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For thousand of years, invasive species have changed ecosystems and caused 

extinctions. Nowhere is this more apparent than on islands. Those ecosystem changes 

and extinctions are result of strong species interactions between invasive species and 

native communities. However, extinctions are rarely random and are often influenced 

by a suite of biotic and abiotic factors. Understanding the intricacies of invasions and 

their consequences is central to ecology and conservation. Here, I explore three 

aspects of invasion biology: 1) the ability to remove invasive mammals from islands 

and the biodiversity benefits, 2) the ability to predict extinctions caused by invasive 

species, and 3) the role ecological history plays in dictating nativeness with respect to 

restoration.   

 

Chapter one provides a brief overview of the three-decade progress of invasive 

mammal eradication on islands. I review the history of eradication techniques 

developed in New Zealand, and describe some recent successes in western Mexico and 

Galápagos that I have been part of over the past decade. Chapter two provides one 

example of the biodiversity benefits of eradication: the recovery of the Galápagos rail 

that was heavily impacted by invasive goat and pig populations prior to their removal 

from Santiago Island. Chapter three and four test advocated and explore new 

conservation tools for their ability to predict extinction-prone species. At the core of 

these two chapters is an attempt to evaluate whether biogeography tools are useful in 



predicting species endangerment, or whether knowing the autecological details of a 

species and their community interactions is necessary to correctly gauge extinction 

risk. 

 

Chapter five tackles the role ecological history in gauging “nativeness”. I provide a 

framework that justifies the restoration of missing ecological functions and 

evolutionary potential of extinct species using extant conspecifics and related taxa. 

Pleistocene Rewilding is conceived as managed ecosystem manipulations whereby 

costs and benefits are addressed on a case-by-case basis. It would broaden the 

underlying premise of conservation from managing extinction to encompass restoring 

ecological and evolutionary processes. Risks of Pleistocene Rewilding include the 

possibility of disease transmission, and unexpected ecological and sociopolitical 

consequences of reintroductions. Social challenges will include incorporation of pre-

Columbian ecological frameworks into conservation strategies. 

 

 



 

iii 

BIOGRAPHICAL SKETCH 

Charles Joseph (“Josh”) Donlan was born in the Tidewater area of Virginia. He was 

lucky enough to be raised in the backwaters of the Chesapeake Bay, where he canoed, 

crabbed, and swam. At a young age, he was also lucky enough to become employed as 

the “kid” at several ski and outdoor shops; these experiences formed the foundation of 

Josh’s relationship with the nature. At least initially, he largely skied, climbed, hiked, 

and paddled his way to the field of conservation biology. After two years of college in 

the mountains of Virginia at James Madison University, Josh packed up and moved to 

the Wasatch Mountains of Utah. After a good stint of skiing, climbing, and adventures 

to Alaska, Josh returned to academia on the Colorado Plateau at Northern Arizona 

University. It was here in Flagstaff that Josh became fascinated with ecology. He spent 

the next two years naturalizing in Arizona and Mexico. Following his graduation, Josh 

again packed up and hit the road—but this time with his kayak. He spent 4 months 

kayaking the Gulf of California, and it was there where Josh was properly introduced 

to islands. Josh then headed to Panama where he studied marine invertebrates on a 

fellowship with the Smithsonian. After his first tropical experience, Josh headed to 

Santa Cruz for a M.A. at University of California, where he spent the next five years 

doing ecology and conservation on islands in Mexico—and became a scientist. Josh 

packed his bags once again and headed to Ithaca, via southern Africa, to Cornell 

University. During his five-year tenure at Cornell University, Josh conducted research 

in the Galápagos Islands, New Zealand, Tasmania, Chile, Mexico, and the mountains 

of southeastern Arizona. Josh is now continuing that conservation work, while 

balancing it by returning to those foundational activities of skiing, climbing, hiking, 

and paddling in wild places. 

  

 



 

iv 

 

 

 

 

 

 

 

This dissertation is dedicated to four of four different decades: all whose wisdom of 

nature, life, and what it all means I will keep with me until I’m compost.  

Thanks Jesse, Gary, Harry, and Paul. 



 

v 

ACKNOWLEDGMENTS 

The past five years have been monumental in my personal and professional progress 

as an ecologist, environmentalist, and student of nature. I started my Cornell tenure 

with a one-month long river trip on the Grand Canyon, one of our country’s last wild 

places, and last year, I went to eight countries a couple different times for “work”—

I’m a lucky guy. Many have played influential and important roles in that progress. 

I’ve had a lot of help. 

 

First and foremost are my committee and advisors. Alex Flecker provided keen 

ecological advice, and constantly brought a different and often wet perspective to my 

largely terrestrial endeavors. He always seemed to have fun while doing so, which was 

also some great advice. Alex supported my research and conservation, wherever it 

took me. Bobbi Peckarsky provided great advice on science and other important stuff 

over the past five years. And our few days together at the Rocky Mountain Biological 

Laboratory a few years ago (along with a few hockey games) is as good as testament 

as any that not only is Bobbi a rock star when it comes to doing science but also when 

it comes to having fun. Anurag joined my committee more than halfway through my 

Ph.D.; however, his input has always been insightful and improved my thinking and 

writing. He is a frighteningly sharp thinker, and perhaps the most timely committee 

member I have come across in my seven-year and two-university tour of graduate 

school. Harry has been a great life coach over the past five years, and I have hopes he 

will continue to be so. He has provided and shared insights, experience, and wisdom to 

a student that by no means whatsoever qualifies as a herpetologist. We’ve had some 

grand times that have included a bunch of undergraduates romping around the desert, 

a yurt fire, a bunch of famous biologists romping around the desert, and one (re)wild 

experience. 



 

vi 

 

Many joined me in the field in the Chiricahua Mountains of Arizona. Most 

importantly was Gary Roemer, my colleague and close friend who I have collaborated 

with on a number of projects over the past seven years. Gary is one of the best 

ecologists I have had the pleasure of crossing paths with, and even a better friend. 

Others that have helped me in the field and kept me company include Chris Anderson, 

Tosha Comendant, Dan Auerbach, Jessie Knowlton, Jesse Perry, Morgan Vance, and 

students from New Mexico State University and the ANMH Southwestern Research 

Station. Dan Auerbach deserves special thanks for keeping me entertained with “grid 

talk” and his philosophical escapades, as well as keeping many data days going while I 

was off traveling from time to time. While my research in Arizona is not included here 

formally as part of my Ph.D. research, it has played a pivotal role during my tenure at 

Cornell. 

 

Over the past five years, I have spent many months in the Galápagos Islands working 

on a “side project” called Project Isabela. I am very proud to have played a role in the 

world’s largest island conservation project. My fellow islanos gave me more 

inspiration to rewild places than I could ever ask for. At the center of that inspiration 

was Karl Campbell. Not only can the man kill goats better than anyone alive, his 

determination and commitment to island conservation is unmatched. I also thank the 

rest of Project Isabela, particularly Felipe Cruz, who was our fearless leader and 

somehow always found funding when there was none to be found. I also thank Victor 

Carrion, Christian Lavoie, Tom Poulsom, and all the others for good times on the 

islands. Along with those good times, we have also been productive (Campbell et al. 

2006; Campbell et al. 2005; Campbell & Donlan 2005; Campbell et al. 2004; Carrion 

et al. 2007; Cruz et al. 2005; Donlan et al. 2005b; Donlan et al. 2003b; Lavoie et al. 



 

vii 

2007). 

 

The three days I spent on the Ladder Ranch, New Mexico in August of 2004 running a 

workshop on ecological history was a truly incredible experience. Many of those 

workshop participants were my ecological and conservation heroes. And many since 

have become better friends. Howling wolves up by moonlight with the “Ladder 12” 

and red wine is a night I will not forget. I thank deeply the Ladder 12 for sharing their 

wisdom, insights, and time with me: Joel Berger, Carl Bock, Jane Bock, David 

Burney, Dave Forman, Paul Martin, Gary Roemer, Felisa Smith, Michael Soulé, Joe 

Truett, and Harry Greene. I also thank Steve Dobrott, Jim Estes and Mike Phillips who 

also played instrumental roles in the Pleistocene Rewilding project (Donlan 2007; 

Donlan et al. 2006; Donlan & Greene in press; Donlan et al. 2005b; Donlan & Martin 

2004; Donlan et al. 2007).  

 

I am lucky to have so many stellar and sound colleagues. I tend to get around on the 

ecological and conservation landscape, so the list is long. All of them tend to put up 

with my positives and negatives, and I hope we continue to work and play with them 

for decades to come: Joel Berger, Karl Campbell, Felipe Cruz, Richard Cudney, Harry 

Greene, Gregg Howald, Brad Keitt, Jessie Knowlton, Christian Lavoie, Jamie Mandel, 

Paul Martin, John Parkes, Gary Roemer, James Russell, Alan Saunders, Bernie 

Tershy, and Chris Wilcox. And extra thanks goes to by Tasmanian colleague Chris 

Wilcox for both taking me to some wonderful wild beaches and engaging me in some 

exciting conservation thinking (Wilcox & Donlan 2007). I would also like to thank 

some of my Cornell colleagues whom I have shared insightful and fun discussions 

over the past few years: Jason Andras, Jim Austin, Kurt Galbreath, Andrew 

Farnsworth, John Fitzpatrick, Paulo Llambias, Dick Root, Viviana Ruiz-Gutierrez, 



 

viii 

David Winkler, and Kelly Zamudio. And then they are those who I collaborate with on 

life. My wide travels have made that list a geographically diverse one over the last 

decade, and includes Gene Bowman, Dawn Breese, Richard Cudney, Chris Delany, 

Tom Gorton, Matt Krop, Emelie Peine, Jesse Perry, Rob Rutigliano, and most 

recently, wonderfully, and intensely—Dana Wingfield. My partners in crime in Ithaca 

made up a small group, yet there qualities and love for life is bigger and better than 

most: Jason Andras, Jim Austin, Bryon Daley, Andrew Farnsworth, Annie Kelville, 

Charles Mitchell, Thor Oechsner, Emelie Peine, and others. And an extra thanks to 

Emelie and Thor for sharing the farm, their lives, and some good-ass times. Also, a 

huge thanks goes out to Maxie’s Supperclub and Gimme! Coffee – perhaps my true 

Ithaca homes. 

 

Many individuals and organizations have supported my research while at Cornell. I 

owe all of them a heavy gratitude. Sarah Hale and the Cornell Graduate School waived 

my tuition for three of my five years—without this support my research and writing 

would not have been possible. Likewise, the office staff in Corson Hall helped me 

many times, and put up with me being gone from Cornell more than I was present. 

Felipe Cruz, Galápagos National Park, and the Charles Darwin Foundation provided 

salary support while serving as Science and Conservation Advisor for Project Isabela. 

Bernie Tershy and Island Conservation provided salary support while we collectively 

worked on getting the word out on island conservation in North America (Aguirre-

Muñoz et al. in press; Donlan et al. 2003a; Donlan & Wilcox 2007; Howald et al. in 

press; Knowlton et al. in press). I also thank Cornell University, Sigma Xi, Mario 

Einaudi International Programs, American Museum of Natural History, Turner 

Endangered Species Fund, Environmental Leadership Program, Society of 

Southwestern Naturalist, Ecological Society of America, and the Robert and Patricia 



 

ix 

Switzer Foundation for research support. 

 

When I wrote my acknowledgements for my M.A. in 2000, I thanked my 

undergraduate mentors for their early role in my scientific career. I am happy to report 

they continue to influence me, along with my mentors from my graduate tenure at 

University of California Santa Cruz: George Koch, Steve Shuster, Bernie Tershy, Don 

Croll, and Jim Estes. And now, that list of mentors that I owe a debt of gratitude is 

wilder, wider, and longer. 



 

x 

REFERENCES 

 
Aguirre-Muñoz, A., D. A. Croll, C. J. Donlan, R. W. H. III, M. A. Hermosillo, G. R. 

Howald, B. S. Keitt, L. Luna-Mendoza, M. Rodríguez-Malagón, L. M. Salas-
Flores, A. Samaniego-Herrera, J. A. Sanchez-Pacheco, J. Sheppard, B. R. 
Tershy, J. Toro-Benito, S. Wolf, and B. Wood. in press. High-impact 
conservation action: a case study from the islands of western Mexico. Ambio. 

Campbell, K., G. Baxter, P. Murray, B. E. Coblentz, and C. J. Donlan. 2006. 
Development of a prolonged estrus effect for use in Judas goats. Applied 
Animal Behaviour Science. 

Campbell, K., G. Baxter, P. Murray, B. E. Coblentz, C. J. Donlan, and V. Carrion. 
2005. Increasing the efficacy of Judas goats by sterilisation and pregnancy 
termination. Wildlife Research 32:737-743. 

Campbell, K., and C. J. Donlan. 2005. Feral goat eradications on islands. Conservation 
Biology 19:1362-1374. 

Campbell, K., C. J. Donlan, F. Cruz, and V. Carrion. 2004. Eradication of feral goats 
Capra hircus from Pinta Island, Galápagos, Ecuador. Oryx 38:328-333. 

Carrion, V., C. J. Donlan, K. Campbell, C. Lavoie, and F. Cruz. 2007. Feral donkey 
(Equus asinus) eradication in the Galápagos. Biodiversity and Conservation 
16:437-445. 

Cruz, F., C. J. Donlan, K. Campbell, and V. Carrion. 2005. Conservation action in the 
Galápagos: Feral pig (Sus scrofa) eradication from Santiago Island. Biological 
Conservation 121:473-478. 

Donlan, C. J. 2007. Restoring America’s big, wild animals: Pleistocene rewilding—a 
proposal to bring back animals that disappeared from North America 13,000 
years ago—offers an optimistic agenda for 21st-century conservation. Scientific 
American June:32-39. 

Donlan, C. J., J. Berger, C. E. Bock, J. H. Bock, D. A. Burney, J. A. Estes, D. Forman, 
P. S. Martin, G. W. Roemer, F. A. Smith, M. E. Soulé, and H. W. Greene. 
2006. Pleistocene Rewilding: An optimistic agenda for 21st century 
conservation. American Naturalist 168:660-681. 



 

xi 

Donlan, C. J., and H. W. Greene. in press. NLIMBY: No lions in my backyard in M. 
Hall, editor. Restoria. MIT Press, Boston. 

Donlan, C. J., H. W. Greene, J. Berger, C. E. Bock, J. H. Bock, D. A. Burney, J. A. 
Estes, D. Forman, P. S. Martin, G. W. Roemer, F. A. Smith, and M. E. Soulé. 
2005. Re-wilding North America. Nature 436:913-914. 

Donlan, C. J., G. R. Howald, B. R. Tershy, and D. A. Croll. 2003a. Evaluating 
alternative rodenticides for island conservation: roof rat eradication from the 
San Jorge Islands, Mexico. Biological Conservation 14:29-34. 

Donlan, C. J., and P. S. Martin. 2004. Role of ecological history in invasive species 
management and conservation. Conservation Biology 18:267-269. 

Donlan, C. J., P. S. Martin, and G. W. Roemer. 2007. Lessons from land: present and 
past signs of ecological decay and the overture to earth's sixth extinction. 
Pages 14-26 in J. A. Estes, R. L. Brownell, D. P. DeMaster, D. F. Doak, and T. 
M. Williams, editors. Whales, whaling, and ocean ecosystems. University of 
California Press, Berkeley, California. 

Donlan, C. J., B. R. Tershy, K. Campbell, and F. Cruz. 2003b. Research for requiems: 
the need for more collaborative action in invasive species management and 
conservation. Conservation Biology 17:1850-1851. 

Donlan, C. J., and C. Wilcox. 2007. Complexities of costing eradications. Animal 
Conservation 10: 156-158. 

Howald, G., C. J. Donlan, J. P. Galván, J. Russell, J. Parkes, A. Samaniego, Y. Wang, 
D. Veitch, P. Genovesi, M. Pascal, A. Saunders, and B. Tershy. in press. 
Invasive rodent eradication on islands. Conservation Biology. 

Knowlton, J. L., C. J. Donlan, G. W. Roemer, A. Samaniego-Harrera, B. S. Keit, A. A. 
Aguire-Munoz, K. R. Faulkner, and B. R. Tershy. in press. Non-native 
mammal eradications and the status of insular mammals on the California 
Channel Islands, USA and Pacific Baja California Islands, Mexico. The 
Southwestern Naturalist. 

Lavoie, C., C. J. Donlan, K. Campbell, F. Cruz, and V. Carrion G. 2007. Geographic 
tools for eradication programs of insular non-native mammals. Biological 
Invasions 9:139-148. 



 

xii 

Wilcox, C., and C. J. Donlan. 2007. Compensatory mitigation as a solution to fisheries 
bycatch-biodiversity conservation conflicts. Frontiers in Ecology and 
Environment 5:325-331. 

 
 

 

 



 

xiii 

TABLE OF CONTENTS 
BIOGRAPHICAL SKETCH..................................................................................... iii 
ACKNOWLEDGMENTS.......................................................................................... v 
LIST OF FIGURES ................................................................................................. xv 
LIST OF TABLES................................................................................................. xvii 
Chapter 1: Rewilding the īeglands: Biodiversity, invasive species, and saving the 
world’s islands ......................................................................................................... 19 

Foxes, seabirds, and the Aleutian islands.............................................................. 24 
Feral cats and the islands of western Mexico ........................................................ 25 
Introduced herbivores and the Galápagos islands.................................................. 27 
REFERENCES .................................................................................................... 30 

Chapter 2: Recovery of The Galápagos Rail (Laterallus Spilonotus) following the 
removal of invasive mammals .................................................................................. 32 

Abstract................................................................................................................ 32 
Methods And Results ........................................................................................... 34 
Discussion............................................................................................................ 39 

CHAPTER 3: Nested communities, invasive species and Holocene extinctions: 
Evaluating the power of a potential conservation tool............................................... 46 

Abstract................................................................................................................ 46 
Introduction.......................................................................................................... 47 
Materials And Methods ........................................................................................ 49 

Study System.................................................................................................... 49 
Nested Subset Analysis .................................................................................... 54 

Results ................................................................................................................. 57 
Discussion............................................................................................................ 63 
REFERENCES .................................................................................................... 68 

Chapter 4: Diversity, invasive species, and extinctions in insular ecosystems ........... 75 
Abstract................................................................................................................ 75 
Introduction.......................................................................................................... 76 
Materials And Methods ........................................................................................ 81 
Results ................................................................................................................. 87 
Discussion............................................................................................................ 90 

Synecological Factors....................................................................................... 92 
Autecological Factors....................................................................................... 93 
Geographical Factors........................................................................................ 94 
Informing Conservation Interventions .............................................................. 95 

REFERENCES .................................................................................................... 98 
Chapter 5: Pleistocene Rewilding: An optimistic agenda for 21st century conservation
...............................................................................................................................106 

Abstract...............................................................................................................106 
Introduction.........................................................................................................107 
Ecological arguments for Pleistocene Rewilding .................................................110 
Evolutionary and conservation benefits of Pleistocene Rewilding........................116 
Cultural and economic benefits of Pleistocene Rewilding....................................119 



 

xiv 

Exemplar taxa .....................................................................................................120 
Risks, costs, challenges, and objections to Pleistocene Rewilding........................133 
Implementing Pleistocene Rewilding...................................................................139 

 



 

xv 

LIST OF FIGURES 

Figure 1. Global percent comparisons of islands (black) versus continental (white) for 
total area, and extinct and endangered species of mammals and birds combined. 
Species come from the World Conservation Union’s Red List (www.redlist.org). 
I classed Red List categories EX and EW as extinct, and CR, EN, and VU as 
endangered. ...................................................................................................... 20 

Figure 2. Habitat recovery on Santiago Island and the Galápagos rail. A) An exclosure 
and surrounding area in the highlands of Santiago Island before (March 1999) 
and B) after non-native pig and goat removal (March 2005). C) Box plots of 
Galápagos rail surveys showing the median rails per hectare (∗) on three islands 
sampled in 1986/87 and 2004/05. Total number of survey plots for each year is 
shown in parenthesis. Non-native mammals were continuously present and absent 
on Isabela and Fernandina Island respectively during the two survey periods. 
Feral pigs and goats were removed from Santiago between 1998-2006............. 38 

Figure 3. Three island archipelagos off the coasts of California, USA and Baja 
California, Mexico. California: 1: San Miguel, 2: Santa Rosa, 3: Santa Cruz, 4: 
Anacapa, 5: San Nicolas, 6: Santa Barbara, 7: San Catalina, 8: San Clemente, 
Baja California-Mexico: 9: Coronado North, 10: Coronado South, 11: Todos 
Santos South, 12: San Martin, 13: San Geronimo, 14: Cedros, 15: Natividad, 16: 
San Roque, 17: Magdalena, 18: Margarita, Gulf of California-Mexico: 19: 
Willard, 20: Granito, 21: Meija, 22: Angel de la Guarda, 23: Estanque, 24: Smith, 
25: Salsipuedes, 26: Tiburon, 27: Turner, 28: San Lorenzo, 29: San Pedro 
Nolasco, 30: San Marcos, 31: Carmen, 32: San Jose, 33: Danzante, 34: 
Montserrat, 35: Santa Catalina, 36: Santa Cruz, 37: San Diego, 38: Animas, 39: 
San Jose, 40: San Francisco, 41: Espiritu Santo, 42: Cerralvo. Only islands 
included in the analysis are shown; island names correspond with numbers. ..... 51 

Figure 4. Nested nonvolant mammal communities on islands off A) California, USA 
and B) the Pacific side of Baja California, Mexico. P indicates species presence, 
EX recent extinctions, and EN endangered taxa. EX* indicates an extinction that 
was replaced by a congener. The dotted line illustrates the boundary layer. 
Certain islands are interchangeable in the arranged matrix due to identical species 
occurrences. Shaded boxes indicate probability of occurrence (see text): 
horizontal lines: 0-10%; vertical lines: 10-20%, diagonal lines: 20-30%; grey 
with diagonal: 30-40%; grey with horizontal stripes: 40-50%; grey: >50%. ...... 60 

Figure 5. Nested nonvolant mammal communities on land-bridge islands in the Gulf 
of California, Mexico. P indicates species presence, EX recent extinctions, and 
EN endangered taxa. EX* indicates an extinction, but a congener remains extant. 
The dotted line illustrates the boundary layer. Certain islands are interchangeable 
in the arranged matrix due to identical species presence. Shaded boxes indicate 
taxa with a probability of occurrence (see Figure 4 caption).............................. 61 

Figure 6. Distributions of the probability of occurrence from nested subset analysis of 
A) extant and B) extinct populations. Probabilities are reported as median 
percentages, as outputted from the analysis. No differences exist when 
populations are pooled across all three archipelagos: Kolmogorov-Smirnov 2-
Sample Test, p = 1.00, Nextinct= 23, Nextanct = 91. ............................................... 62 

Figure 7. The islands of northwest Mexico that have (or recently had) feral cat and/or 



 

xvi 

invasive rat populations and native nonvolant small mammals. Baja California: 1 
Coronado North, 2 Todos Santos South, 3 Todos Santos North, 4 San Martin, 5 
San Geronimo, 6 Cedros, 7 Natividad, 8 San Roque, 9 Magdalena, 10 Santa 
Margarita, Gulf of Mexico: 11 Granito, 12 Meija, 13 Angel de la Guarda, 14 
Estanque, 15 San Pedro Nolasco, 16 San Marcos, 17 Coronados, 18 Carmen, 19 
Monserrate, 20 Santa Catalina, 21 San Jose, 22 San Francisco, 23 Partida, 24 
Espiritu Santo, 25 Cerralvo............................................................................... 82 

Figure 8. Precipitation on the islands of northwest Mexico. (A) Mean monthly rainfall 
for the Gulf of California (dotted line) and of the Pacific side of Baja California 
(solid line). (B) Mean September and (C) January rainfall for the Gulf of 
California and Baja California. Data is based on a long-term monthly rainfall 
records averaging 23 years (range: 2-54 years). ................................................ 84 

