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Studv History: This project  originated as part  of  the  Sound  Ecosystem  Assessment  program 
conducted  by  the  University  of  Alaska  Fairbanks  and  the  Prince  William  Sound  Science  Center. 
In cooperation  with K. Frost  of  the  Alaska Department of Fish  and  Game, we began  a  stable 
isotope study  of  harbor  seals  and potential  prey  species in Prince  William  Sound. T. Kline,  then 
of the  University  of  Alaska,  was  a  co-investigator but upon his taking  a  position  with  the  Prince 
William  Sound  Science  Center, the project  was  split into two  parts,  with  Kline  collecting  data on 
lower  trophic  levels  and this project  focusing on harbor seals  and prey species. Since FY 96,  this 
project has remained  separate,  although we have  been responsible for  all of the  stable  isotope 
analyses run for  the  Prince  William  Sound  Science Center, for the  University  of  Alaska 
Fairbanks,  and  for  other  investigators  using  isotopic  data.  This project has  expanded  upon  the 
scope of data  in  a  journal  article recently  published (Schell et al.  1998.  Carbon  and  nitrogen 
isotope  ratios  in zooplankton  of  the  Bering, Chukchi  and  Beaufort seas. Marine  Ecology  Progress 
Series 162:ll-23).  Two additional  manuscripts  nearing  publication  and  included  in  this  report 
have  resulted  from this project as well. 

Abstract: Archived  and  recent  harbor  seal  tissues have been used to  determine  food  web 
structure  and  trophic dynamics  of  seals  within Prince  William  Sound  (PWS)  and  the  adjacent 
Gulf of Alaska.  Within  the sound isotope  ratios  confirm  that  most  harbor  seals  are  at the  top of 
food chaiis that  are  based  on in situ  primary  and  secondary  productivity  and  not  on 
allochthonous  production  from  outside  the  Sound. Carbon isotope  ratios  also  indicate  that 
benthic  prey  are a large  component  of  harbor seal diets. Isotope  ratios  along  wild  seal  whiskers 
indicate,  however,  that  some  individuals  migrate into areas @resumably  in  the Gulf)  wherein 
food web structures  are different  and isotope ratios of prey are  considerably  lower  than  within  the 
sound.  Experiments  with  captive  seals  to  determine  whisker  growth  rates  showed  that vibrissa1 
growth is highly  seasonal  and  occurs  primarily  in early spring. Sea  lions  and fur seals  have 
relatively  constant vibrissa1 growth.  Data on isotope ratios of potential  prey  species from  PWS 
and  from other sites  in the  Gulf  of  Alaska indicate  that  a  geographic  isotopic  gradient  in  both 
carbon  and  nitrogen  exists  between  onshelf  and  deep pelagic waters.  The  detailed  patterns of 
these  isotopic  regimes  have  not  yet been fully defied. 

Kev Words: Exton Vuldez oil  spill,  food  webs,  harbor  seals, 6°C , 6I5N, isotope  ratios, Phoca 
vitulina, Prince  William  Sound. 

Proiect Data: Data  consist  of  carbon  and  nitrogen  stable isotope ratios of zooplankton,  forage 
fishes  and  harbor  seals  from  Prince  William  Sound  and selected areas of the Gulf  of  Alaska.  The 
data are in  spreadsheets  and  tabular  format in Core1 QuattroPro  and  Microsoft  Excel  and  will be 
included  in  refereed  publications  and  a  graduate  dissertation.  The  project PI will  maintain  these 
data  files  and  can  be  contacted as follows: 



Dr.  Donald M. Schell 
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EXECUTIVE SUMMARY 

on the natural stable isotope abundances of carbon and nitrogen as tracers  of energy and nutrient 
transfers.  The  goal  of  the study was to determine if  declining populations of harbor seals resulted 
from oil-spill-related effects or if ecosystem variables were shifting in response to external forcing. 

Three major findings emerged from this study: First, analysis of isotope ratios in archived 
and modern pinniped tissues revealed that carbon isotope ratios in the animals, and by extension, 
the primary producers, have declined over the past 50 years, whereas nitrogen isotope ratios have 
remained constant. We had hypothesized that isotope ratios in primary producers reflect 
phytoplankton growth  rates and that in a highly seasonal productivity regime, this would translate 
into  an estimate of energy available for secondary production. Since nitrogen supply to  the 
euphotic zone is limiting, any changes in carbon isotope ratios would not be mirrored in nitrogen 
isotope ratios. We observed that although no temporal pattern was evident in average nitrogen 
isotope ratios in both whale baleen  and  pinnipeds, the carbon isotope  ratios  showed a marked 
decline in the  past 30+ years. This  decline in F C IS evident in both  the Gulf of Alaska and the 
Bering Sea indicating that it  is  not a function of an onshore-offshore geographic gradient or a 
local phenomenon. No apparent trophic shifts have occurred over time but the seasonal carrying 
capacity of the marine system has declined. This strongly suggests, but does not prove,  that the 
decline in marine mammals and other top consumers may arise from  food  stress imparted by 
overall lower abundances of prey. 

Second,  the presence of a geographic gradient in carbon and nitrogen isotope ratios 
declining with distance offshore has been  shown to exist along the  Gulf  of Alaska coast. Although 
data are not available for the central Gulf of Alaska, indications are that both nitrogen and carbon 
isotope ratios reach minima  within some distance offshore. This information will he essential for 
separating geographic and trophic effects on consumer  isotope  ratios. 

Third, captive animal studies on the  growth  rates of vibrissae revealed a major difference 
between harbor seals and Steller sea lions  and fur seals. Harbor seals grow their vibrissae over a 
few months' time, whereas the latter two species grow their whiskers continuously. The  short time 
span represented in harbor seal whiskers restricts their usefulness as a temporal record  of isotope 
ratios in these seals' diet. 

harbor seals within Prince William Sound and the surrounding Gulf of Alaska. Samples were 
obtained from  modern animals  and from specimens archived at the Alaska Department of Fish and 
Game, the University of Alaska Museum, and the National Marine  Mammal  Laboratory. One or 
two long vibrissae were cut or pulled from live  animals, while harvested or dead animals had  all 
vibrissae removed  for analysis. We have analyzed tissues from  over 150 seals, and the data 
indicate that each whisker has a temporal record of several months to a year. This allows 
comparisons of changes in feeding and trophic position over the  temporal span represented. When 
possible, samples from different organ tissues, e.g., muscle and blubber, were also taken. A 
variety of  tissues  from individual  animals were analyzed to determine isotopic fractionation  among 
the tissues. This has allowed normalization of  isotope  data to a single tissue type when samples of 
only one tissue type  were available. 

trophic levels (phytoplankton to zooplankton to fishes to top consumers). To establish the 
required baseline information, we collected potential prey species of fishes and other organisms 

This study  of  the  food webs supporting harbor seals in Prince William Sound was based 

13 . 

During the past three years,  vibrissae (whiskers) and other tissues were collected from 

Carbon  isotope ratios were also used as conservative tracers  of energy supply between 
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from within  Prince William Sound and the adjacent Gulf of Alaska and compared  the  isotope 
ratios  with  those  from  the seals. Stable  isotope  ratios within most harbor seal vibrissae do  not 
appear  to  fluctuate greatly or with any regular periodicity, although  some individuals show  large 
changes  between enriched and depleted values, indicating longer-range  movements. More often 
there  are minor  fluctuations in the 6I3C with  somewhat  larger  fluctuations in the 615N. These 
shifts in the  nitrogen  isotope  ratios probably reflect seasonal  changes in prey availability within a 
small region. 

production is much lower in offshore waters,  as indicated by depletions in both 6I3C and 61% 
These  low  values provide  a distinctive geographic  indicator visible in vibrissae of  seals  that feed in 
pelagic  regions or on prey that have emigrated from  offshore  areas.  Samples  of  fatty  acids  from 
the seals  have  been analyzed in a collaborating study (K. Frost, Alaska Department  of Fish and 
Game) and have  been found to be very different among regions, supporting  the hypothesis that 
seals tend to  reside in relatively small ranges with distinct food web structures in Prince William 
Sound. 

To enable  estimation  of  the  time represented by the  growth  of  a whisker, captive  seals and 
sea  lions held at  the Mystic MarineLife Aquarium were infused with I3C- and 15N -labeled glycine 
in 1996 and 1997.  The added label was detectable in the analyzed whisker and allowed estimation 
of  the vibrissae growth  rate. These calibration data  were essential to  the interpretation  of  temporal 
changes in vibrissae taken  from wild seals. Remodeling of  the Mystic facility and the moving of 
the two labeled seals to the new Alaska Sealife Center in Seward, Alaska, however, interrupted 
this  study, and obtaining  the vibrissae was delayed until the end of  summer  1998.  Further 
calibration came  from  one wild seal tagged in fall 1994 and recaptured in spring 1995.  Whiskers 
from  both  time  points  were analyzed and the results compared with captive-animal data. This 
recapture, and isotopic labeling data on the captive animals, indicated that vibrissa1 growth is 
episodic and tied to the  spring breeding season.  We  conclude  that only part  of  the annual feeding 
cycle is represented in the whisker keratin. Vibrissae from  a  a dead seal showed  that they all grow 
at  approximately the same  rate.  Further experiments will be continued at  the Seward facility. 

Archived tissue samples from  harbor seals were analyzed to determine if the  trophic 
structures  of  the  food  webs changed between  the period prior to  the decline in population and 
current  years. Our data  show  that seals taken in 1995 had a similar range in 613C but were split 
into  two clusters of  6ISN values, suggesting multiple trophic  status within the  population.  The 
values for one group  of animals remained close to  those collected 6 and 20 years previously, 
whereas  the  other  group had higher 615N values, implying feeding at  a higher trophic level. 
Because respiration  reduces biomass approximately 80-90% in going up each trophic level, the 
seals  with higher 615N values may be nearing food-limited conditions. In contrast,  seals  from 
southeastern  Alaska  showed no apparent change in isotope  ratios  over  the period 1975-1995. 

A conceptual model of harbor seal feeding has been constructed based on the known 
isotope ratios in lower  trophic levels and fishes, primarily capelin, herring, and pollock.  Predicted 
isotope ratios in seals using these  food  sources matched observed 6I5N values closely, but  the 
measured 613C values  were higher than predicted. We suggest  that  benthos, which are usually 
enriched  relative to pelagic species at  a given site, are  important in the  food supply of  these seals. 

Samples of  zooplankton collected by cooperating  investigators revealed that primary 
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INTRODUCTION 

This  report  describes  results of a study of  food  webs  that  support harbor  seals in Prince 
William Sound  (PWS).  This  project also contributed to the  Sound  Ecosystem Assessment (SEA) 
program being conducted to describe the food chains supporting  important commercial  fish 
species  that were injured by the Exxon Valdez Oil Spill (EVOS). In addition, it contributes to 
studies by Alaska Department of Fish and Game (ADFG)  personnel to determine  reasons  for  the 
decline of harbor seal and Steller sea lion populations in Prince William Sound.  The  integrating 
methodology  for  this  wide  range  of tasks is  the use of stable isotope  ratios  as natural tracers of 
carbon and nitrogen  transfers  through  the  food  webs. 

Carbon  isotope ratios (13C/12C) serve as  conservative tracers  of energy supply among 
trophic levels (phytoplankton to zooplankton to fishes to  top  consumers). Seals, cetaceans, birds, 
etc.  acquire the  isotope ratios in proportion to  the amount  of food derived  from  each differing 
source.  This, in turn, is reflected in the composition of body tissues and in keratinous  tissues 
(claws, feathers, baleen, and whiskers) as  a temporal record  when  multiple  sources of  food are 
consumed  over  time and space. This allows us to discern important  habitats and food resources in 
animals that seasonally migrate or undergo periods of hyper- and hypotrophy. 

Nitrogen  isotope  ratios (15N/14N) reflect both  the  food  sources and the  trophic  status  of 
the  consumer. As nitrogen in food is  consumed and assimilated by an animal, the heavy isotope is 
enriched by approximately 3%0 with accompanying loss of the  lighter  isotope  through  excretion. 
The enrichment occurs  with  each  trophic step and thus allows the  construction  of conceptual 
models and food  webs and the assignment of trophic  status to species for which dietary  data  are 
sparse. The  data obtained  from  these measurements are unique in that they  trace materials actually 
assimilated and can  thus  be used for more  accurate  ecosystem  modeling. 

because  of  changes in trophic level, food web structure, and primary  productivity in the 
environment,  thus providing an independent tool to verify, quantify, and  model ecosystem 
processes. The  tracer  nature  of  the approach enables the  integration of ecosystem  components. 

It can  be  postulated  that  the natural stable isotope  abundances  of PWS biota will  shift 

The project  comprised  three elements: 

1. 

2. 

3. 

A research  component on marine mammals, focusing on the  trophic energetics and 
ecosystem dynamics of  harbor seals, was  conducted by Dr. Schell, PI, in cooperation  with 
ADFG  personnel  working  as  part  of  the marine mammal program. An additional effort, 
using captive animals to calibrate responses to changing isotopic composition in diet and 
to determine vibrissae growth rates, was also  conducted. 

A research  effort  focusing on lower  trophic levels having direct application to the  testing 
of hypotheses  regarding fisheries resources was conducted by Dr. T. Kline of  the  Prince 
William Sound  Science  Center (PWSSC)  in cooperation  with  the marine mammal 
component.  Isotopic  data  from this study were used to assist in describing the  food 
resources available to seals, but the primary results have been published elsewhere  as  part 
of  the Sound  Ecosystem Assessment. 

As the major isotope  ratio analysis  facility, we have provided analytical services  for 
obtaining  carbon and nitrogen isotope  ratios for other PIS involved  with EVOS studies, 



and have assisted with  the  interpretation of the acquired data.  This  task  has required 
approximately 20-30% of  the analytical and research  effort. 

OBJECTIVES 

1. 

2. 

3 .  

4. 

5 .  

6 .  

The objectives  of this  isotope study included: 

Collect and analyze  samples of harbor seal vibrissae through  cooperative  work  with  the 
Alaska  Department  of Fish and Game in Prince William Sound. 

Collect and analyze samples of  harbor seal prey species including forage fishes, salmon, 
and herring in the vicinity of major haulouts and high population  densities. Samples of seal 
tissues were collected  from animals killed  by Native hunters.  These  samples  were obtained 
with  the assistance of ADFG personnel who were monitoring harvests, and through  the 
efforts of  T. Kline. 

Perform  stable  isotope ratio analyses on tissues and organisms collected during the 
sampling  program.  Through  the  use of carbon isotope  data  on  taxa  collected  over 
geographical  regions,  the presence/ahsence of  isotopic  gradients useful in sorting out 
habitat  dependencies were determined. 

Assist other  research  programs in the Prince William Sound  ecosystem  study by 
conducting  stable  isotope ratio analyses on samples provided, and aid in the interpretation 
of results. We have provided isotope ratio analysis for several studies  sponsored by 
EVOS. 

Through  the use of nitrogen  isotope ratios in collected taxa, assign trophic  status to 
species in each  region. These trophic  states  were  then  compared  with those from 
predictive  models  based on conceptual  food  webs. 

Determine  temporal changes in harbor seal trophic status and food  dependencies by 
comparing  isotope  ratios along the lengths of vibrissae with  isotope  ratios  from available 
prey,  Through  the  use  of captive animals fed laheled diets or by direct infusion of labeled 
amino acids,  establish  the relationships between vibrissae growth  rate and temporal 
changes and the fractionation  factors between the F13C and 615N values of diet and 
consumer. 

METHODS 

Sampling  of  tissues for stable isotope analysis has been described for  both bulk tissues 
(muscle, blubber) and temporally variable tissues (whiskers, claws, etc.) (Schell et  al.  1989, 
Michener and Schell 1994).  This  report includes only the pertinent sampling protocols and a 
synopsis of  the analytical methods. 
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Forage Fishes 

Lower trophic level organisms within Prince William Sound were obtained by T. Kline  and 
analyzed  within the scope  of this project. Stable isotope ratios for  these species were used to 
construct food webs  for harbor seals foraging within PWS. Samples of  a  few additional forage 
fishes from areas of harbor seal haulouts have been provided by ADFG personnel and combined 
with other lower trophic level organisms to assist in assigning trophic status. Pelagic and benthic 
species were sampled during shellfish surveys conducted by ADFG personnel in the  western Gulf 
of Alaska. These prey were used as indicators of regional isotopic differences. Regional 
differences in  prey were used to help locate areas of foraging for seals traveling outside Prince 
William Sound.  The National Marine Fisheries Service triennial survey of  the entire Gulf  of 
Alaska provided prey from areas for  which data were previously lacking. 

A few  grams of muscle tissue were extracted from several samples of each species at  a 
sampling site.  The  tissues  were  frozen in a standard -10°C freezer and transported to  the stable 
isotope facility for analysis. Subsamples of the frozen muscle tissues were dried at 60"C, ground 
for  homogeneity and prepared for mass spectroscopy. 

Pinnipeds 

Harbor seal tissues were collected with the assistance of  the Alaska Department of Fish 
and Game and native subsistence hunters. Multiple tissue types were collected from each animal 
to identify the  isotope fractionation that  occurs  among differing tissues as  a result of variations in 
biochemical metabolism. Biochemical components  of tissues are isotopically different from each 
other; therefore, various proportions  of these components in  different tissues may affect  the 
tissues' isotopic compositions. 

During the past  three years, vibrissae from harbor seals were collected within Prince 
William Sound and from  the surrounding Gulf of Alaska. One to  two  long vibrissae were cut or 
pulled from live  animals,  and harvested or dead  animals  had  all their vibrissae removed  for 
analysis. When possible, samples from different organ tissues, e.g., muscle and blubber, were 
taken for analysis. Alaska Department  of Fish  and Game personnel workmg as part of  the marine 
mammal monitoring effort provided tissues from Prince William Sound, Southeast Alaska, and 
Kodiak harbor seals. 

ADFG researchers have provided archived harbor seal tissues, dating  from the mid-1 970s, 
for stable isotope comparisons. These comparisons were useful in determining if a dietary shift in 
harbor seals had occurred during the past two decades. The University of Alaska Museum and the 
Kodiak Historical Society provided bone tissue for collagen extraction from  harbor seals, Steller 
sea lions, and northern fur seals from various regions of  the  Gulf of Alaska from  the  1950s  to the 
present. The stable isotope ratios of  these tissues were used for comparison with  the stable 
isotope ratios of  modern samples. Assessing the isotopic ratios  of seal tissues  from multiple 
regions prior to the population decline (pre-1970) allowed  any  significant changes in these ratios 
to be used as indications of change in ecosystem productivity over the  past several decades. 

Vibrissae and tissues from 219 harbor seals were analyzed for stable isotope ratios. 
Vibrissae were scrubbed with steel wool to remove any debris and segmented  from base to tip in 
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2.5mm segments. Every  other segment was analyzed for carbon and nitrogen isotope  ratios and 
the reserved segments were archived for  future reference. Collagen was  extracted  from bone 
samples using the technique of Matheus (1997). Tissues were dried at 6 0 T ,  ground for 
homogeneity and prepared for mass spectroscopy. 

isotope-laheled glycine in adult seals and sea lions. The amino acids were injected intravenously 
over one- to two-day  periods. Following the infusion, blood samples were  taken to verify the 
appearance of a label in the animal. The  large  amount  of labeled-isotopes created large  peaks in 
the vibrissae; these acted as temporal  markers. After several months  had passed, vibrissae were 
clipped as close to  the skin as possible. Vibrissae were analyzed for isotope ratios and the distance 
between isotopic peaks  was measured. Growth rates were calculated by dividing the distance by 
the  number  of days between the markers. 

A second type  of  growth  rate experiment was conducted at  the  Vancouver  Aquarium in 
British Columbia, Canada,  on subadult Steller sea lions. Vibrissae  had been  cut  from  the muzzle 
of each animal periodically during the three-year period. The vibrissae were  then analyzed for 
their stable  isotopes  and all the whiskers from  an animal plotted together. Overlap in growth  from 
one vibrissae to the next was  measured  from an inflection point conspicuous on at least two 
separate segments. The date of each cutting was known, and from  these data the  growth  rate  was 
calculated. 

