)$REGION[,3]*REGIONtemp

b.hat.M3 <- coef(M3)$REGION[,2] + coef(M3)$REGION[,4]*REGIONtemp

a.se.M3 <- se.ranef(M3)$REGION[,1]

b.se.M3 <- se.ranef(M3)$REGION[,2]

a.hat.M4 <- coef(M4)$REGION[,1] + coef(M4)$REGION[,3]*REGIONtemp

b.hat.M4 <- coef(M4)$REGION[,2] + coef(M4)$REGION[,4]*REGIONprecip

a.se.M4 <- se.ranef(M4)$REGION[,1]

b.se.M4 <- se.ranef(M4)$REGION[,2]
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a.hat.M5 <- coef(M5)$REGION[,1] + coef(M5)$REGION[,3]*REGIONbackag

b.hat.M5 <- coef(M5)$REGION[,2] + coef(M5)$REGION[,4]*REGIONbackag

a.se.M5 <- se.ranef(M5)$REGION[,1]

b.se.M5 <- se.ranef(M5)$REGION[,2]

M6.fixef <- fixef(M6)

M6.ranef <- ranef(M6)

M6.seranef <- se.ranef(M6)

a.hat.M6 <- M6.fixef[1] + M6.ranef[[1]][,1] + M6.ranef[[2]]
[c(1,1,1,2,2,2,1,1,1),1] + M6.fixef[3]*REGIONprecip

b.hat.M6 <- M6.fixef[2] + M6.ranef[[1]][,2] + M6.ranef[[2]]
[c(1,1,1,2,2,2,1,1,1),2] + M6.fixef[4]*REGIONprecip

a.se.M6 <- M6.seranef[[1]][,1]

b.se.M6 <- M6.seranef[[1]][,2]

M7.fixef <- fixef(M7)

M7.ranef <- ranef(M7)

M7.seranef <- se.ranef(M7)

a.hat.M7 <- M7.fixef[1] + M7.ranef[[1]][,1] + M7.ranef[[2]]
[c(1,1,1,2,2,2,1,1,1),1] + M7.fixef[3]*REGIONtemp

b.hat.M7 <- M7.fixef[2] + M7.ranef[[1]][,2] + M7.ranef[[2]]
[c(1,1,1,2,2,2,1,1,1),2] + M7.fixef[4]*REGIONtemp

a.se.M7 <- M7.seranef[[1]][,1]

b.se.M7 <- M7.seranef[[1]][,2]

M8.fixef <- fixef(M8)

M8.ranef <- ranef(M8)

M8.seranef <- se.ranef(M8)

a.hat.M8 <- M8.fixef[1] + M8.ranef[[1]][,1] + M8.ranef[[2]]
[c(1,1,1,2,2,2,1,1,1),1] + M8.fixef[3]*REGIONtemp

b.hat.M8 <- M8.fixef[2] + M8.ranef[[1]][,2] + M8.ranef[[2]]
[c(1,1,1,2,2,2,1,1,1),2] + M8.fixef[4]*REGIONprecip

a.se.M8 <- M8.seranef[[1]][,1]
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b.se.M8 <- M8.seranef[[1]][,2]

#GRAPHS###################################################

#ONE 9-REGION x vs. y--- for regular linear regressions (AV1 or RICHTOL)

#M1: no group-level predictors

OUT<-”z:/EUSE/USGS Report/Inverts/USGS Final report drafts and comments/Final 
NMDS1 Figs”

postscript(file=paste(OUT, “USGS.M1.eps”,sep=”/”), width=8, height=8.5, 
horizontal=F, paper=”special”)

par (mfrow=c(3,3), mar=c(4,4,3,1), oma=c(1,1,2,1))

for (j in 1:n){

plot (URB[REGIONindex==j]*100, ECO[REGIONindex==j], xlim=c(min(URB*100)
,max(URB*100)),         ylim=c(min(ECO[!is.na(ECO)==TRUE]),max(ECO[!is.
na(ECO)==TRUE])),xlab=”URB”, ylab=ECO.name, cex=1.5, cex.lab=1.2, cex.
axis=1.2,main=uniqREGION[j],cex.main=1.5)

