Exxon Valdez Oil Spill Restoration Project Final Report

Injury to Pink Salmon Embryos in Prince William Sound - Field Monitoring

> Restoration Project 98191A-1 Final Report

> > Andrew K. Craig¹ T. Mark Willette² David G. Evans³ Brian G. Bue³

¹Alaska Department of Fish and Game Division of Commercial Fisheries 401 Railroad Avenue Cordova, Alaska 99574

 ²Alaska Department of Fish and Game Division of Commercial Fisheries
 43961 Kalifornsky Beach Road, Suite B Soldotna, Alaska 99669

³Alaska Department of Fish and Game Division of Commercial Fisheries 333 Raspberry Road Anchorage, Alaska 99518-1599

June 2002

Close this one per Cathy 9/3/12

The *Exxon Valdez* Trustee Council conducts all programs and activities free from discrimination, consistent with the Americans with Disabilities Act. This publication is available in alternative communication formats upon request. Please contact the Restoration Office to make any necessary arrangements. Any person who believes she or he has been discriminated against should write to: EVOS Trustee Council, 441 West Fifth Avenue, Anchorage, Alaska 99501; or O.E.O., U.S. Department of the Interior, Washington, D.C. 20240.

Exxon Valdez Oil Spill Restoration Project Final Report

Injury to Pink Salmon Embryos in Prince William Sound - Field Monitoring

> Restoration Project 98191A-1 Final Report

> > Andrew K. Craig¹ T. Mark Willette² David G. Evans³ Brian G. Bue³

¹Alaska Department of Fish and Game Division of Commercial Fisheries 401 Railroad Avenue Cordova, Alaska 99574

²Alaska Department of Fish and Game Division of Commercial Fisheries
43961 Kalifornsky Beach Road, Suite B Soldotna, Alaska 99669

³Alaska Department of Fish and Game Division of Commercial Fisheries 333 Raspberry Road Anchorage, Alaska 99518-1599

June 2002

Injury to Pink Salmon Embryos in Prince William Sound - Field monitoring

> Restoration Project 98191A-1 Final Report

Study History: This study originated in March of 1989 and continued through February of 1991 as Natural Resource Damage Assessment Fish/Shellfish Study 2. The project consisted of embryo sampling in the fall and pre-emergent fry sampling in the spring at oil-contaminated and reference streams to determine if embryo mortalities in pink salmon were correlated with the presence of oil from the *Exxon Valdez* oil spill. The work continued in 1992 as Restoration Project R60C. From 1993 through 1998, the work was continued as Restoration Projects 93003, 94191, 95191, 96191, 97191, and this project, 98191. Final reports have been written for Fish/Shellfish Study 2 and Restoration Projects R60C and 93003. Annual reports have been written for 94191, 95191, 96191, and 97191. This document constitutes the final report for the project.

Abstract: We examined pink salmon embryo mortality in oil-contaminated and reference streams in Prince William Sound. Pink salmon embryo mortalities were significantly greater in oiled than in reference streams during 1989-1993 (P<0.020). Results from controlled incubation studies conducted in 1993 and 1994 were consistent with results obtained from field sampling indicating that natural environmental differences between oiled and reference streams did not cause differences in embryo mortality. From 1994 through 1996, embryo mortalities were not significantly different (P>0.400) between oiled and reference streams. In 1997, embryo mortalities were again significantly greater (P=0.017) in oiled than in reference streams possibly due to a minor shift in the location of stream deltas or sampling-induced mechanical shock. We conducted several statistical analyses of our embryo mortality data to evaluate whether sampling-induced mechanical shock affected our results. Our analysis using sampling date as a covariate indicated no significant effect of sampling-induced mechanical shock on our results. However, analyses using a measure of the difference between spawn timing and sampling date (Day75) as a covariate indicated that sampling-induced mechanical shock may have affected our results. But, questions regarding the usefulness of Day75 as a measure of embryo sensitivity to mechanical shock in specific years and lack of sufficient run timing data in most years leaves us unable to conclusively determine the magnitude of the effect.

Key Words: Alevins, crude oil, embryos, *Exxon Valdez* oil spill, hydrocarbons, mortality, *Oncorhynchus gorbuscha*, pink salmon, Prince William Sound.

Project Data: Description of data – Counts of numbers of live and dead salmon embryos and alevins obtained from sampling stream gravels using a hydraulic pump. Counts of numbers of live and dead salmon embryos and alevins obtained from a controlled incubation study. *Format* – Excel spreadsheets. *Custodian* – The data resides on the local area network in the Cordova ADF&G office. *Availability* – Data can be provided on a case-by-case basis upon request.

Citation:

Craig, A.K., T.M. Willette, D.G. Evans and B.G. Bue. 2002. Injury to pink salmon embryos in Prince William Sound – field monitoring, *Exxon Valdez* Oil Spill Restoration Project Final Report (Restoration Project 98191A-1), Alaska Department of Fish and Game, Division of Commercial Fisheries, Cordova, Soldotna and Anchorage, Alaska.

TABLE OF CONTENTS

Page

LIST OF FIGURES	4
LIST OF TABLES	4
LIST OF APPENDICES	5
EXECUTIVE SUMMARY	6
INTRODUCTION	. 8
OBJECTIVES 1	
METHODS	14
RESULTS1	18
DISCUSSION	26
CONCLUSIONS	27
LITERATURE CITED	29

LIST OF TABLES

		<u>Page</u>
Table 1.	Statistical significance (p-values) for fixed effects and Day75 covariate obtained from a split-plot analysis. The dependent variable was logit (embryo mortality)	23
Table 2.	Statistical significance (p-values) for fixed effects and Sample Date covariate obtained from a split-plot analysis. The dependent variable was logit (embryo mortality)	24

LIST OF FIGURES

	<u>Pa</u>	age
Figure 1.	Mean mortality of pink salmon embryos in oil-contaminated (solid circles) and reference streams (open circles) bordering Prince William Sound, 1989-1995	9
Figure 2.	Locations of oil-contaminated (black circles) and reference streams (white circles) sampled in southwestern Prince William Sound (1989- 1997)	13
Figure 3.	Mean pink salmon embryo mortality and corresponding 90% confidence bounds by tide zone for oil-contaminated and reference streams in Prince William Sound, 1996 and 1997. Solid circles represent data from 10 oil- contaminated streams, and open circles represent data from 15 reference streams	19
Figure 4.	(a) Mean Sample Date and (b) mean run-timing (E75) for oiled and reference streams by year	22
Figure 5.	Relationship between embryo mortality and <i>Day75</i> for oiled (solid squares) and reference streams (open circles)	25
Figure 6.	Frequency of occurrence of <i>Day75</i> for oiled (solid squares) and reference streams (open circles) by year	25

LIST OF APPENDICES

Appendix A.	Summary of pink salmon egg dig data from Prince William Sound, 1989-1997	33			
Appendix B.	Summary of adult pink salmon counted in streams bordering PWS, 1989-1997	80			
Appendix C.	Evidence of damage to pink salmon populations inhabiting Prince William Sound, Alaska, two generations after the <i>Exxon Valdez</i> oil spill	91			

EXECUTIVE SUMMARY

This study was designed to monitor pink salmon *Oncorhynchus gorbuscha* populations in Prince William Sound that may have been affected by the *Exxon Valdez* oil spill. Embryo mortality and embryo to pre-emergent fry survival were examined in intertidal and upstream areas of oil-contaminated and unoiled (reference) streams since the spring of 1989.

Embryo mortality was elevated in oil-contaminated streams from 1989 through 1993 (P < 0.020 for all years). From 1994 through 1996, embryo mortalities were not elevated in oil-contaminated streams (P > 0.400). In 1997, embryo mortality was again elevated in oil-contaminated streams (P = 0.017). Embryo mortality was greater in oiled streams in all intertidal areas in 1989 but only in the highest intertidal area in 1990. These results were consistent with observations of intertidal oiling from other studies. Among oiled streams, all intertidal areas were contaminated in 1989, whereas in 1990 visible oil remained only in the upper intertidal zone.

In 1991-1992, embryo mortality was significantly greater in oil-contaminated than in reference streams in both the intertidal and upstream zones. This finding was unexpected, because the presence of observable oil was dramatically reduced in all areas and the upstream zone had not been contaminated with oil. This result led investigators to propose three hypotheses: (1) that oil-induced damage to the 1989 and 1990 broods included deleterious mutations in the germline, (2) that incubating embryos continued to be damaged physiologically by an oiled environment even after observable oil was gone, and (3) that differences in embryo mortality were due to natural environmental factors that differed between oiled and reference streams.

We tested the hypothesis that differences in pink salmon embryo mortality observed in recent years were due to natural environmental conditions between oiled and reference streams. In 1993, gametes were collected from adults in spawning condition as they aggregated on or near the spawning grounds at eight oil-contaminated and eight reference streams. The gametes were flown to the Armin F. Koernig hatchery in southwest Prince William Sound where intra-stream crosses were made. The resulting embryos from each stream were placed in a common incubator. The pink salmon embryos from oil-contaminated streams showed elevated mortalities when compared to the embryos from reference streams (P < 0.010). This finding clearly indicated that the elevated embryo mortalities observed in the field monitoring portion of the study were not due to systematic differences between the incubating environments of oiled and reference streams. This embryo incubation experiment was repeated in 1994, but no significant difference in embryo mortality between oil-contaminated and reference streams was detected. This result is consistent with results obtained from the fieldmonitoring portion of the project in 1994. This study was attempted in 1992 and 1995 but was not completed due to lack of spawning salmon in some study streams.

In recent years, other investigators hypothesized that observed differences in embryo mortality between oiled and reference streams were due to sampling-induced mechanical shock to embryos. Pink salmon embryos are sensitive to mechanical shock until completion of epiboly two to three weeks after fertilization depending on developmental rate. If spawn timing were later or sampling times were earlier in oilcontaminated than reference streams, our results could have been biased by samplinginduced mechanical shock to embryos. We conducted several statistical analyses using field data collected since 1989 to evaluate this hypothesis.

Our statistical analyses of embryo mortality data indicated that oiling was associated with elevated mortality although sampling time may have also affected our results. Our analysis using sampling date as a covariate supported the conclusion that sampling-induced mechanical shock to embryos did not substantially affect our results. However, using a measure of the difference between spawn timing and sampling date (Day75) as a covariate and pooling data across all years, results were consistent with an effect of sampling-induced mechanical shock suggesting that our tests for oiling effects may have been affected by sampling date. But, questions regarding the usefulness of Day75 as a measure of embryo sensitivity to mechanical shock in specific years and lack of sufficient run timing data in most years leaves us unable to conclusively determine the magnitude of the effect. Elevated embryo mortalities observed in oil-contaminated streams in 1997 may have resulted from a minor shift in the location of stream deltas or sampling induced mechanical shock.

INTRODUCTION

Wild salmon play a major role in the Prince William Sound (PWS) ecosystem while also contributing to the region's commercial fisheries. Migrating salmon fry are an important food source in the spring for various mammals, birds, and fishes. Marine mammals prey on the ocean life stages of Pacific salmon while terrestrial mammals and birds, such as bears, river otters, eagles, and gulls depend on salmon for a large portion of their summer diet. Salmon also provide a pathway for transferring nutrients from marine ecosystems to nearshore and terrestrial ecosystems. In recent years, commercial catches of wild salmon have ranged from 10 to 15 million pink salmon *Oncorhynchus gorbuscha* in PWS.

Salmon alevins are more sensitive to oil exposure in intertidal environments, where up to 75% of pink salmon in PWS spawn (Helle et al. 1964). Moles et al. (1987) and Rice et al. (1975) measured higher mortalities in pink salmon embryos and reduced growth and survival of alevins exposed to crude oil. The effects were greater for alevins exposed to oil in seawater and in simulated intertidal environments due to the greater solubility of oil in seawater or perhaps physiological changes associated with smoltification (Rice et al. 1975). Intertidal habitats are highly susceptible to contamination from marine oil spills in PWS due in part to the high tidal range.

The March 24, 1989 oil spill from the T | V Exxon Valdez contaminated many intertidal spawning areas in central and southwest PWS just prior to the spring emigration of salmon fry into the sound. Embryo mortality was significantly greater (P=0.005) in all intertidal areas of oiled streams compared to reference streams in the fall of 1989 (Sharr et al. 1994a, Bue et al. 1996). In 1990, embryo mortality was only elevated in the highest intertidal areas of oiled streams (P=0.020, Figure 1). These results were consistent with observations of intertidal oil-contamination (Wolfe et al. 1996). Among oiled streams, oil contamination was observed in all intertidal areas in 1989, whereas in 1990 visible oil remained only in the upper intertidal zone.

Continued high mortality in previously oiled streams after 1990 was unexpected, because visible oil contamination was greatly reduced by that time. In 1991, embryo mortality was significantly greater (P=0.005) in oiled than in reference streams and mortality in upstream areas of oil-contaminated streams was also elevated (Figure 1; Sharr et al. 1994a). Elevated mortality in these upstream areas was unexpected, because stream gravels above the intertidal zones were not contaminated. Similar patterns of embryo mortality were observed again in 1992 (P=0.006), but the mortality differences were smaller than in 1991 (Figure 1; Sharr et al. 1994b and Sharr et al. 1994c). In 1993, embryo mortality was again elevated in oiled-contaminated streams (P=0.011), and estimated contrasts indicated the differences were in the two lower intertidal zones. In 1994 and 1995, embryo mortality was not significantly different (P>0.400) between oiled and reference streams suggesting recovery from the effects of oil contamination (Figure 1; Craig et al. 1996).

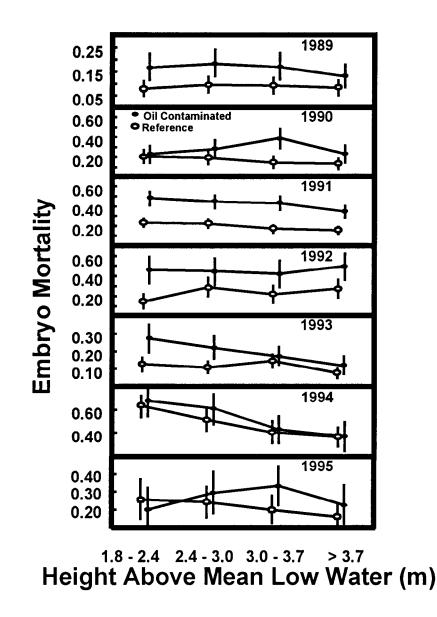


Figure 1. Mean mortality of pink salmon embryos in oil-contaminated (solid circles) and reference streams (open circles) bordering Prince William Sound, 1989-1995.

Elevated mortalities observed in the intertidal zones of oil-contaminated streams in 1989 through 1993 may have been due to direct exposure to oil. Brannon et al. (1995) attempted to measure exposure of pink salmon embryos to hydrocarbons in our oiled and reference streams. During the spawning period in 1989, mean PAH concentrations measured at the surface of the streambed were 116.8 ppb (range 0.8-267.0 ppb) in 6 of our oiled study streams and 10.1 ppb (range 0.2-64.0 ppb) in our reference streams (Brannon et al. 1995). During the spawning period in 1990, mean PAH concentrations declined to 27.7 ppb (range 1.8-108.2) in oiled streams and 1.6 ppb (range 0.7-3.2) in reference streams. During the spawning period in 1991, mean PAH concentrations

increased to 93.9 ppb (range 1.1-235.5 ppb) in oiled streams but remained relatively low in reference streams (mean=1.5 ppb, range 0.8-2.4). Although, Brannon et al. (1995) found consistently higher mean PAH concentrations at the surface of stream gravels in our oiled than reference streams, their results probably did not provide a reliable estimate of embryo exposure. Murphy et al. (1999) observed PAH concentrations in stream delta sediments that were about 1-2 orders of magnitude higher than those observed by Brannon et al. (1995) at the surface of the streambed. Murphy et al. (1999) concluded that tidal leaching from residual oil deposits in stream delta sediments intermittently exposed embryos incubating in adjacent stream gravels to low aqueous hydrocarbon concentrations. This mechanism probably exposed embryos and alevins incubating in oilcontaminated intertidal spawning habitats to low hydrocarbon concentrations over a 7-8 month period. Such long-term exposure to low PAH concentrations derived from weathered oil caused embryo mortality in the laboratory (Heintz et al. 1999). Long-term exposure to low aqueous PAH concentrations may cause mortality, because lipid-rich embryos scavenge the more toxic phenanthrenes and chrysenes from the environment until lethal tissue concentrations are achieved (Heintz et al. 1999). Murphy et al. (1999) concluded that PAH concentrations in some PWS streams were above the minimum threshold observed to cause embryo mortality in the laboratory from 1989-1993, consistent with our field observations of embryo mortality.

Elevated embryo mortalities observed in upstream areas of oil-contaminated streams in 1991 and 1992 led to development of three hypotheses: (1) natural environmental differences between oiled and reference streams caused elevated mortality in oiled streams, (2) oil-induced chromosome damage during incubation affecting the germline caused later embryo mortality in oiled streams, and (3) oil-induced physiological damage during incubation later affected reproductive success.

Observed differences in embryo mortality may have been due to systematic differences in environmental conditions between oil-contaminated and reference streams. Our study was based on observational data, so we were unable to randomize stream oiling to account for environmental differences among streams. We attempted to address this concern in our original experimental design by selecting reference streams in close proximity to oil-contaminated streams; however, there was a definite pattern to the oil contamination in southwest PWS. Oil-contaminated streams were often located on points of land facing northeastward, whereas uncontaminated streams often faced west and southwestward.

Genetic or physiological damage resulting from exposure to hydrocarbons during embryonic development may have contributed to elevated embryo mortalities observed in oil-contaminated streams after 1990. Hypotheses regarding possible genetic and physiological damage were developed from knowledge of previous field observations and laboratory experiments on the effects of crude oil during the early life stages of fish. Petrochemicals and the polynuclear aromatic hydrocarbons (PAH) abundant in crude oil and are capable of inducing chromosomal lesions (Longwell 1977; McBee and Bickham 1988; Bickham et al. 1998), so it is possible that oil-induced germline damages affecting later reproduction are transmitted between generations (Malkin 1994). Pink salmon alevins exposed to hydrocarbons in the laboratory exhibited elevated gonadal cell apoptosis (Marty et al. (1997), but exposure to hydrocarbons at these early life stages has not yet been linked to reduced reproductive success. Hydrocarbon contamination can also influence endocrine function (Thomas and Budiantara 1995) and later reproduction (Trustcott et al. 1983).

Genetic or physiological damages affecting pink salmon in one brood year could be expressed in that lineage two or more years later, because this species has an obligate two-year life cycle with genetically isolated lineages reproducing in odd- and evennumbered years. The pink salmon that spawned during the fall of 1991 and 1993 were from the odd broodline that spawned in 1989. Embryos and alevins that incubated in oiled gravel during the winter of 1989-1990 were probably exposed to the highest concentrations of hydrocarbons during incubation (Brannon et al. 1995; Murphy et al. 1999). Similarly, pink salmon that spawned in 1992 were from the even broodline that had probably been exposed to the second highest hydrocarbon concentrations during incubation in the winter of 1990-1991.

This study was initially designed to monitor pink salmon embryo mortality and embryo to pre-emergent fry survival in oil-contaminated streams bordering PWS. However, in 1992, the project was amended to examine whether systematic environmental differences between oil-contaminated and reference streams or genetic damage may have caused observed embryo mortality. Experiments were initiated to: (1) evaluate the environmental-difference hypothesis by incubating embryos from oiled and reference streams in a common environment (Appendix C); (2) use laboratory experiments to further examine how oil contamination may have caused embryo mortality (Heintz et al. 1999); and (3) test for genetic damage using flow cytometry and androgenesis screens (Seeb et al. 1996).

After initiation of these studies, project reviewers suggested that outbreeding depression may have caused differential mortalities observed in the field. This hypothesis was developed from data provided by NRDA Fish/Shellfish Study 1 and Study 3 (F/S 1 and F/S 3) and Restoration project 99188 (Joyce and Evans 1999) which indicated that large numbers of pink salmon were straying into streams in or near our study area. Higher straying rates into oil-contaminated streams may have caused introgression of non-locally adapted genes and elevated embryo mortality. Evaluation of this hypothesis was beyond the scope of our study.

We observed no difference in embryo to pre-emergent fry survival between oilcontaminated and reference streams (Sharr et al. 1994a, 1994b, and 1994c). Lack of a difference in embryo-to-fry survival may have resulted, because (1) oil contamination did not affect survival, (2) compensation masked reduced survival, or (3) our experimental design was inadequate to detect reduced survival. It seems unlikely that embryo-to-fry survival was not affected by oil contamination, because embryo mortality was elevated in oiled streams and alevins were more vulnerable to oil contamination than embryos (Moles et al. 1987). Compensation during intragravel life stages also probably did not affect the number of emerging fry during the years of our study, because embryo and alevin densities were too low (Geiger et al. 1996). Rather, our experimental design was probably inadequate to detect effects of oil contamination on embryo-to-fry survival. Unexpected changes in stream characteristics probably prevented sampling the same areas for embryos in the fall and pre-emergent fry in the spring. Stream channels in PWS are not well defined in intertidal areas, and some intertidal stream segments migrate along the beach when exposed to winter storms. The magnitude of these changes was unexpected when this study was designed. Subsequent power analyses indicated that our experimental design was inadequate to detect a biologically meaningful difference in embryo-to fry survival.

Finally, Brannon and Maki (1996) postulated that differences in embryo mortality between oiled and reference streams reported by Bue et al. (1998b) were due to differences in sampling-induced mechanical shock to embryos. Pink salmon embryos are sensitive to mechanical shock until completion of epiboly two to three weeks after fertilization, depending on water temperature and other factors affecting developmental rate (Jenson and Alderice 1983; Smoker et al. 1998). Brannon and Maki (1996) hypothesized that embryos from oiled streams were sampled at an earlier stage of development, and therefore experienced more mechanical shock than embryos from reference streams. We conducted several analyses using data collected since 1989 to evaluate this hypothesis.

OBJECTIVES

- 1. Test for a difference in mortality of pink salmon embryos between oiled and reference streams.
- 2. Test the hypothesis that differences in embryo mortality between oiled and reference streams were due to mechanical shock during sampling.

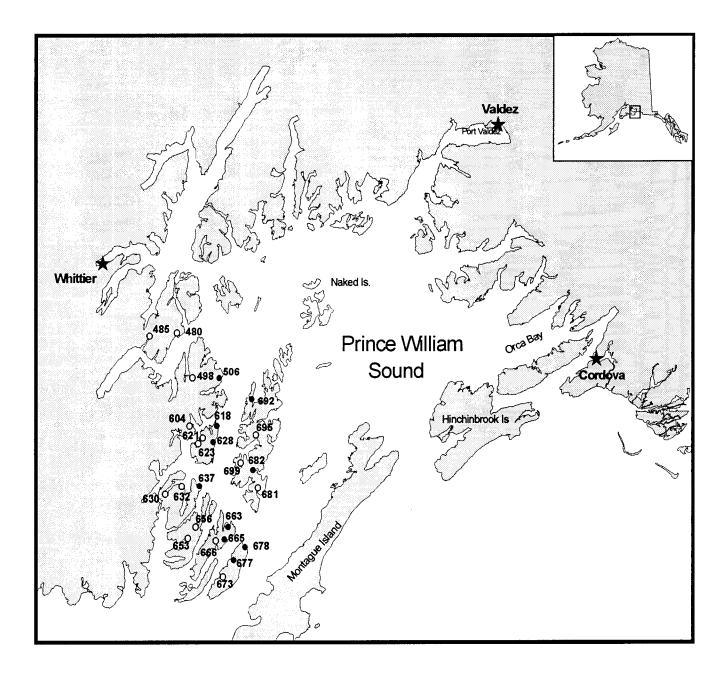


Figure 2. Locations of oil-contaminated (black circles) and reference streams (white circles) sampled in southwestern Prince William Sound (1989-1997).