Figure 9. Differences in synecological, autecological, and geographical traits between 
extant (grey) and extinct (red) insular populations in western Mexico [mean (SE); 
n = 67 populations]. Asterisks (*) indicate significant differences with a family-
wide Bonferroni corrected α-level of 0.05........................................................ 91 

Figure 10. Could the Asian elephant serve as an ecological proxy for North American 
mammoths in an effort to restore megaherbivore function back to North 
America? Illustration by Carl Buell. ................................................................113 

Figure 11. (A) Body size distributions (log body mass) of terrestrial North American 
mammals (including bats) before (red) and after (grey) late Pleistocene (LP) 
extinctions (north of the Isthmus of Tehuantepec). (B) Body size distributions 
(kg) of four large-bodied (over 44 kg) taxonomic groups before and after LP 
extinctions. Extant distribution of Perissodactyla includes Old World horses and 
burros. Modified from Lyons et al 2004...........................................................118 



 

xvii 

LIST OF TABLES 

Table 1. Non-native mammals and dominant invasive woody plants present on three 
Galápagos Islands where rails were surveyed (X = Present, E = Eradicated). On 
Isabela Island, the distribution of non-native species differs depending on the 
location. ........................................................................................................... 35 

Table 2. Galápagos rail surveys conducted in 2004/05. Number of rails detected and 
density (per hectare) at 12 sites on three islands in the archipelago. Chi square 
and p-value columns show temporal comparisons from surveys in 1986; Sierra 
Negra sites declined, Santiago sites increased (see text and Figure 2). .............. 36 

Table 3. Taxa of nonvolant mammals considered extinct (E) or likely extinct (LE) on 
islands off the west coast of North America. Likely causes and estimated date of 
extinction are shown (C=cats, R=rats, P=pigs, UN=Unknown, LP=Late 
Pleistocene, R=1950-present). Other approximate or ranges of dates during the 
Holocene range from 11,000 YrBP to the late 1800s......................................... 52 

Table 4. Nestedness of nonvolant mammal communities on islands off the Pacific 
coast of North America before and after recent mammal extinctions. Islands are 
broken into oceanic and land-bridge, the latter being connected to the mainland 
during the Pleistocene. The lower the index (Atmar and Patterson’s Temperature) 
the more nested the community; p-values in parenthesis are the result of a null 
model comparison via a Monte Carlo simulation (1000 iterations).................... 58 

Table 5. Individual orderedness of mammal genera on three island archipelagos. 
Ordering variables include mammal species richness, island area, and isolation 
(i.e., distance to nearest mainland). Wilcoxon 2-sample rank-sum tests were used 
and the chi-square approximation values (1 d.f.) are reported; statistical 
significance is shown with ** (p<0.01) and * (p<0.05). Peromyscus spp. were not 
included (NI) in the analysis on the Baja and California archipelagos since they 
occur on every island. Spearman rank correlations (for each archipelago and for 
all islands pooled) are shown between chi-square statistics and fraction of 
original populations that are now extinct in each genera. .................................. 64 

Table 6. Geographical, autecological, and synecological variables, proposed proxy, 
and their potential contribution to extinction risk of small mammals on islands 
where invasive predators are present................................................................. 79 

Table 7. Comparison of models for probability of small mammal extinctions from 
invasive predators. Alternative prey, carrying capacity, and January rain made up 
the best performing aggregate model relative to the single parameter a priori 
models (see Table 6). For synecological, autecological, geographical parameters, 
the best performing model was selected from all possible models.  ∆AIC is the 
difference between AIC values for each model and the lowest AIC value. A 
lower AIC value indicates a better fitting model; W is the model’s Akaike weight, 
the relative probability that the model is the best fit to the data tested. .............. 88 

Table 8. Insular Peromyscus populations (n = 25) collapsed to mainland phylogenetic 
affinity groups (n = 5). Means of autecological parameters for each group are 
shown, along with means of extinct and extinct populations collapsed to group.90 

Table 9.Small mammal records used in the analyses. Variables include Mass (grams), 
Area (km2), perimeter-area ratio(PA), maximum elevation (meters), alternative 
prey (AP), native predators (NP), annual rain (AR), coefficient of variation of 



 

xviii 

annual rain (CV(AR)), and September (SR) and January (JR) rain and coefficient 
of variation. ...................................................................................................... 97 

Table 10. The magnitude of biodiversity loss of North America megafauna (north of 
the Isthmus of Tehuantepec) and potential benefits and costs of Pleistocene 
rewilding (+ represents an increase in respective qualitative category). Late 
Pleistocene (LP) and current diversity of continental large-bodied North 
American mammalian orders/families, along with some potential species proxies.
........................................................................................................................122 



 

 19 

Chapter 1: Rewilding the īeglands: Biodiversity, invasive species, and saving the 

world’s islands  

 

Islands, the watered lands once known as īeglands in Old English, serve as 

models for the interactions between humans and their environment. Nowhere is this 

relationship better illustrated than in the current biodiversity crisis. Islands make up 

approximately ~3% of land area worldwide, yet they harbor a relatively high 

percentage of biodiversity, including many endemics such as giant Galápagos 

tortoises, New Caledonia geckos the size of small dogs, and the now extinct pygmy 

mammoth of Siberia’s Wrangell Island. In fact, since the fall of the world’s last 

mammoth some 4,000 years ago, the majority of vertebrate extinctions have been 

insular in nature. The islands of Oceania provide a stark example: prior to the onset of 

human impacts c. 3,000 years ago, these islands were home to over 2,000 now extinct 

bird species—over 20% of the extant avifauna worldwide (Steadman 2006). While in 

many cases humans likely played a direct role, the introduction of invasive mammals 

was a major driver in these island extinctions and subsequent ecosystem changes. This 

threat is even more pervasive today; invasive mammals are present on over 80% of the 

world’s islands. Of the mammal and bird species on World Conservation Union’s red 

list of threatened species, nearly half occur on islands (Figure 1). 

 Unique evolutionary histories predispose island flora and fauna to impacts by 

invasive mammals. Terrestrial mammalian predators and large herbivores are rare on 

islands, and thus insular species generally lack behavioral, physical, and life history 

defenses against mammalian herbivory and predation. Thus, introduced herbivores, 

such as feral goats (Capra hircus) and donkeys (Equus asinus), devastate island plant 

communities by overgrazing and impact island fauna through habitat destruction. As 

omnivores, feral pigs (Sus scrofa) feed on fruits and plants, prey on vertebrates, and 
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raid nests of birds and reptiles. Invasive predators, such as rats (Rattus spp.) and feral 

cats (Felis catus), have decimated rodent, reptile, and bird populations, and extirpated 

numerous seabird colonies on islands around the globe. Invasive rats alone are 

responsible for at least 50 documented extinctions (Towns et al. 2006), including the 

world’s only flightless songbird (Xenicus lyalli).  

 

Figure 1. Global percent comparisons of islands (black) versus continental (white) for 
total area, and extinct and endangered species of mammals and birds combined. 
Species come from the World Conservation Union’s Red List (www.redlist.org). I 
classed Red List categories EX and EW as extinct, and CR, EN, and VU as 
endangered. 

 

Rats drove this wren to extinction on the main islands of New Zealand, and in 1894, a 

single cat belonging to the lighthouse keeper of Stephen’s Island provided the only 

specimens known to science while single-handedly killing the last individuals of the 

species. 
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 Some seven decades later, rats invaded a small island of southern New Zealand 

wiping out the last population of yet another wren (Xenicus longipes). But this time, 

some New Zealanders fought back, attempting to save the wren and other species 

under threat (Veitch & Clout 2002). The “kiwis” failed for most, but managed to save 

the South Island Saddleback (Philesturnus c. carunculatus), raising the question could 

the onslaught of New Zealand’s biodiversity by invasive mammals by stopped? In 

1960, hundreds of dead white-faced storm petrels (Pelagodroma marina) were found 

dead after Norway rats invaded Maria Island (0.01 km2), a small island off New 

Zealand the size of a football field. In response, biologist Don Merton, along with 

members of the Forest and Bird Protection Society, spread rodenticide around the 

island in an effort to control the rat population. When they returned a few years later, 

much to their amazement, the rat population had been eradicated. A decade later, 

biologist Dick Veitch and others with the Department of Internal Affairs Wildlife 

Branch conducted a similar rat-control program on the slightly larger Titi Island (0.3 

km2) in an effort to protect breeding seabirds. The rat population was significantly 

reduced but not eradicated. A symposium then convened with over 50 of New Zealand 

researchers and conservation practitioners to discuss the possibility of controlling 

invading rats populations on New Zealand’s hundreds of satellite islands, the 

country’s last biodiversity stronghold. In 1976, They came to the calamitous 

conclusion that “We have control methods, and methods for reducing populations, but 

complete extermination on islands is remote or at least a very very difficult thing 

indeed” (Thomas & Taylor 2002). Luckily, a handful of kiwis were not willing to 

settle for such a calamity. Phil Moors, Ian MacFadden, and others continued testing 

new rodenticides and techniques on small islands in northern New Zealand. Bait 

stations were developed, which could be systematically placed over an entire island 
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and armed with rodenticide. Meanwhile in the far south, two other biologists Bruce 

Thomas and Rowley Taylor had begun another research program building on previous 

knowledge. Their aim was to “develop a system of dispensing a proven rodenticide 

into a territory of every rat on an island, in a way that would minimize non-target 

poisoning, and monitor the effectiveness of the campaign as it progressed” (Thomas & 

Taylor 2002). By 1983 they had succeeded and rats had been intentionally eradicated 

from a number of islands in New Zealand, but all them small (< 0.5 km2). The 

prospect of reversing the impacts from invasive rats had evolved from dismally remote 

to guardedly optimistic. But most, including those intimately involved in New Zealand 

conservation, were still skeptical on scaling up to large islands, leading to the 

commonly held view “Once rats have established on an island, it is generally not 

feasible to remove them unless the island is very small” (Thomas & Taylor 2002). 

 But Bruce Thomas, Rowley Taylor, and others kept at it. In 1988, they led an 

effort that placed 743 bait stations on Breaksea Island (1.70 km2) in New Zealand’s 

famous Fiordland. In 21 days, the rats were eradicated (Taylor & Thomas 1993). This 

effort created the largest predator-free island in Fiordland, critical for endangered 

species translocations such as the last remaining individuals of the critically 

endangered kakapo (Strigops habroptilus)—the world’s only nocturnal parrot. They 

showed to the world that islands, small and large, could be saved from the impacts of 

invasive rats. 

 Today, twenty years after Breaksea, the removal of rats and other invasive 

mammals from islands has become a powerful tool for biodiversity conservation. 

Alongside and concurrently with the New Zealanders, Australian conservationists 

developed rat eradication techniques removing rats from 41 islands (Veitch & Clout 

2002). In New Zealand alone, rats have now been eradicated from 116 islands. Over 

the past decade, conservation practitioners from around the globe have successfully 
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adopted these techniques: 332 successful invasive rodents eradications have been 

undertaken (Howald et al. in press).  

 New technology and techniques have drastically improved the ability to remove 

invasive mammals from islands. Aerial broadcast of rodenticide by helicopter, with 

the aid of GPS technology, has become the common method used in rodent 

eradications. This has led to successful rat removals on larger and larger islands, and 

more cost-effective eradication campaigns. In 2001, Norway rats (R. norvegicus) were 

removed from Campbell Island, New Zealand (113 km2), which is the largest rat 

eradication to date, an area slightly smaller than Washington D.C. (McClelland & 

Tyree 2002). The Campbell Island Teal (Anas nesiotis), driven to near extinction by 

rat predation, survived only in captivity and on a tiny rat-free islet adjacent to 

Campbell Island. This emblematic, flightless duck has been reintroduced to Campbell 

Island were it is recovering. Twenty years ago, eradicating rats from an island the size 

of a football field was a risky and daunting challenge. Today, eradicating rats from a 

remote subantarctic island the size of Washington D.C. is a reality. 

 Other tools and techniques have improved the ability to mitigate for potential 

non-target impacts of native island species during eradication campaigns. In 2002, 

black rats (R. rattus) were removed from Anacapa Island, California using an aerial 

broadcast of rodenticide (Howald et al. 2005). The project presented novel challenges 

since an endemic rodent (Anacapa deer mouse, Peromyscus maniculatus anacapae) 

was also present on the island and equally susceptible to the rodenticide. Prior to the 

bait application, a genetic study was conducted and formed the basis of the mitigation. 

Mice across Anacapa’s three islets were found to be genetically similar and 

functioning as a metapopulation.  A captive population of ~1000 mice would be 

necessary to maintain the observed genetic diversity. To insure that there were two 

viable populations of mice at all times, in addition to the captive population, the 
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broadcast of rodenticide was staggered over two years so that a free ranging 

population was always present on one or more of the Anacapa islets. The eradication 

and mitigation was a success; after a series of translocations between islands and 

reintroductions from the captive population, native mouse populations recovered to 

pre-eradication densities or higher within six months following the rat eradication. 

Seabirds have benefited as well. Once heavily impacted by rat predation, the 

endangered Xantus’ murrelet (Synthliboramphus hypoleucus) and other seabirds are 

now successfully breeding in record numbers on the island. 

 Similar conservation gains have been achieved on islands around the globe by 

eradicating other invasive predators and herbivores. To date, there have been at least 

629 successful invasive mammal eradications (Campbell & Donlan 2005; Howald et 

al. in press; Nogales et al. 2004; Veitch & Clout 2002). These conservation actions 

have stopped extinctions and restored island ecosystems, safeguarding seabirds and 

insular species on dozens of island archipelagos. Historically, systematic island 

conservation programs and the eradication of invasive mammals have been largely 

limited to small and medium-sized islands, particularly in Australasia. This is no 

longer the case; restoration is now taking place on islands large and small throughout 

the world.  

 

Foxes, seabirds, and the Aleutian islands 

Alaska’s Aleutian Islands are one the world’s last wild places. The 2500+ 

islands that make up the U.S. Fish and Wildlife Service Alaska Maritime National 

Wildlife Refuge encompass 1.9 million hectares and provide nesting habitat for over 

40 million seabirds. Yet, the Aleutians have not been spared the impacts of non-native 

mammals; introductions began after Russians discovered the islands more than 200 
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years ago. Black rats were accidentally introduced, and arctic and red foxes (Alopex 

lagopus, Vulpes vulpes) were intentionally released on more than 450 islands for fur 

and food. Foxes subsequently severely reduced populations of waterfowl, shorebirds, 

seabirds, and ptarmigan by preying on eggs, nestlings, and adults (Bailey 1993). The 

endemic Aleutian Cackling Goose (Branta hutchinsii leucopareia) was extirpated 

from all but three islands. Foxes also precipitated ecosystem impacts: by preying on 

seabirds, foxes indirectly reduced nutrient transport from the ocean to land via seabird 

guano, transforming grasslands to tundra (Maron et al. 2006). 

A dedicated refuge staff, led and inspired by Ed Bailey and Vernon Byrd, have 

been eradicating foxes from the Aleutian archipelago since 1949. Since 1983, foxes 

have been removed from at least one island a year. Within the refuge, foxes have been 

eradicated from 40 islands, totaling over 5,000 km2 (Veitch & Clout 2002). Recovery 

of waterfowl, shorebird, and ptarmigan populations has been widespread and dramatic, 

and nesting seabird populations have increased four to five-fold (Byrd et al. 1994). 

The combination of the archipelago-wide fox removal program and a translocation 

program saved the Aleutian Cackling Goose from extinction; numbers have increased 

from less than 1,000 birds in 1975 to more than 80,000 in 2006. Introduced foxes 

remain on just nine islands that are being targeted from removal, and managers are 

now turning toward removing rat populations from the archipelago. These 

conservation actions are grand strides in protecting the northern hemisphere’s most 

important seabird nesting grounds. 

 

Feral cats and the islands of western Mexico 

The islands of western Mexico are celebrated laboratories of evolution and 

beacons of biodiversity. Historically, these islands were protected from direct human 
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perturbations by aridity, isolation, and low human population densities on the adjacent 

mainland. Today, most of the islands are government owned and legally protected 

from many forms of land conversion. However, invasive mammals were introduced to 

many of these islands starting in the late 1800s, and introductions continue to take 

place. As seen elsewhere, feral cats are responsible for widespread biodiversity 

impacts in the region, including wholesale reductions or extirpations of breeding 

seabird colonies and the extinction of eight endemic rodents.  

Since 1994, the conservation organizations Island Conservation and 

Conservación de Islas A.C. have been working in collaboration with the Mexican 

government, Centro de Investigaciones Biológicas del Noroeste, Universidad Nacional 

Autónoma de México, and others to remove invasive mammals from islands in 

western Mexico. Led by seabird biologist Bernie Tershy and retired trapper Bill 

Wood, these collaborations have resulted in the removal of forty-two populations from 

26 islands, including cats from 17 islands—a third of the successful cat eradications 

worldwide (Veitch & Clout 2002). These successes were a product of a holistic 

conservation model that included integrating research, public education, policy work, 

capacity building, on-the-ground conservation action, and monitoring. Cost-effective 

conservation gains have resulted: 88 endemic terrestrial vertebrates and 201 seabird 

colonies have been protected for less than $50,000 per taxon/colony. 

With sufficient capacity and political support, and now with proven success in 

the region, all of the remaining islands in western México are feasible conservation 

targets. Feral cats are present on three of western Mexico’s most important islands for 

biodiversity conservation: Guadalupe, Socorro, and the Tres Marías. All are large 

enough to present unprecedented challenges with respect to cat eradication; however, 

recent research and advances in Australia, particularly the development of aerial-
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broadcasted cat baits, make eradication on these islands feasible (Algar & Burrows 

2004). Funding, rather than technical capacity and island size, may now be limiting 

factors in preventing extinctions on the remaining islands in western Mexico. These 

islands will be challenging and expensive, but will yield dramatic conservation 

benefits and bring this unique and diverse archipelago one step closer back to a 

balanced and wild ecosystem.  

 

Introduced herbivores and the Galápagos islands 

Both Wallace and Darwin witnessed the destruction of St. Helena Island by 

goats in the 19th century. Introduced in the 1200s, goats are responsible for at least 

eleven plant extinctions; the real number is unknown since the first botanical survey 

occurred 300 years after goats arrived. Unfortunately, goats also beat Darwin to the 

Galápagos. They have been introduced onto thirteen islands causing widespread 

habitat destruction in every case. While goats still roam the transformed landscape of 

St. Helena, many Galápagos islands are now recovering from introduced herbivory, 

and the entire archipelago is on its way to becoming goat-free.  

 In 1961 goats were removed from the small island of Plaza Sur (0.12 km2), the 

first eradication in the Galápagos. Between then and 2000, the Galápagos National 

Park and Charles Darwin Foundation have removed goat populations from seven 

islands in the archipelago. Early eradication campaigns were opportunistic, and 

involved ground hunting without specialized techniques or monitoring programs in 

place. In the late 1990s, the National Park and Charles Darwin Foundation received 

funding from the Global Environmental Facility and others to develop an ambitious 

program to remove goats from the largest islands in the archipelago. Led by Felipe 

Cruz and Victor Carrion, both born and raised in the Galápagos, and Australian Karl 
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Campbell, Project Isabela was an eradication program of unprecedented scale. First, 

feral pigs and goats would be eradicated from Santiago Island (580 km2), an island 

three times larger than the largest eradication to date. After refining and developing 

techniques on Santiago, the goat eradication program would move to Isabela Island. 

At 4,590 km2, Isabela would be largest conservation action ever attempted in terms of 

scale and complexity. 

Removing goats from an island the size of Rhode Island required leveraging 

new technology, hunting, and monitoring techniques. This massive effort included the 

integration GPS and GIS technology into all facets of the campaign, a large-scale 

aerial hunting effort by helicopter, ground-based hunting with specialized dogs, and 

Judas goats techniques (Lavoie et al. 2007). Judas goats, radio-collared individuals 

that are released and associate with the remaining feral goats at low densities, aid in 

removing the final goats (Campbell & Donlan 2005). Both projects were successful: 

pigs, goats, and donkeys were removed from Santiago and goats from Isabela, over 

140,000 goats were removed between the two islands (Carrion et al. 2007; Cruz et al. 

2005; Lavoie et al. 2007). These two islands double the area worldwide where goats 

have been eradicated. Widespread ecosystem recovery has been swift; entire plant 

communities are recovering, benefiting Galápagos fauna such as giant tortoises and 

endemic rails. Once impacted by pig predation and habitat destruction by goats, 

densities of Galápagos rails (Laterallus spilonotus) have increased by over a magnitude 

on Santiago Island. Galapagos National Park is currently working toward removing 

goats from the last four islands where they remain. After hundreds of years, the long-

standing biodiversity impacts of introduced herbivores on the Galapagos flora and 

fauna are coming to an end.  

 The Aleutians, Galápagos, and the islands of western Mexico are just three 

examples of successful island conservation programs. From the Indian Ocean to the 
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Subantarctic to the Tropical Pacific, conservation practitioners are following the lead 

of those stubborn New Zealanders who were not willing to lose the last of their wilds 

(Veitch & Clout 2002). Stopping extinction is at the center of biodiversity 

conservation. The removal of invasive mammals from islands is no longer rare event; 

rather, it is becoming routine, and is one of society’s most powerful tools to prevent 

extinctions and restore ecosystems. And with the recent successes of Campbell and 

Isabela Island, island size may no longer be the limiting factor in our efforts. But, 

those kiwis already knew that decades ago when they were struggling to accomplish 

the “impossible”: eradicating rats from an island the size of a football field. From a 

football field to Washington D.C. to Rhode Island—it is not the size that is limiting, 

it’s the attitude. The burning desire to rewild those places we can.  
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Chapter 2: Recovery of The Galápagos Rail (Laterallus Spilonotus) following the 

removal of invasive mammals  

 

“Rails are the most intriguing and tragic family of birds in Oceania if not the 

world…If not for human impact, more species of rails would be alive today than of 

any other family of birds.” –David Steadman, 2006 

 

Abstract 

Rails (family Rallidae) are vulnerable to the impacts of invasive mammals, and this is 

particularly true for species on oceanic islands. The endemic Galápagos rail 

(Laterallus spilonotus) is no exception; previous studies suggested that Galápagos rail 

populations were heavily impacted due to predation by pigs (Sus scrofa) and habitat 

degradation by goats (Capra hircus). Following recent conservation actions that have 

eradicated pigs and goats from Santiago Island, changes in rail abundance were 

observed. Estimated densities have increased by over an order of magnitude between 

1986/87 and 2004/05. Limited data on rail densities from two additional islands over 

the same time period provide further support to the notion that the eradications spurred 

recovery. On Fernandina Island, where there is no history of invasive mammals, rail 

density changed little between 1986/87 and 2004/05. In contrast, on Isabela Island 

where invasive mammals were present both in 1986/87 and 2004/05, rail densities 

declined at one site between those two time periods. While the Galápagos rail is 

vulnerable to invasive mammals, the observed changes following goat and pig 

removal is encouraging for Rallidae conservation. 
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Introduction 

Insular endemic birds in general and rails (Rallidae) in particular are 

vulnerable to non-native mammals and other anthropogenic impacts (Harding et al. 

2001; Innes et al. 1999; Miller & Mullette 1985; Owens & Bennett 2000; Steadman 

2006). The late Quaternary fossil record documents an unprecedented avian extinction 

event in Oceania: roughly 1000-2000 species, most of them rails, were lost on tropical 

Pacific islands after the arrival of humans (Steadman 2006). Those extinctions were 

presumably the result of predation and habitat degradation by humans and their 

commensals, such as rats (Rattus spp.) and pigs (Sus scrofa). More recently, seventeen 

species of insular rails have gone extinct in the Pacific since 1600 (Greenway 1958), 

and one third of the 142 extant rail species are threatened (Bennett & Owens 1997).  