curve (coef(lm.pooled)[1] + coef(lm.pooled)[2]/100*x, lwd=.5, lty=2, 
add=T)        #completely pooled=dashed line

curve (ab.hat.unpooled[j,1] + ab.hat.unpooled[j,2]/100*x, lwd=.5, 
col=”gray10”, add=T)   #unpooled=black line

curve (a.hat.M1[j] + b.hat.M1[j]/100*x, lwd=1, col=3, add=T)            
#partially pooled- green line

}

dev.off()

#ONE 9-REGION x vs. y--- for Poission generalized linear regressions (TR or 
EPT) 

#M1: no group-level predictors

OUT<-”z:/EUSE/USGS Report/Inverts/USGS Final report drafts and comments/Final 
EPTRICH Figs”

postscript(file=paste(OUT, “USGS.M1.eps”,sep=”/”), width=8, height=8.5, 
horizontal=F, paper=”special”)

par (mfrow=c(3,3), mar=c(4,4,3,1), oma=c(1,1,2,1))

for (j in 1:n){

plot (URB[REGIONindex==j]*100, ECO[REGIONindex==j], xlim=c(0,100), ylim=c
(min(ECO),max(ECO)),xlab=”URB”, ylab=ECO.name, cex=1.5, cex.lab=1.2, cex.
axis=1.2, main=uniqREGION[j], cex.main=1.5)
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curve (exp(coef(lm.pooled)[1] + coef(lm.pooled)[2]/100*x), lwd=.5, lty=2, 
add=T)        #completely pooled=dashed line

curve (exp(ab.hat.unpooled[j,1] + ab.hat.unpooled[j,2]/100*x), lwd=.5, 
col=”gray10”, add=T)   #unpooled=black line

curve (exp(a.hat.M1[j] + b.hat.M1[j]/100*x), lwd=1, col=3, add=T)     
#partially pooled- green line

}

dev.off()

#NINE estimated intercept and slopes across REGION-level predictor--for all 
ECO variables

#M2: precip REGION-level predictor

lower.aM2 <- a.hat.M2 - a.se.M2

upper.aM2 <- a.hat.M2 + a.se.M2

postscript(file=paste(OUT, “USGS.M2.eps”,sep=”/”), width=11.5, height=6, 
horizontal=F,paper=”special”)

par (mfrow=c(1,2),mgp=c(1.5,0.5,0),tck=-0.02,mar=c(3,3,3,1))

plot (REGIONprecip, a.hat.M2, ylim=range(lower.aM2,upper.aM2+0.1),

xlab=”REGION-level annual precipitation”, ylab=expression(paste(“Estimate
d intercept, “, alpha[j])), pch=19,xlim=c(35,170), main=paste(“Multilevel 
Model 2 (“,ECO.name,”),

 intercept with precipitation”))

curve (fixef(M2)[“(Intercept)”] + fixef(M2)[“REGIONprecip[REGION]”]*x, 
lwd=1, col=”black”, add=TRUE)

segments (REGIONprecip, lower.aM2, REGIONprecip, upper.aM2, lwd=.5, 
col=”gray10”)

text(x=REGIONprecip,y=a.hat.M2,labels=uniqREGION,pos=c(4,4,4,4,4,4,4,4,4))

lower.bM2 <- b.hat.M2 - b.se.M2

upper.bM2 <- b.hat.M2 + b.se.M2

 plot (REGIONprecip, b.hat.M2, ylim=range(lower.bM2,upper.bM2),

xlab=”REGION-level annual precipitation”, ylab=expression(paste(“Estimated 
slope, “, beta[j])), pch=19,

    xlim=c(35,170),main=paste(“Multilevel Model 2(“,ECO.name,”),
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 slope with precipitation”))

curve (fixef(M2)[“URB”] + fixef(M2)[“URB:REGIONprecip[REGION]”]*x, lwd=1, 
col=”black”, add=TRUE)

segments (REGIONprecip, lower.bM2, REGIONprecip, upper.bM2, lwd=.5, 
col=”gray10”)

text(x=REGIONprecip,y=b.hat.M2,labels=uniqREGION,pos=c(4,4,4,4,4,4,4,4,4))

dev.off()