Determination of vibrissae growth rates  was  done using stable carbon and nitrogen 

Analytical  Techniques 

The samples were dried and powdered for homogeneity, and the  isotope ratios  of carbon 
and nitrogen were determined with a Europa 20120 continuous flow isotope ratio mass 
spectrometer.  The samples were combusted at  high temperature and the nitrogen and carbon 
dioxide gases  separated and  purified by gas chromatography. The gases were subsequently led 
into the  mass  spectrometer by capillary action and the  isotope ratios determined. All samples were 
analyzed in duplicate. Results are reported in the standard 6I3C and 6I5N notation relative to Pee 
Dee Belemnite and  air standards for carbon and nitrogen, respectively. Standard replicates were 
analyzed for every twelve samples. If the difference between replicates was greater than 0.5%0, 
samples were re-analyzed. A difference of  0.2%0  was considered acceptable. Analytical error for 
samples was approximately *0.1%0 for both carbon and nitrogen. 

Statistical  Analysis 

Hotelling's T-test  was used to distinguish if regional differences existed among harbor 
seals based on their stable isotope  ratios. Multiple analysis of variance (MANOVA) and Wilk's 
Lambda were used to investigate isotopic differences based on the sex and age  of the seals and the 
region of Prince William Sound and years samples were gathered. ANOVA and Bonferroni 
correction tests were run for  the entire data set of harbor seal tissues to establish significant 
differences among the tissues. Fractionation differences in harbor seal tissues  were calculated 
using least square means and standard error equations. Multiple analysis of variance tests and 
linear regression analyses were conducted on the 47-year data set of  both 613C and 615N 
(SYSTAT for Windows 1992). 



SUMMARY OF RESULTS AND DISCUSSION 

The major findings of this project are included in detail as  manuscripts in the Appendices. 
We summarize  the different elements of  the study and the  important findings. Readers  are 
encouraged to seek  the  appropriate manuscript for details. 

Isotope  Ratio  Gradients  Between Offshore and Nearshore Environments 

The  isotope  ratio  gradients first identified in the  waters  of  the  Beaufort and Chukchi seas 
(Saupe  et a l .  1989) were hrther defined for  the  Bering  Sea, detailed in work  sponsored by the 
U.S. Minerals  Management Service, and published in 1998 (Schell et  al.  1998). The  pronounced 
isotope ratio  gradients  observed in the Bering Sea led to  the belief that similar gradients might  be 
present in the Gulf of Alaska and extending into Prince William Sound.  Knowledge  of  the 
magnitude and position  of  these gradients was essential for  the  interpretation of observed shifts in 
isotope ratios in seal vibrissae. Unfortunately, no detailed or extended offshore sampling was 
carried out in the  EVOS-sponsored  programs.  This led to the acquisition of samples  collected by 
Canadian  researchers  who had undertaken cruises across  the Gulf of Alaska as  part  of high seas 
salmon research.  We  are especially indebted to Dr. David  Welch of  the Pacific Biological  Station, 
Nanaimo, B.C.,  for access to samples collected in 1996 and 1997.  These samples were  sorted  for 
calanoid copepods and euphausiids and the samples run for isotope  ratios. The  6I3C and 615N 
data  are presented in Figures  1 and 2 .  A detailed description of  temporal and spatial variability 
within PWS has been presented by Kline (in press 1999). 

Harp Seal Study 

Through  cooperation  with  Keith  Hobson  of  the Canadian Wildlife Service, we  were able 
to acquire vibrissae from two harp seals that had been held  in captivity and fed known  diets  of 
herring. The whiskers  from  these animals were analyzed along  their  lengths and were compared 
with  the  isotopic  composition of  the diets.  Results indicated that  the  seals closely reflect  the diet, 
remaining within 1.5%0 in carbon and within approximately the  same  range in 6I5N but  showing 
the expected 3%0 trophic enrichment. Data  from  this study provided the preliminary analysis 
techniques  necessary to analyze the harbor seal vibrissae and interpret the  trophic dynamics in 
wild populations.  The  data were compiled and published (Hobson  et al. 1996). 

Isotope  Ratios in Prey Species 

The  isotope ratios of prey species important to harbor  seals were defined within and 
outside  Prince William Sound. Based on the natural history of  harbor seals, including information 
from  stomach  content analyses, pollock, herring, squid, octopus,  salmon, and capelin were evident 
most often in seal stomachs  from Prince William  Sound (Pitcher  1980). Imler and Saber  (1947) 
found the remains of pollock and octopus most abundant from  the  stomachs  of  harbor  seals in 
Prince William Sound.  The pleuronectid, yellowfin sole, had  been observed being taken by seals in 
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an  area  west  of  Montague  Island. A few  samples  of  these,  as well as high-lipid eulachon, were 
collected and added to  the plot.  The PWS prey plots (Figs. 3 and 4)  were created using 6’3C and 
615N values for nine potential  prey species for harbor seals. Neocalanus spp.  were included in the 
food  web as  first-order  consumers within the  sound.  The most enriched isotope  ratios  along  the 
seals’ vibrissae were defined as “max” and the most depleted values were defined as “min” for use 
within the prey plots. For the  sake of clarity, only a random sampling of harbor seals was  added to 
the plot.  These  plots  are not meant to represent  the  absolute prey variety in the  diet,  but  more as 
likely sources of prey for seals  foraging within the  Sound. 

prey  but will also feed on seasonally available species such as  salmon.  The  FI5N in harbor  seals 
having the  more enriched stable  isotopes  (“mad’) (mean  615N = 17.2 ) was isotopically similar to 
that in pollock, yellowf~n sole, octopus, and  silver  salmon from  PWS,  based on a 3%0 trophic 
level enrichment in marine food  webs  (Schoeninger and DeNiro  1984,  Hobson  et al. 1994)  (Fig, 
3).  However,  the 613C in the  seals (mean 613C = -15.4 ) was even generally more enriched than 
the expected 1%0 trophic  increase  for any of  the prey species sampled either in PWS or in the 
Gulf (Fig. 4). The  source of these enriched values may be due  to  the consumption of demersal or 
benthic organisms  for  which samples have  not been  readily available for isotopic analyses. Benthic 
environments  tend to have more enriched values  due to recycling of  nutrients and the  presence  of 
bacterial food  webs (Coffin et  al.  1994,  France  1995). Both yellowfin sole and octopus  are 
benthic feeders, which would  result in these organisms having more enriched 613C. Overlap in the 
range  of 613C between  these benthic feeders and the seals’ “max” values  does  have  the  expected 
1 Yo0 increase.  Seals  feeding on these animals would  exhibit those enriched values (Wells 1978). 
Harbor seals generally have  a mixed diet that results in them digesting prey of different isotope 
ratios so the resulting isotope  ratios they exhibit in their vibrissae often do not have an exact I%o 
and 3’ho enrichment in their  carbon and nitrogen  isotope ratios, respectively (Hobson  et  al.  1997). 
The 615N values in harbor  seals having the  more depleted stable  isotopes  (“min”) (mean  615N = 

14.7 ) were isotopically similar to that  of capelin and pollock from  the  Gulf of Alaska south of 
PWS, and capelin, herring, and squid in PWS (Fig. 3). The  6I3C values in these seals (mean  613C 
= -17.6 ) were most  similar to  those from pollock from  the Gulf and herring and squid from PWS 
(Fig.  4).  Hobson  et al. (1997)  reported  harbor seals from  the  Copper  River  Delta (CRD) in Alaska 
having mean  615N = 18.6 and mean  613C = -17.6 . The  nitrogen  values  are more enriched than 
any found in seals residing in PWS. As Hobson  et  al. pointed out,  the  seals  from  the  CRD  were 
likely sampled at  a  time when they  were  foraging on enriched coho (silver) salmon, which could 
account  for  the high nitrogen  values. The carbon values for  the CRD seals  are very similar to  the 
“min” values for PWS seals and provide additional evidence supporting  the hypothesis that  the 
depleted 613C values in some  PWS  seals  resulted  from foraging on prey  outside  the sound. Most 
harbor seals do  not migrate extensively, but some have been  tracked  over many kilometers out 
into  the Gulf of Alaska (Frost and Lowry  1997). 

are being refined into smaller isotopic  regions to better define feeding areas  for traveling phocids 
or prey transport  into  Prince William Sound  (Figs. 1 and 2). Stable isotope values for Prince 
William Sound prey species  have  been  provided and reported by Kline (in press 1999) as  part  of 
the SEA program  conducted by the Prince William Sound Science Center. 

Based on historical information, harbor seals appear to forage on one to  two preferred 

Similar to work  done by Schell et  al.  (1998) in the  Bering  Sea,  areas  of  the Gulf of Alaska 
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Isotope  Ratio Variations in Wild Harbor Seals 

Tissue samples were collected and analyzed from  over  200  harbor seals. Additionally, 
vibrissae  samples  were collected from over 100 harbor  seals in Prince William Sound. Analyzed 
vibrissae  from  harbor  seals  are listed in Table 1 with the  range and mean stable  isotope  ratios.  The 
isotopic  data  for each vibrissa collected within Prince William Sound are shown in Appendix 3.  
These illustrate  the 6I3C and 6'jN values at 2.5mm intervals along the  lengths of the  vibrissae. 
Vibrissae were collected during ADFG seal surveys in Prince William Sound and  body tissues 
were collected by native subsistence hunters in cooperation  with ADFG. 

harbor seals in Southeast Alaska and Prince William Sound  are significantly different by region, 
F4,98 = 6595.9, p = <0.001.  Harbor seals in Southeast Alaska and Kodiak  are significantly 
different by region, F4,62 = 5648.6, p = <0.001. Harbor  seals in Prince William Sound and Kodiak 
are significantly different by region, F4,92 = 12555.5, p = <0.001. Southeast Alaska seals, all from 
Frederick  Sound, had a mean 6I3C = -18.1 i 0.2 and a mean 615N = 16.2 f 0.2. Prince William 
Sound seals had a mean 613C = -17.9 i 0.2 and a mean 6% = 17.0 f 0.2. Kodiak  seals from  the 
east and west  sides ofthe island had a mean 613C = -16.5 f 0.2 and a mean 615N = 17.3 % 0.2. 
Both  the 13C  and 15N isotopes  of  harbor seals are increasingly enriched from  Southeast  Alaska 
westward to  Kodiak This enrichment may be  the result of  more nutrient-rich water in the  western 
portion  of  the Gulf, allowing for larger, faster-growing  phytoplankton  nearshore. The Alaska 
Coastal  Current may transport  more nutrients as it travels westward  along  the Gulf coast  of 
Alaska and the increased amount  of nutrients would be available for  western  phytoplankton 
communities.  These  phytoplankton  would have more enriched stable isotope ratios and these 
values  would  be  incorporated and transferred through  the food web so all organisms  would  reflect 
a  greater enrichment (Laws et al. 1995) 

Seals from 1 1  sites have been sampled in Prince William Sound (Fig. 5). The 613C and 
615N values were averaged from  the vibrissae for  each seal and their  values  used  for statistical 
analysis. Nine of  the I 1 sites are in close proximity to one another and were  grouped for analysis. 
The  two remaining locations in northeastern Prince William Sound  were  grouped  together  for 
analysis. Adult and subadult harbor seals from the 9 areas in southern  Prince William Sound are 
significantly different by area,  F16_1896 = 19.1,  p = <0.001; sex Fz,,jj = 11.1, p = <0.001, and age 
F,,,,,, = 45,953,  p = <0.001. The  two areas in northeastern Prince William Sound  are 
significantly different from  each  other F2,86 = 1 1.8, p = <0.001. There  is  a significant difference in 
age F4,170 = 9.4, p = <0.001 but  not  between sexes. Further analyses were conducted individually 
for each  of the 11 sampling areas.  The stable isotope differences observed in seals  from different 
locations  appear  to  agree  with  some  of  the  location differences defined by the fatty-acid analysis 
(Iverson et al. 1997). These differences may result  from juveniles of a  species being eaten in one 
region  of  the  Sound while adults  of  the same species are eaten in another  region. 

any  regular periodicity, although some seals do  show  large  changes  between enriched and 
depleted  values.  Harbor  seals sampled in 1993 had relatively constant 613C values and some 
fluctuations (<2%0) in 615N values that likely correspond to seasonal  changes in primary prey 
type.  The periodicity of the  fluctuations in the  9 seals does  not  appear  regular. Six of 10 seals 
sampled  from  southern PWS in the spring of 1994 had large,  synchronous  fluctuations,  as  large as 
5.5%0, in 613C and 615N. Two-thirds ofthe seals sampled in September  1994 had synchronous 

Based on the combined use  of [ACH] averaged 6I3C and 615N values  from vibrissae, 

Stable  isotope  ratios within harbor seal vibrissae do  not  appear  to fluctuate  greatly or with 



fluctuations  larger  than l%o  in 6I3C and 6I5N in at  least  one  location  along  the length ofthe 
whisker. Six of  the  12 whiskers analyzed in spring of  1995 and 6 out  of 7 in fall of  1995 also had 
synchronous  fluctuations  larger  than l%o in 613C and 6I5N in at least one location  along  the 
length of the whisker. A random sampling of  seals in the spring and fall 1996  as well as summer 
1997 and 1998 revealed that  a majority of  the animals had fluctuations  greater  than l%o in 61% 
and 6I5N (Table 1). The temporal  patterns  appear to depend on the region, season and year in 
which the seals were  sampled. 

The  cause of these shifts is not currently known,  but  we hypothesized that  prey  outside 
Prince William Sound are  more depleted in stable  isotopes and that  some seals may  be foraging on 
the 13C-depleted prey. Evidence  for  travel  outside  the  sound is provided by satellite tag  data 
(Frost and Lowry  1996). Prey data, e.g., from  herring and pollock,  from  Dr. Tom Kline have 
shown very little isotopic variation among locations within the  sound.  However, Kline has found 
an isotopic  gradient  between Neoculanus cristutus from  the  northern Gulf of Alaska just  south  of 
Prince William Sound and N. cristutus within the  Sound. An approximately 4%0 depletion  exists 
in  613C of  the calanoid copepods  outside  the sound relative to those within the sound (Kline 
1997). Similar isotopic  gradients of 2%0 have been identified by Schell et al. (1998) for 
zooplankton in the  Bering  Sea and Aleutian Islands, with onshelf waters being more enriched and 
deep  water  regions being more depleted in 613C and 615N. Prey data collected south  of  Prince 
William Sound during the 1996 NMFS Gulf of Alaska survey revealed some evidence of  an 
isotopic  gradient in higher trophic  organisms. 

values based on differences greater  than I%o in  613C and 615N, respectively. Vibrissae with 
fluctuations in 613C and 615N less than 1%0  had their  isotope values averaged  for  the  entire 
whisker.  Because  depleted  isotope values are  expected in pelagic food  webs,  the enriched values 
along  the vibrissae are assumed to correspond to prey from  the sound while the depleted values 
correspond to prey from  the Gulf of Alaska. Because  harbor seals tend to have strong site fidelity, 
it is  thought  that seals with  constant  isotope  ratios forage near their haul-out sites in Prince 
William Sound (Pitcher and McAllister 198 1). 

Vibrissae analyzed by Hobson  et  al.  (1996)  from  captive harp seals showed  minor 
variation in the  isotope ratios along their  lengths that they  suggested may have been due  to natural 
isotopic variation in the animals. Our vibrissae growth  rate study on captive harbor seals  showed 
very little variation in the  isotope ratios  during the time in which they appeared to be  growing  but 
the  fluctuations in their  growth may be  associated  with metabolic changes in the seals relating to 
breeding and molting periods.  The  isotope  ratios  along  the vibrissae continue to reflect assimilated 
prey but the  time periods they reflect are in question. Differences in the vibrissae growth  rates and 
the  length of time  they  are retained are  unknown  for  these two species; however,  the  harp seal 
study did provide  range  estimates  for  isotopic variation in wild seals feeding on a  constant  diet. 
These  criteria  were  used  above in order to interpret  dietary changes based on isotopic 
fluctuations. 

The  isotope fluctuations in the seal vibrissae were separated  into maximum and minimum 
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Table I .  Stable carbon (6°C) and nitrogen (6"N) isotope  ratios in vibrissae of harbor seals from Prince William Sound, Kodiak  and 
southeast Alaska. Age designation refers to adult (A), subadult (SA) , yearling (Y), and pup (P) seals. 

Harbor Seal SampleDate  Sex Age Range I3C I3C Max./Min. 13C Range I5N  15N Max./Min. "N 

Harbor Seals - southeast Alaska, Gulf of Alaska 
HSAISE 
HSA2SE 
HSA3SE 
HSA4SE 
HSA5SE 
HSA6SE 
HSA7SE 
HSA8SE 
HSA9SE 
HSAIOSE 

HSA12SE 
HSA13SE 
HSA14SE 
HSAl5SE 
HSA16SE 
HSA17SE 
HSA18SE 
HSA19SE 
HSA20SE 
HSB 1 SE 
HSB2SE 
HSB3SE 
HSB4SE 
HSBSSE 
HSB6SE 

I HSAl1 SE 

5 April 1993 F 
5 April 1993 M 
8 April 1993 M 
9 April 1993 M 
9 April 1993 F 
9 April 1993 F 
9 April 1993 M 
9 April 1993 M 
9 April 1993 F 
Sept. 1993 
Sept. 1993 
Sept. 1993 
Sept. 1993 
Sept. 1993 
Sept. 1993 M 
Sept. 1993 M 
Sept. 1993 M 
Sept. 1993 M 
Sept. 1993 F 
Sept. 1993 M 
17 Aug. 1994 M 
19 Aug. 1994 M 
I9 Aug. 1994 M 
23 Aug. 1994 M 
23 Aug. 1994 F 
23  Aug. 1994 F 

P 
A 
A 
SA 
P 
SA 
A 
P 
A 

A 
A 
SA 
A 
A 
A 
A 
A 
A 
SA 
A 
A 

-14.4 to -13.3 -13.8  -13.4 / -14.2 

-13.6 to -13.1  -13.3 

-14.6  to  -13.9  -14.3 

-14.1 to -12.4  -13.4  -12.5 / -14.0 
-14.1 to -13.0  -13.6  -13.0 / -13.8 
-16.9 to -13.5 -15.4  -13.6  /-15.5 
-17.8 to -14.5 -16.8  -14.5 / -17.6 
-14.1 to -13.5  -13.7 

-17.6  to-14.1  -16.8  -14.1  1-17.1 

-17.0 to  -13.4  -14.7  -13.6 / -16.7 

-14.2 to  -13.5  -13.9 

-14.5 to -14.1  -14.3 
-14.5 to -14.0  -14.2 
-14.4  to -14.1  -14.2 
-16.2  to  -13.6  -14.3  -13.7 / -16.2 
-16.8  to  -14.8 -16.1 -15.0 / -16.9 
-17.8  to  -14.0  -15.4  -14.1  /-17.6 
-14.3  to  -12.9  -13.3  -13.1  /-14.2 
-14.6 to -14.0 -14.2 
-14.5 to -13.5 -13.8  -13.5 / -14.5 
-18.0 to -14.6  -16.8  -14.6 / -18.0 
-18.1 to -14.8  -17.1  -14.8  /-18.0 
-17.7  to -16.0 -17.2  -16.0 / -17.7 
-15.2 to  -14.7  -14.8 
-15.0 to  -14.6  -14.8 
-15.7 to  -14.4  -14.9  -14.5 / -15.6 

15.6 to 18.2 17.5  18.1 / 17.2 
14.4 to  18.5 15.3  16.1 / 14.5 
17.4 to  18.1 17.8 
14.5 to 17.8 16.6  17.4 / 16.1 
14.0  to  15.7 14.5 
14.7  to  16.3 15.5 
16.9  to  17.5 17.1  17.5 / 16.9 
14.1 to 17.9 16.9  18.0 / 15.3 
13.1 to  17.0 14.6  16.9/ 13.1 
14.5 to  17.0 15.6  16.9 / 15.4 
17.8 to 18.6 18.2 
15.1 to  16.1 15.4 
15.5 to  17.2 16.1 
14.9 to  15.4 15.2 
14.4  to  16.4 15.4  16.4 / 14.4 
14.0  to  15.3 14.5  15.3 / 14.3 
13.5  to  16.0 14.8  15.8 / 13.7 
16.5  to  17.9 17.2  17.8 / 16.5 
15.0  to  17.1 15.9 
14.6 to  16.0 15.3 16.0 / 14.6 
14.2 to 16.9 14.9  16.9 / 14.2 
13.7 to  16.2 14.5 16.2 / 13.8 
13.8  to  15.8 14.6 15.8/  13.8 
15.6  to  16.6 16.1 
15.9 to 17.2 16.4 
14.8  to  16.1 15.4  16.0 / 15.0 