METHODS

Sampling design

Mortality of pink salmon embryos was examined annually in 10 oil-containinated (oiled) and 15 nearby uncontaminated (reference) streams (Figure 2). The following criteria were used to select the streams used in the study:

- 1. They had significant spawning populations in both odd and even years.
- 2. They were accessible for sampling in most years.
- 3. They were representative of oiled and reference streams in the oilimpacted area of PWS.

Stream oiling was assessed through visual observations of the stream and the adjacent area during the spring of 1989. The observations were reviewed and adjusted if necessary according to the results of anadromous stream surveys conducted in southwestern Prince William Sound by the Alaska Department of Fish and Game (ADF&G), Habitat Division (Middleton et al. 1992). The oiling classifications of the streams correlated with the findings of the fall of 1989 shoreline surveys (ADEC-SRS 1989; Neff et al. 1995) and similar pink salmon work by Brannon et al. (1995).

Craig et al. (1995) and Sharr et al. (1994a and 1994b) described the methods used to sample embryos. Sampling was stratified by tide zone to control for possible differences in salinity, temperature, predation, or a combination of these factors. Zone boundaries were established with a surveyor's level and stadia rod and staked prior to sampling. Four zones were sampled in each stream whenever possible: 1.8 - 2.4 m, 2.4 - 3.0 m, 3.0 - 3.7 m above mean low water, and upstream of mean high tide (3.7 m). No sampling was done below the 1.8 - 2.4 m zone, because mortality in this zone was very high (Helle et al. 1964).

During each survey, separate linear transects were established within each tide zone. Although most transects were 30.5 m long, some were shorter due to steep stream gradients. Transects were placed in riffle areas where spawning was observed during escapement surveys conducted for F/S 1. Transects ran diagonally across the river starting downstream against the left bank and moved upstream to the right bank. A map drawn for each stream indicated the tide zones and transect locations in relation to major landmarks. Each embryo transect was photographed and marked with surveyor's flagging to insure that future transects could be located in the same area of the stream.

Fourteen circular samples (0.186 m^2) were systematically collected along each transect. The number of digs was a compromise between reducing variance and the practicality of conducting the study. Fewer digs were completed on narrow stream channels to avoid excessive sampling of the stream. Streams that split into two or more channels within a zone were sampled either by allocating digs among channels based on spawner distribution observed during F/S 1 or, where spawner distribution was unknown, by an equal allocation.

The following data were collected for each tide zone transect during both embryo and fry sampling:

- 1. Sample date.
- 2. Sample tide zone.
- 3. Start and stop time for the tide zone transect.
- 4. Numbers of live and dead fry and embryos for each species in each dig.

Pink salmon embryos were separated from chum *O. keta* and coho *O. kisutch* salmon embryos by their smaller size. Chum salmon embryos were separated from coho salmon embryos by their greater development and different coloration. An embryo was considered dead if it was opaque or discolored with coagulated lipids. Eggs that were considered unfertilized were counted as dead. Fry were considered dead only if decomposition was evident, because sampling often killed fry. To minimize the effects of sampling induced mechanical shock on our results, we counted live and dead embryos as soon as possible after their removal from stream gravels. During the early years of the study, up to one half hour elapsed between removal of embryo samples from stream gravels and counting of live and dead embryos. This time was reduced to less than 5-10 minutes during the last few years of the study.

Effects of oil contamination on embryo mortality

We summarized the numbers of live and dead embryos and fry by level of hydrocarbon contamination, stream and tidal zone. Densities of live embryos (E_{ij}) per m² were estimated using,

$$\hat{E}_{ij} = \frac{\sum_{k} L E_{ijk}}{0.186 n_{ij}} , \qquad (1)$$

where LE_{ijk} was the number of live embryos found in the k^{th} dig, in stream *i*, zone *j*, and n_{ij} was the number of digs. Densities of dead embryos were calculated using the same estimator with appropriate substitutions.

Pink salmon embryo mortality was estimated for each stream and zone using,

$$\hat{M}_{ij} = \frac{\sum_{k} (DE_{ijk} + DF_{ijk})}{\sum_{k} (LE_{ijk} + DE_{ijk} + LF_{ijk} + DF_{ijk})} , \qquad (2)$$

where DE_{ijk} , DF_{ijk} , LE_{ijk} , and LF_{ijk} were the number of dead embryos, dead fry, live embryos, and live fry for the k^{th} dig from stream *i* and zone *j*, respectively.

The arcsine square root transformation was examined as well as the logit transform of embryo mortality [ln (odds)], i.e.

$$Logit_{ij} = \ln\left[\frac{\sum_{k} (DE_{ijk} + DF_{ijk})}{\sum_{k} (LE_{ijk} + LF_{ijk})}\right] \qquad (3)$$

Differences in embryo mortality were examined using a completely randomized experimental design with a split-plot treatment structure (Neter et al. 1990):

$$Y_{ijk} = \mu_{ijk} + O_i + Z_j + (OZ)_{ij} + S_{k(i)} + \varepsilon_{(ijk)} \quad .$$
(4)

The main plot treatment was level of oiling, $(O_i, 2 \text{ levels}; \text{ oiled and reference})$, and the split-plot treatment was height in the intertidal zone (Z_i , 4 levels; 2.1, 2.7, and 3.4 m above mean low water, and upstream), both fixed effects. Stream was included as a random effect nested within level of oiling, (S_{ki}) . The interaction of level of oiling and height in the intertidal zone was also examined. Equality of variances was tested using the F_{max}-test (Sokal and Rohlf, 1969), while normality of error terms was visually assessed using normal quantile-quantile and box plots (Chambers et al. 1983). Arcsine square root, logit, log, and square root transforms were examined if the data indicated non-constant variances or non-normal error terms. Assumptions inherent in the use of the split-plot analysis were tested by examination of the homogeneity of between treatment covariance matrices and the degree of sphericity of the pooled covariance matrix. The procedure PROC MIXED (SAS Institute Inc., 1998) and Akaike's Information Criterion (AIC) were used to assess a variety of covariance structures, other than that of compound symmetry assumed in the split-plot analysis, to describe the within-stream errors. Four contrasts (oil vs. reference for the four stream zones) and corresponding Bonferroni family confidence intervals ($\alpha = 0.10$ overall) were estimated if a significant difference due to oiling was detected. The SAS (SAS Institute Inc. 1998) General Linear Models Procedure was used to analyze the data.

We also conducted a repeated-measures analysis that included all nine years of data collected from the same 25 streams, because this approach provided a more powerful statistical test of the effects of oil contamination on embryo mortality. Year was treated as a repeated measure in time and zone as a repeated measure in space in the analysis (doubly-repeated measures), because neither year nor zone could be randomized. Oiling was treated as a fixed effect in a completely randomized design. The procedure PROC MIXED (SAS Institute Inc. 1998) was used with the *repeated* statement specifying the two repeated measures and the Kronecker product structure designed for multivariate repeated measures (SAS Institute Inc. 1998). The "Type="

specification was determined using AIC. An analysis in which year was treated as a repeated measure was also performed where logit(mortalities) were averaged over zone, such that each stream yielded one logit(mortality) measure. The PROC MIXED procedure, specifying year as the only repeated measure was used for this analysis.

Effects of mechanical shock on embryo mortality

We used covariate analysis to test the hypothesis that differences in embryo mortality between oiled and reference streams were due to sampling-induced mechanical shock to embryos. Two covariates were identified that may correlate with the sensitivity of embryos to mechanical shock: (a) *Sample Date*, defined as the day of the year on which embryo sampling was conducted, and (b) *Day75*, defined as the number of days between *Sample Date* and the date at which 75% of the escapement was estimated to have entered the stream (*E75*):

$$Day75 = Sample Date - E75 \qquad (5)$$

E75 was used as a rough measure of the relative timing of the end of the spawning run, because numbers of salmon observed in the streams were generally declining by this time, and few observations were available to document the actual end of the run (zero count). E75 was estimated from periodic counts of live pink salmon obtained from ground surveys conducted by the ADF&G in 1990-1992 (Fried et al. 1998). Periodic counts of live pink salmon obtained from ground surveys conducted by the ADF&G in surveys conducted by the Exxon Corporation (E. Brannon, pers. comm.) were used for streams and years in which data were not available from ADF&G surveys. If ground surveys were not conducted throughout the entire spawning run to a stream, ADF&G aerial survey data were used to help identify the beginning and/or end of the run. If aerial survey data were not available to document the end of the run, it was estimated by assuming that all fish observed during the last survey died within 7 days (Bue et al. 1998a).

Of the 2 covariates, *Day75* was probably the more robust measure of embryo sensitivity to mechanical shock, because it accounted for relative differences in run timing (*E75*) and time of sampling. But, *Day75* could only be calculated when sufficient run timing data were available to calculate *E75*. Sample Date was considered an adequate relative measure of embryo sensitivity when no difference in *E75* between oiled and reference streams could be detected with sufficiently powerful tests.

Tests for differences in *E75* between oiled and reference streams were conducted using PROC MIXED with year as a repeated measure. AIC was used to examine a series of covariance structures that described within stream correlations. The approximate power of tests for differences in *E75* between oiled and reference streams was calculated according to standard procedures (e.g. Snedecor and Cochran, 1989).

The PROC MIXED procedure was used to determine if inclusion of either of the covariates caused previously significant mortality differences between oiled and reference streams within years to become non-significant. The model for an individual year was:

$$Y_{ijk} = \mu + \beta D_{ijk} + O_i + Z_j + OZ_{ij} + S_{k(i)} + \varepsilon_{(ijk)} , \qquad (6)$$

where D_{ijk} was either the *Sample Date* or the value of *Day75* associated with the jth zone in the kth stream for the ith oiling treatment. A more powerful test of the significance of the covariate was also conducted by including the covariate in a single repeatedmeasures (*i.e.* year) analysis with data from all years pooled. AIC was used to choose the most appropriate covariance structure.

RESULTS

Effects of oil contamination on embryo mortality

Twenty-five streams were sampled between October 3 and October 22, 1996 to estimate embryo mortality. Mean embryo densities during the 1996 egg deposition survey were 984.54 eggs per m² in the intertidal zones and 1089.78 eggs per m² in the upstream (Appendix A). The 1996 embryo mortality data indicated no significant difference between the oiled and reference streams (P=0.47; Figure 3). No significant stream zone effect (P=0.35) or oil-by-zone interaction was found (P=0.27). The overall mean embryo mortalities for the oiled and reference streams were 0.25 and 0.19 in 1996.

Twenty-five streams were sampled between September 28 and October 21, 1997 to estimate embryo mortality. Mean embryo densities during the 1997 egg deposition survey were 838.39 eggs per m² in the intertidal zones and 1368.53 eggs per m² in the upstream (Appendix A). A split-plot analysis of the 1997 data revealed a significant difference in embryo mortality between oiled and reference streams (P=0.03). The stream zone (P=0.15) and zone by oiling interaction (P=0.75) terms in the model were not significant. The back-transformed least-squares mean mortalities were 0.42 (oiled) and 0.27 (reference). Mortality differences between oiled and reference streams appeared to be driven by effects at the two intermediate stream-tide zones (Figure 3).

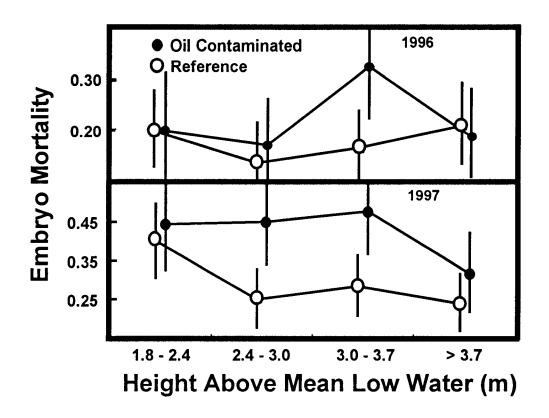


Figure 3. Mean pink salmon embryo mortality and corresponding 90% confidence bounds by tide zone for oil-contaminated and reference streams in Prince William Sound, 1996 and 1997. Solid circles represent data from 10 oilcontaminated streams, and open circles represent data from 15 reference streams.

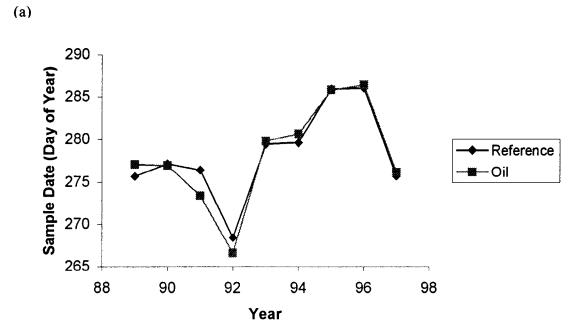
Using the *repeated* facility in PROC MIXED, it was found that an auto-regressive structure more adequately described the covariance between zones than did the compound symmetry structure assumed in the regular split-plot analysis. Mauchly's criterion test for the sphericity of the covariance matrix supported this conclusion (P=0.03). An additional analysis of the 1997 data was conducted using the auto-regressive covariance structure. The results indicated little change in the *P*-values (oil: P=0.03, zone: P=0.14, oil by zone: P=0.70). Similar analyses were performed for all previous years, and the results indicated that the compound symmetry assumption inherent in the split-plot analysis was entirely adequate.

An analysis of all 9 years of data was conducted by treating year as a repeated measure in time and zone as a repeated measure in space. While the overall three-factor interaction was not significant (P=0.32), examination of the oiling by zone interactions by year revealed some evidence of a three-factor interaction. Plots of least-square means suggested the interaction was small. Examination of the year by oiling interaction revealed a pattern of statistical significance of oiling effects that was similar to that obtained in the analyses conducted for each year separately. The pattern of statistical significance of oiling effects obtained from the doubly-repeated measures analysis were: 0.01, 0.01, 0.01, 0.01, 0.01, 0.67, 0.33, 0.40, 0.03 for 1989 through 1997, respectively. A simpler analysis was performed in which logit(mortality) was averaged over zone, such that each stream in a given year yielded only one mortality measurement, and year formed the only repeated measure. A compound symmetry structure was found to most appropriately model the covariance among years. The pattern of statistical significance of oiling effects from this analysis was similar to that obtained from the doubly-repeated measures analysis (P=0.02, 0.03, 0.01, 0.01, 0.05, 0.72, 0.42, 0.65, 0.06 for 1989 through 1997, respectively).

Analysis of the influence of physical shock on oiling effects

Sample Date as Covariate

Results of inclusion of Sample Date (Figure 4a) as a covariate for all years are given in Table 1. The analyses indicated a pattern of significant differences in embryo mortality between oiled and reference streams that was very similar to that obtained without the covariate. The *Sample Date* covariate was significant in 1989, 1990, 1991 and 1994, and the sign of the parameter estimate indicated that embryo mortality tended to decrease when sampling was conducted later in the season.


The degree to which Sample Date should be considered a useful relative measure of the extent of physical shock experienced by sampled embryos depends on the extent to which differences in run-timing exist between oiled and reference streams. The combined Exxon Corporation ground survey data and ADF&G aerial survey data used to estimate run timing for some streams are summarized in Appendix B. A plot of estimated mean run timing by oiling and year is provided in Figure 4b. Significant and large differences in mean run timing between oiled and reference streams were found only in 1990 (estimated difference of 14 days; P=0.01) and 1992 (estimated difference of 13 days; P=0.02), although a test using carcass count data for 1992 failed to reveal a difference (P=0.25). For the remaining years, estimated differences in run-timing were much smaller and ranged from two days for 1991 (P=0.37) to four days for 1995 (P=0.07). A test using carcass count data for other years.

Of the tests where no difference in run-timing was found, the test for 1991 was estimated to be the most powerful, having an 80% probability of detecting a difference of 6 days at $\alpha = 0.05$. Power for the remaining insignificant tests was lower, ranging from 80% power for detecting a difference of 12 days (1989) to 8 days (1994).

Day75 as covariate

For analyses pertaining to the Day75 covariate, only data from those streams for which run-timing estimates were available were used. When the Day75 covariate was excluded from the analysis, no significant differences in embryo mortality between oiled and reference streams were detected at $\alpha = 0.05$ for any year (Table 2), although the tests pertaining to 1991 and 1992 were marginally significant (P=0.06 and P=0.07, respectively). When Day75 was included in the analysis, it was not significant for any year except 1992, for which the *P*-value for an oiling effect increased from 0.07 to 0.51 with inclusion of Day75 as the covariate. The parameter estimate for the covariate in 1992 indicated that mortalities tended to decrease as sampling was conducted later in the season relative to run timing. The *P*-value for the oiling effect in 1991 changed from 0.06 to 0.08 after inclusion of the Day75 covariate.

When the data from all years were pooled in a single repeated-measures (i.e. year) analysis, the Day75 covariate was significant (P=0.01) and the parameter estimate (-0.038) was again negative. A plot of embryo mortality versus Day75 over all years is given in Figure 5. When tests of the influence of oiling on the Day75 variable were conducted for each year separately, no significant differences were found (Fig. 6) except in 1992 (P=0.01). However, when data from all years were pooled, Day75 was significantly greater in reference than in oiled streams (P=0.05).

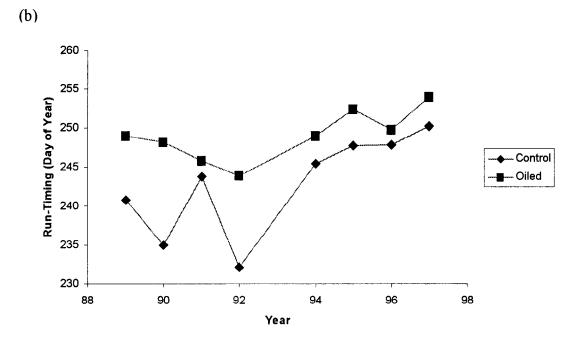


Figure 4. (a) Mean Sample Date and (b) run timing (E75) for oiled and reference streams by year.

22

	Year									
an a		1989	1990	1991	1992	1993	1994	1995	1996	1997
No Covariate										
	Main-Plot									
	Oil	0.005	0.020	0.005	0.006	0.011	0.440	0.403	0.864	0.017
	Sub-Plot									
	Zone	0.544	0.572	0.021	0.185	0.008	0.005	0.163	0.133	0.232
	Oil*Zone	0.895	0.120	0.723	0.916	0.371	0.449	0.729	0.673	0.471
Linear Covariate										
	Main-Plot									
	Oil	0.003	0.010	0.009	0.018	0.010	0.126	0.414	0.893	0.019
	Sub-Plot									
	Zone	0.582	0.585	0.020	0.186	0.007	0.007	0.159	0.120	0.231
	Oil*Zone	0.913	0.106	0.642	0.916	0.382	0.427	0.744	0.570	0.468
	Covariate	0.094	0.012	0.019	0.460	0.285	0.001	0.794	0.178	0.690
	Est. ofCovariate	-0.043	-0.050	-0.060	-0.064	-0.030	-0.100	-0.014	-0.073	-0.012

 Table 1. Statistical significance (p-values) for fixed effects and the Sample Date covariate obtained from a split-plot analysis. The dependent variable was logit(embryo mortality).

		Year								
		1989	1990	1991	1992	1993	1994	1995	1996	1997
# Streams	Oiled	3	5	8	10	0	5	3	5	3
	Control	4	5	9	7	0	5	4	5	4
No Covariate										
	Main-Plot									
	Oil	0.689	0.237	0.06	0.067	-	0.795	0.420	0.733	0.683
	Sub-Plot									
	Zone	0.422	0.140	0.02	0.216	-	0.001	0.869	0.024	0.626
	Oil*Zone	0.794	0.594	0.88	0.876	-	0.020	0.426	0.782	0.272
Linear Covariate										
	Main-Plot									
	Oil	0.850	0.482	0.08	0.512	-	0.964	0.640	0.650	0.205
	Sub-Plot									
	Zone	0.403	0.161	0.02	0.220	-	0.001	0.834	0.021	0.643
	Oil*Zone	0.811	0.573	0.91	0.871	-	0.015	0.364	0.764	0.597
	Covariate	0.623	0.479	0.13	0.049	-	0.271	0.304	0.713	0.281
	Est. ofCovariate				-0.051					

 Table 2. Statistical significance (p-values) for fixed effects and the Day75 covariate obtained from a split-plot analysis. The dependent variable was logit(embryo mortality).

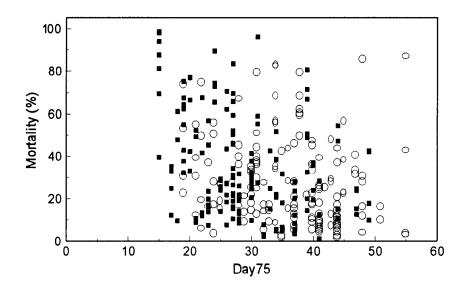


Figure 5. Relationship between embryo mortality and Day75 for oiled (solid squares) and reference streams (open circles).

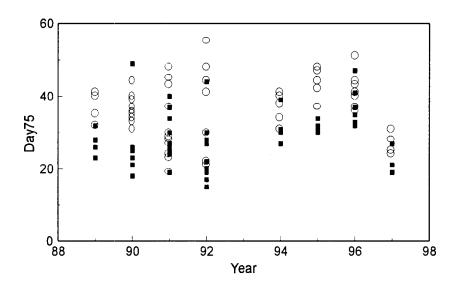


Figure 6. Frequency of occurrence of Day75 for oiled (solid squares) and reference streams (open circles) by year.

DISCUSSION

Pink salmon embryos that incubated in oil-contaminated spawning areas in PWS appear to have been adversely affected by the Exxon Valdez oil spill. Our statistical analyses of embryo data indicate that oiling was associated with elevated mortality although sampling time may have also affected our results. Murphy et al. (1999) concluded that PAH concentrations in some PWS streams were above the minimum threshold observed to cause embryo mortality in the laboratory from 1989-1993. Our observations of elevated embryo mortality in oiled-contaminated streams during this same period are consistent with Murphy's et al. (1999) conclusions. The question of concern regarding the effect of sampling time is whether inclusion of the covariates (Sample Date or Day75) caused significant oiling effects to become non-significant. In the analysis with Sample Date as the covariate, significant oiling effects in 1989-1993 and 1997 remained significant with inclusion of the covariate (Table 1). In the analysis with Day75 as the covariate, the changes in significance of the oiling effect with and without the covariate were largely trivial. However, due to the reduced sample sizes, oiling effects were only marginally significant in 1991 and 1992 when run timing data were available from the greatest number of streams. In 1991, a marginally significant oiling effect remained as such with addition of the Day75 covariate. However, in 1992 a marginally significant oiling effect became non-significant with inclusion of the covariate (Table 2). This change in significance likely resulted because the covariate and the treatment effect were themselves correlated; i.e. Day75 was significantly different between oiled and reference streams in 1992. This was not the case in 1991.