#M3: temp REGION-level predictor

lower.aM3 <- a.hat.M3 - a.se.M3

upper.aM3 <- a.hat.M3 + a.se.M3

postscript(file=paste(OUT, “USGS.M3.eps”,sep=”/”), width=11.5, height=6, 
horizontal=F,paper=”special”)

par (mfrow=c(1,2),mgp=c(1.5,0.5,0),tck=-0.02,mar=c(3,3,3,1))

 plot (REGIONtemp, a.hat.M3, ylim=range(lower.aM3,upper.aM3),

xlab=”REGION-level annual temperature”, ylab=expression(paste(“Estimate
d intercept, “, alpha[j])), pch=19, xlim=c(7,20),main=paste(“Multilevel 
Model 3 (“,ECO.name,”),

 intercept with temperature”))

curve (fixef(M3)[“(Intercept)”] + fixef(M3)[“REGIONtemp[REGION]”]*x, lwd=1, 
col=”black”, add=TRUE)

segments (REGIONtemp, lower.aM3, REGIONtemp, upper.aM3, lwd=.5, 
col=”gray10”)

text(x=REGIONtemp,y=a.hat.M3,labels=uniqREGION,pos=c(4,4,4,4,4,4,4,2,4))

lower.bM3 <- b.hat.M3 - b.se.M3

upper.bM3 <- b.hat.M3 + b.se.M3

 plot (REGIONtemp, b.hat.M3, ylim=range(lower.bM3,upper.bM3),

xlab=”REGION-level annual temperature”, ylab=expression(paste(“Estimated 
slope, “, beta[j])), pch=19,

    xlim=c(7,20),main=paste(“Multilevel Model 3 (“,ECO.name,”),

 slope with temperature”))

curve (fixef(M3)[“URB”] + fixef(M3)[“URB:REGIONtemp[REGION]”]*x, lwd=1, 
col=”black”, add=TRUE)
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segments (REGIONtemp, lower.bM3, REGIONtemp, upper.bM3, lwd=.5, 
col=”gray10”)

text(x=REGIONtemp,y=b.hat.M3,labels=uniqREGION,pos=c(4,4,4,4,4,4,4,4,4))

dev.off()

#M4:  temp group-level predictor for intercept; precip predictor for slope

lower.aM4 <- a.hat.M4 - a.se.M4

upper.aM4 <- a.hat.M4 + a.se.M4

postscript(file=paste(OUT, “USGS.M4.eps”,sep=”/”), width=11.5, height=6, 
horizontal=F,paper=”special”)

par (mfrow=c(1,2),mgp=c(1.5,0.5,0),tck=-0.02,mar=c(3,3,3,1))

 plot (REGIONtemp, a.hat.M4, ylim=range(lower.aM4,upper.aM4),

xlab=”REGION-level annual temperature”, ylab=expression(paste(“Estimate
d intercept, “, alpha[j])), pch=19, xlim=c(7,20),main=paste(“Multilevel 
Model 4 (“,ECO.name,”),

 intercept with temperature”))

curve (fixef(M4)[“(Intercept)”] + fixef(M4)[“REGIONtemp[REGION]”]*x, lwd=1, 
col=”black”, add=TRUE)

segments (REGIONtemp, lower.aM4, REGIONtemp, upper.aM4, lwd=.5, 
col=”gray10”)

text(x=REGIONtemp,y=a.hat.M4,labels=uniqREGION,pos=c(4,4,2,4,4,4,4,4,4))

lower.bM4 <- b.hat.M4 - b.se.M4

upper.bM4 <- b.hat.M4 + b.se.M4

 plot (REGIONprecip, b.hat.M4, ylim=range(lower.bM4,upper.bM4),

xlab=”REGION-level annual precipitation”, ylab=expression(paste(“Estimated 
slope, “, beta[j])), pch=19,