HSB7SE 
HSB8SE 
HSB9SE 
HSB 1 OSE 
HSB 1  1 SE 
HSB 12SE 
HSB 13 SE 
HSB14SE 
HSBISSE 
HSB  16SE 
HSB  17SE 
HSClSE 
HSC2SE 
HSC3SE 
HSC4SE 
HSCSSE 
HSC6SE 
HSC7SE 
HSC8SE 
HSC9SE 
HSCIOSE 
HSCllSE 
HSC  12SE 
HSC13SE 
HSC  14SE 
HSCISSE 
HSC16SE 
HSC 17SE 
HSC18SE 
HSC19SE 
HSC20SE 
HSC2  1 SE 

z 

19  Aug. 1994 F A 
24 Aug. 1994 F SA 
13 Sept.  1994 M A 
13 Sept. 1994 F A 
13 Sept. 1994 M A 
13 Sept. 1994 M A 
13 Sept. 1994 F SA 
13 Sept. 1994 F P 
13 Sept. 1994 M A 
13 Sept. 1994 F A 
13 Sept.  1994 M A 
I9 April 1995 M A 
19 April 1995 M A 
19 April 1995 F A 
19 April 1995 F SA 
19April 1995 M A 
I9 April I995 M A 
19  April 1995 F SA 
19 April 1995 M A 
19 April 1995 F SA 
19  April 1995 M A 
20 April 1995 M A 
20 April 1995 M A 
20 April 1995 M A 
20 April 1995 M SA 
21 April 1995 M A 
21 April 1995 M A 
21 April 1995 F A 
21 April 1995 M A 
21 April 1995 F A 
21 Sept. 1995 M A 
21 Sept. 1995 M A 

-17.9  to  -14.2  -17.1 -14.2 / -17.7 
-15.9  to  -14.6 -15.1 -14.8 /-15.7 
-16.1 to -13.5  -14.3 -13.7/-16.1 
-16.2 to  -14.0  -14.9  -14.0 L l 6 . 2  
-17.6  to -13.8  -15.5 -13.8 / -17.5 
-17.5  to  -13.9  -15.0  -14.0 / -17.4 
-17.7  to -16.3 -17.0  -16.3 / -17.5 
-14.8  to -14.1 -14.4 
-17.3 to -14.3 -15.3 -14.4 / -16.9 
-17.6  to  -15.3 -16.8 -15.3 / -17.6 
-17.1  to  -13.9 -14.8 -14.0/-17.1 
-15.8 to -13.3  -14.1  -13.3 / - I 5 8  
-17.2  to-14.1 -15.3 -14.1  /-17.2 
-16.5 to  -13.9  -14.8 -14.1 1-16.5 
-15.6 to -14.1  -14.6  -14.1 / -15.6 
-17.7 to -16.4 -17.1 -16.4 / -17.7 
-17.8  to  -13.9  -16.0  -14.0 / -17.8 
-15.1 to -14.0  -14.3 -14.0 1-15.1 
-17.8 to -13.8  -16.7 -13.8 / -17.8 
-15.2  to  -13.8 -14.3  -13.8 / -15.2 
-17.2 to -13.4 -14.5 -13.4 / -17.2 
-17.4  to  -14.4  -15.7  -14.6 / -17.4 
-14.1 to  -13.2 -13.8 
-18.1  to  -13.9  -15.9  -14.0  /-18.1 
-14.1 to -13.2 -13.6 
-17.3 to -13.4  -14.8 -13.4 / -17.3 
-17.0 to -13.4  -14.9  -13.4 / -17.0 
-18.1  to-13.5 -16.4  -13.5 /-18.0 
-14.9  to  -14.2 -14.6 
-17.9  to -14.3 -15.4  -14.5 / -17.8 
-14.9 to -14.0 -14.3 
-16.1  to  -14.0  -14.6  -14.0 / -16.1 

13.7  to  15.8 
15.0 to 16.2 
15.3  to  17.3 
14.8 to 16.2 
14.4 to 17.8 
14.3 to 16.3 
13.8 to 15.6 
15.2  to 15.9 
14.0 to  17.6 
14.5 to  15.9 
14.7 to  17.7 
14.9 to 17.5 
14.7 to 18.0 
14.8 to  16.2 
14.5  to 15.8 
14.5 to  16.1 
14.8 to 17.9 
14.7  to 16.3 
14.3 to  16.6 
14.7 to  15.3 
14.3 to 18.6 
14.4  to 18.4 
17.8 to  19.1 
14.7 to 17.7 
16.2  to 17.5 
16.4 to  17.6 
15.1 to 16.0 
14.2 to 17.0 
17.6 to 18.1 
14.2  to  15.5 
15.5 to 17.1 
14.9  to 16.6 

14.4 
15.6 
16.6 
15.7 
15.9 
15.5 
14.4 
15.7 
15.8 
15.0 
16.7 
16.3 
16.5 
15.7 
15.1 
15.2 
15.9 
15.5 
15.2 
15.0 
16.7 
16.2 
18.2 
16.3 
16.9 
17.1 
15.6 
15.2 
17.8 
14.7 
16.6 
16.2 

15.8 I 13.8 
16.2 / 15.3 
17.3 /15.3 
16.0 I 14.8 
17.7 / 14.4 
16.3 / 14.3 
15.5 I 13.9 

17.6 / 14.0 
15.9 / 14.5 
17.7 I 14.7 
17.5 / 14.9 
18.0 / 14.7 
16.2 I 14.9 
15.8 / 14.6 
16.0 I 14.5 
17.9 I 14.9 
16.1 115.0 
16.4 I 14.3 
15.3 114.7 
18.6 I 14.3 
17.8 I 14.9 

17.6 / 15.4 

17.3 / 16.4 
16.0/ 15.1 
17.0 / 14.2 

15.3 114.3 

16.7 / 14.9 



HSC22SE 21 Sept. 1995 F A  -14.4  to  -14.2  -14.3 
HSC23SE 21 Sept. 1995 M A  -16.0  to  -14.0 -14.6  -14.1 / -16.0 
HSC24SE 22 Sept. 1995 F SA  -15.7 to -14.4 -14.7  -14.4 / -15.7 
HSC25SE 22 Sept. 1995 F A  -14.6  to -14.1  -14.3 
HSC26SE 22 Sept. 1995 M A  -17.4  to -15.6 -16.6 -15.8 / -17.3 
HSC27SE 22 Sept. 1995 M A  -14.5 to -13.7 -14.0 
HSC28SE 22 Sept. 1995 F P -15.0 to -13.6 -14.1  -13.7/  -14.9 

Harbor Seals - Prince William Sound 
HSAlPWS 7May 1993 M 
HSA2PWS 7  May 1993 F 
HSA3PWS 7May 1993 M 
HSA4PWS 7 May 1993 M 
HSASPWS 7May 1993 F 
HSA6PWS 8  May 1993 F 
HSA7PWS 8 May 1993 F - HSA8PWS 8  May 1993 M 
HSA9PWS 8 May 1993 M 
HSAlOPWS 8  May 1993 M 
HSAl  lPWS 9  May 1993 M 
HSA12PWS 9  May 1993 M 
HSAI3PWS 9May 1993 F 
HSBlPWS 26 April 1994 F 
HSB2PWS 27 April 1994 M 
HSB3PWS 27 April 1994 F 
HSB4PWS 27 April 1994 M 
HSBSPWS 27 April 1994 M 
HSB6PWS 28 April 1994 M 
HSB7PWS 28 April 1994 F 
HSBBPWS 28 April 1994 M 
HSB9PWS 28 April 1994 M 
HSBlOPWS 28 April 1994 M 

VI 

A 
SA 
A 
A 
SA 
SA 
A 
SA 
A 
SA 
A 
SA 
SA 
SA 
SA 
A 
SA 
A 
A 
A 
SA 
SA 
A 

-14.8  to -13.9 -14.5 
-16.2  to -14.8 -15.4  -15.0 / -16.2 
-15.8 to  -14.8  -15.2 
-16.5  to -15.0 -15.9 -15.0 1-16.4 
-16.0 to -15.4  -15.8  -17.0 / -17.9 
-16.4 to  -15.0  -15.9 

-15.7 to -15.2 -15.4 

-15.6 to -15.1  -15.3 

-15.2  to  -14.2  -14.6 
-16.3 to -16.0  -16.1 

-16.4 to -15.2 -15.7 

-15.3  to  -14.7  -15.0 

-15.1  to -14.7 -14.9 

-17.1  to -15.7 -16.4 
-16.6 to  -15.7  -16.2 
-16.5 to  -12.6  -14.6  -12.6 / -16.3 
-16.2  to -15.3  -16.1 
-17.9 to -17.0  -17.5 
-17.6  to -15.8 -16.6  -16.01  -17.5 
-17.8 to -12.5  -15.2 -12.7 / -17.6 
-17.7 to -15.5 -16.3 -15.6 / -17.6 
-18.1  to -16.4 -17.1 -16.5/-18.0 
-17.7 to  -14.5  -15.8 -14.8 / -17.7 

16.7  to  17.0 
14.9 to 17.2 
15.0  to  15.8 
15.7  to  16.9 
14.3 to 15.5 
15.6  to  16.5 
16.3 to 18.3 

18.1 to  19.5 
15.3 to  19.0 
17.3 to 17.9 
15.8 to 17.9 
15.8 to 18.8 
15.4  to  16.7 
15.8 to 16.7 
15.5 to 17.9 
16.9  to  18.7 
18.1  to  19.2 
16.3  to  17.9 
16.1 to  19.3 
15.8 to 17.1 
14.7  to  16.7 
15.2 to 17.3 
13.4  to  18.0 
15.8 to 16.6 
14.0 to 15.9 
13.3 to  16.2 
13.7  to  17.4 
13.7 to 16.9 
13.6  to  16.8 
15.2  to  17.8 

16.8 
16.5 
15.3 
16.2 
14.8 
16.0 
17.3 

18.8 
17.7 
17.5 
16.7 
17.1 
16.1 
16.2 
16.4 
17.5 
18.6 
16.8 
18.5 
16.4 
15.8 
16.1 
16.0 
16.1 
14.9 
15.0 
15.6 
15.6 
15.4 
16.2 

17.2  114.9 
15.8 / 15.0 

15.4 / 14.4 

18.3 I 16.3 

19.0 I 15.3 

17.8 / 15.9 
15.8 114.2 

17.8 / 13.8 

15.8 / 13.5 
17.1 / 13.7 
16.7 I 13.9 
16.71  13.8 
17.4 I 13.8 



HSBllPWS 18 Sept. 1994 F 
HSBI2PWS 18 Sept. 1994 F 
HSBl3PWS I8 Sept. 1994 M 
HSBI4PWS 18 Sept. 1994 M 
HSBlSPWS 18 Sept. 1994 F 
HSBl7PWS 18 Sept. 1994 M 
HSBl8PWS 18 Sept. 1994 M 
HSB19PWS 18 Sept. 1994 M 
HSB20PWS 18 Sept. 1994 F 
HSB21PWS 18 Sept. 1994 M 
HSB22PWS 18 Sept. 1994 M 
HSB23PWS 18 Sept. 1994 M 
HSB24PWS 19 Sept. 1994 F 
HSB25PWS 19  Sept. 1994 F 
HSB26PWS 19 Sept. 1994 M 
HSB27PWS 22 Sept. 1994 F - HSB28PWS 22 Sept. 1994 M 
HSB29PWS 22 Sept. 1994 M 
HSB30PWS 22  Sept. 1994 F 
HSB31PWS 22  Sept. 1994 F 
HSB32PWS 22  Sept. 1994 F 
HSB33PWS 22 Sept. 1994 F 
HSB34PWS 22  Sept. 1994 M 
HSB3SPWS 22  Sept. 1994 F 
HSB36PWS 22  Sept. 1994 M 
TAHSlPWS 27  Sept. 1994 F 
TAHS3PWS 29  Sept. 1994 F 
TAHS4PWS 30 Sept. 1994 M 
TAHSSPWS 30  Sept. 1994 M 
TAHS6PWS 1  Oct. 1994 F 
TAHS7PWS 1 Oct. 1994 M 
HSClPWS 9May 1995 M 

m 

A 
SA 
SA 
A 
SA 
SA 
SA 
SA 
SA 
SA 
SA 
A 
A 
P 
SA 
A 
A 
P 
A 
SA 
A 
SA 
A 
A 
A 
SA 
A 
A 
A 
P 
P 
SA 

-17.9  to  -16.3  -17.1  -16.6  1-17.6 
-16.9  to  -15.8  -16.2 

-17.2  to  -16.1  -16.6  -16.2/-17.1 

-16.6  to -15.5 -15.9 
-16.6  to  -16.1  -16.3 

-16.5  to -15.8  -16.1 
-17.0  to  -14.5 -15.8  -13.5 / -18.2 
-18.2  to -13.5 -15.1 -13.5 1-18.2 
-17.9  to  -16.2  -17.6  -16.4  1-17.8 
-16.1 to -15.6 -15.9 

-16.5 to -16.0  -16.3 
-17.3  to -13.9 -15.4  -14.1  /-17.3 
-17.5  to  -15.6  -16.4  -15.7  1-17.3 
-16.7  to  -15.2  -15.9 -15.2 1-16.5 

-17.7  to -16.1  -16.8 -16.1 /-17.6 

-17.8 to -14.3  -16.4 -14.3 1-17.5 
-17.2 to -14.4 -15.3 -14.4  /-17.0 

-17.9 to -16.8 -17.6  -16.9  1-17.9 
-18.1 to -16.7  -17.5  -16.8  1-18.0 

-16.4  to  -16.1  -15.6 

-17.8  to -16.1 -16.5  -15.5  1-17.7 
-17.8  to  -14.9  -15.7 -15.3 1-17.4 

-16.8  to -15.8 -16.1 

-17.0  to  -13.2  -15.2  -13.6  1-16.6 

-16.8 to  -16.2  -16.4 

-17.5  to -14.2  -15.1  -14.3 / -17.3 

-17.8 to -15.2 -16.9 -15.6 1-17.6 

-17.8  to  -13.8  -16.1  -14.0  1-17.9 

-18.1  to -15.6 -16.8  -15.6  1-18.0 

-17.5 to -15.5 -17.0  -15.6  1-17.4 

-17.9  to  -15.7  -16.4  -15.8  1-17.7 

-17.3 to -15.5 -16.1  -15.5 / -16.9 

14.7  to  17.1 
16.1  to  17.2 
15.5 to  16.1 
14.8  to 16.1 
15.8  to  18.9 
15.5  to  16.3 
15.6  to  17.0 
15.5  to 16.5 
16.1 to  17.2 
15.6  to  17.1 
15.4  to  19.2 
14.0  to  15.4 
15.6  to  16.8 
16.6  to  17.9 
15.0  to  16.6 
14.9  to 17.5 
14.6  to  16.4 
17.5  to  19.2 
14.5  to 16.8 
14.6  to  16.7 
14.3  to  17.1 
14.7  to  16.6 
14.7  to  17.2 
15.0  to  17.4 
14.5 to 16.2 
14.4  to  17.8 
14.3 to 17.1 
16.1 to  18.7 
14.4  to 16.1 
16.0  to  18.3 
14.3 to 19.8 
15.3 to 17.6 

15.4 
16.7 
15.8 
15.4 
17.7 
15.9 
16.2 
16.0 
16.7 
16.4 
17.5 
14.4 
16.3 
17.1 
15.5 
16.4 
15.7 
18.4 
15.2 
15.7 
15.5 
15.9 
16.0 
15.9 
15.1 
15.8 
14.9 
17.3 
15.6 
16.8 
17.5 
16.3 

17.0 I 14.7 

16.0 I 14.8 
18.8 I 15.9 

17.1 / 15.6 
19.1  115.5 
15.3 / 14.3 

17.3  116.2 

17.4/ 14.9 
16.4 I 14.7 
19.0  117.5 
16.5  114.7 
16.5  114.5 
17.0 / 14.4 
16.4 / 14.8 
17.0 I 14.9 
17.4 / 15.1 
16.2  114.5 
17.8 / 14.9 
17.1 I 14.7 

16.2  114.5 
17.5  114.5 
19.5 / 14.8 
17.3 115.4 



HSC2PWS 
HSC3PWS 
HSC4PWS 
HSC5PWS 
HSC6PWS 
HSC7PWS 
HSCBPWS 
HSC9PWS 
HSCIOPWS 
HSCl  IPWS 
HSC12PWS 
HSC13PWS 
HSC 14PWS 
HSCISPWS 
HSC16PWS 
HSC17PWS - HSCI8PWS 
HSCI9PWS 
HSC20PWS 
HSC21PWS 
HSC22PWS 
HSC23PWS 
HSC24PWS 
HSC26PWS 
HSC27PWS 
HSC37PWS 
HSC41PWS 
HSC42PWS 
HSD2PWS 
HSD3PWS 
HSD4PWS 
HSDSPWS 

9 May 1995 M 
9May 1995 M 
9 May 1995 M 
9May 1995 M 
11 May 1995 F 
11 May 1995 M 
11 May 1995 F 
11 May 1995 F 
11 May 1995 M 
11May 1995 F 
11 May 1995 M 
12  May 1995 F 
12May 1995 M 
12May1995  M 
12May1995  M 
12 May 1995 F 
12May1995  M 
12  May 1995 F 
13May1995 F 
I3 May 1995 F 
13 May 1995 M 
Sept. 1995 F 
Sept. 1995 F 
Sept.  1995 F 
Sept. 1995 F 
Sept. 1995 M 
Sept. 1995 M 
Sept.  1995  M 
April 1996 F 
April 1996 F 
April 1996 F 
April 1996 M 

SA 
SA 
SA 
SA 
SA 
SA 
A 
SA 
SA 
SA 
A 
SA 
A 
A 
A 
SA 
SA 
SA 
A 
SA 
SA 
SA 
P 
A 
A 
A 
SA 
SA 
SA 
SA 
Y 
A 

-17.5 to  -13.4 -14.9  -13.5 /-17.5 
-16.3 to -15.0  -15.4  -15.0 I -15.9 
-17.5 to -16.1  -16.6  -16.4 / -17.4 
-17.5 to  -15.6 -16.2 -15.6 I -17.5 
-17.2 to  -15.4  -16.2  -15.5 / -17.0 
-17.6 to -15.1 -16.2 -15.2  1-17.5 
-17.8 to  -14.3  -16.4  -14.4 / -17.8 
-18.0  to  -15.1 -15.9  -15.2 I -17.9 
-17.2 to  -12.8 -14.1 -12.9  1-17.1 
-15.0 to  -13.7  -14.3 
-16.5 to -16.0  -16.1 
-17.1 to -15.0 -16.4 -15.0 / -17.0 
-16.5 to -15.0  -15.5  -15.0  1-16.5 
-17.7  to  -15.6  -16.3  -16.0  1-17.7 
-17.4 to  -16.0  -16.5  -16.1  1-17.3 
-17.3 to -16.0  -16.5  -16.3  1-17.3 
-17.4 to -16.1  -16.5  -16.2 I -17.5 
-17.0 to -15.4 -15.9  -15.6 1-17.0 
-16.8 to -13.3  -15.1  -13.5  1-16.7 
-17.5 to -14.8  -16.0  -14.8  1-17.4 
-17.9  to  -15.8  -16.2  -15.8  1-17.9 
-17.3 to  -16.4  -16.7  -16.4  1-17.3 
-17.2 to -15.7  -14.9  -15.8 1-16.6 
-17.3 to -15.4 -16.2 -15.5 I -17.2 
-17.7 to -16.2  -17.1  -16.5 /-17.3 
-17.8 to -15.1 -16.7 -15.3  1-17.7 
-17.3 to -15.4  -16.2 -15.5 1-17.2 
-17.6 to -14.9  -15.7 -14.9 / -17.6 
-17.6 to -15.7  -16.5 -15.8 /-17.3 
-17.7 to -16.0 -16.6 -16.1 / -17.7 
-17.7 to -15.3 -16.0 -15.3 1-17.7 
-16.7 to  -14.9 -15.4 -15.0 I -16.7 