The Galápagos Islands were uninhabited by humans prior to European 

discovery in the mid-sixteenth century, and consequently the fauna suffered little 

extinction until recently.  However since European arrival, extinction and extirpation 

have become increasingly common trends (Cruz & Cruz 1987; Dowler et al. 2000; 

Steadman 1986; Steadman & Ray 1982).  Invasive mammals, including pigs, rats, 

goats (Capra hircus), and cats (Felis catus) are the primary agents driving those 

biodiversity impacts (Cruz & Cruz 1987; Hamann 1979; Loope et al. 1988; Steadman 

1986).  The endemic Galápagos rail (Laterallus spilonotus) is no exception, with 

populations suffering from the adverse effects of invasive mammals.  

The Galápagos rail originally occurred on seven islands; nest predation by 

pigs, habitat destruction by goats, and the indirect impacts of invasive plants have 

caused rail populations to decline throughout the archipelago (Coblentz & Baber 1987; 

Franklin et al. 1979; Gibbs et al. 2003; Rosenberg 1990). During 1986/87 surveys, 

only 25 rails were detected on Santiago Island (Rosenberg 1990), where both goats 

and pigs were abundant. Considering the impacts by goats and pigs (Hamann 1993b; 
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Schofield 1989), Rosenberg (1990) speculated that the eradication of those invasive 

species would benefit rail populations. 

 Here, we report on recent Galápagos rail surveys. Between 1998 – 2006, pigs, 

goats, and donkeys were eradicated from the island: over 17,000 pigs and 70,000 goats 

were removed from the island (unpublished data, Carrion et al. 2007; Cruz et al. 2005; 

Donlan et al. 2005).  In an effort to quantify the consequences of invasive mammal 

eradications, we repeated surveys conducted in 1986/87 by Rosenberg (1990) on three 

islands: Santiago, Fernandina, and Isabela. Fernandina Island has remained free of 

invasive mammals since the initial surveys (Table 1). Goats, pigs, and donkeys remain 

on many parts of Isabela Island (as was the case in 1986/87). Thus, distinct differences 

exist among the three islands with respect to the presence of invasive mammals in 

1986/87 and in 2004/05 (Table 1).  Those differences provide an opportunity to 

compare rail abundance between two time frames, enabling us to draw some inference 

with respect to potential causes of rail population changes. While we lack data on 

other environmental aspects that have may have changed during the 20-year period 

including natural variation of rail numbers through time, the three islands provide an 

opportunity to compare rail abundance between two time frames, enabling us to draw 

some inference with respect to potential causes of rail population changes.  

 

Methods And Results 

 We conducted rail surveys on Isabela (December 2004, February 2005), 

Santiago (December 2004, February 2005), and Fernandina (December 2004) Islands. 

Our field methods and statistical analyses are identical to those of the only available 

historical survey of Galápagos rails in 1986/87 (Rosenberg 1990), which enables us to 

make direct temporal and spatial comparisons. We sampled sites during the same time 
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of the year as the original surveys (within 8 weeks) to remove seasonal bias in 

 

Table 1. Non-native mammals and dominant invasive woody plants present on three 
Galápagos Islands where rails were surveyed (X = Present, E = Eradicated). On 
Isabela Island, the distribution of non-native species differs depending on the location. 

  Micea Rats Cats Goats Pigs Donkeys/Horses Cattle Plants 

Isabela         

Ecuador, Wolf, Darwin 

Volcanoes 
X X X Eb     

Alcedo Volcano X X X Eb  Eb   

Sierra Negra Volcano X X X X X X X Xc 

Fernandina         

Santiago X X  E E E   
a: Mus musculus, Rattus rattus, Felis catus, Capra hircus, Sus scrofa, Equus spp. Bos sp. 
b: Eradicated after rail surveys 
c: Guava (Psidium guava) dominant over large areas 
 

response of rails to playbacks (Conway et al. 1993). Sites were located approximately 

in the same location, based on the survey site descriptions (see Table 2 and Rosenberg 

1990). Surveys were replicated at each site and consisted of 25m radius circular plots 

(0.20 ha), with approximately 100m spacing between plots.  We used a playback 

system (recording obtained from Cornell Lab of Ornithology), playing rail calls for 1 

minute (15 seconds in 90 degree rotations); we scored responding rail calls for a total 

of 3 minutes (1 minute of playback + 2 minutes following). We scored only those rails 

within the 25m radius, and we attempted to count individual rails only once.  We 

characterized plot vegetation structure using two categories: high (>25% cover of 

forbs and grass >30cm tall) or low (<25% cover of forbs and grass >30cm in height 

and >25% cover in forbs and grass <30cm in height; sensu Rosenberg 1990).  We also 

recorded the presence or absence of standing water within the survey plot. We also 
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surveyed seven additional sites on Isabela Island for the first time to provide baselines 

for future surveys (Table 2). 

 

Table 2. Galápagos rail surveys conducted in 2004/05. Number of rails detected and 
density (per hectare) at 12 sites on three islands in the archipelago. Chi square and p-
value columns show temporal comparisons from surveys in 1986; Sierra Negra sites 
declined, Santiago sites increased (see text and Figure 2). 

Island (Site)a # of rails density # of survey 
plots chi sq. p-value 

Fernandina 11 1.8 31   
highlands 11 3.4 16   
mangrove 0 0.0 15   

      
Isabela 13 0.2 247   

highlands - Ecuador 0 0.0 16   
highlands-Wolf 10 1.4 37   

highlands-Darwin 0 0.0 18   
mangroves - Puerto Chino 0 0.0 20   

highlands-Alcedo 0 0.0 85   
mangroves-Punta Alfaro 0 0.0 14   

highlands - NE Sierra Negra 0 0.0 29 1.9 0.16 (0.341b) 
highlands - SE Sierra Negra 3 0.5 28 10.7 0.005 

      
Santiago 279 13.2 92   

highlands-Central 233 17.9 65 77.2 < 0.001 
woodlands-La Chosa 46 8.5 27 44.6 < 0.001 

      
Total 303   370     

a: Site locations: Fernandina-highlands S 00.4075 W 91.5493; Fernandina-mangrove S 00.2646 W 
91.4487; Isabela-Ecuador S 00.0278 W 91.5553; Isabela-Wolf S 00.0216 W 91.3716; Isabela-Darwin S 
00.1977 W 91.3168; Isabela-Puerto Chino S 00.4258 W 90.9588; Isabela-Alcedo S 00.4492 W 
91.1063; Isabela-Punta Alfaro S 00.3535 W 91.2800; Isabela-NE Sierra Negra S 00.7967 W 91.0910; 
Isabela-SE Sierra Negra S 00.8458 W 91.1052;  Santiago-highlands S 00.2375 W 90.7581; Santiago 
woodlands S 0.2768 W 90.7604 
b: p-value for Fisher’s Exact Test 

 

We detected a total of 303 rails (n = 370 surveys at 12 different sites; Table 2). 

Rail density varied from 0 – 17.9 rails per hectare (Table 2). Overall, rails showed a 

significant affinity for high vegetation compared to low (χ2= 19.05, d.f. = 3, p < 0.001, 

n = 326, four categories: 0, 1, 2, >2 rails at each plot compared across vegetation 

score). Rails also showed a significant affinity for the presence of water in the survey 
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plot (χ2= 38.48, d.f. = 3, p < 0.001, n = 326, four categories: 0, 1, 2, >2 rails at each 

plot compared across presence of water). We did not detect rails at the three mangrove 

sites surveyed. 

On Santiago Island, we identified 279 rails in 92 survey plots (Table 2). Mean 

density increased significantly by over an order of magnitude at both survey sites 

compared to 1986/87 (four categories: 0, 1, 2, >2 rails at each plot compared across 

year; categories used for comparison with Rosenberg 1990; Table 2; Figure 2). In the 

highlands of Santiago Island, only 16 rails were located in 1986/87 in 113 survey plots 

compared to 233 rails in 2004/05 in 65 survey plots (Table 2). In the lower elevation 

woodland habitat (La Chosa), rails were not detected during 1986/87; 46 rails were 

detected in December 2004.  

In the highlands of Fernandina Island, which has remained free of invasive 

mammals, we found eleven rails on the south-southwestern slope. Rosenberg (1990) 

failed to detect rails on the southeastern rim of Fernandina with surveys (n = 29 plots); 

however, he did detect a small number of free-calling rails on the south-southwestern 

slope during the same time period. We detected only three rails at the two sites on 

Sierra Negra Volcano, Isabela Island, a significant decline from the surveys in 

1986/87 (Table 2; Figure 2). We detected rails on Wolf Volcano, but not at the 

remainder of sites surveyed on Isabela Island (Table 2). However, they have been 

observed on Alcedo Volcano (V. Carrion and K. Campbell, personal observations).  
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Figure 2. Habitat recovery on Santiago Island and the Galápagos rail. A) An exclosure 
and surrounding area in the highlands of Santiago Island before (March 1999) and B) 
after non-native pig and goat removal (March 2005). C) Box plots of Galápagos rail 
surveys showing the median rails per hectare (∗) on three islands sampled in 1986/87 
and 2004/05. Total number of survey plots for each year is shown in parenthesis. Non-
native mammals were continuously present and absent on Isabela and Fernandina 
Island respectively during the two survey periods. Feral pigs and goats were removed 
from Santiago between 1998-2006.  
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Discussion 

The changes in rail densities on Santiago Island between 1986/87 and 2004/05 

is impressive, and a comparison of rail abundance among the three islands surveyed in 

this study provides inference that these changes are likely attributed to eradication of 

invasive mammals on Santiago. A total of thirteen rails were detected in 1986/87 

island compared to 279 rails in 2004/05 with similar effort (113 vs. 92 survey plots 

respectively). On Fernandina Island (free of invasive mammals), survey results were 

similar between the two periods, with rails relatively rare during both periods. On 

Sierra Negra, Isabela Island, where invasive mammals have been present since the 

original survey, survey results were similar between the two periods with some 

evidence of decline at one site (Table 2). In a separate study, rail surveys on Santa 

Cruz Island in 2000, where goats and pigs are present, detected a minor declines 

compared to surveys in 1986/87 (Gibbs et al. 2003).  The cause of the declines on 

Santa Cruz are unknown; however, habitat changes via invasive plants is suspected 

(Gibbs et al. 2003). The plant communities on Santiago Island are recovering 

following pig and goat removal campaigns (Figure 2; Cruz et al. 2005), following a 

pattern similar to what has been documented on other Galápagos islands where goats 

have been removed (e.g., Pinta Island; Campbell et al. 2004; Hamann 1979, 1993a). 

While it remains to be seen how the Santiago rail population will respond as plant 

communities continue to recover, the initial changes in rail density are encouraging.  

While many insular rail species have suffered extinction due to invasive 

mammal impacts, populations of this and other insular species have recovered 

following eradication campaigns. On Pinta Island, Galápagos, rails were not observed 

in 1970 when goats were present in high densities (Franklin et al. 1979).  In contrast, 

rails were common three years later after the initiation of a goat control program and 

the vegetation began to recover (Franklin et al. 1979; Kramer & Black 1970). In New 
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Zealand, a massive conservation intervention spanning over fifty years, including the 

control of non-native red deer (Cervus elaphus), has prevented the extinction of the 

takahe (Poryphyrio hochstetteri); over 200 birds are now in the wild (Lee & Jamieson 

2001). On Lowe Howe Island, Australia, an endemic woodhen (Tricholimnas 

sylvestris) was on the brink of extinction; however, pig eradication and a captive-

breeding program have now restored this species (Miller & Mullette 1985; NSW 

National Parks and Wildlife Service 2002).  

While pig and goat removal appear to have facilitated the Santiago Galapagos 

rail recovery, additional abiotic and/or biotic factors may also play roles in the species 

distribution and demography. For example, it is unclear why rail densities are low on 

Fernandina where there is no history of non-native predators and herbivores, invasive 

woody plants are not present, and the appropriate highland vegetation is present. Due 

to large areas of bare lava on Fernandina, rail populations may be low as a 

consequence of fragmentation effects. There are also historical records of rails from 

coastal mangrove sites on Fernandina (Franklin et al. 1979; Salvin 1876), but there 

have been no observations among mangrove sites in this study or the three others over 

the past 20 years (Franklin et al. 1979; Gibbs et al. 2003; Rosenberg 1990). In 2004 

rails were detected in mangrove habitat on Genovesa Island (T. Grant and G. Estes, 

personal communication).  

Previous evidence suggests that egg predation by pigs and habitat degradation 

via invasive woody plants and goats threaten the persistence of Galápagos rail 

populations (Coblentz & Baber 1987; Franklin et al. 1979; Gibbs et al. 2003; 

Rosenberg 1990). As has been documented elsewhere (Wanless et al. 2002), predation 

by cats and rats likely also threaten Galápagos rails where they are sympatric. 

However, this study and others suggest that insular rail populations can respond 

positively to restoration actions (Lee & Jamieson 2001; Miller & Mullette 1985; NSW 
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National Parks and Wildlife Service 2002; Wanless et al. 2002; Witteman et al. 1990). 

However, as demonstrated for the Lord Howe Woodhen, recovering rail populations 

should be managed with close attention to other potential demographic threats, such as 

catastrophes and disease, as well as invasive species (Brook et al. 1997). In general, 

insular rails may be useful as a focal species (Landres et al. 1988) on islands where 

direct and indirect impacts of invasive mammals are apparent, and they may be useful 

as a restoration and recovery gauge once invasives are removed.  

Globally, thousands of species or populations of insular rails have gone extinct 

due to anthropogenic impacts, including those of invasive mammals, and many 

remained threatened today (Bennett & Owens 1997; Steadman 2006). Twenty-two of 

the 33 threatened rail species currently listed by the World Conservation Union occur 

on islands, and 86% of those insular species are threatened by invasive mammals (data 

compiled from BirdLife International’s World Bird Database, and includes IUCN 

categories VU, EN, CR, and EW). Invasive mammal eradications from islands are now 

commonplace (Campbell & Donlan 2005; Howald et al. in press; Nogales et al. 2004).  

Targeted eradications, along with proposed reintroductions and translocations 

(Steadman 2006), would likely benefit endangered rail populations. Before the turn of 

the century, Darwin commented on the great number of rails on Santiago Island 

(Darwin 1896).  Their recovery a century later is encouraging for Rallidae 

conservation. 
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CHAPTER 3: Nested communities, invasive species and Holocene extinctions: 

Evaluating the power of a potential conservation tool 
 
Reprinted from Donlan, C. J., J. Kowlton, D. F. Doak, N. Biavaschi. 2005. Nested 
Communities, Invasive Species and Holocene Extinctions: Evaluating The Power of a 
Potential Conservation Tool. Oecologia 145: 475-485. 

 

Abstract 

General ecological methods and models that require a minimum amount of 

information yet are still able to inform conservation planning are particularly valuable. 

Nested subset analysis has been advocated as such a tool for the prediction of 

extinction-prone species and populations. However, such advocacy has not been 

without skepticism and debate, and in the majority of published examples assessing 

extinction vulnerability, actual extinctions are based on assumptions rather than direct 

evidence. Here, we empirically test the power of nested subset analysis to predict 

extinction-prone species, using documented Holocene insular mammal extinctions on 

three island archipelagos off the west coast of North America. We go on to test 

whether the introduction of invasive mammals promotes nestedness on islands via 

extinction. While all three archipelagos were significantly nested before and after the 

extinction events, nested subset analysis largely failed to predict extinction patterns. 

We also failed to detect any correlations between the degree of nestedness at the 

genus-level with area, isolation, or species richness and extinction risk. Biogeography 

tools, such as nested subset analysis, must be critically evaluated before they are 

prescribed widely for conservation planning. For these island archipelagos, it appears 

detailed natural history and taxa-specific ecology may prove critical in predicting 

patterns of extinction risk.   
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Introduction 

Conservation planning and policy often demand that decisions about the fates 

of specific species and communities be made on the basis of a limited amount of 

information, gathered in a limited amount of time (Soule 1985). As a result, ecologists 

have sought organizing principles of ecology that can be broadly applied to 

conservation problems (Doak & Mills 1994; Soulé & Terborgh 1999). General 

methods and models that can be applied to a variety of conservation scenarios, require 

a minimum of information, and provide critical predictions are especially valuable.  At 

the top of the list of such key predictions are the immediate and medium-term 

vulnerability to extinction of populations and species (Doak & Mills 1994; Terborgh 

& Winter 1980). Since its initial application by Patterson and Atmar (1986), the use of 

nested subset analysis of species occurrence patterns has become an increasingly 

common tool in community ecology and many have advocated its use in conservation 

planning, particularly in reserve design and predicting species susceptibility to 

extinction (Patterson 1987; Cutler 1991, McDonald and Brown 1992; Fleishman et al. 

2000; Kerr et al. 2000; Fleishman and McNally 2002; and many others). However, 

such advocacy has not been without substantial skepticism, concern, and debate 

(Boecklen 1997; Doak & Mills 1994; Quinn & Harrison 1988; Simberloff & Martin 

1991; Skaggs & Boecklen 1996). Here, we investigate the relationship between 

nestedness patterns and extinction risk, using data on the mammalian faunas and 

extinction patterns of three island groups off the coasts of California, USA, and Baja 

California, Mexico.  

A perfect nested pattern results when all species that occur on islands (or 

habitat fragments) containing n species also occur on all islands (fragments) 

containing n + 1 species (Darlington 1957; Patterson & Atmar 1986). Many, if not 

most, islands or fragments are significantly nested in a statistical sense; however, few 
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are even close to perfectly so (Wright et al. 1998). Similar to how species 

compositions of islands/fragments can be nested, incidence distributions of individual 

species can also be nested. Thus, both sites (islands/fragments) and species can 

possess nested qualities. Studies of nestedness have evolved from the elucidation of 

patterns and the refinement of statistical models to exploring the mechanisms that 

generate such patterns (Atmar & Patterson 1993; Cutler 1991; Lomolino 1996; 

Patterson 1987; Patterson & Atmar 1986; Wright et al. 1998). Both abiotic and biotic 

processes have been implicated in generating nested distributions, including area, 

selective extinction, differential colonization, environmental variables, distribution of 

resources, and anthropogenic disturbance (Cook & Quinn 1995; Fernandez-Juricic 

2002; Hecnar et al. 2002; Wright et al. 1998).  

Nestedness analysis is often portrayed as a tool to predict the order in which 

extinctions are likely to occur at a suite of sites in response to habitat reduction, 

fragmentation, or other types of disturbance (Bolger et al. 1991; Cutler 1991; Kerr et 

al. 2000; McDonald & Brown 1992). The general idea behind these predictions is that 

populations that are close to the predicted edge of likely occurrence on a particular 

island are more at risk of extinction, particularly as the nestedness of a system 

decreases or species or population turnover (i.e., extinction) increases (Atmar and 

Patterson 1993). However, such predictive power is based on inferred extinctions 

(e.g., faunal relaxation of Pleistocene land-bridge islands), and these hypothesized 

extinctions rely on a number of assumptions that are not necessarily valid (Simberloff 

& Martin 1991; Skaggs & Boecklen 1996). Further, the presence of a nested pattern 

does not necessarily implicate ordered extinction probabilities. Differences in 

colonization ability, among other possible factors, can also lead to such a pattern 

(Darlington 1957; Kadmon 1995). While the interacting effects of area and 

disturbance on extinction risk has a long history (Diamond 1972; Terborgh 1974), in 
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an alarming fraction of published examples assessing extinction vulnerability, 

evidence of patterned extinctions are based on statistical extrapolations with 

questionable assumptions, rather than direct evidence. Furthermore, direct 

observations of idiosyncratic species loss and subsequent species interactions with 

fragmentation suggest that such assumptions may not be valid (Terborgh et al. 1997). 

Here, we empirically test the relationship between predicted extinction risks 

from nestedness analyses and the actual extinction and endangerment status of 

populations. Specifically, we test the power of nested subset analysis to predict the 

relative extinction risks of different species and populations, using documented 

Holocene insular mammal extinctions on islands off the west coast of North America.  

Given the large role invasive species play in global extinctions (Groombridge et al. 

1992) and their complex interactive effects with biodiversity (Roemer et al. 2002; 

Vitousek & Walker 1989), we also ask whether extinctions caused by introduced 

species strengthen or weaken nestedness patterns, as has been inferred elsewhere 

(Hecnar & McCloskey 1997). At the core of this paper is an attempt to evaluate 

whether biogeography tools, such as nested subset analyses, are useful in predicting 

species endangerment, or whether knowing the autecological details of a species and 

their community interactions is necessary to correctly gauge risks of extinction and 

endangerment.  

Materials And Methods 

Study System 

This study includes data on nonvolant mammals (all those but bats) on islands 

off the coasts of central California, USA south to the tip of Baja California, Mexico, 

including the Gulf of California (Figure 3). Islands were broken into three groups 

according to location, biogeographical history, and island type (oceanic or land-
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bridge). The California Channel Islands (henceforth, California) have not been 

connected to mainland California during the Quaternary, while the islands off the 

Pacific side of Baja California (Baja) were connected to the Baja peninsula during the 

Pleistocene (Case et al. 2002; Junger & Johnson 1980). Due to the small number of 

oceanic islands in the Gulf of California, only islands (henceforth, Gulf) that were 

connected either to the Baja peninsula or mainland Mexico during the Pleistocene are 

included in the analysis (Case et al. 2002). For all archipelagos, only islands with 

native mammals present historically were included. Overall, each island group shares 

a common biogeographic history, a shared ancestral species pool, and to a certain 

extent similar environmental gradients, all assumptions of nested subset analysis 

(Atmar & Patterson 1993). 

The insular mammal fauna of western North America is well studied (Huey 

1964; Lawlor et al. 2002; Álvarez-Castañeda & Patton 1999). The majority of these 

islands have a documented history of introduced mammals, resulting in several recent 

extinctions. Seabirds and nonvolant mammals have suffered the greatest impact; here 

we concentrate on the latter. While up to seven species of exotic mammals occur on 

some islands in the region, feral cats (Felis catus), and to a lesser extent non-native 

rats (Rattus spp.) are responsible for the majority of extirpations and extinctions 

(Table 3; Tershy et al. 2002; Wood et al. 2002).  
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Figure 3. Three island archipelagos off the coasts of California, USA and Baja 
California, Mexico. California: 1: San Miguel, 2: Santa Rosa, 3: Santa Cruz, 4: 
Anacapa, 5: San Nicolas, 6: Santa Barbara, 7: San Catalina, 8: San Clemente, Baja 
California-Mexico: 9: Coronado North, 10: Coronado South, 11: Todos Santos South, 
12: San Martin, 13: San Geronimo, 14: Cedros, 15: Natividad, 16: San Roque, 17: 
Magdalena, 18: Margarita, Gulf of California-Mexico: 19: Willard, 20: Granito, 21: 
Meija, 22: Angel de la Guarda, 23: Estanque, 24: Smith, 25: Salsipuedes, 26: Tiburon, 
27: Turner, 28: San Lorenzo, 29: San Pedro Nolasco, 30: San Marcos, 31: Carmen, 32: 
San Jose, 33: Danzante, 34: Montserrat, 35: Santa Catalina, 36: Santa Cruz, 37: San 
Diego, 38: Animas, 39: San Jose, 40: San Francisco, 41: Espiritu Santo, 42: Cerralvo. 
Only islands included in the analysis are shown; island names correspond with 
numbers. 
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Table 3. Taxa of nonvolant mammals considered extinct (E) or likely extinct (LE) on 
islands off the west coast of North America. Likely causes and estimated date of 
extinction are shown (C=cats, R=rats, P=pigs, UN=Unknown, LP=Late Pleistocene, 
R=1950-present). Other approximate or ranges of dates during the Holocene range 
from 11,000 YrBP to the late 1800s. 