However, we question whether the covariate *Day75* provided an adequate measure of embryo sensitivity to mechanical shock. This variable was intended to account for relative differences between spawn timing and time of sampling. Pink salmon embryos are sensitive to mechanical shock until epiboly is reached after about 200-210 deg. days of development (Smirnov 1976; Jensen and Alderdice 1989). At the time we sampled embryos, individuals within the population were at various developmental stages depending on the timing of egg fertilization and various factors affecting developmental rate (Heard 1991). Spawning probably occurred over a period of a month or more in our study streams (Appendix B), so a large range of development stages was present among embryos at the time of sampling. Lacking any data on the distribution of development stages within these populations at the time of sampling, we based our analysis on periodic counts of live salmon to estimate the date at which 75% of the run had entered the stream. But, we recognized that carcass counts were likely a better indicator of spawn timing than live counts, because pink salmon die shortly after spawning. We could not calculate Day75 using carcass counts, because carcass counts were only available from two years (1991 & 1992). When we tested for differences in run timing between oiled and reference streams using carcass counts there were no differences in both years. But, when run timing was calculated using live counts (E75), there was a difference in 1992 but not in 1991. These contradictory results suggest that E75 may have provided a biased measure of spawn timing in 1992. In 1991, the only other year when sufficient data were available for a more powerful test, embryo mortality was still marginally significantly greater in oiled than in reference streams when Day75 was included as a covariate (Table 2). The power of our statistical tests using Day75 was substantially reduced in all other

years due to lack of sufficient run timing data for all streams. However, when we pooled the data across all years, the covariate Day75 was statistically significant, and the parameter estimate indicated that mortality declined as the value of Day75 increased. This result was consistent with an effect of sampling-induced mechanical shock suggesting that our results may have been affected by sampling date. But, questions regarding the usefulness of Day75 as a measure of embryo sensitivity to mechanical shock in specific years and lack of sufficient run timing data in most years leaves us unable to conclusively determine the magnitude of the effect.

Elevated embryo mortalities observed in oil-contaminated streams in 1997 may have resulted from a minor shift in the location of stream deltas or sampling induced mechanical shock. Differences in embryo mortality observed in 1997 were largely driven by elevated mortalities in 3 of the most heavily oiled streams included in this study. A minor shift in the location of stream deltas, a common occurrence in PWS, may have brought embryos incubating in these streams within closer proximity to weathered deposits of oil. However, lacking any data on PAH concentrations in embryo tissues or stream sediments, we cannot conclusively determine whether the elevated mortalities observed in these oiled study streams were caused by exposure to hydrocarbons. Embryos may have also been more sensitive to sampling-induced mechanical shock in 1997, because our field sampling was conducted relatively early in the season that year (Fig. 4). But, we do not have sufficient run timing data to determine if this effect can account for the differences in embryo mortality observed between oiled and reference streams in 1997 or any other specific year.

CONCLUSIONS

- 1. Our statistical analyses of embryo mortality data indicate that oiling was associated with elevated mortality although sampling time may have also affected our results. Our analysis using *Sample Date* as a covariate supported the conclusion that sampling-induced mechanical shock to embryos did not substantially affect our results. However, using *Day75* as a covariate and pooling data across all years, results were consistent with an effect of sampling-induced mechanical shock suggesting that our tests for oiling effects may have been affected by sampling date. But, questions regarding the usefulness of *Day75* as a measure of embryo sensitivity to mechanical shock in specific years and lack of sufficient run timing data in most years leaves us unable to conclusively determine the magnitude of the effect.
- 2. Pink salmon embryo mortalities were significantly greater in oiled than in reference streams during 1989-1993. Results from controlled incubation studies conducted in 1993 and 1994 were consistent with results obtained from field sampling indicating that natural environmental differences between oiled and reference streams did not cause differences in embryo mortality observed from 1989 through 1993. From 1994 through 1996, embryo mortalities were not significantly different between oiled and reference streams. In 1997,

embryo mortalities were again significantly greater in oiled than in reference streams. Elevated embryo mortalities observed in oil-contaminated streams in 1997 may have resulted from a minor shift in the location of stream deltas or sampling induced mechanical shock.

ACKNOWLEDGMENTS

We would like to thank the staff of the Alaska Department of Fish and Game who endured difficult field conditions to obtain the samples needed for this study. This project would not have been possible without the assistance, and expertise of the captain and crew of the R/V Montague.

LITERATURE CITED

- Bickham, J.W., J.A. Mazet, J. Blake, M.J. Smolen, Y. Lou, and B.E. Ballachey. 1998. Flow cytometric determination of genotoxic effects of exposure to petroleum in mink and sea otters. Ecotoxicology 7: 191-199.
- Brannon, E.L., L.L. Moulton, L.G. Gilbertson, A.W. Maki and J.R. Skalski. 1995. An assessment of oil-spill effects on pink salmon populations following the *Exxon Valdez* oil spill Part 1: Early life history. Pages 548-584 in P.G. Wells, J.N. Butler and J.S. Hughs, eds. *Exxon Valdez* Oil Spill: Fate and Effects in Alaskan Waters, ASTM STP 1219. American Society for Testing and Materials, Philadelphia.
- Brannon, E.L and A.W. Maki. 1996. The *Exxon Valdez* oil spill: analysis of impacts on the Prince William Sound pink salmon. Reviews in Fisheries Science 4(4): 289-337.
- Bue, B. G., S. Sharr, S. D. Moffitt and A. K. Craig. 1996. Effects of the Exxon Valdez oil spill on pink salmon embryos and preemergent fry. Pages 619-627 in S.D. Rice, R.B. Spies, D.A. Wolfe, and B.A. Wright, eds. Proceedings of the Exxon Valdez Oil Spill Symposium. American Fisheries Society, Anchorage.
- Bue, B., S.M. Fried, S. Sharr, D.G. Sharp, J.A. Wilcock, and H.J. Geiger. 1998a. Estimating salmon escapement using area-under-the curve, aerial observer efficiency, and stream-life estimates: the Prince William Sound example. N. Pac. Anadr. Fish Comm. Bull. 1: 240-250.
- Bue, B. G., S. Sharr, J.E. Seeb. 1998b. Evidence of damage to pink salmon populations inhabiting Prince William Sound, Alaska, two generations after the *Exxon Valdez* oil spill. Transactions of the American Fisheries Society 127; 35-43.
- Chambers, J. M., W. S. Cleveland, B. Kleiner and P. A. Tukey. 1983. Graphical methods for data analysis. Duxbury Press, Boston, MA.
- Craig, A.K., B.G. Bue, T.M. Willette. 1996. Injury to salmon embryos and preemergent fry in Prince William Sound, *Exxon Valdez* Oil Spill. Restoration Project Annual Report (Restoration Project 95191), Alaska Department of Fish and Game, Division of Commercial Fisheries Management and Development, Anchorage, Alaska.
- Craig, A.K., S. Sharr, and S.D. Moffitt. 1995. A compilation of historical preemergent fry and egg deposition survey data from Prince William Sound, 1961-1995. Alaska Department of Fish and Game, Division of Commercial Fisheries Management and Development, Regional Information Report No. 2A95-49. Juneau, Ak.

- Fried, S.M., B.G. Bue, D. Sharp, and S. Sharr. 1998. Injury to spawning areas and an evaluation of spawning escapement enumeration of pink salmon in Prince William Sound, Alaska. Restoration Project Final Report (Restoration Project No. 9 & 60B), Alaska Department of Fish and Game, Division of Commercial Fisheries Management and Development, Anchorage, Alaska.
- Fukushima, M. and W.M. Smoker. 1997. Determinates of stream life, spawning efficiency, and spawning habitat in pink salmon in the Auke Lake system, Alaska. Canadian Journal of Fisheries and Aquatic Sciences. 54:96-104.
- Geiger, H.J., B.G. Bue, S.Sharr, A.C.Wertheimer, and T.M.Willette. 1996. A life history approach to estimating damage to Prince William Sound Pink Salmon from the *Exxon Valdez* oil spill. Pages 487-498 in S.D. Rice, R.B. Spies, D.A. Wolfe, and B.A. Wright, eds. Proceedings of the *Exxon Valdez* Oil Spill Symposium. American Fisheries Society, Anchorage.
- Gharrett, A.J., and W.W. Smoker. 1991. Two generations of hybrids between even- and odd-year pink salmon (*Onchorhynchus gorbuscha*): A test for outbreeding depression? Canadian Journal of Fisheries and Aquatic Sciences, 48:1744-1749
- Heard, W.R. 1991. Life history of the pink salmon (*Onchorynchus gorbuscha*). In Pacific salmon life histories. C. Groot and L. Margolis (eds.). Univ. of British Columbia Press, Vancouver, B.C., pp. 119-230.
- Heintz, R.A., J.W. Short and S.D. Rice. 1999. Sensitivity of fish embryos to weathered crude oil: Part II. Incubating downstream from weathered *Exxon Valdez* crude oil caused increased mortality of pink salmon (*Onchorynchus gorbuscha*) embryos. Environmental Toxicology and Chemistry 18(3):494-503.
- Helle, J. H., R. S. Williamson, and J. E. Bailey. 1964. Intertidal ecology and life history of pink salmon at Olsen Creek, Prince William Sound, Alaska. U.S. Fish and Wildlife Service, Special Scientific Report--Fisheries No. 483. Washington, D.C..
- Jensen, J.O.T. and D.F. Alderice. 1983. Changes in mechanical shock sensitivity of coho salmon (*Onchorynchus kisutch*) egg during incubation. Aquaculture, 32:303-312
- Joyce, T.L. and D.G. Evans. 1999. Otolith marking of pink salmon in Prince William Sound Hatcheries. Restoration Project Final Report (Restoration Project No. 99188), Alaska Department of Fish and Game, Division of Commercial Fisheries Management and Development, Anchorage, Alaska.
- Longwell, A.C. 1977. A genetic look at fish eggs and oil. Oceanus 20(4):46-58.
- Malkin, D. 1994. Germline p53 mutations and heritable cancer. Annual Reviews in Genetics 28:443-465.

- McBee, K., and J.W. Bickham. 1988. Petrochemical-related DNA damage in wild rodents detected by flow cytometry. Bull Environ Contam Toxicol 40:343-349
- McNeil, W.J. 1968. Migration and distribution of pink salmon spawners in Sashin Creek in 1965, and survival of their progeny. Fishery Bulletin: Vol. 66, No. 3.
- Middleton, K., M. Fink, K. Sundet, and M. Kuwada. 1992. Alaska Department of Fish and Game *Exxon Valdez* oil spill response operations report – Habitat Division, 1989-1992. Alaska Department of Fish and Game, Habitat Division, Juneau.
- Mironov, O. G. 1969. The development of some Black Sea fishes in seawater polluted by petroleum products. Probl. Ichthyol. 9(6):1136-1139
- Moles, A., M.M. Babcock, and S.D. Rice. 1987. Effects of oil exposure on pink salmon, *O. gorbuscha*, alevins in a simulated Intertidal Environment. Marine Environmental Research 21:49-58.
- Murphy, M.L., R.A. Heintz, J.W. Short, M.L. Larsen, and S.D. Rice. 1999. Recovery of pink salmon spawning areas after the *Exxon Valdez* oil spill. Transactions of the American Fisheries Society 128: 909-918.
- Neff, J.M., E.H. Owens, S.W. Stoker, and D.M. McCormick. 1995. Shoreline conditions in Prince William Sound following the *Exxon Valdez* oil spill. Pages 312-346. *In* P.G. Wells, J.N. Butler, and J.S. Hughes, eds. *Exxon Valdez* oil spill: fate and effects in Alaskan waters. American Society for Testing and Materials, Publication STP 1219, Philadelphia, Pennsylvania.
- Neter, J., W. Wasserman, and M. H. Kutner. 1990. Applied Linear Statistical Models -Third Edition. Irwin. Homewood, Illinois.
- Noerenberg, W.H. 1980. Biological planning document: Port San Juan and Esther salmon hatcheries Prince William Sound, Alaska. Prince William Sound Aquaculture Corporation, Cordova, AK.
- Rice, S.D., D.A. Moles, and J.W. Short. 1975. The effect of Prudhoe Bay crude oil on survival and growth of eggs, alevins, and fry of pink salmon, *Oncorhynchus gorbuscha*. Pages 503-507 *in* Proceedings of the 1975 Conference on Prevention and Control of Oil Pollution, San Francisco, Ca. American Petroleum Institute. Washington, D.C.
- SAS Institute Inc. 1998. SAS/STAT[™] User's Guide, Release 6.03 Edition. SAS Institute Inc. Cary, N.C.
- Seeb, J.E., C. Habicht, B.A. Greene, E.J. Kretschmer, J.B. Olsen, D.G. Evans. 1996. Laboratory examination of oil related embryo mortalities that persist in pink salmon in Prince William Sound, Alaska. Restoration Project Annual Report (Restoration Project

95191a-2), Alaska Department of Fish and Game, Division of Commercial Fisheries Management and Development, Anchorage, Alaska.

- Sharr, S., B.G. Bue, S. D. Moffitt, and A.K. Craig. 1994a. Injury to salmon eggs and preemergent fry in Prince William Sound - Fish/Shellfish study 2. Alaska Department of Fish and Game, Division of Commercial Fisheries Management and Development, Regional Information Report No. 2A94-52, Anchorage.
- Sharr, S., J.E. Seeb, B.G. Bue, S. D. Moffitt, A.K. Craig, and G.D. Miller. 1994b. Injury to salmon eggs and preemergent fry in Prince William Sound - Restoration study Number R60C. Alaska Department of Fish and Game, Division of Commercial Fisheries Management and Development, Regional Information Report No. 2A94-50, Anchorage.
- Sharr, S., J.E. Seeb, B.G. Bue, S. D. Moffitt, A.K. Craig, and G.D. Miller. 1994c. Injury to salmon eggs and preemergent fry in Prince William Sound - Restoration study Number 93003. Alaska Department of Fish and Game, Division of Commercial Fisheries Management and Development, Regional Information Report No. 2A94-51, Anchorage.
- Smirnov, A.I. 1976. The biology, reproduction and development of the Pacific salmon. Fisheries and Marine Service Translation Series No. 3861. Pacific Biological Station, Nanaimo, B.C.
- Smoker, W. W., A. J. Gharrett, and M.S. Stekoll. 1998. Genetic variation of return date in a population of pink salmon: a consequence of fluctuating environment and dispersive selection? Alaska Fishery Research Bulletin 5(1):46-54. 1998.
- Snedecor, G.W. and W.G. Cochran. 1989. Statistical Methods (Eighth Edition) Iowa State University Press, Ames, Iowa.
- Sokal, R.R., and F.J. Rohlf. 1969. Biometry. W.H. Freeman and Company. San Francisco, Ca.
- Thomas, P., and L. Budiantara. 1995. Reproductive life history stages sensitive to oil and naphtalene in Atlantic croaker. Marine Environmental Research 39:147-150
- Trustcott, B., J.M. Walsh, M.P. Burton, J.F. Payne, D.R. Idler. 1983. Effect of acute exposure to crude petroleum on some reproductive hormones in salmon and flounder. Comparitive Biochemistry Physiology 75C(1):121-130.
- Wolfe, D.A., M.J. Hameedi, J.A. Galt, G. Watabayashi, J. Short, C. O'Clair, S. Rice, J. Michel, J.R. Payne, J. Braddock, S. Hanna, and D. Sale. 1994. The fate of the oil spilled from the *Exxon Valdez*. Environmental Science and Technology 28:561A-568A.

Appendix A. Summary of pink and chum salmon egg dig data from Prince William Sound, 1989-1997.

					Embry	/05	Fry		
Stream Stream # Name	Oil Status	Date	Height in Tidal Zone(m)	Location	Dead	Live	Dead	Live	No. of Samples
480 Mink Creek	1	27-Sep-8	39 2.13	20	71	1169	1	0	14
	-	27-Sep-8		30	160	1138	0	0	14
		28-Sep-8		40	98	2597	ů 0	1	14
		28-Sep-8		60	85	1311	ů 0	2	14
485 W. Finger Creek	1	28-Sep-8	39 2.13	20	0	0	0	0	14
		28-Sep-8	39 2.74	30	52	656	0	0	14
		28-Sep-8	39 3.35	40	13	3026	0	0	14
		28-Sep-8	6.1	60	65	2772	0	5	14
498 McClure Creek	1	29-Sep-8	39 2.13	20	317	1355	0	1	14
		28-Sep-8	39 2.74	30	484	3119	0	1	14
		28-Sep-8	39 3.35	40	843	6625	0	210	14
		28-Sep-8	6.1	60	61	1174	0	0	14
506 Loomis Creek	2	30-Sep-8	39 2.13	20	1094	2369	0	2	14
		30-Sep-8	39 2.74	30	2474	2929	0	0	14
		30-Sep-8	39 3.35	40	1591	7250	0	0	14
		30-Sep-8	6.1	60	360	1688	0	0	7
604 Erb Creek	1	02-Oct-8	39 2.13	20	57	999	0	18	14
	•	02-Oct-8		30	83	1181	0	0	14
		02-Oct-8		40	842	2407	0	18	14
		02-Oct-8		60	164	1876	0	95	14

					Embry	/OS	Fry		
tream Stream # Name	Oil Status	Date	Height in Iidal Zone(m)	Location	Dead	Live	Dead	Live	No. of Samples
618 Junction Creek	2	02-Oct-8	9 2.13	20	422	1507	0	0	1
		02-Oct-8	9 2.74	30	274	1669	0	0	1
		02-Oct-8	9 3.35	40	305	1266	0	0	1
		30-Sep-8	9 6.1	60	78	946	0	0	1
621 Totemoff Creek	1	02-Oct-8	9 2.13	20	126	140	0	2	1
		02-Oct-8	9 2.74	30	242	2136	0	16	1
		02-Oct-8	9 3.35	40	828	2732	0	176	1
		02-Oct-8	9 6.1	60	432	788	0	3	1
623 Brizgaloff Creek	1	03-Oct-89	9 2.13	20	13	507	0	1	1
		03-Oct-8	9 2.74	30	47	1960	0	0	1
		03-Oct-8	3.35	40	1083	2760	0	191	1
		03-Oct-89	9 6.1	60	1567	4335	0	59	1
628 Chenega NE	2	30-Sep-89	9 2.13	20	468	1898	0	0	1
		30-Sep-8	2.74	30	516	1687	0	1	1
		30-Sep-89	3.35	40	544	2814	0	0	1
		30-Sep-89	9 6.1	43 and 63	1509	7264	0	50	2
630 Bainbridge Creek	1	03-Oct-89	9 2.13	20	1	206	0	0	1
		03-Oct-89	2.74	30	180	973	0	1	1
		03-Oct-89	3.35	40	159	3469	0	184	1
		03-Oct-89	9 6.1	60	725	5215	0	18	1-

					Embry	/OS	Fry		
Stream Stream # Name	Oil Status	Date	Height in Fidal Zone(m)	Location	Dead	Live	Dead	Live	No. of Samples
632 Claw Creek	1	04-Oct-89	2.13	20	10	294	0	0	1
		04-Oct-89	9 2.74	30 and 33	58	430	0	0	
		03-Oct-89	3.35	40	146	6993	0	16]
		03-Oct-89	9 6.1	60	67	1914	0	0	1
637 Pt. Countess	2	04-Oct-89	9 2.13	20	1814	1429	0	0	
		04-Oct-89	9 2.74	30	170	1828	0	0	
		04-Oct-89	9 3.35	41 and 42	762	4542	0	0	
		04-Oct-89	9 6.1	61 and 62	457	3491	0	0	
653 Hogg Creek	1	26-Oct-89	9 2.13	20	10	1783	0	0	
		05-Oct-89	2.74	31 and 32	36	1103	0	0	
		04-Oct-89	3.35	40	20	2153	9	0	
		04-Oct-89	9 6.1	60	68	1952	0	4	
656 Halverson Creek	1	05-Oct-89	9 2.13	20	75	373	0	0	
		05-Oct-89	2.74	30	737	1973	0	3	
		05-Oct-89	3.35	40	600	3731	0	26	
		05-Oct-89	9 6.1	60	296	5459	0	180	
663 Shelter Bay	2	09-Oct-89	2.13	20	19	771	0	0	
		09-Oct-89	2.74	30 and 33	93	1113	0	0	
		05-Oct-89	3.35	40	1128	4315	0	0	
		05-Oct-89	9 6.1	60	250	2149	0	0	

					Embry	⁄OS	F r y		
Stream Stream # Name	Oil Status	Date	Height in Tidal Zone(m)	- Location	Dead	Live	Dead	Live	No. of Samples
665 Bjorne Creek	2	10-Oct-8	2.13	20	408	2359	0	0	14
		09-Oct-8	39 2.74	30	1147	3940	0	0	14
		10-Oct-8	39 3.35	41 and 42	481	1197	0	0	14
		10-Oct-8	6.1	60	554	4971	0	0	14
666 O'Brien Creek	1	10-Oct-8	9 2.13	20 and 23	258	1365	0	0	26
		10-Oct-8	9 2.74	30	175	2655	0	0	14
		11-Oct-8	39 3.35	40	223	3529	0	1	14
		11-Oct-8	6.1	60 and 63	423	1805	0	0	14
673 Falls Creek	1	10-Oct-8	9 2.13	21 and 22	56	1144	0	1	22
		10-Oct-8	9 2.74	30	53	2089	0	31	14
		10-Oct-8	9 3.35	40	80	1345	0	10	14
		10-Oct-8	9 6.1	60	29	1757	0	1	14
677 Hayden Creek	2	10-Oct-8	9 2.13	21 and 22	178	1928	0	1	14
		09-Oct-8	9 2.74	31 and 32	115	1461	0	7	14
		09-Oct-8	9 3.35	41 and 42	110	360	0	0	14
		09-Oct-8	9 6.1	61 and 62	30	161	0	0	14
678 Sleepy Bay	2	09-Oct-8	9 2.13	20	13	381	0	0	12
		09-Oct-8	9 2.74	30	111	956	0	0	12
		09-Oct-8	9 3.35	40	231	1770	0	0	12
		08-Oct-8	9 6.1	60	316	901	0	0	14

Appendix A. Continued (page 37 of 79).

.