14.6 to  20.0 
16.4 to 19.5 
14.1 to  17.2 
14.6 to  16.9 
15.3 to  16.8 
14.2 to 16.9 
14.1  to 16.8 
16.5 to 18.8 
16.0 to 18.9 
16.7 to 17.3 
15.6 to  16.9 
15.6 to 17.0 
16.7 to 18.1 
14.9 to 16.9 
14.6 to 16.3 
15.0 to 16.5 
15.0 to  16.7 
15.6  to  16.7 
15.5 to 17.3 
15.7  to  18.5 
16.1 to 18.7 
15.1 to  18.6 
15.9  to 16.9 
13.7 to 16.5 
13.5 to 17.3 
13.6  to 17.9 
15.6 to  17.7 
14.4 to 18.4 
14.8 to  15.8 
15.3 to  16.9 
15.3 to  19.4 
15.2 to 17.3 

17.9 
18.4 
15.8 
15.8 
16.1 
15.7 
15.3 
17.8 
17.9 
17.0 
16.2 
16.1 
17.7 
16.2 
15.7 
15.7 
15.9 
15.9 
16.3 
17.5 
17.5 
16.6 
16.4 
15.3 
15.1 
15.3 
16.1 
17.3 
15.3 
16.0 
18.0 
16.5 

19.9 I 14.6 
19.5  116.4 
16.4 I 14.5 
16.9 I 14.8 
16.8 115.3 
16.8 I 14.3 
16.6 I 14.4 
18.6 116.5 
18.7 I 16.1 

16.7 I 15.8 
18.0 I 16.7 
16.8 I 14.9 
16.3 114.6 
16.3 115.1 
16.6 I 15.0 
16.7 I 15.6 
17.2 I 15.5 
18.4 I 15.8 
18.7 I 16.2 
17.7 1 15.8 
16.9 / 16.0 
15.8 I 13.8 
16.7 I 13.6 
17.6 113.9 
17.7 I 15.9 
18.4 I 14.4 
15.7 I 14.8 
16.7 I 15.3 
19.4 I 15.3 
17.3 115.3 



HSD12PWS 
HSD13PWS 
HSD21PWS 
HSD22PWS 
HSD29PWS 
HSD30PWS 
HSD35PWS 
HSD36PWS 
HSEIPWS 
HSE15PWS 
HSEI6PWS 
HSE2SPWS 
HSE27PWS 
HSE32PWS 
HSE33PWS 
HSE49PWS 

I HSESOPWS 
OC HSFIPWS 

HSF3PWS 
HSFSPWS 
HSF21PWS 
HSF22PWS 
HSF27PWS 
HSF28PWS 
HSF33PWS 
HSF34PWS 
HSF39PWS 

April 1996 
April 1996 
May 1996 
May 1996 
Sept.  1996 
Sept. 1996 
Sept. 1996 
Sept.  1996 
June 1997 
June 1997 
June 1997 
June 1997 
June 1997 
June 1997 
June 1997 
July 1997 
July 1997 
June 1998 
June 1998 
June 1998 
June 1998 
June 1998 
June 1998 
June 1998 
June 1998 
June 1998 
June 1998 

F 
M 
M 
M 
M 
F 
F 
M 
F 
M 
F 
F 
F 
F 
F 
F 
M 
F 
F 
F 
M 
F 
F 
F 
F 
F 
F 

A 
A 
SA 
A 
SA 
A 
SA 
SA 
P 
A 
SA 
A 
SA 
P 
A 
A 
A 
Y 
Y 
A 
Y 
A 
A 
P 
P 
A 
Y 

-17.7 to -12.3 -15.5  -12.3 / -17.7 

-18.1 to  -15.4  -16.2  -15.5  1-17.1 
-17.6to  -15.6 -16.2 -16.0/-17.6 

-16.8  to  -15.7  -16.2  -15.8  1-16.6 
-15.9 to -14.9  -15.3 
-16.4  to -15.3  -15.8 

-16.3 to  -15.2  -15.9 

-16.9  to  -15.1  -15.8 -15.2 1-16.9 

-16.5 to  -15.0  -15.6  -15.0  1-15.8 

-16.4 to  -15.0  -15.8  -15.0 / -16.2 

-15.4  to -13.6 -14.7 -13.8 / - l 5 .3  
-17.0 to -12.3  -15.9 -12.3  1-16.9 
-15.9 to -14.5 -15.3 -14.5 / -15.9 
-15.5 to-14.2 -15.0 -14.3 /-15.4 

-15.6 to -14.0 -15.0 -14.0 / -15.3 
-15.9 to -15.2  -15.5 
-16.9 to  -15.9  -16.4 
-16.0 to -15.0  -15.6 

-17.1  to  -13.2  -15.6  -13.21-17.1 

-17.0  to  -15.2  -16.2  -15.2  /-17.0 
-16.7 to -15.7 -16.0 
-16.9 to -15.4  -16.3  -15.4  1-16.9 
-17.6 to -14.7 -16.4  -14.7  1-17.5 
-16.2  to -15.3  -15.5 
-15.5 to  -13.7  -14.9  -13.7 / -15.5 
-16.4 to -14.4  -15.5  -14.4 / -16.4 
-16.9 to  -15.9  -16.4 

Harbor Seals - Kodiak, Gulf of Alaska 
HSAIKO 22 April 1993 F A -14.4 to -13.3  -13.8 
HSA2KO 24  April 1993 F A  -14.6 to -13.3  -14.0 
HSA4KO 26 April 1993 F SA -15.0  to  -14.0  -14.5 

13.7  to  16.9  15.1 
14.7  to  17.7  16.3 
15.4 to 19.8 18.1 
14.2 to  17.0  15.9 
15.3  to  17.5  16.3 
14.3  to  16.6  14.4 
15.6  to  16.2  15.9 
15.5  to  17.4  16.2 
16.4  to 18.8  17.6 
15.1  to  16.2  15.6 
15.6 to  17.7  17.0 
14.1 to 16.8  15.0 
15.9 to 16.9 16.3 
17.1  to  18.7  17.7 
14.7 to 17.4 15.9 
15.6 to  16.8 16.1 
15.3  to  16.1  15.6 
15.7  to  16.8  15.9 
17.3 to 18.2 17.8 
15.5 to 17.2 16.4 
15.9 to 16.5  16.3 
14.4  to  17.3  15.7 
14.3  to  16.5 15.3 
16.9 to 18.4  17.4 
16.8 to 19.3  17.7 
15.9 to 17.1  16.4 
15.7 to 16.8  15.9 

15.6  to  16.2  16.0 
16.7  to 17.2 16.9 
16.1  to  17.4  17.0 

16.9 I 13.7 
17.5 114.7 
19.5 115.4 
16.9 I 14.2 
17.3 / 15.4 
16.5 / 14.5 

18.8 116.4 

17.5  115.6 
16.8 / 14.1 
16.9 / 15.9 
18.7 1 17.2 
17.4 / 14.8 
16.8 I 15.6 

17.1 / 15.5 

17.3 114.4 
16.5 114.4 

19.3 116.8 
17.0 I 15.9 



HSASKO 
HSB  IKO 
HSB2KO 
HSB3KO 
HSB4KO 
HSBSKO 
HSB6KO 
HSB7KO 
HSB8KO 
HSB9KO 
HSB 1 OK0 
HSCIKO 
HSC2KO 
HSC3KO 
HSC4KO 
HSCSKO - HSC6KO 
HSC9KO 
HSCIOKO 
HSCl  IKO 
HSC12KO 
HSC 16K0 
HSC 17KO 

iD 

2 Oct. 1993 F 
5 Oct. 1994 M 
5 Oct.  1994 M 
5 Oct. 1994 M 
6 Oct.  1994 F 
6  Oct. 1994 F 
6  Oct. 1994 M 
7 Oct.  1994 M 
8 Oct.  1994 M 
8  Oct. 1994 F 
8 Oct.  1994 M 
29Mar. 1995 M 
29 Mar. 1995 F 
29Mar. 1995 F 
29 Mar. 1995 M 
29 Mar. 1995 F 
29 Mar, 1995 M 
9  Oct. 1995 F 
9 Oct. 1995 M 
9 Oct. 1995 M 
9  Oct. 1995 F 
IO Oct. 1995 F 
10Oct. 1995 M 

A 
A 
A 
A 
SA 
P 
SA 
A 
SA 
SA 
SA 
A 
SA 
A 
SA 
SA 
SA 
SA 
P 
A 
A 
A 
A 

-14.3 to -13.8  -14.0 
-15.1 to -13.5 -14.2 
-15.5 to  -14.1  -14.7 
-14.4 to -12.8  -13.8 
-15.3 to -14.3  -14.8 
-14.2 to  -13.6  -13.7 
-17.9 to -13.8  -14.7  -13.81-15.9 
-15.6 to -14.3  -14.7 
-17.5 to  -15.3  -16.0  -15.5  1-17.2 
-16.5 to  -15.7  -16.0 
-14.1  to  -13.0  -13.7  -13.01-14.1 
-15.9 to  -14.7  -15.2 
-15.7 to -15.0 -15.3 
-17.3  to  -14.9  -15.8 -15.1 1-16.6 
-16.3 to -13.1 -13.9  -13.41-16.3 
-16.4 to  -15.4  -15.8  -15.5 1-16.5 
-17.2  to  -16.7  -17.0 
-16.4  to -14.6 -15.1 -14.7 / -16.2 
-15.3 to -13.8  -14.8 -13.81-15.3 
-17.1 to-13.9 -15.3  -13.91-17.1 
-15.5  to  -14.0  -14.7  -14.0 / -15.3 
-14.6 to  -13.6  -14.0 
-15.7  to  -13.9  -14.5  -14.01-15.6 

16.3  to  17.3 
16.9  to  18.3 
16.7  to  18.0 
18.0 to 19.1 
15.5 to  18.8 
17.7 to 18.9 
15.4  to  18.1 
16.5  to  17.7 
14.5  to  16.9 
15.5  to  17.4 
17.1 to 18.9 
15.7  to  16.6 
15.5  to  17.4 
14.3 to 16.5 
15.7  to  18.5 
15.0  to  16.5 
15.6 to  16.2 
14.9  to  16.6 
16.5 to 20.0 
14.6  to  17.9 
15.5  to  17.2 
16.6  to 17.3 
16.1  to  18.9 

16.9 
17.8 
17.3 
18.4 
17.2 
18.3 
17.6 
17.4 
15.8 
16.4 
18.0 
16.1 
16.1 
15.5 
17.4 
15.7 
15.8 
15.6 
18.1 
16.3 
16.4 
17.0 
18.0 

18.1 116.2 

16.7 I 14.7 

18.8  117.1 

16.2 I 14.9 
17.6 I 15.7 
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Isotopic Fractionation in Harbor Seal  Tissues 
Harbor seal tissues were collected with  the assistance of the Alaska  Department of Fish 

and Game and Native subsistence  hunters. Multiple tissues were collected from  each animal to 
identify the  isotope  fractionation  that  occurs among different tissues during assimilation of  food 
and tissue synthesis. Stable  isotope values for muscles tend to most accurately  reflect the average 
stable isotope ratios  for  the  whole animal (DeNiro and Epstein 1978). Tissue samples, which  had 
to include muscle, were  taken  from  60 harbor seals killed  by subsistence  hunters in Ketchikan, 
Sitka and Prince William Sound for more than two years. The 6I3C and 615N fractionation values 
were calculated as  the difference in isotope ratios  of  each tissue from  muscle in the  same animal 
(Figures 6 and 7). Table 2 lists  the  fractionation values relative to muscle tissue for 11 tissues 
collected from  harbor seals. No significant differences could be found in 615N and that may be  the 
result of multiple prey sources/multiple trophic levels in an individual diet.  The 613C of blubber 
and vibrissae significantly differed from muscle. The fractionation differences for 613C range with 
increasing enrichment with blubber <brain < skin < collagen, kidney, liver, heart,  blood < fur < 
vibrissae. The sample size for lung tissue was  too small to test for significance. 

(Tiezsen et al. 1983) and another study we conducted on captive harp seals  (Hobson  et al. 1996). 
The harp seal study was conducted using captive seals held on a consistent diet of herring and 
vitamin supplements  for  at least two years  whereas this current  study  dealt  with wild seals 
undoubtedly having a mixed diet. Vibrissae and fur from  the seals have a similar biochemical 
composition and show more enrichment in 613C than  the more metabolically active  tissues much 
like Hobson  et al. (1996)  observed in the captive seals and Tiezsen and Boutton (1988) observed 
in gerbil h r .  Hobson et al.  (1996) also observed a relatively constant enrichment in F15N, within 
11, for all tissues  except blood which is consistent with these findings. Tissues having the largest 
amount of lipid also had the  greatest  fractionation in 613C from  muscle.  This is to be expected 
because lipid synthesis discriminates against the  incorporation of the heavier isotope, 13C (DeNiro 
and Epstein 1978). 

sources were likely and may have consisted of different isotope  ratios.  We have also  shown  that 
prey from different regions (Le. inside vs outside PWS) appeared to have different isotope ratios 
as well. Because  of  the often unknown isotopic variations and metabolic activity in wild seal 
tissues,  fractionation  values relative to muscle tissue may be better to use to predict dietary 
isotopic  values,  Further  studies on fractionation determination for all pinnipeds are recommended 
using both  captive and wild animals for comparison. 

These  fractionation values are similar to those obtained in previous  studies on gerbils 

The  food web analyses previously described for wild seals indicated that multiple food 
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Table 2. 613C and 6I5N fractionation of harbor seal tissues relative to muscle using least square 
means. Harbor seals were collected in Ketchikan, Sitka, and Prince William Sound, Alaska, 1995 - 
1997. 

Tissue n 13c SE 15N SE 
Mean,  Mean, 

blood, whole 5 0.40 
blubber 53 -5.99 
brain 31  -1.04 
collagen 24 -0.39 
fur 39 0.69 
heart 27  -0.06 
kidney 33 -0.38 
liver 37 -0.24 
lung 2 -0.68 
skin 40 -1.83 
vibrissae 14 1.90 

0.22 
0.26 
0.30 
0.20 
0.16 
0.12 
0.17 
0.21 
0.06 
0.24 
0.72 

-0.29 

0.52 
0.3 1 
-1.0 
0.40 
0.38 
0.25 
0.65 
0.86 
0.10 

-- 
0.29 

0.10 
0.07 
0.18 
0.08 
0.11 
0.10 
0.20 
0.12 
0.67 

_ _  

Temporal  Variation in I3C of Pinnipeds 

The differences observed in the 6I3C of harbor seals between  1975 and 1995 (Schell and 
Hirons 1997) were further defined in seals and sea lions dating back to 195 1, and the results were 
submitted as a manuscript (Appendix 1). Harbor seal, Steller sea lion, and northern f i r  seal 
skeletons archived at  the University of Alaska Museum and the Kodiak Historical Society had 
collagen extracted from  bone samples free of  humus  and tissues. No significant change was found 
in the 615N values for  the 47 years for  which samples were available. This does not mean that 
prey variability  did not occur but  that likely  the predominant prey in the diets of these phocids and 
otariids were consistently from  the  same trophic level. A significant decline in the 6I3C of 
approximately 21 in Steller sea lions took place during this  time  while no significant change in 
harbor seals or fur seals could be detected. 

This decrease in 6I3C over time, with no accompanying change in 615N, suggests an 
environmental change affecting the base of the food  web rather than a trophic level change due to 
prey switching. The  carbon  isotope  ratios in pinnipeds  result from  the  carbon composition in 
phytoplankton in the  food  webs and a decline in productivity can lead to a decrease in 613C (Laws 
et al. 1995; Bidigare et al. 1997). A decrease in the winter mixed depth layer (Freeland et a l  
1997) and increasing stability in the water column would reduce the available nutrients to  the 
phytoplankton, and hence, productivity. Foraging at a lower trophic level or switching from a 
benthic diet to a more pelagic diet can also decrease the 6I3C but no evidence exists for either 
scenario (Hobson and Welch 1992; France and Peters 1997). The timing of this shift corresponds 
with  the time of other observed changes in the physical  and biological environment from  the 
North Pacific Ocean  (Ebbesmeyer  et al. 1991, Trenberth and Hurrell 1994). The decline in the 
6I3C of  the pinniped bone collagen occurred during the same period that Schell  (in prep.) 
observed declining 613C values in  bowhead whales in the Bering Sea.  These combined data may 
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be indicators that  the carrying capacity of the North Pacific Ocean has declined since the  1960s. 
The  reasons  for this change in the 613C are not yet known but  likely  result from changes in the 
physical environment. 

Growth Rates in Pinniped Vibrissae 

Captive adult harbor seals and  Steller sea lions were given 613C- and 615N-labeled glycine 
to act as a marker in  all vibrissae on the animals. The  peaks created by the  large quantity of stable 
isotopes acted as temporal markers and growth rates were calculated between time periods. 
Harbor seals showed seasonal growth in the vibrissae, growing rapidly in early spring prior to the 
onset of breeding and  then having Little or no growth  for  the remainder  of the  year.  There  is  now 
some evidence that harbor seals may rapidly replace some or all of their vibrissae annually during 
the molting period. This is in contrast to Steller sea lion vibrissae which appear to  grow 
continually throughout  the year and are maintained for several years. These data have been 
compiled into a manuscript as Appendix 2. 

CONCLUSIONS 

Geographic Gradients in Isotope  Ratios:  Our zooplankton sampling  and that  of Kline (in press 
1999)  show  that  isotope ratios for both carbon and nitrogen decreased markedly in the  Gulf of 
Alaska with increasing distance from shore. Calanoid copepods  showed a decrease  of 
approximately 2-3 1 in 615N between Prince William Sound and pelagic waters of the Gulf of 
Alaska. Figures 1 and 2 show  the isotopic contours constructed from  the available data for 
copepods.  Data  for euphausiids showed much more variability,  which  may reflect omnivory by 
these organisms. Values for 613C ranged from approximately -221 to near -201 with little evidence 
of offshore-onshore trends. The decrease in isotope  ratios with distance offshore is evident in the 
vibrissae of Steller sea lions and a small  number  of  individual harbor seals, indicating movements 
into offshore feeding areas during part of the annual cycle. These isotope data  are consistent with 
radio-tracking data that  showed relatively  limited movements by most harbor seals but occasional 
extensive movements into the  Gulf  of Alaska by some individuals. 

Harbor Seal Trophic Energetics: Harbor seal tissues have been  analyzed to identify the  isotopic 
fractionation that occurs among differing tissues. These data will be usehl in establishing the 
average  isotopic  makeup of particular harbor seals where available tissues are limited. Large 
fluctuations in some harbor seal  vibrissae were  compared with food  webs in  and outside  Prince 
William Sound.  The fluctuations indicate that the seals are relying upon  more  than one food  web, 
shifting between pelagic vs. benthic or Prince  William Sound vs. Gulf  of Alaska. With  the  data 
available, we are uncertain as to  the definitive causes for these fluctuations. 

Captive Seal Growth Studies: Data from the captive harbor seal at Mystic MarineLife Aquarium 
indicate the 615N-laheled glycine is an effective marker in the vibrissae for the  growth  rate studies. 
Because of the  much larger carbon and  613C content in organisms, 613C-labeled glycine is much 
less effective as a marker  for a given weight of label.  Only if carbon reallocation information is 
essential would  the  much higher  experimental cost be warranted.  Growth  rate  data have been 
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calculated and contrasted with  growth rates from a wild harbor seal, captive Steller sea lions, and 
wild Steller sea lions. Growth  rates in the captive harbor seal may surpass those of wild phocids 
and otariids and captive otariids, but the limited experimental markings over the annual cycle 
make this conclusion tentative. The growth  rate experiments are ongoing and will  be continued at 
the Alaska Sealife Center. If the data  on  the two labeled seals are representative, harbor seals have 
faster whisker growth,  which is tied to seasons and may even reflect annual replacement. In 
contrast, the data  from  the Steller sea lions showed  a slower growth  rate that continued over 
multiple years in the whisker. 