    xlim=c(35,170),main=paste(“Multilevel Model 4(“,ECO.name,”),

 slope with precipitation”))

curve (fixef(M4)[“URB”] + fixef(M4)[“URB:REGIONprecip[REGION]”]*x, lwd=1, 
col=”black”, add=TRUE)

segments (REGIONprecip, lower.bM4, REGIONprecip, upper.bM4, lwd=.5, 
col=”gray10”)

text(x=REGIONprecip,y=b.hat.M4,labels=uniqREGION,pos=c(4,4,4,4,4,4,4,4,4))
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dev.off()

#M5:  antecedent ag+past group-level predictor

lower.aM5 <- a.hat.M5 - a.se.M5

upper.aM5 <- a.hat.M5 + a.se.M5

postscript(file=paste(OUT, “USGS.M5.eps”,sep=”/”), width=11.5, height=6, 
horizontal=F,paper=”special”)

par (mfrow=c(1,2),mgp=c(1.5,0.5,0),tck=-0.02,mar=c(3,3,3,1))

 plot (REGIONbackag, a.hat.M5, ylim=range(lower.aM5,upper.aM5),

xlab=”REGION-level antecedent ag+pasture”, ylab=expression(paste(“Estimate
d intercept, “, alpha[j])), pch=19,xlim=c(-2,100), main=paste(“Multilevel 
Model 5 (“,ECO.name,”),

 intercept with antecedent ag+pasture”))

curve (fixef(M5)[“(Intercept)”] + fixef(M5)[“REGIONbackag[REGION]”]*x, 
lwd=1, col=”black”, add=TRUE)

segments (REGIONbackag, lower.aM5, REGIONbackag, upper.aM5, lwd=.5, 
col=”gray10”)

text(x=REGIONbackag,y=a.hat.M5,labels=uniqREGION,pos=c(4,4,4,4,4,4,4,4,2))

lower.bM5 <- b.hat.M5 - b.se.M5

upper.bM5 <- b.hat.M5 + b.se.M5

plot (REGIONbackag, b.hat.M5, ylim=range(lower.bM5,upper.bM5),

xlab=”REGION-level antecedent ag+pasture”, ylab=expression(paste(“Estimate
d slope, “, beta[j])), pch=19,

    xlim=c(-2,100),main=paste(“Multilevel Model 5(“,ECO.name,”),

 slope with antecedent ag+pasture”))

curve (fixef(M5)[“URB”] + fixef(M5)[“URB:REGIONbackag[REGION]”]*x, lwd=1, 
col=”black”, add=TRUE)

segments (REGIONbackag, lower.bM5, REGIONbackag, upper.bM5, lwd=.5, 
col=”gray10”)

text(x=REGIONbackag,y=b.hat.M5,labels=uniqREGION,pos=c(4,4,4,4,4,4,2,4,2))

dev.off()
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#M6: categorical ag, precip REGION-level predictor

lower.aM6 <- a.hat.M6 - a.se.M6

upper.aM6 <- a.hat.M6 + a.se.M6

postscript(file=paste(OUT, “USGS.M6.eps”,sep=”/”), width=11.5, height=6, 
horizontal=F,paper=”special”)

par (mfrow=c(1,2),mgp=c(1.5,0.5,0),tck=-0.02,mar=c(3,3,3,1))

 plot (REGIONprecip, a.hat.M6, ylim=range(lower.aM6,upper.aM6),

xlab=”REGION-level annual precipitation”, ylab=expression(paste(“Estimated 
intercept, “, alpha[j])), 

pch=19, xlim=c(35,170), col=c(4,4,4,2,2,2,4,4,4), main=paste(“Multilevel 
Model 6 (“,ECO.name,”),

 intercept with ag+grassland and precipitation “))

curve (fixef(M6)[“(Intercept)”] + M6.ranef[[2]][1,1] + fixef(M6)
[“REGIONprecip[REGION]”]*x, lwd=1,col=”blue”, add=TRUE)