					Embry	/OS	Fry		
tream Stream # Name	Oil Status	Date 7	Height in Fidal Zone(n) Location	Dead	Live	Dead	Live	No. of Samples
681 Hogan Bay	1	11-Oct-89		20	186	2178	0	0	14
		11-Oct-89		31 and 32	573	3720	0	0	14
		11-Oct-89		40	960	8167	0	1	14
		11-Oct-89	9 6.1	60	93	1290	0	1	14
682 Snug Harbor	2	11-Oct-89	9 2.13	20	350	1644	0	0	12
C		12-Oct-89	9 2.74	30	1000	2658	0	31	14
		12-Oct-89	9 3.35	40	477	4582	0	27	14
		12-Oct-89	9 6.1	60	134	1000	0	8	14
692 Herring Bay	2	29-Sep-89	9 2.13	20	286	1887	0	0	14
		29-Sep-89	9 2.74	30	1163	2619	0	0	14
		29-Sep-89		40	718	5044	0	0	14
		29-Sep-89	9 6.1	60	301	3841	0	0	14
695 Port Audrey	1	01-Oct-89	9 2.13	21 and 22	110	2246	0	21	14
		01-Oct-89	9 2.74	31 and 32	297	2094	0	0	14
		01-Oct-89	9 3.35	40	1015	3821	0	5	14
		01-Oct-89	9 6.1	60	94	1669	0	0	14
699 Cathead Bay	1	01-Oct-89	9 2.13	20	137	814	0	0	14
_		01-Oct-89	9 2.74	30	88	691	2	0	14
		01-Oct-89	9 3.35	40	118	999	0	0	14
		01-Oct-89	9 6.1	60	59	737	0	0	14

			· · · · · · · · · · · · · · · · · · ·			Embry	/OS	Fry		
	Stream Name	Oil Status	Date	Height in Tidal Zone(m) Location	Dead	Live	Dead	Live	No. of Sample
480 M	link Creek	1	25-Sep-9	2.13	20	1441	3886	0	0	
			25-Sep-9	0 2.74	30	450	3033	0	18	
			25-Sep-9	3.35	40	417	1979	0	70	
			26-Sep-9	6.1	60	350	3595	0	7	
485 W	V. Finger Creek	1	26-Sep-9	2.13	20	89	1694	0	0	
	-		26-Sep-9	00 2.74	30	138	3827	0	158	
			26-Sep-9	00 3.35	40	302	4131	0	14	
			26-Sep-9	6.1	60	710	2588	0	16	
498 M	IcClure Creek	1	25-Sep-9	0 2.13	20	1769	1937	0	0	
			25-Sep-9	2.74	30	3396	3460	0	7	
			25-Sep-9	3.35	40	3480	5665	0	28	
			25-Sep-9	6.1	60	469	2702	0	0	
506 L	oomis Creek	2	30-Sep-9	00 2.13	20	1245	3377	0	0	
			30-Sep-9	0 2.74	30	4348	2627	0	1	
			30-Sep-9	3.35	40	3283	1350	0	0	
			30-Sep-9	6.1	60	1914	2487	0	0	
604 Ei	rb Creek	1	02-Oct-9	00 2.13	20 and 23	461	1670	0	9	
			28-Sep-9	0 2.74	30	2884	3930	0	1	
			27-Sep-9	00 3.35	40	845	1662	0	2	
			27-Sep-9	6.1	60	119	1302	0	1	

					Embry	/OS	Fry		
Stream Stream # Name	Oil Status	Date	Height in Tidal Zone(m)	- Location	Dead	Live	Dead	Live	No. of Samples
618 Junction Creek	2	01-Oct-9	2.13	20	267	2268	0	0	12
		28-Sep-9	2.74	30	151	1446	0	0	12
		28-Sep-9	3.35	40	1539	974	0	0	12
		28-Sep-9	6.1	60	452	495	0	0	12
621 Totemoff Creek	1	02-Oct-9	2.13	20	3195	3843	52	16	14
		28-Sep-9	2.74	30	406	2494	0	7	14
		28-Sep-9	3.35	40	595	2673	0	290	14
		28-Sep-9	6.1	60	39	423	1	0	14
623 Brizgaloff Creek	1	02-Oct-9	00 2.13	20	1855	4747	0	1	14
		27-Sep-9	0 2.74	30	1749	1694	0	0	14
		27-Sep-9	0 3.35	40	2585	4331	0	0	14
		02-Oct-9	6.1	60	3301	4220	0	76	14
628 Chenega NE	2	01-Oct-9	00 2.13	20	169	276	0	0	14
		29-Sep-9	2.74	30	969	5465	0	0	14
		29-Sep-9	00 3.35	40	1507	2066	0	0	14
		01-Oct-9	6.1	60	989	7325	0	0	14
630 Bainbridge Creek	1	14-Oct-9	00 2.13	20	164	17	0	0	14
		14-Oct-9	00 2.74	30	780	3342	13	342	14
		14-Oct-9	00 3.35	40	622	8727	12	798	14
		14-Oct-9	0 6.1	60	817	7867	22	571	14

					Embry	/OS	Fry		
tream Stream # Name	Oil Status	Date	Height in Tidal Zone(m)	Location	Dead	Live	Dead	Live	No. of Sample
632 Claw Creek	1	14-Oct-9	0 2.13	20	67	1665	0	261	
		14-Oct-9	0 2.74	30	263	4038	0	248	
		14-Oct-9	0 3.35	40	260	7164	0	639	
		14-Oct-9	0 6.1	60	0	0	0	1	
637 Pt. Countess	2	03-Oct-9	0 2.13	20	1793	3324	0	0	
		03-Oct-9	0 2.74	30	1400	4349	0	37	
		03-Oct-9	0 3.35	41	1777	3321	0	8	
		03-Oct-9	0 6.1	61 and 62	619	2800	0	7	
653 Hogg Creek	1	15-Oct-9	0 2.13	20	132	2044	0	185	
		15-Oct-9	0 2.74	31 and 32	35	847	0	2	
		15-Oct-9	0 3.35	40	35	2553	0	299	
		15-Oct-9	0 6.1	60	517	1795	0	14	
656 Halverson Creek	1	15-Oct-9	0 2.13	20	100	774	0	75	
		15-Oct-9	0 2.74	30	223	1473	0	1467	
		15-Oct-9	0 3.35	40	590	5282	0	659	
		15-Oct-9	0 6.1	60	1282	4639	0	879	
663 Shelter Bay	2	13-Oct-9	0 2.13	20	81	1223	0	0	
		13-Oct-9	0 2.74	30	291	2287	0	0	
		13-Oct-9		40	629	3597	0	0	
		13-Oct-9	0 6.1	60	148	1026	0	0	

					Embry	/OS	Fry		
Stream Stream # Name	Oil Status	Date	Height in Tidal Zone(m)) Location	Dead	Live	Dead	Live	No. of Samples
665 Bjorne Creek	2	04-Oct-9	00 2.13	20	697	1255	0	0	1
		04-Oct-9	0 2.74	30	1957	2038	0	0	1
		04-Oct-9	0 3.35	40	1820	1718	0	16	1
		04-Oct-9	6.1	60	1357	2271	0	0	1
666 O'Brien Creek	1	11-Oct-9	0 2.13	20	177	1275	0	0	1
		11-Oct-9	0 2.74	30	88	1239	0	4	1
		11-Oct-9	0 3.35	40	675	3579	0	118	1
		11-Oct-9	6.1	60	645	1607	0	1	1
673 Falls Creek	1	12-Oct-9	0 2.13	20	57	1299	0	183	1
		12-Oct-9	0 2.74	30	204	4995	0	1399	1
		12-Oct-9	0 3.35	40	98	843	0	85	1
		12-Oct-9	6.1	60	63	489	0	122	1
677 Hayden Creek	2	12-Oct-9	0 2.13	21 and 22	76	440	0	47	1
		12-Oct-9	0 2.74	31 and 32	337	3174	0	347	1
		12-Oct-9	0 3.35	41	293	1049	0	0	
		12-Oct-9	6.1	61 and 62	461	1450	0	61	1
678 Sleepy Bay	2	03-Oct-9	0 2.13	20	37	462	0	0	1
		03-Oct-9	0 2.74	30	117	141	0	0	1
		03-Oct-9	0 3.35	40	574	433	0	0	1
		03-Oct-9	6.1	60	131	827	0	0	1

					Embry	/OS	Fry		
Stream Stream # Name	Oil Status	Date	Height in Tidal Zone(m)) Location	Dead	Live	Dead	Live	No. of Samples
681 Hogan Bay	1	16-Oct-9	0 2.13	20	60	201	0	1	1
		13-Oct-9	0 2.74	30	33	9	0	0	1
		13-Oct-9	0 3.35	40	207	1303	0	7	1
		13-Oct-9	6.1	60	159	1489	0	10	1
682 Snug Harbor	2	16-Oct-9	0 2.13	20	1218	1438	0	234	1
		16-Oct-9	0 2.74	30	2208	2908	0	63	1
		16-Oct-9	0 3.35	40	1289	5018	0	894	
		16-Oct-9	6.1	60	616	4667	3	1042	
692 Herring Bay	2	30-Sep-9	0 2.13	20	394	954	0	0	1
		30-Sep-9	0 2.74	30	629	1563	0	1	1
		30-Sep-9	0 3.35	40	1089	3150	0	0	1
		30-Sep-9	0 6.1	60	564	1796	0	0]
695 Port Audrey	1	29-Sep-9	0 2.13	21 and 22	202	1653	4	30	1
		29-Sep-9	0 2.74	30	1863	2279	0	6	1
		29-Sep-9	0 3.35	40	908	1578	0	14	1
		29-Sep-9	0 6.1	60	490	2434	1	9	1
699 Cathead Bay	1	01-Oct-9		20	381	3043	0	39	1
		01-Oct-9		30	153	3160	0	3	1
		01-Oct-9		40	183	2071	0	0	1
		01-Oct-9	0 6.1	60	156	2437	0	0	1

					·····	Embry	/OS	Fry		
	Stream Name	Oil Status	Date	Height in Tidal Zone(m)	Location	Dead	Live	Dead	Live	No. of Samples
480 N	/link Creek	1	09-Oct-9	2.13	20	46	726	0	0	1
			09-Oct-9	01 2.74	30	126	1880	0	2	
			09-Oct-9	3.35	41 and 42	203	1852	3	201	
			09-Oct-9	6.1	60	60	2291	0	0	
485 V	V. Finger Creek	1	08-Oct-9	01 2.13	20	0	15	0	0	
			08-Oct-9	01 2.74	30	172	5346	0	1	
			08-Oct-9	3.35	40	94	5546	3	10	
			08-Oct-9	6.1	60	126	3855	0	1	
498 N	IcClure Creek	1	08-Oct-9	2.13	20	402	1452	0	0	
			08-Oct-9	01 2.74	30	813	4375	0	3	
			08-Oct-9	3.35	40	681	4695	0	193	
			08-Oct-9	6.1	60	3238	5242	0	1	
506 L	oomis Creek	2	09-Oct-9	2.13	20	520	830	0	0	
			09-Oct-9	01 2.74	30	1299	2064	0	0	
			09-Oct-9	3.35	40	2300	2150	0	0	
			09-Oct-9	6.1	60	557	1978	0	1	
604 E	rb Creek	1	10-Oct-9		20	222	3641	0	31	
			10-Oct-9		30	1825	6606	0	1	
			10-Oct-9		40	167	2633	0	0	
			10-Oct-9	6.1	60	252	3688	0	0	

		, <u>.</u>			Embry	'OS	Fry		
tream Stream # Name	Oil Status	Date	Height in Tidal Zone(m)	Location	Dead	Live	Dead	Live	No. of Sample
618 Junction Creek	2	01-Oct-9	2.13	20	28	9	0	0	
		01-Oct-9	01 2.74	30	486	690	0	0	
		01-Oct-9	3.35	40	822	1855	0	0	
		01-Oct-9	6.1	60	189	499	0	0	
621 Totemoff Creek	1	10-Oct-9	2.13	20	3892	4286	0	1	
		10-Oct-9	2.74	30	885	2166	0	2	
		10-Oct-9	3.35	40	2065	5026	4	451	
		10-Oct-9	6.1	60	648	4406	0	154	
623 Brizgaloff Creek	1	11-Oct-9	2.13	20	797	608	0	0	
		11-Oct-9	2.74	30	820	2824	0	0	
		11-Oct-9	3.35	40	1926	3119	0	0	
		11-Oct-9	6.1	60	2682	9093	0	56	
628 Chenega NE	2	01-Oct-9	2.13	20	437	1169	0	1	
		01-Oct-9	1 2.74	30	907	3979	0	0	
		01-Oct-9	3.35	40	1087	3910	0	4	
		30-Sep-9	6.1	60	1059	6564	0	0	
630 Bainbridge Creek	1	11-Oct-9	1 2.13	20	773	1010	0	0	
		11-Oct-9	1 2.74	30	1632	4896	0	0	
		11-Oct-9	1 3.35	40	1440	8924	0	210	
		11-Oct-9	1 6.1	60	1931	6384	0	125	

					Embry	/OS	Fry		
tream Stream # Name	Oil Status	Date	Height in Tidal Zone(m)	- Location	Dead	Live	Dead	Live	No. of Samples
632 Claw Creek	1	30-Sep-9	1 2.13	20	301	2600	0	0	
		30-Sep-9	1 2.74	30	117	2145	0	0	
		30-Sep-9	1 3.35	40	497	6728	0	0	
		11-Oct-9	1 6.1	60	17	438	0	0	
637 Pt. Countess	2	30-Sep-9	1 2.13	20	975	1143	0	0	
		30-Sep-9	1 2.74	30	757	2619	0	0	
		29-Sep-9	1 3.35	41 and 42	718	1892	0	0	
		29-Sep-9	1 6.1	61 and 62	519	2281	0	0	
653 Hogg Creek	1	12-Oct-9	1 2.13	20	702	4657	0	0	
		28-Sep-9	1 2.74	31 and 32	128	491	0	0	
		28-Sep-9	1 3.35	40	321	4439	0	0	
		28-Sep-9	1 6.1	60	546	3876	0	0	
656 Halverson Creek	1	30-Sep-9	1 2.13	20	91	2726	0	0	
		29-Sep-9	1 2.74	30	518	886	0	0	
		29-Sep-9	1 3.35	40	1383	2360	0	0	
		29-Sep-9	1 6.1	60	858	4405	0	0	
663 Shelter Bay	2	27-Sep-9	1 2.13	20	10	6	0	0	
		27-Sep-9	1 2.74	30	474	155	0	0	
		27-Sep-9	1 3.35	40	3528	1941	0	0	
		27-Sep-9	1 6.1	60	718	957	0	0	

					Embry	/OS	Fry		
tream Stream # Name	Oil Status	Date	Height in Tidal Zone(m)	Location	Dead	Live	Dead	Live	No. of Sample
665 Bjorne Creek	2	27-Sep-9	2.13	20	316	116	0	0	
		27-Sep-9	2.74	30	1610	188	0	0	
		27-Sep-9	3.35	40	2738	941	0	0	
		27-Sep-9	6.1	60	3942	2060	0	0	
666 O'Brien Creek	1	28-Sep-9	2.13	20	145	51	0	0	
		28-Sep-9	01 2.74	30	508	451	0	0	
		28-Sep-9	3.35	40	272	960	0	0	
		28-Sep-9	6.1	60	1037	2395	0	0	
673 Falls Creek	1	28-Sep-9	2.13	20	918	3417	0	0	
		28-Sep-9	2.74	30	1967	4095	0	0	
		28-Sep-9	3.35	40	1810	6742	0	0	
		28-Sep-9	6.1	60	1254	5683	0	0	
677 Hayden Creek	2	12-Oct-9	2.13	21 and 22	468	3365	0	14	
		12-Oct-9	2.74	31 and 32	722	2842	0	2	
		12-Oct-9	3.35	41 and 42	906	2927	0	0	
		12-Oct-9	6.1	61 and 62	952	2438	0	0	
678 Sleepy Bay	2	25-Sep-9	2.13	20	199	182	0	0	
		25-Sep-9	2.74	30	1264	1245	0	0	
		25-Sep-9		40	1335	688	0	0	
		25-Sep-9	6.1	60	1510	1027	0	0	

		· · · · · · · · · · · · · · · · · · ·	- '		Embry	/OS	Fry		
Stream Stream # Name	Oil Status	Date	Height in Tidal Zone(m)	Location	Dead	Live	Dead	Live	No. of Samples
681 Hogan Bay	1	27-Sep-9	2.13	20	925	877	0	0	1
		27-Sep-9	2.74	30	1091	994	0	0	1
		27-Sep-9	3.35	40	3367	4681	0	0	1
		27-Sep-9	6.1	60	1340	1356	0	0	1
682 Snug Harbor	2	26-Sep-9	2.13	20	1957	1073	0	5	
		26-Sep-9	2.74	30	3663	3049	0	0	
		26-Sep-9	3.35	40	1677	1357	0	0	
		26-Sep-9	6.1	60	5256	3624	0	0	
692 Herring Bay	2	07-Oct-9	2.13	20	1039	1864	0	0	
		07-Oct-9	2.74	30	2336	3971	0	0	
		07-Oct-9	3.35	40	1084	3445	0	0	
		07-Oct-9	6.1	60	748	3081	0	0	
695 Port Audrey	1	02-Oct-9	2.13	20	286	1866	0	3	
		02-Oct-9	1 2.74	31 and 32	419	1579	0	0	
		02-Oct-9	1 3.35	40	250	1620	0	7	
		02-Oct-9	1 6.1	60	170	1719	0	0	
699 Cathead Bay	1	02-Oct-9	1 2.13	20	1781	2750	0	0	
		02-Oct-9		30	584	2226	0	0	
		01-Oct-9		40	654	1719	0	0	
		01-Oct-9	1 6.1	60	679	2744	0	0	1

Appendix A. Continued (page 48 of 79).

					Embry	/OS	Fry		
tream Stream # Name	Oil Status	Date	Height in Tidal Zone(m)	Location	Dead	Live	Dead	Live	No. of Sample
480 Mink Creek	1	22-Sep-9	2 2.13	20	126	1568	0	0	
		22-Sep-9	2 2.74	30	807	3767	0	2	
		22-Sep-9	2 3.35	41 and 42	590	2978	0	0	
		22-Sep-9	2 6.1	60	146	1242	0	0	
485 W. Finger Creek	1	22-Sep-9	2 2.13	20	37	1106	0	0	
		22-Sep-9	2 2.74	30	162	1073	0	0	
		22-Sep-9	2 3.35	40	707	3447	0	0	
		22-Sep-9	2 6.1	60	717	2489	0	0	
498 McClure Creek	1	22-Sep-9	2 2.13	20	185	1237	0	0	
		22-Sep-9	2 2.74	30	249	1384	0	0	
		22-Sep-9	2 3.35	40	1393	4460	0	2	
		22-Sep-9	2 6.1	60	263	3500	0	0	
506 Loomis Creek	2	24-Sep-9	2 2.13	20	1419	2873	0	0	
		24-Sep-9	2 2.74	30	1514	2061	0	0	
		24-Sep-9	2 3.35	40	3463	1732	0	0	
		24-Sep-9	2 6.1	60	3760	1121	0	0	
604 Erb Creek	1	27-Sep-9	2 2.13	20	528	3973	0	0	
		27-Sep-9	2 2.74	30	773	4101	0	1	
		27-Sep-9	2 3.35	40	832	2195	0	0	
		27-Sep-9	2 6.1	60	46	104	0	0	

					Embry	/OS	Fry		
tream Stream # Name	Oil Status	Date	Height in Fidal Zone(m)	- Location	Dead	Live	Dead	Live	No. of Sample
618 Junction Creek	2	23-Sep-9	2 2.13	20	1	0	0	0	
		23-Sep-92	2 2.74	30	11	13	0	0	
		23-Sep-92	2 3.35	40	472	226	0	0	
		23-Sep-9	2 6.1	60	70	147	0	0	
621 Totemoff Creek	1	27-Sep-93	2 2.13	20	904	2698	0	42	
		27-Sep-92	2 2.74	30	70	1686	0	7	
		27-Sep-92	2 3.35	40	364	3553	7	408	
		27-Sep-92	2 6.1	60	701	1090	0	2	
623 Brizgaloff Creek	1	27-Sep-92	2 2.13	20	199	1716	0	0	
		27-Sep-92	2 2.74	30	531	1127	0	0	
		27-Sep-92	2 3.35	40	78	557	0	0	
		27-Sep-92	2 6.1	60	834	3583	0	6	
628 Chenega NE	2	23-Sep-92	2 2.13	20	1319	3067	0	2	
		23-Sep-92	2 2.74	30	1613	3097	0	0	
		23-Sep-92	2 3.35	40	360	1538	0	0	
		23-Sep-92	2 6.1	60	343	2931	0	0	
630 Bainbridge Creek	1	28-Sep-92	2 2.13	20	156	380	0	1	
		28-Sep-92		30	337	2078	0	1	
		28-Sep-92		40	491	5073	0	4	
		28-Sep-92	2 6.1	60	719	6898	0	11	

					Embry	/OS	Fry		
tream Stream # Name	Oil Status	Date	Height in Fidal Zone(m)	Location	Dead	Live	Dead	Live	No. of Sample
632 Claw Creek	1	28-Sep-92	2 2.13	20	117	2100	0	1	
		28-Sep-92	2 2.74	30	1027	1832	0	0	
		28-Sep-92	2 3.35	40	1496	2742	0	0	
		28-Sep-92	2 6.1	60	34	197	0	0	
637 Pt. Countess	2	26-Sep-92	2 2.13	20	1326	1489	0	0	
		26-Sep-92	2 2.74	30	377	3152	0	0	
		26-Sep-92	2 3.35	41 and 42	169	944	0	1	
		26-Sep-92	2 6.1	61 and 62	124	103	0	0	
653 Hogg Creek	1	26-Sep-92	2 2.13	20	82	488	0	0	
		26-Sep-92	2 2.74	31 and 32	15	1	0	0	
		26-Sep-92	2 3.35	40	309	386	0	0	
		26-Sep-92	2 6.1	60	1116	1469	0	0	
656 Halverson Creek	1	26-Sep-92	2 2.13	20	91	1500	0	0	
		26-Sep-92	2 2.74	30	1202	5088	0	0	
		26-Sep-92	2 3.35	40	9299	3145	0	0	
		26-Sep-92	2 6.1	60	1087	1126	0	2	
663 Shelter Bay	2	25-Sep-92	2 2.13	20	99	737	0	0	
		25-Sep-92		30	271	129	0	0	
		25-Sep-92	2 3.35	40	187	1217	0	0	
		25-Sep-92	2 6.1	60	382	536	0	0	

					Embry	/OS	Fry		
Stream Stream # Name	Oil Status	Date	Height in Tidal Zone(m)	Location	Dead	Live	Dead	Live	No. of Samples
665 Bjorne Creek	2	21-Sep-9	2 2.13	20	847	17	0	0	1
		21-Sep-9	2 2.74	30	3233	456	0	0]
		21-Sep-9	3.35	40	2375	1035	0	0	1
		21-Sep-9	6.1	60	2223	512	0	0	1
666 O'Brien Creek	1	25-Sep-9	2 2.13	20	345	286	0	0	
		25-Sep-9	2 2.74	30	365	571	0	0	
		25-Sep-9	3.35	40	134	990	0	0	
		25-Sep-9	6.1	60	610	1398	0	0	
673 Falls Creek	1	25-Sep-9	2 2.13	20	65	1698	0	0	
		25-Sep-9	2 2.74	30	155	208	0	0	
		25-Sep-9	2 3.35	40	47	1632	0	0	1
		25-Sep-9	6.1	60	1581	240	0	0]
677 Hayden Creek	2	21-Sep-9	2 2.13	21 and 22	246	452	0	0	
		21-Sep-9	2 2.74	31 and 32	80	579	0	2	1
		21-Sep-9	2 3.35	41 and 42	422	859	0	0	1
		21-Sep-9	2 6.1	61 and 62	28	85	0	0]
678 Sleepy Bay	2	21-Sep-9	2 2.13	20	449	685	0	0]
		21-Sep-9	2 2.74	30	409	27	0	0	1
		21-Sep-9		40	382	25	0	0	1
		21-Sep-9	2 6.1	60	215	3	0	0	1

					Embry	/OS	Fry		
Stream Stream # Name	Oil Status	Date	Height in Tidal Zone(m)	Location	Dead	Live	Dead	Live	No. of Samples
681 Hogan Bay	1	28-Sep-9	2 2.13	20	347	1805	0	0	1
		28-Sep-9	2 2.74	30	3293	1405	0	0	
		28-Sep-9	2 3.35	40	2237	3910	0	0]
		28-Sep-9	2 6.1	60	972	1848	0	0	1
682 Snug Harbor	2	29-Sep-9	2 2.13	20	1240	2991	0	4	-
-		29-Sep-9		30	1349	4114	0	3	
		29-Sep-9	2 3.35	40	1718	2840	0	1	
		29-Sep-9	2 6.1	60	2138	4482	0	0	
692 Herring Bay	2	23-Sep-9	2 2.13	20	33	356	0	0	
		23-Sep-9	2 2.74	30	108	307	0	0	
		23-Sep-9	2 3.35	40	88	590	0	0	
		23-Sep-9	2 6.1	60	146	314	0	0	
695 Port Audrey	1	24-Sep-9	2 2.13	20	204	1231	0	0	
		24-Sep-9	2 2.74	31 and 32	1181	2226	0	0	
		24-Sep-9	2 3.35	40	934	2840	0	7	:
		24-Sep-9	2 6.1	60	1680	3379	0	0	
699 Cathead Bay	1	24-Sep-9	2 2.13	20	1368	2386	0	0	
		24-Sep-9	2 2.74	30	101	939	0	0]
		24-Sep-9		40	142	1251	0	0	
		24-Sep-92	2 6.1	60	277	3811	0	0	

			·		Embry	/OS	Fry		
Stream Stream # Name	Oil Status	Date	Height in Tidal Zone(m)	Location	Dead	Live	Dead	Live	No. of Samples
480 Mink Creek	1	02-Oct-9	2.13	20	43	1217	0	1]
		02-Oct-9	03 2.74	30	403	3384	0	38	1
		02-Oct-9	3 3.35	40	594	3177	2	532	1
		02-Oct-9	6.1	60	220	3272	0	128	1
485 W. Finger Creek	1	30-Sep-9	2.13	20	0	3	0	0	
		01-Oct-9	3 2.74	30	134	564	0	386	
		01-Oct-9	3 3.35	40	64	424	16	394	
		01-Oct-9	6.1	60	56	2223	0	35	
498 McClure Creek	1	01-Oct-9	2.13	20	99	2366	0	0	-
		01-Oct-9	2.74	30	1246	3439	0	27	
		01-Oct-9	3 3.35	40	1610	7909	6	449	
		01-Oct-9	6.1	60	440	2239	0	0	
506 Loomis Creek	2	02-Oct-9	2.13	20	1748	4451	0	0	:
		02-Oct-9	2.74	30	3371	6075	0	4	1
		02-Oct-9	3 3.35	40	4278	2902	0	0	1
		02-Oct-9	6.1	60	1043	4985	0	0]
604 Erb Creek	1	04-Oct-9	2.13	20 and 23	300	2748	0	0	1
		04-Oct-9	3 2.74	30	42	683	0	0	1
		04-Oct-9	3 3.35	40	547	2747	0	0	1
		04-Oct-9	6.1	60	3	2449	0	47	1

						Embry	OS	Fry		
ream Stream # Name	Oil	l Status	Date	Height in Tidal Zone(m)	Location	Dead	Live	Dead	Live	No. of Samples
618 Junction Cree	ek	2	03-Oct-9	2.13	20	1	1	0	0]
			03-Oct-9	2.74	30	59	166	0	0	
			03-Oct-9	3.35	40	314	2728	0	1	
			03-Oct-9	6.1	60	34	1004	0	0	
621 Totemoff Cre	eek	1	04-Oct-9	03 2.13	20	1570	4888	0	0	
			04-Oct-9	2.74	30	258	2455	0	0	
			04-Oct-9	3.35	40	727	4627	0	0	
			04-Oct-9	6.1	60	606	4309	0	0	
623 Brizgaloff Cr	reek	1	04-Oct-9	2.13	20	194	960	0	0	
			04-Oct-9	2.74	30	316	2725	0	0	
			04-Oct-9	3 3.35	40	475	621	0	1	
			04-Oct-9	6.1	60	721	4545	0	17	
628 Chenega NE		2	03-Oct-9	2.13	20	96	169	0	0	
			03-Oct-9	2.74	30	426	6277	0	0	
			03-Oct-9	3.35	40	660	6856	0	0	
			03-Oct-9	6.1	60	763	6738	0	4	
630 Bainbridge C	Creek	1	14-Oct-9	2.13	20	196	159	0	0	
			14-Oct-9	2.74	30	535	2772	0	165	
			14-Oct-9	3 3.35	40	497	6918	0	1322	
			14-Oct-9	6.1	60	542	4619	0	726	

Appendix A. Continued (page 55 of 79).