Temporal Indications of Ecosystem Change: Comparisons  of archived and modern seal and sea 
lion tissues indicate that  a decrease in 613C has taken place over the past 47 years, although the 
scatter in the data prevents more precise timing of  the shift. This shift  is concurrent with  other 
observed changes in the physical and biological environment of the  North Pacific Ocean, defined 
as the 1976 regime shift  The regime shift appears  to be associated with  shifts in the Aleutian Low 
Pressure system eastward into  the Gulf of Alaska, and although the direct  linkages between  the 
biota and the shifts in climatic patterns have not been established, the correlations have spurred 
further research into this area. 
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Figure I .  6°C isotope contours tor calanoid  copepods in the Gulf of Alaska and Prince Wllliam 
Sound. 
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Figure 3.  Maximum (max) and minimum  (min) mean (* SE) 6”N from  Prince William Sound 
harbor seals (PWS HS) and mean (* SE) 6”N from Prince William Sound  and Gulf  of Alaska 
fishes and invertebrates. Vibrissae values have been normalized to muscle.  Sample sizes are 2 5. 

28 



3 PRINCE WILLIAM SOUND 

C.GULFOF 
ALASKA -S-PWS  max 

3 PINNIPEDS  HS-PWS  min 
+pollock, yfin  sole,  octopus, 

pollock silver salmon 

e s a n d l a n c e ,  herring, p. salmon, 
.I sandlance squid 

capelin, eulachon 

capelin 

a Neocalanus spp. 

-). Neocalanus spp. 
1 I I 

-25 -20 -1 5 -1 0 

6 13C 

Figure 4. Maximum ( m a )  and  minimum (min) mean (+ SE) 6°C from  Prince William Sound 
harbor seals (PWS HS) and mean (* SE) 6°C from Prince William Sound  and  Gulf of Alaska 
fishes and  invertebrates.  Vibrissae values have been normalized to muscle.  Sample  sizes are 2 5. 
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Figure 5 .  Sample locations for harbor seals in Prince William Sound. 1993-199s. 
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TISSUES 

Figure 7. 6''N fractionation of harbor  seal  tissues. blo = whole blood. blu = blubber. bra = brain. 
coil = collagen. hrt = heart. kid = kidney. liv = liver. vib = vibrissae. The  sample  size of each 
tissue is given above  the box plot. * indicates values outside the first  and  third  quartile ofall 
values. o indicates  values lower that  12.5% and greater than 87.5% of all values. 
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ABSTRACT 

Sea lion  and seal populations in Alaskan waters  have  declined for over  two  decades and  the 

cause(s) for the declines remain  unknown  The stable  carbon (''C/'?C) and  nitrogen ("N/I4N) isotope 

ratios in  bone  collagen from wild Steller sea lions (Eumetopias jubatusi, northern fur seals (Callorhinus 

ursinusj and  harbor seals (Phoca vitulina) from the Bering Sea and Gulf  of Alaska  were measured for the 

period 1951-1997 to test the hyothesis that a change in trophic level  may  have  occurred during this 

interval and contributed to the population declines. A significant change in 8"N in pinniped tissues over 

time would imply a marked change in trophic level. No significant change in bone collagen S"N was 

found for any of the three species during the past  forty-seven  years in either the  Bering Sea or  the Gulf  of 

Alaska, but the "N in the Steller sea lion collagen was significantly higher than both  northern fur seals 

and harbor seals. A significant decline in 6°C (almost 2 %O over the 47 years) was evident for Steller sea 

lions and  harbor seals were  only significant at the YO% level. This decrease in 6I3C over time, with no 

accompanying  change in S"N, suggests an environmental  change affecting the base of the foodweb rather 

than a trophic level change  due to prey  switching.  Evidence exists of a decline in  the seasonal primary 

production in the region  which would exhibit itself as a decline in 8°C. Declining  production could be an 

indication of a reduced carrying capacity in the North  Pacific Ocean  and sufficient quantities of optimal 

prey species  may  have fallen below threshold sustaining densities for these pinnipeds, particularly for 

yearlings and subadults. 

KEY WORDS: Stable  isotope analysis, Steller sea lions, northern fur seals, harbor seals, bone  collagen 
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INTRODUCTION 

Declining  pinniped  populations in  the  northeastern Pacific Ocean  have drawn into question the 

role of the  changing physical environment  and its impact on biological organisms. We hypothesized that 

seals and sea lions made dietary changes as a result of changing  prey  abundances  and the 6I3C and 6"N 

values after the mid  1970s.  when the latest major climatic shift occurred,  would  reflect the  changes in 

trophic level. 

Pinniued declines 

Steller sea lions (Eumetopiasjubatus), northern fur seals (Callorhinus ursinus) and  harbor seals 

(Phooa  vifulina) are generally found in coastal waters and  along the continental shelf throughout the 

North Pacific  Ocean, including the Bering Sea and the Gulf of Alaska (NRC  1996). These  populations 

have drastically declined for more than two decades, particularly in the  western  Gulf of Alaska  and Bering 

Sea (Pitcher 1990; Loughlin 1993; ADFG 1996; Strick et al. 1997).  Food limitation has been 

hypothesized as the likely cause behind the declines in the pinniped populations, resulting from  decreases 

in prey populations  and  emigration of certain species (Merrick et al. 1987;  Alverson 1991; Trites 1992: 

Alaska Sea Grant 1991: Merrick  1995;  Anderson  et al. 1997; Merrick et al. 1997). 

Isotope ratios in food  webs 

The isotopic ratios of animal tissues, particularly in marine  organisms,  are slightly more  enriched 

in I3C (0.5 to 1%) and I5N (3  to 5%0) than those found in the diet. Isotopic variations observed in 

organisms  throughout the marine  environment are believed to result from dBerences  in organic carbon at 

the base of food  webs and metabolic  pathways in the organisms (DeNiro and  Epstein 1978, 1981; 

McConnaughey  and McRoy 1979: Rau  et al. 1983; Fry and  Sherr 1984; Minigawa  and Wada 1984; 

Sholto-Douglas  et al. 1991; Hobson and Welch 1992; France  and Peters  1997).  Herbivorous  zooplankton, 

consisting primarily of calanoid  copepods and  euphausiids in  the  North Pacific  Ocean, are first-order 

consumers of primary productivity.  Any changes affecting the stable isotope ratios within the 

phytoplankton, such as carbon source and  growth rate, would be  canied  through  the food  web and he 

reflected in foraging pinnipeds. Recent studies in phytoplankton have  shown a close correlation between 

cellular growth rates and  carbon isotope ratios (6I3C).  Laws et al. (1995)  have  shown a close linear 
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relationship between  diatom growth rates and isotopic fractionation in  the laboratory and  Bidigare et al. 

(1997)  extended the findings to  both  laboratory cultures of haptophytes and  samples from various world 

ocean  environments. lncreased growth rate and production in both the diatoms and haptophytes were 

correlated with increased 6I3C  values. 

Bone collagen is a  tissue that has a  relatively  slow  turnover rate, as much as ten years in large 

adult  mammals.  Depending on the age of the animal, the stable  isotope ratios in  the collagen may be 

integrated over  much of its life (Stenhouse and Baxter  1977;  Hobson and  Clark  1992; Ambrose and  Norr 

1993). This tissue acts as a  long-term integrator of isotope  ratios and  moderator of sporadic isotopic 

fluctuations. a factor which is useful  when comparing isotope ratios of many individuals over long  periods 

of time  (Schoeninger  and DeNiro 1984; Lee-Thorp et al. 1989).  Episodic or short-term  changes in dietary 

isotope ratios  are  dampened  in the collagen record, leaving only changes in the long-term trends as an 

indicator of the  organism‘s trophic status in its environment. 

Physical  and biological changes 

Little emphasis  has been  placed  on the effects of changing  environmental conditions on 

pinnipeds in the North Pacific  Ocean.  An abrupt climatic change occurred in  the Pacific Ocean in the 

mid-1970s  and the new “regime” continued through the 1980s. Changes in atmospheric circulation have 

reportedly altered wind patterns and intensity,  mixed  layer  depth,  sea surface temperatures, ice extent and 

depth of ocean current patterns (Royer 1989; Trenberth  and Hurrell  1994; Freeland et al. 1997). 

The biological responses to these physical changes have manifested  themselves in fluctuating 

phytoplankton  abundance, zooplankton  production and shifting migration patterns and biomass of 

commercial  and non-commercial organisms (Venrick et al.  1987;  Ebbesmeyer et al. 1991; Brodeur and 

Ware 1992; Hollowed and Wooster  1992; Francis and Hare 1994;  Polovina et al. 1994; Hollowed and 

Wooster 1995; Polovina  et al. 1995; Quinn  and Niebaner  1995;  Anderson et al. 1997).  Sugimoto and 

Tadokoro  (1997) reported chlorophyll concentrations and  zooplankton biomass in the western, central and 

eastern subarctic Pacific and the Bering Sea  from  1954  -1994.  They  found evidence of declining 

chlorophyll concentrations and zooplankton  biomass during the mid-1970s  and  late  1980s in the eastern 
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Pacific and  Bering Sea while  the central Pacific experienced  peaks in both chlorophyll and  zooplankton in 

the late 1960s and continual declined after that point. 

Many groundfish stocks have dramatically increased while forage fishes have declined in the 

Gulf of Alaska since the mid-1970s. The species  composition for the  region  has shifted from an 

environment  dominated by clupeid fishes and panaeid shrimp to one currently dominated hy gadids  and 

plenronectids (Anderson et al. 1997). In 1951 and 1964, samples from Steller sea lion stomachs from the 

Bering Sea showed that walleye  pollock  was the fourth most prevalent prey  species  (Fiscus and  Baines 

1966) but by 1976, pollock  was the dominant prey  item  (Lowly et al. 1989). Stomach content analyses of 

Pribilof Island fur seals in the early  1980s  showed a predominance of juvenile walleye pollock  and  squid. 

Pacific herring and capelin, previously  considered important prey,  were absent (Sinclair et al. 1994). 

Kenyon (1965) noted harbor seals from Amchitka Island in the Aleutian  Archipelago had remains of 

octopus  and Atka  mackerel in their stomachs while harbor seals sampled in 1979  from the Alaska 

Peninsula had primarily walleye  pollock and octopus in their stomachs (Pitcher 1980). 

If any of these physical  parameters causes a decline in primary  production, then  the carrying 

capacity for the entire food  web declines as less prey  become available for each successive trophic level. 

For top consumers  such as seals and sea lions, prey  availability  may fall below threshold densities 

necessary  to sustain recruitnlent into the population. 

METHODS 

Pinniued  samples 

Seal and sea lion bone  samples  were  collected  from current native-harvested animals  and 

museum skeletal collections for a total  of 31 Steller sea lions, 13 northern fur seals and 63 harbor seals 

from regions throughout  the Gulf of Alaska and the Bering Sea. Pinniped  bones of all three species  were 

provided by the University of Alaska Museum  and  the Kodiak Historical Society. Specimens  were 

collected during the years  1951-1997 from coastal areas of southeast Alaska westward through the Gulf of 

Alaska  and into the central Bering Sea (Figure 1). The Gulf of Alaska was separated into three regions for 

statistical analyses. The  western Gulf of Alaska  was  defined as the area between 152OW and 175OW. The 
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central Gulf of Alaska was the area between 144"W and I j2"W and  the  southeastern Gulf of Alaska was 

the area between 130"W and 144"W. 

Sex and  age of the animal were not recorded for most of the specimens which  prevented  some 

categorical analyses ofthe data. One  skeleton  was  suspected as being  from a pup  and data from that 

animal would not have  been  sufficient  to  test for tropluc differences either over time or in comparison 

with other age  animals.  The  remaining skeletons were either labeled as adults and subadults or labeled as 

age  unknown.  More than half ofthe sampled sea lions (61%) and  northern fur seals (62%) came from the 

Bering Sea while  the  remainders were split between the western and central portions of the Gulf of 

Alaska. Harbor seal samples were  evenly distributed from the Bering Sea and  through the western, central 

and  southeastern Gulf of Alaska.  Samples for both  the sea lions and the harbor seals were almost evenly 

distributed throughout  the foq-seven year  study  period,  but there were years when, at a  minimum, no 

samples were available, and at a maximum, six samples were available. An average of two specimens 

were available per year. 

Collagen extraction 

Bone samples were  well  preserved and free of humus and tissues. Collagen was  extracted 

following  the  procedure described in detail in Matheus (1997). Approximately 1 gm  of  bone  was either cut 

as a solid  piece or shaved  from the mandible or the shaft of a  long bone; only cancellous  bone  was  used. 

The bone samples  had lipids removed with a methanollchloroform procedure described in Bligh  and Dyer 

(1959) prior to demineralization. The bone  was  allowed to demineralize in 1N HC1 for approximately 

seven days at 5°C; fresh acid was  added  to the  samples every  day. The  remaining material was rinsed and 

then boiled in deionized water for approximately eight hours to dissolve the collagen and precipitate 

peptides. The solution was passed through a 0 . 4 5 ~  filter and the filtrate  was dried in an  aluminum dish at 

60°C for a minimum of 48 hours. 

Mass spectrometq 

Subsamples of each tissue (1-1.5 mg) were  combusted and  analyzed for stable  isotope ratios with 

a Europa 20120 continuous flow isotope ratio mass  spectrometer. All samples were  analyzed in duplicate. 

Stable isotope ratios were expressed in the following standard notation: 
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6 x (%a) = &ample 1 Rstmdard - 1) X 1000 

where X is "C or "N and Rsample is the 13C/'2C or IsN/l4N respectively. Rstandard for " C  is Pee Dee 

Belemnite; for "N it is atmospheric N2 (air). If the difference  between replicates was greater than 0.5o/o0, 

samples were re-analyzed. Analytical error for  samples  was approximately i 0.1%. for both  carbon  and 

nitrogen. 

RESULTS 

The three pinniped species  segregated  isotopically for only 6"N ( P  = 0.002) when 6I3C and 6"N 

were considered together (MANOVA: Wilks  Lambda Fq, 130 = 3.30, P = 0.013). Bonferroni correction tests 

for 6"N showed Steller sea lions differed  from  harbor  seals and  northern fur seals (P = 0.015 and P = 

0.014, respectively). The  mean nitrogen isotope ratios in the Steller sea lions was greater than those in 

both  harbor seals and  northern fur seals. No differences in either isotope were detected among  the defined 

regions for any of the three species ( P  = 0.750). When all years  were considered for 6I3C and 6"N, only 

6I3C showed a significant  difference  (MANOVA: Wilks LambdaF ,o.130 = 1.558, P = 0.015). Steller sea 

lions had a significant difference in 6I3C (Krnskal-Wallis P = 0.004)  while  harbor seals and  northern fur 

seals did  not ( P  = 0.298 and P = 0.012, respectively).  Regression analysis of  6"N revealed no change in 

the slope of ratios over the  fortyseven year  period either in combined or individual species  (Figure 2). 

Regression analysis of 6°C showed a significant decline in the Steller sea lions (P < 0.001) (Figure  3) and 

a decline, although not significant, in both  the  harbor  seals and  northern fur seals (P = 0.108 and P = 

0.375, respectively) (Figure 4 and 5). The sea lion 6°C declined an average of l.Y%ofrom 1951 through 

1991. 

Nitrogen isotope values for harbor seals ranged from 14.0 to 20.5%0 with a mean of 17.2 k 1.6%,0. 

The  6'jN for northern  fur seals ranged from 15.2 to  20.1%. with a mean of 17.2 + 1.5960 and the 615N for 

Steller sea lions ranged  from 16.2 to 21.9%. with a mean of 18.5 + 1.4%0. Harbor seal collagen 6I3C 

values  ranged  from -12.0 to -16.4%.. The 6I3C of collagen from northern fur seals ranged from -13.0 to 

-16.7%" and  the Steller sea lion collagen SI3C ranged  from -12.5 to  -15.8%0 (Table 1). The annual 

variance in  the 6I3C of all three species  ranged  from  less than 1%. to as much as 5%". 
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DISCUSSION 

The diets of Steller sea lions, northern fur seals and harbor seals consist of similar prey species 

but the composition differs based on preferred  prey items and locally abundant species. Harhor seal diets 

appear to consist of mostly pelagic  and semidemersal fishes and benthic invertebrates. Fur seal and sea 

lion &ets  appear to rely on pelagic and demersal fishes  and  some pelagic invertebrates (Pitcher 1980, 

Kajimura 1985, Sinclair et ai.  1997). 

The 6I5N values obtained from the pinniped collagen suggest that Steller sea lions may feed at a 

slightly higher  trophic level than  the harbor seals and northern fur seals. Hobson et  al. (1997) found 

similar  results  for Steller sea lions  and northern fur seals.  They  concluded that  the sea lions were 

consuming more large-size pollock  which  were  enriched in 6% relative to the juvenile pollock and squid 

that the fur seals were predominantly relying on. Perez  and  Bigg (1986) noted that  northern  fur  seals in 

the Aleutians and Gulf of Alaska between 1958 and  1974  fed largely on sandlance, capelin  and  herring. 

The  diets of both the forage fish  and juvenile pollock  consist primarily of zooplankton and  this similarity 

could result in comparable F1’N values. Pitcher (1980)  noted that walleye  pollock  was the predominant 

prey in both the  Steller sea lion  and harbor seal diets in the Gulf of Alaska during  the mid-1970s but that 

each species foraged on different size pollock.  Steller  sea lions were eating pollock significantly larger 

than those eaten by harbor seals. Larger pollock are largely piscivorous  while the  smaller pollock are 

planktivorous; this should have resulted in higher 6”N in the sea lions. 

These pinnipeds have heterogeneous diets which often include prey from different trophic levels 

and regions. Schell et  al.  (1998) noted  the  existence of isotopic gradients in  the 6°C and 6I5N of 

zooplankton from  the  Bering Sea and recently identified isotopic gradients in the continental shelf waters 

of the Gulf of Alaska (Schell unpublished). Regions of high primary productivity, including the shelf 

break in the Bering Sea and coastal upwelling zones in the Gulf of Alaska, are more enriched in ”C and 

1 5  N than areas low in productivity. These enriched values in the zooplankton  would  be  passed through the 

foodwebs to the  upper  trophic organisms. Pelagic organisms that feed in and travel through several 

isotopically distinct  regions  would exhibit a composite of those isotope ratios. 
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Variations in the year-to-year  movement patterns of  both pinnipeds  and prey, as well as 

differences in prey availability, likely cause some fluctuations in  the isotope ratios among  indwidnal 

pinnipeds. Pinniped species, and the prey  they  assimilate, are often separated geographically. The isotope 

ratios in harbor seals, which tend to have a strong site affinity,  would represent the prey items in  the seals' 

coastal and deep water  feeding locations (Pitcher 1980). The  nitrogen isotopes in the Steller sea lions 

would reflect the prey often  found in offshore  waters off California and Oregon and  in  the Gulf  of Alaska 

and  while  the isotope ratios in northern fur seals  could reflect prey  foraged in  the  Bering Sea, the Gulf of 

Alaska  and as far south as the offshore waters of California (Goebel et al. 1991; Loughlin 1993; Merrick 

1995). 

Unlike  the  nitrogen isotope data which showed no signifcant change  during  the 47  year period, 

carbon isotopes values showed a decrease of- 2 %.for all three species, although  only  the decline in 

Steller sea lions was statistically significant at the P = 0.05 level. Changes in prey composition during the 

1970s, as previously  described,  may  have altered the  isotope ratios in the pinnipeds  but a more enriched 

isotope signature would be expected. Pollock, which is cnrrently predominant in  the diets of these 

animals, generally have  more enriched 6°C and 6"N values  than the once prevalent clupeid fishes 

(Anderson et al. 1997; Merrick et al. 1997). lfthese pinnipeds began to forage in different trophc levels 

than they  once  occupied,  any change in  the nitrogen isotope ratios would  likely  have a corresponding 

change in  the  carbon isotopes  (DeNiro and  Epstein 1978, 1981; Rau et al. 1983) A decrease in 6I3C in 

consumers  can result  if marine  organisms begin foraging at a lower trophic level or switch  from an 

enriched  benthic diet to a more depleted pelagic diet  (Hobson and Welch  1992; France  and Peters 1997) 

althought no evidence exists for this scenario to have  occurred in any  one or all of these pinnipeds. 