curve (fixef(M6)[“(Intercept)”] + M6.ranef[[2]][2,1] + fixef(M6)
[“REGIONprecip[REGION]”]*x, lwd=1,col=”red”, add=TRUE)

segments (REGIONprecip, lower.aM6, REGIONprecip, upper.aM6, lwd=.5, 
col=c(4,4,4,2,2,2,4,4,4))

text(x=REGIONprecip,y=a.hat.M6,labels=uniqREGION,pos=c(4,4,4,4,4,4,4,4,4),
col=c(4,4,4,2,2,2,4,4,4))

lower.bM6 <- b.hat.M6 - b.se.M6

upper.bM6 <- b.hat.M6 + b.se.M6

 plot (REGIONprecip, b.hat.M6, ylim=range(lower.bM6,upper.bM6),

xlab=”REGION-level annual precipitation”, ylab=expression(paste(“Estimated 
slope, “, beta[j])),pch=19, xlim=c(35,170),col=c(4,4,4,2,2,2,4,4,4),main=p
aste(“Multilevel Model 6 (“,ECO.name,”),

 slope with ag+grassland and precipitation”))

curve (fixef(M6)[“URB”] + M6.ranef[[2]][1,2] + fixef(M6)[“URB:REGIONprecip[R
EGION]”]*x,lwd=1,col=”blue”, add=TRUE)

curve (fixef(M6)[“URB”] + M6.ranef[[2]][2,2] + fixef(M6)
[“URB:REGIONprecip[REGION]”]*x, lwd=1, 

 col=”red”, add=TRUE)

segments (REGIONprecip, lower.bM6, REGIONprecip, upper.bM6, lwd=.5, 
col=c(4,4,4,2,2,2,4,4,4))
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text(x=REGIONprecip,y=b.hat.M6,labels=uniqREGION,pos=c(4,4,4,4,4,4,4,4,4),
col=c(4,4,4,2,2,2,4,4,4))

dev.off()

#M7: categorical ag, temp REGION-level predictor

lower.aM7 <- a.hat.M7 - a.se.M7

upper.aM7 <- a.hat.M7 + a.se.M7

postscript(file=paste(OUT, “USGS.M7.eps”,sep=”/”), width=11.5, height=6, 
horizontal=F,paper=”special”)

par (mfrow=c(1,2),mgp=c(1.5,0.5,0),tck=-0.02,mar=c(3,3,3,1))

 plot (REGIONtemp, a.hat.M7, ylim=range(lower.aM7,upper.aM7),

xlab=”REGION-level annual temperature”, ylab=expression(paste(“Estimated 
intercept, “, alpha[j])), pch=19,xlim=c(7,20), col=c(4,4,4,2,2,2,4,4,4), 
main=paste(“Multilevel Model 7 (“,ECO.name,”),

 intercept with ag+grassland and temperature”))

curve (fixef(M7)[“(Intercept)”] + M7.ranef[[2]][1,1] + fixef(M7)
[“REGIONtemp[REGION]”]*x, lwd=1, col=”blue”, add=TRUE)

curve (fixef(M7)[“(Intercept)”] + M7.ranef[[2]][2,1] + fixef(M7)
[“REGIONtemp[REGION]”]*x, lwd=1, col=”red”, add=TRUE)

segments (REGIONtemp, lower.aM7, REGIONtemp, upper.aM7, lwd=.5, 
col=c(4,4,4,2,2,2,4,4,4))

text(x=REGIONtemp,y=a.hat.M7,labels=uniqREGION,pos=c(4,4,4,4,4,4,4,4,4),co
l=c(4,4,4,2,2,2,4,4,4))

lower.bM7 <- b.hat.M7 - b.se.M7

upper.bM7 <- b.hat.M7 + b.se.M7

 plot (REGIONtemp, b.hat.M7, ylim=range(lower.bM7,upper.bM7),

xlab=”REGION-level annual temperature”, ylab=expression(paste(“Estimated 
slope, “, beta[j])), pch=19,