					Embry	/OS	Fry		
Stream Stream # Name	Oil Status	Date	Height in Tidal Zone(m)	Location	Dead	Live	Dead	Live	No. of Samples
632 Claw Creek	1	14-Oct-9	2.13	20	44	817	0	3	1
		14-Oct-9	93 2.74	30	27	801	0	213	1
		14-Oct-9	3.35	40	721	6189	0	1498]
		14-Oct-9	93 6.1	60	3	531	0	1	
637 Pt. Countess	2	13-Oct-9	93 2.13	20	1311	4637	0	0	
		14-Oct-9	93 2.74	30	969	4673	0	0	
		14-Oct-9	3 3.35	41 and 42	472	3827	0	0	
		14-Oct-9	6.1	61 and 62	1171	4813	0	0	
653 Hogg Creek	1	13-Oct-9	93 2.13	20	306	2087	0	0	
		13-Oct-9	93 2.74	31 and 32	104	2311	0	0	
		13-Oct-9	3.35	40	221	4160	1	204	
		13-Oct-9	6.1	60	545	3540	0	3	
656 Halverson Creek	1	13-Oct-9	93 2.13	20	95	1675	0	0	
		13-Oct-9	93 2.74	30	5	171	0	3	
		13-Oct-9	3.35	40	215	3438	0	199	
		13-Oct-9	6.1	60	510	5164	0	5	
663 Shelter Bay	2	11-Oct-9	2.13	20	0	1	0	0	
		11-Oct-9	2.74	30	6	13	0	0	
		11-Oct-9	3.35	40	303	924	0	0	
		11-Oct-9	6.1	60	5	19	0	0]

					Embry	/OS	Fry		
Stream Stream # Name	Oil Status	Date	Height in Tidal Zone(m)	n) Location	Dead	Live	Dead	Live	No. of Samples
665 Bjorne Creek	2	11-Oct-9	2.13	20	289	337	0	0	14
		11-Oct-9	03 2.74	30	46	116	0	0	14
		11-Oct-9	3.35	40	479	3121	0	0	14
		11-Oct-9	6.1	60	795	9312	0	0	14
666 O'Brien Creek	1	11-Oct-9	2.13	20	0	0	0	0	14
		11-Oct-9	2.74	30	3	3	0	0	14
		11-Oct-9	3.35	40	238	1134	0	0	14
		11-Oct-9	6.1	60	55	1119	0	0	14
673 Falls Creek	1	12-Oct-9	03 2.13	20	41	634	0	0	14
		12-Oct-9	2.74	30	391	1759	0	0	14
		12-Oct-9	3.35	40	17	167	0	0	14
		12-Oct-9	6.1	60	2	6	0	0	14
677 Hayden Creek	2	11-Oct-9	03 2.13	21 and 22	270	2075	0	0	14
		11-Oct-9	2.74	31 and 32	196	1218	0	0	14
		12-Oct-9	3.35	41 and 42	39	160	0	0	14
		12-Oct-9	6.1	61 and 62	3	30	0	0	14
678 Sleepy Bay	2	11-Oct-9	2.13	20	3	0	0	0	12
		11-Oct-9	2.74	30	46	237	0	0	12
		11-Oct-9	3 3.35	40	39	824	0	0	12
		11-Oct-9	6.1	60	22	199	0	0	12

					Embry	/OS	Fry		
tream Stream # Name	Oil Status	Date	Height in Tidal Zone(m)) Location	Dead	Live	Dead	Live	No. of Samples
681 Hogan Bay	1	08-Oct-9	2.13	20	254	1050	0	0	1
		08-Oct-9	2.74	30	1045	4719	0	0	1
		08-Oct-9	3.35	40	1510	6655	0	0	1
		08-Oct-9	6.1	60	400	2159	0	0	1
682 Snug Harbor	2	08-Oct-9	2.13	20	987	1832	0	0	
		08-Oct-9	2.74	30	1437	4239	0	8	
		06-Oct-9	3 3.35	40	1745	7888	2	79	
		06-Oct-9	6.1	60	2174	11094	0	89	
692 Herring Bay	2	05-Oct-9	2.13	20	189	640	0	0	
		05-Oct-9	2.74	30	1490	3745	0	0	
		05-Oct-9	3.35	40	766	3769	0	0	
		05-Oct-9	6.1	60	836	4685	0	0	
695 Port Audrey	1	06-Oct-9	2.13	21 and 22	311	2006	0	0	
		06-Oct-9	3 2.74	30	1038	5858	0	0	
		06-Oct-9	3 3.35	40	796	3219	0	2	
		05-Oct-9	6.1	60	235	2413	0	0	
699 Cathead Bay	1	06-Oct-9	2.13	20	731	4063	0	0	
		06-Oct-9		30	650	3821	0	0	
		05-Oct-9		40	288	574	0	0]
		05-Oct-9	6.1	60	188	1467	0	0]

					· · · · · · · · · · · · · · · · · · ·	Embry	⁄OS	Fry		
Stream S # N	Stream Name	Oil Status	Date	Height in Tidal Zone(m)	- Location	Dead	Live	Dead	Live	No. of Samples
480 M	link Creek	1	01-Oct-	94 2.13	20	2308	412	0	0	14
			01-Oct-	94 2.74	30	6911	1088	0	0	14
			01-Oct-	94 3.35	40	4748	1781	0	1	14
			01-Oct-	94 6.1	60	2017	3078	1	12	14
485 W	7. Finger Creek	1	30-Sep-	94 2.13	20	1249	1823	0	0	14
			30-Sep-	94 2.74	30	2119	3431	0	0	14
			30-Sep-	94 3.35	40	1320	5531	57	139	14
			30-Sep-	94 6.1	60	5554	9698	27	158	14
498 M	lcClure Creek	1	09-Oct-9	94 2.13	20	4308	286	0	7	14
			30-Sep-9	94 2.74	30	5574	2215	0	1	14
			30-Sep-	94 3.35	40	9267	4531	0	65	14
			30-Sep-9	94 6.1	60	5342	4503	4	192	14
506 La	oomis Creek	2	04-Oct-9	94 2.13	20	1347	239	0	0	14
			04-Oct-9	94 2.74	30	2330	616	0	0	14
			04-Oct-9	94 3.35	40	1915	529	0	0	14
			04-Oct-9	94 6.1	60	3106	921	0	0	14
604 Er	rb Creek	1	03-Oct-9	94 2.13	20	986	1260	0	0	14
			03-Oct-9	94 2.74	30	2455	650	0	0	14
			03-Oct-9	94 3.35	40	735	1318	0	11	14
			03-Oct-9	94 6.1	60	478	829	0	0	14

					Embry	/os	Fry		
tream Stream # Name	Oil Status	Date	Height in Tidal Zone(m)	Location	Dead	Live	Dead	Live	No. of Sample
618 Junction Creek	2	03-Oct-9	2.13	20	1	0	0	0	
		03-Oct-9	4 2.74	30	25	10	0	0	
		03-Oct-9	3.35	40	106	294	0	0	
		03-Oct-9	6.1	60	8	8	0	0	
621 Totemoff Creek	1	02-Oct-9	2.13	20	3771	814	0	0	
		02-Oct-9	2.74	30	977	201	0	0	
		06-Oct-9	4 3.35	40	3277	2254	0	8	
		06-Oct-9	6.1	60	7281	3337	0	28	
623 Brizgaloff Creek	1	02-Oct-9	4 2.13	20	1394	714	0	0	
		02-Oct-9	4 2.74	30	615	918	0	0	
		02-Oct-9	4 3.35	40	962	923	0	0	
		02-Oct-9	6.1	60	2511	1288	0	0	
628 Chenega NE	2	04-Oct-9	4 2.13	20	107	21	0	0	
		04-Oct-9	4 2.74	30	1656	718	0	0	
		04-Oct-9	4 3.35	40	1034	1224	0	0	
		04-Oct-9	6.1	60	360	994	0	1	
630 Bainbridge Creek	1	11-Oct-9		20	1233	4	0	0	
		13-Oct-9		30	6818	1792	0	0	
		13-Oct-9		40	6209	9190	0	55	
		13-Oct-9	4 6.1	60	2629	4814	0	338	

					Embry	/OS	Fry		
tream Stream # Name	Oil Status	Date	Height in Tidal Zone(m)	Location	Dead	Live	Dead	Live	No. of Sample
632 Claw Creek	1	12-Oct-9	4 2.13	20	1644	5469	0	206	
		12-Oct-9	4 2.74	30	766	4122	14	318	
		12-Oct-9	4 3.35	40	2873	8510	0	61	
		12-Oct-9	4 6.1	60	130	379	0	0	
637 Pt. Countess	2	05-Oct-9	4 2.13	20	1442	655	0	0	
		05-Oct-9	4 2.74	30	1748	605	0	0	
		05-Oct-9	4 3.35	41 and 42	1295	137	0	0	
		06-Oct-9	4 6.1	61 and 62	530	623	0	0	
653 Hogg Creek	1	14-Oct-9	4 2.13	20	760	3751	0	434	
		14-Oct-9	4 2.74	31 and 32	56	771	0	0	
		14-Oct-9	4 3.35	40	193	2785	0	355	
		14-Oct-9-	4 6.1	60	187	970	0	41	
656 Halverson Creek	1	13-Oct-9	4 2.13	20	1609	417	0	0	
		13-Oct-94	4 2.74	30	665	407	0	0	
		13-Oct-9-	4 3.35	40	1822	1196	0	0	
		13-Oct-94	4 6.1	60	1622	1653	0	0	
663 Shelter Bay	2	12-Oct-94	4 2.13	20	351	13	0	1	
		12-Oct-94		30	477	330	0	0	
		12-Oct-94		40	432	1137	0	0	
		12-Oct-9-	4 6.1	60	1518	1219	0	0	

					Embry	/OS	Fry		
tream Stream # Name	Oil Status	Date	Height in Fidal Zone(m)	Location	Dead	Live	Dead	Live	No. of Samples
665 Bjorne Creek	2	14-Oct-94	4 2.13	20	176	24	0	0]
-		14-Oct-94	4 2.74	30	168	53	0	0	
		15-Oct-94	4 3.35	40	66	481	0	0	
		15-Oct-94	4 6.1	60	215	1066	0	0	
666 O'Brien Creek	1	15-Oct-94	4 2.13	20	0	0	0	0	
		15-Oct-94	4 2.74	30	168	53	0	0	
		15-Oct-94	4 3.35	40	66	481	0	0	
		15-Oct-94	4 6.1	60	215	1066	0	0	
673 Falls Creek	1	16-Oct-94	4 2.13	20	53	586	0	0	
		16-Oct-94	4 2.74	30	31	149	0	1	
		17-Oct-94	4 3.35	40	418	1182	0	32	
		17-Oct-94	4 6.1	60	157	1127	0	0	
677 Hayden Creek	2	16-Oct-94	4 2.13	21 and 22	91	872	0	0	
		16-Oct-94	4 2.74	31 and 32	198	1517	0	23	
		16-Oct-94	4 3.35	41 and 42	355	893	0	117	
		16-Oct-94	4 6.1	61 and 62	146	262	0	0	
678 Sleepy Bay	2	17-Oct-94	4 2.13	20	217	52	0	0	
		17-Oct-94		30	455	945	0	0	
		17-Oct-94		40	136	542	0	0	
		17-Oct-94	4 6.1	60	99	592	0	0	

					Embry	/OS	Fry		
Stream Stream # Name	Oil Status	Date	Height in Tidal Zone(m)) Location	Dead	Live	Dead	Live	No. of Samples
681 Hogan Bay	1	10-Oct-9	2.13	20	1423	1133	0	2	1
		10-Oct-9	2.74	30	1292	2337	0	16	1
		10-Oct-9	3.35	40	4715	4065	0	54	1
		10-Oct-9	6.1	60	650	1103	0	1]
682 Snug Harbor	2	10-Oct-9	2.13	20	4367	2131	0	20	
		10-Oct-9	2.74	30	5913	2260	0	71	
		10-Oct-9	3.35	40	4090	3331	0	662	
		10-Oct-9	6.1	60	3814	3579	0	393	
692 Herring Bay	2	01-Oct-9	2.13	20	293	597	0	0	-
		01-Oct-9	2.74	30	1496	185	0	0]
		01-Oct-9	3.35	40	2332	1699	0	0	1
		01-Oct-9	6.1	60	815	1434	0	37	1
695 Port Audrey	1	05-Oct-9	2.13	21 and 22	937	429	0	0]
		05-Oct-9	2.74	30	1112	2045	0	6	1
		05-Oct-9	4 3.35	40	1132	899	0	0	1
		05-Oct-9	6.1	60	878	677	0	3	1
699 Cathead Bay	1	04-Oct-9	4 2.13	20	477	16	0	0	1
		04-Oct-9		30	368	356	0	0	1
		04-Oct-9		40	43	1	0	0	1
		05-Oct-9	6.1	60	352	1341	0	101	1

Appendix A. Continued (page 63 of 79).

					Embry	/OS	Fry		
tream Stream # Name	Oil Status	Date	Height in Fidal Zone(m)	Location	Dead	Live	Dead	Live	No. of Sample
480 Mink Creek	1	09-Oct-9	5 2.13	20	5	1	0	0	
		09-Oct-9	5 2.74	30	127	1175	0	0	
		09-Oct-9	5 3.35	40	50	371	0	0	
		09-Oct-9	5 6.1	60	6	3	0	0	
485 W. Finger Creek	1	08-Oct-9	5 2.13	20	5	373	0	0	
		08-Oct-9	5 2.74	30	135	117	0	0	
		08-Oct-9	5 3.35	40	234	3025	0	2	
		08-Oct-9	5 6.1	60	198	4171	0	1	
498 McClure Creek	1	08-Oct-9	5 2.13	20	221	1641	0	0	
		08-Oct-9	5 2.74	30	1190	3543	0	0	
		08-Oct-9	5 3.35	40	762	4581	0	2	
		08-Oct-9	5 6.1	60	284	725	0	0	
506 Loomis Creek	2	10-Oct-9:	5 2.13	20	188	896	0	0	
		10-Oct-9:	5 2.74	30	1500	1866	0	0	
		10-Oct-9:	5 3.35	40	3364	1187	0	0	
		09-Oct-9:	5 6.1	60	622	768	0	0	
604 Erb Creek	1	18-Oct-9:	5 2.13	20 and 23	18	28	0	0	
		18-Oct-9:	5 2.74	30	1	3	0	0	
		18-Oct-9:	5 3.35	40	294	887	0	0	
		18-Oct-93	5 6.1	60	5	38	0	0	

Appendix A. Continued (page 64 of 79).

					Embry	/OS	Fry		
tream Stream # Name	Oil Status	Height in Date Tidal Zone(m)		Location	Dead	Live	Dead	Live	No. of Sample
618 Junction Creek	2	11-Oct-9	2.13	20	3	1	0	0	
		11-Oct-9	95 2.74	30	5	0	0	0	
		10-Oct-9	3.35	40	0	0	0	0	
		10-Oct-9	95 6.1	60	7	24	0	0	
621 Totemoff Creek	1	18-Oct-9	2.13	20	908	148	0	3	
		17-Oct-9	2.74	30	404	894	0	4	
		17-Oct-9	3.35	40	124	179	0	4	
		17-Oct-9	6.1	60	1092	2015	0	180	
623 Brizgaloff Creek	1	18-Oct-9	2.13	20	393	442	0	6	
		17-Oct-9	2.74	30	179	704	0	2	
		17-Oct-9	3.35	40	114	356	0	0	
		17-Oct-9	95 6.1	60	2178	1217	0	3	
628 Chenega NE	2	10-Oct-9	2.13	20	16	15	0	0	
		10-Oct-9	2.74	30	93	246	0	0	
		10-Oct-9	3.35	40	350	3271	0	0	
		10-Oct-9	6.1	60	364	1397	0	0	
630 Bainbridge Creek	1	13-Oct-9	2.13	20	3	2	0	0	
		13-Oct-9	2.74	30	247	457	0	0	
		12-Oct-9	3.35	40	581	1807	0	213	
		12-Oct-9	6.1	60	556	3188	0	8	

					Embry	/05	Fry		
tream Stream # Name	Oil Status	Date	Height in Tidal Zone(m)	Location	Dead	Live	Dead	Live	No. of Samples
632 Claw Creek	1	12-Oct-9	5 2.13	20	6	6	0	0]
		12-Oct-9	5 2.74	30	22	829	0	2	
		12-Oct-9	5 3.35	40	493	3823	0	1	
		12-Oct-9	5 6.1	60	3	221	0	0	
637 Pt. Countess	2	12-Oct-9	5 2.13	20	1643	567	0	0	
		12-Oct-9	5 2.74	30	672	282	0	0	
		12-Oct-9	5 3.35	41 and 42	384	909	0	0	
		12-Oct-9	5 6.1	61 and 62	383	428	0	0	
653 Hogg Creek	1	15-Oct-9	5 2.13	20	5	21	0	0	
		15-Oct-9	5 2.74	31 and 32	5	4	0	0	
		14-Oct-9	5 3.35	40	0	1	0	0	
		14-Oct-9	5 6.1	60	71	486	0	0	
656 Halverson Creek	1	14-Oct-9	5 2.13	20	163	1148	0	0	
		14-Oct-9	5 2.74	30	67	860	0	0	
		14-Oct-9	5 3.35	40	838	2223	0	0	
		14-Oct-9	5 6.1	60	380	2141	0	1	
663 Shelter Bay	2	13-Oct-9	5 2.13	20	19	317	0	0	
		13-Oct-9		30	0	9	0	0	
		13-Oct-9		40	128	489	0	0	
		13-Oct-9	5 6.1	60	164	3281	0	0	

						Embry	/OS	Fry		
Stream Stream # Name		Oil Status	Date	Height in Tidal Zone(m) Location	Dead	Live	Dead	Live	No. of Samples
665 Bjorne C	Creek	2	19-Oct-9	2.13	20	67	327	0	0	1
			19-Oct-9	2.74	30	402	453	0	0	1
			19-Oct-9	3.35	40	316	692	0	0	1
			19-Oct-9	6.1	60	292	1267	0	0]
666 O'Brien	Creek	1	15-Oct-9	2.13	20	1	3	0	0	
			15-Oct-9	2.74	30	11	52	0	0	
			15-Oct-9	3.35	40	29	370	0	0	
			15-Oct-9	6.1	60	140	317	0	0	
673 Falls Cre	eek	1	20-Oct-9	05 2.13	20	181	706	0	0	
			20-Oct-9	2.74	30	18	87	0	0	
			20-Oct-9	3.35	40	27	291	0	85	
			20-Oct-9	95 6.1	60	136	1472	0	0	
677 Hayden	Creek	2	20-Oct-9	2.13	21 and 22	16	458	0	1	
			20-Oct-9	2.74	31 and 32	30	365	0	0	
			20-Oct-9	3.35	41 and 42	27	22	1	0	
			20-Oct-9	6.1	61 and 62	1	8	0	0	
678 Sleepy E	Bay	2	14-Oct-9	5 2.13	20	2	38	0	0	
			14-Oct-9	2.74	30	35	1354	0	0]
			13-Oct-9	5 3.35	40	15	41	0	0	
			13-Oct-9	6.1	60	69	640	0	0	

					Embry	/OS	Fry		
Stream Stream # Name	Oil Status	Date	Height in Tidal Zone(m)	-) Location	Dead	Live	Dead	Live	No. of Samples
681 Hogan Bay	1	21-Oct-9	5 2.13	20	58	675	0	0	1
		21-Oct-9	5 2.74	30	648	2691	0	0	1
		21-Oct-9	5 3.35	40	1248	3581	0	0	1
		21-Oct-9	6.1	60	295	2658	0	0	1
682 Snug Harbor	2	21-Oct-9	5 2.13	20	1341	2754	0	0	1
		21-Oct-9	5 2.74	30	1145	2648	0	0	1
		21-Oct-9	5 3.35	40	1648	6693	0	0]
		21-Oct-9	6.1	60	4927	7972	0	3	1
692 Herring Bay	2	09-Oct-9	5 2.13	20	613	1138	0	0	1
		09-Oct-9	5 2.74	30	722	907	0	0	1
		09-Oct-9	5 3.35	40	1492	2277	0	0	1
		09-Oct-9	5 6.1	60	162	790	0	0	1
695 Port Audrey	1	11-Oct-9	5 2.13	21 and 22	159	256	0	0	1
		11-Oct-9	5 2.74	30	876	1023	0	0	1
		11-Oct-9	5 3.35	40	503	564	0	0	1
		11-Oct-9	5 6.1	60	27	517	0	0	1
699 Cathead Bay	1	11-Oct-9	5 2.13	20	1043	578	0	0	1
		11-Oct-9	5 2.74	30	465	464	0	0	1
		11-Oct-9	5 3.35	40	429	1186	0	0	1
		11-Oct-9	5 6.1	60	598	2859	0	0	1

Appendix A. Continued (page 68 of 79).