Steller sea lions and female and juvenile northern fur seals from the subarctic Pacific are  found 

foraging in the offshore waters along  the California and  Oregon coasts for a portion of the year (Kajimura 

1980; NRC 1996).  Roemmich and McGowan (1995)  noted that  zooplankton  abundance in the California 

Current declined more  than  70%  beginning around 1977  and has remained low. McCowan et al. (1998) 

have also reported large declines in oceanic seabirds and commercial  pelagic catch and smaller  kelp 

forests along the California coast.  Reduced primary  and secondary  production in  the region would likelv 
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lead to a reduction in food available for the upper trophic level organisms,  including pinnipeds. This 

regional decline in production may partially explain why Steller sea lions exhibit declining 6°C values. 

The suggested decline in  the 6I3C may not  be as apparent in the samples of northern fur seals because  only 

one animal was available after 1976  and this cannot be  considered an adequate  sample for drawing 

conclusions  regarding declining carbon isotopes.  However, when that seal from 1995 was removed from 

the pool of samples and a regression analysis was pelformed,  a similar decreasing slope  existed for the  fur 

seals from 1951 through 1976. 

Although we cannot  determine the migrator?. ranges  and life histories of individual seals and sea 

lions, we assume that the 6°C values in the bone  collagen represent the prey derived  from  primary 

production in the northeastern Pacific. The implied  decline in  the carrying capacity, resulting from a 

decrease in primary production, would result in diminished resources for populations of top trophic level 

organisms, such as seals and sea lions. Steller sea lions were the onlv  species  to  show signirkant long- 

term declines in their carbon  isotope ratios and this may  be due to the spatial variation between the sea 

lions and  the other two  species. 

The decline in the 6°C of Steller sea lion bone collagen occurred during the same period that 

Scbell (in prep.) observed the declining 6I3C values in bowhead  whales in  the  Bering Sea. Schell has used 

the findings of Laws  et al. (1995) and  Bidigare et al. (1997), in conjunction  with  the  average  carbon 

isotope ratios in bowhead  whale baleen laid down in the Bering  and  Chukchi seas, to estimate the relative 

interannual changes in primary  production in the Bering  Shelf  ecosystem. If the correlation between  the 

measured haptophyte growth rates and  changes in 6°C is similar to phytoplankton  growth in  the  Bering 

Sea_ the isotope ratios in baleen imply  a decline of up to 40% in ecosystem productivity between 1965  and 

1995. 

The  carbon isotope ratios in top trophic level marine  organisms  can result from the carbon 

composition in phytoplankton at the base of the food  web. The isotopic composition of the  phytoplankton 

is affected by the isotopic composition of inorganic carbon and  the fractionation during growth of the 

plant cells. A rapid use of C02 during photosynthesis  can  lead to a  temporal increase in the 613C of the 

plant cells if the rate of C02 replenishment is slower than usage  (Goericke  et al. 1994). The  Bering  Sea 
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and upper reaches of the North Pacific Ocean are regions of high nutrients and  low chlorophyll (HNLC). 

Excessive quantities of nitrogen and phosphorus are available in  the North Pacific throughout  the  year 

but. until recently, summer  phytoplankton in the  North  Pacific  have  not fdly utilized all the available 

nitrate for production. The lack of a micronutrient  may  be limiting the  phytoplankton productivity (Martin 

and Fitzwater 1988). Boyd et al. (1996) identified iron, possibly  from atmospheric input, as limiting  the 

nitrate utilization by phytoplankton. However,  recent  evidence  by Freeland et al. (1997) indicates that 

summer nitrate concentrations may  now  be limiting. Rapidly  growing phytoplankton would draw  down 

the available nitrate and a deficit would take place  which  would limit the amount of primary production. 

Changes in the wind intensity and  the mixed depth layers in  the northeast Pacific appear to have 

affected the amount of production in the region. Brodeur and Ware (1992) found increases in zooplankton 

biomass in  the region of the Pacific subarctic gyre between 1956 and 1989 which they attributed to 

increased wind intensiry. They  surmised that the intensification of the winds either provided  a  limiting 

micronutrient to surface waters or a deepening of the mixed layer that would  slow primav production  and 

allow  zooplankton  time to graze more  completely.  Venrick et al. (1987) noted  cooler sea surface 

temperatures  during  1980-1985 between 30" and 50"N in  the North  Pacific Ocean  which probably 

resulted from wind mixing  from greater than average winter storminess. Yet Polovina et al. (1995) 

observed a  shallowing of the  winter mixed  layer  depth in the subarctic North Pacific  from 1977-1988  and 

attributed thc change to an intensification of the  Aleutian Low Pressure  System. Data  presented b, 

Freeland et at. (1997) for Station Papa (50"N 145OW) also indicated a shallowing of the  mixed layer 

depth. However,  they  suggested that changes in the position and strength of the  Alaska gyre circulation 

are related to the  changes in the Aleutian  Low. 

There  seems little doubt that the mixed  layers in the north Pacific Ocean  are  changing. The 

shallowing of the winter mixed  layer  allows  phytoplankton  to  receive  more light  energy and, as Freeland 

et al. (1997) suggested. an earlier spring bloom  would result due to larger concentrations of overwintering 

phytoplankton  and greater light intensity. This increased production  during  the summer mouths would 

reduce nitrate levels over time. If winter mixing has decreased during the past several decades and 
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nutrients are not replenished at the same rate, a decline in the available nitrate in  the upper  water column 

could result due to entrainment of phytoplankton. 

A large amount of evidence exists that the environment of the North  Pacific Ocean  has  changed 

during the past  several  decades and  changes in  the physical environment may be associated with  changes 

in the priman,  production in the region. The  Committee on the Bering Sea Ecosystem  assessed the 

likelihood of various potential causes  on the declines of these three pinniped species and  found  that 

climate effects and environmental  changes were  likely  factors affecting the  fish community and food 

availability for these animals (NRC  1996). Reduction in food, whch subsequently leads to population 

declines if  food depletion is great enough, seems to be  supported  for northern fur seals and Steller sea 

lions (Loughlin et al. 1987; Trites 1992; Merrick  and  Loughlin 1993; Merrick 1995). 

Marine  mammal  populations  can be expected to change  with  time in response to environmental 

perturbations. The large scale declines seen in the Bering Sea and Gulf of Alaska pinnipeds are unusual 

because  they appear to  have happened in a short time whereas  some populations of the same species  have 

remained stable or increased in other areas of the North Pacific. Short  term environmental  changes, such 

as El Nido  events,  would have  only a limited impact on these pinniped  populations by reducing food 

availability (Trillmich and Ono 1991). Short  term  changes that could alter the carbon isotope ratios in  the 

marine food  webs  would likely be tempered in the bone collagen records  due to  the relatively  slow 

turnover rate of isotopes in this tissue. The magnitude of changes observed  in the North Pacific  seem to 

warrant further investigation on their  impact to marine mammal  populations and the use of isotope ratios 

should enhance  our  understanding of these changes. 
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Table 1. Mean stable isotope ratios of bone collagen from  harbor  seals, northern fur seals and Steller sea 
lions. SEGOA = southeastern Gulf of Alaska,  CGOA = central Gulf of Alaska, WGOA = western  Gulf of 
Alaska,  BS = Bering Sea. 

Suecies  n  Year  Location Mean 6°C Mean 6"N 

Harbor seal 2 
1 

1 
1 

2 
1 

2 
1 
2 
5 
1 
1 

1 
1 

2 
1 
1 
1 
1 
1 
1 
2 
1 
1 
1 
3 

2 
1 

2 

2 
1 

2 
1 

2 
1 

1 

2 
1 

1 
1 
5 

Northern fur 2 
seals I 

1 
1 
1 
1 

1951 CGOA 
1952 CGOA 
1952 WGOA 
1953 BS 
1954 WGOA 
1955 CGOA 
1956 CGOA 
1962 CGOA 
1964 WGOA 
1965 SEGOA 
1965 WGOA 
1966 CGOA 
1966 WGOA 
1966 BS 
1968 BS 
1969 BS 
1970 WGOA 
1970 BS 
1971 WGOA 
1971 BS 
1972 CGOA 
1972 BS 
1973 CGOA 
1973 BS 
1974 BS 
1975 CGOA 
1976 WGOA 
1977 WGOA 
1978 CGOA 
1978 WGOA 
1979 BS 
1980 WGOA 
1981 CGOA 
1981 BS 
1985 WGOA 
1989 CGOA 
1993 CGOA 
1995 SEGOA 
1995 BS 

1996 CGOA 
1996 SEGOA 

1952 BS 
1954 WGOA 
1955 BS 
1957 CGOA 
1957 WGOA 
1960 BS 

-13.9 * 0.5 
-13.6 
-14.6 
-14.4 
-14.6 
-14.8 i 0.2 
-14.8 i 0.8 
-14.9 
-13.9 i 0.9 
-13.2 i 0.7 
-13.1 
-13.4 
-14.8 
-14.2 
-14.3 * 2.1 
-15.4 
-12.0 
-13.6 
-13.2 
-14.4 
-13.6 
-13.7 * 0.2 
-14.3 
-15.6 
-14.4 
-14.7 i 1.2 
-13.7 
-14.7 * 0.3 
-13.5 0.8 
-14.4 
-14.1 i 0.5 
-15.6 i 0.5 
-12.2 
-13.5 
-14.8 i 0.6 
-14.0 
-15.8 
-15.0 i 0.6 
-13.4 
-14.4 
-15.0 i 0.9 
-13.2 0.2 
-13.7 
-15.2 
-13.1 
-13.7 
-15.2 
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20.2 * 0.0 
17.7 
14.7 

18.4 
18.9 

17.9* 1.4 
17.3 i 0.2 
17.2 
16.1 i 0.2 

16.1 
16.4 i 0.7 

16.9 
17.7 
19.4 
14.8 i 0.8 
14.4 
16.9 
19.5 
17.4 
16.9 
20.1 
16.5 i 0.2 
16.4 
20.5 
16.5 
16.4 * 1.2 
17.0 
16.4 * 0.5 
16.9 * 0.3 

18.4 i 0.6 
18.4 

16.3 i 0.2 

20.0 
15.6 

18.9 + 1.5 
18.7 
17.2 
19.0* 1.4 
15.6 
15.8 
16.2 i 0.6 
16.1 * 0.8 
16.9 

20.1 
16.3 

19.9 
16.5 



Table 1. - cont 

Northern fur 1 
seals 1 

1 

1 
1 

1 
Steller sea 2 
lions 3 

1 
1 
2 
I 
I 

1 
1 

2 
1 

1 
I 
1 
I 
1 

2 
1 

2 
3 
1 
1 

1961 CGOA 

1965 BS 
1961 BS 

1976 WGOA 
1976 BS 
1995 BS 
1953 BS 
1956 CGOA 
1957 CGOA 
1958 BS 
1960 WGOA 

1961 BS 
1960 BS 

1966 CGOA 
1965 BS 

1969 CGOA 
1971 BS 
1974 BS 
1977 BS 

1979 BS 
1978 WGOA 

1988 CGOA 
1989 WGOA 
1993 BS 
1994 BS 
1995 BS 
1996 BS 
1997 WGOA 

-16.7 16.7 
-15.2 16.8 
-15.2 15.5 
-13.8 18.4 
-13.8 16.8 

-14.1 i 0.6 
-15.3 

20.3 + 0.9 
17.2 

-13.0 0.3 18.0 * 0.6 
-14.5 18.5 
-12.5 
-12.8 i 0.1 

17.0 
18.5 i 0.4 

-14.2 16.4 
-13.2 
-14.6 

21.9 
18.8 

-13.1 20.4 
-14.3 18.7 
-14.9 i 0.3 18.9 i 1.6 
-12.9 20.0 
-14.9 18.5 
-15.2 17.5 
-15.0 17.0 
-14.6 18.5 
-15.6 17.0 
-15.7 i 0.1 18.1 i 1.9 
-14.9 + 0.1 18.0 0.1 
-14.2 0.2 
-15.4 

18.7 0.8 
17.0 

-15.8 17.8 
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Figure 3. 6°C values of bone collagen for Steller sea  lions for the Bering Sea  and Gulf of Alaska, 195 I -  
1997. 
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A.C.  Hirons, D.M. Schell, andD.J. St. Aubin 
Vibrissae  growth  rates of harbor  seals (Phocu vitulinu) and Steller sea lions (Eumetopiavjubntus) 

ABSTRACT 

Vibrissae, which act as a temporal record of feeding in harbor seals (Pboca vifulino) and  Steller 

sea lions (Eurnetopias jubatus), had growth rates estimated using "C- and "N-labeled glycine and 

subsequent  stable isotope analysis.  The labeled glycine was incorporated into  the  keratin and served as a 

temporal  marker for growth rate calculation. One captive seal received  two doses 147  days apaa while a 

second  seal received only one dose; vibrissae were  analyzed after 86 and 154 days. The positions of the 

peaks  indicate growth begins in late fall or winter, continues into spring  but ceases by June.  Two captive 

sea lions  each received  two  labeled doses during a 308 day period. After 427 days vibrissae showed two 

peaks  corresponding to the  markers and growth rates of 0.05 - 0.07 mdday.  Similar growth rates  in 

captive  juvenile and wild adult sea lions, 0.05 - 0.18 mmiday. supported the assumption  that  the major 

isotopic  oscillations were annual.  The multi-year records imply that Steller sea lions  retain  their  vibrissae 

while  harbor seal vibrissae. in contrast. have periods of rapid growth and minimal or no growth  at  other 

times  and  appear to be shed, at least in  part, annually. 
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INTRODUCTION 

Severe declines in harbor seal (Phoca vitulina) and Steller sea lion (Eumetopias jubatus) 

populations  have been  recorded  in the Bering  Sea and Gulf of Alaska for more than two  decades (Pitcher 

1990, Strick et al. 1997). No cause  and effect relationships have  yet been established despite the 

concurrent  increased commercial fishing pressure and decline in pinniped  populations that compete for 

many of the  same resources. Food limitation has still been hpothesized as the likely cause behind  the 

declines in the pinniped populations, resulting from decreases in prey  populations and/or alteration of the 

prey base (Alaska  Sea Grant  1993:  Alverson 1991; Anderson  et al. 1997;  Merrick et al. 1997). Vibrissae 

(whiskers) from seals and sea lions contain a timeline of stable  isotope ratios derived from prey  items. By 

comparing  the isotope ratios found along the lengths of vibrissae with the isotope ratios of suspected prey 

items, changes in food  sources and habitat  can  be  surmised for the temporal  span represented by the 

growth of the  whisker. As part of the study we attempted to determine how growth rates patterns changed 

in  the vibrissae of seals and sea lions throughout the y e a  

Vibrissae (whiskers) are hairlike organs but  differ considerably  from  pelage (hair). Vibrissae 

follicles are like pelage follicles in structure but  differ by being larger overall. highly innervated, having 

large blood sinuses and are controlled by voluntary  muscles. The  whiskers on pinnipeds occur  in the 

musculature on the  muzzle  and above the eyes and most of these muscles control the positioning of the 

vibrissae (Ling 1977). Dehnhardt  and Kaminski (1995) described  how the vibrissae of harbor seals could 

discriminate diameter differences among disks by touching  them  with their mystacial  vibrissae. The 

vibrissae from  harbor seals and Steller sea lions have  some anatomical differences from  each other. The 

vibrissa1 shaft in  the otariids, including Steller  sea lions, are outwardly smooth  while  harbor seals and 

other phocids  have  a waved  surface. No known information exists regarding the significance of this 

characteristic in different species but  differences in the vibrissae structure may be associated with slightly 

different functions. 

Ling (1966) determined that elephant seal vibrissae were not shed during  their annual pelage 

molt  but were shed periodically only after the seals  were older than two years  of age. However, the 

marsupial Tricosurus vulpecula, as noted  by  Lyne  et al. (19741, had  prolonged  but variable vibrissae 
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growth cycles compared to its pelage. Because  vibrissae appear to function as sensory organs, periodic 

replacement or renewal due to physical damage could  be  selectively more advantageous than seasonal 

replacement.  Based on this information, we  hypothesized that these  two species ofpinnip& would 

maintain  their vibrissae from  year-to-year and grow continually. Understanding the relationship between 

growth  and isotope ratios in  the vibrissae will  facilitate interpretation of the  temporal record of food 

consumption in these animals. 

MATERIALS AND METHODS 

Administration of labeled  glycine 

Glycine enriched  with "C and "N (98%) (Cambridge  Isotope  Laboratories,  Andover,  Mass,) 

was employed to mark vibrissae. Two adult harbor  seals and two  adult Steller sea  lions  at the Mystic 

Marinelife  Aquarium in Connecticut were  intravenously administered  both singly- < 'N) and doubly. 

labeled (I3C and "N) glycine.  Glycine  was chosen as the carrier for the isotope label  due to the high mole 

percentage  found in keratin. The amount of labeled-amino acid sufficient enough to create an easily 

measurable isotope marker  was based  on the approximate  weight of each animal. The concentration of 

glycine in the injected solution was 100 mg/ml and the dose  chosen  was approximately 5 mg glycinekg of 

body  weight. The  amino acid  was administered in sterile normal saline solution. All  procedures  were 

approved by the Institutional Animal  Care  and Use Committees of both the Mystic Marinelife Aquarium 

and the University of Alaska  Fairbanks  and were carried out in accordance  with guidelines  established by 

the  Canadian  Council on Animal Care. 

The labeled glycine  was administered to two seals  (Norton and Peter) and two sea lions (Lucia 

and Stella). Norton received  two  doses of "C and "N-labeled  glycine 143 days apart, while Peter was 

given  just  one  dose of I3C and "N-labeled  glycine.  Lucia  received  one  dose of doubly-labeled and one  dose 

of  "N-labeled amino acid. Stella was  given  two  doses  of  'SN-labeled glycine. Table 1 details the sequence 

of label additions and whisker clipping. The glycine  was  metabolically incorporated into the keratin 

during  growth of the whiskers  and the large addition of "N or "C provided  a temporal marker. Whole 

blood samples of 1-2 ml were  collected prior to dosing and at twenty-fonr hour intervals for several days 

after the  dosing in order to monitor  the loss of the label. Whiskers were  allowed to grow for several 



months before  a  second  dose of glycine was administered. The second peak was desired to establish two 

known  dated markers in order  to calculate growth rate. After several more  months, a whisker  was cut as 

close to the  skin as possible from  each  animal  and  analyzed for stable isotope ratios at close intervals 

along its length to locate the markers  (Table  1). 

Whisker  growth  in  subadult sea  lions 

A  second type of growth rate experiment  was  conducted  simnultaneously at the Vancouver 

Aquarium in British Columnbia. Canada on subadult Steller sea lions. Vibrissae  were clipped from the 

muzzle of each of the  six  animals periodically during a three year period. The vibrissae were analyz.ed for 

the normal variability in natural abundance stable isotope ratios and all the whiskers from an animal  are 

plotted together. Overlap in growth from one vibrissae to the next was measured  from an inflection point 

obvious on at least two separate segments. The date of each clipping was  known  and the growth rate 

calculated. 

All the mystacial vibrissae from  a suhsistance-harvested sea lion were pulled and  analyzed for 

carbon  and  nitrogen isotope ratios. The patterns of isotope ratios were compared among the vibrissae, 

particularly the  shorter, anterior vibrissae versus the longer, posterior whskers to determine if growth rate 

varied  among sea lion vibrissae. 

Whisker  growth in wild harbor seals 

An adult harbor seal in southeastern Alaska  was  recaptured  seven months after a vibrissae had 

been  removed  for analysis. A second vibrissae was  removed and analyzed and the patterns in  the isotope 

ratios were  compared in an effort to determine the growth rate  during  that  time period. 

All the mystacial vibrissae from  a  subsistance-harvested  harbor seal were  pulled  and  analyzed for 

carbon  and  nitrogen isotope ratios, The patterns of isotope ratios were  compared among  the vibrissae, 

particularly the  anterior versus posterior whiskers  to  determine if growth rate varied  among seal vibrissae. 