Island Group Extinct Taxon Cause Est. Date Ref. 
Baja CA Pacific – 
Land-bridge  

 
 

  

San Roque (E)   Peromyscus maniculatus cineritus C/R R 1,2 
San Martin (E) Neotoma martinensis C R 3 
Todos Santos (E) Neotoma anthonyi C R 2,4 
CA Channel Islands –  
Oceanic     

San Miguel (E) Mammuthus exilis a UN 11,030 YrBP 5 
San Miguel (E) Microtus sp. nov. UN 11,000 YrBP 6 
San Miguel (E) Spilogale gracilis b UN Late 1800s (?) 7 
San Miguel (E) Sorex ornatus cf. willetti c UN 1,000 BP – 1800s 6 
San Miguel (E) Peromyscus nesodytes  UN 8,000 YrBP 6,7 
San Miguel (E) Urocyon littoralis littoralis d P R 8 
Santa Catalina (LE) Sorex ornatus willettie UN R 9 
Santa Cruz (E) Mammuthus exilis a UN 11,030 YrBP P 5 
Santa Rosa (E) Mammuthus exilis a UN 11,030 YrBP 5 
Santa Rosa (E) Peromyscus nesodytes UN LP 10 
Santa Rosa (E) Urocyon littoralis santarosae d P R 8 
Anacapa (E) Peromyscus anyapahensis UN LP 10 
Gulf of California – 
Land-bridge     

San Pedro Nolasco 
(E) 

Peromyscus pembertoni R R 11 
Coronados (E) Neotoma bunkeri C R 11,12 
Granito (E) Peromyscus guardia harbitsoni R R 11,13 
Meija (E) Peromyscus guardia mejia C R 11,13 
Estanque (E) Peromyscus guardia subsp. C R 13 
San Jose (E) Dipodomys insularis  C R 11 
Montserrat (E) Chaetodipus baileyi fornicatus C R 11,14 
Turner (LE) Neotoma varia f UN R 11,15 
a: estimated date of extinction on all three islands are based on the youngest radiocarbon date of pooled 
specimens; b: based on a fossil cranium and unpublished field notes of trapped skunks ~1893; c: abundant in 
the fossil record; may have gone extinct sometime in the 19th century due to land transformation by 
introduced sheep overgrazing; d: extinct in the wild; captive populations exist; e: last specimen collected in 
1983; extinction may be due to habitat destruction from introduced herbivores and cats; f: single specimen 
trapped in 1977, despite trapping efforts in 1976 and 1997 (536 trap-nights) and small island size 
References: 1 - Alvarez-Castaneda & Cortes-Calva  1996;2 - Donlan et al. 2000;3 - Cortes-Calva et al. 
2001;4 - Mellink 1992;5 – L. Agenbroad, pers. comm.;6 – Guthrie 1993;7 – Walker 1980;8 – Roemer et al. 
2002; Roemer et al. 2004; 9 – Williams 1983; Collins & Martin 1985;10 – White 1966;11 - Alvarez-
Castaneda & Ortega-Rubio 2003;12 – Smith et al. 1993;13 – Mellink et al. 2002;14 – Alvarez-Castaneda & 
Cortes-Calva 2002;15 – Bogan 1997 
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Other introduced mammals, including European rabbits, goats and pigs, have 

also had detrimental indirect impacts (Coblentz 1978; Donlan et al. 2002; Moran 

1996; Roemer et al. 2002). Prompted by these losses, regional island conservation 

programs are underway that document and remove invasive mammals from islands off 

California (Donlan & Comendant 2003; Halvorson 1994; Schuyler et al. 2002) and 

Mexico (Donlan et al. 2003b; Tershy et al. 2002).  

At least 21 mammal extinctions or extirpations have occurred from the islands 

included in our study (henceforth we refer to all local population losses as 

extinctions).  All the extinctions on the Baja and Gulf archipelagos are recent (last 50 

years), and all but one (10/11) can be attributed wholly are partially to the presence of 

introduced predators (see Table 3 and references therein). In contrast, of the 11 

extinctions on the California Islands, 9 took place earlier in the Holocene and thus 

their causes are less clear (11,000 YrBP – 1800s; Table 3). These early Holocene 

extinctions, as well as those of a number of avian and non-avian reptiles, are 

coincidental or occur after the arrival and establishment of Native Americans on the 

Channel Islands (12,020 - 10,700 BP`; Guthrie 1993; Orr 1968). The early Holocene 

(or Late Pleistocene) extinction of two species of Peromyscus (P. nesodytes and P. 

anyapahensis) were replaced by congeners (P. maniculatus ssp.), the latter possibly 

introduced by Native Americans (Guthrie 1993). The dwarf mammoth, Mammuthus 

exilis, occurred on Santa Rosa, Santa Cruz, and San Miguel Islands beyond the limit of 

radiocarbon dating (41,000 YrBP). Prior to c. 13,000 YrBP, all three islands, along 

with Anacapa Island, formed the larger island, Santarosae (Agenbroad 2001). 

Mammoth populations survived after the inundation of Santarosae and the forming of 

the current islands, with the youngest bone being dated at 11,030 RCBP (radiocarbon 

years, L. Agenbroad, personal communication), and thus they were included as three 

separate populations in the analysis. A single tooth of M. exilis has been reported from 
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San Nicolas Island; however, it is excluded from the analysis due to doubts of the 

validity and origin (e.g., human transport) of the fossil (L. Agenbroad, personal 

communication). The records of M. exilis on the other islands are based on multiple 

specimens (Agenbroad 2003a, 2003b).  

In our analysis, we also include as extinctions two insular species that are only 

remotely likely to still exist. On the small island of Turner (189 ha), Neotoma varia 

has not been documented since 1977, despite at least two trapping efforts; however, a 

specific survey has been recommended to confirm extinction (Alverez-Castenada and 

Ortego-Rubio 2003). On Santa Catalina Island, Sorex ornatus willetti was last 

collected in 1983. This shrew is likely extinct due to habitat destruction from 

introduced herbivores and predation from feral cats (Collins & Martin 1985; Williams 

1983). We repeated all analyses described below twice, counting three other 

endangered populations as either extant or extinct. The island fox (Urocyon littoralis), 

endemic to the California Channel Islands, is endangered or extinct on five of the six 

islands it occurs: extinct in the wild with captive populations on San Miguel and Santa 

Rosa Islands and endangered on Santa Catalina, Santa Cruz, and San Clemente Islands 

due to apparent competition induced by introduced pigs, introduced disease, and 

mismanagement (Roemer et al. in press; Roemer & Wayne 2003). 

 

Nested Subset Analysis 

 Nested subsets analysis is based on a matrix of occurrences of species (or, as 

here, genera: see below) on different islands. In these matrices, each cell indicates 

either the occurrence or absence of a species on a particular island. Species are ordered 

from those with the most to the least number of occurrences, while islands are ordered 

from most to least species rich. This results in a matrix with solid occurrences in the 
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upper left, and no occurrences in the lower right. The strength of this pattern of 

discrete blocks of occurrences and non-occurrences in the matrix, as opposed to a 

random array of occurrences, indicates the degree of nestedness.  

We performed six nested subset analyses for native mammals, using separate 

analyses for historical and current species occurrence data for each of the three island 

groups. Species presence/absence data for both native and exotic mammals, as well as 

geographical data, were obtained from a regional conservation database (Donlan et al. 

2000) and published literature (Case et al. 2002; Guthrie 1993; McChesney & Tershy 

1998; Álvarez-Castañeda & Ortega-Rubio 2003; Álvarez-Castañeda & Patton 1999). 

Given the presence of congener endemic species/subspecies that are arguably 

ecological analogs, all analyses were conducted at the generic level. A total of 19 

genera occur or occurred on 42 islands in our study area, with only seven islands 

harboring two species within the same genus (all Peromyscus and Chaetodipus). In 

four of these cases, one of the conspecifics is now extinct. The strength of the 

nestedness pattern for each occurrence matrix was evaluated using the methods of 

Atmar and Patterson (1993; 1995), with “temperature” (T, 0° indicating maximum 

nestedness and 100° compete disorder) giving a relative measure of nestedness 

compared to a null model estimated using a Monte Carlo simulation (1000 iterations). 

This method arranges the island-species matrix to minimize the unexpectedness of 

occurrences. This index is matrix-size independent, allowing for spatial and temporal 

comparisons (Patterson & Atmar 2000). In particular, we use the temperature before 

and after Holocene extinctions to determine the impact of extinctions caused by 

introduced species on the strength of nestedness patterns.  

We estimated risk of extinction using two approaches, both of which have been 

advocated in the literature (Hecnar et al. 2002; Kerr et al. 2000; Patterson & Atmar 

2000). First, we compared the recent extinctions of populations to their position in the 
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historical occurrence matrix. Patterson and Atmar (2000) suggest that the populations 

near the boundary line between largely unoccupied and mostly occupied cells are at 

the greatest risk of extinction; further, the nestedness temperature method calculates 

the probability of each matrix cell being occupied, thus quantitatively assessing the 

stability of various populations.. To test qualitatively for an association between 

extinction and these risk measures, we categorized risk estimates as high or low, using 

a conservative probability occurrence (< 50%) as indicating high risk. To test 

quantitatively for an association between extinction and predicted risk, we preformed 

a logistic regression of risk score (i.e., median of the range of probability of 

occurrence outputted by the nested analyses), archipelago, and their interaction on 

extinction versus persistence of populations.  To test more generally whether there 

were any deviations in distributions of the risk ratings between extinct and extant 

populations, we also used Kolmogorov-Smirnov 2-sample tests for data from each 

archipelago, and overall. Note, however, that risk values for each matrix cell depend 

on the entire pattern of occurrences. Thus, these values are not independent and 

statistical results based upon them should be viewed with some caution.  

Second, we asked whether the strength of historical nestedness for individual 

genera correlated with extinction. For each genus and island group, we first separately 

evaluated whether occurrence patterns were well ordered by area, isolation (i.e., 

distance from mainland), or species richness. For each of these ordering variables, we 

produced a vector of occurrences/non-occurrences and used a Wilcoxon 2-sample 

rank-sum statistic test (i.e., Mann-Whitney U-test) to assess orderedness, or nestedness 

(Simberloff & Martin 1991). To compare among genera and across archipelagos, we 

report the chi-square approximation (1 d.f.) and respective probabilities rather than the 

magnitude of the U-score, given that the latter is sample size dependent (Zar 1996). To 

ask if the degree of ordering predicts extinction risk, we report Spearman rank 
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correlations between the nestedness scores of genera (i.e. chi-square test statistic) and 

the fraction of original populations that have become extinct, for each island group 

and ordering variable. Statistical analyses were conducted in Systat 10.0 and SPSS 11 

with an α-level = 0.05 (Wilkinson 1998).  

 

Results 

 Mammals in all island groups exhibited significant nestedness before and after 

recent extinctions (Table 2). Historically, California and Gulf islands were more 

nested than Baja islands; while the Gulf islands are presently more nested than Baja 

and California islands (Table 2). However, nestedness was similar on all archipelagos. 

Extinctions resulted in inconsistent changes in nestedness for the three island groups. 

The California and Baja island groups decreased slightly in nestedness, while the Gulf 

islands hardly changed as a result of extinctions (Table 2). There was no clear pattern 

between introduced species, extinction, and nestedness. All but one extinction on the 

Gulf islands (7/8) were caused by introduced predators, resulting in little change in 

degree of nestedness, and all three extinctions on the Baja islands (3/3) were caused by 

introduced predators, resulting in a slight decrease in nestedness (Tables 1 and 2). The 

twelve extinctions on the California Islands, for many of which the cause is uncertain 

(10/12), also resulted in a decrease in degree of nestedness (Tables 1 and 2). 
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Table 4. Nestedness of nonvolant mammal communities on islands off the Pacific 
coast of North America before and after recent mammal extinctions. Islands are 
broken into oceanic and land-bridge, the latter being connected to the mainland during 
the Pleistocene. The lower the index (Atmar and Patterson’s Temperature) the more 
nested the community; p-values in parenthesis are the result of a null model 
comparison via a Monte Carlo simulation (1000 iterations). 
 Historical Current 
Land-bridge   

Baja 9.06 (0.009) 10.8 (0.02) 

Gulf  6.84 (<0.001) 6.75 (<0.001) 

Oceanic   

California 6.26 (0.001) 8.10 (0.02) 

 

Qualitatively, the models predicted four of the 23 extinctions: one species of 

Sorex with a probability of occurrence of <20% and three species of Peromyscus with 

a probability <40% (Figures 4 and 5). In some cases, populations in the upper-left 

corner of the matrix went extinct, although under a nested framework these should be 

the species most resistant to extinction (Figure 4; Paterson and Atmar 2000). 

Quantitatively, the logistic regression of the extant and extinct populations yielded no 

significant results (Log-likelihood χ2 = 2.09; factor: p-value; risk: 0.261; archipelago: 

0.338; risk x archipelago interaction: 0.221, N = 114). Results did not change when 

archipelagos were pooled (p = 0.980) or when endangered species were included (p > 

0.194). Distributions of the probability of occurrence resulting from the nested 

analyses between extinct and extant populations were not different for each 

archipelago (Kolmogorov-Smirnov Test, p > 0.120) or across all archipelagos (p = 

1.00, Nextinct= 23, Nextant = 91; Figure 6). 

Part of the rationale behind the prediction of extinction risk from nestedness 

patterns comes from the assumption that populations on islands with more species 
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will, on average, have lower extinction risk; however, the alternative could also be the 

case depending on the effects of species interactions, island area, and colonization 

(Macarthur and Wilson 1967; Atmar and Paterson 1993; Cook and Quinn 1995; 

Lomolino 1996). Using logistic regression with data from all island groups, we found 

no effect of richness in a model that included island group (Log-likelihood χ2 = 2.16, 

p = 0.14, Nextinct= 23, Nextant = 91). We also tested for an influence of richness on each 

island group separately. Richness had significant influence on extinction in the Baja 

group (Log-likelihood χ2 = 4.22, p < 0.034, Nextinct= 3, Nextant = 24), with probability of 

extinction declining with increasing richness. For both of the other island groups, there 

were substantial, but marginally significant trends towards richness effects (χ2  = 3.54, 

p < 0.060, Nextinct= 12, Nextant = 14; and χ2  = 3.76, p < 0.052, Nextinct= 8, Nextant = 54, 

for the California and Gulf groups, respectively). The trend in the Gulf islands was 

also for decreasing risk of extinction with increasing species richness. However, the 

trend was opposite for the California islands, with high risk on more species-rich 

islands. 
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Figure 4. Nested nonvolant mammal communities on islands off A) California, USA 
and B) the Pacific side of Baja California, Mexico. P indicates species presence, EX 
recent extinctions, and EN endangered taxa. EX* indicates an extinction that was 
replaced by a congener. The dotted line illustrates the boundary layer. Certain islands 
are interchangeable in the arranged matrix due to identical species occurrences. 
Shaded boxes indicate probability of occurrence (see text): horizontal lines: 0-10%; 
vertical lines: 10-20%, diagonal lines: 20-30%; grey with diagonal: 30-40%; grey with 
horizontal stripes: 40-50%; grey: >50%. 
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Figure 5. Nested nonvolant mammal communities on land-bridge islands in the Gulf 
of California, Mexico. P indicates species presence, EX recent extinctions, and EN 
endangered taxa. EX* indicates an extinction, but a congener remains extant. The 
dotted line illustrates the boundary layer. Certain islands are interchangeable in the 
arranged matrix due to identical species presence. Shaded boxes indicate taxa with a 
probability of occurrence (see Figure 4 caption).  
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Figure 6. Distributions of the probability of occurrence from nested subset analysis of 
A) extant and B) extinct populations. Probabilities are reported as median percentages, 
as outputted from the analysis. No differences exist when populations are pooled 
across all three archipelagos: Kolmogorov-Smirnov 2-Sample Test, p = 1.00, Nextinct= 
23, Nextanct = 91.  
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  Wilcoxon 2-sample rank-sum tests revealed complex patterns of nestedness at 

the level of individual genera. In general, few taxa were significantly nested in relation 

to species richness, area, or isolation (Table 3). On the Baja Islands, Chaetodipus, 

Neotoma, and Odocoileus (area only) were significantly nested when islands were 

ordered by species richness and area. Lepus was significantly nested when islands 

were ordered by species richness. On the California Islands, only Urocyon was 

significantly nested (ordered by species richness, area, and isolation). In the Gulf of 

California, a number of rodent genera (Chaetodipus, Neotoma, Peromyscus, and 

Dipodomys), and Odocoileus and Bassariscus were nested when ordered by one or 

more of the variables. None of the ordering variables (island richness, distance or size) 

correlated with the fraction of extinctions across genera (Table 3). When the island 

archipelagos were pooled, ordering by species richness produced a significant weak 

correlation with extinction (Sr = 0.50, p = 0.03), while ordering by the other variables 

showed no correlation with risk (Table 3). 

Discussion 

 On the islands off west coast of California and Mexico, where recent mammal 

extinctions are well documented, nested subset analysis does a poor job of predicting 

observed extinctions. We could not find any statistically significant predictions of 

extinction risk. The utility of nested analysis in providing insights into nature reserve 

design and predicting extinction risk has been debated (Boecklen 1997; Doak & Mills 

1994; Fleishman et al. 2002; Fleishman et al. 2000; Patterson 1987; Patterson & 

Atmar 2000; Simberloff & Martin 1991). 
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Table 5. Individual orderedness of mammal genera on three island archipelagos. 
Ordering variables include mammal species richness, island area, and isolation (i.e., 
distance to nearest mainland). Wilcoxon 2-sample rank-sum tests were used and the 
chi-square approximation values (1 d.f.) are reported; statistical significance is shown 
with ** (p<0.01) and * (p<0.05). Peromyscus spp. were not included (NI) in the 
analysis on the Baja and California archipelagos since they occur on every island. 
Spearman rank correlations (for each archipelago and for all islands pooled) are shown 
between chi-square statistics and fraction of original populations that are now extinct 
in each genera. 

 
Genus Baja Islands California Islands Gulf Islands 
 Rich Area Isolation Rich Area Isolation Rich Area Isolation 
Ammospermophilus       0.1 0.8 0.1 
Bassariscus       2.7 5.6* 2.7 
Canis 2.2 0.7 0.7    2.2 2.7 2.2 
Chaetodipus 6.5** 5.7* 0.3    13.4** 7.8** 7.5** 
Dipodomys 2.2 0.75 0.3    2.8 4.7* 2.8 
Lepus 5.0* 2.4 0.1    2.2 4.8* 2.2 
Microtus    2.4 0.4 0.4    
Mammuthus    3.3 1.8 1.8    
Neotoma 7.8** 3.9* 17.0    4.8 5.8* 4.8* 
Notiosorex 0.3 0.03 0.2       
Odocoileus 3.3 4.3* 0    2.8 4.7* 2.8 
Ovis       2.2 2.7 2.2 
Peromyscus NI NI NI NI NI NI 3.8* 0.1 3.8* 
Reithrodontomys    1.8 2.7 2.7    
Sorex    3.4 0 0    
Spermophilus    0.7 0.4 0.4 2.2 2.7 2.2 
Spilogale    3.3 0.4 1.8    
Sylvilagus 0.8 2.5 2.4    0.6 1.8 0.6 
Thomomys 2.2 1.4 2.4       
Urocyon    4.1* 4.0* 4.0* 2.2 2.7 2.2 
          
Spearman Rank 
Correlation (Sr) 

0.65 0.29 0.71 0.56 -0.37 -0.37 0.55 -0.01 0.55 

Bonferroni p-value 0.34 1.0 0.19 1.0 1.0 1.0 0.32 1.0 0.32 
N  9 9 9 7 7 7 13 13 13 

Archipelagoes Pooled          

Sr 0.50 -0.17 0.13       
Bonferroni p-value 0.03 1.0 1.0       
N 29 29 29       
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However, in the majority (if not all) of past studies, extinction predictions have been 

inferred from unobserved historical events, such as relaxation events on land-bridge 

islands formed in the Pleistocene or habitat fragmentation (Bolger et al. 1991; 

Fleishman & Murphy 1999; Patterson & Atmar 1986; Soule 1991). In this effort to 

confirm the utility of nestedness predictions with documented extinction data, we 

come away without any evidence that this methodology can or should be used for 

predicting extinction risk.  

The temperature method of Atmar and Patterson (1993; 1995) asserts that the 

topmost island or fragment in a packed matrix is the most hospitable, while the 

leftmost species is most resistant to extinction (i.e., holds the widest niche breadth, 

Patterson & Atmar 2000). The islands deemed the most hospitable in the three 

archipelagos were Magdalena and Margarita (Baja); San Miguel and Santa Cruz 

(California); Tiburon and San Jose (Gulf; Figures 4 and 5). On these islands, eight 

extinctions have occurred and an additional species is critically endangered (Table 4, 

Figures 4 and 5). Of the genera deemed most extinction-resistant (Peromyscus, 

Neotoma, Chaetodipus, and Urocyon), twelve populations have gone extinct and three 

are endangered (Table 4; Figures 4 and 5). On all three archipelagos, a single taxon 

occurs on the least hospitable islands; of these fifteen islands, five have suffered an 

extinction.  On all three archipelagos, several extinct populations were located near the 

boundary line of occurrence matrices. However, this visual pattern was offset by the 

presence of other observed extinctions with strong predicted occurrences and the 

overall poor performance of the analysis to predict observed extinctions. For example, 

the island fox (Urocyon littoralis) is highly endangered or extinct in the wild (Roemer 

et al. in press; Roemer & Wayne 2003), while occupancy probabilities from the nested 

analysis were 97-100%. Of the 23 populations conservatively deemed threatened with 
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extinction, with a probability of occurrence <50%, only four suffered extinction.  

Individual nestedness scores can be useful for determining which species or 

genera do and do not conform to an observed nested pattern. Taxa differ greatly to the 

degree they conform to their orderedness of an expected variable such area, isolation, 

or species richness (Table 5; Hecnar et al. 2002; Simberloff & Martin 1991). 

However, the ability to elucidate a mechanism to explain an observed species 

occurrence patterns relies on additional biological knowledge such as abundance, 

habitat requirements, or strength of species interactions. In addition, a species 

orderedness or lack there of is a result of a number of possible mechanisms, and these 

mechanisms hold different conservation implications (Simberloff & Martin 1991). On 

all three archipelagos, species orderedness differed greatly with some genera being 

nested across all ordering variables (Urocyon), others being significantly ordered with 

just one variable, and many others showing no ordered pattern. The genus-level degree 

of orderedness failed to give insight into extinction risks; rather, detailed natural 

history and ecology are likely to hold the answers to such patterns.  

Overall, nested subset analysis provided little qualitative or quantitative insight 

in predicting extinction risk. A number of prior studies have suggested a link between 

extinction and nestedness. However, such linkages have been based on inferences of 

extinction events based on assumptions about Pleistocene relict faunas or 

fragmentation-induced extinctions rather than direct evidence (Bolger et al. 1991; 

Cutler 1991; Kerr et al. 2000; Patterson 1987). While species loss may have occurred 

due to such events, other mechanisms are equally likely such as habitat requirements, 

colonization, or strong species interactions, and thus could have contributed to the 

observed species occurrence patterns. In this study with documented extinctions, the 

majority were not predicted. While a few of the predicted extinctions were 

corroborated by observed trends, these results could have been attained solely from the 
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information needed to conduct the analysis in the first place. Thus, it appears detailed 

natural history and taxa-specific ecology may prove critical in predicting even broad-

scale patterns of extinction risk (e.g., Bennett & Owens 1997; Owens & Bennett 

2000). In our opinion the best approach to making conservation and management 

decisions is the careful consideration of multiple ecological factors as they apply to 

individual taxa, rather than the application of a highly general model such as nested 

analysis.  At the least, further research is needed in the utility of nested subset analysis 

before it is prescribed widely as a useful conservation tool.  
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Chapter 4: Diversity, invasive species, and extinctions in insular ecosystems 

 

Our ultimate theory of species diversity may not mention area, because area seldom 

exerts a direct effect on a species’ presence – MacArthur & Wilson 1967 

 

Abstract 

Species invasions are a primary driver of species additions and deletions in 

ecosystems. Understanding the intricacies of invasions and their consequences is 

central to ecology and conservation. Extinctions are rarely random and often 

influenced by a suite of factors. We explore abiotic and biotic factors that correlate 

with and help provide proximate explanations for insular extinctions driven by 

invasive predators in western Mexico. A number of factors that were hypothesized a 

priori to explain the observed extinction patterns performed better than island area 

alone. Alternative prey available to invasive predators was negatively correlated with 

extinction, with twice the number of alternative prey species present on extinction-free 

islands compared to islands with extinctions. Carrying capacity estimates of extant 

populations were 27 times that of extinct populations.  An aggregate model that 

included alternative prey, carrying capacity, and seasonal precipitation was the best 

performing model. Those factors, which are also supported by theory and empirical 

evidence, are informative to conservation decision makers. By focusing regionally on 

a specific threat, we provide a framework to practitioners that aids in prioritizing 

invasive predator eradications to halt insular extinctions. 
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Introduction 

Understanding the causes and impacts of species additions and deletions in 

ecosystems is a central focus of ecology and conservation biology. The composition of 

local biotic communities arises via a series of successful invasions from a larger 

species pool, and subsequent species interactions with resident species such a 

predators, competitors, and prey (Ricklefs & Schluter 1993; Terborgh et al. 2001). A 

suite of factors, including body size, life history, and geographical range affect the 

dynamics of species invasions and extinctions; while some are well documented, 

many remain unknown and elusive (Fisher & Owens 2004; McKinney 1997). 