					Embry	′OS	Fry		
tream Stream # Name	Oil Status	Date	Height in Tidal Zone(m)	Location	Dead	Live	Dead	Live	No. of Samples
480 Mink Creek	1	07-Oct-9	96 2.13	20	658	4804	0	74	1
		07-Oct-9	96 2.74	30	706	3579	0	120	1
		06-Oct-9	96 3.35	40	661	2676	0	51	1
		06-Oct-9	96 6.1	60	623	4921	0	5]
485 W. Finger Creek	1	06-Oct-9	96 2.13	20	197	3855	0	65]
-		06-Oct-9	96 2.74	30	1044	6198	0	101]
		07-Oct-9	96 3.35	40	1152	11220	0	1046	
		07-Oct-9	96 6.1	60	580	4331	0	1145	
498 McClure Creek	1	06-Oct-9	96 2.13	20	434	1975	0	0	
		06-Oct-9	96 2.74	30	1330	4927	0	0	
		06-Oct-9	96 3.35	40	1881	6176	0	146	
		06-Oct-9	96 6.1	60	147	842	0	3	
506 Loomis Creek	2	08-Oct-9	96 2.13	20	948	776	0	0	
		08-Oct-9	96 2.74	30	3623	2790	0	0	
		08-Oct-9	96 3.35	40	6225	2267	0	0	1
		08-Oct-9	6.1	60	2491	4427	0	0	
604 Erb Creek	1	12-Oct-9	96 2.13	20 and 23	307	1466	0	2	
		12-Oct-9	96 2.74	30	78	1530	0	0	
		12-Oct-9	96 3.35	40	47	89	0	5	
		12-Oct-9	96 6.1	60	15	0	0	1	1

		· · · · · · · · · · · · · · · · · · ·			Embry	/OS	Fry		
Stream Stream # Name	Oil Status	Date	Height in Tidal Zone(m)	Location	Dead	Live	Dead	Live	No. of Samples
618 Junction Creek	2	09-Oct-9	2.13	20	10	0	0	0	12
		09-Oct-9	96 2.74	30	58	1581	0	0	12
		09-Oct-9	3.35	40	107	1810	0	0	12
		09-Oct-9	96 6.1	60	118	1301	0	0	12
621 Totemoff Creek	1	12-Oct-9	96 2.13	20	148	723	0	1	14
		12-Oct-9	96 2.74	30	415	1530	0	62	14
		11-Oct-9	96 3.35	40	723	3842	0	209	14
		12-Oct-9	96 6.1	60	90	238	0	0	14
623 Brizgaloff Creek	1	12-Oct-9	96 2.13	20	183	549	0	6	14
	1	12-Oct-9	96 2.74	30	111	1736	0	2	14
	1	12-Oct-9	96 3.35	40	67	459	0	0	14
	1	12-Oct-9	96 6.1	60	295	1333	0	3	14
628 Chenega NE	2	08-Oct-9	96 2.13	20	14	436	0	0	14
		09-Oct-9	96 2.74	30	374	1133	0	0	14
		09-Oct-9	96 3.35	40	2089	2821	0	0	14
		09-Oct-9	96 6.1	60	983	5532	0	0	14
630 Bainbridge Creek	1	11-Oct-9	96 2.13	20	867	3812	0	0	14
		11-Oct-9	96 2.74	30	941	6134	0	203	14
		11-Oct-9	96 3.35	40	443	7203	0	1349	14
		11-Oct-9	6.1	60	1550	4471	0	325	14

					Embry	/OS	Fry		
Stream Stream # Name	Oil Status	Date	Height in Tidal Zone(m)	Location	Dead	Live	Dead	Live	No. of Samples
632 Claw Creek	1	11-Oct-9	6 2.13	20	0	0	0	0	1
		11-Oct-9	6 2.74	30	10	0	0	0	1
		11-Oct-9	6 3.35	40	249	1782	0	0	1
		11-Oct-9	6 6.1	60	3	45	0	0	1
637 Pt. Countess	2	10-Oct-9	6 2.13	20	1634	1892	0	0	
		10-Oct-9	6 2.74	30	844	2039	0	0	
		10-Oct-9	6 3.35	41 and 42	1875	2691	0	0	
		10-Oct-9	6 6.1	61 and 62	2617	1663	0	0	
653 Hogg Creek	1	20-Oct-9	6 2.13	20	35	103	0	15	
		20-Oct-9	6 2.74	31 and 32	13	8	0	1	
		20-Oct-9	6 3.35	40	38	758	0	1230	
		20-Oct-9	6 6.1	60	162	1175	0	87	
656 Halverson Creek	1	21-Oct-9	6 2.13	20	693	904	0	0	
		21-Oct-9	6 2.74	30	12	470	0	0	
		28-Oct-9	6 3.35	40	630	3381	0	0	
		28-Oct-9	6 6.1	60	576	5558	0	12	
663 Shelter Bay	2	18-Oct-9	6 2.13	20	60	857	0	0	
		18-Oct-9	6 2.74	30	73	1386	0	0	1
		18-Oct-9	6 3.35	40	651	1405	0	0	1
		18-Oct-90	6 6.1	60	1464	6609	0	0	1

Appendix A. Continued (page 71 of 79).

					Embry	/OS	Fry		
Stream Stream # Name	Oil Status	Date	Height in Tidal Zone(m)	Location	Dead	Live	Dead	Live	No. of Samples
665 Bjorne Creek	2	18-Oct-9	6 2.13	20	3608	3328	0	0	1
-		18-Oct-9	6 2.74	30	2766	2707	0	0	1
		18-Oct-9	6 3.35	40	1602	613	0	0	1
		17-Oct-9	6 6.1	60	836	5231	0	0	1
666 O'Brien Creek	1	19-Oct-9	6 2.13	20	88	5	0	0	
		19-Oct-9	6 2.74	30	719	1615	0	0	
		19-Oct-9	6 3.35	40	253	3224	0	0	
		19-Oct-9	6 6.1	60	506	2412	0	0]
673 Falls Creek	1	19-Oct-9	6 2.13	20	76	1039	0	0	1
		20-Oct-9	6 2.74	30	13	853	0	0	1
		20-Oct-9	6 3.35	40	41	251	0	0	1
		20-Oct-9	6 6.1	60	69	536	0	0	1
677 Hayden Creek	2	19-Oct-9	6 2.13	21 and 22	214	2897	0	0	1
		19-Oct-9	6 2.74	31 and 32	377	3230	0	0	1
		19-Oct-9	6 3.35	41 and 42	428	2530	0	1	1
		19-Oct-9	6 6.1	61 and 62	174	1562	0	0	1
678 Sleepy Bay	2	19-Oct-9	6 2.13	20	0	4	0	0	1
		19-Oct-9	6 2.74	30	2	169	0	0	1
		19-Oct-9	6 3.35	40	168	423	0	0	1
		19-Oct-9	6 6.1	60	23	163	0	0	1

					Embry	/OS	Fry		
Stream Stream # Name	Oil Status	Date	Height in Tidal Zone(m)) Location	Dead	Live	Dead	Live	No. of Samples
681 Hogan Bay	1	17-Oct-9	6 2.13	20	54	2483	0	0	1
		17-Oct-9	6 2.74	30	446	6600	0	7	1
		17-Oct-9	6 3.35	40	828	6053	0	1	1
		17-Oct-9	6 6.1	60	594	4130	0	0	
682 Snug Harbor	2	17-Oct-9	6 2.13	20	1458	4138	0	295	
		17-Oct-9	6 2.74	30	1033	5872	14	1450	
		17-Oct-9	6 3.35	40	1111	5566	1	603	
		17-Oct-9	6 6.1	60	1463	3947	0	745	
692 Herring Bay	2	07-Oct-9	6 2.13	20	831	3056	0	0	
		08-Oct-9	6 2.74	30	484	4370	0	0	
		08-Oct-9	6 3.35	40	520	2681	0	0	
		08-Oct-9	6 6.1	60	340	5160	0	0]
695 Port Audrey	1	10-Oct-9	6 2.13	21 and 22	61	1027	0	17]
		10-Oct-9	6 2.74	30	566	2548	0	19	1
		10-Oct-9	6 3.35	40	363	1134	0	18	1
		10-Oct-9	6 6.1	60	114	958	0	128	1
699 Cathead Bay	1	09-Oct-9	6 2.13	20	31	100	0	0	1
		09-Oct-9	6 2.74	30	4	0	0	0	1
		09-Oct-9		40	13	24	0	0	1
		09-Oct-9	6 6.1	60	173	0	0	0	1

Appendix A. Continued (page 73 of 79).

					Embry	yos	Fry		
tream Stream # Name	Oil Status	Date	Height in Tidal Zone(m)) Location	Dead	Live	Dead	Live	No. of Sample
480 Mink Creek	1	29-Sep-9	2.13	20	177	494	0	2	
		29-Sep-9	2.74	30	277	781	0	0	
		29-Sep-9	3.35	40	143	492	0	3	
		29-Sep-9	6.1	60	1059	3431	0	0	
485 W. Finger Creek	1	28-Sep-9	07 2.13	20	0	2	0	0	
		28-Sep-9	2.74	30	74	1310	13	119	
		28-Sep-9	3.35	40	487	2864	0	159	
		28-Sep-9	6.1	60	255	1870	0	5	
498 McClure Creek	1	28-Sep-9	07 2.13	20	3098	3121	0	0	
		28-Sep-9	2.74	30	1380	2456	0	0	
		28-Sep-9	3.35	40	2866	9533	0	0	
		28-Sep-9	6.1	60	1686	1095	0	0	
506 Loomis Creek	2	30-Sep-9	2.13	20	1471	374	0	0	
		30-Sep-9	2.74	30	4050	725	0	0	
		30-Sep-9	3.35	40	5048	824	0	0	
		30-Sep-9	6.1	60	2119	4578	0	0	
604 Erb Creek	1	02-Oct-9		20 and 23	716	3060	0	0	
		02-Oct-9	2.74	30	807	2251	0	0	
		02-Oct-9		40	127	347	0	0	
		02-Oct-9	6.1	60	511	2894	0	0	

					Embry	/OS	Fry		
tream Stream # Name	Oil Status	Date	Height in Tidal Zone(m)	Location	Dead	Live	Dead	Live	No. of Samples
618 Junction Creek	2	02-Oct-9	7 2.13	20	17	0	0	0	
		02-Oct-9	7 2.74	30	28	293	0	0	
		02-Oct-9	7 3.35	40	1300	1335	0	0	
		02-Oct-9	7 6.1	60	756	691	0	0	
621 Totemoff Creek	1	02-Oct-9	7 2.13	20	873	430	0	0	
		02-Oct-9	7 2.74	30	733	881	0	11	
		02-Oct-9	7 3.35	40	699	3538	0	0	
		02-Oct-9	7 6.1	60	1426	2559	0	0	
623 Brizgaloff Creek	1	03-Oct-9	7 2.13	20	543	1840	0	0	
		03-Oct-9	7 2.74	30	278	970	0	0	
		03-Oct-9	7 3.35	40	2520	2423	0	0	
		03-Oct-9	7 6.1	60	2996	5044	0	0	
628 Chenega NE	2	30-Sep-9	7 2.13	20	702	573	0	0	
		30-Sep-9	7 2.74	30	832	675	0	0	
		30-Sep-9	7 3.35	40	4140	2490	0	0	
		30-Sep-9	7 6.1	60	3577	5926	0	0	
630 Bainbridge Creek	1	03-Oct-9	7 2.13	20	393	1012	0	0	
		03-Oct-9	7 2.74	30	607	2504	0	1	
		03-Oct-9		40	1005	6767	0	2	
		03-Oct-9	7 6.1	60	1271	8505	3	123	

					Embry	/os	Fry		
Stream Stream # Name	Oil Status	Date	Height in Tidal Zone(m)	Location	Dead	Live	Dead	Live	No. of Sample
632 Claw Creek	1	04-Oct-9	2.13	20	38	173	0	0	
		04-Oct-9	2.74	30	37	121	0	0	
		04-Oct-9	3.35	40	2426	12126	0	2	
		04-Oct-9	6.1	60	3	209	0	0	
637 Pt. Countess	2	04-Oct-9	2.13	20	1165	1987	0	0	
		04-Oct-9	2.74	30	3290	2685	0	0	
		04-Oct-9	3.35	41 and 42	4162	4811	0	0	
		04-Oct-9	6.1	61 and 62	3274	4542	0	0	
653 Hogg Creek	1	05-Oct-9	2.13	20	814	2163	0	2	
		05-Oct-9	2.74	31 and 32	185	648	0	0	
		05-Oct-9	3.35	40	219	507	0	0	
		05-Oct-9	6.1	60	250	2421	0	0	
656 Halverson Creek	1	05-Oct-9	2.13	20	1566	1534	0	0	
		05-Oct-9	2.74	30	699	560	0	0	
		05-Oct-9	3.35	40	2039	5371	0	0	
		05-Oct-9	6.1	60	744	3665	0	0	
663 Shelter Bay	2	08-Oct-9	2.13	20	305	1112	0	0	
		08-Oct-9	2.74	30	185	947	0	0	
		08-Oct-9	3.35	40	677	3762	0	0	
		08-Oct-9	6.1	60	1665	3665	0	0	

					Embry	/OS	Fry		
Stream Stream # Name	Oil Status	Date	Hcight in Tidal Zone(m)	Location	Dead	Live	Dead	Live	No. of Samples
665 Bjorne Creek	2	07-Oct-9	2.13	20	1404	1500	0	0	14
		07-Oct-9	07 2.74	30	3785	2235	0	0	14
		07-Oct-9	3.35	40	3766	1134	0	0	14
		07-Oct-9	6.1	60	1025	4210	0	0	14
666 O'Brien Creek	1	06-Oct-9	07 2.13	20	495	67	0	0	14
		06-Oct-9	07 2.74	30	866	2832	0	0	14
		06-Oct-9	3.35	40	572	4633	0	3	14
		06-Oct-9	6.1	60	2920	3185	0	0	14
673 Falls Creek	1	08-Oct-9	07 2.13	20	892	1386	0	0	14
		08-Oct-9	07 2.74	30	688	4796	0	0	14
		08-Oct-9	3.35	40	933	2234	0	0	14
		08-Oct-9	6.1	60	1395	4261	0	0	14
677 Hayden Creek	2	08-Oct-9	07 2.13	21 and 22	1175	3443	0	1	14
		08-Oct-9	07 2.74	31 and 32	1278	4535	0	0	14
		06-Oct-9	3.35	41 and 42	1499	2457	0	0	14
		06-Oct-9	6.1	61 and 62	1062	3244	0	0	14
678 Sleepy Bay	2	06-Oct-9	2.13	20	228	483	0	0	12
		06-Oct-9	2.74	30	186	390	0	0	12
		06-Oct-9	3.35	40	489	1346	0	0	12
		06-Oct-9	6.1	60	894	2085	0	0	12

					Embry	/05	Fry		
tream Stream # Name	Oil Status	Date	Height in Tidal Zone(m)	Location	Dead	Live	Dead	Live	No. of Sample
681 Hogan Bay	1	21-Oct-9	7 2.13	20	179	911	0	0	
		21-Oct-9	7 2.74	30	811	1089	0	0	
		21-Oct-9	7 3.35	40	1188	58	0	0	
		21-Oct-9	7 6.1	60	926	2450	0	0	
682 Snug Harbor	2	09-Oct-9	7 2.13	20	856	1488	0	0	
		09-Oct-9	7 2.74	30	2879	5330	0	0	
		09-Oct-9	7 3.35	40	2984	5709	0	56	
		09-Oct-9	7 6.1	60	2398	6636	0	104	
692 Herring Bay	2	29-Sep-9	7 2.13	20	2031	823	0	0	
		29-Sep-9	7 2.74	30	5807	1195	0	0	
		29-Sep-9	7 3.35	40	2330	3464	0	0	
		29-Sep-9	7 6.1	60	2159	6313	0	0	
695 Port Audrey	1	01-Oct-9	7 2.13	21 and 22	1455	1905	0	0	
		01-Oct-9	7 2.74	30	676	3386	0	0	
		01-Oct-9	7 3.35	40	1452	4883	0	0	
		01-Oct-9	7 6.1	60	721	1567	0	0	
699 Cathead Bay	1	01-Oct-9	7 2.13	20	2266	687	0	0	
		01-Oct-9		30	512	3100	0	0	
		01-Oct-9		40	1568	3121	0	0	
		01-Oct-9	7 6.1	60	1243	2890	0	0	

					Embr	yos	Fry		
Stream Stream # Name	Oil Status	Date	Height in Tidal Zone(m)	Location	Dead	Live	Dead	Live	No. of Samples

Appendix B. Summary of adult pink salmon counted in streams bordering Prince William Sound, 1989-1997.

Stream	Date	1989	1990	1991	1992	1993	1994	1995	1996	1997
# 604	07-Jul	0								
Erb	08-Jul									
	09-Jul									
	11-Jui									
	12-Jul									
	13-Jul									
	14-Jul									
	15-Jul									
	<u>16-Jul</u>									
	17-Jul									
	18-Jul									
	19-Jul		3036							
	20-Jul						60			
	21-Jul	600								
	22-Jul									
	23-Jul								0	
	24-Jul						400			
	25-Jul									
	26-Jul	600						0		
	27-Jul 28-Jul									
28-Ju 29- Ji	28-Jul									
	29-Jul						700		150	
	30-Jul									
	31-Jul									
	01-Aug	2143	2592							
	02-Aug	2047								
	03-Aug	2281					1000			
	04-Aug	1966							850	
	05-Aug	1441								
	06-Aug	690						250		
	07-Aug	2153								
	08-Aug	2590	5095							
09-Aug 10-Aug 11-Aug	2061	0000				800				
	3025					2220				
	11-Aug	2492			518		2220			
	12-Aug	2573			510					
	13-Aug	2077							400	
	14-Aug	2758							400	
		3021		3392	841			2100		:
	15-Aug	3021		3392	041		4475	2100	400	
	16-Aug	2126	0004				1475		423	
	17-Aug	1940	3661					980		
	18-Aug	2130			907					
	19-Aug	1638							387	
	20-Aug	1555								
	21-Aug	1941								
	22-Aug	961					2868	763		
	23-Aug	1509		4464	371				725	
	24-Aug	1252	4034							
	25-Aug	862								
	26-Aug	1066								
	27-Aug	2026								1
	28-Aug	1536		4048	518				980	
	29-Aug	1706	2664					1465		
	30-Aug	1559					5475			
	31-Aug	1611								
	01-Sep	951								
	02-Sep	812			558				1205	
	02-Sep 03-Sep	1155			000				.205	4
	03-Sep 04-Sep	857								-
	04-Sep 05-Sep	681								
		505	2928		408				817	
	06-Sep		2920		408		1268		817	
	07-Sep	469					1208	~~~~		
	08-Sep	299						2280		
	09-Sep									
	10-Sep									2
	11-Sep	50	1446						392	
	12-Sep						2325			1
	13-Sep	10								
	14-Sep									
	15-Sep							15		

Appendix B. Numbers of adult pink salmon counted in streams bordering PWS, 1989-1997. Data from ground surveys conducted by Exxon are indicated in bold type and ADF&G aerial data in normal type.

Appendix B. Continued(page 82 of 10)

Stream	Date	1989	1990	1991	1992	1993	1994	1995	1996	1997
¢618	19-Jul	0								
Junction	20-Jul	•								
	21-Jul									
	22-Jul									
	23-Jul									
	24-Jul									
	25-Jul									
	26-Jul									
	27-Jul									
	28-Jul									
	29-Jul								0	
	30-Jul		0 0							
	31-Jul		0							
	01-Aug									
	02-Aug									
	03-Aug									
	04-Aug								0	
	05-Aug				-			_		
	06-Aug				0			0		
	07-Aug									
	08-Aug									
	09-Aug						-			
	10-Aug						0			
	11-Aug		33		40					
	12-Aug				13					
	13-Aug								0	
	14-Aug									
	15-Aug		22		40		•	75		
	16-Aug				12		0			
	17-Aug	0						41		
	18-Aug			584					40	
	19-Aug 20-Aug			504	0				19	
	20-Aug 21-Aug		116		U				77	
	21-Aug 22-Aug	289	110				101	92		
	23-Aug	205					101	JZ		
	24-Aug				52					
	25-Aug			2167	54					
	26-Aug			2107					765	
	27-Aug								100	14
	28-Aug		113						995	•
	29-Aug	1578			33			321	000	
	30-Aug			1642			660			
	31-Aug						••••			
	01-Sep									6
	02-Sep								945	•
	03-Sep	1665			47				0-10	8
	04-Sep		858							•
	05-Sep									
	06-Sep								89	
	07-Sep				36		152			
	08-Sep							845		
	09-Sep							•		
	10-Sep									26
	11-Sep			1534					59	1
	12-Sep		600				72			18
	13-Sep									
	14-Sep	24								
	15-Sep							181		
	16-Sep						•			
	17-Sep									
	18-Sep									
	19-Sep									

Stream	Date	<u>1989</u>	<u>1990</u>	<u>1991</u>	<u>1992</u>	<u>1993</u>	1994	1995	1996	<u>1997</u>
¢621	14-Jul						0			
otemoff	15-Jul									
	<u>16-Jul</u> 17-Jul									
	17-Jul 18-Jul								0	
	19-Jul								-	
	20-Jul						50			
	21-Jul	0								
	22-Jul	· ·								
	23-Jul								0	(
	24-Jul						2900			
	25-Jul									
	26-Jul	100						0		
	27-Jul									
	28-Jul						4.400		150	
	29-Jul						1400		150	
	30-Jul									
	<u>31-Jul</u>									
	01-Aug									
	02-Aug						1100			
	03-Aug	1500							250	
	04-Aug 05-Aug	3778								
	06-Aug	5170						100		140
	07-Aug									
	08-Aug									
	09-Aug						1500			142
	10-Aug						5402			
	11-Aug									
	12-Aug								100	
	13-Aug								400	050
	14-Aug							4050	205	258
	15-Aug						2425	1850	295	
	16-Aug						2425	2839		
	17-Aug	4062						2035		
	18-Aug								215	
	19-Aug								2.0	
	20-Aug 21-Aug									444
	21-Aug 22-Aug	3145					6495	3235		
	22-Aug 23-Aug	3145					•		405	
	24-Aug									
	25-Aug									
	26-Aug									561
	27-Aug									
	28-Aug								985	
	29-Aug	2173						3738		
	30-Aug						3860			
	31-Aug	993								
	01-Sep									
	02-Sep								1450	
	03-Sep	821								
	04-Sep									
	05-Sep								1495	194
	06-Sep	515					2960		1490	194
	07-Sep						2300	1190		
	08-Sep							1150		
	09-Sep									
	10-Sep								398	
	11-Sep						895			
	12-Sep									
	13-Sep 14-Sep	2								

Appendix B. Continued(page 83 of 10)