Laboratory  procedures 

Vibrissae  were  scrubbed  with steel wool to remove  any debris. The first vibrissae from the harbor 

seal Norton  was  segmented at 1.5 mm  while the  remaining vibrissae were  segmented at 2.5 mm intervals. 

Blood  samples  were dried for several days at 60°C and then ground for homogeneity.  Each  sample  was 
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combusted at high  temperature using a  Europa Roboprep  CHN  analyzer and the nitrogen  and  carbon 

dioxide gases were separated  and purified  by gas chromatography. All samples were then analyzed for 

stable carbon and nitrogen isotope ratios with a Europa 20120 continuous  flow  isotope ratio mass 

spectrometer. Results  are  reponed in the standard 6°C and 6I5N notation. Stable isotope ratios were 

expressed in  the  following  standard notation: 

6 X (%o) = / Rstandard - 1) X 1000 

where X is I3C or "N and Rsample is the 13C/'*C or 15N/14N respectively.  Rstandard for "Cis Pee  Dee 

Belemnite; for 15N it  is atmospheric N2 (sir).  Analytical error for  samples  was approximately i 0.1%. for 

both  carbon  and  nitrogen 

RESULTS 

Isotopic analyses of blood  samples in both  captive  seals and sea lions showed a rapid increase in 

both 6°C and 615N following administration. The nitrogen  isotope  ratio changes  were  the most 

pronounced  and reflected the relative quantities of the element in the body composition, Decreases in the 

blood 6°C over time indicated loss of the isotope through respiration or excretion and incorporation into 

body proteins. Vibrissae growth  rates are summarized in Table 2. 

Harbor seals 

The vibrissae of the first harbor seal tested,  Norton,  showed  only one peak after 143 days  (29 

August 1996)  following injection of the labeled  glycine in January  1996. An identical peak was in  the 

same location after an additional 68 days  (November 1996) (Fig. 1). The  second harbor seal (Peter) had 

the label administered in June 1996 and had a whisker  cut in November after 155 days. No marker was 

evident in Peter's whisker (Fig. 2) but the large quantities of stable  isotopes from  the label were visible in 

the blood samples  confirming  that the seal  did  receive the labeled  amino acid (Fig. 3). No marker was 

evident in either seal from the time between the last administered label (June 1996) and the last cutting of 

the whiskers, 765 days  later (July  1998)  (Figs. 1 and 2). Because  Peter  did not receive a labeled injection 
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in January and Norton  demonstrated  only  a single isotopic peak, the labeled glycine  peak  evident in 

Norton’s  whiskers  was  thought  to  have resulted solely from the January injection. 

The blood  serum  washout in Figure 3 showed  evidence of the carbon isotope ratios  returning to 

pre-injection levels thirty days later while the nitrogen isotope ratios maintained  a slight enrichment. The 

starting point of the increasing isotope ratios in Norton’s vibrissae until  the  point  when  the isotope ratios 

returned to constant levels was  presumed  to  be a thirty day  period and  the growth rate  during  this period 

from  mid-January to mid-Febmary  was  0.70 mdday. If the growth rate remained  constant for the entire 

vibrissae, Norton’s  whiskers  represented  growth  from  December 1995 to mid-April 1996 and then 

appeared  to stop. Growth had not  resumed as of early November  when the second  whisker  was  analyzed. 

A third whisker  removed from Norton 20 months later showed no evidence of any  carbon  and nitrogen 

enrichment. 

An adult harbor seal from southeastern Alaska that was originally tagged and sampled in 

September 1994 was recaptured in April 1995. Whiskers that had  been collected at both times Were 

analyzed for their stable isotope ratios. During  that seven months, the whiskers had a calculated growth 

rate of 0.07 mm/day  assuming continually growth (Fig. 4). In 1997 a second  harbor seal was  recaptured 

and a whisker  removed for isotope analysis two  years after a whisker  was initially sampled. No overlap in 

isotope ratios occurred  between the two vibrissae. A third harbor seal. a yearling, was also recaptured one 

year after it had been initially sampled as a  pup and  the stable isotope ratios showed no similarity or 

overlap  between the two vibrissae. The subsistence-harvested seal showed no distinct change in isotope 

ratios between anterior and posterior vibrissae and between vibrissae along the left and  right sides of the 

muzzle (Fig. 5). 

Steller sea lions 

The two captive sea lions each  received  two  doses of labeled glycine as shown in Table 1 

Whiskers  were  allowed to grow  over a 610 and 735 day period, respectively. The  first sea lion, Lucia, 

received  one  dose of doubly-labeled and one dose of I5N-labeled amino acid. The stable isotope ratios in 

the vibrissae showed  both  6”N and 6°C in the first enriched  peak and  the  single  label of SL5N in the 

second  peak (Fig. 6). Stella’s vibrissae exhibited  two  enriched  peaks in the 615N that represented the two 
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doses of "N-labeled glycine administered (Fig. 7). Growth rates between the two markers ranged  from 

0.05 - 0.07 mmiday for both sea lions. The vibrissae  were  retained  by the sea lions for more  than 735 days 

and these data imply the sea lions retain their whiskers for  several years. 

Six juvenile Steller sea lions held in captivity at the Vancouver Aquarium in British Columbia, 

Canada, had their vibrissae clipped  periodically during a three year period. One  animal  had two  whiskers 

cut successively which  had an adequate overlap of growth  to estimate its rate of growth.  The daily  growth 

rate, averaged over fourteen months.  was 0.14 &day  (Fig. 9). A second sea lion had a much  shorter 

overlap of growth in two  successive  whiskers. The daily  growth  rate for the second animal, averaged  over 

two winter  months,  was  0.17 mdday. 

The  growth rates of these captive  sea lions were  compared with the limited growth  information 

for Steller sea lions in  the wild. Subadult and adult  sea lions (n = 27) sampled from wild  stocks had 

consistent isotopic oscillations along their vibrissae  with  growth  rates ranging  from 0.05 - 0.18 mmiday 

and  averaging  0.10 - 0.14 mdday, assuming that the major  oscillations  evident  were annual (Fig. 8). 

These regular isotopic oscillations (we  observed  up to seven on a vibrissae) seem to indicate the animals 

continue to grow their whiskers for several  years  before the whiskers are  broken or lost. Oscillation length 

varied  from  animal to animal  and year to year.  All the sea lions sampled in  the Gulf of Alaska  were adult 

females while  72% of the sea lions from the Pribilof Islands in the Bering Sea were less than 5 years of 

age and  almost exclusively  male.  Growth rates averaged  over  twelve months were 0.11 - 0.12  mmiday for 

all sea lions combined.  The subsistence-harvested sea lion showed  no distinct varkation in isotope ratios 

between anterior and posterior vibrissae and between  vibrissae along  the left and right sides of the muzzle 

(Fig. IO). 

DISCUSSION 

These  simple  marker  and observational experiments indicate that the vibrissal growth 

characteristics between harbor seals and sea lions are remarkably  different. The  harbor seal growth rates 

indicated an irregular growth  rate  throughout the year and this may also apply to different vibrissae on the 

muzzle. The harbor seal had only one  peak after being  given one dose in January and the second 
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application in June was  not evident in either of the two seals. Rosen and Renouf (1  995)  observed an 84% 

increase in the resting metabolic rates (RMR) of captive adult harbor seals from November to April  and a 

higher than average RMR than the August  estimates for the animals. These variations in metabolic rates 

may  have  some connection to the rapid  growth of the  vibrissae  from Norton which  appeared to have 

grown  from the end of November until mid-April.  Because the peak remained in approximately  the  same 

location on whiskers  sampled  from Norton in August and November,  growth  was  assumed  to  have 

decreased to some minimal level or ceased altogether some time prior to June. At  some time  during the 

next  twenty  months.  however,  most or all of the whiskers  were  lost and  the  marker  was no longer evident. 

Recaptured wild seals 

The vibrissal growth rate in the recaptured adult wild  seal was  one-tenth  the  spring  growth rate 

of the captive seal. The first sampling of the wild  seal  took  place  at the end of September  1996 at which 

time  the seal showed signs of having completed  molting. The two other recaptured seals showed  no 

evidence of similarity in their natural patterns of isotope ratios from the previous one and two years 

respectively. The two vibrissae analyzed  from the scal following recapture two years later showed  close 

similarities in the patterns indicating growth during the same feeding times. These data lend  support to 

the idea that harbor seals may  be lose all or most of their vibrissae annually. Bowen (pers. comm.) 

observed  grey  seals in captivity sporadically losing their vibrissae and rapidly regrowing  them  during  the 

molting period. He has also observed the rapid  regrowth of broken vibrissae on grey seals throughout the 

year. Growth rate in  the harbor  seal vibrissae is assumed to be consistent among  all  the vibrissae. 

Vibrissae from Steller sea lions at the Vancouver  Aquarium  had  been  collected when  the  animals 

ranged in age  from two to four years old. Periodic  changes in the animals’ diets are evident in the shifts in 

the stable isotopes along their vibrissae. The growth rate in the juvenile sea lions was  twice  the rate 

exhibited by the adult sea lions and metabolic  studies  on various mammalian species have shown higher 

metabolic rates in juvenile animals versus adults of the same  species (Schmidt-Nielsen 1979). The 

increased  growth rates in  the juvenile sea lions may  not be unusual. 

Vibrissae growth rates in wild adult sea lions  had a range equal to the captive animals. The 

isotopic oscillations in  the vibrissae from wild adult sea lions throughout the Bering  Sea  and Gulf of 
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Alaska resulted from  feeding on  prey in different geographic regions with different  isotopic signatures. 

Sea lions seasonally travel hundreds of kilometers from haul-out  sites to feeding locations, returning to 

the same rookery each  year to breed (Memck 1995, Memck et al. 1997). These behaviors  resulted in  the 

oscillating patterns along the vibrissae and, likewise, each isotopic oscillation represented  one years' 

forage information. The similar vibrissae growth rates in both  wild and captive  sea  lions,  combined with 

the repetitive isotopic patterns in wild sea lions, provide  evidence that sea lions retain their vibrissae for 

several years and likely replace them only when broken or worn. 
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Table 1. Sequence of vibrissae growth rate experiment in harbor seals,  Norton and Peter, and in Steller 
sea lions, Lucia and Stella, 1 January 1996 through 9 July  1998. 

Norton (N) 

Delivery Injection 

Glycine  label 2 - "C&"N 

Tissues Blood, 
Vibrissae 

Delivery  date 9 Jan. 1996 
4 June 1996 

Sample  date 29  Aug.  1996 
(vibrissae) 5 Nov. 1996 

9 July 1998 

Peter (P) 

Injection 

1 - "C&"N 

Blood, 
Vibrissae 

4 June  1996 

5 Nov.  1996 
9 July 1998 

Lucia (L) 

Injection 

1 - "C&"N 
1 - I5N 

Blood, 
Vibrissae 

18 June  1996 
22  Apr.  1997 

23 June 1998 

Stella ( S )  

Injection 

2 - "N 

Blood, 
Vibrissae 

20 Aug. 1996 
22 Apr. 1997 

17 Nov. 1996 
23  June 1998 

Harbor seals (Norton  and Peter) 

N label N&P label N vibrissae 

L -1 L J  
N&P vibrissae N&P vibrissae 

L 

1 100 200 300 400 500 600 700 800 900 1000 
Julian Days 

Steller sea lions (Lucia  and Stella) 

L  label S label S vibrissae L&S  label 
J L J  J 

L&S vibrissae 
L 

1 100 200 300 400 500 600 700 800 900 1000 
Julian Days 
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Table 2. Vibrissae growth rates in harbor seals and Steller  sea lions 

Soecies Location As Aver.  growth  (mmldav) 

Harbor  seals captive (Mystic, CT) adult 
wild (Alaska) adult 0.07 

0.37 - 0.60 

Steller sea lions captive  (Mystic, CT) adult 0.05 - 0.09 
captive  (Vancouver, BC) juvenile 
wild (Alaska) adult 

0.14 - 0.17 
0.10 -0.14 
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APPENDIX 3 

6°C and 6”N in vibrissae of harbor seals from Prince William Sound, Alaska, 1993-1998 
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Port Chalmers, PWS, Alaska - April 1994 
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Stockdale  Harbor, PWS, Alaska - April 1994 
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Stockdale  Harbor, PWS, Alaska - April 1994 
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Channel  Island, PWS, Alaska - September 1994 

-12 ~ 

HSB11-1PWS ADULT FEMALE 
~ 20 

-1 3 -19 

-14 -18 

-15 -17 5 
a~ -16 . 

&&+.dl ::; ;:: -16 3 
-15 

-1 8 -14 

-19 4 413 
0 2 4  6 8 10 12 14 16 

Length - base to tip (crn) 

- - - 
u 

-17 
~ 

I, %Z. 

0 2 -15 /<\ del 15N 

i del 13C U . '  16 
-17 15 
-1 8 14 

-1 9 13 
0 2 4 6 8 10 12 14 16 

Length - base  to tip (crn) 

-12 
HSBl3PWS SUBADULT MALE 

- 20 
-1 3 -19 

-14 -18 
2 -15 - del 13C 

-17 5 - 
0 0 -16 -16 2 .%x- .- ' del 15N 

- 
-1 7 . -15  

-19 1:: 
0 2  4  6  8 10 12 14 16 

Length - base to tip (crn) 

9 0  



Chaannel Island, PWS, Alaska - September 1994 

-12 - 20 
ADULT MALE 

-13 . 19 

-18 -1 4 

HSB14PWS 

2 -15 ~ 

7 
-17 5 

- 
-16 

- 
L. del15N -16 z 

-1 7 del 13C -15  

-1 8 

+13 -19 7 

~ 1 4  

0 2 4 6 8  10 12 14  16 
Length - base to tip (cm) 

20 

19 

18 

17 5 
16 

15 

14 

13 

7 

-12 - 
HSBl7PWS SUBADULT MALE 

~ 20 

-13 - 

-14 

.19 

-10 

2 -15 ~ 1 7  5 - - 
g -16  we- , = del 13C 

del 15N - 
-16 z 

-1 7 

-13 9 -19 

-14 -1 8 

~ 1 5  

0 2 4 6 8 10 12 14  16 
Length - base to tip (cm) 
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Channel Island, PWS, Alaska - September 1994 

-12 

-13 
. -  -14 

- 

--18 

E! -15 . -  hr del15N .-17 5 

HSB18PWS 
.20 

SUBADULT  MALE 
19 

- - - 
0 al -16 ..16 z ,m del 13C 

-17 

-13 1 -19 

-.14 - -18 

--15 .- 

0 2 4 6 8 10 12  14  16 
Length-  base to tip (cm) 

-1 2 

-1  3 

-14 

2 -15 

$j -16 

-1  7 

-1 8 

-1  9 

7 - 

HSBl9PWS SUBADULT  MALE 

0 2 4 6 8 10 12  14 16 
Length - base  to  tip (cm) 

HSB20PWS  SUBADULT  FEMALE 

-14 

20 

19 

18 

17 LO z 
16 z 
15 

14 

13 

- 

20 

19 

18 

17 5 
16 

15 

14 

13 

7 

0 2 4 6 8  10 12 14 16 
Length - base to tip (cm) 

9 2  



Channel  Island, PWS, Alaska - September 1994 

-12 

-1 3 
HSB21PW SUBADULT  MALE 

del 15N 

-17 

-1 a 

0 2 4 6 8 10  12  14  16 
Length - base to tip (cm) 

20 

19 

l a  
17 5 
16 

15 

14 

13 

- 

-1 2 - 
-1 3 

20 

-18 ”.\, “.L =. -14 

-19 . 
2 - 1 5  

del 13C 7 
. 

U 
‘, a -16 

. -  del 15N ~ 1 7  5 
- 7 

’* t 
-16 2 

-1 7 

HSB22PWS SUBADULT  MALE 

-15 

0 2 4 6 8 10  12  14 16 
-13 4 -19 

- 14 

Length -base to tip (cm) 

-18 ./’. 

-12 

-13 
HSB23PWS ADULT MALE 

0, -15 
r -14 I 

0 2 4 6 8 10  12  14 16 
Length - base to tip (cm) 

20 

19 

l a  
17 5 
16 2 
15 

14 

13 

r 

9 3  



Gravina  Island, PWS, Alaska - September 1994 

HSB24-1 PWS  ADULT FEMALE 

-14 

::I: 1 , , 

-1  9 
0 2 4 6 8 10 12 14 16 

Length - base to tip (cm) 

20 

19 

18 

17 5 
16 2 
15 

14 

13 

7 

-12 - 
-1  3 

tHSE2S-PWS PUP  FEMALE 

-14 
AI .---< del 13C 2 7 -15 . /,-.- f A.0. del 15N - 

QI -16 . 

! -17 
-i 
ir 0 

-1  8 

-19 - 
0 2 4 6 8 10 12  14 16 

Length - base to  tlp (cm) 

-12 - 
-1  3 

-14 

2 -15 

QI -16 - 
HSB26PWS SUBADULT  MALE 

T $ del 15N - 
&+-*.&J% del 13C 

-1  7 

-1  8 

i 

+ -19 
0 2 4 6 8 10 12 14 16 

Length - base to  tip (crn) 

20 

19 

18 

17 5 
16 

15 

14 

13 

7 

20 

19 

18 

17 5 
16 

15 

14 

13 

r 

9 4  



Port Chalmers, PWS, Alaska - September 1994 

-12 - 
-1 3 

-14 .Tm 

HSB27-1PWS ADULT FEMALE 
-20 

. del 15N 
-18 ' -15 z -17 v) .ad, del 13C - - 7 

U 0 -16 . 
-16 2 \'oLl/ -17.  ~ 1 5  

I 

-1 8 

0 2 4 6 8 10 12  14 16 
-13 -19 + 
-14 

Length - base to tip (cm) 

-12 

-1 3 
HSB28PWS 

- 20 

-19 

-14 -18 

-15 

ADULT MALE 

7 

k fs4 m-16 
del 13C ~ 1 7  5 - r 

U -16 2 q, ..;x& del 15N 
-17 . 

X8* -15 

-1 8 

* 13 ' -19 

~ 14 

0 2 4 6 8 10 12 14 16 
Length - base to  tip (cm) 

-12 

-14 

-19 -4. -13 

- 20 

- 
i d /  

~ 1 8  
A -de l  15N A_ 

4, 

2 -15 -17 5 
I I del 13C 

r - 7 - 
0 
m -16 

d . I 6  2 7.  q,, I-' 
-1 7 -15 

-1 8 HSB29PWS  PUP MALE 
-14 

-19 
0 2 4 6 8 10 12 14 16 

13 

Length - base to tip (cm) 

.. . 

9 5  



Port Chalmers, PWS, Alaska - September 1994 

-12 - -20 

-1  3 .19 

-1  4 ~ 1 8  

HSB30-IPWS ADULT  FEMALE 

2 -15 ~ 1 7  5 - - 
a -16 .16 

-1  7 -15 

-1 8 

+13 -1 9 

.14 

0 2 4 6 8 10  12 14 16 
Length - base to tip (cm) 

,a del 15N 
7 

0 
A\ > del 13C fk- 

-12 - 
HSB31PWS  SUBADULT  FEMALE 

i 20 

-1  3 -19 

-1  4 -18 

-15 
7 

del 13C 

del 15N -17 5 
- r - 
0 0 -16 ~\ .,y+-+ .16 2 

~ 1 5  

-14 

-17 *i --,- 
-1 8 

-.I 

-19 -13 
0 2 4 6 8 10 12  14 16 

Length - base to tip (cm) 

-12 - 
-1  3 

HSB32PWS ADULT  FEMALE 

-14 

a -16 . 