Invasions often cause species declines and extinction, particularly in insular 

ecosystems (Atkinson 1989; Towns et al. 2006). But invasions and extinctions are 

rarely random, and are usually caused by multiple factors and their interactions 

(McKinney 1997; Roemer et al. 2002; Terborgh et al. 2001). Nonetheless, an 

emerging generality of anthropogenic global change is invasive species replacing 

native species with extensive biodiversity impoverishment (Lockwood & McKinney 

2001). 

Comparative methods are important tools in conservation biology, and the 

techniques are particularly useful for searching for mechanisms that underlie patterns 

of extinction risk (Terborgh 1974; Wilson & Willis 1975). Comparative methods also 

often hope to inform on-the-ground conservation planning and interventions, yet this 

goal is arguably more difficult to achieve for at least three reasons. First, many studies 

combine correlation analyses across multiple species with phylogenetic independent 

contrasts to test evolutionary hypotheses with respect to changes in ecological factors 

(e.g., the effect of a life history trait on extinction risk, see Fisher & Owens 2004 for a 
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review). Contrasting species with independent phylogenies is critical to control for 

similarities that might be caused by phylogeny; however, the approach gives priority 

to phylogeny over ecology, and the unit of analyses is evolutionary events within a 

clade rather than the unit of extinction (Sullivan et al. 2006; Westoby et al. 1995). 

Thus, additional and complimentary approaches are likely provide a useful risk 

assessment tool to decision makers, whose goal is to manage a suite of species (or 

populations) in a focal community (Sullivan et al. 2006).  

Second, most studies seeking factors underlying extinction risk fail to explore 

the role of extrinsic factors such as interactions with the environment and other species 

(but see Blackburn & Gaston 2002; Fisher et al. 2003). Invasive species and habitat 

destruction, two primary threats to biodiversity, commonly trigger novel, complex 

interactions within species assemblages, often resulting in population declines or 

extinctions (Norbury 2001; Roemer et al. 2002; Terborgh et al. 2001).  

Third, most comparative studies exploring extinction threats have been global 

in scope, covering broad taxonomic groups or using worldwide datasets, and pooling 

data on different extinction risks across suites of locales and species (Fisher & Owens 

2004). Since current extinction threats can be taxon- or context-specific (Owens & 

Bennett 2000), such analyses may be of limited utility for conservation planning or in 

elucidating the natural history of extinctions. While global models are vital for 

exploring general patterns, given the idiosyncratic nature of extinctions, regional 

models focusing on specific taxa and/or specific extinction drivers may be the most 

instructive in informing on-the-ground conservation interventions (Fisher & Owens 

2004).  

Regional extinction studies on islands are particularly informative. Of the 

threatened mammal and bird species listed by the World Conservation Union, 43% are 

insular (Aguirre-Muñoz et al. in review). Invasive species are the primary driver of 



 

 78 

extinction and ecosystem change on islands (Towns et al. 2006). Invasive predators, 

such as cats (Felis catus) and rats (Rattus spp.), are present on over 80% of the 

world’s islands and new introductions persist (Atkinson 1985). However, invasive 

mammals can now be removed from islands: over 700 successful eradications have 

taken place over the past three decades (Donlan in press). Prioritizing islands for 

eradication to halt extinctions of native species should thus be an important focus for 

conservation science. For example, a certain amount of resources are available to 

remove feral cats from three islands in an archipelago; based on the available data, 

which islands should be targeted to maximize the probability of preventing 

extinctions?  

Here, we use the islands off the western coast of Mexico, known for their 

endemism and biodiversity, to explore patterns of small mammal extinctions and how 

intrinsic and extrinsic factors interact in ways that might predispose populations to 

extinction by invasive predators. Feral cats and rats have recently caused a number of 

extirpations and extinctions on some of these islands (Donlan et al. 2005; Knowlton et 

al. in press; Álvarez-Castañeda & Ortega-Rubio 2003; Álvarez-Castañeda & Patton 

1999). Yet, on other islands off the western coast of Mexico with invasive predators 

biodiversity loss has not occurred. Using theory and empirical evidence, we test eight 

a priori hypotheses that may have contributed to insular extinctions (Table 6).  
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Table 6. Geographical, autecological, and synecological variables, proposed proxy, 
and their potential contribution to extinction risk of small mammals on islands where 
invasive predators are present. 
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We do so with a limited dataset that serves as proxy for proposed mechanisms. This 

data-poor scenario is representative of most conservation planning exercises.  We 

explore geographical (i.e., habitat heterogeneity and productivity), autecological (i.e., 

carrying capacity and population growth rate), and synecological (i.e., presence of 

predators and alternative prey) factors that potentially correlate with and, thereby, help 

provide proximate explanations for extinctions driven by invasive predators.  

 

Materials And Methods 

Using an island biodiversity database for the region (Donlan et al. 2000), we 

collated biotic and abiotic information for all the islands off the Pacific coast of Baja 

California (n = 23) and in the Gulf of California (n > 135) where feral cats and rats are 

present or recently removed after extinctions occurred (Figure 7; Table 9). We 

recorded the extant (n = 58) and extinct (n = 9) native, nonvolant mammals occurring 

on the 25 islands with invasive predators. Two carnivores (ringtail, Bassariscus 

astutus and coyote, Canis latrans) were excluded since predation by cats or rats is not 

a threat (these species are included in the native predation index below).  

Taxa included in the analysis were from the following genera (number of 

populations): Ammospermophilus (2), Chaetodipus (16), Dipodomys (2), Lepus (5), 

Neotoma (13), Notiosorex (1), Peromyscus (25), Sylvilagus (2), and Thomomys (1). 

The biodiversity and extinctions on the islands are well documented, with species 

losses attributed to the impacts of cats and/or rats (Donlan et al. 2005; Espinosa-

Gayosso & Álvarez-Castañeda 2006; Knowlton et al. in press; Váquez-Domínguez et 

al. 2004; Álvarez-Castañeda & Cortes-Calva 1996, 2002; Álvarez-Castañeda & 

Ortega-Rubio 2003; Álvarez-Castañeda & Patton 1999). On Meija Island, Peromyscus 

guardia was recently observed (A. Samaniego, pers. comm., 2005). However, it is  
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Figure 7. The islands of northwest Mexico that have (or recently had) feral cat and/or 
invasive rat populations and native nonvolant small mammals. Baja California: 1 
Coronado North, 2 Todos Santos South, 3 Todos Santos North, 4 San Martin, 5 San 
Geronimo, 6 Cedros, 7 Natividad, 8 San Roque, 9 Magdalena, 10 Santa Margarita, 
Gulf of Mexico: 11 Granito, 12 Meija, 13 Angel de la Guarda, 14 Estanque, 15 San 
Pedro Nolasco, 16 San Marcos, 17 Coronados, 18 Carmen, 19 Monserrate, 20 Santa 
Catalina, 21 San Jose, 22 San Francisco, 23 Partida, 24 Espiritu Santo, 25 Cerralvo 

 

unclear whether the individuals observed are from this is the same population that was 

last collected in 1973 and declared extinct after substantial trapping efforts (Álvarez-

Castañeda & Ortega-Rubio 2003), or a new population that either immigrated from 

two islands nearby (~570m). Introduction by fishermen during camping activities is 

also a possibility. Given the trapping effort, the small size of the island (3.3 km2), and 

the reality of stow-away introductions (Hafner et al. 2001), we assumed the 

populations is newly arrived. 

Island area (range: 0.6–951 km2), perimeter (range: 3.5–278 km), and 
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maximum elevation (range: 15-1318 m) were calculated from a geospatial database 

(Donlan et al. 2000) and the literature (e.g., Case et al. 2002). Perimeter-area ratio is a 

demonstrated proxy for the amount of allochthonous resource input from the marine 

environment to island ecosystems in the region (Polis & Hurd 1996). Climatic 

parameters were calculated from long-term weather data from the islands directly or 

from a nearby station on the adjacent mainland (Hastings & Humphrey 1969). The 

islands are dominated by two climatic regimes: a monsoonal pattern moving north 

from the tropics and a Mediterranean pattern moving south. To capture those patterns, 

means and the coefficients of variation were calculated for annual, January, and 

September rainfall; the latter two months represent bi-modal peaks for precipitation in 

the region (Figure 8). 

Adult body mass was recorded directly (n = 46) or estimated from closely-

related species/subspecies (n = 21) from the literature (Lackey 1991; Wilson & Ruff 

1999; Álvarez-Castañeda & Patton 1999). Autecological parameters were estimated 

using allometric relationships. The potential maximum rate of increase (rmax) was 

estimated from the equation rm = 1.375W-0.315, where W is the estimated mean mass 

and rm = the maximum instantaneous, intrinsic rate of increase over a year (Sinclair 

1996). The standard deviation of instantaneous rate of change (σr) was estimated from 

the equation σr = 0.805W-0.316 (Sinclair 1996). Population density (number km-2) was 

estimated from mass, based on an <100kg herbivorous mammal-specific allometric 

relationship [log(density) = 1.38(logW-0.75)] (Silva & Downing 1995). Carrying 

capacity (Kmax) was estimated by multiplying population density by island area. 
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Figure 8. Precipitation on the islands of northwest Mexico. (A) Mean monthly rainfall 
for the Gulf of California (dotted line) and of the Pacific side of Baja California (solid 
line). (B) Mean September and (C) January rainfall for the Gulf of California and Baja 
California. Data is based on a long-term monthly rainfall records averaging 23 years 
(range: 2-54 years). 

 

  Our index for alternative prey available to invasive predators included all 

additional nonvolant, native mammal and lizard taxa. This is an underestimate for two 

reasons. First, both cats and rats feed on terrestrial and intertidal invertebrates (Catling 
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1988; Reed & Bowen 2001; Towns et al. 2006). Second, cats and rats are known to 

prey on seabirds and their eggs when available, and land birds to a lesser extent (Keitt 

et al. 2002; Reed & Bowen 2001; Towns et al. 2006). Neither birds nor invertebrates 

were included due to incomplete data. However, tenebrionid beetle and breeding land 

bird diversity correlates with island area in the region (Case et al. 2002), and therefore 

their diversity is expected to correlate with our index.  

Number of native mammalian carnivores and snake species known to feed on 

small mammals was used as an index of presence of predation pressure. Densities of 

predators was not available; thus we used species richness as a proxy for predation 

strength (Buckley & Jetz 2007). Raptor diversity was not included due to incomplete 

data; however, it too correlates with island area in the region (Case et al. 2002). 

Ringtail cats (Bassariscus astutus) and coyotes (Canis latrans) are present on four 

islands; known prey items include invertebrates, small mammals, and lizards 

(Rodriguez-Estrella et al. 2000; Rose & Polis 1998). Snake diet was based on island-

specific data and/or inferred based on closely-related populations or taxa (Grismer 

2002). Our index is conservative in the sense that only snakes that prey regularly or 

solely on small mammals were included (i.e., Crotalus, Lichanura, Masticophis, 

Pituophis, and Trimorphodon). 

 Certain variables (Kmax, PA ratio, and CVannual rain) were log transformed to 

meet criteria necessary for statistical analyses. All abiotic and biotic factors (Table 6) 

were standardized [(observation-mean)/standard deviation)] to allow for comparisons. 

We combined two statistical approaches for inference (Stephens et al. 2005). First, we 

used 1-way ANOVAs allowing both F-values and p-values to inform our a priori 

hypotheses regarding parameters that influence extinction (Table 6). Abiotic and biotic 

parameters were the independent variables. Our binomial response variable was 

extinction probability, with populations considered to be replicates. Partial Bonferroni 
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corrected p-values were adjusted for correlated variables, and are reported with a 

family wide α-level of 0.05 (Sankoh et al. 1997).  

Second, we assessed the a priori hypothesis using logistic regression, 

exploring a range of functional forms for each hypothesis. Abiotic and biotic 

parameters were the independent variables; extinction probability was the dependent 

variable. The best performing models for each a priori hypothesis were selected based 

on Akaike’s Information Criteria values (AIC, Burnham & Anderson 2002). We then 

used multivariate stepwise model selection to pick the best aggregate model from all 

possible sets of best performing forms for each a priori hypothesis. Our a priori 

approach, along with exploring all possible model subsets, controls for the possibility 

of spurious results due to multicollinearity (Graham 2003).  

While from ecological and conservation perspectives, populations are the unit 

of extinction and the motivation for this analyses, using population as the replicate 

could be potentially viewed as psuedoreplication from two perspectives. First, 

geographical and synecological parameters are a function of both the target population 

and the island. Secondly, due to the regional focus and thus small sample size, we 

were not able to control for the possibility of phylogenetic non-independence among 

species. Thus, autecological parameters could potentially be non-independent. To 

explore these potential biases, we repeated the univariate analyses twice: once with 

island as the replicate using the entire dataset, and again restricting the data to the 

genus Peromyscus, collapsing 26 Peromyscus populations to 5 independent groups 

according to their known mainland phylogenetic affinity (Hafner et al. 2001; Lawlor et 

al. 2002). The Peromyscus-specific analysis provides some insight with regard to the 

potential evolutionary role of the autecological parameters on extinction.  

Lastly, since island is often the focus of island biogeography and extinction 

analyses, and that many of our a priori factors were estimated by and correlate with 
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island area, we tested the performance of the logistic regression models with and 

without the inclusion of island area. Analyses were conducted in the statistical 

programs SPSS and R (R Development Core Team 2005; SPSS 1999). 

Results 

With the univariate analysis, alternative prey explained the most variance 

between extant and extinct populations, followed by native predators, perimeter-area 

ratio, and carrying capacity (Figure 9). Alternative prey was negatively correlated with 

extinction, with extinction-free islands having on average over twice the alternative 

prey than islands with extinctions (non-standardized means: 10.4 vs. 4.3; 1-way 

ANOVA with island as the replicate: F1,23 = 6.64, p = 0.017). Alternative prey also 

had the lowest AIC value of the a priori models (Table 7). Native predators were three 

times greater on extinction-free islands (non-transformed means: 2.88 vs. 0.89; 1-way 

ANOVA with island as the replicate: F1,23 = 7.00, p = 0.014). Carrying capacity 

estimates of extant populations were 27 times that of extinct populations (Figure 9; 

non-standardized means: 5.2 x 104 vs. 1.9 x 103). Of autecological parameters, 

carrying capacity had the lowest AIC value (Table 7). There were no differences in 

rmax or σr (Figure 9). Perimeter-area ratio had the lowest AIC of the a priori 

geographical parameters, and negatively correlated with extinction (Figure 9; Table 7; 

non-transformed means: 2.02 vs. 3.44; 1-way ANOVA: F1,23 = 4.62, p = 0.042). 

Extinctions occurred on islands with lower perimeter-area ratios compared to islands 

were extinctions did not occur. Despite the small sample size (n = 7), the Peromyscus-

specific analysis on autecological variables revealed similar patterns compared to the 

analysis that included the entire small mammal community, but with marginal or no 

statistical significance (Table 8). 
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Table 7. Comparison of models for probability of small mammal extinctions from 
invasive predators. Alternative prey, carrying capacity, and January rain made up the 
best performing aggregate model relative to the single parameter a priori models (see 
Table 6). For synecological, autecological, geographical parameters, the best 
performing model was selected from all possible models.  ∆AIC is the difference 
between AIC values for each model and the lowest AIC value. A lower AIC value 
indicates a better fitting model; W is the model’s Akaike weight, the relative 
probability that the model is the best fit to the data tested. 
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Combining the best a priori single parameter models, the best performing aggregate 

model included three parameters: alternative prey, carrying capacity and January rain 

(Table 7). The three-parameter model was nearly twenty times more likely to explain 

variation in extinctions among small mammal populations than island area (Evidence 

Ratio = Walt prey + Kmax + Jan. rain / Wisland area). The best performing aggregate model did 

not include island area. As a single parameter, island area performed best compared to 

other geographical parameters; however alternative prey alone was better performing 

(Table 7). Island area was different on islands with and without extinctions (non-

transformed mean: 4.8 vs. 146.7 km2; 1-way ANOVA on log area: F1,23 = 6.098, p = 

0.021). 

 

Table 8. Insular Peromyscus populations (n = 25) collapsed to mainland phylogenetic 
affinity groups (n = 5). Means of autecological parameters for each group are shown, 
along with means of extinct and extinct populations collapsed to group. 

 

Discussion 

 Over the last 500 years, feral cats and invasive rats are likely responsible for 

more documented vertebrate extinctions worldwide than any other agent (Aguirre-

Muñoz et al. in review; Atkinson 1989; Towns et al. 2006). Cats are present on 24 of 

Phylogenetic Grouping (mainland affinity) No. of populations (extinct) log Kmax rmax r-max

Peromyscus  boylii 1 (0) 3.2 4.2 2.5

Peromyscus eremicus 11 (3) 4.1 4.3 2.6

Peromyscus fraterculus 2 (0) 4.3 4.3 2.5

Peromyscus maniculatus 10 (1) 3.4 4.6 2.7

Peromyscus merriami 1 (1) 3.2 4.4 2.6

Phylogenetic Independent Extant Mean 4 3.9 4.3 2.5

Phlogenetic Independent Extinct Mean 3 2.8 4.6 2.6

F1,5 5.71 0.605 0.606

p-value .062 0.47 0.47
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the 25 islands in this study (or were recently removed, Tershy et al. 2002), and are 

responsible for eight of the observed extinctions (see refs. in Methods). Rats, present 

on five islands, are known to compete with and suppress insular rodent populations 

(Harris et al. 2006). They are presumed to be responsible for the additional extinction 

and may have contributed to others. Our results suggest that the interplay of 

autecological, synecological, and geographical traits may predispose small mammals 

to extinction via feral cat predation. 

Figure 9. Differences in synecological, autecological, and geographical traits between 
extant (grey) and extinct (red) insular populations in western Mexico [mean (SE); n = 
67 populations]. Asterisks (*) indicate significant differences with a family-wide 
Bonferroni corrected α-level of 0.05.  
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Synecological Factors 

Alternative prey was consistently the most powerful explanatory variable 

between extant and extinct populations. Feral cats are generalist and opportunistic 

predators, with small mammals commonly making up a large percentage of their diet 

(Bloomer & Bester 1990; Molsher et al. 1999; Paltridge et al. 1997). Cats are also 

known to prey on seabirds and lizards, particularly when mammals are in low 

abundance or absent (Bloomer & Bester 1990; Keitt et al. 2002; Paltridge et al. 1997). 

With high prey densities, prey-switching in generalist predators can lead to Type III 

functional responses (Hanksi et al. 1991). In Australia, cats commonly show evidence 

of a Type III functional response to their preferred prey species (i.e., rabbits), with 

prey consumption following primary prey abundance and prey switching when that 

prey declines (Catling 1988; Molsher et al. 1999; Reed & Bowen 2001). As originally 

hypothesized by Elton (1927), in a community with diverse prey, this predator 

functional response can have stabilizing effects on prey abundance (Hanski et al. 

2001). Alternatively in less diverse communities, a generalist predator could feasibly 

destabilize prey populations and increase the extinction probability of the preferred 

prey species. 

Long-term empirical studies on rodent predator-prey dynamics in other 

systems support the hypothesis of context-dependent community response from 

predators. In Fennoscandia and arctic Canada, specialist predators show a delayed 

numerical response to changes in rodent prey populations, which results in unstable 

prey population dynamics due to delayed density-dependent mortality of rodents 

(Hanski et al. 2001). In contrast, generalist predators in the same high latitude 

ecosystems stabilize (i.e., inhibit population oscillations) rodent demography (Erlinge 

et al. 1984; Hanski et al. 2001; Reid et al. 1995). Similarly, systems like islands with 

low prey diversity, could necessarily limit prey switching for generalist predators such 
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as feral cats, which in turn could lead to extinction. Our results are consistent with the 

hypothesis that similar dynamics are occurring on the islands of western Mexico.    

Autecological Factors 

Low mean abundance, which often correlates with extinction, is a function of 

intrinsic traits (i.e., survival and reproduction) interacting with extrinsic abiotic and 

biotic factors. Our carrying capacity estimate likely errs toward its upper bound 

because it assumes populations are saturated in the habitat, and the estimate is based 

on an intrinsic trait and a single bounded abiotic factor: maximum available habitat 

(i.e. island area). In contrast to others (Duncan et al. 2002; Owens & Bennett 2000), 

we found no evidence that slow life history attributes (i.e., rmax and σr) correlate with 

extinction by invasive predators. While theory predicts that species with slow life 

histories should be more vulnerable to exploitative forces (Pimm 1991), results of 

empirical studies have been mixed (Fisher & Owens 2004).  

For autecological traits, population size (and percent change) may be the best 

predictor of extinction risk (O'Grady et al. 2004); however, it is often unavailable. 

While imprecise, carrying capacity estimated by body size and available habitat (data 

that is commonly available) may be a useful proxy of population size to help predict 

extinction vulnerability by invasive mammals. When combined with alternative prey, 

it was more informative than using island area alone and provides insights into 

possible mechanisms. In contrast, area is multi-factorial, a proxy for a suite of 

correlated factors (MacArthur & Wilson 1967; Ricklefs & Lovette 1999). Further, 

island area does not always correlate linearly with ecological factors. For example, 

populations of Peromyscus are often found at high densities on very small islands 

(Stapp & Polis 2003). 
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Geographical Factors 

In western Mexico, we suspect primary productivity via precipitation 

influences the probability of extinction by invasive predators in complex ways by 

interacting with island-specific factors. While the entire arid region is heavily 

influenced by rainfall, precipitation differs between the islands in the Gulf of 

California and off the Pacific side of Baja California. In the Gulf of California, 

September rainfall from tropical storms decreases moving northward. The Pacific 

islands receive the majority of their rainfall during the winter, with a decreasing trend 

moving southward away from the Mediterranean climate of California (Figure 8). The 

role of January rain in invasive predator-driven extinctions is equivocal. While the 

inclusion of January rain in the aggregate model is consistent with a paradox of 

enrichment hypothesis (Rosenzweig 1971), it is unclear whether this effect is general, 

or alternatively heavily influenced by two extinctions that have occurred on northern 

islands with greater January rainfall compared to the rest of the region. When those 

two (2 of 9) extinctions are removed from the analyses, January rain is not included in 

the aggregate model. 

Precipitation is known to heavily influence island dynamics in the region, 

particularly high rainfall events and subsequent prolonged droughts associated with 

the El Niño Southern Oscillation (ENSO, Donlan et al. 2002; Polis et al. 1997). While 

the details of how introduced predation and precipitation interact at the landscape 

scale are unclear, empirical studies with insular Peromyscus in the region suggest the 

interaction may be important (Stapp & Polis 2003).  