Stream	Date	1989	1990	<u>1991</u>	<u>1992</u>	<u>1993</u>	1994	1995	_1996	<u> 1997</u>
Chenega	25-Jul									
	26-Jul									
	27-Jul									
	28-Jul									
	29-Jul		3152				500		200	
	30-Jul									
	31-Jul		767							
	01-Aug									
	02-Aug						500			
	03-Aug	233					500			
	04-Aug									
	05-Aug									
	06-Aug									
	07-Aug									
	08-Aug						1400			
	09-Aug						5402			
	10-Aug		4407				5402			
	11-Aug 12-Aug		4407		497					
					401					
	13-Aug 14-Aug									
	14-Aug 15-Aug		2306							11
	16-Aug		2300		848		334		714	
	17-Aug							1389		
	18-Aug									12
	19-Aug			7915					587	
	20-Aug			1010	1041					
	20-Aug 21-Aug		4069						810	
	21-Aug 22-Aug		4000				2068	974		27
	23-Aug									
	24-Aug									
	25-Aug			12742						
	26-Aug								5050	
	27-Aug				3845					
	28-Aug		3830						6670	
	29-Aug							3621		
	30-Aug			13291			8500			
	31-Aug									
	01-Sep				5929					
	02-Sep								10555	
	03-Sep									123
	04-Sep		7099							
	05-Sep				2253					
	06-Sep	5350							4825	
	07-Sep						6383			
	08-Sep							8830		
	09-Sep									
	10-Sep				1123					143
	11-Sep			7840					6230	
	12-Sep		3958				5760			134
	13-Sep								2541	
	14-Sep									
	15-Sep									71
	16-Sep									_
	17-Sep									
	18-Sep							419	1	
	19-Sep						0			

Appendix B. Continued(page 84 of 10)

Stream	Date	1989	1990	1991	1992	1993	1994	1995	1996	<u> 1997</u>
Halverson	15-Jul									
	16-Jul 17-Jul									
	18-Jul									
	19-Jul			0						
	20-Jul	000					900			
	21-Jul 22-Jul	200								
	23-Jul									
	24-Jul									
	25-Jul	000		0				0		
	26-Jul 27-Jul	200						U		
	28-Jul			200						
	29-Jul						600			0
	30-Jul									
	<u>31-Jul</u> 01-Aug								·····-	
	01-Aug 02-Aug			800						
	03-Aug						1000			
	04-Aug	1200		1100					0	
	05-Aug	1156						100		
	06-Aug 07-Aug							100		
	08-Aug									
	09-Aug			970			1000			
	10-Aug						1385			
	11-Aug	731								1200
	12-Aug 13-Aug	731							120	1200
	14-Aug			1550						
	15-Aug							500	30	
	16-Aug	546					1491		37	
	17-Aug							175		454
	18-Aug 19-Aug			3500						-0-
	20-Aug									
	21-Aug	1005					1659		860	
	22-Aug			3410				237	2510	1150
	23-Aug 24-Aug							237	2510	
	25-Aug									
	26-Aug									
	27-Aug								5400	
	28-Aug	2130		4505					5490	
	29-Aug 30-Aug						9350		6620	
	31-Aug									
	01-Sep									
	02-Sep	3369								
	03-Sep			9560				6220	2978	
	04-Sep 05-Sep			9500				ULLU	2010	6970
	06-Sep									
	07-Sep						3210			
	08-Sep	1420								
	09-Sep 10-Sep									10778
	11-Sep								4857	
	12-Sep						4955			9702
	13-Sep			2180					1939	
	14-Sep							577		4267
	<u>15-Sep</u> 16-Sep							311		
	16-Sep 17-Sep	37								
	18-Sep	•••								
	19-Sep		_							

Appendix B. Continued(page 85 of 10)

663 14-Jul Shelter 15-Jul 16-Jul 17-Jul

1997	1996	<u>1995</u>	1994	1993	1992	1991	1990	1989	Date	Stream
						0			18-Jul 19-Jul	
						0			20-Jul	
								200	21-Jul	
									22-Jul	
									23-Jul	
									24-Jul	
						0			25-Jul	
		0						200	26-Jul	
							2		27-Jul	
						200			28-Jul	
									29-Jul	
					0				30-Jul 31-Jul	
					·				01-Aug	
						800	56		02-Aug	
						000	50		03-Aug	
						1100		1200	04-Aug	
						1100		1156	05-Aug	
		100			350		3		06-Aug	
		100					-		07-Aug	
									08-Aug	
						970			09-Aug	
			0						10-Aug	
									11-Aug	
12								731	12-Aug	
									13-Aug	
					9	1550			14-Aug	
	_	500	-				1	540	15-Aug	
	0		0		25			546	16-Aug 17-Aug	
		175			25				18-Aug	
4	•	175				3500			19-Aug	
	0					3300			20-Aug	
			0		2			1005	21-Aug	
11			·		-	3410			22-Aug	
• •	199	237					26		23-Aug	
			10						24-Aug	
					378				25-Aug	
	1265								26-Aug	
									27-Aug	
						4505		2130	28-Aug	
							8		29-Aug	
	1815		2990		261				30-Aug	
	<u></u>				,		• •••••		31-Aug	
									01-Sep	
								3369	02-Sep	
					000	0500			03-Sep	
	1386	6220			286	9560			04-Sep 05-Sep	
69							1117		05-Sep 06-Sep	
			997				1117		00-Sep 07-Sep	
			997		237			1420	07-Sep 08-Sep	
	329				201			1420	09-Sep	
107	525						1747		10-Sep	
107									11-Sep	
97			2130						12-Sep	
•••	2115				50	2180			13-Sep	
	•								14-Sep	
42		577							15-Sep	
									16-Sep	
								37	17-Sep	
									18-Sep	
									19-Sep	
									20-Sep	

Appendix B. Continued(page 86 of 10)

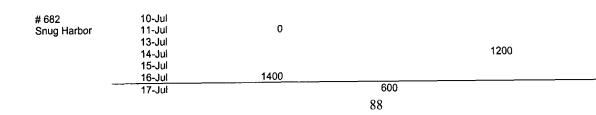
673 Falls

14-Jul 15-Jul 16-Jul 17-Jul 18-Jul 19-Jul 20-Jul

0

86

Stream	Date	1989	1990	1991	1992	1993	1994	1995	1996	1997
	21-Jul	200					·			
	22-Jul									
	23-Jul									
	24-Jul			0						
	25-Jul	200		0				•		
	26-Jul 27-Jul	200						0		
	27-Jul 28-Jul			200						
	20-Jul 29-Jul			200			0			
	30-Jul						0			
	31-Jul									
	01-Aug									
	02-Aug			800						
	03-Aug			000			100			
	03-Aug 04-Aug	1200		1100			100			
	05-Aug	1156		1100						
	06-Aug							100		
	07-Aug									
	08-Aug									
	09-Aug			970			300			
	10-Aug						442			
	11-Aug									
	12-Aug	731								120
	13-Aug									
	14-Aug			1550	966					
	15-Aug							500		
	16-Aug	546					414		0	
	17-Aug				932					
	18-Aug							175		45
	19-Aug			3500						
	20-Aug									
	21-Aug	1005			610		513		83	
	22-Aug			3410						115
	23-Aug							237	276	
	24-Aug									
	25-Aug									
	26-Aug									
	27-Aug	0400		4505	697					
	28-Aug	2130		4505					983	
	29-Aug						2700		4445	
	30-Aug						2790		1115	
	31-Aug 01-Sep			1	855					
	01-Sep 02-Sep	3369			000					
	02-Sep 03-Sep	5505								
	04-Sep			9560				6220	1673	
	05-Sep			5500				ULLU	10/5	697
	06-Sep				484					001
	07-Sep						3025			
	08-Sep	1420								
	09-Sep								1013	
	10-Sep				372					1077
	11-Sep									
	12-Sep						880			970
	13-Sep			2180					202	
	14-Sep									
	15-Sep							577		426
	16-Sep									
	17-Sep	37								


Appendix B. Continued(page 87 of 10)

678 Sleepy 09-Aug 10-Aug 11-Aug 12-Aug 13-Aug 14-Aug

0

Stream	Date	1989	1990	1991	1992	1993	1994	1995	1996	<u>1997</u>
	15-Aug		0				_		•	
	16-Aug				0		0	_	0	
	17-Aug									
	18-Aug									
	19-Aug									
	20-Aug				0		_			
	21-Aug						5		43	
	22-Aug				0					
	23-Aug								92	
	24-Aug		38							
	25-Aug									
	26-Aug									
	27-Aug				129				0.40	
	28-Aug								340	
	29-Aug								40.5	
	30-Aug		510				1230		495	
	31-Aug									
	01-Sep				301					
	02-Sep									
	03-Sep								0.05	
	04-Sep				350				825	
	05-Sep									
	06-Sep									
	07-Sep		1117				880			
	08-Sep)			265					
	09-Sep								1049	
	10-Sep		1405							
	11-Sep						-			
	12-Sep						695		~~	
	13-Sep								83	
	14-Sep									
	15-Sep									
	16-Se									
	17-Se									
	18-Se									
	19-Se	D				_				

Appendix B. Continued(page 88 of 10)

	Date 1989	1990	1991	1992	1993	1994	1995	1996	1997
	18-Jul	0							
	19-Jul 20-Jul					1750			
	20-Jul								
	22-Jul								
	23-Jul	2500		1600				900	
	24-Jul					3000			
	25-Jul								
	26-Jul	5623							
	27-Jul								
	28-Jul					8000		1400	
	29-Jul					0000			
	30-Jul 31-Jul			1400					
	01-Aug	5453							
	02-Aug								
	03-Aug					3000			
	04-Aug							1900	
	05-Aug								
	06-Aug	3071		0.400					
	07-Aug			3400					
	08-Aug					7000			
	09-Aug					6717			
	10-Aug 11 -Au g					5, 17			
	12-Aug								
	13-Aug			2363				2100	
	14-Aug	6456							
	15-Aug							2472	
	16-Aug			3247		4965			
	17-Aug								
	18-Aug								
	19-Aug							2410	
	20-Aug			1364		6485		2675	
	21-Aug	60.40				6465		20/3	
	22-Aug	6049							
	23-Aug								
	24-Aug 25-Aug								
	26-Aug							5530	
	27-Aug			3333					
	28-Aug	5294							
	29-Aug								
	30-Aug					7470		5390	
	31-Aug								
	01-Sep			3891					
	02-Sep							4287	
	03-Sep								
	04-Sep	5847							
	05-Sep	5847		4740					
	00.0	0041		1740					
	06-Sep	5047		1740		6880			
	06-Sep 07-Sep	5047		1740		6880			
	06-Sep 07-Sep 08-Sep			1740		6880		1734	
	06-Sep 07-Sep 08-Sep 09-Sep	2698				6880		1734	
	06-Sep 07-Sep 08-Sep 09-Sep 10-Sep			1740 1694				1734	
	06-Sep 07-Sep 08-Sep 09-Sep 10-Sep 11-Sep					6880 3570			
	06-Sep 07-Sep 08-Sep 09-Sep 10-Sep 11-Sep 12-Sep 13-Sep			1694				1734 543	
	06-Sep 07-Sep 08-Sep 09-Sep 10-Sep 11-Sep 12-Sep 13-Sep 14-Sep								
	06-Sep 07-Sep 08-Sep 09-Sep 10-Sep 11-Sep 12-Sep 13-Sep 14-Sep 15-Sep			1694					
	06-Sep 07-Sep 08-Sep 09-Sep 10-Sep 11-Sep 12-Sep 13-Sep 14-Sep 15-Sep 16-Sep			1694					
	06-Sep 07-Sep 08-Sep 10-Sep 11-Sep 12-Sep 13-Sep 14-Sep <u>15-Sep</u> 16-Sep 17-Sep			1694					
	06-Sep 07-Sep 08-Sep 10-Sep 11-Sep 12-Sep 13-Sep 14-Sep 15-Sep 17-Sep 18-Sep			1694					
	06-Sep 07-Sep 08-Sep 10-Sep 11-Sep 12-Sep 13-Sep 14-Sep <u>15-Sep</u> 16-Sep 17-Sep			1694					
	06-Sep 07-Sep 08-Sep 10-Sep 11-Sep 12-Sep 13-Sep 14-Sep 15-Sep 17-Sep 18-Sep			1694				543	
+ 605	06-Sep 07-Sep 08-Sep 10-Sep 11-Sep 12-Sep 13-Sep 14-Sep 15-Sep 16-Sep 17-Sep 18-Sep 19-Sep			1694		3570			
# 695	06-Sep 07-Sep 08-Sep 10-Sep 11-Sep 12-Sep 13-Sep 14-Sep 15-Sep 16-Sep 18-Sep 19-Sep 23-Jul			1694				543	
¢ 695 Port Audrey	06-Sep 07-Sep 08-Sep 10-Sep 11-Sep 12-Sep 13-Sep 14-Sep 15-Sep 16-Sep 17-Sep 18-Sep 19-Sep 23-Jul 24-Jul			1694		3570		543	
f 695 Port Audrey	06-Sep 07-Sep 08-Sep 10-Sep 11-Sep 12-Sep 13-Sep 14-Sep 15-Sep 16-Sep 17-Sep 18-Sep 19-Sep 23-Jul 24-Jul 25-Jul			1694		3570		543	
≠ 695 Port Audrey	06-Sep 07-Sep 08-Sep 10-Sep 10-Sep 11-Sep 13-Sep 14-Sep 15-Sep 16-Sep 17-Sep 18-Sep 19-Sep 23-Jul 24-Jul 25-Jul 25-Jul 26-Jul			1694		3570		543	
≠ 695 Port Audrey	06-Sep 07-Sep 08-Sep 10-Sep 10-Sep 11-Sep 12-Sep 13-Sep 14-Sep 14-Sep 15-Sep 16-Sep 17-Sep 18-Sep 19-Sep 23-Jul 24-Jul 25-Jul 26-Jul 27-Jul			1694		3570		0	
t 695 ≥ort Audrey	06-Sep 07-Sep 08-Sep 10-Sep 10-Sep 11-Sep 13-Sep 13-Sep 14-Sep 15-Sep 16-Sep 17-Sep 18-Sep 19-Sep 23-Jul 24-Jul 25-Jul 26-Jul 27-Jul 28-Jul			1694		3570		543	
t 695 Port Audrey	06-Sep 07-Sep 08-Sep 10-Sep 10-Sep 11-Sep 12-Sep 13-Sep 14-Sep 14-Sep 15-Sep 16-Sep 17-Sep 18-Sep 19-Sep 23-Jul 24-Jul 25-Jul 26-Jul 27-Jul			1694		3570		0	

Appendix B. Continued(page 89 of 10)

Stream	Date	198 <u>9</u>	1990	<u>1991</u>	<u> 1992 </u>	<u>1993</u>	<u>1994</u>	<u> 1995 </u>	<u>1996</u>	<u>1997</u>
	01-Aug									
	02-Aug									
	03-Aug						500			
	04-Aug								350	
	05-Aug									
	06-Aug									
	07-Aug									
	08-Aug									
	09-Aug						2000			
	10-Aug						2612			
	11-Aug									
	12-Aug									
	13-Aug								480	
	14-Aug									
	15-Aug									
	16-Aug						1632		329	·
	17-Aug									
	18-Aug									
	19-Aug								177	
	20-Aug									
	21-Aug						2894		405	
	22-Aug									
	23-Aug	I								
	24-Aug	I								
	25-Aug	Ļ								
	26-Aug	1							1239	
	27-Aug	1								
	28-Aug	\$								
	29-Aug									
	30-Aug	1					4225		1377	
	31-Aug)								
	01-Sep)								
	02-Sep)							795	
	03-Sep)								
	04-Sep)								
	05-Sep)								
	06-Sep)							250	
	07-Sep)					1810			
	08-Sep)								
	09-Sep	ז								
	10-Sep)							-	
	11-Sep	כ							2	
	12-Se	כ					975			

Appendix B. Continued(page 90 of 10)

Appendix C. Evidence of damage to pink salmon populations inhabiting Prince William Sound, Alaska, two generations after the *Exxon Valdez* oil spill.

Evidence of Damage to Pink Salmon Populations Inhabiting Prince William Sound, Alaska, Two Generations after the *Exxon Valdez* Oil Spill

BRIAN G. BUE¹

Alaska Department of Fish and Game 333 Raspberry Road, Anchorage, Alaska 99518, USA

SAMUEL SHARR²

Alaska Department of Fish and Game 401 Railroad Avenue, Cordova, Alaska 99574, USA

JAMES E. SEEB

Alaska Department of Fish and Game 333 Raspberry Road, Anchorage, Alaska 99518, USA

Abstract.—Our investigations into the effects of the 1989 Exxon Valdez oil spill in Prince William Sound, Alaska, suggest that chronic damage occurred to some populations of pink salmon Oncorhynchus gorbuscha. Significantly elevated embryo mortalities were observed from 1989 through 1993 in populations inhabiting streams previously contaminated by oil. No statistically detectable difference in embryo mortality was observed in 1994 and 1995. We assessed the possible influence of the natural environment on these findings by collecting gametes from adults returning to contaminated and to uncontaminated streams, transporting the gametes to a hatchery where intrastream crosses were made, and incubating the resulting embryos under identical environmental conditions. Significantly increased embryo mortality was detected for embryos originating from the oil-con-taminated lineages in 1993 but not in 1994, which indicated that the significant differences detected in the field in 1989–1993 were not induced by naturally occurring environmental variables.

On March 24, 1989, the supertanker Exxon Valdez ran aground on Bligh Reef in Prince William Sound, Alaska, spilling approximately 41 million liters of crude oil (Bragg et al. 1994). The resulting slick moved through western Prince William Sound and the western Gulf of Alaska, contaminating approximately 2,000 km of coastal habitat (Bragg et al. 1994), killing an estimated 250,000 seabirds (Piatt and Ford 1996) and 4,000 sea otters Enhydra lutris (Garrott et al. 1993; Degange et al. 1994). Sublethal effects were also documented (Hose et al. 1996; Wiedmer et al. 1996; Marty et al. 1997). Despite a US\$2 billion cleanup and restoration effort, subsurface oil remains in some of the beaches (Wolfe et al. 1994; Babcock et al. 1996; Spies et al. 1996).

One of the most abundant vertebrate species in the area is pink salmon *Oncorhynchus gorbuscha* of both wild and hatchery origin. Up to 75% of wild pink salmon that spawn within the Sound do so in intertidal areas (Helle et al. 1964). Unfortunately, their extensive use of intertidal spawning areas and the use of nearshore marine areas by juveniles made pink salmon vulnerable to oil exposure from the spill.

Mortality of pink salmon embryos was examined annually in 10 oil-contaminated (oiled) and 15 nearby, uncontaminated (reference), streams from 1989 through 1992 (Bue et al. 1996). In that work, stream oiling was assessed through visual observations of the stream and the adjacent area during the spring of 1989. The observations were reviewed and adjusted if needed according to the results of anadromous stream surveys conducted in southwestern Prince William Sound by the Alaska Department of Fish and Game, Habitat Division (Middleton et al. 1992). The oiling classifications of the streams correlated with the findings of the fall of 1989 shoreline surveys (ADEC-SRS 1989; Neff et al. 1995) and similar pink salmon work by Brannon et al. (1995). Each fall, live and dead embryos were collected from the stream gravel along transects established in three intertidal zones (1.8-2.4 m, 2.4-3.0 m, and 3.0-3.7 m above mean low water) and the area above mean high water (>3.7 m above mean low water). More than 2,500

¹ Corresponding author: brianb@fishgame.state.ak.us ² Present address: Hoopa Valley Tribe Fisheries Department, Box 417, Hoopa, California 95546, USA.

BUE ET AL.

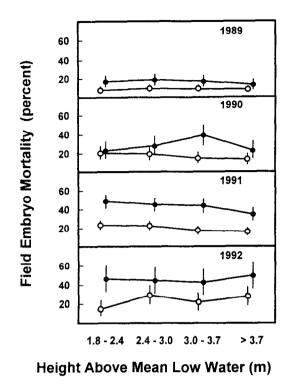


FIGURE 1.—Mean pink salmon embryo mortality observed during fall field sampling in 1989 through 1992 (Bue et al. 1996). Solid circles indicate oil-contaminated streams (N = 10); open circles identify reference streams (N = 15); error bars represent 90% confidence intervals.

embryos were examined on average from each stream zone to estimate embryo mortality.

Bue et al. (1996) measured significantly greater embryo mortality in oiled streams than in reference streams in 1989 (P = 0.004) and 1990 (P = 0.023); significant differences were recorded in all intertidal areas in 1989 and in the upper intertidal zone in 1990 (Figure 1). These results were consistent with the observed patterns of oil contamination and the results of controlled oiling experiments. Wolfe et al. (1994) found that among oiled streams, the intertidal areas were contaminated in 1989, and much of the remaining oil was deposited in the upper intertidal zone in 1990. In controlled oiling experiments, Marty et al. (1997) and Heintz et al. (1995) found that pink salmon embryos experienced significantly higher mortality when incubated in oiled gravel than in clean gravel. Heintz et al. (1995) also detected significantly elevated mortalities in pink salmon embryos incubated in oiled gravel that had weathered for a year.

In 1991 we observed a larger difference in embryo mortality between oil-contaminated and reference streams than was previously recorded (P = 0.003; Figure 1); this dissimilarity was observed across all stream zones, even in the area above that directly influenced by oil. A similar, but less extreme, pattern of embryo mortality was observed again in 1992 (P = 0.010; Figure 1). Evidence of oil contamination in the intertidal areas was dramatically reduced by 1991 (Wolfe et al. 1996), yet elevated mortality of embryos in oiled streams continued (Bue et al. 1996).

The 1991 and 1992 evaluations demonstrated significant differences in embryo mortality between oil-contaminated and reference streams in both the intertidal and upstream zones. These findings were unexpected because the presence of oil was dramatically reduced in all areas for these years. We developed three hypotheses that could explain these findings: (1) that oil-induced damage to the 1989 and 1990 broods included deleterious mutations in the germ line, (2) that incubating embryos continued to be damaged in a physiological manner by an oiled environment even after visually observable oil was gone and that this impact was expressed as functional sterility, (3) that the observed differences in embryo mortality were due to naturally occurring environmental factors that differed between oiled and reference streams.

All three hypotheses were supportable. Both the genetic-damage and physiological-damage hypotheses seemed credible. Past studies had confirmed that pink salmon embryos take up polycyclic aromatic hydrocarbons (PAHs; Moles et al. 1987), a major component of crude oil, and that these compounds were capable of inducing chromosomal lesions (McBee and Bickham 1988) and influencing endocrine function (Thomas and Budiantara 1995). Pink salmon have an obligate 2year life cycle that results in two genetically isolated lineages, one produced during odd years and the other during even years (Heard 1991). Therefore, genetic or physiological damage induced in one brood year would be expressed in that lineage 2 years later. The environmental-difference hypothesis seemed credible because environmental factors (wind and currents) determined the distribution of the oil, and such factors might also influence the survivability of salmon embryos incubating intertidally.

In this study we continued to monitor pink salmon embryo mortality in oiled and reference streams and tested the environmental-difference hypothesis with a controlled incubation experiment.

Methods

Field monitoring.—We followed methods for pink salmon embryo sampling described by Bue et al. (1996), which were modeled after procedures described by Pirtle and McCurdy (1977). The 10 oil-contaminated and 15 reference streams sampled for pink salmon embryos each fall from 1993 through 1995 were the same ones studied by Bue et al. (1996) from 1989 through 1992.

On each study stream, four zones, three intertidal (1.8–2.4 m, 2.4–3.0 m, 3.0–3.7 m above mean low water) and one that was above most tidal influence (>3.7 m) were measured from the mean low tide mark and marked with stakes. A linear transect approximately 30.5 m in length was established in each zone. The transect ran diagonally across the stream, and its location was staked to ensure continuity of transects between years. Fourteen 0.3-m^2 , circular digs were systematically made along each transect with a high-pressure hose and a specially designed net to flush and capture embryos. Numbers of live and dead embryos and recently hatched alevins were used to estimate embryo mortalities by stream zone.

Differences in embryo mortality were evaluated with a mixed-effects two-factor experiment with repeated measures on one factor (Neter et al. 1990). The two factors were (1) extent of oiling (two levels: oil-contaminated and reference) and (2) the height in the intertidal zone (four levels). The data were blocked by stream, a random effect nested within extent of oiling.