1 ~ * .  , 2 -15 

.I 

:\ iL"\, del 15N 

,7, del 13C 

: 
- - 
U 

-1 8 

-19 - 
0 2 4 6 8 10  12 14 16 

Length - base to tip (cm) 

20 

19 

18 

17 5 
16 2 
15 

14 

13 

7 
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Port Chalmers, PWS, Alaska - September 1994 

-12 - 
HSB33-1PWS SUBADULT FEMALE 

- 20 

-1 3 -19 

-14 -18 

$ -15 - .17 5 
- - 
0 al-16 .16 

.\ , p - q  :x: -1 7 -15  

-1 8 ~ 14 

-1 9 +13 
0 2 4 6 8 10 12 14 16 

k+ 
I 

Length - base to tip (cm) 

-12 

-13 

-14 

2 -15 
7 - 
0 0 -16 

-1 7 

-1 8 

-1 9 

HS034PWS 
20 

19 
ADULT MALE 

- -18 

f.,, del 13C 
~ 1 6  1 . del 15N 
-17 5 7 .. 

i A .15 

t 14 

0 2 4 6 8 10 12 14 16 
Length - base to  tip (cm) 

-1 2 

-1 3 

-14 

HSB35-1 PW ADULT FEMALE 

2 -1s c4 del 15N 

r".'. del 13C 

r 

ifi-16 1 u 
'i Y I  ";' 

-17.  .A. 
-18 ~ 

-19 + 
0 2 4 6 8 10 12 14 16 

Length - base to  tip (cm) 

20 

19 

18 

17 5 
16 2 
15 

14 

13 

7 

9 7  



Port Chalmers, PWS, Alaska - September 1994 

-12 1 

-1 3 

- 20 

-18 ~- -14 

--19 
HSB36PWS ADULT MALE 

2 -15 

T -16 
5 ,  
3 

- --17 5 . del 15N - 
u L - - I 6  2 

-17 

13 -19 4 * 

- - I 4  -1 0 

- -15  '9, -&' . del 13C 

0 2 4 6 8 10 12 14  16 
Length - base to tip (cm) 

-- 

9 8  



Tatitlik,  PWS,  Alaska - September 1994 

-12 - 
HSBTl-1 PWS  SUBADULT  FEMALE 

20 
-13 . 

~ 1 8  del 15N -1  4 

-19 

2 -15 - ~ 1 7  5 
I - - 

7J 
-16 . 

-16 2 .'C/ + 

-17 - L C~. del 13C -15 

-1  8 . 
'13 -19 

-14 
=.-w*, 

0 

-1  2 

-1  3 

-14 

E! -15 

0 -16 

-1  7 

-1 8 

-1 9 

7 - 
D 

2 4 6 8 10 12 14  16 
Length - base to tip (cm) 

HSBT3-1PWS  ADULT  FEMALE 

0 2 4 6 8 10 12 14 16 
Length - base to tip (cm) 

-12 

-13 

-14 

~~ 

HSBT4-1PWS ADULT  MALE 

4 del15N 

: -15 5,. *.- MA--. del  13C 
7 - 
7J 
m -16 

-17 

-18 - -19 

.- 

'L- 
I 

0 2 4 6 8 10 12 14 16 
Length - base to tip (cm) 

20 

19 

18 

17 5 
16 $ 
15 

14 

13 

- 

20 

19 

18 

17 5 
16 $ 
15 

14 

13 

- 

9 9  



Tatitlik, PWS, Alaska - September 1994 

-12 , 

-18 .. -14 

.19 ~. -13 

.20 
HSBT5-1  PWS ADULT  MALE 

2 - 1 5  . - del 13C 

..16 2 . del1SN a-16 

.-17 5 - 7 

U 

-1 7 -15 

-18 

'13 -19 4 

- 14 ~'' 
0 2 4 6 8 10 12 14  16 

4 . 
4' 

Length - base  to tip 

-12 

-1 3 

-14 

m -15 0 

m -16 

-1 7 

-1 8 

-1 9 

r - 
-0 

HSBT6-IPWS PUP  FEMALE 
20 
19 

18 

17 5 
16 3 
15 

14 

13 

c 

0 2 4 6 8 10 12 14 16 
Length - base to tip (crn) 

-12 . - 20 

-1 4 6 - H .  -18 

-1 3 . - 1 '.. 
del 15N -19 

$ -15 t A' -, del13C ~ 1 7  5 - 
Z - 1 6  ', , %" 

7 

U 
4 6  

-17 . . , I  
hu' -15 

d i  
HSBT7-1  PWS  PUP  MALE 

~- 14 

-19 - ~ 1 3  
0 2 4 6 8 10  12 14 16 

Length - base to tip (crn) 
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Dutch Group, PWS, Alaska - May 1995 

-12 . -20 
-13 

-18 .~ -14 

-19 .- HSC1-1PWS SUBADULT MALE 

f de'15N 2 -15 .- 
~ . 1 6  $ . &/if---- del 13C a-16 

,w .17 5 - - 
u 

-17 -15 .i 
-18 

-19 

-14 .- 

Length - base to  tip (cm) 
0 2 4 6 8 10  12  14  16 

-13 * 

-12 

-1 3 

-1  4 

-1  7 

-1  8 

-1 9 

~ 

-19 

20 
' del 15N 

-. * i del13C 
- 

*.I.' -18 .. -- ..-d 
-17 ZJ 

7 

A, * -16 
*2' 

i a  

HSC2-IPWS SUBADULT  MALE 

0 2 4 6 8 10 12  14  16 

-15 

~ 14 

'13 

Length - base to tip (Cm) 

-12 7 r 20 
-13 --19 ~ -* del  15N 

-14 - 
-.- 

, .* - ~ 1 8  

3 -15 -17 5 - !'.-. + del 13C 
7 - 
U 

A. - 4  a -16 ~- -.16 2 
-17 - 

.- -18 

--15 

HSC3-1 PWS  SUBADULT  MALE -14 
-19 T +13 

0 2 4 6 8 10  12  14 16 
Length - base to tip (cm) 

7 
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Dutch Group, PWS, Alaska - May 1995 

-12 - 
-13 

.~ -14 

'~ 

HSC4-1 PWS SUBADULT MALE 

k? -15 

0) -16 ?, 
- . *'A\, del 15N - 4 . .  / k  

u 
-17 ,c:&-:e<;,J . del 13C -1 0 

-1  9 
0 2 4 6 8 10 12 14 16 

Length - base to  tip (cm) 

20 

19 

10 

17 5 
16 2 
15 

14 

13 

- 

-12 ~ 20 

-1 3 
. -14 

-19 

-10 

2 - 1 5  1 -17 5 
m -16 ~' -Fy del 13C - 

~ - 1 6  2 

HSCS-1 PWS SUBADULT MALE 

- 
0 A r- del 15N 

-17 -15 +,. , 
-18 ~~ 

-13 -1 9 

- 14 

Length - base to  tip (cm) 
0 2 4 6 8 10 12 14 16 

1 
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Olsen Bay, PWS, Alaska - May 1995 

HSCG-1PWS SUBADULT FEMALE 

-14 18 

-19 -13 
0 2 4 6 8 10 12 14 16 

Length - base to tip (cm) 

-12 

-1 3 
HSC7-1 PWS 

20 
SUBADULT  MALE 19 

0 2 4 6 8 10 12 14 16 
Length - base to  tip (cm) 



Port Chalmers, PWS, Alaska - May 1995 

-12 - 
HSC8-1 PWS ADULT  FEMALE 

- 20 

-1 3 -19 

-14 . -18 

? -15 -&..*\ 
-17 ,z r? 

- 
0)  -16 .. del 13C 

- 
0 -1 7 

-16 “0 del 15N -15 

-18 

0 2 4 6 8 10 12 14 16 
-13 -19 

-14 ~~ 

Length - base to tip (crn) 
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Channel Island, PWS, Alaska - May 1995 

-12 1 20 

-13 .. - -19 

-14 . , - - -10 c -4 

HSC9-1 PWS SUBADULT FEMALE ' 
k. .+. 

2 -15 . ' -..r 6 A del 15N -17 5 - - . - 
0 m -16 LUmW de, 13c 16 

-1 7 

1 -13 -19 

.-14 -1 0 

-.15 

0 2 4 6 8 10 12 14  16 
Length - base to tip (cm) 

-1 2 -20 

-13 I":'. . del15N 
del 13C 

-19 

-14 .10 .. I . 

o, -15 

- .I7 5 - - 
0 
m -16 -16 3 

-17 -15 

-18 

-19 1 

HSClO-lPWS SUBADULT MALE 
-14 

-13 
0 2 4 6 8 10 12 14 16 

Length - base to tip (cm) 

-12 - 
-19 ~. -13 
I 20 

HSC11-1PWS SUBADULT FEMALE 

-14 

- ~ ~ 1 0  -=%* 
--17 5 ' -' 

.--r*LLS del 15N 
-3 del 13C 

- - 
U -16 

- ~ 1 5  .. -17 
~ ~ 1 6  $ 

.. 

-10 - -14 .. 

-19 3 -13 
0 2 4 6 8 10 12 14 16 

Length - base to tip (cm) 
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Channel  Island, PWS, Alaska - May 1995 

-12 

-1 3 

-14 

HSC12-IPWS 
I 20 

- - I 9  

-18 

ADULT MALE 

.. 

.- del 15N -17 5 - 
del 13C 

-18 .. 
-15 -1 7 

.16 

-14 

-1 9 +13 
0 2 4 6 8 10 12 14 16 

Length - base to tip (cm) 

-la -1 9 t 
0 2 4 6 8 10 12 14 16 

Length - base to tip (crn) 

20 

19 

18 

17 5 
16 

15 

14 

13 

7 

-12 - 
-1 3 

~ 20 

~. 18 ..bA.%a~---. -14 

-19 

2 - 1 5  ..17 5 x*, ' ,. del 15N 
c - - 
U -16 .. 

-17 

-18 

.. 15 .. 

.~ ~ - 1 4  

del 13C -.I6 

HSC14-IPWS ADULT MALE 
-19 

Length - base to tip (cm) 
0 2 4 6 8 10 12 14 16 

~ 1 3  + 
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Stockdale  Harbor, PWS, Alaska - May 1995 

-12 1 
~ 20 

-13 ~~ ~ .19  
-14 .. ~ 1 a  

HSC15-1  PWS ADULT MALE 

del 15N 

del 13C 
-.I7 5 - - 
-.16 0” 
~ - 1 5  

~ 1 4  
-19 7 -13 

0 2  4 6 8 10 12  14  16 
Length - base to tip (cm) 

-12 

-13 
HSC16-1PWS ADULT  MALE 

0 2 4 6 8 10  12  14  16 
Length - base to tip (cm) 

20 

19 

16 

17 5 
16 2 
15 

14 

13 

c 

-12 
HSC17-1PWS SUBADULT FEMALE 

-r 20 
-13 --19 .. 

-. I8 -14 

.t rn -16 

0 .. 0 -15 

.~ 

- --17 5 

-17 2’ 

-19 + 

.. -18 
-15 

+ I 3  

- 
0 

%- del 15N 7 

)&p’* del 13C 
-16 

-14 

0 2  4 6 8 10 12  14  16 
Length - base to tip (cm) 

1 O i  



Stockdale  Harbor, PWS, Alaska - May 1995 

-12 - J 20 

-13 .. ~ ' 1 9  

-14 .. . - l a  

HSC18-1PWS SUBADULT  MALE 

~ . 1 7  5 - 
--16 

~ 1 5  

-18 .~ - -14  

-19 7 -13 
0 2 4 6 8 10 12 14 16 

Length - base to tip (crn) 

. 

-12 . 

~ - 1 8  -1 4 

~ 1 9  - -13 

20 
HSC19-1PWS SUBADULT FEMALE 

2 - 1 5  - .. del 15N .-17 5 
- 
a - 1 6  . 4 

0 -16 g:?+.- -A del 13C 
- 

-17 

*13 -1 9 

.14 -1 8 

'- 15 - 
0 2 4 6 8 10 12 14  16 

Length -base to  tip (cm) 
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Port Chalmers, PWS, Alaska - May 1995 

-12 - 

-14 

~ . 1 9  .. -13 

~ 20 

--i8 .. 1 
.- 

\ - 2 - 1 5  ~LL 7 . .I": del 13C 
"' ' k del 15N 

- - I 7  5 
0 -16 . -  -.I6 2 

-17 ~~ 

-13 -19 9 

~ - 1 4  ~. -18 

- -15 

0 2 4 6 8 10 12 14 16 
Length - base to tip (cm) 

- - 
.u dp 

HSC20-1 PWS ADULT FEMALE 

-12 . 

.- , - -14 

--19 -1 3 

- 20 

A. 4, ~ ~ 1 8  ' -*. del15N 

Y .  2 - 1 5  . ' A -  , .  
7 , I  

- -17 5 
del 13C --16 3 

r - 
U -16 

-18 

- 4 5  . I -17 

~* 

~~ -14 

-19 ' *13 

I. \. 4 --2 

HSC21-IPWS SUBADULT  FEMALE 

0 2 4 6 8 10 12 14 16 
Length - base to tip (crn) 

-12 - 
.-19 ~~ -13 

~ 20 

~ 1 8  
A del 15N .. ~ r -14 

'4 

2 - 1 5  
~ g L n  a -16 

~ I 14- 

7 

-17 5 
- 7 

U fia del 13C -16 2 
-17 

-18 

-15 .. 7 

-13 - -19 

-14 .. 

0 2 4 6 8 10 12 14  16 
Length - base to tip (crn) 

HSC22-1 PWS SUBADULT MALE 
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Gravina Island, PWS, Alaska - September 1995 

-12 - 20 . 
-13 

.. -14 

.. ,- del 1 SN 
.19 

--18 * -w' 
2 -15 .~ 
r - -17 5 I 

4 -16 -16 2 
-1 7 . 
*5- -.\ del 13C 

.15 

..14 -18 .. 
HSC23PWS SUBADULT FEMALE 

0 2 4 6 8 10 12 14 16 
Length - base to tip (crn) 

-19 + -13 

-12 - 

.. 18 .. -14 

~ . 1 9  .. -13 

.20 

2 -15 .+#a del 13C IU -16 
.. 

7 6 del15N -17 5 
- 7 

0 
-16 2 

-17 

Length - base to tip (crn) 
0 2 4 6 8 10 12 14 16 

-13 * -19 

~ 4 4  
HSC24PWS PUP  FEMALE 

~- -18 

' -15 0 
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Port Chalmers, PWS, Alaska - September 1995 

-1 2 r 20 

-13 . 

.- -14 

- - I 9  

--10 

HSC26PWS ADULT FEMALE 

I;! -15 
- 0-16 

del 13C r 
.- ~ ~ 1 7  5 

- 7 

u c&. / del 15N ..I6 2 
~ - 1 5  

-18 -.14 - ,,,\A 

-17 t . . L  r' 
I d'+ 

-19 

Length - base to  tip (crn) 
0 2 4 6 8 10  12  14  16 

~ 1 3  7 

-12 - 20 - 
-1 3 

HSC27PWS ADULT  FEMALE 

-14 ~ 1 0  '. 

2 -15 ~~ 

r 

0 -16 
A del 15N 

.~ 'L*= -16 2 -. del 13C 

. ~ 1 7  5 
- 1 

7 

U 
-1 7 L -15 

-18 ~ 1 4  +-? 
L# 

-19 + 113 
0 2 4 6 8 10 12  14 16 

Length - base to tip (cm) 
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Channel Island, PWS, Alaska - September 1995 

0 2 4 6 8 10 12  14 16 
Length - base to tip (cm) 
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Applegate Rocks, PWS, Alaska - September 1995 

-12 - 
HSC41  PWS SUBADULT  MALE 

20 

-13 '. - -19 

-14 . -18 

0 -16 . p + , ~ +  --. del 13C -.16 

f del 15N 2 -15 - --17 5 - - 
-17 -.15 -+-. 
-18 

Length - base to  tip (cm) 
0 2 4 6 8 10 12 14 16 

-13 -19 ~ 

- -14 .. 

-12 - 
-1 3 

-1 4 

-15 

HSC42PWS SUBADULT MALE 

4- e 

-20 

-19 - 
-1 - del 15N ~ 1 a  

~ 1 7  5 I 

7 
'Omm--!-k--h del 13C - 7 

0 
a -16 .- J 

7 ):I 
.L' 

-16 2 
-17 

-13 -1 9 

-14 - -18 

-15 - ' , !  

0 2 4 6 8 10 12 14 16 
Length -base to tip (cm) 
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Little Green Island, PWS, Alaska - April 1996 

-1 2 

-1 3 
HSD2PWS SUBADULT  FEMALE 

-14 1 

-18 

0 2 4 6 8 10  12 14 16 
Length - base to tip (cm) 

HSD3PWS SUBADULT FEMALE 

-14 

-19 I 
0 2 4 6 8 10 12 14 16 

Length - base  to tip (cm) 

20 

19 

18 

17 5 
16 2 
15 

14 

13 

- 

20 

19 

18 

17 5 
16 

15 

14 

13 

7 
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Applegate Rocks, PWS, Alaska - April 1996 
.I 3 ' -  I 

-1 8 

-1 9 
YEARLING FEMALE 

20 

19 

18 

17 5 
16 

15 
14 

13 

T 

0 2 4 6 8 10  12  14 16 
Length - base to tip (cm) 

HSDSPWS ADULT  MALE 

-14  18 

-18 t 14 

13 
0 2 4 6 8 10 12 14 16 

Length - base to tip (cm) 
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Port Chalmers, PWS, Alaska - April 1996 
-12 

~ 1 9  - .. - -13 

r 20 I ADULT  FEMALE 

-14 ~ 1 8  -2 

$4 -15 
, - -1;- . -17 5 

.16 2 
-15 

-14 

-13 

- 
% -16 . -  t \, 

F 

-4 . ', 
-17 

-18 

~~ ,. 
-19 . 

'~ 

, ,  9." '.'PI 
. I  
'1 HSDl2PWS 

0 2 4  6 8 10 12 14 16 
Length - base  to tip (cm) 

-1 2 

-1 3 

-20 

~ 1 8  -14 . 
~ 1 9  

HSD13PWS ADULT  MALE 

L - del 15N 

del 13C r 
-17 5 

7 

'0 
a - 1 6  - -16 2 

-17 - 

-13 -19 . 
~ 1 4  - -18 

~ 1 5  

0 2  4  6 8 10 12 14 16 
Length - base to tip (cm) 

*+:, i 
I& ., 
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Olsen Bay, PWS, Alaska - May 1996 

-1 2 

.18 del 13C -14 

-19 - * I _  . del 15N -1 3 

- 20 & 

. 
2 -15 .. - 
u 

1- 
-17 5 

7 - 

Length - base to tip (cm) 
0 2 4 6 8 10 12  14 16 

C13 - -19 

- 14 
k D 2 1  PWS SUBADULT  MALE 
I' -18 

- 15 .~ -17 
\ ~ . -16 Ar  -& - 

I /  

.16 % 

-12 
HSDZZPWS  ADULT MALE 

I20  

-1 3 -19 

-1 4 -18 

E -15 T~ C. del 15N 
-17 5 7 

a-16 V 
>;.e$ * *. del 13C u .  -16 2 

-15 

-16 . -14 

-19 -13 
0 2 4 6 8 10 12 14 16 

Length - base to tip (cm) 

-17 . . i z' 
.I . 

117 



Channel  Island, PWS, Alaska - September 1996 
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Applegate R o c k s ,  PWS, Alaska - September 1996 
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Seal  Island, PWS, Alaska - June 1997 
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Channel  Island, PWS, Alaska - June 1997 
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Port Chalmers, PWS, Alaska - June 1997 
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Olsen Bay, PWS, Alaska - June 1997 

-1 2 
HSE32PWS  PUP  FEMALE 

del 13C 

U .W -16 

-1 7 

-1 8 

-1  9 
0 2 4 6 8 10 12 14 16 

Length - base to tip (cm) 

-12 

-1  3 

-14 

2 -15 
r - 
U 0 -16 

-17 

-1  8 

-1  9 

iSE33PWS ADULT FEMALE 

20 

19 

18 

17 5 
16 2 
15 

14 

13 

- 

20 

19 

18 

17 5 
16 2 
15 

14 

13 

7 

0 2  4 6 8 10 12 14 16 
Length - base to tip (cm) 

123 



Applegate  Rocks, PWS, Alaska - July 1997 
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Applegate Rocks, PWS, Alaska - June 1998 
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Seal  Island, PWS, Alaska - June 1998 
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Applegate Rocks, PWS, Alaska - June 1998 
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Channel Island, PWS, Alaska - June 1998 
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Port Chalmers, PWS, Alaska - June 1998 
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Applegate  Rocks, PWS, Alaska - June 1998 
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