Of the nine extinctions, Peromyscus spp. were the most frequent (5 out of 25 

populations), followed by woodrats (Neotoma spp., 3) and pocket mice (Chaetodipus 

baileyi, 1). With the exception of one population, all Peromyscus extinctions have 

occurred on islands where it was the only native mammal present. Insular Peromyscus 
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populations are dynamic, with drastic fluctuations driven by ENSO-related rainfall 

events (Stapp & Polis 2003). Populations show precipitous declines with a return to 

arid conditions following ENSO-rains, and often become restricted to near-shore 

habitats due to a reliance on littoral resources (Stapp & Polis 2003). During prolonged 

droughts, the large numerical responses of Peromyscus to bottom-up forcing coupled 

with a reliance on allochthonous resources may make them more vulnerable to novel 

top-down forces (Rosemond et al. 1993). 

Feral cats, and other predators, are known to heavily utilize near-shore habitats 

in search of both terrestrial and littoral prey (Rose & Polis 1998; Tidemann 1994, CJD 

personal observation). Significant allochthonous inputs from the marine environment 

to island ecosystems have been documented (Polis et al. 2004). Subsidy effects in 

predator-prey systems are predicted to be positive or negative on a target consumer 

depending on the preference of allochthonous versus autochthonous sources and the 

level of allochthonous input (Huxel & McCann 1998). Both positive effects driven by 

a consumer’s functional response and negative effects driven by a consumer’s 

numerical response have been reported in other systems (see refs in Table 6). While 

our study was consistent with an negative effect (Figure 9) and it has been 

hypothesized elsewhere (Power et al. 2004), whether marine subsidies increase 

predation pressure on native, island species by invasive predators via a numerical 

response remains to be seen.  

Informing Conservation Interventions 

 Information that is both relatively accessible and instructive to conservation 

planning is in high demand. While some information may be universal, most may end 

up being geographically or situationally dependent (Donlan et al. 2005). Models that 

require a minimum amount of data will be more useful, since the majority of 



 

 96 

conservation planning scenarios are data poor (Doak & Mills 1994). Data such as 

population abundance and predator density are preferable over carrying capacity 

estimated by body size and predator richness; however, the former are more often than 

not unavailable. For western Mexico’s islands, alternative prey and carrying capacity 

are two factors that could help guide the prioritization invasive predator eradication 

campaigns. Our analysis demonstrates that those parameters are more informative to 

conservation decision makers than island area alone. Influences of precipitation appear 

more complex, which highlights the challenge of elucidating relationships that balance 

the search for mechanism and utility to conservation decision-making. The approach 

used here could be used as a template for other archipelagos in informing conservation 

programs.  
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Table 9.Small mammal records used in the analyses. Variables include Mass (grams), 
Area (km2), perimeter-area ratio(PA), maximum elevation (meters), alternative prey 
(AP), native predators (NP), annual rain (AR), coefficient of variation of annual rain 
(CV(AR)), and September (SR) and January (JR) rain and coefficient of variation. 

 
Taxon Extinct MASS AREA PA ME AP NP AR CV(AR) SR CV(SR) JR CV(JR)

Ammospermophilus insularis  No 106.5 87.0 0.77 181 19 5 179.1 1272.7 62 88.98 10.60 94.97

Ammospermophilus insularis  No 106.5 20.3 1.61 30 14 5 179.1 1272.7 62 88.98 10.60 94.97

Chaetodipus arenarius albulus No 13 303.3 0.92 118 12 4 73.7 192.2 4.5 11.34 10.10 12.03

Chaetodipus arenarius ammophilus No 13 236.9 0.45 173 16 4 73.7 192.2 4.5 11.34 10.10 12.03

Chaetodipus arenarius siccus No 13 145.9 0.48 234 10 5 211.0 1019.0 57.3 74.77 12.10 33.06

Chaetodipus baileyi fornicatus Yes 13 18.8 1.12 69 7 3 141.1 1025.8 55.8 103.45 10.60 31.20

Chaetodipus fallax anthonyi No 19.5 378.7 0.32 367 13 3 65.5 193.6 9.1 40.65 11.80 36.13

Chaetodipus spinatus bryanti No 15.5 0.7 5.28 12 16 6 95.3 1079.8 48 188.81 14.40 27.23

Chaetodipus spinatus evermanni No 15.5 3.3 2.45 79 5 1 73.6 357.7 24 107.89 10.50 14.52

Chaetodipus spinatus guardia No 15.5 951.3 0.22 402 11 3 73.6 357.7 24 107.89 10.50 14.52

Chaetodipus spinatus lambi No 15.5 87.0 0.77 181 19 5 179.1 1272.7 62 88.98 10.60 94.97

Chaetodipus spinatus lambi No 19.5 20.3 1.61 30 14 5 179.1 1272.7 62 88.98 10.60 94.97

Chaetodipus spinatus latijugularis No 19.5 4.6 2.26 76 9 1 95.3 1079.8 48 188.81 14.40 27.23

Chaetodipus spinatus macrosensis No 15.5 30.9 0.86 83 13 5 104.5 993.7 33.7 29.08 9.40 30.39

Chaetodipus spinatus magdalenae No 19.5 303.3 0.92 118 12 4 73.7 192.2 4.5 11.34 10.10 12.03

Chaetodipus spinatus margaritae No 19.5 236.9 0.45 173 16 4 73.7 192.2 4.5 11.34 10.10 12.03

Chaetodipus spinatus occultus No 15.5 144.8 0.64 146 14 3 141.1 1025.8 55.8 103.45 10.60 31.20

Chaetodipus spinatus pullus No 15.5 10.0 1.55 86 14 2 141.1 1025.8 55.8 103.45 10.60 31.20

Dipodomys insularis  No 43.15 0.7 5.28 12 16 6 95.3 1079.8 48 188.81 14.40 27.23

Dipodomys merriami margaritae No 43.15 236.9 0.45 173 16 4 73.7 192.2 4.5 11.34 10.10 12.03

Lepus californicus magdalenae No 2300 303.3 0.92 118 12 4 73.7 192.2 4.5 11.34 10.10 12.03

Lepus californicus magdalenae No 2300 236.9 0.45 173 16 4 73.7 192.2 4.5 11.34 10.10 12.03

Lepus californicus sheldoni No 2300 144.8 0.64 146 14 3 141.1 1025.8 55.8 103.45 10.60 31.20

Lepus insularis  No 2300 87.0 0.77 181 19 5 179.1 1272.7 62 88.98 10.60 94.97

Lepus insularis  No 2300 20.3 1.61 30 14 5 179.1 1272.7 62 88.98 10.60 94.97

Neotoma anthonyi  Yes 145 1.3 4.33 95 5 0 256.6 1578.8 20.9 157.74 40.20 25.92

Neotoma bryanti  No 145 378.7 0.32 367 13 3 65.5 193.6 9.1 40.65 11.80 36.13

Neotoma bunkeri  Yes 145 10.0 1.55 86 14 2 141.1 1025.8 55.8 103.45 10.60 31.20

Neotoma lepida abbreviata No 145 4.6 2.26 76 9 1 95.3 1079.8 48 188.81 14.40 27.23

Neotoma lepida insularis No 145 951.3 0.22 402 11 3 73.6 357.7 24 107.89 10.50 14.52

Neotoma lepida marcosensis No 145 30.9 0.86 83 13 5 104.5 993.7 33.7 29.08 9.40 30.39

Neotoma lepida nudicauda No 145 144.8 0.64 146 14 3 141.1 1025.8 55.8 103.45 10.60 31.20

Neotoma lepida perpallida No 145 0.7 5.28 12 16 6 95.3 1079.8 48 188.81 14.40 27.23

Neotoma lepida pretiosa No 145 303.3 0.92 118 12 4 73.7 192.2 4.5 11.34 10.10 12.03

Neotoma lepida pretiosa No 145 236.9 0.45 173 16 4 73.7 192.2 4.5 11.34 10.10 12.03

Neotoma lepida vicina No 145 87.0 0.77 181 19 5 179.1 1272.7 62 88.98 10.60 94.97

Neotoma lepida vicina No 145 20.3 1.61 30 14 5 179.1 1272.7 62 88.98 10.60 94.97

Neotoma martinensis  Yes 145 3.0 2.68 12 4 1 137.7 847.5 0.3 3.00 46.90 127.33

Notiosorex crawfordi crawfordi No 145 3.0 2.68 12 4 1 137.7 847.5 0.3 3.00 46.90 127.33

Peromyscus boylii glasselli No 29 4.2 2.40 96 6 0 235.2 1462.9 18.6 128.93 12.10 26.51

Peromyscus caniceps  No 27 18.8 1.12 69 7 3 141.1 1025.8 55.8 103.45 10.60 31.20

Peromyscus eremicus avius No 27 145.9 0.48 234 10 5 211.0 1019.0 57.3 74.77 12.10 33.06

Peromyscus eremicus cedrosensis No 27 378.7 0.32 367 13 3 65.5 193.6 9.1 40.65 11.80 36.13

Peromyscus eremicus insulicola No 27 87.0 0.77 181 19 5 179.1 1272.7 62 88.98 10.60 94.97

Peromyscus eremicus insulicola No 27 20.3 1.61 30 14 5 179.1 1272.7 62 88.98 10.60 94.97

Peromyscus eremicus polypolius No 27 303.3 0.92 118 12 4 73.7 192.2 4.5 11.34 10.10 12.03

Peromyscus eremicus polypolius No 27 236.9 0.45 173 16 4 73.7 192.2 4.5 11.34 10.10 12.03

Peromyscus eva carmeni No 27 144.8 0.64 146 14 3 141.1 1025.8 55.8 103.45 10.60 31.20

Peromyscus guardia guardia No 27 951.3 0.22 402 11 3 73.6 357.7 24 107.89 10.50 14.52

Peromyscus guardia harbonsonii Yes 27 0.7 5.60 26 2 0 73.6 357.7 24 107.89 10.50 14.52

Peromyscus guardia meija Yes 27 3.3 2.45 79 5 1 73.6 357.7 24 107.89 10.50 14.52

Peromyscus guardia sp. Yes 27 1.0 4.75 37 4 1 73.6 357.7 24 107.89 10.50 14.52

Peromyscus maniculatus assimilis No 20 0.8 4.97 152 6 0 256.6 1204.6 5.1 29.40 50.80 33.74

Peromyscus maniculatus cineritius Yes 20 0.8 6.12 5 1 0 95.8 752.4 5.2 27.23 46.40 126.50

Peromyscus maniculatus dorsalis No 20 10.3 1.80 49 2 1 65.5 193.6 9.1 40.65 11.80 36.13

Peromyscus maniculatus dubius No 20 0.6 5.59 17 3 0 256.6 1578.8 20.9 157.74 40.20 25.92

Peromyscus maniculatus dubius No 20 1.3 4.33 95 5 0 256.6 1578.8 20.9 157.74 40.20 25.92

Peromyscus maniculatus exiguus No 20 3.0 2.68 12 4 1 137.7 847.5 0.3 3.00 46.90 127.33

Peromyscus maniculatus geronimensis No 20 0.7 5.28 12 2 0 95.0 847.5 0.3 3.00 46.90 127.33

Peromyscus maniculatus magdalenae No 20 303.3 0.92 118 12 4 73.7 192.2 4.5 11.34 10.10 12.03

Peromyscus maniculatus margaritae No 20 236.9 0.45 173 16 4 73.7 192.2 4.5 11.34 10.10 12.03

Peromyscus pembertoni  Yes 25 4.2 2.40 96 6 0 235.2 1462.9 18.6 128.93 12.10 26.51

Peromyscus pseudocrinitus  No 18 10.0 1.55 86 14 2 141.1 1025.8 55.8 103.45 10.60 31.20

Peromyscus slevini  No 54.4 30.8 0.92 143 7 1 141.1 1025.8 55.8 103.45 10.60 31.20

Sylvilagus bachmani cerrosensis No 54.4 378.7 0.32 367 13 3 65.5 193.6 9.1 40.65 11.80 36.13

Sylvilagus mansuetas  No 54.4 0.7 5.28 12 16 6 95.3 1079.8 48 188.81 14.40 27.23

Thomomys bottae magdalenae No 714 303.3 0.92 118 12 4 73.7 192.2 4.5 11.34 10.10 12.03
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Chapter 5: Pleistocene Rewilding: An optimistic agenda for 21st century 

conservation 
 
Reprinted from Donlan, C. J. , J. Berger, C. E. Bock, J. H. Bock, D. A. Burney, J. A. 

Estes, D. Forman, P. S. Martin, G. W. Roemer, F. A. Smith, M. E. Soulé, H. W. 
Greene. 2006. Pleistocene Rewilding: conceptual justification, uncertainty, and 
implementation. The American Naturalist 168: 660-681 

Abstract 

Large vertebrates are strong interactors in food webs, yet they were lost from most 

ecosystems after the dispersal of modern humans from Africa and Eurasia. We call for 

restoration of missing ecological functions and evolutionary potential of lost North 

America megafauna using extant conspecifics and related taxa. We refer to this 

restoration as Pleistocene Rewilding; it is conceived as carefully managed ecosystem 

manipulations whereby costs and benefits are objectively addressed on a case-by-case, 

locality-by-locality basis. Pleistocene Rewilding would deliberately promote “K-

selected” species over pest-and-weed assemblages, facilitate the persistence and 

ecological effectiveness of megafauna on a global scale, and broaden the underlying 

premise of conservation from managing extinction to encompass restoring ecological 

and evolutionary processes. From Bolson tortoises to Holarctic lions, Pleistocene 

Rewilding can begin immediately and continue through the coming centuries. Our 

exemplar taxa would contribute biological, economic, and cultural benefits to North 

America. Owners of large tracts of private land in the central and western U.S. are 

likely to first implement this restoration. Risks of Pleistocene Rewilding include the 

possibility of disease transmission and associated human health implications, and 

unexpected ecological and sociopolitical consequences of reintroductions. Monitoring 

programs that characterize suites of species interactions and their consequences for 

biodiversity and ecosystem health will be a significant challenge. Secure fencing 
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would be a major economic cost, whereas social challenges will include acceptance of 

predation as an overriding natural process and the incorporation of pre-Columbian 

ecological frameworks into conservation strategies. 

 

Introduction 

Far more than any other species in the history of life on Earth, humans alter 

their environments by eliminating species, changing ecosystem function, and affecting 

the very future of evolution (Flannery 2006; Meyer 2005; Myers & Knoll 2001; Sala 

et al. 2000; Smith 2003; Thomas et al. 2004a; Thomas et al. 2004b). We will surely 

continue to do so for the foreseeable future, either by default or design (Western 2001; 

Wilson & Willis 1975). Earth is now nowhere pristine in the sense of being 

substantially free from human influence, and indeed most major landmasses have 

sustained many thousands of years of human occupancy and impacts (Burney & 

Flannery 2005; Flannery 1995, 2001; Heckenberger et al. 2003; Mason 2004; 

Vitousek et al. 1997). Human economics, politics, demographics, and chemicals 

pervade every ecosystem. Even the largest parks thus require active management to 

prevent extinction (Berger 2003; Newmark 1995). Human-induced environmental 

impacts are now unprecedented in their magnitude, cosmopolitan in their distribution, 

and show alarming signs of worsening.  

Human influences on the environment take a variety of well-known and often 

inter-related general forms, including habitat alteration and fragmentation, pollution, 

and resource reductions from exploitation. Large vertebrates (the megafauna) are often 

the first species to disappear in the wake of these influences because of their 

inherently low population densities and the fact they are often the foci of human 

exploitation (Burney & Flannery 2005; Cardillo et al. 2005; Flannery 1995). 
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Substantial loss of megafaunal biodiversity has already occurred in Europe, Australia, 

the Americas, and large continental islands. In Africa and Asia, the only places where 

a diverse megafauna remains relatively intact, many large mammals are threatened 

with extinction (Balmford et al. 2001; Blake & Hedges 2004; Goossens et al. 2006; 

Marchant 2001; Musters et al. 2000; Vogel 2000), especially in regions where war, 

corruption, and political turmoil wage over increasingly scarce resources (André & 

Platteu 1998; Diamond 2004; Smith et al. 2003c).  

In the Americas, most large mammals along with their commensals were lost 

by c.13,000 years ago (Burney & Flannery 2005; Martin 1958; Martin 2005b). 

Because large body size and endothermy correlate with interaction strength (Borer et 

al. 2005), this extraordinary impoverishment must have precipitated a cascading series 

of small- to large-scale ecological and evolutionary changes (Donlan et al. in press; 

Janzen & Martin 1982; Terborgh 2005). The prehistoric, historic, and contemporary 

extinction of large vertebrates and their associated ecological roles thus hold 

paramount but still underappreciated implications for biodiversity conservation 

(Donlan et al. in press; Estes 1996; Flannery 2001; Jackson et al. 2001; Martin 1999, 

2005b; Martin & Burney 1999; Ray et al. 2005; Springer et al. 2003; Terborgh et al. 

1999). 

Pleistocene history has been largely ignored as both conservation biologists 

and the public, seemingly hampered by an implicit post-Columbian bias, struggle with 

our biodiversity crisis. Basing our judgments on a deeper history offers a new vista, 

one with widespread implications for how humans might perceive and manage nature. 

The islands of Oceania provide a stark example (Steadman in press). Prior to the onset 

of human impacts c. 3,000 years ago, these islands were home to over 2,000 now 

extinct bird species—over 20% of the extant avifauna worldwide (Monroe & Sibley 

1993; Steadman 1995; Steadman & Martin 2003). Over the past three decades, 



 

 109 

conservation practitioners have developed techniques to halt insular extinctions and 

restore island ecosystems (Donlan et al. 2003; Veitch & Clout 2002), yet they have 

largely failed to develop a conceptual basis for restoration that encompasses ecological 

history (however see Atkinson 2001). This is at least in part because the ecological 

consequences of these losses are unknown and even unimagined. 

Pleistocene history along with taxon substitutions can provide us with new 

benchmarks for restoration. Such benchmarks would be defined not only by the 

presence or absence of species, but also by the presence or absence of species 

interactions—the true functional fabric of nature (Estes 2002). To this end, we 

advocate Pleistocene Rewilding—re-instituting ecological and evolutionary processes 

that were transformed or eliminated by megafaunal extinctions—as a conservation 

priority in North America (Donlan et al. 2005, see also Martin 1999, Martin and 

Burney 1999, Martin 2005b). The events and processes underlying our proposal apply 

not only to North America (Donlan et al. 2005; Flannery 2001; Martin & Burney 

1999), but to most other island archipelagos and continental ecosystems. This 

proposed program for 21st century conservation, which is both optimistic and 

defensible on multiple grounds, echoes and expands on similar proposals for eastern 

Siberia (Stone 1998; Zimov 2005), South America (Galetti 2004), and certain island 

archipelagos (Atkinson 2001; Burney 2003; Burney et al. 2002; Lazell 2002; 

Steadman & Martin 2003).  

The intent of this paper, which follows a preliminary and much shorter version 

(Donlan et al. 2005), is to lay out a more substantive argument for Pleistocene 

Rewilding. We first present ecological arguments for the proposal, then discuss its 

evolutionary, conservation, and cultural benefits. We next describe eight exemplar 

taxa, chosen to illustrate a range of benefits as well as provide a focus for the 

subsequent section discussing costs, challenges, and objections. Finally we describe 
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several possible implementation scenarios. Our broad purpose here is to further inform 

widespread discussion of this topic. 

 

Ecological arguments for Pleistocene Rewilding 

For the past 200 million years, large carnivores and megaherbivores have been 

dominant features of most ecosystems. With few exceptions, primarily in Africa, these 

animals became functionally extinct worldwide by the late Pleistocene. Any 

thoughtful natural historian should wonder about how the loss of these large 

vertebrates subsequently influenced biodiversity and ecosystem function (Terborgh 

2005). If these influences were important, would an attempt to partially restore the 

large carnivores and megaherbivores have positive or negative consequences for 

biodiversity and human welfare? Heretofore, these important questions have received 

little serious consideration. 

The general lack of attention to the functional importance of the extinct 

megafauna occurs at a time when the focus of conservation biology is expanding to 

include not just species but species interactions (Soulé et al. 2003; Soulé et al. 2005). 

A variety of evidence indeed indicates that the functional roles of large carnivores and 

megaherbivores are often significant (Berger et al. 2001; Estes et al. 1998; Jackson et 

al. 2001; Owen-Smith 1988; Ray et al. 2005; Sinclair et al. 2003; Soulé et al. 1988; 

Terborgh et al. 1999; Terborgh et al. 2001), and that degraded systems may both cause 

and result from the loss of these species (Springer et al. 2003; Terborgh & Feeley in 

press; Terborgh et al. 2006). It follows that many now extinct large mammals must 

have shaped the life histories of extant species and ecosystem characteristics through 

the selective forces of strong species interactions (Barlow 2000; Byers 1997; 

Greenwood & Atkinson 1977; Janzen & Martin 1982; Zimov et al. 1995). The likely 
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consequences of so much large vertebrate-induced change in functionality is 

ecosystem dysfunction (Jackson 1997; Pandolfi et al. 2003; Terborgh and Feeley in 

press), driven in part by anachronistic attributes of the surviving species (Janzen and 

Martin 1982) and ecological chain reactions that lead to further extinctions (Donlan et 

al. in press; Koh et al. 2004; Springer et al. 2003; Terborgh et al. 2006).  

Species interactions are difficult to observe and understand even for the most 

easily studied extant species in modern ecosystems [e.g., lizards on islands (Spiller & 

Schoener 1994); fish in lakes (Carpenter & Kitchell 1996); seastars in rocky intertidal 

communities (Paine 1966)]. Species interactions are impossible to observe and vastly 

more difficult to understand when looking back in time. Nonetheless, the strong 

interactors in paleoecosystems should have left evidence of their influences through 

their evolutionary effects on other species (Janzen 1986; Janzen & Martin 1982). 

Various North American species have characteristics that appear to be anachronistic 

on modern landscapes, probably having coevolved with large native vertebrates that 

became extinct in the late Pleistocene (for South American examples see Guix et al. 

2005). We briefly describe two of the many suspected anachronisms for which 

detailed experimental studies are sorely needed (Barlow 2000). 

Large fruited Maclura—The interglacial Pleistocene fossil plant record reveals 

several species of Maclura throughout North America, while the pre-European 

historical record documents only Osage orange (M. pomifera) in the Red River 

floodplains of Arkansas (Barlow 2000; Schambach 2000). The loss of proboscidians 

and other megaherbivores capable and suspected of dispersing the large fruits of these 

trees may have caused or contributed to the extinction of the other Maclura species, 

whereas Osage orange fortuitously survived as a small remnant and spread because of 

dispersal by modern humans (Barlow 2000). Many other large-seeded temperate and 

tropical American plants are arguably in some disequilibrium due to the loss of large 
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vertebrate seed dispersers and herbivores (Janzen 1986, but see Howe 1985 for an 

alternative viewpoint; Janzen & Martin 1982). When dozens of large herbivores in the 

Americas went extinct in the late Pleistocene, important ecological and evolutionary 

interactions such as frugivory and herbivory were disrupted, and subsequently seed 

dispersal and subsequent distributions of many plant species were altered. While such 

ideas were brought to the forefront of evolutionary ecology more than two decades 

ago (Janzen 1986; Janzen & Martin 1982), they have yet to penetrate conservation 

biology and applied ecology.  

Overbuilt speed in Antilocapra—Various traits in the North American 

pronghorn (Antilocapra americana) appear to have resulted from four million years of 

selection in North American grasslands (e.g., maternal behavior, patterns of sex 

allocation, and mate selection, Byers 1997). Among the specific factors that led to 

these traits was predation by the extinct American cheetah (Micracinonyx trumani), 

which purportedly played a pivotal role in shaping the pronghorn’s astounding speed 

(Byers 1997). The pronghorn appears “overbuilt” today in precisely those traits that 

make it so distinctive among North American mammals, raising the question of 

whether a reconstitution of Pleistocene selective pressures warrants consideration. 