Controlled incubation experiment.—Intrastream crosses were made from gametes from 30 male and 30 female pink salmon collected from each of eight oiled and eight reference streams in southwestern Prince William Sound in 1993 and 1994 (Figure 2). The resulting embryos were incubated in a common environment, after which mortality was assessed. Care was taken to select oil-contaminated and reference streams with similar geographic locations, physical characteristics, and pink salmon spawning times. Streams selected for this study were a subset of those included in the field sampling described in Bue et al. (1996, Figure 1).

Before the experiment, we estimated that gamete collection and the subsequent crosses for four streams would constitute 1 d of work; consequently, we estimated it would take 4 d to complete the experiment. Therefore, the experiment was designed in a blocked fashion in which each day of gamete collection and fertilization constituted a block. All gamete collections, matings, and incubator loadings were conducted in an identical fashion for all streams.

Adults were captured in the stream mouth by means of a beach seine and held in shallow water. Only gametes from ripe individuals (adults that readily extruded eggs or sperm when gently massaged) were taken. Eggs (approximately 1,500) from each female were removed by excising the abdominal wall and allowing them to flow directly into a 1-L Zip-Lock plastic bag. The 30 bags of eggs were then sealed and packed on cotton towels over a 10-cm layer of wet ice in insulated ice chests. Sperm samples from each male (2-3 mL) were placed into a 15-mL plastic centrifuge tube and capped; the 30 tubes were placed on ice in the same chest as the eggs for that stream. When all gametes were collected from a stream, the ice chest was flown to the Armin F. Koernig Hatchery (an average 10-min flight time; Figure 2).

Construction of a stream-specific embryo pool consisting of all single-pair crosses $(30 \times 30 =$ 900) began immediately after the gametes arrived at the hatchery. Crosses were made by first placing 5-mL of eggs (approximately 30 eggs) from each female into each of 30 cups (0.47 L each). After this step, each cup contained approximately an equal number of eggs from each female. Each cup of eggs was fertilized by a different male with 1mL of sperm, followed by 100-mL of freshwater to initiate fertilization. This procedure provided each male an equal opportunity to fertilize eggs from each female. The fertilized eggs were allowed to sit for approximately 3-min, after which they were recombined into a 3-L plastic container and gently rinsed and mixed with freshwater three times.

Embryos from each day of stream sampling were placed into one of four vertical stacks of incubator trays (one stack for each day of collection). Six trays within each stack were divided into 16 equal compartments each with plastic strips (four rows by four columns). Each strip was sealed to the tray to prevent mixing of eggs and larvae between compartments. Twenty-four 100-mL samples of embryos (approximately 580 embryos) were randomly collected from each stream-specific embryo pool and loaded into separate compartments by using a randomized loading scheme.

Dead eggs in each compartment were counted and removed 36 h postfertilization, after which the trays were undisturbed for 4 weeks. Water flow to each of the four incubator stacks was maintained at 15 L/min. Each incubator stack received a so-

BUE ET AL.

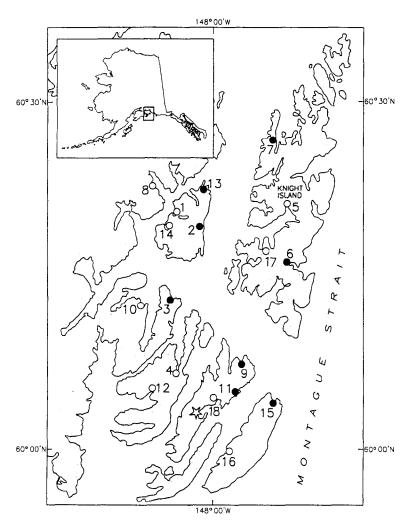


FIGURE 2.—The study area in southwestern Prince William Sound, Alaska, including approximate positions of oil-contaminated (solid circles) and reference (open circles) streams and the Armin F. Koernig Hatchery (open star).

dium chloride bath (20%) for 20 min twice per week to control fungus.

Mortality of eyed embryos was determined and recorded when a distinct embryo eye could be seen through the chorion. Embryos at this stage were siphoned out of their compartments with clear flexible tubing (10-mm inside diameter) and allowed to drop 10–12 cm into a container of freshwater. The resulting physical shock caused coagulation of yolk material in dead embryos that allowed easier identification and removal. Live and dead embryos were gently placed back into their original compartments after siphoning. Both live and dead embryos were counted; the dead were removed and discarded. All larvae were destroyed after hatching.

A technician, who was stationed at the hatchery

during the 3 months of the experiment, performed normal fish culture duties and collected mortality data. The technician was made aware of the day of collection for record keeping but did not know which incubator compartments represented oiled or unoiled streams. The statistical difference in mortality due to oil contamination was evaluated with a blocked analysis of variance.

Results

Field Monitoring

Elevated embryo mortalities were detected in oiled streams in 1993 (P = 0.010; Figure 3). A significant stream zone effect was also evident (P = 0.006), although no oil-by-zone interaction was found (P = 0.320). Estimated contrasts indicated

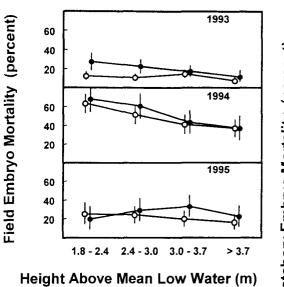


FIGURE 3.—Mean pink salmon embryo mortality observed during fall field sampling in 1993 through 1995. Solid circles indicate oil-contaminated streams (N = 10); open circles identify reference streams (N = 15); error bars represent 90% confidence intervals.

the differences were in the two lower intertidal zones. No statistically significant difference in embryo mortality was detected in 1994 or 1995 between the oiled and reference streams (P = 0.675 and 0.4894, respectively; Figure 3). A significant zone effect was detected in 1994 (P = 0.001) but not in 1995 (P = 0.280), and there was no evidence of an oil-by-zone interaction for either year (P = 0.801 and 0.318, respectively).

Controlled Incubation Experiment

In 1993, gamete collection and subsequent fertilizations began on August 17, when four streams were sampled. Only two streams were sampled the following day due to the low number of ripe fish in the remaining study streams. Sampling was postponed until August 26, at which time ripe fish were plentiful, and six streams were sampled. Four streams were sampled the following day to complete the mating scheme. A modification of the incubator loading scheme was made for the August 26 sampling to accommodate the change from four streams to six streams. The randomized loading design was maintained, but only 18 replicate samples from the embryo pool were collected for four streams and 12 replicate samples for two streams. Embryo mortality was scored at the eyed stage on September 17, 20, 28, and October 2 for the 4 d of sampling, respectively.

FIGURE 4.—Mean mortality of pink salmon embryos observed in the controlled incubation experiment in 1993 and 1994. Embryos were from oil-contaminated streams (solid circles) and reference streams (open circles); the number next to the circle identifies the stream location (see Figure 2).

Significantly elevated embryo mortalities were observed for the oil-contaminated streams (P = 0.012; Figure 4). Stream-specific estimates of embryo mortality were precise (Table 1), and average mortalities were 0.21 for oiled and 0.12 for reference streams.

In 1994, four streams were sampled each day . (August 22, 23, 28, and 29), and embryo mortality was scored at the eyed stage on September 22, 25, 27, and 29, respectively. No significant difference in embryo mortality was observed (P = 0.308; Figure 4). Stream-specific estimates of embryo mortality were again precise (Table 1), and average mortalities were 0.20 for oiled and 0.15 for reference streams.

Discussion

The lack of an accurate and precise estimate of oil exposure was common to many field studies designed to evaluate the effect of the *Exxon Valdez* oil spill on animal populations. Streambed oiling was patchy rather than uniform. This observation TABLE 1.—Estimated mean embryo mortality and corresponding SE for pink salmon embryos incubated at the Armin F. Koernig hatchery in 1993 and 1994; N is the number of embryo samples (about 580 embryos/sample).

Date of			Embryo	mortality	
collection	Stream ^a 7	'reatment ^b	Mean	SE	Ν
	199	3 incubation	on experi	ment	
Aug 17	1	R	0.20	0.005	24
	2	0	0.16	0.006	24
	3	0	0.15	0.029	24
	4	R	0.20	0.036	24
Aug 18	5	R	0.10	0.006	24
	6	0	0.19	0.009	24
Aug 26	7	0	0.22	0.005	18
	8	R	0.11	0.006	18
	9	0	0.32	0.010	18
	10	R	0.04	0.004	18
	11	0	0.25	0.013	12
	12	R	0.16	0.007	12
Aug 27	13	0	0.17	0.011	24
	14	R	0.08	0.005	24
	15	0	0.12	0.023	24
	16	Ŕ	0.06	0.005	24
	199	4 incubatio	on experir	nent	
Aug 22	7	0	0.51	0.004	24
	17	R	0.29	0.005	24
	2	0	0.39	0.005	24
	1	R	0.20	0.003	24
Aug 23	3	0	0.33	0.004	24
	4	R	0.28	0.005	24
	5	R	0.23	0.004	24
	6	0	0.08	0.003	24
Aug 28	16	R	0.04	0.002	24
	15	0	0.08	0.003	24
	10	R	0.04	0.002	24
	9	0	0.04	0.002	24
Aug 29	13	0	0.05	0.002	24
	8	R	0.07	0.003	24
	11	0	0.10	0.004	24
	18	R	0.06	0.003	24

^a Stream locations are depicted by stream number from Figure 2. ^b Treatment R indicates reference streams; treatment O indicates oil-contaminated streams.

is supported by the results of Brannon et al. (1995), in which measured PAHs fluctuated dramatically over time within oiled streams. Although they attempted to do so, Brannon et al. (1995) did not obtain a reliable estimate of field exposure. Such a measurement would have been difficult and extremely expensive to obtain.

We dealt with the lack of a quantitative estimate of streambed oiling by assigning streams to either oil-contaminated or reference categories. While our classifications were initially based on visual observations, they were reevaluated in the fall of 1989 with the results of the anadromous stream surveys conducted in southwestern Prince William Sound (Middleton et al. 1992) as well as with the data collected by the Alaska Department of Environmental Conservation–Spill Response Staff (ADEC–SRS 1989; Neff et al. 1995). With one exception, our characterization of contamination is identical to that of Brannon et al. (1995) for the nine streams present in both studies.

Field Monitoring

Elevated pink salmon embryo mortality observed in oil-contaminated streams in 1993 was consistent with previous significant differences observed annually from 1989, the year of the oil spill, through 1992 (Bue et al. 1996). No statistically detectable difference in embryo mortality was observed in 1994 or 1995, suggesting that the influence responsible for the elevated mortality was reduced.

Controlled Incubation Experiment

In our controlled incubation experiment, we detected elevated embryo mortalities in 1993 but not in 1994 for populations of pink salmon from oilcontaminated lineages. Because the field data agree with data from the controlled incubation, we concluded that naturally occurring variation in the environment could not explain the systematic significant differences in embryo mortality that persisted in post-oil spill generations.

Embryo mortalities observed in the controlled incubation experiment were slightly higher than would be expected in a production hatchery (average mortalities for the controls in 1993 and 1994 of 12% and 15%, respectively). We attributed this higher mortality to the increased handling of gametes required to make the crosses. Both oiled and reference groups were treated identically and replicated. Consequently, the difference between oiled and reference groups was of interest rather than the level of overall mortality.

Long-Term Effects

Pink salmon that spawned during the fall of 1991 were from the 1989 brood year, the brood year that incubated in oiled gravels during the fall of 1989 and spring of 1990. The 1993 and 1994 embryos were the progeny of the 1991 and 1992 broods, respectively. Continuing embryo mortality through 1993 suggests that exposed pink salmon either experienced damage to their germ line in 1989 and 1990 or that the toxicity of the oil persisted through 1991 at a level capable of causing physiological dysfunction.

That genetic damage to pink salmon populations

may have occurred as a result of the Exxon Valdez. oil spill should not be surprising. Major chromosomal aberrations were observed in rodents inhabiting a petrochemical-polluted site (McBee and Bickham 1988). Polycyclic aromatic hydrocarbons are known to cause a variety of genotoxic responses in a variety of organisms including teleosts (Kocan and Powell 1985; Fong et al. 1993; reviewed in Van Beneden and Ostrander 1994). The link between oil pollution and damage to somatic genes is of concern for the immediate generation of the oiled population (Longwell 1977; Daniels and Means 1989; Brown et al. 1996; Hose et al. 1996). But until now, the connection has not been made between the detection of somatic damage and the possible occurrence of germ line genetic damage that may affect the viability of affected populations generations after a pollution event.

Interestingly, germ line genetic damage would probably persist in populations of pink salmon for more generations than it would in other vertebrates. Salmonids share a recent tetraploid ancestry through a gene duplication event approximately 25–100 million years ago (Ohno et al. 1969; Allendorf and Thorgaard 1984). Although some duplicate loci in salmon have been lost (Allendorf 1978; Allendorf et al. 1984), many loci are redundant, thereby masking deleterious recessive alleles. Putative lesions caused by crude-oil constituents might fail to express phenotypically until genetic assortment occurs in subsequent generations (Ohno 1970).

The possibility that the elevated embryo mortalities were due to physiological changes in pink salmon exposed to crude oil remaining in sediments in and around streams has not been assessed. Oil has been shown to have adverse effects on fish reproduction (Truscott et al. 1983; Thomas and Budiantara 1995), although these studies were conducted by treating mature fish with oil and then evaluating for differences in sexual maturation, levels of reproductive hormones, and oocyte development between treated and control fish. We found no completed studies in which embryos were treated and later evaluated for reproductive success. There is evidence that oil was in the intertidal environment in Prince William Sound in 1991 (Babcock et al. 1996), and cytochrome P-450 induction in pink salmon alevins was detected during the spring of 1991 in areas of streams oiled in 1989 (Wiedmer et al. 1996). These two studies indicate that oil was available to pink salmon in

1991 and that some exhibited a physiological response to an oiled environment (Tuvikene 1995).

We would like to reiterate that the field work described in this study and in Bue et al. (1996) was based on observational data, and we cannot definitively prove that crude oil was directly responsible for the elevated mortalities in oil-contaminated streams. We do believe there is strong evidence to suggest that the significant differences in embryo mortalities observed in 1993 were due to a parental effect. This work raises many questions concerning the effect of crude oil on reproductive potential that should be evaluated through controlled experiments. Finally, we also believe this work points to the need for long-term monitoring, beyond the generation immediately affected by a pollution event.

Acknowledgments

We thank Gary M. Miller, Andrew K. Craig, Chris Habicht, David G. Evans, Richard M. Kocan, and Robert B. Spies for invaluable technical assistance. Funding was provided by the *Exxon Valdez* Trustee Council and the State of Alaska Department of Fish and Game. This is contribution PP-137 of the Alaska Department of Fish and Game, Division of Commercial Fisheries Management and Development, Juneau.

References

- ADEC-SRS (Alaska Department of Environmental Conservation-Spill Response Staff). 1989. Impact maps and summary reports of shoreline surveys of the *Exxon Valdez* spill site. Volumes 1, 2: Prince William Sound. ADEC, Valdez.
- Allendorf, F. W. 1978. Protein polymorphism and the rate of loss of duplicate gene expression. Nature 272:76-78.
- Allendorf, F. W., G. Stahl, and N. Ryman. 1984. Silencing of duplicate genes: a null allele polymorphism for lactate dehydrogenase in brown trout (*Salmo trutta*). Molecular Biology and Evolution 1: 238-248.
- Allendorf, F. W., and G. H. Thorgaard. 1984. Tetraploidy and the evolution of salmonid fishes. Pages 1-53 in B. J. Turner, editor. Evolutionary genetics of fishes. Plenum, New York.
- Babcock, M. M., G. V. Irvine, P. M. Harris, J. A. Cusick, and S. D. Rice. 1996. Persistence of oiling in mussel beds three and four years after the *Exxon Valdez* oil spill. Pages 286–297 in Rice et al. (1996).
- Bragg, J. R., R. C. Prince, E. J. Harner, and R. M. Atlas. 1994. Effectiveness of bioremediation for the *Exxon Valdez* oil spill. Nature 368:413–418.
- Brannon, E. J., L. L. Moulton, L. G. Gilbertson, A. W. Maki, and J. R. Skalski. 1995. An assessment of oil spill effects on pink salmon populations following

the Exxon Valdez oil spill—part 1: early life history. Pages 548–584 in P. G. Wells, J. N. Butler, and J. S. Hughs, editors. Exxon Valdez oil spill: fate and effects in Alaskan waters. American Society for Testing and Materials, Publication STP 1219, Philadelphia, Pennsylvania.

- Brown, E. D., and seven coauthors. 1996. Injury to the early life history stages of Pacific herring in Prince William Sound after the *Exxon Valdez* oil spill. Pages 448-462 in Rice et al. (1996).
- Bue, B. G., S. Sharr, S. D. Moffitt, and A. Craig. 1996. Effects of the Exxon Valdez oil spill on pink salmon embryos and preemergent fry. Pages 619-627 in Rice et al. (1996).
- Daniels, C. B., and J. C. Means. 1989. Assessment of the genotoxicity of produced water discharges associated with oil and gas production using a fish embryo and larval test. Marine Environmental Research 28:303-307.
- Degange, A. R., A. M. Dorff, and D. H. Monson. 1994. Experimental recovery of sea otter carcasses at Kodiak Island, Alaska, following the *Exxon Valdez* oil spill. Marine Mammal Science 10:492–496.
- Fong, A. T., and six coauthors. 1993. Carcinogenicity, metabolism and Ki Ras proto-oncogene activation by 7,12-dimethylbenz[a]anthracene in rainbow trout embryos. Carcinogenesis 14:629-635.
- Garrott, R. A., L. L. Eberhardt, and D. M. Burn. 1993. Mortality of sea otters in Prince William Sound following the *Exxon Valdez* oil spill. Marine Mammal Science 9:343-359.
- Heard, W. R. 1991. Life history of pink salmon (Oncorhynchus gorbuscha). Pages 121-230 in C. Groot and L. Margolis, editors. Pacific salmon life histories. University of British Columbia Press, Vancouver.
- Heintz, R. A., S. D. Rice, and J. W. Short. 1995. Injury to pink salmon eggs and preemergent fry incubated in oiled gravel (laboratory study). National Oceanic and Atmospheric Administration, National Marine Fisheries Service, *Exxon Valdez* Oil Spill Restoration Annual Report 94191-2, Auke Bay Laboratory, Juneau, Alaska.
- Helle, J. H., R. S. Williamson, and J. E. Bailey. 1964. Intertidal ecology and life history of pink salmon at Olsen Creek, Prince William Sound, Alaska. U.S. Fish and Wildlife Service, Special Scientific Report-Fisheries 483.
- Hose, J. E., and five coauthors. 1996. Sublethal effects of the *Exxon Valdez* oil spill on herring embryos and larvae: morphologic, cytogenetic, and histopathological assessments, 1989–1991. Canadian Journal of Fisheries and Aquatic Sciences 53:2355– 2365.
- Kocan, R. M., and D. B. Powell. 1985. Anaphase aberrations: an *in vitro* test for assessing the genotoxicity of individual chemicals and complex mixtures. Pages 75-85 *in* M. D. Waters, and five coauthors. Short-term bioassays in the analysis of complex environmental mixtures. IV. Plenum, New York.
- Longwell, A. C. 1977. A genetic look at fish eggs and oil. Oceanus 20(4):46-58.

- Marty, G. D., and seven coauthors. 1997. Ascites, premature emergence, increased gonadal cell apoptosis, and cytochrome P4501A induction in pink salmon larvae continuously exposed to oil-contaminated gravel during development. Canadian Journal of Zoology 75:989-1007.
- McBee, K., and J. W. Bickham. 1988. Petrochemicalrelated DNA damage in wild rodents detected by flow cytometry. Bulletin of Environmental Contamination and Toxicology 40:343-349.
- Middleton, K., M. Fink, K. Sundet, and M. Kuwada. 1992. Alaska Department of Fish and Game Exxon Valdez oil spill response operations report—Habitat Division, 1989–1992. Alaska Department of Fish and Game, Habitat Division, Juneau.
- Moles, A., M. M. Babcock, and S. D. Rice. 1987. Effects of oil exposure on pink salmon, *O. gorbuscha*, alevins in a simulated intertidal environment. Marine Environmental Research 21:49-58.
- Neff, J. M., E. H. Owens, S. W. Stoker, and D. M. Mc-Cormick. 1995. Shoreline conditions in Prince William Sound following the Exxon Valdez oil spill. Pages 312-346 in P. G. Wells, J. N. Butler, and J. S. Hughs, editors. Exxon Valdez oil spill: fate and effects in Alaskan waters. American Society for Testing and Materials, Publication STP 1219, Philadelphia, Pennsylvania.
- Neter, J., W. Wasserman, and M. H. Kutner. 1990. Applied linear statistical models, 3rd edition. Irwin, Homewood, Illinois.
- Ohno, S. 1970. Evolution by gene duplication. Springer-Verlag, New York.
- Ohno, S., J. Muramot, J. Klein, and N. B. Atkin. 1969. Diploid-tetraploid relationship in clupeoid and salmonoid fish. *In* C. D. Darlington and K. R. Lewis, editors. Chromosomes today, volume II. Oliver and Boyd, Edinburgh, UK.
- Piatt, J. F., and R. G. Ford. 1996. How many seabirds were killed by the *Exxon Valdez* oil spill? Pages 712-719 in Rice et al. (1996).
- Pirtle, R. B., and M. L. McCurdy. 1977. Prince William Sound general districts 1976 pink and chum salmon aerial and ground escapement surveys and consequent brood year egg deposition and preemergent fry index programs. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Data Report 9, Juneau.
- Rice, S. D., R. B. Spies, D. A. Wolfe, and B. A. Wright, editors. 1996. Proceedings of the Exxon Valdez oilspill symposium. American Fisheries Society, Symposium 18, Bethesda, Maryland.
- Spies, R. B., S. D. Rice, D. A. Wolfe, and B. A. Wright. 1996. The effects of the *Exxon Valdez* oil spill on the Alaskan coastal environment. Pages 1–16 in Rice et al. (1996).
- Thomas, P., and L. Budiantara. 1995. Reproductive life history stages sensitive to oil and naphthalene in Atlantic croaker. Marine Environmental Research 39:147-150.
- Truscott, B., J. M. Walsh, M. P. Burton, J. F. Payne, and D. R. Idler. 1983. Effect of acute exposure to crude petroleum on some reproductive hormones in salm-

on and flounder. Comparative Biochemistry and Physiology 75C:121-130.

- Tuvikene, Arvo. 1995. Responses of fish to polycyclic aromatic hydrocarbons (PAHs). Annales Zoologici Fennici 32:295-309.
- Van Beneden, R. J., and G. K. Ostrander. 1994. Expression of oncogenes and tumor suppressor genes in teleost fishes. Pages 295–326 in D. C. Malins and G. K. Ostrander, editors. Aquatic toxicology: molecular, biochemical, and cellular perspectives. Lewis Publishers, Boca Raton. Florida.

Wiedmer, M., and five coauthors. 1996. Cytochrome P-

450 induction and histopathology in preemergent pink salmon from oiled spawning sites in Prince William Sound. Pages 509–517 *in* Rice et al. (1996).

- Wolfe, D. A., and eleven coauthors. 1994. The fate of the oil spilled from the *Exxon Valdez*. Environmental Science and Technology 28:A560-A568.
- Wolfe, D. A., and six coauthors. 1996. Toxicity of intertidal and subtidal sediments contaminated by the *Exxon Valdez* oil spill. Pages 121–139 in Rice et al. (1996).

Received October 11, 1996 Accepted June 23, 1997