      xlim=c(7,20),col=c(4,4,4,2,2,2,4,4,4),main=paste(“Multilevel Model 7 
(“,ECO.name,”),

 slope with ag+grassland and temperature”))

curve (fixef(M7)[“URB”] + M7.ranef[[2]][1,2] + fixef(M7)
[“URB:REGIONtemp[REGION]”]*x, lwd=1, col=”blue”, add=TRUE)

curve (fixef(M7)[“URB”] + M7.ranef[[2]][2,2] + fixef(M7)
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[“URB:REGIONtemp[REGION]”]*x, lwd=1, col=”red”, add=TRUE)

segments (REGIONtemp, lower.bM7, REGIONtemp, upper.bM7, lwd=.5, 
col=c(4,4,4,2,2,2,4,4,4))

text(x=REGIONtemp,y=b.hat.M7,labels=uniqREGION,pos=c(4,4,4,4,4,4,4,4,4),co
l=c(4,4,4,2,2,2,4,4,4))

dev.off()

#M8: categorical ag, temp REGION-level predictor

lower.aM8 <- a.hat.M8 - a.se.M8

upper.aM8 <- a.hat.M8 + a.se.M8

postscript(file=paste(OUT, “USGS.M8.eps”,sep=”/”), width=11.5, height=6, 
horizontal=F,paper=”special”)

par (mfrow=c(1,2),mgp=c(1.5,0.5,0),tck=-0.02,mar=c(3,3,3,1))

 plot (REGIONtemp, a.hat.M8, ylim=range(lower.aM8,upper.aM8),

xlab=”REGION-level annual temperature”, ylab=expression(paste(“Estimated 
intercept, “, alpha[j])), pch=19,xlim=c(7,20), col=c(4,4,4,2,2,2,4,4,4), 
main=paste(“Multilevel Model 8 (“,ECO.name,”),

 intercept with ag+grassland and temperature”))

curve (fixef(M8)[“(Intercept)”] + M8.ranef[[2]][1,1] + fixef(M8)
[“REGIONtemp[REGION]”]*x, lwd=1, col=”blue”, add=TRUE)

curve (fixef(M8)[“(Intercept)”] + M8.ranef[[2]][2,1] + fixef(M8)
[“REGIONtemp[REGION]”]*x, lwd=1, col=”red”, add=TRUE)

segments (REGIONtemp, lower.aM8, REGIONtemp, upper.aM8, lwd=.5, 
col=c(4,4,4,2,2,2,4,4,4))

text(x=REGIONtemp,y=a.hat.M8,labels=uniqREGION,pos=c(4,2,4,4,4,4,4,4,4),co
l=c(4,4,4,2,2,2,4,4,4))

lower.bM8 <- b.hat.M8 - b.se.M8

upper.bM8 <- b.hat.M8 + b.se.M8

 plot (REGIONprecip, b.hat.M8, ylim=range(lower.bM8,upper.bM8),

xlab=”REGION-level annual precipitation”, ylab=expression(paste(“Estimated 
slope, “, beta[j])), pch=19, xlim=c(35,170),col=c(4,4,4,2,2,2,4,4,4),main=
paste(“Multilevel Model 8 (“,ECO.name,”),

 slope with ag+grassland and precipitation”))

curve (fixef(M8)[“URB”] + M8.ranef[[2]][1,2] + fixef(M8)
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[“URB:REGIONprecip[REGION]”]*x, lwd=1, col=”blue”, add=TRUE)

curve (fixef(M8)[“URB”] + M8.ranef[[2]][2,2] + fixef(M8)
[“URB:REGIONprecip[REGION]”]*x, lwd=1, col=”red”, add=TRUE)

segments (REGIONprecip, lower.bM8, REGIONprecip, upper.bM8, lwd=.5, 
col=c(4,4,4,2,2,2,4,4,4))

text(x=REGIONprecip,y=b.hat.M8,labels=uniqREGION,pos=c(4,4,4,4,4,4,4,4,4),
col=c(4,4,4,2,2,2,4,4,4))

dev.off()
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