Many other anachronistic traits and dysfunctional interactions resulting from 

the loss of large vertebrates have been proposed (Barlow 2000; Eskildsen et al. 2004; 

Greenwood & Atkinson 1977; Janzen & Martin 1982; Springer et al. 2003). Gray 

wolves (Canis lupus) provide a documented, contemporary example. The recent loss 

of these apex predators from much of North America has facilitated population 

increases of their large ungulate prey, thereby intensifying herbivory and reducing the 

distribution and abundance of aspen and other tree species (Berger et al. 2001; 

Hebblewhite et al. 2005; Ripple & Larsen 2000; Ripple et al. 2001; Soulé et al. 2003). 

The indirect effects of this trophic cascade range from the abundance and distribution 
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of passerine birds (Berger et al. 2001; Hebblewhite et al. 2005) to flood plain sediment 

and nutrient dynamics (Ripple & Beschta 2004). These patterns and processes have 

been discovered through the reintroduction of wolves to the Yellowstone ecosystem. 

The restoration of functionality from the reintroduction of wolves may even include a 

buffering of Yellowstone’s biodiversity to climate change (Smith et al. 2003a; 

Willmers & Getz 2005). Similarly complex but now extinct ecological roles for the 

dozens of lost Pleistocene predators and megaherbivores of North America would 

seem possible if not likely. The inferred ecological roles of Pleistocene megafauna 

imply numerous hypotheses that could be tested with their modern conspecifics or 

proxies during the stages of rewilding we describe below (Figure 10, e.g., Bond et al. 

2004; Eskildsen et al. 2004). 

 
Figure 10. Could the Asian elephant serve as an ecological proxy for North American 
mammoths in an effort to restore megaherbivore function back to North America? 
Illustration by Carl Buell. 
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Such hypotheses are similar to those currently being tested by the scientific 

community, the main difference being a strong emphasis on ecological history. Our 

current ignorance over the roles of large vertebrates in food web dynamics results 

from a variety of factors including the inherent difficulties in 1) viewing the world 

from a temporal baseline lacking recently extinct keystone species; 2) elucidating and 

documenting the power of top-down forcing processes operating at large spatial 

scales; and 3) understanding food web dynamics without experimental evidence, 

particularly the diversity, complexity, and power of indirect interactions (Estes 2005). 

Such indirect interactions are highly significant in some contemporary ecosystems, 

and thus are likely to have played pivotal roles prior to the loss of North American 

megafauna. The reintroduction of North American megafaunal proxies in an 

experimental framework would provide an unprecedented opportunity to study these 

potentially important interactions so as to better understand the ecology of North 

America.  

Such new understanding may have far-reaching benefits for humanity. For 

example, the recent Lyme disease epidemic in the northeastern United States (Ostfeld 

1997) might be an indirect effect of the extinction of large predatory mammals. Lyme 

disease is caused by Borellia, a spirochete bacterium, which is transmitted to humans 

by black-legged ticks (Ixodes dammini). Disease prevalence is strongly influenced by 

tick abundance and in turn by obligate relationships with white-footed mice 

(Peromyscus leucopus, for nymphal blood meals) and white-tailed deer (Odocoilus 

virginianus, for adult blood meals). Deer and mouse populations are driven by various 

biotic and environmental processes (Jones et al. 1998). However, deer populations in 

eastern North America are at historically high levels due to the extinction of large 

social canids (McShea et al. 1997; Terborgh et al. 1999), cessation of subsistence 

hunting by Native Americans and market hunting by European colonists, and habitat 
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restoration and other game management practices (Miller et al. 2003). Gray wolves 

likely caused deer to avoid heavily wooded areas where they are more easily 

ambushed and killed. The risk of Lyme disease is now greatest in wooded areas, and 

the ecological extinction of gray wolves from eastern North America therefore was 

plausibly an essential ingredient in the recent Lyme disease epidemic (Estes 2002). It 

follows that the risk of Lyme disease might be reduced through reestablishment of 

gray wolves in that region.  

Wild animals carry a variety of other diseases that are pathogenic in humans, 

and in some cases their incidence in humans might be influenced by the extent to 

which their particular vector or host populations are controlled by large vertebrate 

predators (Ostfeld & Holt 2004). Many diseases are carried by rodents (Ostfeld & Holt 

2004) and since many rodent populations are controlled by their predators (Hanski et 

al. 2001), incidence of human diseases such as hantavirus, monkeypox, typhus, 

bubonic plague, and hemorrhagic fever might be strongly influenced by the presence 

or absence of large predators. 

The evidence that large vertebrates play disproportionally important and 

heretofore unrecognized roles in ecosystems—from controlling species diversity to 

buffering climate change to affecting human health—combined with the realization 

that these roles have been largely absent in the majority of ecosystems since the late 

Pleistocene, should elicit concern over the general failure of ecologists and 

conservation biologists to include large vertebrates and ecological history into their 

visions for restoration ecology. Pleistocene Rewilding offers an experimental 

framework to better understand the biology of a continent that vanished c.13,000 years 

ago with the conquest of the Clovis cultures while simultaneously providing 

evolutionary, conservation, economic, and cultural incentives and benefits.  
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Evolutionary and conservation benefits of Pleistocene Rewilding 

Cultural conventions dictate which taxa are regarded as native and which are 

not, usually irrespective of ecological and historical insights (Donlan & Martin 2004; 

Martin 2005a). In North America, we routinely turn to the Columbian landfall of A.D. 

1492 as a de facto restoration baseline (Leopold et al. 1963), thereby discounting 

significant earlier ecological impacts by humans (Kay & Simmons 2002; Martin & 

Szuter 1999). The arrival of the first Americans (Haynes 2002) and the 

contemporaneous late Pleistocene extinctions constitutes a less arbitrary benchmark 

that is justifiable from multiple perspectives. Ever more evidence points to early 

humans precipitating the late Pleistocene extinction events across multiple landmasses 

(Barnosky et al. 2004; Burney & Flannery 2005; Lyons et al. 2004; MacPhee 1999; 

Martin 2005b; Miller et al. 2005; Robinson et al. 2005). Such attestation also raises 

important ethical questions regarding our conservation benchmarks and strategies. 

Prior to the late Pleistocene extinctions, mammal body size distributions were 

remarkably similar across all continents, despite little overlap in species composition 

(Smith et al. 2004). The subsequent extinction of most large mammals in Australia and 

the Americas drastically altered those distributions to favor smaller taxa (Figure 11, 

Lyons et al. 2004). Given that body size is highly conserved across taxa (Smith et al. 

2004), these losses are significant with respect to ecological and evolutionary 

processes, particularly in the Americas where the losses were greatest (Donlan et al. in 

press; Guix et al. 2005; Janzen & Martin 1982; Purvis et al. 2000; Terborgh 2005). 

While evolutionary perspectives have been raised in conservation planning 

(Erwin 1991; Frankel & Soulé 1981), they have usually emphasized conserving 

existing processes (Ashley et al. 2003; Woodruff 2001) rather than restoring recently 

extinct interactions (Atkinson 2001; Burney et al. 2002; Martin 1999; Martin & 

Burney 1999). The bold actions needed to preserve evolutionary potential in the wake 
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of the drastic decline in biodiversity and global change have generally not been 

addressed. Africa and parts of Asia are now the only continents where megafauna 

remain relatively intact, and the loss of some of these species within this century 

seems likely (Balmford et al. 2001; Blake & Hedges 2004; Gros 2002; Marchant 

2001; Thomas et al. 2004a). The widespread disruptions of population dynamics and 

of the potential for adaptive responses to climate change suggest that absent 

significant conservation interventions, the speciation of large vertebrates on a global 

basis is largely over (Soulé 1980). Must we accept this prospect, or shall we take 

responsibility for partially restoring that potential? Given the demonstrable extinction 

risks for the Earth’s remaining megafauna and the possibility that North American 

sites could serve as additional refugia to help preserve this evolutionary potential, 

regional rewilding (Foreman 2004; Soulé & Noss 1998) carries global conservation 

implications. 

The most straightforward conservation advantage of Pleistocene Rewilding 

would be enhancing the persistence of endangered large vertebrates with a multi-

continent system of reserves, inspired by evolutionary and ecological history. This has 

been a positive approach to the conservation of rare species, as illustrated by the re-

introduction of Przewalski horses (Equus caballus przewalski) from North American 

and European zoos to the semi-wild state in to their native habitats in central Asia. 

Additional viable populations could also enlarge the possibilities for adaptation to 

global change for target species, as well as provide the selective regimes that have 

fostered existing genotypes. Range fragmentation arguably might provide 

opportunities for speciation, but that potential “positive” effect on biodiversity is 

surely countered by the threat of small population size, failure to adapt, and stochastic 

extinction. 
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Figure 11. (A) Body size distributions (log body mass) of terrestrial North American 
mammals (including bats) before (red) and after (grey) late Pleistocene (LP) 
extinctions (north of the Isthmus of Tehuantepec). (B) Body size distributions (kg) of 
four large-bodied (over 44 kg) taxonomic groups before and after LP extinctions. 
Extant distribution of Perissodactyla includes Old World horses and burros. Modified 
from Lyons et al 2004. 

 

In a general sense, Pleistocene Rewilding could be part of a movement to 

transform conservation biology, which is currently too easily characterized as a ‘doom 

and gloom’ discipline (Anonymous 1997; Myers 2003) because we have acquiesced to 

a default goal of exposing and merely slowing the rate of biodiversity loss. Together 
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these attributes minimize excitement for conservation and even actively discourage it 

(Redford & Sanjayan 2003). Moving away from managing extinction and toward 

actively restoring ecological and evolutionary processes with Pleistocene history as a 

guide provides an exciting new platform for conservation biology. 

 

Cultural and economic benefits of Pleistocene Rewilding 

Humans probably were responsible to some significant degree for late 

Pleistocene extinctions in North America and elsewhere (Burney & Flannery 2005; 

Lyons et al. 2004; Martin 1966; Martin 2005b; Martin & Steadman 1999; Miller et al. 

2005; Robinson et al. 2005; Steadman et al. 2005; Surovell et al. 2005).  Our 

subsequent activities have curtailed survival prospects and evolutionary potential for 

most large vertebrates on regional and global scales, due to persecution, habitat 

fragmentation, and their subsequent effects on population genetic attributes (Soulé 

1980). For these reasons as well as for the sake of future human generations and the 

Earth’s biota, citizens and scientists bear an ethical responsibility to vigorously redress 

these problems insofar as possible (Ehrlich 2001).  

Humans have strong emotional and cultural relationships with large predators 

and herbivores that extend back into the Pleistocene and reach forward to 

contemporary times (Peacock & Peacock in press; Quammen 2003; Shepard 1998). 

Ancient rock art, cars and sports teams named after large mammals, and conservation 

programs centered on large animals are evidence of our fascination with charismatic 

megafauna. Between 1999-2004, more than 1.5 million people annually visited San 

Diego Zoo’s Wild Animal Park to catch a glimpse of large mammals (C. Simmons, 

personal communication). Only 12 U.S. National Parks received over 1.5 million 

visitors in 2000 (National Park Service 2000). Alarmingly, per capita visitation to U.S. 
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National Parks has been declining since 1987—the first time since the 1930s (Pergams 

et al. 2004).  

Pleistocene Rewilding would likely increase the appeal, social benefits, and 

economic value of both private and public parks and reserves. The reintroduction of 

wolves to Yellowstone National Park has resulted in significant benefits; total 

economic and social benefits are estimated to be on the order of $6-9 million per year 

compared to an estimated annual cost of $0.5-0.9 million to society (Duffield & Neher 

1996; Reed 2004). Even the possibility of catching a glimpse of a wolf in Yellowstone 

National Park improves and contributes to the anticipation, authenticity, and 

enjoyment of a tourist’s wild experience (Montag et al. 2005). A public understanding 

of ecological and evolutionary history, inspired by tangible esthetic experiences with 

megafauna, would strengthen overall support for the conservation of biodiversity and 

wilderness (Dayton 2003; Greene 2005). 

 

Exemplar taxa 

We envision a continuum of stages of Pleistocene Rewilding starting today and 

moving toward the coming century with a suite of potential conspecifics and proxy 

taxa (Table 10). All differ in their potential costs and benefits, and all are already 

present in the U.S. either as free-roaming populations or in a captive setting. All 

potential restoration programs would be experimental, science-driven, and evaluated 

within a cost-benefit perspective. We start our discussion with two taxa that have 

already been successfully reintroduced to North America, move on to species that are 

already present in North America but viewed as non-native species, and end with 

potential proxy species that could replace some of our lost Pleistocene megafauna. 

While not exhaustive, these selected taxa exemplify the central issues for discussions 
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of Pleistocene Rewilding. 

 

The “North American” Peregrine Falcon 

Celebrated as one of the most successful conservation efforts, the North 

American Peregrine Falcon (Falco peregrinus) was saved from near extinction due to 

DDT contaminants (Cade & Burnham 2003).  The widespread recovery program 

relied on large numbers of captive-bred birds. Because of a lack of genetically more 

appropriate founders, falcons that were released into eastern and mid-western U.S. and 

parts of Canada came from captive stock of seven subspecies from North America, 

Europe, South America, and Australia, totaling more than 2500 birds (Tordoff & 

Redig 2001). Despite substantial morphological and ecological variation among the 

founders, there were no differences among subspecies in subsequent breeding success 

of the reintroduced birds (Tordoff & Redig 2001). Falcons from four continents now 

serve as a collective proxy for the mid-western peregrine population that went extinct 

in the 1960s. The Peregrine Falcon not only serves as a testament that species recovery 

can succeed at continental scales, but also demonstrates that at least in some cases 

taxon substitutions are culturally acceptable as a powerful conservation tool. 
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Table 10. The magnitude of biodiversity loss of North America megafauna (north of 
the Isthmus of Tehuantepec) and potential benefits and costs of Pleistocene rewilding 
(+ represents an increase in respective qualitative category). Late Pleistocene (LP) and 
current diversity of continental large-bodied North American mammalian 
orders/families, along with some potential species proxies. 
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Giant Vultures 

The California condor (Gymnogyps californianus) was present throughout 

North America until the late Pleistocene, then disappeared across most of its range 

along with the megafauna upon which it fed. Condors survived solely along the West 

Coast, relying heavily on carcasses of marine mammals (Chamberlain et al. 2005), and 

last roamed over the Grand Canyon c. 10,000 years ago, where they scavenged on 

mammoths (Mammuthus sp), horses, camels, and other extinct taxa (Emslie 1987). 

Condors may have returned briefly to the southwest U.S. in the 1700s in response to 

the introduction of domesticated cattle, horses, and sheep, but the validity of those 

records is unclear (S. Emslie, personal communication; L. Kiff, personal 

communication, Federal Register 1996); nonetheless, by the time of European arrival 

Gymnogyps was restricted to a narrow Pacific coastal strip. The National Park Service 

set a precedent for pre-1492 benchmarks with the repatriation of condors to the 

southwestern United States. Because of captive breeding programs and active 

interventions, condors now soar over Colorado River canyons. While this program is 

unsustainable without active management (slaughtered cattle carcasses are provided as 

a food source), few would argue against efforts to save and establish new condor 

populations, costs notwithstanding (Beissinger 2001; Snyder & Snyder 2000). By 

returning the large herbivores and their carnivores that collectively once fed these 

giant scavengers, California condors could perhaps become viable without the 

management costs currently endured. 

 

An Extant Endangered Turtle 

The Bolson tortoise (Gopherus flavomarginatus) was probably widely 

distributed across the Chihuahuan Desert until the late Pleistocene (Bury et al. 1988; 

Van Devender et al. 1976). Weighing up to 50 kg and susceptible to human overkill, 
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the Bolson tortoise disappeared from more than 90% of its range by the end of the 

Pleistocene; today it is critically endangered and restricted to a small area in central 

Mexico (Morafka 1982; Morafka & McCoy 1988). Chelonians were part of the 

exploited Pleistocene megafauna in the American southwest and elsewhere (Moodie & 

Van Devender 1979; Stiner et al. 1999; Taylor 1982). Harsh winters could have played 

a contributing role to their decline (Moodie & Van Devender 1979; Van Devender et 

al. 1976), but G. flavomarginatus is relatively cold-tolerant, as evidenced by a 

reproducing captive population in southeast Arizona (Appleton 1978).  

A previous reintroduction proposal for Big Bend National Park (Aquirre & 

Adest 1991) was rejected by the National Park Service on the basis that G. 

flavomarginatus is a non-native species, its endangered status notwithstanding 

(Houston & Schreiner 1995). This conclusion is counter to ecological and historical 

insights, and inconsistent with subsequent restoration of California Condors to the 

Grand Canyon (Donlan & Martin 2004). Along with conservation benefits for the 

species, tortoise reintroductions to the southwestern U.S. might increase local 

biodiversity by promoting landscape heterogeneity via burrow construction (Kaczor & 

Hartnett 1990). Repatriating the continent’s largest surviving temperate terrestrial 

reptile could precipitate a variety of ecological, evolutionary, economic, and cultural 

benefits, with no apparent costs (Table 10).  

 

Equids 

Feral equids (Equus caballus, E. asinus) have been abundant in North America 

since they were introduced by Europeans five centuries ago (Berger 1986). From an 

evolutionary and ecological perspective, equids are native to North America: they 

were present there for most of the last 50 million years interacting strongly with a 

variety of grass species, some lineages later spread to Eurasia, and they were diverse 
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globally until the late Pleistocene (MacFadden 1992; Oakenfull & Clegg 1998; 

Stebbins 1981). Today feral horses and burros in North America are widely viewed as 

ecological pests (Houston & Schreiner 1995), but the former are conspecific with late 

Pleistocene North American horses and the latter are representative of the “stenoid” 

lineage of Equus (asses and zebras) that originated in the New World and persisted 

there until end of the Pleistocene (Vilà et al. 2001; Weinstock et al. 2005). Based on 

molecular systematic studies (Weinstock et al. 2005), E. caballus is arguably as 

similar to late Pleistocene North American horses as are the abovementioned peregrine 

falcons from five continents and the contemporary coastal and late Pleistocene interior 

populations of  California condors. Both horses and burros, and perhaps other extant 

Old World equids, are plausible taxonomic and ecological proxies for extinct New 

World taxa (Donlan & Martin 2004; Martin 1970). 

Although the ecological impacts of feral horses are variable (Berger 1986; 

Levin et al. 2002; Menard et al. 2002), they disperse large-seeded plants and thus may 

compensate for certain large Pleistocene mammals now absent in North America 

(Janzen 1981; Janzen 1982; Janzen & Martin 1982). Moreover, wild asses (e.g., E. 

hemionus) and Przewalski’s horse are critically endangered or extinct in the wild 

(Moehlman 2002), so free-roaming North American populations would help curtail 

extinction and further repatriate equids to their evolutionary homeland. Przewalski’s 

horse coexisted with humans and domesticated livestock in the Dzungarian Basin for 

millennia prior to its decline, which has been attributed to elevated livestock densities 

and military activity (Ryder 1993). The overall landscape impacts of free-living equids 

in North America could be positive or negative in local ecological and economic 

contexts, depending on temporal and spatial dynamics (Beaver & Brussard 2004; 

Kuiters 2003; Levin et al. 2002; Zalba & Cozzani 2004; Zervanos 1998). A potentially 

important factor in the overall context for free-ranging horses is the presence of 
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predators (Turner et al. 1992), including experimental introduction of lions. 

 

Camelids 

 The center of camelid evolution was North America, where four species of 

camels and llamas were present in the late Pleistocene (Honey et al. 1998; Kurtén & 

Anderson 1980; Smith et al. 2003b). Today, two species of Old World camelinines 

and four species of South American lamalinines are extant globally. Wild Bactrian 

camels (Camelus bactrianus) are on the verge of extinction, with less than 1000 free-

living animals remaining in Asia (Hare 2001). Domestic or captive-bred camelids 

could be introduced to parts of North America, further assuring their semi-wild 

persistence and serving as ecological proxies for extinct late Pleistocene lamalinines 

(e.g., Camelops, Honey et al. 1998; e.g., Camelops, Webb 1965).  

 Camelids potentially offer biodiversity benefits to arid and semi-arid North 

American ecosystems by browsing on woody species that now often dominate areas 

that formerly were mixed desert scrub and grassland (Table 10, Martin 1969; Mengli 

et al. in press; Van Auken 2000). In the 1850s, when Lt. Beale successfully led the 

Camel Military Corps from Texas to California, his animals browsed on creosote 

(Larrea tridentata) and other brush species that today dominate many southwestern 

landscapes (Connelly 1966; Martin 1969). While evidence is largely anecdotal, large 

numbers of feral camels appear to be having unfavorable ecological impacts in the 

Northern Territory, Australia where they are not supported by ecological history 

(Edwards et al. 2004); however, in eastern Australia, camels are being used as 

browsers to counter the invasion of unwanted leguminous shrubs (F. Keenan, personal 

communication). Experimental introductions of camels to the southwestern U.S. offer 

unique research opportunities to gain insights into the ecology of interactions between 

large herbivores and grasslands—interactions that were present in North America 
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since the Miocene and ended just c.13,000 years ago (Stebbins 1981). 

 Camelids might bring economic benefits to North America as well: in 

Australia, well-managed co-grazing programs of cattle and camels produce additional 

markets for meat, milk, and fiber without negatively impacting cattle production 

(Phillips et al. 2001). Organized trekking with camelinines and lamalinines, long 

popular in Australia, is already present in the U.S. (e.g., www.texascamelcorps.com). 

Camelids thus exemplify how managed, experimental reintroductions could be used to 

weigh benefits and costs of Pleistocene Rewilding under carefully controlled, 

experimental conditions. 

 

Cheetah 

 The extinct Plio-Pleistocene North American cheetahs (two species of 

Micracinonyx), extant Old World cheetah (Acinonyx jubatus), and puma (Puma 

concolor) are closely related, but the most recent molecular phylogenetic data are 

controversial in terms of whether Old and New World cheetah are each other’s closest 

relatives (Barnett et al. 2005; Johnson et al. 2006). The extent to which resemblances 

between those two cursorial lineages represent homology or convergence remains 

uncertain, although anatomically the Old World cheetah is somewhat more specialized 

than was its extinct New World relatives (Van Valkenburgh et al. 1990). In any case, 

North America cheetahs were arguably the principal selective agent favoring speed 

and visual acuity in pronghorn (Byers 1997) and perhaps the Old World cheetah could 

replace those extinct cats as an ecological proxy. 

The Old World cheetah was once widespread in Africa and Asia; today the 

species’ distribution has been greatly reduced and it has only a modest chance of 

persisting in the wild into the next century (Caro 1994; Gros 2002). Breeding 

programs are not self-sustaining and wild populations have continued to sustain 
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captive ones (Marker-Kraus 1997). Some of the more than 1,000 animals in captivity 

(Caro 1994; Marker-Kraus 1997) could be used to establish an experimental free-

living North American population. Conservation scenarios for cheetah are unique in 

that the majority of the remaining individuals are located outside of protected areas, 

commonly on commercial livestock and game farmland (Caro 1994; Marker et al. 

2003b). Most (~90%) of Namibia's cheetahs live on commercial livestock farmland, 

where lions (Panthera leo) and spotted hyaenas (Crocuta crocuta) have been 

eliminated (Marker et al. 2003a). While farmers often perceive cheetahs as threats and 

persecute them, environmental education and alternative pastoral practices have 

recently promoted coexistence with humans (Marker et al. 2003b).  

Cheetah populations in the southwestern U.S. could potentially facilitate 

economic alternatives to ranchers through ecotourism with little costs to other revenue 

streams of ranching (Table 10). Restoring cheetah to North America could also 

reinstitute what must have been strong interactions with pronghorn and perhaps help 

save the world’s fastest land mammal from extinction. An single intriguing anecdote 

hints that the pronghorn’s speed and escape tactics from cheetah have not been 

entirely lost: “In the 1930s, I saw a man traveling with a pet cheetah turn it loose to 

pursue a pronghorn, a young female, until she sailed over a deep ravine that the big cat 

refused to negotiate” (Frison 2004, p.124). 

 

Proboscidians 

Five species of proboscidians roamed North America in the Pleistocene 

(Kurtén & Anderson 1980; Smith et al. 2003b). Asian elephants (Elephas maximus) 

are more closely related to North American mammoths (i.e., Mammuthus primigenus) 

than they are to African elephants (Loxodonta africana, Krause et al. 2006; Poinar et 

al. 2006; Rogaev et al. 2006). African and Asian elephants play keystone roles as 
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megaherbivores (Dublin 1995; Owen-Smith 1988), just as mastodons, mammoths, and 

gomphotheres surely once did in the Americas (Barlow 2000; Janzen & Martin 1982). 

Collectively, proboscidians may have even influenced the global carbon cycle by 

altering vegetation dynamics around 20 million years ago as they expanded out of 

Africa (Flannery 2006). Could extant elephant species play similar ecological roles to 

those that North American proboscidians occupied for millennia (Figure 10)? African 

elephants inhibit woodland regeneration and promote grasslands; elevated densities 

appear to be the primary driver of woodland loss (Western & Maitumo 2004; Whyte et 

al. 2003). Encroachment of woody and shrub plant species over the past century now 

threaten the arid grasslands of western North America (Van Auken 2000). While the 

causes are complex and controversial (Brown et al. 1997; Van Auken 2000), browsing 

elephants might counter shrub and tree (e.g., Prosopsis, Juniperus) invasion and 

increase landscape heterogeneity.  

In the absence of cloned mammoths for restoration (Agenbroadhowlad 2005) 

and recognizing that extinct proboscidians were surely ecologically different in some 

ways from their extant relatives (Guthrie 2006), managed African and/or Asian 

elephants in North America could potentially enhance biodiversity and economically 

benefit ranchers through grassland maintenance and ecotourism (Table 10). Further, 

many elephant populations, particularly in Asia and West Africa, are in grave danger 

of extinction (Blake & Hedges 2004), and captive breeding programs are not self-

sustaining for either species (Olson & Wiese 2000; Rees 2003; Wiese 2000). 

Proboscidians played a variety of ecologically and evolutionarily significant roles 

across North American landscapes for millennia (Barlow 2000; Janzen 1986; Janzen 

& Martin 1982). With the appropriate resources and vision, captive stock and some of 

the 16,000 domesticated elephants in Asia (Lair 1997) could perhaps elucidate some 

of those roles and contribute to the wild future of these flagship species by initiating a 
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North American repatriation. 

 

Holarctic Lions 

Lions, which prey on wild equids and other large herbivores, offer a bold and 

exciting vision for Pleistocene Rewilding. Current molecular, morphological, and 

paleontological evidence suggests that the Holarctic lion should be treated as a single 

species (Burger et al. 2004; Yamaguchi et al. 2004), and Panthera leo (sensu lato) was 

perhaps once collectively the most wide-ranging wild land mammal of all time 

(Kurtén & Anderson 1980).  

Today, lions play a pivotal role regulating prey populations in African savanna 

ecosystems (Sinclair et al. 2003), as they surely once did in the Americas and Eurasia. 

With the estimated population dropping from 76,000 to less than 40,000 over the past 

twenty years (IUCN 2006), African lions are increasingly threatened by habitat 

degradation, human conflict, reduction in prey base, and disease (IUCN 2006; 

Marchant 2001; Nowell & Jackson 1996; Roelke-Parker et al. 1996). The Asiatic lion 

(P. l. persica) is critically endangered, with a single population in the Gir Forest of 

India; establishing additional populations is vital for their long-term persistence, but 

recent attempts in India have failed (Nowell & Jackson 1996). However, lions have 

been re-established or managed in African and Indian reserves of similar size to 

contiguous private and public lands in the western United States [e.g., Umfolozi Game 

Reserve, South Africa (96,000 ha) and Gir Forest, India (138,000 ha)] (Anderson 

1980; Saberwal et al. 1994). The idea of repatriating lions to North America merits a 

serious scientific debate. 

Given public attraction to large predators, the potential esthetic and economic 

benefits of restoring lions to North America are obvious—as are the challenges (Table 

10). An appropriate prey base would be a prerequisite. Another central dilemma lies in 
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public acceptance of an animal that could cause human harm. While tourism-related 

deaths attributed to lions, elephants, and other large mammals in South Africa are rare 

(Durrheim & Leggat 1999), local human-lion conflicts (including deaths) are serious 

problems in some other parts of Africa and India (Packer et al. 2005; Saberwal et al. 

1994). Mitigating for human-carnivore conflict is by no means a new conservation 

challenge (Saberwal et al. 1994; Treves & Karanth 2003), but clearly momentous 

obstacles would have to be overcome with a detailed science-based management and 

education program (Packer et al. 2005) in advance of restoring lions to North America. 

Nevertheless, models of carnivore repatriation exist even though goals vary 

from the simple placement of carnivores back into communities for public viewing to 

the instigation of ecologically functional relationships.  For instance, at least 173 

discrete introductions of predatory carnivores have occurred globally (Gittleman & 

Gompper 2001; Reading & Clark 1996) with at least those of cheetahs and lions being 

demographically successful in African reserves and re-instilling normative behavior in 

their ungulate prey (Hunter & Skinner 1998), just as have grizzly bears and wolves in 

the Yellowstone region (Pyare & Berger 2003).   

 Still, the critical test beyond simply returning large dangerous carnivores 

hinges on reserve size. If carnivore densities achieve a size that minimizes their 

chance of extinction, then at least a threshold for recovery will be reached.  But, if 

reserves are small, whether fenced to protect humans or economic interests beyond 

reserve boundaries or unfenced, problems may persist.  If carnivores are not food-

supplemented, prey might be harvested at unsustainable rates and rather than restoring 

a functional ecological relationship, some will claim the reserve may be nothing more 

than a large zoo.  However, differences among type of reserve—zoo, small protected 

area, big protected area or large functioning system—is a matter of spatial gradation 

and management goal.  Our view of rewilding is to begin modestly.  Some private 
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South African game parks with re-introduced lions have now attained sizes between 

15,000 and 75,000 ha, whereas large ranches in southwestern North America exceed 

these in size.   

 

Risks, costs, challenges, and objections to Pleistocene Rewilding 

Potentially serious and legitimate objections to Pleistocene Rewilding must be 

faced objectively, with all available information, and within a cost-benefit context that 

includes the above-mentioned ecological, evolutionary, economic, esthetic, and ethical 

considerations. We must first ask, is a pre-1492 benchmark for conservation realistic 

in our current world and for the foreseeable future? There are many emerging 

ecological and anthropological reasons against a de facto Columbian benchmark 

(Donlan & Martin 2004; Jackson 1997; Kay & Simmons 2002; Martin 2005b), yet 

temporal scales of restoration and baselines have received little debate (but see 

Callicott 2002; but see Gobster & Hull 2000). Nonetheless, the recent restoration of 

condors to Arizona suggests that a late Pleistocene benchmark warrants consideration 

and contradicts objections that bringing back megafauna by definition would waste 

precious conservation dollars. Obviously, a Pleistocene benchmark is not appropriate 

for much of North America, but we argue it should be debated, particularly in areas 

where it may be a real possibility. 

There are a number of key issues to be considered with Pleistocene Rewilding. 

The proposed megafaunal components often differ from their extant conspecifics or 

related proxies, underscoring the importance of carefully framing the choice of 

restoration taxa in terms of specified goals. Old World conspecifics or ecological 

proxies, for example, may be considerably smaller than their extinct North American 

counterparts (e.g., 162 kg vs 400 kg for the lion, 50 kg vs. 88 kg for the cheetah, 
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respectively; Smith et al. 2003a). What role does nutrition play with respect to 

differences in observed body size differences? Do mass differences result in different 

ecological function, and would such differences be more pronounced and/or important 

for herbivores, where body size is known to influence forage selection and utilization 

(Calder 1984; Gwynne & Bell 1968; Murray & Brown 1993; Owen-Smith 1988)? 

Along with body size will come questions and objections concerning genetics. How 

genetically different were Pleistocene cheetahs, lions, elephants, and horses from 

extant populations today? With the rapidly advancing field of paleogenomics, these 

questions are being increasingly answered (Johnson et al. 2006; Poinar et al. 2006; 

Weinstock et al. 2005) and are one of multiple factors to inform decisions regarding 

the use of taxon substitutions. That such questions can be addressed in the context of 

specific conservation objectives is illustrated by the Peregrine Falcon. 

Careful studies of potential proxies and their ecological role need to be 

undertaken (Atkinson 2001; Simberloff 1990). Thus far extinct taxa cannot be 

restored, so the costs, benefits, and even legalities (Rees 2001) of reintroductions and 

taxon substitutions deserve much more detailed scrutiny in conservation philosophy 

and planning if restoration of ecological and evolutionary processes are goals of 

conservation (Atkinson 1998, 2001). While the idea of using taxon substitutions as a 

conservation tool is gaining traction (Nicholls 2006), many aspects of ecological 

proxies remain unfocused. Aspects such as phylogenetic relatedness, ecological 

function, and conservation value of proposed proxies are in need of widespread 

discussion. That said, we foresee that taxonomic substitutions will become 

increasingly important on both continents and island archipelagos as habitats are 

protected and restored (Atkinson 2001; Steadman & Martin 2003). That their value 

may often outweigh costs and objections is illustrated by successfully introduced 

ecological proxies including the Peregrine Falcon, the North African Red-necked 
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Ostrich (Struthio camelus camelus) as proxy for the Arabian Ostrich (S. c. syriacus) 

(see Sedon & Soorae 1999), night herons, and giant land tortoises.  

In Bermuda, the Yellow-crowned night heron (Nycticorax violacea) was 

introduced in the mid 1970s as an proxy for a closely related endemic night heron 

(Nycticorax sp.) that was extirpated in the 17th century (Olson et al. 2005; Wingate 

1982). The established breeding population subsequently exhibited top-down control 

on land crabs (Gecarcinus laterailis), which are a major prey species of night herons 

and were exceptionally abundant and causing economic damage prior to the heron 

introduction (Wingate 1982). Restoration on Bermuda, particularly on Nonsuch 

Island, exemplifies a holistic conservation approach that embraces ecological history 

(Wingate 1985); it also highlights the need to factor and integrate both the historical 

and present ecological states into conservation planning and action (Davenport et al. 

2001).  

Under a scientific experimental framework, scientists from the Mauritian 

Wildlife Federation are using giant tortoises from Aldabra Island (Aldabrachelys 

gigantea) as ecological proxies for the two extinct species of the Mascarene Islands 

(Cylindraspis inepta and C. triserrata). Tortoises were first introduced into exclosures 

on lle aux Aigrettes Island (Zavaleta et al. 2001); now free-roaming tortoises are 

present on the island resulting in both increased seed dispersal and tourism (Vikash 

Tatayah, personal communication). These giant tortoise proxies appear to be restoring 

the broader functional role of their extinct relatives in the Mascarene archipelago, 

along with providing economic benefits. 

While using ecological history as a conservation guide is not a new concept, 

our recent brief exposition (Donlan et al. 2005) elicited a substantial reaction from 

diverse sectors, both positive and negative (Krtistof 2005; Nicholls 2006; Stolzenburg 

2006). Criticisms thus far have generally focused on opportunity costs and uncertainty 
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surrounding the challenges of Pleistocene Rewilding (Chapron 2005; Dinnerstein & 

Irvin 2005; Schlaepfer 2005), rather than on benchmark selection, taxon substitutions, 

and other core conceptual issues. We believe that all conservation initiatives must be 

evaluated relative to potential costs and benefits, and furthermore,  conservation 

dollars are often non-transferable. We are not advocating Pleistocene Rewilding as a 

substitute for or as a priority over on-going conservation projects in Africa or North 

America, and conservation gains are indeed being made on those continents. Our 

proposal centers instead on restoring ecological function to North America, although it 

does carry implications for the global conservation of Earth’s remaining megafauna. 

Other objections to Pleistocene Rewilding (Schlaepfer 2005; Smith 2005) 

include the possibility of catastrophic disease transmission (e.g., Dazak et al. 2000), 

the fact that habitats have not remained static since the end of the Pleistocene (e.g., 

Davis & Shaw 2001), and unexpected ecological consequences of species 

introductions as viewed from an invasive species perspective (e.g., Roemer et al. 

2002). Preventing disease transmission, and the disease ecology associated with 

reintroductions in general, will be a premier concern. Necessary precautions and 

protocols will be needed and implemented, as they are similarly advocated with other 

reintroduction and translocation programs (Cunningham 1996; Viggers et al. 1993). 

The temporal dynamics of habitats is well established; its ecological implications for 

conservation depend on temporal and spatial scales. While vegetation communities 

have shifted and changed before and after the late Pleistocene, the major missing 

component of contemporary ecosystems is large vertebrates. Very few plants and 

small mammals suffered extinction during the late Pleistocene (Jackson & Weng 

1999; Lyons et al. 2004).  

The taxa we discuss differ critically compared to non-native species that have 

wreaked ecological havoc in many ecosystems (e.g., rabbits in Australia and rats on 
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islands). The proposed taxa are supported by ecological history and the fossil record, 

in some cases were recently present in North America, and have low reproductive 

rates and thus are more easily managed. Nonetheless, unexpected ecological 

consequences are a legitimate concern. For example, large carnivores typically depress 

mesopredator abundance thus potentially favoring their rodent prey, and thereby under 

some conditions potentially increasing the incidence of various human diseases 

(Karesh & Cook 2005; Ostfeld & Holt 2004). These are problems that must be 

addressed in advance by sound research, prescient management plans, and informed 

public discourse for each species on a case-by-case, locality-by-locality basis. Well-

designed, hypothesis-driven field experiments will be needed to assess the impacts of 

potential introductions before large-scale releases take place. Monitoring programs 

that include a suite of objectives will be a requisite, including designs that capture 

multiple levels of biodiversity dynamics, spatial and temporal heterogeneity, and other 

holistic measures of ecosystem health. All of these concerns above hinge on insights 

of ecological history, from the late Pleistocene and beyond (Donlan et al. 2005; 

Donlan & Martin 2004; Estes 2002; Martin 1969, 1970; Terborgh 2005). 

Some will argue that that Pleistocene Rewilding is simply not feasible, either 

ecologically or socially. For example, Smith (2005) suggested that camels used in the 

Camel Military Corps of the mid-1800s failed to survive in the deserts of the 

southwestern U.S. and thus reintroduction attempts now would likely fail. While the 

Camel Military Corps failed as a military project, largely for political reasons 

(Connelly 1966), the camel demonstrated remarkable adaptability to the American 

southwest. Lt. Beale wrote in 1857 while moving through Texas and Arizona, “It is 

certainly gratifying to find these animals eating by their own preference, the coarse 

and bitter, hitherto of no value, which abound always in the most sterile and desolate 

parts…with all this work they are perfectly content to eat anything, from the driest 
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greasewood bush to a thorny prickly pear” (Martin 1969). Not only feasible, 

experimental camel introductions could shed light on the possibility of camels refilling 

the niche that they once did in the late Pleistocene.  

While we encourage a detailed analysis of the claim that Pleistocene Rewilding 

would negatively affect Africa’s ecotourism sector and thus cripple conservation there 

if North Americans choose instead to see large animals on their own continent (Bosire 

2005), as yet no evidence supports that concern. International tourism receipts in 1999 

and 2000 were approximately US$10-11 billion annually, and in 1999 58% of African 

tourist arrivals were interregional, 38.3% European, and only 4.1% from the entire 

Americas (World Tourism Organization 2001). Perhaps more importantly, foreign 

ecotourism is beyond the economic means of most U.S. citizens and those who do 

travel to Africa are apparently seeking something more than just lions eating equids: 

“There are unique places and natural attractions that few other regions can match. This 

is true not only for its natural resources but also for its culture, traditions and customs. 

Therein lies the greatest fascination of what African destinations have to offer." 

(World Tourism Organization 2001). 

  Africa has much knowledge and experience to offer efforts revolving around 

Pleistocene Rewilding. First, it provides an optimistic perspective in terms of the long-

term feasibility of restoring megafauna to North America. The year following its 

declaration, Kruger National Park was hardly the celebrated mainstay of southern 

African biodiversity it is today. In 1903, there were zero elephants, nine lions, eight 

buffalo, and very few cheetahs within the boundaries of the park. Due to vision and 

dedication of African conservationists, 7,300 elephants, 2,300 lions, 28,000 buffalo, 

and 250 cheetah roamed Kruger one hundred years later—as did 700,000 tourists 

bringing with them US$26 million annually (Chapman 1993). Practitioners and 

ecologists of Africa’s National Parks could play pivotal roles in restoring large 
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vertebrates to North America. Second, it provides models and case studies where eco-

tourism programs on private lands, many based on megafauna, have been successful in 

bringing economic and social benefits to rural, poor communities (Ashley & Roe 

2002; Mahony & Zyl 2002; Spenceley & Seif 2003). 

With respect to local economic, political, and cultural interests (Schlaepfer 

2005; Shay 2005), we argue that local incentives for stakeholders (economic, esthetic, 

or otherwise) would be prerequisite for its success and that parts of the central and 

southwestern U.S. show special promise for Pleistocene Rewilding (Donlan et al. 

2005). Nearly twenty years since anthropologists Deborah and Frank Popper proposed 

the Buffalo Commons (Popper & Popper 1987) – long-term restoration of native grass 

and wildlife – in an attempt to break the boom and bust cycles of the Midwest that 

started in the 1860s, residents are embracing the idea (contra Shay’s (2005) claim  that 

“local people overwhelmingly rejected the project”). Even former Kansas governor 

Mike Hayden, once a staunch opponent of the idea, now says “The Poppers were 

right” (Charton 2004); a variety of private landowners, conservation organizations, 

and Native American groups have embraced the Buffalo Commons as a positive factor 

for improving Midwestern economy and biodiversity (Popper & Popper 2004).  

 

Implementing Pleistocene Rewilding 

Pleistocene Rewilding scales globally and is already underway on the fringes 

of the conservation community. All of these efforts are using ecological history as a 

guide to actively restore ecological and evolutionary processes rather than merely 

managing extinction. Endangered birds from Marquesas and Tongan islands are being 

reintroduced to nearby islands where long-term persistence is more likely, using the 

fossil record as a guide (Burney et al. 2002; Steadman & Martin 2003). At the 6,000 
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ha nature reserve Oostvaarderplassen in the Netherlands, practitioners are restoring 

habitats with an emphasis on ecological history and process, including the use of 

contemporary proxy species such as Przewalski’s horses, roe deer (Capreolus 

capreolus), and Heck cattle (Sutherland 2002; Vera 2000). Beavers (Castor fiber) are 

being reintroduced throughout Europe to restore ecological processes and 

heterogeneity to landscapes, in some cases where they and their associated community 

interactions have been absent for thousands of years (Gamborg & Sandøe 2004). By 

combining science and restoration driven by history, an international team of 

ecologists are moving forward on a bold plan to reintroduce large herbivores back to 

the Siberian steppe, including Yakutian horses, wood bison, and musk ox (Stone 1998; 

Zimov 2005; Zimov et al. 1995). Galetti (2004) has cogently argued for a similar 

vision in South America, as has Burney (2003) for Madagascar. All of these efforts are 

unprecedented opportunities to learn about the ecology and restoration of ecosystems, 

and could provide important insights into when the reintroduction of large vertebrates 

can restore ecosystem function; alternatively, in some cases, plant restoration may 

prove as or more important to reach the desired conservation goal.  

We envision several scenarios for Pleistocene Rewilding in North America, 

with some of them already underway. Equids, camelids, and other ungulates are 

increasingly prevalent on western landscapes, and there is widespread discussion of a 

Buffalo Commons in the Great Plains, with much restoration all ready being 

implemented (Popper & Popper 1999; Popper & Popper 2004). Restoration of Bolson 

tortoises to ranches in southern New Mexico is currently being considered by the 

Turner Endangered Species Fund (M. Phillips, personal communication). Experiments 

are urgently needed to assess the economic, ecological, and cultural implications of 

more widespread reintroductions of these and other herbivores. Large tracts of private 

and public lands in the southwestern U.S. (Mittermeier et al. 2003) are potentially 
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appropriate for Pleistocene Rewilding, with the fossil record and carefully designed 

research as guideposts and safeguards. Private lands likely hold the most immediate 

potential: more than 77,000 Asian and African large mammals (71 species) are present 

on Texas ranches (Schmidly 2002), for example, although their significance for 

conservation remains largely unevaluated and their landscape impacts unexplored. 

Other projects can also begin immediately, with the experimental maintenance 

on private property of small numbers of cheetah, lions, and elephants guided by 

experts from a variety of disciplines, such that the ecological impact and biology of 

these species can be carefully studied. The requisite animals are already present in the 

U.S. or can be readily produced by captive breeding; the primary logistical innovation 

at this point is to provide them with securely enclosed landscapes and naturalistic 

selective regimes, including predator-prey relationships among herbivores and 

carnivores. This last point merits special emphasis since almost all captive animals in 

this country, even those in large outdoor confines, are largely shielded from 

naturalistic selective regimes. Whereas earlier considerations recommended an 

absence of planned directional selection (Frankham et al. 1986), recent experimental 

studies demonstrate that this is not the same as no selection (McPhee 2003). If captive 

animals are to have any realistic significance for conservation, other than for education 

and limited research (Robinson 2001), ‘humane’ considerations need to be balanced 

with providing more natural lifestyles. That balance could stem from collaborative 

efforts and opportunities between zoo practitioners, animal welfare proponents, and 

ecologists. Presumably rewilding would be tackled on a species-by-species basis, with 

specialty groups for each taxon (e.g., cheetah) broadening their global scope to include 

evaluating and advising such activities. 

A third and more ambitious scenario would be exemplified by an enormous 

Ecological History Park, encompassing thousands of square miles in what are already 
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economically depressed parts of the Great Plains (Popper & Popper 1999). Secure 

game fencing, which can effectively mitigate human conflict (Hoare 1995), would 

limit the movements of free-living ungulates, elephants, and large carnivores, 

including lions. As in Africa and regions surrounding some North American national 

parks, nearby towns would benefit economically from land management and tourism 

related jobs. The initiation and precise nature of each of these stages would depend on 

information derived from previous efforts, such that risks would be identified and 

negative effects minimized. Two prerequisites of critical importance are rigid 

adherence to established restoration protocols, including specification of goal criteria 

and monitoring regimes, and adequate incentives for local landowners and other 

stakeholders.  

In the coming century, we will decide, by default or design, on the extent to 

which humanity tolerates other species and thus on the future of biodiversity. The 

default scenario will surely include ever more pest-and-weed dominated landscapes, 

the global extinction of more large vertebrates, and a continuing struggle to slow the 

loss of biodiversity. Pleistocene Rewilding informs an optimistic, alternative 

conceptual framework, one that fundamentally challenges our views of nature and 

transforms conservation biology from the reactive to the proactive. The potential 

benefits of several proposed proxies have been outlined here; while sound science can 

help mitigate the potential costs, unexpected consequences will worry many 

conservationists. Yet given the apparent dysfunction of New World ecosystems and 

Earth’s overall state, there are likely significant risks of inaction as well (see Springer 

et al. 2003 for a potential example). In the face of tremendous uncertainty, science and 

society must weigh the costs and benefits of Pleistocene Rewilding in the context of 

an arguably equal degree of uncertainty, inarguably high costs, and often obscure 

benefits associated with the prevailing worldview of conservation—maintaining the 
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status quo or at best retrieving something of the very recent past.  

To those who find objections to Pleistocene Rewilding compelling, we ask, are 

you content with the negative slope of our current conservation philosophy? Are you 

willing to risk the extinction of the remaining megafauna should economic, political, 

and climate change prove catastrophic for Bolson tortoises, cheetah, camelids, lions, 

elephants and other species within their current ranges? Are you content that your 

descendents might well live in a world devoid of these and other large species? Are 

you willing to settle for an American wilderness that is severely depauperate relative 

to just 100 centuries ago? We reiterate our earlier plea (Donlan et al. 2005), that 

although the obstacles to Pleistocene Rewilding are indeed substantial and the risks 

are not trivial, we can no longer accept a hands-off approach to wilderness 

preservation as realistic, defensible, or cost-free. It is time to not only save wild 

places, but to rewild and reinvigorate them. 
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